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Abstract

Probabilistically checkable proofs (PCPs) allow encoding a computation so that it can be
quickly verified by only reading a few symbols. Inspired by tree codes (Schulman, STOC’93), we
propose tree PCPs; these are PCPs that evolve as the computation progresses so that a proof
for time t is obtained by appending a short string to the end of an accepting proof for time ¢t —1.
At any given time, the tree PCP can be locally queried to verify the entire computation so far.

We construct tree PCPs for non-deterministic space-s computation, where at time step t,
the proof only grows by an additional poly(s) - t¢ bits, and the number of queries made by the
verifier to the overall proof is poly(s) - t¢, for an arbitrary constant & > 0.

Tree PCPs are well-suited to proving correctness of ongoing computation that unfolds over
time, in particular in a distributed setting where the computation is carried by mutually untrust-
ing generations. They may be thought of as an information-theoretic analog of the cryptographic
notion of incrementally verifiable computation (Valiant, TCC’08).

To obtain tree PCPs, we present the first results establishing strong local testability and
local correctability for tree codes, and construct a tree code that achieves both properties si-
multaneously.

“Forty-two!” yelled Loonquawl. “Is that all you’ve got to show for
seven and a half million years’ work?” “I checked it very thoroughly,”
said the computer, “and that quite definitely is the answer.”
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1 Introduction

Consider an enormous computational task carried across multiple generations. For instance, the
mathematical corpus produced by humanity or, say, the mere ledger of some blockchain. Is it
possible to quickly verify that the current generation’s computation state is correct?

Using a probabilistically checkable proof (PCP), it is possible to encode computations so that
at any later point one can quickly verify their correctness [BFLS91, FGL196, AS98, ALM™92].
However, in the context of our trans-generational computation, we additionally wish to refrain
from regenerating the entire encoding each time a new computation step is performed.

Traditional PCPs lack such an incremental encoding property. They are in fact non-incremental
by design: their representation of computation guarantees large Hamming distance between the
encoding of any two distinct paths of computation. Thus, any additional computational step
requires regenerating a large portion of the encoding.

We introduce tree PCPs: proofs that can be incrementally generated and quickly verified.
Whatever part of the proof has already been generated becomes canon and any newly generated
proof is appended to the existing one. The proof can be efficiently verified at any point in time by
reading a small number of symbols and running a prescribed verification algorithm on them.

Importantly, any accepting proof can be efficiently extended to a proof for the next step by
reading few symbols, even if it is not the correct proof defined by the tree PCP construction. This
guarantees robustness in the presence of malicious generations of provers, who may attempt to
sabotage the work of future generations by deviating from the prescribed generation algorithm.

Tree PCPs are inspired by the notion of tree codes [Sch93]. Originally motivated by interactive
communication, tree codes allow for online encoding and guarantee tree distance: the i-th symbol
of the codeword can depend only on the first ¢ symbols of the message, and any two codewords
differ in many coordinates but only starting from the point at which they diverge.

A PCP is to an error-correcting code what a tree PCP is to a tree code. The former inherits
Hamming distance from the underlying code, whereas the latter tree distance. Both require their
respective error-correcting code to be locally testable. Local testability means that proximity of a
given word to the tree code can be tested by reading very few locations in the alleged codeword,
so that highly corrupt codewords are rejected with high probability.

In [MRR25] it was shown how to construct locally testable tree codes. This is a crucial first
step towards attaining tree PCPs, but far from being sufficient. While the blueprint for tree PCPs
and some of the machinery that comes into realizing it are inherited from traditional PCPs, the
setting in which tree PCPs are constructed requires taking incrementality into consideration.

Closest to tree PCPs is Valiant’s notion of incrementally verifiable computation (IVC) [Val08].
An IVC is a computationally-sound proof system in which one can incrementally prove that a long
computation was done correctly. Soundness of tree PCPs is unconditional, but it is assumed that
the PCP string is stored in its entirety and can be (locally) read by the verifier. We further contrast
tree PCPs with IVC and other notions of incremental proofs in Section 1.4.

1.1 Tree PCPs

Similarly to [Val08], our focus is on verifiability of non-deterministic, space-bounded computation,
relative to a circuit C : {0,1}3* — {0, 1} that verifies a non-deterministic step function.

The computation starts with an initial (canonical) configuration ay € {0,1}°. At time-step ¢,
the computation can progress from configuration a;—; € {0,1}° to configuration a; € {0, 1}* if and
only if there exists a witness wy € {0, 1}® that satisfies C'(a;—1, a¢, wy) = 1.



Definition 1.1. A sequence p = (ag, a1, ...,ay), is said to be a path under C' if and only if there
exists a sequence of witnesses (w1, ..., wy) so that C(ai_1,ar,w;) =1 for all t € [n].

We denote the set of all paths under C' by PATHS(C'). The size s of configurations a; and
of witnesses wy, as well as the size |C| of the circuit C, are all constant in the length n of the
computation.

The goal is to verify that the computation induced by C' reaches a configuration a in n steps.
Define the language circuit reachability as:

CkTREACH = {(C,a,n) | (ap,...,an) € PATHS(C) : a9 =0,a, =a}. (1)
A witness for membership of (C,a,n) in CKTREACH consists of a path p = (ag,...,a,) and a
witness w = (wy, ..., wy) for membership of p in PATHS(C).

Remark 1.2. Unlike 1V Cs that require succinctness, the restriction to space-bounded computations
is not inherent to tree PCPs but is rather a limitation of our construction. While we choose to
restrict the definition of tree PCPs to this special case for simplicity, we note that one can think of
natural generalizations to broader classes of incremental computations, as we discuss in Section 1.5.

Given a witness (p,w), the language CKTREACH can be verified in time O(|C| - n) by simply
verifying that C(a;—1,a,w;) = 1 for all ¢ € [n]. In a model where a verifier is allowed to query a
proof m, PCPs enable probabilistic verification of CKTREACH in o(|C| - n) time.

Definition 1.3 (PCP Verifier). A PCP verifier V' for a language L C {0,1}* with soundness error
e € (0,1) is a probabilistic algorithm that, on input a statement x € {0,1}", makes oracle queries
to a proof m and outputs 0 (rejects) or 1 (accepts), such that the following properties hold:

— Completeness: For any x € L, there exists a proof oracle w such that Pr[V™(z) =1] = 1.
— Soundness: For any x ¢ L of length n, and any proof oracle w, Pr[V™(z) = 1] < e.

Tree PCPs are PCPs for the language CKTREACH in the setting of incremental computation.
Besides standard completeness and soundness, we require that an accepting PCP can be extended
incrementally with the computation: Tree PCPs admit an incremental prover which can extend any
accepting proof 7w corresponding to computation of length n to an accepting proof for computation
of length n 4+ 1, by reading only few locations in 7w and appending a short string to it.

Definition 1.4 (Tree PCP). An (¢, q,€)-tree PCP is a pair of algorithms (P,V'), where:

-V is a PCP verifier for CKTREACH which on input (C,a,n) makes at most q(n,|C|) queries
and has soundness error €(n, |C|).

— P is an incremental prover which on input (C,a,a’,w,n) makes at most q(n,|C|) queries to
an oracle © and outputs ' € {0, 11D that satisfies: If Pr[V™(C,a,n) = 1] := € > e(n,|C|)
and C(a,d’,w) =1, then Pr[V™™)(C a',n+1) =1] > €.

The above definition implies perfect completeness of P by induction, as it can be used to incre-
mentally construct a PCP that convinces the verifier with probability 1. Our definition is however
stronger than merely requiring an accepting proof to be constructed incrementally; this alone is not
satisfactory in a setting where different generations of provers are involved in constructing the PCP
and where a corrupt prover may deviate from the prescribed proof, creating a PCP that accepts
but that cannot be extended by future generations.



Tree PCPs are non-trivial when both the (verifier’s) query complexity ¢ and the length of a
new step in the proof ¢ are sublinear in the size of the computation n - |C|. If ¢ is linear, a verifier
could simply read the entire path of computation. If £ is (quasi-)linear, a tree PCP can be created
by concatenating (standard) PCPs, each proving the computation from scratch.

Ideally, we would like ¢ to be much smaller than n - |C| and ¢ to be independent of n, leading
to a total proof length almost linear and approaching the length of state-of-the-art standard PCPs.
We are additionally interested in minimizing the prover’s runtime complexity, preferably making
it proportional to g. Just like in standard PCPs, the soundness error € can be always reduced by
repetition as long as it is bounded away from 1 (say 2/3).

1.2 An Amortized Tree PCP

It was pointed to us by Rafail Ostrovsky and Daniel Wichs [OW25] that tree PCPs with an
amortized incremental prover can be generically built from standard PCPs.

The tree PCP for a computation of length n is composed by a hierarchy of [logn]| levels of
standard PCPs, proving statements of geometrically growing size: Level i = 0,...,[logn] — 1
contains Ln/ 2@ PCPs for segments of the computations consisting of consecutive 2° steps. A new
PCP is added to the proof when the corresponding segment is completed. That is, a PCP is added
to level i every 2¢ timesteps. To verify, the verifier queries at most one PCP at every level and
locally checks that the O(log n) statements it verifies via the PCPs are consistent at their endpoints.

Plugging in state-of-the-art PCPs [BS08, Din07], the above construction achieves query com-
plexity polylogarithmic in n for the verifier, where the next piece in the proof at time n can be
computed by the prover in amortized time and query complexity of polylog(n - s).

To the best of our knowledge, any attempt to de-amortize this construction falls short of our
definition of tree PCPs and, in particular, fails to guarantee completeness in the presence of corrupt
generations of provers. For instance, straight-forward de-amortization where the construction of
any PCP at level i is performed over O(2%) generations breaks if one of the provers corrupts the
de-amortized computation at one of its steps. To guarantee completeness in such an outline, one
must devise machinery to continuously verify the incremental construction of the PCP, taking us
back to the original problem of verifying incremental computation, namely building a tree PCP.

Not surprisingly, an analogous hierarchical structure to the construction above underlies the
generic construction of tree codes from error-correcting block codes by Schulman [Sch94] (see Fig. 2).
Similar design ideas further appear in the literature of proof systems in the incremental setting,

e.g. [CKO14, BBBF18, DGMV20, EFKP20].

1.3 Our Results

We construct a tree PCP where both the verifier’s and prover’s complexity (query and runtime) at
time step n, as well as the length of the new string added to the proof, are all proportional to n?,
for an arbitrarily small constant v > 0.

Theorem 1.5 (Tree PCP). For any v > 0, there exists an (¢,q,€)-tree PCP with { = ¢ = n" -
poly(|C|) and e = n=+),

Along the way, we develop new instruments for tree codes that are central in our tree PCP
construction, and which we believe are of independent interest similarly to their standard analogs
for block codes.

First,we demonstrate that tree codes can be locally testable in a strong sense. Namely, that
there exists a local test that rejects any non-codeword with probability proportional to its distance



from the code, no matter who small it is. We show this for the generic tree code construction
from [MRR25], where strong local testability was posed as an open problem.

Theorem 1.6 (Strong Locally Testable Tree Codes). There exists a strong locally testable tree
code TC, where the local test reads ¢ = nY symbols from a word w of length n, for arbitrarily small

~v > 0, and rejects with probability m - At(w, TC).

In the above, At denotes tree distance. The theorem is derived by Propositions 4.9 and 4.10.

Second, we show that tree codes can be locally correctable. Local correctability means that it
is possible to recover a symbol in a codeword, even when given a corrupted version of it, be reading
a small number of symbols. The following is a corollary of Lemmas 3.8 and 4.20.

Theorem 1.7 (Locally Correctable Tree Codes). There exists a locally correctable tree code TC,
where the local corrector reads ¢ = n” symbols from a word w of length n satisfying At(w, TC) <
1/polylog(n), and on input t € [n] outputs the t'" symbol in the codeword closest to w.

We further show the existence of a tree code that simultaneously achieves both strong local
testability and local correctability (a combination of Corollary 4.21, Lemma 4.11, and Proposi-
tion 4.10). This is particularly useful, as it allows testing that a given word is close enough to the
code and, if so, to correct it to the closest codeword.

We additionally show how to obtain a relaxed notion of local correctability [GRR20] for tree
codes (that are also strong locally testable), where the corrector is allowed to fail on a non-codeword,
via a simpler and more generic construction.

1.4 Incremental Proofs

Tree PCPs are distinct from Incremental PCPs by Naor, Paneth and Rothblum [NPR19]. In an
incremental PCP, the proof’s symbols change as the computation evolves but they do so separately.
That is, each symbol “updates itself” independently of other symbols. In contrast, in a tree PCP
symbols never change and the proof is updated by appending new symbols to it.

Closer to tree PCPs is Valiant’s notion of incrementally verifiable computation (IVC) [Val08].
An IVC is a cryptographic proof system in which one can succinctly prove that a long computation
was done correctly. The requirement is that the proof can be efficiently updated as the computation
proceeds, in time independent in the length of the computation thus far.

Such stringent efficiency requirements put a hard limit on the proof length and hence also on
its soundness guarantee, requiring it to be merely “computational”: no polynomial-size attacker
can find an accepting proof of a false statement. In contrast, tree PCPs are unconditionally sound.

Valiant demonstrated how IVC could be realized via a technique called proof merging. Later,
Bitansky et al. [BCCT13] relied on recursive composition of proofs. Soundness was based on strong
assumptions on the proofs, and postulated access to an idealized random oracle. Since the random
oracle ultimately has to be instantiated by a function with short description, these approaches run
into circular reasoning. Later works suggest that the standard random oracle model is not sufficient
for incremental proofs. They rule out not just explicitly recursive designs, but any IVC that either
satisfies some natural constraints (e.g. zero-knowledge) [CL20, HN23] or can prove computations
that themselves have access to the random oracle (so-called relativized IVC) [BCG24]. More recent
works [DGKV22, PP22] construct IVC from falsifiable assumptions for deterministic computations,
but requires a heavy use of expensive “public-key” operations.

Tree PCPs can be compiled a la Kilian/Micali [Kil92, Mic95] into succinct, computationally
sound proofs in the random oracle model. The resulting proof-system is a form of IVC in which



the prover needs to maintain a large state consisting of the evolving tree PCP and its Merkle tree,!
but otherwise adheres to the standard IVC model [BBBF18, DGMV20, EFKP20].

Incremental verifiability also makes an appearance in [CHK'19], where it is shown how to
construct a procedure that, given a SAT instance over n variables, counts the number of satisfying
assignments. This is accomplished via an exponential sequence of small steps, each computable in
time poly(n). Incremental verifiability in this context means that each intermediate state includes a
sumcheck-based proof of its correctness, and the proof can be updated and verified in time poly(n).

1.5 Further Research

The tree PCPs we build for CKTREACH capture non-deterministic space-bounded computations.
Their proof length is almost optimal and their sublinear verification complexity grows with n7.
This is inferior to state-of-the-art standard PCPs [BS08, Din07], where verification complexity is
polylogarithmic in n, for a comparable soundness error.

A first question is whether the incrementality of tree PCPs can be attained with a smaller
cost in complexity. Efficient constructions of standard PCPs typically require PCP composition
techniques, which are not directly applicable to the incremental setting, or locally testable tree
codes with a more efficient local test. Such codes often take the form of m-fold tensor products,
for a super-constant m. In the incremental setting of tree codes, m = w(1l) would require to
somehow increase the dimensionality of the tensor tree code over time, which seems to necessitate
new techniques beyond those used in [MRR25].

Another path for improved efficiency is via “purely algebraic”, more “PCP-friendly”, tree codes
(see Section 2.3) that could facilitate more straight-forward tree PCPs. While constructing such
codes seems to be challenging (see, e.g., [Pudl13]), we hope that their application to tree PCPs will
motivate further research in this direction.

Perhaps the most intriguing question is whether tree PCPs can realize efficient verification of
broader classes of computations beyond space-bounded. One can think of a model where the circuit
C is replaced by a function that has local random-access to the path of configurations (ag, ..., a,)
and its witness (wq,...,wy). Less generally, one can consider special cases where only specific yet
meaningful local access patterns are allowed.

In the notion of tree PCPs we consider, the computation at time t is allowed access only to
“memory locations” t and t—1 (hence space-bounded). Our construction realizes this access pattern
by embedding it on a more expressive access graph. Thus, it already allows access patterns beyond
what is captured by the construction (these are defined by the shifts I'; — see Fig. 3 and Section 5.2).
Extending the functionality further requires new techniques for enforcing a more general structure
of consistency constraints across witnesses in the different time-steps.

2 Technical Overview

Our goal is to build a tree PCP for (C,a,n) € CKTREACH (see Definitions 1.1 and 1.4 and Eq. (1)).
Since a PCP verifier reads only few locations in the proof, a PCP at the very least necessitates a
redundant encoding of the witness, where any local change in the witness results in global change
in the proof. Whereas traditional PCPs rely on standard error-correcting codes, tree PCPs rely on
tree codes, which are well-suited to our incremental setting.

!Merkle trees can be made “incremental” using standard techniques.



2.1

The BFLS Blueprint

We follow the “BFLS blueprint” for constructing PCPs [BFL90, BFLS91] (see [Sud04]):

(i)

(iv)

The statement is reduced to the satisfiability of many local constraints, akin to the way in
which an NP statement reduces to a conjunction of 3-CNF clauses. A witness to the statement
is an assignment A that satisfies all local constraints.

The proof consists of a redundant encoding A of A, using an error-correcting code. This
amplifies any divergence from a satisfying assignment, facilitating efficient verification: if an
assignment breaks even one of the local constraints, its encoding breaks many of them.

The code used to encode the witness possesses structure (typically algebraic) that allows
evaluating the local constraints “underneath” codewords. By making only few queries to j,
it is possible to compute any symbol in the codeword E that encodes E — the evaluations of
the local constraints over A: E(i) = 0 if and only if the i"* constraint is satisfied by A.

The PCP verifier performs the following two checks:
1. Test that A is close enough to a codeword. For this, the code is required to be locally

testable, where proximity of a word to the code can be tested by reading few locations.

2. Test that E encodes zero evaluations. This is performed by a zero test PCP, which is
usually based on the sumcheck protocol [LFKN92]. The soundness of the zero test is
guaranteed whenever F is a codeword, and relies on the minimum distance of the code.?

Notice the gap between the soundness guarantee of the local test that A is close to a codeword,
and the requirement for soundness of the zero test that presumes E which emerges from A via (iii),
is an exact codeword. To bridge this gap, the code is often required to satisfy some notion of local
correctability, namely that the “correct” value at any location in a slightly-corrupted codeword can
be recovered by reading additional few random locations.

2.2

The Tree PCP Outline

To adapt the above outline to tree PCPs, the following ingredients are required:

e An incremental representation of a CKTREACH statement by a conjunction of local con-

straints. Incrementality here means that extending the statement by a new computation step
entails adding few new constraints to the current set of constraints.

e A tree code that is locally testable and locally correctable, and of structure that allows evalu-

ating the local constraints underneath codewords (a la (iii)).

e A sumcheck protocol for the locally testable tree code, which can be converted into a “zero

test tree PCP” where a proof for a codeword can be extended to obtain a proof for any
extension of the codeword, akin to the incrementality of tree PCPs.

Our starting point is a description of (C,a,n) € CKTREACH as a conjunction of local constraints
over n input triplets A; = (a;_1, as, wy) € {0,1}3% to C such that: (1) A; and A,, contain valid initial
configuration ag = 0° and, respectively, final configuration a,, = a, (2) Ay is a valid transition under



The Tree PCP Outline
The Proof:

1. Let A; = (a;—1,as,wy) € {0,1}3° and denote by A% : [n] — F the column A%(t) = Ay(3).
2. The proof contains B B
Al = TC(AY), ..., A% =TC(A%®).

The Verifier:

1. Using local testability, verify that for allt =1,...,3s, At is close enough to the code TC.

2. Using a zero test, verify that the unique closest codewords encode A, ..., A% that satisfy:
2.1 (Endpoints) (AY(1),...,A%(1)) = 0% and (A°Ti(n),..., A%(n)) = a.
2.2 (Transition) Forallt=1,....n, C(AY(t),...,A3(t)) =1.

2.3 (Consistency) Foralli=1,...,sand t =2,...,n, AY(t)= ATt -1).

Figure 1: Tree PCP for CKTREACH instance (C, a,n), with respect to path p = (w1, a1, ..., wy, ay).

C forany t=1,...,n, and (3) A~ and A; assign consistent values to a;—; for any t = 2,...,n.
This suggests a tree PCP outline, which we sketch in Fig. 1.

Given locally testable tree codes have been constructed in prior work [MRR25], it seems that
to realize the outline from Fig. 1 we only need to make them locally correctable and to devise a
corresponding sumcheck protocol that can be turned into a zero test.

To some extent, both ingredients can be derived somewhat generically in the standard set-
ting, for any locally testable block code that builds on tensoring: Gur et al. [GRR20] prove that
any tensor code already satisfies a relaxed notion of local correctability that is sufficient for PCP
soundness [BGH'06], and Meir [Meil3] shows that the classic sumcheck protocol [LFKN92] can be
applied to any tensor code. Since the code from [MRR25] also relies on tensoring, albeit of tree
codes, we are able to successfully adapt the respective results from the literature to locally testable
tree codes.

In Section 4, we recall the locally testable tree code construction from [MRR25] and prove
that it satisfies relaxed local correctability (Lemma A.1).> Interestingly, using its relaxed local
correctability, we are able to show that the code is strongly locally testable (Proposition 4.9),
namely that there exists a local test that rejects any non-codeword with non-zero probability.
This is an improvement compared to [MRR25], where we prove local testability in a weak sense,
guaranteeing that a non-codeword is rejected with non-zero probability only if its distance from
the code exceeds a certain threshold. Notably, strong local testability is crucial for the soundness
analysis of the tree PCP. See further discussion in Section 4.1.1.

In Section 6, we build an interactive sumcheck protocol for tree code tensors (Section 6.1) then

2In actuality, E is not expected to be the all-zero string but rather to contain zeros only in a set of relevant
locations where constraint evaluations reside. Otherwise, making few random queries to E and checking they are all
zeros would have sufficed for small-enough soundness error, due to the distance of the code.

3In fact, we consider an intermediate construction from [MRR25] that does not satisfy tree distance but only a
weaker notion of distance that suffices for our analysis. Our proofs of relaxed local correctability and strong local
testability extend, however, to the locally testable tree codes of [MRR25] that satisfy (probabilistic) tree distance.



show how to convert it to a zero test proof oracle that is “incremental” (Lemma 6.1), which is
important for obtaining a tree PCP.

While locally testable tree codes that are also relaxed locally correctable and equipped with a
zero test take us close to tree PCPs, there are still two considerable gaps.

First, recall that we crucially require that the verifier can “evaluate” the local constraints from
Fig. 1 over the assignments A!, ..., A3 given their encodings Al,..., A3 ((iii)). To that end, the
set of local constraints and the encodings must be compatible in structure.

Second, while relaxed local correctability is sufficient for soundness, we ultimately need a tree
code that satisfies full-fledged local correctability for completeness. Recall tree PCPs (Defini-
tion 1.4) require that any accepting proof can be incrementally extended. Such an accepting proof
may consist of a small amount of corruptions that goes undetected by the verifier yet hinders ex-
tending the proof via straight-forward tree code encoding. Given local correctability even in the
presence of corruptions, we may apply the incremental encoding function of the tree code in a man-
ner that is robust to bounded corruptions: instead of reading directly from the encoding generated
thus far, use local correctability to read from the values defined by the closest codeword.

The tensor structure, using which we get local testability, is alone not sufficient to guarantee
local correctability (unlike relaxed local correctability). Nevertheless, it does preserve it: the tensor
product of locally correctable tree codes is locally correctable.

We close these two gaps by designing a tree code that, on the one hand, is locally correctable
and, on the other, is well-structured to allow for constraint evaluation. In the rest of the overview,
we elaborate on our design, and point the reader to Sections 4.2 and 5 for details.

2.3 PCP-Friendly Tree Codes?

BFLS PCPs build on low-degree extensions, facilitating algebraic techniques to evaluate constraints
over the encoded messages, as the constraints are typically arithmetized and made algebraic.

For simplicity, think of the univariate special case of low-degree extensions, aka Reed-Solomon,
as an example. These are multiplication codes [Meil3], where the encoding of the point-wise
product of two words A! and A2, is simply the point-wise product of the codewords A! and AZ.
This, besides linearity, allows to evaluate any low-degree polynomial underneath codewords, in
a point-wise manner: by reading few locations from Al ... A% the verifier can compute any
location in the codeword E that encodes E(t) = P(Al(t),..., A3(t)), where P is any degree-3
polynomial. Consequently, using standard arithmetization techniques and assuming C is a 3-CNF
circuit w.l.o.g., the verifier can evaluate the transition constraints (2.2) as we require.

The same algebraic structure additionally allows to evaluate consistency constraints (2.3): for
instance, due to the affine invariance of Reed-Solomon codes, say over prime fields, a codeword that
encodes a shift of an assignment A, i.e. A where A(t) = A(t — 1), can be obtained by (circularly)
shifting the codeword A. This is sufficient since the consistency constraint between A’ and A+
(see 2.3) can be written as E = A" — A5t = 0.

Things do not work that easily with tree codes: unlike with block codes, explicit “purely al-
gebraic” tree code constructions with reasonable alphabet size are not known to exist, let alone
ones that are also locally testable . The only explicit algebraic tree codes we are aware of either
have alphabet size that grows exponentially in the message length? [Pud13, CHS18] or are heuris-
tic [MS14, BCN21], namely where minimum distance is only conjectured. Even if we are willing to
compromise on the latter, we do not know how to exploit the algebraic structure therein for our
goals.

“While the code from [CHS18] is based on an algebraic design, the final construction with small alphabet involves
combinatorial machinery that breaks a potentially useful structure and even makes the code non-linear.
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2.4 The Base Tree Code

In light of the above, we turn to rely on a simple, generic, tree code construction by Schulman [Sch94]
that can be based on any family of block codes that allows encoding messages of any length. The
hope is that if we instantiate the construction with algebraic block codes, e.g. low-degree extensions,
it inherits some of their desired properties and that these further propagate to the locally testable
tree codes obtained by plugging-in the construction in the framework of [MRR25].

A codeword in Schulman’s tree code is a concatenation of codewords from the underlying family
of block codes, where each “block-codeword” encodes a certain chunk of the message.

The codeword corresponding to a length n message consists of [log(n)] “threads”, where the
k" thread, for k = 1,...,[log(n)], contains encodings of consecutive chunks of length 2¢~! in
the message (see Fig. 2). Note that a codeword in the tree code might contain only part of some
block-codewords, which will be eventually entirely included as the codeword grows.

a | O0ooogogd)

I

R

co |12 120 OO0 O)C OO O
s |22 0000OCOOO0O
g iy ODO0ODOoOoOogg

Figure 2: Encoding a message of length n = 10 with Schulman’s original tree code [Sch94]. The
codeword (red) consists of [logn]| = 4 threads, where thread ¢, for k = 1,...,4, contains block-
codewords (blue) that encode chunks of the message of length 2¥=!. Any such block-codeword
is split into 2*~! equal-length symbols (black) that are added one column at a time to the tree-
codeword.

Since a codeword in Schulman’s construction is simply a concatenation of block-codewords,
if the underlying block code is a linear multiplication code, then so is the obtained tree code.
Consequently, the transition constraints can be evaluated under the tree code as described above,
namely by evaluating low-degree polynomials locally, in a point-wise manner, within each of the
block-codewords. We show this formally in Section 5.1.

2.5 Evaluating Consistency

Verifying the consistency constraints turns out to be much more challenging. In fact, a substantial
part of the technical work put to achieve the main result of this paper is dedicated to this goal.
In what follows we provide a simplified account, omitting many of the moving parts, and refer the
reader to Section 5.2 for more intuition and formal details.

The difficulty in evaluating the consistency constraints stems from the fact that, in contrary to
the transition constraints which are “point-wise”, the consistency constraints involve values from
different locations in different assignments. Recall that evaluation can be done by shifting an
assignment A underneath its encoding by ¢ — t — 1 to obtain an encoding of A (recall fl(t) =
A(t — 1)). These shifts are not directly compatible with the structure of the locally testable tree
codes we consider. Roughly speaking, there are two sources of incompatibility corresponding to two
“combinatorial layers” in the code: First, the block structure of Schulman’s tree code (Fig. 2) and,
second, the “flattened tensor” structure of the locally testable codes from [MRR25]. (Recall we do
not directly use the tree code by Schulman to encode the assignments in the tree PCP since the
code is not locally testable. The tree code is instead used as the base code to the locally testable
tree code construction of [MRR25].)

11
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Figure 3: The shifts I';, T’ and I's over {1,...,8}. In red is the embedding of ¢ — ¢ — 1, namely the
edges going out from ¢ satisfying I';(¢) = ¢t — 1 (the set A; defined in Section 5.2). In parentheses
are the coordinate labels, denoted b(t) in Section 5.2.

Naively shifting the assignment underlying a codeword A from Schulman’s tree code entails
“moving around” information across different block-codewords. The presumed minimum distance
of the underlying block codes makes this impossible to do with a small number of queries. Instead,
we implement the shifts ¢t — ¢t — 1 by embedding them in a collection of different shifts (i.e.
permutations) I'; : N — N over the coordinate space of A, described in Fig. 3. The shifts T';
are compatible with the combinatorial structure of the tree code in that they can be performed
by first permuting blocks then permuting coordinates within each of the blocks (but never across
different blocks). The latter is possible with existing algebraic block codes, specifically (univariate
or multivariate) low-degree extension codes over extensions of GF(2) (Definition 4.16), which we
use to instantiate the tree code construction.

We note that the shifts I'; are similar to permutations that appear in prior work on PCPs
in a similar context, where routing techniques are used to design well-structured consistency con-
straints [Spi95, PS94, BGH106].

One technical issue that arises in shifting an encoded assignment A is that it might involve
block-codewords that appear only partially in the codeword A (see Fig. 2). We handle this by
letting the prover write down the missing parts “in advance” to the PCP. While these parts are not
included in the original codeword yet, we may consider an extension of Schulman’s construction
where codewords contain all block-codewords in their entirety. Such a code is a tree code that
inherits the tree distance of the original construction, as well as its rate in an “amortized sense”.
Further, the tensor product of the extended code is locally testable and therefore the verifier is still
able to test the validity of the given encodings.

The second main challenge in evaluating the consistency constraints has to do with the com-
binatorial structure underlying the locally testable tree codes of [MRR25]. The transformation in
[MRR25] takes a base (linear) tree code and makes it locally testable in two steps:

(i) Tensoring: The m-fold tensor product of the tree code, for any m > 1, defines an “m-
dimensional tree code”, where messages are viewed as m-dimensional rectangles and are en-
coded to m-dimensional codewords by an encoding function that is “online in m dimensions”.

(ii) Flattening: To obtain a tree code with an online encoding function in the standard sense, the
tensor tree code is flattened by a monotone embedding of the high-dimensional coordinate
space N to the one-dimensional coordinate space N (defined in Fig. 4, illustrated in Fig. 5).

The ability to shift messages encoded under the base code translates to the ability to shift m-
dimensional messages encoded under the tensor code along any of the dimensions (Lemma 5.13).
While this is sufficient to shift the flattened encoding of an assignment at most coordinates
(Lemma 5.14), for many values of ¢, the shift ¢t — ¢t — 1 in a (one-dimensional) assignment corre-
sponds to a “jump” in its lifting to m-dimensions, for the m-dimensional coordinates where ¢t and
t — 1 are embedded are not at all adjacent (Lemma 5.15).
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We are nevertheless able to express the consistency constraints as consistency between adjacent
coordinates in the m-dimensional tensors (Lemma 5.16). This is done by introducing auxiliary
variables that act as “bridges” in-between, and are also encoded using the locally testable tree code
and added to the tree PCP next to the assignments.

2.6 Making Schulman’s Construction Locally Correctable

The last missing component for tree PCPs is (full-fledged) local correctability of the tree code
which, recall, is essential for completeness in the presence of few corruptions. Recall also that
tensoring preserves local correctability, therefore it is sufficient to attain it for the base tree code
which, in our case, is based on Schulman’s generic construction.

A natural attempt is to instantiate Schulman’s construction with block codes that are locally
correctable and hope that the property is passed on to the tree code. Conveniently, our choice of low-
degree extension codes that facilitated constraint evaluation can give us local correctability under
certain choices of parameters [GS92, Sud95] (while the univariate Reed-Solomon codes are sufficient
for constraint evaluation, for local correctability we opt for multivariate low-degree extensions that
generalize Reed-Muller codes).

Assume we want to recover the correct value of a symbol from a slightly corrupted Schulman
codeword w. A symbol in w consists of symbols coming from supposed block-codewords (Fig. 2).
While we can try to use the local correctability of the underlying block codes to recover the correct
value from each of the blocks, nothing guarantees that these blocks are sufficiently close to valid
codewords, even when w is close to a tree-codeword: w may be entirely corrupted over any of the
sufficiently small blocks, in which case the recovery is not guaranteed to be correct.

Our strategy for locally correcting symbols in w is to extract the correct value by probing not
only the blocks that contain them, but rather all larger blocks at subsequent levels that encode
related parts of the message. The reasoning is that these blocks span an entire suffix of coordinates
in w and, hence, if w is close to the tree code, then so must be the majority of these blocks to their
respective block codewords.

This idea seems to require the block codes to possess a certain structure, allowing to read from a
codeword that encodes a message x1 by reading from a codeword corresponding to a larger message
(z1,22) of double the length. We observe that such a property, to some extent, can be attained
by a yet more specific choice of low-degree extensions. It was shown by Reingold et al. [RRR16]
that reading from a k-variate low-degree extension that systematically encodes a message x; can
be done given access to the (k + 1)-variate low-degree corresponding to (z1,...,z4), where d is
the individual degree of the additional variable (Proposition 4.19). For local correctability with
reasonable parameters, d must be chosen to be a super-constant, deeming the above unsuitable to
the original construction of Schulman, that considers blocks of doubling length.

For that reason, we in fact consider a generalization of Schulman’s construction (Fig. 6), where
the length of blocks encoded at level k + 1 are poly(k)-times larger than the blocks at level k and
instantiate it with suitable family of low degree extensions that satisfy all of the necessary properties:
multiplication and affine invariance for constraint evaluation, as well as local correctability and the
above “inter-codeword” correlations. As a result, we obtain that a message of length n is encoded
using k = O(polylog(n)) levels and that the tree code has rate n?, for arbitrarily small v > 0, and
incurs a 1/polylog(n) loss in distance compared to the distance of the underlying block codes.
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3 Preliminaries

For n € N, we denote [n] = {1,...,n} and the n'® harmonic number by H, = >  1/i. For a
subset J C [m], we denote by 1; € {0,1}™ the binary vector that is 1 at any j € J and 0 at any
j & J. For m-dimensional coordinates t = (t1,...,t,) and t' = (#},...,1;,), we write t > ¢"if t; > ¢/
for all j. A (possibly infinite) set I C N™ is a rectangle if it can be written as I = I} X -+« X I,.

We often view a word w € X" as a function w : [n] — ¥, where w(t) is the t** symbol in w and,
more generally, m-dimensional words w € £™ > X" as w : [ng] X - -+ X [n,,] — X. For a function
f:I— X, we denote by dom(f) = I the domain of f and write |f| = |I| -log |X|. For a set S, we
denote by fs: S — 3 the restriction of f to S N dom(f).

For a distance function A = {A,, : ¥ x ¥" — R} and any string w € X" and set S C ¥*, we
denote the distance between w and S by A(w, S) = mingesnsn Ap(w, w'). We sometimes consider
distances between high-dimensional words where this notation generalizes naturally.

We say that an algorithm is efficient if it runs in time polynomial in the length of its input.
We say that a function is efficiently computable if there exists an efficient algorithm that computes
it. Algorithms in this paper are often oracle-aided, namely they are given access to an oracle. We
assume algorithms always take the size of their oracles as input and omit this from the notation.

We say that a function € : N — R™ is negligible if ¢(n) = o(1/n¢) for any constant c. We say
that a multivariate function is negligible if it is negligible in its largest input.

3.1 Incremental Ensembles

For functions f,g, where dom(f) C dom(g), we denote f < g and say f and g are consistent, if
g(t) = f(t) for all t € dom(f). We use this notation particularly for words, namely functions over
coordinates [n] or, more generally [ni] X - -+ X [n,,], where in such a case we say that f is a prefiz
of g. For f < g, we denote by g|; the restriction of g to dom(g) \ dom(f) and, more generally for
fi,oooo fr 2 g, welet gly, .y, denote the restriction of g to dom(g) \ (U; dom(f;)).

We consider ensembles of functions that associate any x € I'"**"m with a function f, and
are monotone in the sense that a prefix of x is always associated with a prefix of f,.

Definition 3.1 (Monotone ensemble). An ensemble of functions
{fo |z e > X" n; e NVj}
is monotone if for any x < z’ it holds that f, < fur.

We are interested in cases where f; can be incrementally computed and, in particular, where
the incremental computation is robust against bounded corruptions.

Definition 3.2 (Incremental Ensemble). We say that a monotone {f;} is (T, L)-incremental if for
any  : [n1] X - -+ X [ny] = T, letting x; denote the restriction of x to [n1] X -+ x [nj—1] X -+ X [ny,)
and fj := fy,, it holds that fi|f ., 1is of size at most L(ny,...,ny) over I' and there exists
a deterministic algorithm that computes it in time T'(ny,...,ny) given x(ni,...,Ny) and oracle
access to f1,..., fm-

We say that {f} is (A, 0, T, L)-robustly incremental, for a distance function A, if the algorithm
outputs folf,.... f.., with probability all but negligible in n, even when given access to f1,..., f;, such

that A(f;, f'5) < 6(na, ..., nm).
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3.2 Tree Codes

A code over an alphabet X is a subset of strings, namely codewords, C C ¥*. Typically, a code is
associated with a 1-1 encoding function from a message space of size |C| to C. The standard notion
of codes is that of block codes, where all codewords are of the same length.

Central to our work is the notion of tree codes [Sch93]. These are infinite codes that exhibit an
online encoding function.

Definition 3.3 (Tree Code). A tree code over alphabet ¥ = {3¥,} is an infinite collection of
subsets TC = {TC,, C (3,)"}nen, where, for any n € N, it holds that ¥,—1 C %, and, for any
codeword (c1,...,cn) € TC,y, it holds that (c1,...,¢cn—1) € TCp_1.

We often define a tree code via an injective encoding function which, overriding notation, we
denote by TC = {TC,, : I'"" — ¥,,}. The function encodes a message (z1,...,z,) € I'" by

TC(a:l, ce ,xn) = (TCl(arl), TCQ(xl,xg), ey TCn(azl, ce ,$n))

The corresponding code is {TC(x) | x € T*} and its rate is defined as p(n) = log |I'|/log |%,,|. Note
that the codewords of a tree code with a well-defined encoding function make a monotone ensemble
of functions (Definition 3.1).

We say that tree code with an encoding function TC = {TC,} is systematic if ¥,, C T' x X/,
for some ¥/, and the n'* codeword symbol ¢,, = TCy,(z1, . ..,z,) is always of the form (z,,c,). We
refer to the first part in any ¢, € ¥,,, which is over I'; as the systematic part.

We sometimes work with tree codes where there is no well-defined encoding function yet it is
always the case that there exists an input alphabet I' where for any message x € I'", there exists
a well-defined set of codewords TC(z) that encode = (Remark 4.14) and, additionally, for any
codeword ¢ € TC there exists a well-defined message = that satisfies ¢ € TC(z). In this case, we
say that the code is systematic if the n*” symbol of any codeword ¢ € TC(z) is of the form (z,,c,).

We will always assume in this work that, given a word w € X", it is possible to efficiently tell (in
time polynomial in n) if w € TC and, if so, to efficiently find the message = satisfying w € TC(x).
All of the tree codes that we consider satisfy this property.

Tree codes inherently fail to achieve Hamming distance, which is the standard in coding theory.
The appropriate notion for tree codes is tree distance, which measures (relative) Hamming distance
between two words starting from their first disagreement.

Definition 3.4 (Tree Distance). Let ¥ be an alphabet and n € N. Let w,w' € X" and let i* =
min{i : w; # wi} (and i* =0 when w = w'). We define the tree distance between w and w' as

At(w,w') = AH(wZi*,w’Zi*),
where Ay denotes relative Hamming distance and w>i« the suffiz of w starting at position 1*.

We define linear tree codes similarly to [Pud13]. This is a special case of linear tree codes as
sometimes defined in the tree code literature (e.g. [CHS18], where codes over general rings, not
necessarily vector spaces, are considered) and equivalent to the notion of vector linear tree codes
from [MRR25].

Definition 3.5 (Linear Tree Code). Let F = {F(n)} denote a sequence of finite fields where F(n—1)
is a subfield of F(n) for allm € N. Let L : N — N. A linear tree code over F is a tree code with input
alphabet I' = F(0) and output alphabet %, = ]F(n)L(”), such that for any n € N, any ¢, € TC,
and any o, B € F(n), it holds that o - ¢+ - ¢ € TC,,.
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We often use F to denote the finite field F(n), rather than the sequence of fields, when n is
clear from context. The following remark gives a characterization of any linear tree code as an
infinite collection of linear block codes, of increasing block-length, each with block lower-triangular
generator matrix.

Remark 3.6. Let TC = {TC, C (F(n)*™)"} be a linear tree code over F = {F(n)} with a well-
defined encoding function. Then, for any n € N, TC,, is isomorphic (up to padding with zeros) to
a linear block code of dimension n and length L(n) - n that has a block lower-triangular generator
matriz G, € F(n)(L(”)'”)X", where Gp_1 =X G,

While tree distance is a powerful notion and captures the desired distance guarantee in many
tree code applications, it is often difficult to work with. In particular, tree distance is not formally
a distance function (i.e. a metric) as it does not satisfy the triangle inequality. In our analysis, we
mostly use a different distance notion called suffiz distance [MRR25], which is actually a distance
function, can be usefully described as probability of disagreement at a random location (similarly
to relative Hamming distance), and is strongly related to tree distance (Lemma 3.8). We present a
definition of suffix distance which generalizes over high-dimensional words.

Definition 3.7 (m-dimensional Suffix Distance). Let X be an alphabet. Define Hy, = 377 1 1/j
for anyn € N and Hy, .. n, = Hj Hy; for ny,...,n, € N. For anym € N, ny,...,n,m € N and
coordinate t = (t1,...,ty) € [N], we define

0= g1l

Onp,inm (B) = . .

N1yt Hy, oo, i nj—t;+1

Notice that oy, ... n, = ®§n:1 On; and, since o, s a probability density function, then so is

Oni,..onm- We sometimes override notation and use oy, .. p,, to denote the corresponding distribu-
tion over [ny] X ««+ X [ny].
Let w,w' € XX Xmm e define the suffix distance between w and w' as

As(w,w') = Pr  |wy # wjl.

We further define ws(w) = Ag(w,0) to be the suffix weight of w.

The following lemma (special case of [MRR25, Lemma 5.2])° gives a lower bound on the (one-
dimensional) suffix distance between any two words by the Hamming distance in any of its suffixes.
This immediately implies a connection between suffix distance and tree distance.

Lemma 3.8 (Suffix Distance from Tree Distance). Let n € N and w,w’ € ™. Assume there exists

i* € [n] such that Ay(wsi«, wS;) > 0. Then, it holds that®

, 1
As(w,w) > F . (5_ 0(1))7

n

where, recall, Hy, is the n'* Harmonic number. In particular, for any w,w' € ¥,

As(w,w') > hlfn (At(w,w') — o(1)).

>The statement in the lemma from [MRR25] refers to a weaker lower bound of §/H,, — o(1), but its proof actually
implies the above stronger version.
8 Asymptotic notation is with respect to n.
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3.3 Local Testability and Local Correctability

We recall the notions of local testability [BLR93, RS96, GS06] and local correctability [BFLS91,
KT00, Sud01] for codes. While the standard notions are defined for block codes and w.r.t. Hamming
distance, we consider their natural generalization to codes that are possibly infinite and/or that
are over high-dimensional coordinate space (namely subsets of high-dimensional words), and w.r.t.
to any given distance metric, akin to [MRR25]. By default, we consider the strong notion of local
testability where rejection of a non-codeword increases proportionally to its distance from the code.

Definition 3.9 (Strong Local Testability). Let m € N and let A be a distance function over m-
dimensional words. For ¢ : N™ — N and € : N — R, we say that a code C = {Cyp,, . n, C
Yrxexnmiogs (A g, €)-locally testable, or (A,q,€)-LTC for short, if there exists a randomized
algorithm T that has oracle access to a word w : [n1] X -+ X [ny] = X and satisfies:

— (Completeness:) If w € C, then Pr[T" =1] = 1.

— (Soundness:) There exists a negligible function v such that, for any w,

Pr[T" = 0] > min (e(nl, cosm) - A(w, C), 1 —v(ng,... ,nm))

— (Query complexity:) T makes at most q(ni,...,ny) queries to its oracle.

Definition 3.10 (Local Correctability). Let m € N and let A be a distance function over m-
dimensional words. For ¢ : N™ — N and € : N — R, we say that a code C = {Cy,,  pn,, C
ymxexnmyogs (A, q,6,€)-locally correctable, or (A,q,d,€)-LCC for short, if there exists a ran-
domized algorithm C that has oracle access to a word w : [ni] X -+ X [ny,] — X, takes as input a
coordinate (t1,...,tm) € [n1] X -+ X [ny], and satisfies:

— (Completeness:) If w € C, then Pr[C¥(t1,...,tm) = w(t1, ..., tm)] = 1.
— (Soundness:) If A(w,c) <0 for some c € C, then

Pr[CY(t1,...,tm) = c(t1, ..., tm)] =1 —€(n1, ..., ).

— (Query complexity:) C makes at most q(ni,...,nm) queries to its oracle.
We say that C is simply (A, q,0)-LCC if € is negligible.

Note that the error in local correction can be always made negligible by repetition at the cost
of polylogarithmic blow-up in query complexity.

4 The Tree Code

At the core of our tree PCP is an encoding of a witness to the CKTREACH statement using a tree
code. For soundness, we want this code to be locally testable (LTC, Definition 3.9). Additionally,
to allow for robust encoding as required by our notion of tree PCPs, we want the online encoding
function corresponding to the tree code to be robust against bounded corruptions in the codeword
produced so far. That is, we want the locally testable tree code to admit a robustly incremental
ensemble (Definition 3.2). We achieve robust encoding by constructing a locally correctable tree
code and using it as a building block in our tree LTC.
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4.1 Local Testability via Tensoring

Locally testable tree codes were built in [MRR25] using code tensoring, which is a general strategy
to obtain local testability in the standard setting of block codes [BS04, Mei09, Vid15, KMRS17].
Tensor tree codes are defined by the tensor product operation over linear tree codes.

Definition 4.1 (Tensor Product of Tree Codes). Let TC = {TC,, C (F(n)“™)"} be a linear tree
code over F = {F(n)} and let m € N. The m-fold tensor product of TC, which we denote by TC™,
is defined as the ensemble TC™ = {TCJ, , C F(n)LnnaxxLnm)nm | p = max;n;} where, for
any ni,...,Nm € N,

TC:’fhm’nm = Span ({cl ®--Qcm |V, ¢ € TCp, }) .

We sometimes shorthand L(n;) by L; and L(nq) x --- x L(ny,) by L™, when ni,...,n,, are
clear from context. In particular, we sometimes denote the alphabet of TC™ by FL™.

Similarly to a standard tensor code, an alternative definition for a tensor tree codes is the set
of all tensors where the restriction to any column parallel to any of the dimensions is a codeword
in the base code.

Remark 4.2 (Combinatorial Characterization of Tensor Tree Codes). Any ¢ : [n1] X -+ X [ny] —
FLixXLm s in TC™ if and only if any restriction of ¢ to a column over F is a codeword in TC.

Formally, if ¢ is viewed as a function from [Lini] X -+ X [Lyny] to F, then, for any j € [m)]
and any i1,...,1j-1,%j,...,%m, where iy € [Lyny|, the column d : [Ljn;] — F where d(i) =
i1y yij—1y0y0j41,- - -, im) is in TC, when viewed as d : [n;] — FLi.

The above characterization induces an incremental encoding algorithm for tensors of tree codes
with explicit encoding function that, to compute a symbol in the codeword at a given coordinate

(ni,...,ny) reads only ni+- - -4n,, codeword symbols from coordinates (t1,...,tm) < (n1,...,%m).
The algorithm is obtained by applying the encoding algorithm of T'C along each of the m directions,
one at a time, to compute the last symbol in the axis-parallel column passing through (ni,...,ny).
The total runtime of such encoding is > ([[;-; Lj/) - T(ny).

Lemma 4.3 (Incremental Encoding of Tensors). Let TC be a linear tree code where the code-
words form a (T, L)-incremental ensemble (Definition 3.2). Then, the codewords of TC™ form an
(O(L(n)™T'(n)), L(n)™)-incremental ensemble, where n = max; n;.

Additionally, if TC is systematic then so is the encoding of TC™.

Tree distance in the base code TC translates into suffix distance in TC™ (Definition 3.7).

Proposition 4.4 (Lemma 5.3 in [MRR25]). If TC has tree distance 6(n), then TC™ has suffic
distance ((6(n) — o(1))/Hy,)™ over words of length ny X - -+ X ny,, where n = max;n; and, recall,
H,, is the n*™ harmonic number.

Additionally, [MRR25, Corollary 5.5] show the existence of a tester that can tell whether a given
m-~dimensional word is in TC™, by reading a sublinear number of locations from it. The tester
achieves the strong notion of local testability w.r.t. suffix distance, where the rejection probability
of any non-codeword grows with its distance from the code, even if the latter is arbitrarily small
(see Definition 3.9).

Theorem 4.5 (Local Testability of TC™). Let m € N and let TC be a linear tree code over F
with constant tree distance. Then, TC™ is a (As,q,€)-LTC for e(n1,...,ny) = Q(1/log™(n)) and
q(ni,...,ny) = O(n?), where n = max; n;.

18



Although the tensor product of a linear tree code TC™ is a well-defined code over FN" | it
does not directly constitute a tree code (unlike the tensor product of block codes which is a block
code). In particular, the above definition does not induce an online encoding function in the sense
required by tree codes, but only a more general notion of “online encoding in m dimensions”, where
codeword symbols can be encoded given the previous message symbols along all m dimensions.

The tensor product TC™ can be “flattened” and turned into a tree code by embedding the
coordinates of N onto the one-dimensional timeline, namely N.

We say that a 1-1 mapping ¢ : N — N™ is monotone if ¢(t) < (t') implies ¢t < ¢’ for all
t,t" € N. (Recall (t1,...,t) < (#),...,1,) iff t; < for all j.) Note that such a mapping defines
a full order over the coordinates in N that is consistent with the standard partial order over N,

While any monotone mapping ¢ can be used to make TC™ a tree code, [MRR25] chooses
a specific mapping with useful structure that preserves the local testability of TC™, yielding a
flattened code that is locally testable. The mapping is natural and orders the coordinates in N™
by their Lo,-norm, where ties are resolved recursively over lower dimensions.

Concretely, let ¢™ denote the mapping to m dimensions (we omit m when it is clear from
context). Then, ¢!(¢) = t is the only monotone mapping from N to itself. For any n € N, ¢? maps
{1,...,n?} to the square of coordinates t = (t1,t3) € N? satisfying Loo(t) < n, i.e. [n]?, as follows:
First, recursively map {1,..., (n—1)?} to the square [n—1]2. Then, map {(n—1)2+1,...,n(n—1)}
to the row of coordinates {n} x [n — 1] using ' and, next, {n(n—1)+1,...,n2 —1} to the column
[n — 1] x {n} using ¢! again. Lastly, map n? to the corner (n,n). See the top row in Fig. 5.

Over 3 dimensions, ¢ is defined similarly, where the coordinates in [n]® are covered by first
mapping recursively into [n—1]3, then using ¢? to map into the three planes of coordinates adjacent
to [n—1]3, one at a time in a lexicographic order, then using ¢! to map into the three lines adjacent
to these planes. Lastly, n® is mapped to (n,n,n). See the bottom row in Fig. 5

In Fig. 4, we formally define ¢ by describing a recursive procedure that traverses over N and
maps each coordinate to its order in the traversal (determined by the value of a global counter that
increases by 1 every time it maps a coordinate). Actually, we describe a procedure that traverses
over [n|™, for any n € N, and defines a mapping ¢)' : [n™] — [n]™. ¢" is uniquely defined by
the ¢ since the latter are consistent. We stress that both ¢ and ¢~! are computable in time
polynomial in the length of their input (and polylogarithmic in the length of the codeword).

Definition 4.6 (Flattening of a Tensor Tree Code [MRR25]). Let TC be a linear tree code over
F and let TC™ be its m-fold tensor tree code. Let ¢ : N — N be the mapping from Fig. 4. The
flattening of TC™, denoted by TC™, consists of all w € (FX™)* for which there exists W € TC™
such that W(p(t)) = w(t) for all 1 <t < |w|.

The code TC™ exhibits an online encoding function and is therefore a tree code: To encode
the next symbol, place it in the m-dimensional coordinate space using ¢ and use the incremental
encoding of TC™ (Lemma 4.3) over the rectangular tensor that ends at the new coordinate (the
rectangle consists of past symbols by the monotonicity of ¢). In a codeword of length n, the
dimensions of the tensor are all bounded by O(n!'/™) by the construction of ¢. Consequently,
online encoding of TC™ is incremental with complexity proportional to the encoding of a nl/m.
long codeword of TC (due to Lemma 4.3).

Proposition 4.7 ((IMRR25]). For any m € N and any linear tree code TC, the flattened tensor code
TC™ is a tree code. Further, if TC is (T, L)-incremental, then TC™ is (O(L(n'/™)™T (n'/™)), L(n'/™)™)-
incremental.

We note that despite TC™ being syntactically a tree code, it does not attain tree distance. In
[MRR25], TC™ is bootstrapped to a code that has (probabilistic) tree distance by relying on the
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The Mapping ¢} : [n™] — [n|™
0. Start a global counter ¢t = 1.
1. Ford=0,...,m—1,

For all J € (") in lexicographic order,

1.1. Let nf;)) € N™ denote the coordinate that is n at j € J and 1 anywhere else.

1.2. Let ngl) € N™ denote the coordinate that is n at j € J and n — 1 anywhere else.

1.3. Map the next (n — 1)~ integers to {t € N | nf,o) <t < nf,l)} recursively via
@™~ over dimensions [m] \ J.

2. Map t + (n,...,n) then increase t by 1.

Figure 4: The mapping ¢™ = {¢]"} onto N used to flatten TC™ in Definition 4.6. The lexico-
graphic order over (;3) is the standard lexicographic order over representations of the subsets as
sorted strings in [m]®.

suffix distance in TC™ and using further machinery. For our tree PCPs, tree distance by itself is
not necessary and, therefore, we can use TC™ directly. Consequently, our PCP analysis is largely
based on the minimal suffix distance in the underlying tensor code TC™.

A key property of the mapping ¢, that in [MRR25] was crucial to convert Theorem 4.5 to a
local test for the flattened code TC™ and will play an important role in our PCP construction, is
the fact that any flattened codeword can be represented as a merge of O(1) codewords in TC™. To
formalize, let us denote the m-dimensional coordinate set of a flattened codeword of length n by
I (n) = {™(t) | t <n}. We omit m when it is clear from context, which is usually the case.

Proposition 4.8 ([MRR25]). For anyn € N and m € N, there exists a collection of 2™ rectangles
I, = [n}] x -~ x [n] such that I"™(n) = \J*_, I, and ni < [nY/™] for all v and j. We call the set
{I,} the rectangle cover of I(n) := I"(n) and denote it by Rect(n) := Rect™(n).

Notation. We introduce the following notation related to tensor tree codes and their flattening,
that will facilitate exposition in the sequel: For a word w : [n] — X (typically from the codeword
or message space of TC™) and a rectangle I C I(n), we denote by wy : I — X the word defined by
wr(t) = w(e~1(t)), where ¢ is the mapping from Fig. 4.

4.1.1 A Strong Local Test for The Flattened Code

In [MRR25] we show that a flattened code TC™ is locally testable by proving that if a word w of
length n is far from TC™ in tree distance, then there exists a rectangle I in the rectangle cover
Rect(n) (Proposition 4.8) over which w is far from TC™ in suffiz distance. Since there is a constant
number of rectangles in Rect(n), a test for TC™ can be then obtained by performing the local test
for TC™ (Theorem 4.5) over each of the rectangles in Rect(n) separately.

Translating tree distance in w to suffix distance in the furthest rectangle, however, incurs a
significant loss in the distance. As a result, the test from [MRR25] is proven to catch a codeword
with non-zero probability only if it is far enough from the code. In particular, the test is not

20



Figure 5: A visualization of the mapping ™, for m = 2 and m = 3, over coordinates with L,,-norm
n = 9. In orange are the recursive calls to the mapping over lower dimensions, ordered from left to
right. A formal definition of ¢™ is given in Fig. 4.

known to realize strong local testability where non-zero rejection probability is required for any
non-codeword with arbitrarily little corruptions. In fact, it may be possible that a word w is
never rejected by the test although its distance from the code exceeds its error-correction radius,
in which case we cannot talk about a unique closest codeword to w. In contrary, a well-defined
closest codeword for any w that passes the local test is crucial to our PCP analysis.

The reason for this limitation in the [MRR25] test is that all rectangles in the cover of w might
be close to the code albeit each to a different closest codeword. Indeed, if one can argue that all
closest codewords are consistent then the existence of a close codeword to w is easily implied.

We observe that we can bootstrap the test to a strong local test only if we could recover the
values in the closest codeword over any rectangle. The idea is simple: after applying the local test
over each of the rectangles, test whether they are close to consist codewords by recovering a few
random locations where the rectangles overlap.

The ability to recover values from the closest codeword is precisely local correctability (Defini-
tion 3.10). We show how to make the tensor code locally correctable in Section 4.2, by building
a concrete locally correctable tree code and plugging it in the tensor construction. This would
already give us a tree code TC™ that satisfies strong local testability.

We observe, however, that a relaxed notion of local correctability [GRR20] can be attained
generically for tensor tree codes. In the relaxed notion, the recovery is allowed to fail (and output
1) if it reads from a non-codeword. This is sufficient for the sake of local testability since, when
the recovery fails, the test can immediately reject. (We stress that proper local correctability, that
holds for a certain choice of TC, is still important to us for robust incremental encoding. We use
relaxed local correctability here for the sake of generality.)

In Appendix A, we prove that any tensor tree code is relaxed locally correctable w.r.t. suffix
distance, following a similar proof for tensor block codes w.r.t. Hamming distance from [GRR20].

We obtain a local tester that tests whether there exists a unique codeword ¢ € TC™ that is
close to w over all rectangles I € Rect(n) simultaneously, and formulate the statement as such.
We stress, however, that our tester also satisfies strong local testability for tree distance, due to the
connections made in [MRR25] between tree distance in flattened codewords and the suffix distance
in their furthest rectangle, which we recall in Proposition 4.10.

Proposition 4.9 (Local Testability of TC™). Let m € N and let TC be a linear tree code with
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tree distance 5. Then, TC™ is (As, q, €)-LTC with ¢ = O(log(n)?>™+2 - n?/™ /5(n*/™)™) and e(n) =
Q(1/1log™(n)), where the distance As over any w,w’ € X" is defined by

As(w,w') = repax As(wr, wh).

Proof. Denote & := §(n'/™). The tester applies the local test from Theorem 4.5 over each of the
2" rectangles in the cover Rect(n), A = log?™*2(n)/6™ times, and rejects if any of the tests does.
Then, for any two rectangles I, I’ € Rect(n), the tester repeats the following A times:

1. Sample a coordinate t <— o;np (Definition 3.7).
2. Apply the relaxed local corrector for TC™ (Lemma A.1) twice:

2.1 Over wy with input coordinate ¢ to obtain a symbol y.

2.2 Over wy with input coordinate ¢ to obtain a symbol 3/'.
3. If L e{y,y} ory#1/, reject.

If all tests pass, the tester accepts.

Completeness of the test is by inspection. For I, € Rect(n), let ¢ : I, — FL™ be the codeword
¢" € TC™ minimizing Ag(c", wy,). We may assume that Ag(c",wy, ) < (6/2H,)™ for all r since,
otherwise, the local test over I, rejects with probability at least e(n) - (§/2H,,)™ = Q(6™/log®™(n))
in any of the tests (Theorem 4.5), and with probability at least 1 — (1 — Q(6™/log®™(n)))* =
1 — e~?08’(M) in at least one of the tests.

By the relaxed local correctability of TC™ (Lemma A.1), we may assume, then, that the lo-
cal corrector always outputs the correct symbol or 1, since this occurs with probability all but
negligible. If the corrector ever outputs L the test rejects, thus we may ignore such cases.

If there exist I, Iq s.t. ¢f o # c‘}mlq, then by the suffix distance of the code (Lemma 3.8)
As(cr I c?m Iq) > (0/Hy)™ and, by our assumptions, the local corrector will output two different
symbols with probability (§/H,)™ for every choice of ¢ in the iteration over I = I, and I' = I,.
The probability that it outputs different symbols for at least one coordinate out of the A is then
1— (1= (6/H,)™)* =1 — e ?log™n),

If ¢ A I, = c?m I, for all I, I, then the well-defined codeword ¢ € TC™ that is consistent with
(the flattening of) all ¢” is the closest codeword to w in Ag distance. In particular, there exists a
rectangle I € Rect(n) such that As(wy,cr) = As(w, ¢) and, hence, the local test over I will reject
with probability at least €(n) - Ag(w, c) (Theorem 4.5). O

Strong local testability of TC™ w.r.t. Ag (Proposition 4.9) immediately implies strong local
testability w.r.t. tree distance At (Theorem 1.6) by the following upper bound on tree distance,
which follows by combining Lemma 5.2 and Claim 6.11 in [MRR25], or more directly, by combining
the former with Lemma B.1.

Proposition 4.10. For any w,w' € X", Ag(w,w’) > Q (ﬁ) - At (w,w’).

4.1.2 Robust Incremental Encoding

Incremental encoding of TC™ codewords can be performed using the incremental encoding al-
gorithm for TC™ (Proposition 4.7). Recall, however, our goal is to devise a robust incremental
encoding algorithm, that computes the next symbol in the encoding even when reading from a
corrupted codeword. This corresponds to the notion of robust incrementality from Definition 3.2.
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We achieve robust incrementality assuming the underlying code is locally correctable (Defini-
tion 3.10). Robust encoding can be performed by applying the incremental encoding algorithm,
except instead of reading directly from the corrupted codeword, we invoke the local correction
procedure to recover the correct codeword values.

In the following lemma, we show that the tensoring operation preserves local correctability w.r.t.
suffix distance, implying that in order to attain a code TC™ (or TC™) that is locally correctable
(and therefore robustly incremental), it is sufficient to build on a locally correctable tree code TC.
A similar result for tensors of block codes, where local correctability is considered w.r.t. Hamming
distance, is implicit in the literature (e.g. in [GRR20]).

Lemma 4.11 (Tensoring Preserves Local Correctability). Let TC = {TC,, C (F(n)X™)"} be a
linear tree code that is (As,q,8',€)-LCC. Then, for any m € N, TC™ is (As,q’,d,€)-LCC with

q'(n,...,nm) =[1; L(nj)"q(n;), 8'(n1,...,nm) =1;6(ny) and € (n1,...,nm) =m- ¢ -«

Proof. Recall that a symbol in a codeword ¢ € TC™ of dimensions nq X - - - X n,, is in ¥ = FLrxxLm
where L; = L(n;) and F := F(n) for n = max; n;.

For a word w : [n1] X -+ X [n,,] — ¥, we denote by w(»im) : [ng] x -+ x [n,] — F,
for (i1,...,im) € [L1] X -+ X [Ly,], the straight-forward decomposition of w into words over F:
Any symbol w(ty, ..., t,) € Flrx*Lm contains the field element w1t} (¢, ... t,,) at location
(T1y -y im)-

To simplify notation in what follows, we use w®2+m) to denote the word over FL1 defined by
wl2tm) (b ) = (w2t (), L wErietmd (1)) and use w1 to denote
the word over FL2x*Lm defined by w™) (ty,. .., t,) = (w<i17i'27---vi;n>(t1, e ’tm))(i’Q,.‘.,i;n)e[Lz]X---x[Lm]'

Any symbol in w may be viewed as a collection of Lo X --- X L, “column symbols” from
{w!?2-im)} that are in X1 and parallel to the first axis, or as a collection of L; “row symbols”
from {w(} that are in FL2**Lm and orthogonal to the first axis.

Consider the following corrector algorithm for TC™. On input a coordinate (t1,...,%,) and
oracle w : [n1] X -+ X [ny] — X, the corrector invokes the local corrector for TC with input #;
over each of the “columns” w2 m) (. ty ... t,) : [n1] — FL, for (ig,...,im) € [La] X -+ X
[Ly,]. However, instead of reading a symbol w<i2’""im>(u1,t2, ...y ty) from its oracle directly, it
recursively extracts each of the L field elements therein using the local corrector for TC™~! over
the corresponding “row” w ™ (uy,-,...,-) : [ng] X -+ X [ny] — FL2X*Lm,

Completeness is straight-forward and query complexity for m-dimensional tensors is given by

the recursive formula Qp,(n1, ..., nm) = [[; Lj - q(n1) - Qm-1(n2,...,npm) = (HJ Lj)m [1; a(ny).

For soundness, let E,,(n1,...,n,) denote the error probability of the local corrector for TC™
over dimension n1 X -+ X np,. Assume that As(w,c) < [[jL;d(n;) for some ¢ € TC™. For
any u € [n1], denote by w, = w(u,-,...,-) and ¢, = c(u,-,...,-) the restrictions of w,c to the

ut® hyperplane “row” orthogonal to the first axis. We similarly use wfjﬁ and cg 1) to denote the
restrictions of any w() and ().

Let S = {u € [m] | As(wu,cu) < [[7Ly0(n;)}. By definition of suffix distance (Definition 3.7)
and averaging argument (Markov), it holds that Pry. g, [u € S] > 1—d(n1).

By induction, for any w € S and i; € Ly, the local corrector for TC"™ !, when invoked over
w&m, returns the correct value from c§f1> with probability at least 1 — E,,—1(ng,...,nm). By
union bound, except with probability (g(n1) - I1; Lj) - Ep—1(ng,...,ny), any simulation of the
local corrector for TC over a “column” w(2:-im) (,t2,...,ty) reads from an oracle that is equal to
cli2im) (L o ty,) at all coordinates in S and is, consequently, §(n;)-close to it.

We may then invoke the soundness of the base corrector and deduce that the corrector for TC™
outputs ¢(ty,...,t,) with probability at least 1 — (q(nl) . Hj Lj) cEm—1(ng,...,ny,) — €.
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We conclude Ey,(nq, ..., npy) < (q(n1)~Hj Lj)-Ep-1(na,...,ny)+e < m(HJ L;.”q(nj)) e. O

Building on Lemma 4.11, we next show that the encoding algorithm for TC™ (Lemma 4.3)
can be used for robust incremental encoding for the flattened code TC™ w.r.t. Ag (defined in
Proposition 4.9), given TC is locally correctable w.r.t. suffix distance.

Proposition 4.12 (Robust Incremental Encoding for TC™). Let TC be a linear tree code that is
(As, q,0)-LCC, where the codewords form a (T, L)-incremental ensemble. Then, the codewords of
TC™ form an (As,d',T", L')-robustly incremental ensemble, where §'(n) = &([nY/™|)™, T'(n) =

Proof. Let w : [n — 1] — 3 be a corrupted codeword and let ¢ = TC(x1,...,z,—1) be the closest
codeword to w satisfying As(c,w) < §™.
Recall, if w = ¢, computing the n*" symbol in TC(xy, ... , ) given x, could be done using

the incremental encoding of TC™ over the coordinates of some rectangle (Proposition 4.7). For
robustness against corruptions in w, we perform the same encoding yet, in order to read w(t) for
any t € [n — 1], we use the local corrector of TC™ from Lemma 4.11 over w; for an arbitrary
rectangle I € Rect(n — 1), to retrieve the correct value c(t).

Correctness, robustness and complexity of the encoding follows from the correctness and com-
plexity of the incremental encoding of TC™ (Proposition 4.7) and the correctness, soundness
and complexity of the local corrector of TC™ (Lemma 4.11), which we apply over rectangles in
Rect(n — 1) which have dimension at most (nl/ m] at any direction. O

4.2 Locally Correctable Tree Code

To make our locally testable code TC™ have robust incremental encoding, we must instantiate it
with a locally correctable base code (Proposition 4.12). In this section, we build such a code by
combining (a variant of) a classic construction by Schulman [Sch94] with low-degree extensions.

We stress that, while local testability and robust encoding for TC™ are implied generically when-
ever TC is a tree LCC, our choice of TC exhibits additional structural properties that are crucial
to our tree PCP construction (in particular, to allow constraint evaluation under codewords (iii)),
on which we elaborate in Section 5.

4.2.1 Schulman’s Construction

We use a generalization of the tree code by Schulman [Sch94|, which is among the first known tree
code constructions and arguably the simplest. The construction is generic and uses linear block
codes as black-box. We describe it formally in Fig. 6 and pictorially in Fig. 7. We additionally refer
the reader to the exposition of the original construction in [Gell7, Section 3.1.1], where dj, = 2 for
all k and ny, = 2F.7

Proposition 4.13 ([Sch94, Gell7]). Let {Cj : F(0)™ — IF(I{:)Lk”k} be a family of linear block codes
where, for all k, F(k—1) CF(k), ng = di-ng_1 for di € N, and Cy, has relative Hamming distance
0. Assume for simplicity that §y is non-increasing in k and that di and Ly are non-decreasing.
Then, the encoding function TC from Fig. 6 defines a linear tree code over {F(k)} with tree
distance O, /2dy, . +1 and rate Q(1/(kmax - Li,....)), where kmax = kmax(n) is the smallest k s.t.

k
D1 T = M

"Besides allowing arbitrary di, we present a variant that is simpler than that from [Gell7] which still gives
sufficiently good parameters.
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A Tree Code TC from any Block Code C = {C}, : F(k)™ — F(k)Lxmx}
ng = dg -ng_q for d, € N

TC(z1,...,2n) :

1. Let kmax := kmax(n) be the smallest k such that Zle n; > n.
Fork=1,...,kmax and j =1,...,[n/ng] — 1, let

i = Cr(T(G-1yng+1,- -+ Tjny,) € F(k)Lwme,

2. Let
Ci = (OLknk7ck,17 R 7Ck,(n/nk]—1) € F(k)Lkn (k)7 (2)

where n/(k) = ny, - [n/ng] and view it as a function ¢y : [n/(k)] — FL* by dividing it
into blocks of length L.
3. Output ¢ : [n] — F(kpay ) TFmaxLemax | where

c(t) = (e, c1(t), - - o, Chpa (1))- (3)

Figure 6: The generic tree code construction by Schulman [Sch94].

Proof. The tree code is linear since it is simply a concatenation of codewords from linear block
codes, and rate follows by construction.

We give a lower bound on the minimum tree weight of any codeword (its tree distance from the
zeros codeword). Let x € F™ be a non-zero message and let ¢ be the location of the first non-zero
symbol in z. Denote ¢ = TC(z).

For any k € {0,...,kmax}, let ji denote the integer j satisfying t € {(j — L)ng + 1,...,jng}.
It holds that ¢y j, € Ci is a non-zero codeword since it encodes a message that contains z(¢) and,
therefore, has relative Hamming weight at least dy > dy,. . In the following, we show that these
non-zero codewords cover sufficiently many locations in the suffix starting at ¢.

Let Sy = {jx-nx+1,...,(jx+1)-ng} denote the locations in ¢ where ¢y, j, resides (see illustration
in Fig. 8). We construct a set S C {¢,...,n} as follows:

1. Start with S = and n* = n.

2. Let k* be the largest k satisfying (jx + 1) - nx < n*.

3. Update S + S U Sk« and n* = jp«ng+, and repeat from Step 2.
4. If no such k* exists, add t to .S and finish.

We argue that |S| > Lﬁ -, ... ,n}\J This would complete the proof. By construction,
all the sets Sy« that are chosen to be added to S are disjoint, namely we never add the same location
twice. Therefore, it suffices to shown that, at any iteration, |Sg«| > [m g + 1, ,n*}|J

By the definition of jg, (jr+1 — )ngr1 < jrng for any k since, otherwise, ¢ belongs to two
disjoint sets. By this and the maximality of k£*, we finish with

TNk > Jrr 1M1 — Ngge g1 > N — 20y = 0% — 2dje 1] S|
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Figure 7: A codeword ¢ = TC(x1,...,z19) of the tree code from Fig. 6 with dy = 2 and length
n = 10. The codeword consists of kya.x = 4 threads, where thread ¢, for k = 1,...,4, contains
codewords in C that encode parts of the message of length nj = 2¥~!. The codewords of C are
marked in blue. A square at level k denotes a tuple of L = Ly < Lj__ field elements and dotted
squares denote 0. The tt" symbol in ¢ is a column consisting of at most 1 + Lg__ kunax field
elements that includes ;.
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Figure 8: The effect of a non-zero at ¢t = 3 in a codeword of length n = 10 with d = 2, defined by
the coordinate sets Sp, ..., Sk« (striped).

When the block codes C = {Cy} are linear and induce a well-defined encoding function, it is
possible to efficiently verify that a word w is in the tree code TC and, if so, to decode it: The
verification checks if each of the complete block-codewords composing w is in C and, importantly,
that block-codewords from different threads that encode overlapping intervals in the message are
indeed consistent with a unique message. Additionally, the verification checks if the partial block-
codewords are consistent with this message.

We further generalize Schulman’s construction to codes with no well-defined encoding function,
as such codes appear in our tree PCP construction. Recall, C(z) and TC(x) denote, in this case,
a set of codewords that can encode x under each of the respective codes.

Remark 4.14 (Schulman’s Construction without Well-defined Encoding). We generalize the con-
struction from Fig. 6 to the case where the underlying block codes {Cy} lack an encoding function, to
still give a well-defined tree code TC (that in turn does not have a well-defined encoding function),
as follows.

The tree code TC is defined as the set of all words of length n € N where there exists (x1,...,x,) €
F(0)™ such that c(t) is as in Eq. (3) where, for k = 0,...,kmax, ¢k s as in Eq. (2) where
ckj € Cr(T(i—1ynps1s > Tjny,) forany j=1,...,[n/ng] — 1.

Note that in the generalization above, when nj does not divide n, ¢, ; for j = [n/ng] — 1
may be arbitrary. This is the last block-codeword in the thread ci, that is not entirely contained
in ¢. This is important to allow efficiently verifying that a given word w is in TC, where partial
block-codewords can be ignored (as there is no generic way to efficiently verify partial codewords
of C). At the same time, this does not harm the linearity of the tree code and neither its tree
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distance: notice that the distance analysis in the proof of Proposition 4.13 never involves such
partial block-codewords (see Fig. 8). Consequently, we obtain similar implication via an identical
proof.

Proposition 4.15. Proposition 4.13 holds with the same parameters also w.r.t. the generalized
construction from Remark 4.14.

4.2.2 Well-Structured Locally Correctable Block Codes

Schulman’s tree code is not locally correctable in general. We instantiate the family of block codes
{Ck} underlying the construction using low-degree extension codes (LDEs). It is a well-established
fact that low-degree extension codes are locally correctable [GS92, Sud95]. Local correctability of
{Ck}, however, is not sufficient to imply local correctability of the tree code TC: The straight-
forward attempt to correct a symbol in some w using the local correction of the block codeword
that contains it fails since that block codeword might be completely corrupted even when w is
overall close to TC.

By carefully choosing parameters for the LDE codes and for the tree code construction, we are
able to obtain a tree code where a symbol can be corrected by invoking the LDE local corrector
not only over one block codeword but rather over all block codewords that span a suffix of w.

Definition 4.16 (The Block Code C). Let 0 < u < 1 be any constant. Let hy =1 and, for k > 2,
let hy, = [log(k)/u]. Denote F(k) = GF (2" +logkl 4 3y,

Fiz an infinite sequence of field elements eq, ez, ... such that, for any k € N, e1, ..., ep, € F(k)
are linearly independent over GF(2). For k € N, denote H(k) = Spangp)(e1, ..., en,) C F(k).%

We identify [2"] with H(k) as follows: any t € [2"*] maps to t = Z?:’“l bi(t) - e; € H(k), where
bi(t) € GF(2) is the i'" least significant bit in the binary representation of t — 1. More generally,
for message length ny = 22?=1h", we identify any t € [ng] with (t1,...t;) € H(1) x --- x H(k) by
its mized-radiz representation over [2M] x - x [2"], in a little-endian order (i.e. least significant
digit over [2M]).9

Let {Cy : GF(2)™ — F(k)F®I*Y be the family of linear block codes where Cy, is the low-degree
extension defined as follows: For any x : [ng] — GF(2), the encoding Cy(x) = T is the truth table
of the unique k-variate polynomial that has degree at most 2" — 1 in its i*" input, and satisfies
Z(t1, ... t) = (t) for all t € [ny].

To understand the parameters of the block codes from Definition 4.16, observe that log(ny) =
Zle h; >log(k!)/pu= (1 —o(1)) - klog(k)/u and, therefore, k < (1 + o(1)) - plog(ng)/ loglog(ng).

Hence, the code Cj encodes messages of length ng over F(0) := GF(2) using block length
IF(E)|F < (16k)F . 2k = n,ljwo(l) over a field of size |F(k)| = polylog(nk), and has relative
Hamming distance [[*_,(1 — (H(:))/|[F(k)]) > (1 — 1/8k)* = Q(1) by the polynomial identity
lemma (Schwartz-Zippel). Additionally, the encoding function Cy is efficiently computable.

The family {Cy} may be used to instantiate the tree code construction from Fig. 6 with dj =
2h = O(log(ng) /1), Ly, = ™" and &, = Q(1).

Consequently, plugging in {Cy} in the generalized Schulman’s construction (Fig. 6), we obtain
the following as a corollary of Proposition 4.13. (Note the parameter kpyax from the proposition
satisfies n > Zf;‘f"_l n; > ng,..—1 and, therefore, kpax — 1 < 2plog(n)/loglog(n) by the above.)

Note that H(k) is an hj-dimensional subspace of GF(2)"**[°&*1 hut not a subfield of F(k).
Specifically, (f1,...,%m:) corresponds to (t1,...,tx) € [2M] x --- x [2"], where t = 1+ S5 2ho++he-1(y, 1)
(here, hg = 0).
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Corollary 4.17 (The Tree Code TC). The linear tree code TC, obtained by instantiating the
construction from Fig. 6 using {Cr} from Definition 4.16 with parameter p, is over field of size
polylog(n), has tree distance Q(1/log(n)**) and rate Q(1/n#+oM). Additionally, encoding a mes-
sage of length n takes time polynomial in n.

Our low-degree extension codes are subcodes of corresponding Reed-Muller codes, which are
known to be locally correctable w.r.t. relative Hamming distance Ay [GS92, Sud95].

Lemma 4.18. For any § < 1/log(ng) t1/#, there exists € = 27X such that the family {Cy} from
Definition 4.16 is (An,q, 9, €)-LCC with ¢ = X - polylog(ny,).

We recall the following proposition from [RRR16, Proposition 3.8], which demonstrates a useful
structural property of low-degree extensions, essentially allowing us to recover a symbol from a
codeword of TC, that comes from a codeword of some Cy by reading symbols from different block
codewords at different levels.

Proposition 4.19 (LDE Composition and Decomposition [RRR16]). There exists:

~ (Composition:) An efficient algorithm that takes as input k € N and t € F(k)* and, for
any (1, ...,Tn,,,) € GF(2)"+1, computes the t" symbol in C(x1,...,Tn,,,) by reading one
symbol from each of Cr(T(j_1ynyt1s- -+ Tjny)s for j=1,... dpy1.

— (Decomposition:) An efficient algorithm that takes as input k € N, j € [dpy1] and t € F(k)*
and, for any (x1,...,Tn,,,) € GF(2)"+1, computes the tth symbol in Cr(T (= Dyng+15 - - Tjny,)
by reading one symbol from Cpyi1(w1,..., 20, ).

Note that the decomposition algorithm may be applied recursively to recover a symbol in a
codeword Cg(z) be reading a symbol from a codeword of Cy/, for any k' > k, that encodes an
extension of x.

4.2.3 A Local Corrector for TC

Our local corrector for the tree code TC from Corollary 4.17 relies on the local correctability of the
underlying codes {Cy} and the composition and decomposition algorithms from Proposition 4.19.

Lemma 4.20 (Local Correctability of TC). The tree code TC from Corollary 4.17 with parameter
wis (As, q,8)-LCC with ¢ = O(n*t°M)) and § = Q(1/log?(n)).

Proof. Let w : [n] — F(n)” denote the word given to the corrector as oracle (here, L = O(nt+o(1))
is the size of the largest codeword symbol over F(n)) and assume it is d-close to ¢ € TC in suffix
distance. For 1 < k < kyax and 1 < j < [n/n;] — 1, we denote by wy, ; and wy, the parts in w that
are analogous to ¢ ; and ¢ in the codeword ¢ — see Fig. 6.

On input a coordinate t € [n], the corrector recovers c(t) = (x¢, c1(t), . .., €k, (t)) by recovering
cx(t) for all k. For simplicity, we denote co(t) = x4, no = 1 and d; = n;.

It holds that cx(t) = cx j(t — jng) for j = [t/ng] — 1. We describe a recursive algorithm that
recovers a field element in ¢y ;(t) for any k& € {0,..., kmax}, j € {1,...,[n/ng] — 1} and t € [ny]
(notice that ¢y ;(t) does not necessarily appear in ¢ since the codeword may contain only a part of
ci;)- Recall that ¢y ;(t) consists of Ly, elements, so the local corrector must apply the algorithm
L times to recover each of them separately.

Recover a field element in ¢y ;(t) € FLx:
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1. If j = 0, output 0.
2. If 0 < j < [n/ng] — 1 (the codeword ¢y, ; appears in c in its entirety):
2.1. For k' = k,..., kmax, letting j' = [jng/ng], until &' = kpax or j' > |n/np| — 1 (i.e.
¢y j 1s partial in ¢):
Recover the symbol in ¢ ; by applying the decomposition algorithm from Proposi-
tion 4.19 recursively k' — k 4 1 times over wy j» (notice that the string encoded by ¢y ;
is a block of length nj in the string supposedly encoded by wy j/). Instead of reading
from wy ;o directly, however, use the local corrector for Cjs from Lemma 4.18 with
A = log%(n).
Denote by yi the obtained value.
2.2. Output the majority value of all y.
3. If j > |n/ni] — 1 (the codeword ¢y, ; is partial in c):
Recover the symbol in ¢ ; by applying the composition algorithm from Proposition 4.19
while reading one symbol from each of c;_; j, for 7/ = (dy — 1) + 1,..., jdi. Instead of
reading directly from cj_1 -, however, recover their value recursively.

When j =0, ¢ ;(t) = 0 in any ¢ € TC by construction (Eq. (2)).

To see why the above corrector is successful in the second case (0 < j < |[n/ng| — 1), we follow
a similar approach to the tree distance analysis in the proof of Proposition 4.13.

We show that the locations occupied by the wy j in w are a large fraction in a suffix of w
starting at ¢. Since w is close to ¢, this means that most wy j are close to ¢ ;s and therefore
applying the base corrector over these parts will return the correct value in the majority of cases.

Specifically, fix k and j and, for £’,j" as in Step 2., let Sy = {j' -npw + 1,...,(j' + 1) - np }
denote the locations of wy j in w. Define S as follows:

1. Start with S = () and n* = n.

2. Let k* be the largest k¥’ > k satisfying (jpr + 1) - ngr < n*.

3. Update S + S U Sk« and n* = jp«ng+, and repeat from Step 2.
4. If no such k* exists, finish.

Observe that S is the union of all Sy such that &' > k and j' < [n/nk | —1 (where j' is defined
as in Step 2.); this follows since any such £’ satisfies (ji + 1) - npr < n and any two Sy sets are
either disjoint or one is a subset of the other. Additionally, by the same reasoning as in the proof of

Proposition 4.13, it holds that |S| > Lﬁ
Hence, the blocks {wy j/} over which we apply the local corrector for Cys in Step 2. span

~(n— jnk)J, where, recall dy, . 11 = O(log(n)'/H).

over Q(1/log!/#(n))-fraction of some suffix of w. By Lemma 3.8, since Ag(c,w) < 4, the relative
Hamming distance between w and ¢ over any suffix is at most ¢’ = H,, - (§ — o(1)). By an averaging
argument, then, at least 2/3-fraction of these blocks are in distance at most O(8/log(t/M~1(n))
to their corresponding counterpart in ¢. By Lemma 4.18, this implies that for a sufficiently small
§ = Q(1/log%(n)), the base local corrector returns the correct value for the majority of k', with
probability all but negligible.

In the third case, when j > |n/ng| — 1, correctness follows immediately from the correctness of
the composition of Proposition 4.19 and the correctness of recovery in the second case.

Let ¢’ = polylog(n) be an upper bound on the query complexity of the local corrector for C,
when applied over any block in w with parameter A = log?(n) (Lemma 4.18).
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The recovery algorithm on input k enters Step 3. at most kmax = O(log(n)) in its recursion,
since in each level of the recursion, at most one value of j’ satisfies j* > [n/ny|—1). Each invocation
of Step 3. incurs dy = O(log(n)l/ #) recursive calls. In total, then, Step 2. is performed at most
polylog(n) times and, in each, the local corrector for C is called ¥ —k+1 < kyax = O(log(n)) times.
Overall, the query complexity of the recovery algorithm is polylogarithmic in n and, to recover the
k- L, field elements in ¢(t), the local corrector for TC reads O(kmax - Lk, - polylog(n)) =
O(n#+oM) locations from w.

The runtime efficiency of the recovery follows from the efficiency of the composition and de-
composition algorithms of Proposition 4.19. O

The local correctability of TC w.r.t. suffix distance (Lemma 4.20) implies its local correctability
w.r.t. tree distance (Theorem 1.7) by Lemma 3.8.

As a corollary of Lemma 4.20 and Propositions 4.9 and 4.12, we conclude that the flattened code
TC™, where TC is the tree code from Corollary 4.17 is both locally testable and has an incremental
online encoding function that is robust against corruptions.

Corollary 4.21 (Locally Testable Tree Code with Robust Encoding). There exists a constant -y
such that, for any p > 0 and m € N, the flattened code TC™ based on TC from Corollary 4.17
with parameter p, is (As,q,€)-locally testable with ¢ = O(log(n)?H/mWm+2 . p2/my and e(n) =
Q(1/log™(n)) and admits a (As, 8, T, L)-robustly incremental ensemble with 5(n) = Q(1/1log?™(n)),
T(n) = n*t/mte() gnd L(n) = nrte),

In particular, the code TC™ admits a local corrector w.r.t. Ag, and therefore w.r.t. tree distance
(Proposition 4.10), that underlies the above incremental encoding, and is obtained by Lemma 4.11.

5 Constraint Evaluation under Codewords

We express the transition and consistency constraints over the CKTREACH witness, i.e. the assign-
ments A, ..., A% from Fig. 1, using a collection of well-structured constraints {P} that satisfy:

1. (Correctness, (i)) Any assignments A!, ... A3 satisfy the CKTREACH constraints if and only
if there exist witnesses W1, ..., WX such that P(A',..., A% W' ... . WK)=0 for all P.

In the above, we associate zero with TRUTH and this will be the case from now on. The
output of P is a vector, which roughly corresponds to the truth table of the constraint (transition
or consistency) when evaluated at all time coordinates t = 1,...,n.

2. (Codeword Evaluation, (iii)) The structure of {P} allows the verifier to evaluate them over
any Al ... A% and W!,... WK “underneath” their corresponding codewords. By this, we
mean that given access to codewords A', ..., A% W ... WK encoding the assignments and
their witnesses, the verifier can simulate access to a codeword F encoding the evaluation
vector

E=PA',... A W ... wE).

Jumping ahead, simulating access to E, a redundant encoding of F, facilitates performing a
zero test (Section 6) for checking that E is the all-zero string.

3. (Incrementality) For applicability to tree PCPs, we require that the witness and evaluation
vectors, W' and E, are incremental in the assignments A = (A!,..., 43%) (Definition 3.2).
Namely, that witnesses and evaluations corresponding to A of length n are an extension of
the witnesses and evaluations corresponding to any prefix of A. Additionally, extending these
vectors upon appending new values to the assignments can be done efficiently.
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Notation. The statements made in this section are with respect to the tree code TC from Corol-
lary 4.17 with parameter 0 < p < 1, which is the instantiation of Fig. 6 with the block code C from
Definition 4.16, and its derivations TC™ and TC™ (Corollary 4.21). We use {F(k)} to refer to the
finite fields from Definition 4.16.

5.1 The Transition Constraints

Evaluating the transition constraints (Fig. 1, Step 2.2) entails evaluating a given circuit C' over
assignments A', ..., A in a pointwise manner .

Lemma 5.1 (Pointwise Circuit-Evaluation under Codewords). For any circuit C' : {0,1}% —
{0,1}, there exists a collection of constraints Eval(C) of size poly(|C|), where every constraint
P € Eval(C) is a function P = {P, : (F?*)5*K — F"}, for F = F(0) and K = poly(|C|), that
satisfies the following properties:

— (Correctness) The following two conditions are equivalent for any A', ..., AS : [n] — F:
o Al ... AS are binary and C(AY(t),..., A%(t)) =1 for all 1 <t < n.
o There exist Wt ..., WE : [n] — F such that
P(AY .. AW W) =0
for all P € Eval(C).
We say that such W', ..., WX are witnesses to A',..., AS.

— (Codeword Evaluation) There exists a linear tree code TC' with tree distance Q(1/log(n)'/#)
(and no explicit encoding function) and a O(n*+t°M) . poly(|C|)-time deterministic algorithm A
that satisfy:

Forany A', ..., AS, W' ... WK :[n] = F, there exists E € (TCY™(P(AY, ... AS W, ... WK))
such that on any input t € [n], A computes E(t) by reading at most one location from each of
{A* = TC™(AY} and {W' = TC™(W?)}.

— (Incrementality) For any satisfying A = (AY, ..., AS), there exist witnesses W' = Wh,...,WE=
W such that {Wi}, for anyi, and {Es = P(AY,..., A5, W},..., W)}, for any P € Eval(C),
are (poly(|C|), 1)-incremental.

To prove the lemma, we first turn the constraint C'(A',..., A%) = 1 into a collection of low-
degree constraints over the finite field F := F(0) by standard techniques. Then, we show how to
evaluate low-degree polynomials over messages underlying codewords of TC™.

The first step is to convert the circuit-satisfiability statement over C into a 3-SAT statement
over a 3-CNF formula ¢ over S + K variables with L clauses, where L, K = poly(|C|) and ¢
is satisfiable with input A!,..., AS, W', ... WX for some witness W!,..., W¥ if and only if C
is satisfiable by A',..., AS. Then, to allow codeword evaluation, we arithmetize 1c and express
it as a low-degree polynomial over F: We associate each Boolean value in the assignment with
the corresponding field element in {0,1} C F and obtain an assignment over F. We represent
each clause in the 3-CNF formula )¢ by the degree-3 polynomial that agrees with it over {0, 1}3,
where we associate a TRUE outcome with 0 and FALSE with 1. (For instance, (-x; V —zg V x3) is
represented by the polynomial z129(1 — x3).) The formula ¢ is then represented by the collection
of the degree-3 polynomials corresponding to its clauses.
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Proposition 5.2 (3-CNF Arithmetization). There exists a mapping from any 3-CNF formula
over K' variables with L clauses to a collection {p1,...,pr} of degree-3 K'-variate polynomials over
F, such that a Boolean assignment satisfies ¥ if and only if its embedding in FK' satisfies is a root

of pj for all j.

In addition to the polynomials pi,...,pr, we must check that A',... A% and W!,... WK
indeed encode Boolean assignments. To that end, we add the polynomials z1,...,25+x to our
collection of constraints, where

zi(x1, .. x5+ k) = xi(1 — ;). (4)

Evidently, the set roots of z; is exactly all inputs where z; € {0, 1}.

Let us define Eval(C) = {Pf | f € {p1,...,pr,21,--.,25+K } }, where Pp(AL, ..., AS W .. WEK)
is the function that evaluates f(A'(t),..., AS(t), W(t),...,W¥X(t)) at any t € [n]. By the above,
there exist W,..., W9 : [n] — F such that P(A',..., A% W' ... WEK) =0 for all P € Eval(C)
if and only if A!,..., AX are binary and C(A'(t),..., AX(t)) =1 for all t. Since any p; or z; is a
polynomial over F of degree at most 3, it remains to show how to evaluate degree-3 polynomials,
in a point-wise manner, underneath TC™ codewords.

In linear codes, by definition, adding the encoding of two messages gives the encoding of their
sum. Thus, the only missing part for locally evaluating low-degree polynomials over codewords is
to be able to multiply the variables they encode. Since our goal is to evaluate polynomials over
variables coming from the same coordinate in different codewords, we are specifically interested
in the point-wise product of two encoded messages. With a similar goal in mind, Meir [Meil3]
formulates the notion of multiplication codes that precisely captures this capability. We restrict the
definition to a simple special case of the notion defined in [Meil3], that is sufficient and achievable
in our context.!”

For simplicity, we restrict our definition to codes that have a well-defined encoding function.
The corresponding multiplication code, however, may lack such an encoding function (in which
case, recall, C(x) denotes a set of codewords).

Definition 5.3 (Multiplication Codes [Meil3]). We say that a block code C over F with a well-
defined encoding function is a M-multiplication code, for an integer M € N, if there exists another
code C', which we refer to as the product code of C, such that

Clx1)®...0C(zy) € C/(JJ1 ©...0zN),

where © denotes point-wise product over F.
We extend the notion to linear tree codes TC = {TC,, : F(0)" — F(n)"™M} where multiplication
over F(n)¥ is defined as the point-wise product.

Proposition 5.4 (C is a Multiplication Code). For any k, the block code Cy, from Definition 4.16
is a d-multiplication code. The product code of Cy is linear and has constant relative Hamming
distance.

Proof. The code is b-multiplication by the fact that the point-wise multiplication of the evaluation
table of two polynomials gives the evaluation table of their product. The product code has relative
distance Hle(l — 5H(i)/|F(k)|) > (1 — 5/8k)* = Q(1) since the individual degree blows up by at
most 5 in the product polynomial. ]

1We remark that similar notions existed in the literature, but our use here is closest to that of [Meil3].
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Note that the multiplication code of Cy, denote it by C}, has the capacity to encode information
of length 5ng. On the other hand, codewords that are the point-wise product of two codewords in
Cy, encode information of length ny.

For instance, let z1,y1 € GF(2)™ and x2,y2 € F(2)" denote two message pairs such that
21 OYy1 =22 ©®y2 = 2. Then, ¢; = Ci(z1) ® Cr(y1) and ca = Ci(x2) ® Ci(y2) are both codewords
in C), that encode z — they are the evaluation vectors of degree-5n;, polynomials that evaluate z
over H(1) x --- x H(k) (see Definition 4.16) — but are not necessarily identical over all of F(k).

The extra redundancy makes the encoding function over the message space ambiguous but this
is completely fine since Cj, is still a well-defined linear code (as a subset of strings) with constant
relative Hamming distance. Further, every codeword ¢ € C}, encodes a well-defined message in

F(k)Qk that can be efficiently decoded given c.

Remark 5.5. The multiplication code C},, corresponding to Cy, satisfies |C| > |Ck| and does
not induce a well-defined encoding function over the message space GF(0)™. In particular, any
x € GF(2)™ has many valid encodings under C},, which we denote by the set Cj(x).

Nevertheless, given a word w € IF‘(I{:)IF(]C)IC as input, it is possible to efficiently tell if w € C}, and,
if that is the case, to find the well-defined message x such that w € Cj(z).

We note that 3-multiplication suffices for the proof of Lemma 5.1. However, a larger multipli-
cation degree of 5 is required for evaluating the consistency constraints in Section 5.2.

The tree code TC from Fig. 6 generically inherits the multiplication property of the underlying
block code C, if it exhibits any.

Proposition 5.6. The tree code TC from Fig. 6 is M -multiplication assuming the underlying block
codes {Cr} are M-multiplication. Further, instantiating the construction with the product code of
C gives the product code of TC (Remark 4.14).

Proof. The proposition follows from the observation that a codeword in TC is a concatenation of
codewords from C that encode fixed sections of the input. Then, the multiplication property follows
from the fact the, for any x,y € F(0)" and any (possibly overlapping) I,J C [n],

(Ci(zr), Ca(zy)) ® (Cilyr), Ca(ys))
= (Ci(zr) © Ci(y1), C1(zy) © Ca(ys)) € {(c1,¢2) | 1 € CL((x ©y)1), c2 € CH((z @ y) )}

O

Following Remark 5.5, the product code of TC does not induce a well-defined encoding func-
tion over the message space. However, it is still a well-defined tree code with tree distance
Q(1/log*(n)), and allows to verify and decode codewords efficiently — see Remark 4.14 and Propo-
sition 4.15 and the discussion in between.

As noted by [Meil3, Proposition 3.13|, the tensor of a multiplication code is itself a multi-
plication code, where the product code is the tensor of the base product code. Thus, TC™ is a
multiplication code if TC is. We additionally note that flattening the code TC" preserves its mul-
tiplication property since we are merely re-organizing the codeword symbols. Overall, we obtain
the following, which completes the proof of Lemma 5.1.

Proposition 5.7. If a tree code TC is a M-multiplication code with product code TC', then TC™
and TC™ are M -multiplication codes with product codes (TC')™ and, respectively, (TC')™.
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5.2 The Consistency Constraints

Next, we show how to evaluate the consistency constraints over two encoded assignments A = A°
and A" = A7 (Fig. 1, Step 2.3), akin to the evaluation of the transition constraints from above.

While the evaluation of the transition constraints given in Lemma 5.1 is quite straight-forward,
we obtain weaker, more nuanced, guarantees from the evaluation of consistency constraints in
Lemma 5.8 below, which are nevertheless still sufficient for a tree PCP. Before stating the lemma,
let us highlight the differences compared to the statement from Lemma 5.1:

1. Unlike the witnesses for Eval(C), the length of witnesses W* for the consistency constraints
and the corresponding evaluation vectors F does not exactly match the length of the assign-
ments n, but is still N = O(n). While W? and E are still monotone in the assignments A, A’
they are not incremental in the sense of Definition 3.2 — it is no longer the case that extending
A, A’ by one additional coordinate requires adding few values to W* and E. However, any
new symbol in W and E can be computed by reading a few locations in the assignments and,
therefore, we obtain an amortized notion of incrementality. In Section 7.3, we show how to
de-amortize W' and E to make them incremental, on par with the tree PCP requirements.

2. It does not hold here that an evaluation vector FE is all-zeros when the corresponding constraint
is satisfied, but rather that it is zeros over a certain subset of coordinates R. It is convenient
to switch to a setting where we view E as an m-dimensional tensor over some rectangle
I = [n1] X -+ X [ny], where the subset R is a sub-rectangle R C I. Consequently, every
constraint P is associated with such an R, and we require Fr = 0. Importantly, our zero test
(Section 6) supports verifying such partial statements, as long as the “zero set” R is indeed
a rectangle.

3. We do not cover all consistency constraints over a pair of assignments A, A’, namely that
A(t) = A'(t — 1) for all coordinates t > 1 (2.3). Instead, we guarantee that A(t) = A'(t — 1)
for almost all t. Specifically, for all ¢ except for an efficiently computable, constant-size set of
coordinates which we denote by Bad(n). Since it has constant size, this exception does not
constitute a big issue in our PCP construction: The verifier can individually verify each of
the remaining consistency constraints in a straight-forward way using the local correctability
of the code.

4. To simulate access to an evaluation codeword E, we require access to an “extended” en-
coding of the witnesses {W*} under a flattened-tensor tree code (TC")™, where TC" is an
extension of TC. Importantly, TC" is also locally correctable, making the encodings robustly
incremental.

Lemma 5.8 (Consistency Evaluation under Codewords). There ezists an (infinite) collection of
constraints EQ, where every constraint (P, R) € EQ consists of a function P = {P, : (F")? x FM x
~ox PNk — FIP}, for F = F(0), K := K(n) = polylog(n), N; := N;(n) = O(n) and a rectangle
Ip :=Ip(n) C N™ of size O(n), and R is a (possibly infinite) rectangle R C N, that satisfies the
following properties:

— (Size) For any n € N, the set EQ(n) = {(P,R) € EQ | Ip(n) N R # 0} has size polylog(n).

— (Correctness) There exists an efficiently computable Bad(n) C [n] of size O(1), such that the
following two conditions are equivalent for any A, A’ : [n] — F:

o A A" are binary and A(t) = A'(t — 1) for all1 <t <n, t ¢ Bad(n).
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e There exist W', ..., WE (henceforth witnesses for A, A') where W' : [N;] — F, such that
for all (P,R) € EQ, letting E = P(A, A, W',... , WE) e FIr(") it holds that Er = 0.

— (Codeword Fuvaluation) There exists a linear tree code TC' (without explicit encoding) and a
(As, n#*to0) Q(1/log?™(n)))-locally correctable linear tree code TCT, both with tree distance
Q(1/1log(n)#), and an O(n*+t°M)-time deterministic algorithm A that satisfy:

For any A, A", W', ... WX there eists E € (TCY™(P(A,..., AW, ... . WX)) such that on
any input (t1,...,tm), A computes E(ty,... ty) by reading at most one location from each of
{A" = TC™(AY} and {W*' = (TCT)m(W?)}.

~ (Amortized Incrementality) For any satisfying A, A, there exist witnesses W' = leh L WE =
W (that depend only on A) such that {W¥}, for any i, and {Esa = P(A,A", Wih,...,WH},
or any (P, R) € EQ, are monotone ensembles. Additionally, any symbol in W% or E4 4 can be
y y, any sy A ,
efficiently computed by making O(1) queries to A, A’.

Arithmetization of equality between two variables z;, z; in {0,1} C F can be obtained by the
simple degree-2 function EQ(z;, ;) = (z; — x;)?. However, in contrast to the 3-CNF evaluations
that we apply over variables coming from the same location in different encoded assignments (i.e.
the same “row” in the columns A!,..., AS ), the consistency constraints involve a variable from
any location t of some encoded assignment and a variable coming from location ¢ — 1 of another
assignment. We can thus check consistency by evaluating EQ, in a point-wise manner, over some
assignment column A = A’ and a shift of another A’ = AJ. Given the tools from the previous
section, the remaining challenge lays in applying the shift. Roughly speaking, our goal then is,
given an encoding of an assignment, to simulate access to the encoding of its shift.

We do not know if there exists a tree code that allows shifting a location ¢ in the encoded
message to location ¢ — 1. Instead, we show that our tree code construction (Corollary 4.17) allows
for a different type of shifts, which are sufficient to simulate ¢ — ¢t — 1 for all values of ¢ using a
small number of operations.

To describe the shift functions we realize, it is convenient to represent the coordinate set [n]
using [logn|-bit labels, where each ¢ € [n] is represented by the binary representation of ¢ —1, which
we denote by b(t) (e.g. b(1) = 0/'°8"1). We look into shifts defined by the functions {T'; : N — N},
where for all i € N, I';(¢) is the coordinate with the label obtained by flipping the i least significant
bits in the label of . That is, I';(t) = b~ (b(t) @ (0,...,0,17%). For every i € N, let A; be the set
of all t € N where i is the biggest integer such that 2°~! divides t — 1 (in other words, if the i least
significant bits in the label of ¢ are 10°~!). Observe that if ¢ € A;, then T';(t) = ¢ — 1 (see Fig. 3 for
illustration). Since Ay, ..., Afgp) cover [n], we may write

Vi, BQA(), A'(t—1)) =0 < Yie [logn], teAi, EQA®), A1) =0  (5)

for any assignments A, A" : [n] — {0,1}.
For technical convenience, we additionally extend the above definitions to ¢ = 0, where I'y is
the identity function and Ag = N.

5.2.1 Shifting under Codewords

Having reduced our goal to dealing with shifts by the functions I';, we next show that the tree
code TC™ indeed allows us to locally simulate access to codewords of shifted messages. For this
to be possible, we require that the block code underlying the base tree code construction (C from
Definition 4.16) exhibits such a property. Prior works on PCP use low-degree extensions to attain
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similar structural properties that are useful for arithmetization (so-called affine invariance). Some
even specifically consider the type of shifts we are interested in [Spi95, PS94, BGHT06].

Proposition 5.9 (Shifting under C). There exists a deterministic algorithm A that for any x :
[nk] — F(k) and any input i € [k], simulates a query to ¢ = C(x o I';) by making a single query to
c=C(z).

Proof. Recall every coordinate t € [ny] is represented by (1, . .., %) € H(1)x- - -xH(k) in the encod-
ing under Cj, (Definition 4.16). For any i, the transformation from (¢1, .. .,;) to the representation
of I';(¢) in H(1) x - -- x H(k) is affine over H(1) x - -- x H(k) and, therefore, over F(k)¥. Hence, the
codeword encoding z o I';(-) is a low-degree extension that can be rewritten as Z(a- (t1,...,tx) + 3)
for some a, B € F(k)*. O

Unlike the multiplication property that seamlessly propagates from the underlying block code
C all the way to the flattened-tensor code TC™, extending Proposition 5.9 to TC™ requires a much
more subtle treatment. For start, we show that given codewords of C can be “shifted” by I['; as
implied by the proposition, then codewords of the base tree code TC can be similarly “shifted”
albeit with some extra “help”. In more details, recall that a codeword ¢ € TC is the “vertical”
concatenation of kpax = O(log(n)) “threads” ci (see Figs. 6 and 7). Every ¢y, is itself a “horizontal”
concatenation of [n/ng] — 1 codewords of C, of total length n’(k) = ng - [n/ny] over F’, which
possibly exceeds n (note the dotted red line in Fig. 7). When n’(k) > n, the codeword ¢ does not
contain all of ¢. To locally simulate the shifts, however, we require access to any ¢ in its entirety
and not only the parts composing ¢. (This will not be a problem for us since any ¢ will eventually
be a part of the growing codeword at time at most dj___-n = O(nlog"/*(n)); it will merely require
the PCP to include parts from future codeword symbols in advance.)

It is convenient to view such an extension of ¢ as coming from a tree code that extends TC.

Definition 5.10 (The Code TC™). We define TCT to be the linear code that maps any x to the
concatenation of x with {cx | 1 < k < kmax}, where ¢ and kyax are as defined in Fig. 6 w.r.t. the
tree code TC from Corollary 4.17.

TC* maps any z € GF(2)" to TCT(z) € F(kmax)" , where F = F(kmay) is of size polylog(n)
and T = Emax - Ly - 7 (kmax) = O(n*1/rFe)) While TC* satisfies the syntax of tree code
(Definition 3.3) with some choice of alphabet, for simplicity we diverge from that syntax and
do not split an encoding of length-n message into n codeword symbols. Rather, we think of
codewords in TC as being over the alphabet of TC,/, where n' = n/(kmax) = O(nlog"/*(n)).
(Formally speaking, one can view TC™ as an infinite collection of block codes.) Note that TC;
is a restriction of TC, s as a vector space of F(kmax), and we pad codeword symbols with zero
field elements where necessary. With this view of TC™, it follows that TC;} immediately inherits
the minimum tree distance of TC,,. It also inherits local correctability by naively adjusting the
correction algorithm from Lemma 4.20. Consequently, (TCT)™ exhibits a robust online encoding
following Proposition 4.12.

Lemma 5.11. The code TCt = {TC}} has tree distance Q(1/log*(n)) and is (As,q,8)-LCC
with ¢ = n#+t°M) and § = Q(1/log?(n)). Consequently, there exists a constant v such that for

any m € N, the codewords of (TCT)™ form a (As, 8™, T, L)-robustly incremental ensemble with
T(n) = n*ty/m+o) gnd L(n) = nttel),

A range of coordinates [n] is closed under T'; only when n is divisible by 2¢. Consequently, we
are able to simulate access to encoded assignments shifted by I'; only when their length is such an
n. This suffices for our eventual goal, as we shall see in the next section.
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Lemma 5.12 (Shifting under TC"). There exists a deterministic algorithm A that takes as input
an integer i > 0 and coordinate t and, for any x : [n] — F s.t. n is divisible by 2¢, outputs the tth
field element in ¢ = TCT(x o T;) by reading one field element from ¢ = TC*(z).

Proof. Let ¢ be the component of ¢ as defined in Fig. 6. It suffices to show how to compute a field
element in ¢x(t) for all k =0, ..., knmax. (Computing the “message part”, i.e. the first field element
in any ¢(t) equal to (), is straight-forward). Assume t > ny (otherwise ¢(t) = 0%). Letting
Jj=[t/nk] —1 and t' =t mod ny, it holds that é,(t) = ¢é ;(t') where é;; € Cj is as defined in
Fig. 6. Our goal then is to compute a field element from ¢, ; which, by construction, is the encoding
of (Z((j — D)ng +1),...,2(jng)) under Cy, where & =z oI';.

Recall that ny = 2" for h = Zle h;. It follows that b((j — 1)ng 4+ 1) = (b(4),0") and b(jn;) =
(b(5),1™). If i < h, then by these observations it holds that Z((j — 1)ng +2) = 2((j — 1)ng +Ti(2))
for all z € [ny], hence ¢ ; can be simulated by accessing cj ; due to Proposition 5.9. If i > h, then
it holds that #((j — 1)ng + 2) = z((F'i—n(j) — 1)ng + L'i(2)) and we can use ¢, , ;) to simulate;
notice that I';_j, maps [n/ny] to itself and, therefore, I';_(j) < n/ny and ¢, r, , ;) is a part of ¢
and thus of TCT(z).

—n(j
O

Shifting messages encoded by TC* allows us to shift m-dimensional messages encoded by
(TCT)™ along each of the m dimensions, or even a subset of the dimensions. For any j € [m],
define

/(b tm) = (b1, Tilty), - ). (6)

More generally, for (i1,...,im) € (NU{0})™, we denote I'y, 4, = I}, o--- o™ (note the
definition is invariant to the order of composition). Letting J = {j | i; # 0} and 1; € {0,1}™
denote the binary vector that is 1 at any j € J, we have that

VJ S [m], tj € Aij i Fh,...ﬂ'm(tlu ... ,tm) = (tl, ... ,tm) — 1J. (7)
(Recall Ty is identity and Ag = N.)

Lemma 5.13 (Shifting under (TCT)™). There exists a deterministic algorithm A that takes as
input integers i1, ...,im > 0 and coordinate (ti,...,ty) and, for any x : [n1] X -+ X [ny,] = F s.t.
n; is divisible by 2%, outputs é(ty,...,tm) where ¢ = (TCT)™(x o Ty 4..), by reading one field
element from ¢ = (TCT)™(xz).

Proof. 1t is sufficient to show how to apply a shift when is = --- = ), = 0, namely only along the
first dimension, and compute one element from ¢ = (TC“‘)m(x oI, 0...0) by reading one element
from c. By performing this operation recursively, every time shifting along the next dimension

j =2,...,m, the algorithm obtains a field element in (TCT)™ (x0T, ;) for any ii,...,in.
Let d : [n1] X [ng] x -++ x [n;i] — F denote the m-dimensional tensor obtained by applying

TCT over z along all dimensions except the first, namely d = (I ® (TCT)™ 1) (x) (here, nT =

j
O(n}+1/“+o(1)) is the length of a codeword in TC;{J_).

Let di : [n1] = F, ¢1 : [nf] = F and ¢ : [nf] — F be the columns in d, ¢ and, respectively, ¢,

that are parallel to the first axis and intersect (¢y,...,tn).
It holds that ¢; = TC"(d;) and é& = TC(dy o). Hence, A may apply the simulator for TC*
from Lemma 5.12 over cf with input ¢; to compute ¢é(t1) = é(t1, ..., tm)-

O]
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5.2.2 Checking Consistency in Flattened Codewords

In the above we show how to shift a message underlying a codeword of TC™ given (its extension
from (TC™)™) as oracle. The shifts we can perform are Fg , over the m-dimensional coordinate space
N™ along any dimension j € [m] in the tensor (see Eq. (6)). In contrast, our goal of evaluating the
consistency constraints over codewords of the flattened tensor tree code TC" involve shifts over a
1-dimensional coordinate space [n] C N.

Recall the flattening of the tensor code is carried using the mapping ¢ : N — N™ from Fig. 4.
The shift ¢t — t—1 over the encoded message coordinates translates, then, to a shift w.r.t. ¢ over the
message coordinates when “lifted” back to m dimensions, which we denote by prew(tl, coytm) =
o(e7Y(t1, ... tm) —1). While this function is different, in general, than shifting (¢1,...,%,) along a
certain dimension, our efforts in the previous section are not in vain. On a closer observation, it holds
that for most of the coordinates (t1,...,tm) € N, pre,(t1, ..., tm) is exactly (t1,...,t;—1,...,tm)

for some j € [m] and, therefore, can be emulated by Fg . We can also precisely specify the value
of j corresponding to such a given coordinate (t1,...,t,). For that, let us define the predicate
U, : N™ — {0,1} that is 1 on input (¢1,...,¢y) if and only if j is the smallest integer satisfying
t; = minj/ tjr.

Lemma 5.14. Let (t1,...,ty) € N be such that t; > 1 for all j. Let j € [m] be the integer
satisfying W (t1,...,tm) = 1. Then, it holds that pre,(t1, ..., tm) = (t1,. .., t; —1,... tm).

Proof. Assume (t1,...,t;) is “visited” by the recursion in Fig. 4 in step 2 of a recursive call
oy that is restricted to a subset of r dimensions D C [m] (recall each recursive call made in
step 1.3. restricts the traversal to a subset of dimensions D = [m]\ J). If n = 1, then (t1,...,tn)

contains a 1. Otherwise, the last coordinate visited by the traversal before (t1,...,t,,) is ng-l) in
the recursive call ! ;| restricted to some dimension j C D. It holds that Uity ... tm) =1
since D = {j | t; = miny ¢} and the last subset of D iterated over by the loop is the last

in lexicographic order, which contains all but the smallest j in D. It also holds that this last

coordinate is ng-l) = (t1,...,t; +1,...,ty) by definition. O
Given the above, we may represent the consistency constraint over coordinates t = (¢1,...,t,)

such that ¢; > 1 for all j by constraint (EQ1) in Fig. 9.

We complement our understanding of the function pre, by specifying its behavior on all coor-
dinates that are 1 along at least one axis, namely, on “azes-adjacent” coordinates. Let (t1,...,tm)
be such a coordinate with ones at some non-empty D C [m]. Our observation is that although
the predecessor pre,,(t1, . ..,tn) might be unreachable form (t1,...,%y,) by a small number of shifts
t; = t; — 1, it is always reachable from some point on the D-parallel hyperplane that intersects
(t1,...,tm). We give a precise characterization in the following.

Lemma 5.15. Let (t1,...,tn) € N™\ {(1,...,1)} be such that D := {j | t; = 1} # 0. Let
n =minjgpt; and H = {j | t; = n} U D, and let D" denote the subset D' C H such that H \ D'
is the predecessor of H \ D in the lexicographic order over subsets of H (used in Fig. /). Let
(t),....th,) be defined by
n—1 jeDND
=4{n jeD\D (8)
tj j¢D.
Then, it holds that pre,(t1,... ,tm) = (1, ..., 1) — 1pnp-

/
tj
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Consistency Constraints over A, A" : [n] - F

For all I € Rect(n):

(EQ1) Y(t1,...,tm) € I s.t. minjt; > 1,

S Wt t) ~EQ<A1(t1,...,tm),A}((tl,...,tm) - 1j)> =0
j=1
(EQ2) V non-empty D C [m], j € D, (t1,...,ty) € I s.t. minjepty > 1,
EQ(BD(tl,...,tm),BD((tl,...,tm) — 1j)) =0
(EQ3) V non-empty D C [m], (t1,...,tm) € [ s.t. Vj € D,t; =1,
EQ(Bp(t1,... tm), Ar(t1,...,tm)) =0

(EQ4) V non-empty D C [m], (t1,...,tm) € I,

Z Dp oty ytm) - EQ(BD(tl, o tm), A ((t, o tm) — 1D,\D)) =0
D'Clm)

o W;(t1,...,tm) outputs 1 if and only if j is the smallest integer satisfying t; = min{t1,...,tm}.

e &p pr(tr,...,tm) outputs 1 if only if DN D" = {j | t; = min{t1,...,tm}} and D,D' C H := {j | t; =
min{ti,...,tm} + 1} and H \ D’ is the predecessor of H \ D in the lexicographic order over the subsets of H.

Figure 9: Testing that A(t) = A’'(¢t — 1) for all 1 < ¢ < n using constraints over the lifting of A, A’
to m-dimensions.

For intuition, note that (t{,...,t,) is the coordinate that, at any dimension j = 1,...,m, takes
the maximal value among (t1,...,t,) and pre,(t1, ..., tm).
Proof. Such (t1,...,tn) is the first coordinate visited by a recursive call to go‘rle 1 over the restriction

to D, which we denote by nf]()) in Fig. 4. Further, the call originates from a higher level in the

recursion (either directly from the parent level or indirectly from a higher level) by the traversal

restricted to some H D D. In particular, in this “ancestor” level, nf]O) is set to be (t1,...,t,) for
J=H\D.
The last coordinate visited before (¢1,...,t,,) is thus the last coordinate in a recursive call goln’i |1

made in the ancestor level over the restriction to the subset D', where H \ D’ precedes J in the

(1)

loop. This coordinate is ng,) by the notation of Fig. 4. The lemma follows since n}), is precisely

(t},...,t;,) — 1pn p by definition. O
Given the above, our strategy to test consistency over coordinates (t1,...,t,,) with some
t; = 1 is to let the prover provide auxiliary variables that form a “bridge” between (t1,...,tn)
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and pre,(t1,...,tm) through the hyperplane that intersects (t1,...,t») and is reachable from
pre,(t1,...,tm). By Lemma 5.15, there exists such a hyperplane for any (t1,...,t»), which is
the hyperplane parallel to D = {j | t; = 1}. Since D comes from a constant-size space (of size
2[’”]), we can “pack” all of these bridges in a constant number of tensors, each containing bridges
parallel to some D. Specifically, given an assignment A : [n] — F, we define for any D the word
Bp : I(n) — F, which satisfies the following for any rectangle I C I(n):

1 jeD
ti j&D.
In words, in Bp, we “spread” the A-value from any (t1,...,%,,) that is “adjacent to the D-axes”,
i.e. where {j | t; = 1} = D, along the D-parallel hyperplane that contains it, i.e. the hyperplane
[t th) |5 & DL, = 1),

Given the “bridges” Bp, we check consistency between the remaining coordinates in Ay and A’
by the following tests, which we include in Fig. 9:

Bp(ti, ... tm) = Ar(t},...,t,,), where t;»:{ 9)

(EQ2) Test that any Bp is constant over any D-parallel hyperplane.
(EQ3) Test that Bp and Aj are equal over the coordinates adjacent to the axes of D.

(EQ4) Test that when shifting A} according to Lemma 5.15, we obtain a coordinate on the D-
parallel hyperplane that is equal to Bp. For any non-empty D C [m] and D’ C [m], we
define a function ®p pr : N — {0, 1} that, on input (},...,t],) outputs 1 if and only if,
letting n = min; ¢; + 1 and H = {j [ ¢; < n}, it holds that: (i) {j |¢; =n -1} =Dn D/,
(i) D, D’ C H, and (iii) H \ D' is the predecessor of H \ D in the lexicographic order
over subsets of H. By Lemma 5.15, for any (¢,,...,t;,) such that ®p p/(¢},...,t;,) =1, it
holds that pre,(t1,...,tm) = (th,...,t,) — Lpnp, where (t1,...,ty) is defined by ¢; =1
at j € D and t; = t; at j ¢ D. Hence, we conclude the test with the constraint.

We conclude with the following lemma, which is implicitly implied by the above discussion.

Lemma 5.16 (Flattened Consistency Constraints). The following two conditions are equivalent
for any A, A’ : [n] — F:

o A(t)=A(t—1) for all1 <t < n for which there exists a rectangle I € Rect(n) that contains
both o(t) and p(t —1).

o There exist {Bp : I(n) = F | D C [m], D # 0} such that for every rectangle I € Rect(n), all
constraints in Fig. 9 hold for Ar and A.

Further, if the former condition holds, then the latter holds with {Bp} defined by Eq. (9).

Proof. Suppose there exists t such that A(t) # A’(t — 1) and let I be any rectangle in Rect(n)
that contains both ¢(t) = (t1,...,tm) and ¢(t — 1) = pre,(t1,...,tm). Then, it holds that
Ap(te, .. tm) # Ap(prey(te, .-, tm))-

If minj¢; > 1, then by Lemma 5.14 and Eq. (7), (EQ1) is not satisfied by (¢1,...,tn) w.r.t.
Ap, A} (note for every (ti,...,ty) there is a unique j such that U;(ty,...,t,) =1).

If D ={j|t; =1} is non-empty, let (¢;,...,¢,,) and D" be the coordinate and subset defined
by Lemma 5.15 satisfying pre,(t1, ..., tm) = (#,...,t,,) —1p\p. Note that (¢],...,},) is also con-

tained in I since it is bounded by (t1,...,tm) or pre,(t1,...,tm) at any dimensions j € [m]. Then,
it either holds that (i) A;(t1,...,tm) # Bp(t1,...,tm), or (ii) Bp(t1,...,tm) # Bp(t},...,t,,), or
(111) BD(t/17 s 7t;n) # Al[((tlla s at{m) - 1D’\D)'
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In the first case, (EQ3) is not satisfied.

In the second case, since (t1,...,ty) and (#],...,t),) reside on the same D-parallel hyperplane,
then there exists (¢1,...,ty,) on the hyperplane where Bp(t,...,t,) # Bp(t],...,t7 —1,...,t7)
for some j € D as otherwise all values on the hyperplane are equal. Hence, Item (EQ2) does not
hold.

Lastly, in the case where Bp(ty,...,ty,) # A7 ((t}, ..., t,,) —1pnp), (EQ4) is not satisfied since
Uppr(ty,...,tn,) = 1and Wp pr(t],...,t,,) = 0 for any other D" # D’ (as D’ is determined
uniquely by (#;,...,t),) and D).

The the other direction follows by inspection: assuming that the first condition in the lemma
holds and let {Bp} be as defined in Eq. (9), then (EQ1) follows by Lemma 5.14, (EQ2) and (EQ3)
by the definition of Bp and (EQ4) by Lemma 5.15. O

We address two minor gaps that are left by Lemma 5.16 towards realizing our goal of consistency
evaluation under codewords.

The first gap is that, in the lemma, we give a representation of the consistency constraint
over all coordinates, except those where no rectangle I € Rect(n) contains both them and their
predecessor under ¢. This will be the set of coordinates Bad(n) that we do not cover in the
statement of Lemma 5.8. In the following, we show that the size of Bad(n) is bounded by a
constant.

Lemma 5.17. Let Bad(n) be the set of all coordinates 1 < t < n such that {p(t),o(t — 1)} I
for all I € Rect(n). Then, |Bad(n)| = O(1).

Proof. Let (n1,...,nm) = ¢(n). Let t € [n] and (¢1,...,tm) = @(t). If minjt; > 1, then, by
Lemma 5.14, ¢(t — 1) is contained in any I € Rect(n) that contains ¢(t).

Otherwise, D = {j | t; = 1} # 0. Let nj > n3 > ... denote the distinct values in (n1,...,ny)
from largest to smallest, and let J; = {j | n; =n}}. Let J/ = {j | t; = n}}.

Let ¢ be the smallest integer such that J; precedes J;, in the lexicographic order over subsets of
[m] \ (U <; Ji) (followed in Fig. 4). Note that since p(t) < ¢(n), it must hold that J/, = J; for all
i <.

Let n' = min;¢p t; be the second smallest value in (t1,...,ty,) and let (¢},...,t,,) be as defined
in Eq. (8). (Recall #; <n' at all locations j where ¢; < n' and is equal to ¢; otherwise.)

If n’ < nf, then (t),...,1,,) also precedes (ni, ..., n,) in the mapping ¢, therefore (¢},...,1,,) €
I(n) and any rectangle in Rect(n) that contains ¢’ contains both ¢(¢) and ¢(t — 1) by definition.

The case where n' = n} corresponds to a coordinate (t1,...,t,,) where: At j € U, ., Ji, t; = n;
and, at any other j, t; € {1,n!}. The number of such coordinates is then bounded by the number
of choices for i’ and a subset of [m]\ U, ., Ji- Hence, it depends only on m and is constant in n. O

The second gap is due to the fact that, on the one hand, we know how to evaluate shift
functions I/ only when the length of the tensor at the 4t dimension, namely n;, is divisible by 2
(Lemma 5.13), whereas on the other hand, the constraints in Fig. 9 seem to require applying shifts
over assignments of arbitrary length. (Note that padding the assignments will break monotonicity
and is therefore out of the question.)

We resolve this issue by letting the prover add another set of auxiliary variables (similarly to
{Bp} from above) that are always of length suitable for applying the shifts.

Let A; be an assignment over some I = [nq] x --- X [ny,]. For any i € {0,..., [logn;]}, let

nj(i) = 2" [n;/2"].
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For any (i1,...,im), wherei; € {0,..., [logn;|},let Gy, 4., == Gy, i, (A1) € € Fr (i) x X (im)
be defined as follows:

Gi,oim (1, - - - (10)

o A(go_l(tl, Ce ,tm)) Vj, tj € Aij
stm) = .
0 otherwise.

Notice that G, ;,, is well-defined since if t; < n;(i;) and t; € A;;, then t; < n;. (Recall t € A;
means 2:~! divides t — 1.)

Given G}, .. ;,., We may rewrite the consistency constraint between Ay and the shift of any other
A’ along dimensions J C [m], over coordinates (t1,...,tm) € Ay, X -+ X A;, where i; = 0 for all
j € J, as follows:

BEQ (Az(t), A (t— 1J))
= EQ(A;(t), A5(Ti,...i,, (1))
1 (1 QA9 G ®)) - (1 BQUAY®). G (T sn®)). Q)

Importantly, the above transformation is sound: If the left-hand side is non-zero (meaning
inequality), then the right-hand side is non-zero even when replacing G;, ;.. with any arbitrary
binary function. The above observations imply the following lemma.

Lemma 5.18. For any A, A’ : [n] — {0,1}, I € Rect(n) and i1, ..., in such thatij € {0,..., [logn;]},
Eq. (11) holds for Gi, ...i,. as defined in Eq. (10). Further, if the LHS of the equation is 1, then
the RHS is 1 for any choice of Gy, .. i,

5.2.3 [Evaluating The Coefficients ¥ and ¢

In Fig. 9, we formulate the consistency constraints over assignments as low-degree constraints over
their corresponding lifting to m dimensions and their shifts. The low-degree constraints involve
coefficients defined by the binary functions {¥;} and {®p p/} over the coordinate space. For the
verifier to locally evaluate the constraint-evaluation codewords as desired (Lemma 5.8), he must be
able to locally evaluate the codewords encoding these coefficients. (Given the code TC™ is linear,
multiplication (Propositions 5.4 and 5.7) and allows evaluating shifts (Lemma 5.13), this is also the
only remaining component.)

Although the coefficients are independent in the prover’s statement and, in fact, can be locally
computed by the verifier (by simply computing the above predicates on any given coordinate),
it is not clear if the verifier can locally compute any location in a TC™-codeword encoding the
coefficients. Instead, we let the prover provide these encodings to the verifier, together with a proof
of their validity.

For a function f : [n1] x -+ X [ny] — F (think of f € {V;,®p p/}), let Cf be the circuit
that takes as input (b(t1),...,b(ty)) € {0,1}M where M = >_j [logn;] — recall this is the bi-
nary representation of (t; — 1 ..ytm — 1) — and a value F' € {0 1} and outputs 1 if and only if

flt1,...,tm) =F.

To validate that a certain codeword F': [nq] x- - - X [ny,] — I encodes the output of C/, it suffices
to verify satisfiability of Cy under all assignments (b(t1),...,b(tm), F(t1,...,tn)). Lemma 5.1
already provides us with a set of constraints Eval(n, Cy) that express satisfiability of C'y by a given
assignment and can be evaluated “under codewords”. Equipped with this machinery, to prove that
a codeword F : [n] — X encodes F : [n1] X - -+ X [nm] — F, the prover additionally encodes:

o T ..., TM : [ng]x---x[nm] = Fwhere (T (t1,...,tm), ..., TM(t1,.. ., tm)) = (b(t1),...,b(tm)).

42



. W},...,W;( ] x oo+ X [ny] = F, witnesses for Eval(n,Cy) computed w.r.t. assignments
(T,...,T™ F), as induced by Lemma 5.1.

It remains to show how to test that the encoded T, ..., 7™ indeed compose the binary represen-
tation of the coordinate space.

Let b'(t) denote the i*" least significant bit in b(t). We want to test whether T(ty,...,t,) =
bi(t;), for a given T : [n] — F and j € [m], i [logn;]. We express this equality using constraints
that again involve the degree-2 function EQ and the shift functions Fg . To that end, we observe
that b’(t) is the unique binary function over N that: (i) evaluates 0 at ¢ = 1, (ii) gives equal values
at t and 'y (t) for any ¢ and ¢ < 7, and (iii) gives distinct values at t and 'y (t) for any t and i’ > i.

T-Constraints for T : [nq] X -+ X [ny,] — {0,1}

T(tr, ... t) =0
(T2) Fori' =1,...,0i—1,Y(t1,...,tm) € [n1] X -+ X [ny],
EQ(T(tl,...,tm),T(Fg}(tl,...,tm))) —0
(T3) For i —i,...,[logn;], (b1, tm) € [n1] X - - X [rtm],

EQ(T(tl, ), 1 — T(F{,(tl,...,tm))) —0

Figure 10: Testing that T'(t) = b'(t;) for all t = (t1,...,tm).

Lemma 5.19 (T-Constraints). Let T : [n1] X - -+ X [n] — {0,1}. Then, T(t1, ..., ty) = b'(t;) for
all (t1, ... tm) € [n1] X -+ X [ny] if and only if T satisfies all constraints in Fig. 10.

Proof. 1t is by inspection that T' = bi(tj) satisfies all constraints in Fig. 10. For the other direction,
assume T'(t1,...,t,) # b'(t;) at some t = (t1,...,tp). Consider the sequence of coordinates
"= (t,... NP ,tm) for r = [logt;] +1,...,1, where t% is defined inductively as follows:
[logt;]+1
Lot 8 =y

2. 15 = Fr(tgﬂ) if br(t;H) =1land t] = t;“ otherwise.

It holds that tjl- = 1 and therefore bi(tjl-) =0. If T(t') # bi(t}), then T'(t') # 0 and (T1) does
not hold. Otherwise, let i’ be the largest value of r such that T'(t") = b’(t;) If b” (t§’+1) =0
then ¥ = t'*+! by definition and T(t'*!) = T(t") = bi(tg) = bi(t§/+1), in contradiction to the
maximality of /. If b" (t?“) = 1 then /' = Fg, (t'+1) and we again split to two cases: If i’ < i,
then b(t") = b'(t"*1) and, by definition of i, T(t"*+!) # T(t") thus breaking (T2). If / > i, then
bi(t") = 1 —bi(¢"+!) and T(t*+1) = T ("), breaking (T3). O
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5.2.4 Proof of Lemma 5.8

Before laying down the set of constraints EQ, let us first describe the variables W1, ..., W over

which they are applied, besides the variables A, A’. Although the W' are defined in the lemma
to be over [N;], it is more natural to think about some of them as functions over m-dimensional
domains of size V;. We also describe the values W}l, ey Wf that these variables take to attest
that a given pair of assignments A, A’ is consistent (note the witnesses are a function of A alone
and some of them do not even depend on A, in which case the same witness can be used for all
assignments):

1. For any non-empty D C [m)],
Bp : I5(n) — T,

where 15(n) = U] x [nm]eRect(n) [P1] X+ =+ X [Ai], for fi; = n; for j ¢ D and, for j € D,
n; is the smallest power of 2 that is at least n;.
Given A, we define Bp := Bp(A) as in Eq. (9) (note it is well-defined over I5(n)).

2. For any iy,...,ip such that i; € {0,..., [logn}]} for n} = max, . i.)er(n) tj;
Gityoim 15, i (0) = T,

where I;, ;. (n) = Upjx-xpnmleRect(my (71 (1)) X -+ X [ (i)] and, recall, n;(i) = 20 .

(/2]
Given A, we define Gy, .. ;,, := Gi,....i., (A) to be consistent with Eq. (10) for all I € Rect(n).

3. T, ...,TM . [N]™ — FF, where N is the smallest power of 2 that such that I(n) C [N]™ and
M =m - [log N (by Proposition 4.8, it holds that N < 2 [nl/mw = O(n*/™)).
The value of any 7" in the witness is independent in A, A" and is always T"(t1,...,ty) =
bi(t;), where j = |r/[log N]| and i = r mod [log N].

4. For any f € {V; | j € [m]} U{®p p | D,D" C [m]} (defined in Fig. 9):

4.1. Ff : [Nm] — F.
The value of Fy in the witness is independent in A, A" and satisfies Ff(t) = f(¢(t)) for
all t € [N™] (recall I(N™) = [N]™).

42. W},..., WK . [N™] - F.
The value of (W}, ey WlKl) in the witness is independent in A, A" and is the witness
for constraints Eval(Cy) w.r.t. assignment (7%,..., T, f(T',...,TM)) (Lemma 5.1).

Note that the number K = K (n) of additional variables we have introduced is polylogarithmic
in n (and exponential in the constant m) since n; < {nl/ ™| (Proposition 4.8) and the circuit that
computes ¥; and ®p pr is of size polynomial in its input. Further, the size of each of the new
variables is at most O(n).

Next, we list the constraints in EQ. To that end, we introduce the following notation which
roughly generalizes Rect(n): For any function X, we denote by Rect(X) the set of all maximal
rectangles I € dom(X), i.e. where any rectangle I’ C dom(X) is contained in some I € Rect(X)
and, further, any I’ € Rect(X) is not contained in any other rectangle in Rect(X) but itself.
Crucially to us, for any W in the list of witnesses above, Rect(W?) < 2™ due to Proposition 4.8.
(In the following, we define the rectangle R in any (P, R) € EQ as a function of n. However, the
construction implicitly defines an infinite rectangle R that complies with the syntax of the lemma.)
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1. (Z-Constraints) For any X € {4, A’} U{G,, . i} U{T*} and any I € Rect(X),
(ZX’[, Nm) S EQ,

where Zx (A, A", WL ..., W) : T — F is the function that evaluates X(t)(1 — X;(t)) at
all t € I. Recall this is the degree-2 polynomial that is identically zero if and only if X7 is
Boolean (similarly to Eq. (4)).

2. (EQ-Constraints) We add the constraints derived from Fig. 9, via Eq. (7) and Lemma 5.18:

(EQ1) For any I = [nq] X - -+ X [n,,] € Rect(n) and ¢ = (i1, ...,%y) s.t. 0 <i; < [log(n;)],

BO

m 11,...,im)

€ EQ,

where Elez)llm (A, AV W WE) T — T evaluates
> (Fuy), (0 (1= (1= BQAI(0). Goip.0(0) ) - (1= BQ(A7(1), Coiy0(T0,iy..01))) )

Jj=1

at any ¢t € I, and rY o=t tm) [ 8 € Ay, 8 > 1Y)

1] 4eeyl
(EQ2) For any non-empty D C [m], any I = [n1] X - -- X [n,,] € Rect(BP), any j € D, and any
0 <i; <log(n;) (recall n; is a power of 2),

2 2
(EQHD,]‘,Z‘].’ Rg),)j,z‘j) € EQ,
where EQ?})NJ (A, AW WE) T — T evaluates

EQ (BD(t), Bp (Fo,...,z-j,..‘,o(t)))

at any ¢t € I, and Rg?jﬂ.j ={(t1,.. ., tm) | tj € Ay;, tj > 1Vj' € D}.

(EQ3) For any I € Rect(n) and non-empty D C [m],
(EQP'). R))) € EQ,

where EQ%%(A, AW WEY D T — T evaluates EQ(BD(t), AI(t)) at any ¢t € I, and
RY = {(t1,....tm) | t; =1Vj € D}.
(EQ4) For any I € Rect(n), non-empty D C [m] and i = (i1,...,im) s.t. 0 < i; < [log(n;)],

(EQY), . .RY . )eEQ,

kl ) 7---7Zm
where, letting i(J) = (i},...,14,) be z; =i if j € J and z; = 0 otherwise, the function
EQY% i im(A, AW WEY T — T evaluates

> oy p)i(t) - (1= (1= EQ(Bo(1), Gipnpy(®) ) - (1= EQ(A} (), Gipn ) (T py (1)) ) )

D’'C[m)]

at any t € I, and Rl(f) oo =1, tm) |t € Ay Vi

geeey
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3. (T-Constraints) For any r € [M], we add to EQ the constraints from Fig. 10 over 7" (where
ny=--+=mny, =N),with j = |r/[logN]] and i =r mod [log N|. Note the figure defines
1 + [log N'| constraints over 7" in total.

4. (Coefficient Evaluation Constraints) For f € {¥; | j € [m]} U{®p p | D,D" C [m]}, we add
all constraints from Eval(N™) over T',..., T F; and W}, e WJ{{,.

Correctness (both completeness and soundness) follows, by inspection, from Lemmas 5.1, 5.16,
5.18 and 5.19.

In any constraint (P, R) € EQ(n), the function E = P(A, A", Wl ... . W¥X): T — F has the
form E(t) = p(A(t), A (t), W(t),..., WX (t)), where p is a polynomial over F of degree at most 5
and Wi =Wio L, ... i, for some iq,...,%, where 2% divides the length of the jth dimension in the
tensor W for all j. This allows applying the I" shifts over W* under their (TC")™ encoding using
Lemma 5.13 separately on each of the O(n“+0(1)) field elements in the codeword symbol, to obtain
any symbol from the encoding of any W under TC™ (which is a restriction of (TC*)™). Given
additionally the linearity of the code and its multiplication property (Propositions 5.4, 5.6 and 5.7),
which allow us to evaluate degree-5 polynomials, we obtain the codeword evaluation algorithm.

6 The Zero Test

In Section 5, we express the transition and consistency constraints over the assignments in the tree
PCP (Fig. 1) as a conjunction of constraints of the form Fr = 0, where E is an m-dimensional
tensor over a rectangle I C N™ and R C I is a sub-rectangle. We now show how to efficiently test
statements of the form Er = 0 given access to the codeword FE.

Our goal in general is to design a “zero test” for tree code tensors. In the test, the verifier is given
oracle access to a codeword ¢ € TC™, that systematically encodes a message = : [n1|x---x[np] = F
(see Section 3.2), and a proof m which allows him to test whether z is all zeros over a certain rectangle
T=Ty % xTy,ie. if zp =0.

We require a strong notion of soundness that makes accepting proofs for the zero test robustly
incremental (Definition 3.2) and thus applicable to tree PCPs. We require that an accepting proof
must be close to the “correct” proof, prescribed by an honest prover algorithm. In particular, any
oracle that is far from the prescribed proof must be rejected by the verifier, even when the statement
is correct. This is similar to the notion of unambiguity that was first considered in [RRR16] in the
context of interactive proofs.

Second, we require that the prescribed proof is robustly incremental, namely that a proof for
a statement (c,T'), even if slightly corrupted, can be extended to the prescribed proof for any
“extension” of the statement, i.e. (¢/,T") such that ¢/(T77) = 0 where ¢ X ¢/, T C T', and T'\ T does
not contain elements in the domain of ¢. Notice that these two conditions imply incrementality of
accepting proofs as required by the tree PCP definition (Definition 1.4): If a proof is accepting,
then it is equal to the prescribed proof up to a few corruptions and can be therefore extended.

Recall that E from Lemmas 5.1 and 5.8 is a codeword in a multiplication code that does not have
an explicit encoding function. Consequently, we shall not assume in the following such an encoding
function. However, the message x encoded by a given codeword c is well-defined (Remark 4.14
and Propositions 5.6 and 5.7), and we denote ¢ € TC(x) (or ¢ € TC™(x) in the tensor case).

As usual, we think of the codeword oracle as a function ¢ : [n1] X - - - X [1y,] — FL)xxL(nm)
We denote for brevity L; := L(n;) and n := max; n;.

Lemma 6.1 (Zero Test). Let F = {F(n)} be such that F(n—1) C F(n) and let m > 2 be a constant
such that [F(0)] > m?/(m —1).
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Let TC = {TC,, C (F(n)X™)"} be a systematic linear tree code over F and let TC F(0)" —
(F(n)XN™ be a linear tree code with explicit polynomial-time encoding function. Assume the tree
distance of TC and TC is at least 6.

Than, there exists an ensemble of oracles {mer | ¢ : [n1] X +++ X [ny] — F(n)krxxbm T =
Ty X -+ X Ty C[ny1] X -+ X [nm]}, a distance function A, and a probabilistic verifier V that takes
as input a rectangle T C [n1] X -+ X [ny,] and has oracle access to (c, ), that satisfy:

— (Prescribed Completeness) For any ¢ € TC™(x) and T, with probability all but negligible,
V{emer)(TY outputs 1 if and only if xr = 0.

~ (Unambiguity) There exists & = O((6(n)/H,)*™), such that for any ¢, T and ® where
A(m, o) > 8, Pr[Vem™(T) = 1] < n=<(),

— (Query Complexity) V™ makes a total 0f0<(n1 ot ) - (log(n)/5(n))3m+2) queries to
its oracles.

— (Robust Incrementality) Assume TC s (As,q,0")-LCC. Then, there exists a constant y such
that, for any (possibly infinite) rectangle T C N™, the ensemble {m. | ¢ € TC™(2) 8.t ndom(z) =
0} is (A, 0" (n)™, L(n)™L(n)™ - n?/™ m - L(n)™L(n)™)-robustly incremental.

Following classic PCP constructions [BFL90, BFLS91], our zero test proof oracle is derived by
an interactive protocol between a verifier and a prover for proving zp = 0, which is based on the
sumcheck protocol [LFKN92]. Jumping ahead, we will later “flatten” this interactive protocol into
a tree PCP. In the protocol, the statement zp = 0 is first reduced to a statement of the form

Z IRTREE Z At - C(T1, o tm) = U, (12)

t1€T) tm€Tm

for some «j;; € F and u € FLvxxLm  Indeed, think of a verifier that at the beginning sends
uniformly random {a;;;} < F and asks the prover to prove Eq. (12) with u that has a zero in the
systematic part (which is a single coordinate over F). If zp = 0, then all symbols in the sum have
a zero in the systematic coordinate and, therefore, so has their sum. If xp # 0, then Eq. (12) holds
with probability at most 1 — (1 — 1/|F|)™ ~ m/|F| over the choice of random coefficients and wu.
(Crucially to our final goal, we will later see how to sample good-enough coefficients using much
less randomness.)

To prove Eq. (12), the prover and verifier engage in a sumcheck protocol. The sumcheck protocol
we build on is an adaptation of standard sumcheck, specifically its generic form for general tensor
codes from [Meil3]. It was shown in [RRR16] that, beyond the standard notion of soundness,
the sumcheck protocol also satisfies unambiguity. We devise an analogous protocol for tree code
tensors, keeping in mind the eventual goal of attaining an incremental proof oracle for the zero test.

6.1 Warm-up: Sumcheck for Tree Code Tensors

In our sumcheck protocol for tree code tensors, the verifier is given oracle access to a codeword
c € TC™ and the goal of the prover is to prove Eq. (12) holds with {a;,,} that are given as input
to both parties.

The protocol consists of m rounds of interaction where, at the j** round, the sum over T} is
replaced by a sum over a small set R; C [n;] of size A = (2H,, log(m))/d’ for ¢’ = 6 — €, where € > 0
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is an arbitrarily small constant. Concretely, we reduce a statement of the form

Do B D B Do gt D Gty Tyt tm) = 4y (13)

r1E€ER ri—1€R; 1 t; €T} tmE€Tm

to a smaller statement of the form

Z ﬁl,rl Z ijlﬂ“j71 ' Z Bj,T‘j Z A, tp, 'C(Tla'--arj>tj+17'"7tm) = Uj+1, (14)

reRy T‘j_lERj_l TjeRj tm€Tm

h

We start with u; = u and, after the m*® round, we are left with the following statement

Z 51:7'1‘.' Z Bm,Tm'C(Tla'-'arm):uerl,

ri1€R TmERm

which V' can verify with A™ queries to ¢.'!

We now describe the 5% round of the protocol. Recall, by this point, we have a statement of
the form of Eq. (13) in hand. In particular, the value u;, the sets Ry,..., Rj—1 and the elements
{Bjr;}s -+ sABj—1,_, } have been already determined and are known to both parties.

1. P computes the truth table of the function d; : [n;] — FL1**Em defined as

d](t) = Z 51,7"1 Z Bj—l,rjfl’ Z aj+1,tj+1 Z am,tm'c(rl)'"7Tj—17t7tj+17"'7t’m)7

reRy Tj71€Rj71 tj+1€Tj+1 tm €Tm
B (15)
and sends it to V. Denote the prover’s message by d;.

2. V verifies that 3, @ +d;(t) = u; and, in the partition of d; to L' = [1; Ly functions
1 =L

dj,....dj :[n;] — FLi such that d;(t) = (E;(t), e ,EJL/ (t)), any d; is a codeword in TC.

3. V samples R; as a subset of A i.i.d. random coordinates r < o, (Definition 3.7) and, for
any r € R; samples uniform (;, < F and sends it to P.

4. Proceed to prove the statement in Equation (14) w.r.t. R; and {f;,} chosen above and

Ujp1 = Z Bjr - dj(r). (16)

TERj

Completeness follows easily since, for any j € [m], an honest Ej = d; is indeed a concatenation
of codewords in TC due to the structure of tensor codes (Remark 4.2) and their linearity.

Soundness is by the fact that if Equation (13) does not hold at some round j, then Equation (14)
holds only with low probability over the choice of the random R; and f;,; from Step 3 and u; as
defined in Equation (16). Given this, soundness follows by a union bound over j =1,...,m.

To see why the implication holds, notice that d; is a (pointwise) concatenation of L' = [] 145 Lt

codewords of TC (otherwise, V rejects) and therefore the tree distance between d; and d; over
one of the L’ “slices” is at least J;. (The two columns are necessarily distinct over one of the

"1Here lays the main difference from classical sumcheck, where A = 1. Per-round amplification is needed here since,
in probabilistically testing tree distance using the suffix distribution, we inherently loose a H, = w(1) factor (by the
tightness of Lemma 3.8). This is in contrary to testing Hamming distance where the probability of disagreement at
a uniformly random location is exactly the Hamming distance. Since we need the soundness error at any round to
be small enough for a non-trivial union bound over the m rounds, w(1) loss is unaffordable.
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slices since, otherwise, V' rejects at Step 2.) By Lemma 3.8, this implies that the suffix distance
between d; and d; over the slice is at least (6(n;) — o(1))/Hy,. Hence, by definition, it holds that
Prldj(r) = d;(r)] <1 — (6(n) —o(1))/H, for a coordinate r sampled from the suffix distribution
on;. Since R; is a subset of A i.i.d. such coordinates, it holds that

Prld;(R;) = 4(R;)] < (1~ (8(n) — o(1))/Ha)* < ™M < 1/m?. (17)

Now, assuming d;(R;) # d;j(R;) and, hence, da = d;(T;) — d;(T;) # 0, it holds that a uniform
linear combination of the coordinates in da gives zero with probability at most 1/|F|. Therefore,

Pr[ ) Bir, - di(r) = uipa] = 1/|F].

Tj GRj

By the above and Equation (17), we conclude that the soundness error in one round is less than
1/m? + 1/|F| and, therefore, at most 1/m + m/|F| overall, which is a constant smaller than 1.

6.2 The Zero Test Proof Oracle

The general idea for turning the interactive zero test into a proof oracle is to write down all possible
transcripts of the protocol, corresponding to any configuration of the verifier’s random coins. The
size of the proof here grows exponentially with the randomness complexity of the verifier. In the
interactive zero test, the verifier samples three types of challenges: the uniform coefficients {c; .}
in the first round (before sumcheck) and the set of locations R; and coefficients {3;,, } at round
j=1,...,m of the sumcheck. In a naive implementation, the number of all possible configurations
these values can take is far bigger than what we can afford to write in our proof oracle. We are
nevertheless able to obtain the desired proof size by two observations.

First, we observe that transcripts corresponding to different values of R; and {3;,;} may be
represented by a small basis of transcripts that span them linearly. Including the basis in the oracle
is enough since the verifier may simulate access to any possible transcript by querying few locations
across the basis. Second, we revisit the goal of the coefficients {a;;} and recall that they serve
to reduce the statement z7 = 0 to a sumcheck statement. Using uniformly random coefficients is
wasteful here. What we essentially want is a relatively small set of vectors {et; = (a1, .., 1)}

such that Prj[a; - 2/ = 0] is small for all 2’ # 073l This is equivalent to the existence of linear
error-correction codes with good rate and distance. Letting the a;’s be the rows of a generator
matrix of a block error-correction code with rate p and relative Hamming distance §, gives a set
of size |Tj|/p and probability of 1 —d to “miss a zero”. (Conversely, a good derandomization set
implies a good error-correction code.) This solution could have worked for us, except we do not
know how to directly use it to obtain a monotone proof oracle. Not surprisingly, this can be made
possible by replacing the block error-correction code with a tree code that has an explicit efficient
encoding function.

We now formally describe the prescribed proof oracle m = 7.1, for ¢ € TC™ and rectangle

T =T x --- x T, that satisfy xp = 0. Let G = {G), € F(i(")'")xn} be a (block lower-triangular)
generator matrix of TC (Remark 3.6) and view it as G, : [n]? — FL() by splitting its columns into
f)(n)—size blocks (that correspond to different symbols in a codeword). Let t; < t? < - < t‘jTj|

denote the elements of 7T}. The prescribed proof 7 is composed by oracles 1, ..., m,_1 where, for
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j=1,...,m—1, (letting L; = L(|T}]))

my < ] ¢ ] [ Tygal] oo x ([Tonl] — B xEmxlaesxdn,

ITj411 [T
7Tj(t1,...,tj,Zj+1,...,Zm): Z G(Zj+1,/€j+1)®-"® Z G(Zm,k‘m)®C(t1,...,tj,tjf:ll,...,t’:,;”).
kji1=1 fem =1

(18)

Notice that 7, = c. The total size of the proof 7 is bounded by m - (I[}L; Ljf/j)nj field elements.
To see why the construction satisfies robust incrementality, observe that at any ; is essentially an
encoding of x by a tensor tree code. For j =1,...,m, let TC; denote the tree code that on input

message y : [n] — F4 slices it into L; messages y, . . ., yr; : [n] — F and applies the tree code TC

over the restriction of any y, to Tj to obtain w, : [|T}]] — FLi and their (point-wise) concatenation

w: [|T]] = FLixLi Tt holds that w(i) = lijl G(i, k) ® y(t?). We may write, then

7= (I @ TC), - @ TC) (o). (19)

While Definition 4.1 refers to m-fold tensor products that involve the same code, the definition
straight-forwardly generalizes to the tensor product of different tree codes, exhibiting similar al-
gebraic and combinatorial structural properties (Remark 4.2). In particular, such a tensor has a
robustly incremental encoding function when the base codes are locally correctable, by direct gen-
eralization of Proposition 4.12: For m = (my,...,mp—1) and 7’ = (7,..., 7}, 1), we define A(m, ")
to be the maximum of Ag(m;, ;) over all j = 1,...,m—1. Then, assuming TC, and therefore TC/,
is (As,q,0"”)-LCC, it holds that the prescribed proof oracle m. 1 is robustly incremental with the
parameters in the lemma.

We next describe the verifier. In fact, the following is a “base verifier” that suffers from large
soundness error. We amplify soundness by repeating the base verification N = O((H, /§(n))3™*2)
times with i.i.d. randomness.

The verifier views its oracle as a composition of m oracles (w,¢) = (m,...,7y). For j =
1,...,m, the verifier samples i; < ory|s @ random subset R; that consists of A i.i.d. r = oy, and

uniformly random coefficients (8, )rer; <+ FA. Let d; denote the following function over [n;]:
d;(t) = Z By - Z Bi—1mj_y i1y i1t g1 ey ).
ri€ERy 7’1;16ij1

Note that the verifier can read Ej entirely using M *1nj queries to 7; and, in particular, can read
d,, using A™ n,, queries to c. The verifier accepts if and only if all of the following hold:

(i) For j =1,...,m—1, d; is a concatenation of [l Li Tl L;L; codewords in TC (akin to
Step 2 in the interactive sumcheck).

(ii) For j =2,...,m,

|75
Z G(ij k) @ dj(t]) = Z Bj—1, - dj-1(r). (20)
k=1 TGR],1
(iii) Letting
751 B . .
u = Z G(Z.l, kf) ® dl(t‘];;) c ]FL1><~~><Lm><L1><~~-><Lm, (21)
k=1

that u has 0L1%%Lm in the systematic coordinate of TC™.
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In any repetition of the above verification, the verifier reads at most Zm N~ lnj locations from

its oracles ¢ and 7. The query complexity of X repetitions is then O(m)\’ A (ng e+ nm)> =

O((mlogm) - (Hy/S(m)*™2 - (my + -+ + 1) ).

Standard completeness follows by inspection. Conditions (i) and (ii) hold with the prescribed
proofs by construction. For (iii), the main observation is that the systematic coordinate in u
from Eq. (21) is the (i1,...,%,)" symbol in the (TC')™-codeword that encodes the systematic
coordinates of ¢(T"), which contain precisely z7 (Eq. (19)). Hence, if zp = 0, v must contain a zero
symbol.

Moreover, by the distance of TC', if z7 # 0, then the systematic coordinate in u is a symbol in
a (TC')™-codeword that has high suffix weight at least (6(n)/H,)™ (Proposition 4.4). This implies
prescribed completeness: Since (i1, . .., 4y,) is sampled from the suffix distribution o | x -+ X o7,
the probability that u contains a zero is at most 1—(d(n)/H,,)"™. Consequently, condition (iii) holds
in all of the \ repetitions with probability at most (1 — (§(n)/H,)™) = n~-«1),

For unambiguity, assume the verifier is given access to an oracle 7’ = (7f,..., 7}, ;) and define
ml = mym = c¢. Observe that, if the verifier accepts with non-negligible probability, then, for any
j=1,....m—1:

(a) Most lines (“in suffix weight”) in 7 that are parallel to the 4§ axis are codewords in TC. For-
mally, letting rj < Tny s for j < j, and ijr <= 0T, it holds that L(P 1y e Tty s G Ly - - s b))

is a concatenation of codewords in TC, with probability at least 1 — (6(n)/Hy,)>™. Other-
wise, the verifier catches a non-codeword in condition (i) in one of the A repetitions with
probability all but negligible.

(b) As((I’ @ TC' @ I~ (x Tiy1)s ;) < (8(n)/H,)>™. Otherwise, condition (ii) fails to hold in
one of X\ repetitions with probability all but negligible.

We argue that D(j) := As(mj,7j) = O((d(n)/H,)*™) for all j by induction. It holds that
D(m—1) < (6(n)/H,)*™ by (b) — recall 7}, = c and 7,1 = (I ®TC’)(c). For smaller j, by an
averaging argument over suffix distance (Definition 3.7), we have that 7r3- 41 1s with high probability
close to ;41 over a random axis-parallel line sampled by suffix distribution. In particular,

Pr |:A5 (7Tj+1(’l“1, <y Ty, ',’L'j+2, ce ,’im), 7T;~+1(’l“1, <y Ty, '7ij+27 ce ,Zm)) < 5(%)/Hn]

T‘]-/<—O'n],, ,ij/<—0'|T]_/|
>1—(Hy/6(n))- D(j+1).
By the minimum distance of TC, if such a line in 7rj 41 happens to be also a codeword in TC,

then it must be identical to the corresponding line in 7j11. By the above and (a), then,
le(_anijiil;,%U‘le‘ |:7Tj+1(7“1, R TR PRI I e ;-_H(rl, N TR PRI N )
> 1~ (Hy/8(n)) - D(j + 1) — (8(n)/ Hn)*"
It follows that the encoding of such two identical lines under TC' is identical and, therefore,
As (7 @ TC @ I ™) (mj44), (P @ TC' @ I 7H)(x}14)) < (Ha/8(n))-D(j+1)+(8(n)/Ha)™™
This implies D(j) < (H,/d(n)) - D(j+1)+2(3(n)/H,)*™ = O((§(n)/H,)?™) by triangle 1nequahty
) is

since (I @ TC' @ I 971 (mj41) = mj and (I @ TC' @ [m—I~1 (m541) is ((n )/ Hy)3™-close to Ly
by (b).
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7 The Tree PCP

We put together the components from Sections 4 to 6 to construct a tree PCP and prove our main
result from Theorem 1.5.

Let (C,a,n) € CKTREACH be a circuit reachability instance (Eq. (1)). We describe an accepting
proof for (C,a,n), which can be efficiently computed given a witness (aj,wsi, ..., an,wy,) such that
Clat—1,as,wy) = 1 for all 1 <t < n (where ap = 0°), and also satisfies monotonicity. Then, we
describe the PCP verifier and prove its soundness.

The tree PCP is parametrized by a constant m € N which can be arbitrarily increased to reduce
asymptotic complexity. In particular, for sublinear complexity (queries and proof length per step),
we shall choose m > 5.

In the construction below, we use TC to denote the tree code from Corollary 4.17 with a
small enough constant parameter 0 < u < 1, and recall its extension TC' (Definition 5.10) and
their tensor products TC™, (TCT)™ and their flattening TC™, (TC")™ (Definitions 4.1 and 4.6
and Corollary 4.21).

7.1 The Proof Oracle

Let Ay = (a;_1,a¢,wy) € {0,1}%° and denote by A’ : [n] — F the column satisfying A%(t) = A;(i)
for all t € [n]. Let W = {W! ... ,WX} be the set that contains the witnesses for Eval(C)
corresponding to A, ..., A3 (induced by Lemma 5.1) and, fori = 1, ..., s, the witnesses for EQ(n)
corresponding to the pair A* and A*** (Lemma 5.8). It holds that K = poly(|C|) + s - polylog(n)
We denote by N = O(n) the upper bound on the length of any W* and assume for simplicity and
w.lo.g. that W*: [N] — T for all i (smaller witnesses can be padded with zeros).

An accepting proof 7 for (C,a,n) consists of the following:

1. Fori=1,...,3sand j=1,..., K,
A =TC™(AY W7 = (TCT)m(W).

2. For any constraint P € Eval(C), letting!? E = P(A',..., A% W) e Fl and E € (TC')™(E)
be obtained by the codeword evaluation in Lemma 5.1, an accepting zero-test proof for (F, I)
(Lemma 6.1), namely 7z , from the lemma.

3. For any constraint (P, R) € EQ(n) and any i = 1,...,s, letting!? E = P(A!, A+ W) ¢ F!
and E € (TC')™(E) be obtained by the codeword evaluation in Lemma 5.8, an accepting
zero-test proof for (E, R), namely 7z ,. We use TC = TC for the zero tests.

Overall, the PCP for (C,a,n) consists of: 3s- K = poly(log(n),|C|) codewords in TC™ of
length O(n) over an alphabet of size O(n#+°(1)), and poly(log(n), |C|) zero-test proof oracles over
statements of overall size O(n'+2#+°() (there are poly(log(n), |C|) constraints in Eval(C) UEQ(n)
in total). Its total length, then, is n'+t2#+o() . poly(log(n), |C|).

The PCP is also robustly incremental in an amortized sense: The proof for (C,a,,n) can
be generated by computing a proof for (C,a,—1,n — 1) then extending it, and this takes time
O(n'*7-poly(|C])) in total. This is due to the incrementality of the witnesses W and the evaluation
vectors E (Lemmas 5.1 and 5.8), and the robust incrementality of the zero tests (Lemma 6.1, given
the local correctability of TC from Lemma 4.20) and of tensor tree codes (Proposition 4.12).

12 More accurately, P takes only a subset of W as input.
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In fact, the only reason the tree PCP does not attain incrementality in the strict sense of
Theorem 1.5 is that the witnesses W* and the evaluation vectors E, corresponding to EQ, are not
incremental in the assignments. If they were, we would obtain a properly incremental tree PCP by
the incrementality of all other components.

While W¢, E from EQ are not incremental, they are monotone and efficient to compute given the
assignments (Lemma 5.8): Every new symbol can be computed by accessing a single coordinate
in A', ..., A3, The only problem is that many symbols may be added to any such W, E at
once, upon appending a single new value to each of A',..., A%, Indeed, their length is only
proportional to n and does not match it exactly. If we manage to de-amortize the extension
of these W*, E and extend them by, say, O(1) new symbols at every step, then we can obtain
an (n?/™ . poly(logn, |C|), n*+t°Mpoly(|C|))-incremental PCP for a constant + independent in m,
matching the theorem. In Section 7.3, we show how to de-amortize any W' and E and, therefore,
the tree PCP construction.

7.2 The Verifier

Given an input (C,a,n) and access to a proof m, the verifier V' performs the following:

1. Perform the local test T from Proposition 4.9 over gi, foralli=1,...,3s, and Wj, for all
j=1,...,K, A =log+t/mWm+3(n) times each.
If any of the tests rejects, the verifier rejects. Otherwise, the verifier runs the following
while simulating any query to any I € {gl, W7} using the (relaxed) local corrector C from
(Lemma 4.11 or Lemma A.1) over Ff, for some I € I(]F|) that contains the queried location.
If C outputs L at any of its invocations, the verifier rejects.

2. For ¢+ = 1,...,s, check that the first symbol in the message encoded by Al is 0 (by reading
the systematic part in the first symbol). For i = s+ 1,...,2s, check that the last symbol in
the message encoded by A°*% is a(i). If either conditiones do not hold, reject.

3. For all t € Bad(n) (Lemma 5.8) and all i = 1,...,s, check that the t* symbol in the message
encoded by A’ is equal to the (¢ — 1) symbol in the message encoded by A% (Again, this
is done by reading the systematic parts in the respective codeword symbols.)

4. For any zero-test proof oracle TG R in the PCP, perform the zero test from Lemma 6.1 to
verify the statement Er = 0.
To read from the codeword FE that encodes the evaluation of some constraint P from Eval(C')
or EQ(n) the assignments, the verifier uses the evaluation algorithm from Lemmas 5.1 and 5.8.
If any of the zero tests rejects, the verifier rejects. Otherwise, the verifier accepts.

Query Complexity. In Step 1, the verifier performs A - (3s + K) = poly(log(n),|C|) local tests
over alleged codewords of length O(n), that are over alphabet of size n#to() By Proposition 4.9,
cach of the tests has query complexity n2/™ . polylog(n) codeword symbols. In analyzing the
complexity of the remaining steps, we shall take into account an overhead of n'/™ . polylog(n) due
to the use of the local corrector C to simulate queries to the codewords (recall, by Proposition 4.8,
the length of any rectangle I C I(n) does not exceed (nl/ ™| at any dimension).

In Steps 2 and 3, O(s) field elements are read in total. In Step 4, the verifier performs
poly(log(n),|C|) zero tests to verify statements of size O(n). By Lemma 6.1, each such test has
query complexity at most n'/™ - polylog(n).
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Completeness. Completeness of V' follows by inspection from the completeness of the local
test (Proposition 4.9 and Corollary 4.21), the local corrector (Lemma 4.11 or Lemma A.1), the
constraints Eval(n,C) (Lemma 5.1) and EQ(n) (Lemma 5.8) and the zero tests (Lemma 6.1).

Soundness. Soundness also follows from the respective soundness guarantees of these compo-
nents: First, we argue that if, with non-negligible probability, all local tests over some Fe {gl, Wi}
in Step 1 accept then F is (§/2H,,)™-close to its respective code (TC™ ot (TCT)™) in Ag (Propo-
sition 4.9) and & = Q(1/log!/*(n)) is the tree distance of TC (Corollary 4.17). Assuming the
contrary, a local test over F rejects with probability at least ¢ = €Q(1/logd+/Wm+1(pn)) by
Proposition 4.9. The probability that A = log(Hl/ “)m+3(n) such tests accept is then at most
(1 _ 6))\ — e—e)\ — n—Q(log(n))_

Assuming the local tests pass with non-negligible probability, for any Fe {EZ, wi }, we have
As(F,TC™) < (§/2H,,)™ and by definition there exists F such that, for any I, Ag(F;, TC™(F})) <
(6/2H,,)™. Therefore, with probability all but negligible, the local corrector C, when invoked over

Fr, either outputs L (in which case V rejects) or simulates access to TC™(F7) (Lemma A.1). Hence,
we may assume that in Steps 2 to 4, the oracles gl, e ,233, Wl, ey WX that the verifier reads
from are indeed codewords in TC ", respectively TC+m, that encode some A, ... A% Wl ... WK
(and correspond to the unique closest codewords to the actual oracles given in the proof).

If (Cya,n) ¢ CKTREACH, then either:

1. A%(1) #0 for some i € {1,...,s}, or A%(n) # a(i) for some i € {s+1,...,2s}, or
2. Ai(t) # AFS(t — 1) for some i € {s+1,...,2s} and 1 <t <n, or
3. Al ... A3 are not binary or C(AL(t),..., A%(t)) # 1 for some 1 < ¢ < n.

If the first condition holds, then V rejects already in Step 2. If the second condition holds
with ¢ € Bad(n), then V rejects in Step 3. If it holds with ¢t ¢ Bad(n) or the third condition
holds then, by Lemmas 5.1 and 5.8 (resp.), there exists (P, R) € Eval(C) U EQ(n) such that
E = P(A, ... A% W) € F! satisfies Er # 0 (in the constraints from Eval(C), we have R = I).
We claim that the zero-test from Step 4, corresponding to the broken constraint, rejects with
probability all but negligible.

Soundness of the tree PCP then follows from the zero soundness of the zero tests (Lemma 6.1)
and the correctness of the codeword evaluation algorithms (Lemmas 5.1 and 5.8).

7.3 De-Amortization

To finish the proof of Theorem 1.5, we explain how to de-amortize the extension of any witness W*
for EQ. Identical techniques apply for de-amortizing the evaluation vector E = P(A, A", W' ..., wk )
for any (P, R) € EQ.

The witnesses W1, ..., WX from Lemma 5.8 come in four types: Bp for some D C [m] (1),
Giy,...im for i; < [logny;], where n; = maxy, 1 yerm)(tj) (2), T" for r € [M] (3) or their corre-
sponding witnesses for Eval(Cy) (4).

The easiest to amortize are T for r = 1,..., M. Recall that these encode the binary represen-
tation of the coordinates in the domain and do not depend on the assignments. They are defined
over [N]|™, where N is the smallest power of 2 satisfying I(n) C [N]™. It holds that N < 2 (nl/"ﬂ
(Proposition 4.8) and hence N™ < 2™n. Therefore, we can de-amortize any 7" by extending it by
2™ at every step following, for example, the embedding ¢ (Fig. 4). Consequently, by Lemma 5.1,
we can de-amortize the witnesses for Eval(Cy) corresponding to 77, ..., TM.
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Straight-forward de-amortization applies also for any Bp. There, the domain is rounded up to
the next power of 2 only along dimensions j € D. Upon extending the corresponding assignment A
with the n!" value, letting (ny,...,n,) = ¢(n), we extend Bp to any coordinate (ty,...,%,) where
tj =n; for j ¢ D and t; € {2n; — 1,2n;} for j € D. Crucially, these coordinates in Bp, 2!Pl < 2™
in total, are already defined at this point given A.

Lastly, we show how to de-amortize any Gy, . ;,.. is defined over Iz‘?,..,,im (n)
which is the union of all rectangles [n1(i1)] X - -+ X [, (im)] where [nq] X - -+ X [n,,] € Rect(n) and
n;(i) = 2" |n/2"].

Upon input a new value at coordinate (¢y,...,t,) in the “lifting” of A to m dimension (via
©), where t; = kj - 2% + t; for some k; and 1 < t; < 2471 we extend Gj, _;, by computing the
symbols at coordinates (ki -2 + 11, ... ky - 2 4 1) for ] € {2t} — 1,2t}

On a close observation, this shows, for any rectangle I = [ni] X -+ X [ny] € I(n), how to
incrementally compute G;, ;. at I¢ = [n1(i1)] X - - - X [, (imm)], O(1) symbols at a time, whenever
Aj extends by one symbol. This seems to achieve what we want except it is not clear how to
carry on the computation given that Gy, . ;. at (ki -2 +¢],... ky -2 + ) is not always fully
defined given A up to coordinate t. Specifically, in any such block of size 21 x --- x 2im (defined
by fixing k1, ..., kn), there exists exactly one coordinate t* where Gj;, . ;. is not always zero and
takes the value at the same location in A (this is the coordinate in A;; X --- x A;, , see Eq. (10)).
Since this value is unknown by the time it must be added to G, . ;, in the above incremental
procedure, we let the proof contain the two possible versions of G, .. ;,, corresponding to the two
different Boolean values it might take at ¢*. By the time t*, when the value becomes known, the
computation of G;, ;. for this block is finished, the proof “consolidates” the correct version (by
standard pointer techniques), and proceeds. Importantly, any part of G;, ;.. is contained in I G
only after it is consolidated.

One last issue is that, in a naive implementation of the above, the proof is extended by an
infinite amount of symbols since there are infinitely many oracles G;, . ;,, which we add to. Notice,
however, that G;, ;. is all-zeros over [21171] x .- x [2/»~!] and, due to the linearity of the tree
code, so is its corresponding codeword. Hence, values in Gj, . ;.. and its codeword are not actually
written to the proof before the walk ¢ reaches a coordinate (ni,...,n,) where n; > 2171 ie.
i; <log(nj)+ 1.

Recall G;, ... ;

im
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A Relaxed Local Correctability of Tensor Tree Codes

Gur et al. [GRR20] (building on [BGH"06]) define a relaxed notion of local correctability, where
the correction procedure is allowed to abort in case it detects that the given word is corrupt (i.e.,
is not a codeword). They additionally show that standard tensor codes are locally correctable in
this relaxed sense. In the following lemma, we adapt their proof to tensor tree codes, and show
that they are relaxed locally correctable w.r.t. suffix distance (Definition 3.7).

Lemma A.1 (Relaxed Local Correctability of TC™). Let m € N and let TC be a linear tree code
with constant tree distance §. Then, there exists a corrector algorithm C that has oracle access to a
word w : [n1] X -+ X [ny,] — FX™ and takes as input a coordinate (t1,...,ty) € [n1] X -+ X [n],
and satisfies the following properties:

— (Completeness) If w € TC™, then Pr[C*(t1,...,tm) = w(t1,...,tm)] = 1.

— (Soundness) There exists a negligible function € such that, letting n = max;n;, if As(w,c) <
(0/2H,)™ for some ¢ € TC™, then

Pr|CY(t, ... tm) € {c(tl,...,tm),J_}] >1—¢(n).

~ (Query Complexity) C makes at most O(n - log>™(n)) queries to w.

Proof. We prove the lemma by induction. We assume that TC™ ! is a relaxed locally correctable

code with correction distance (§/2H,)™ ! and show that TC™ = TC™ ! @ TC is relaxed locally

correctable as well, with correction distance (§/2H,,)™ and a small blow-up in query complexity.
Given access to w, the corrector for TC™ performs the following;:

1. Read the entire “row” that contains (t1,...,t,), namely w’ : [n;,] — F¥" defined by w'(z) =
w(tyy ..., tm—1,2). If w’ ¢ TC, output L and abort.

2. Repeat the following A = log®(n)/§ times:

2.1 Sample i < oy, (recall this is the suffix distribution, see Definition 3.7) and let w; : [n1]x

- X [Mm_1] — FE" be the “column” defined by w;(z1,...,Tm_1) = w(Z1,.. ., Tm_1,1).
2.2 Invoke the corrector of TC™™! over w; with input coordinate (t1,...,tn_1) to retrieve
a symbol ;.

2.3 If y; # w'(i), output L and abort.
3. Output w'(t,).

Now, if w € TC™, then w’ € TC and w; € TC™ !, implying y; = w;i(t1,...,tm_1) = w'(i) for
all i by the completeness of the corrector for TC™ !,

If w' ¢ TC, then the corrector aborts. Otherwise, if w ¢ TC™ but w’ € TC, let ¢ be the
codeword row ¢ (x) = c(t1,...,tm—1,2). If w' = ¢, then the corrector either aborts or outputs
W (tm) = (tm) = c(t1, ..., tm). If W # ¢, then At(w’, ') > § by the distance of the code and, by
Lemma 3.8,

ZQ_Pr [w'(i) # ¢ (i)] = As(w', ) > §/H,.

Additionally, letting ¢; be the column ¢;(z1,...,2m—1) = ¢(z1,...,Tm—1,1), then by assumption

Ei o, [As(wi, ;)] = As(w, ) < (0/2H,)™.

60



and, therefore, Pri o, [As(w;,¢;) > (6/2H,)™ '] <1 —6/2H,. Hence,

}_Pr [w' (i) # ¢ (1), As(w;,¢;) < (6/2H,)™ Y > 6/H, —6/2H,, = §/2H,,. (22)
W—Onym,
The probability that at least one ¢ sampled by the corrector satisfies the two events in Eq. (22) is
at least 1 — (1 — §/2H,)* =1 — e~2og”n) T guch a case, by the soundness of the corrector for
TC™ L, y; is either L or /(i) # w'(i).

The query complexity of the corrector for TC™ can be bounded by the recursive equation as
Qm)=n+X-Q(m—1)=0(\"-n). O

B Suffix Distance is Bounded by Flattened Suffix Distance

In the following simple lemma, we upper bound suffix distance (Definition 3.7) between two words
by their flattened suffix distance (defined in Proposition 4.9).

Lemma B.1. For any w,w’ € ¥™,

Proof. First, we show that suffix distance between flattened words w and w’ is bounded (up to a
factor of m) by the suffix distance over the restriction to any rectangle I € Rect(n), i.e. wy and w7,
where we consider the one-dimensional suffix distance over the flattening of the rectangles, rather
than the high-dimensional metric.

Formally, let ¢ denote the restriction of the mapping ¢ from Fig. 4 to a rectangle I € Rect(n)
in the following sense: ¢r(t) is the t** coordinate in the sequence (1), ¢(2),... that is contained
in /. For any w € ¥ and I € Rect(n), we define wy to be the word defined by w(t) = wy(¢(t)). It
holds that, for any t' € [n], if ¢ is such that ¢;(t) = @(t'), then o(t') < o(t) (recall Definition 3.7).
It follows, then, that

A ) < As(wr,wr') <m - As(wr,wr').
s(ww) < > As(wrwr) <m o s(wr,wr)
IcRect(n)

Next, by the monotonicity of ¢, for any rectangle I = [n1] x --- X [n,,] € Rect(n) and 1 <
t < |I], letting (t1,...,tm) = @1(t), we have that [I| —¢t+1 > [[;~,(n; — t; + 1) and, therefore,
Um(t) S Um,...,nm (tl, e ,tm) and

As(wr,wr') < Ag(wr, wh).

The lemma follows by the above two equations. O

ECCC ISSN 1433-8092
61
https://eccc.weizmann.ac.il




