
Complexity-Theoretic Inductive Inference

Shuichi Hirahara∗ Mikito Nanashima†

Abstract

Inductive inference, introduced by Solomonoff (Information and Control, 1964), is a foun-
dational concept in knowledge acquisition, formulated as the task of extrapolating a sequence
of symbols. In his seminal work, Solomonoff established a fundamental theorem for recursion-
theoretic universal inductive inference, applicable to sequences generated by all Turing machines,
based on the (uncomputable) task of computing Kolmogorov complexity.

In this work, we present a complexity-theoretic counterpart to Solomonoff’s theorem: we
construct an efficient universal inductive inference algorithm, applicable to sequences efficiently
generated by all randomized Turing machines, assuming that time-bounded Kolmogorov complex-
ity can be efficiently approximated. This assumption is known to follow from the average-csae
easiness of NP. As corollaries, we obtain various worst-case learning algorithms, such as distri-
butional learning and learning adaptively changing distributions, under the assumption that NP
is easy on average.

Our inductive inference algorithm and its analysis build on techniques developed in meta-
complexity theory. At a high level, the algorithm divides a given sequence of symbols into two
parts, “advice” and “context”, and extrapolates the next symbol of the context according to
the time-bounded universal distribution given the advice. We prove that this algorithm avoids
computationally deep strings, which are hard instances for every average-case algorithm.

∗National Institute of Informatics, Japan. s hirahara@nii.ac.jp
†Institute of Science Tokyo, Japan. nanashima@comp.isct.ac.jp

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 92 (2025)

Contents

1 Introduction 1

2 Our Results 1
2.1 Learning Distributions in Heuristica . 2
2.2 Expected Loss Minimization in Heuristica . 3

3 Technical Overviews 5
3.1 Algorithmic Information and Universal Extrapolation 5
3.2 Our Inference Algorithm . 6
3.3 Proof Overview of Technical Lemmas . 9
3.4 Short Comments: Corollaries on Learning in Heuristica 11

4 Preliminaries 11
4.1 Algorithmic Information and Meta-Complexity . 13

5 Online and Offline Algorithmic Information 16
5.1 Proof Ideas . 17
5.2 Full Proof . 19

6 Complexity-Theoretic Inductive Inference 24
6.1 Technical Lemmas . 24
6.2 Proof of Inductive Inference . 28

7 Learning Distributions in Heuristica 30
7.1 Learning Adaptively Changing Distributions for All Initial States 30
7.2 Worst-Case Distributional Learning from Independent Samples 31

8 Expected Loss Minimization in Heuristica 33
8.1 Sequential Expected Loss Minimization . 34
8.2 Example: Worst-Case Binary Classification with Independent Noise 36
8.3 Proof of Lemma 8.5 . 38

A Estimating Statistical Distance 44

1 Introduction

Inductive inference, introduced by Solomonoff [Sol64a; Sol64b], is a foundational concept underlying
the process of knowledge acquisition. In his seminal work, known as Solomonoff’s theory of inductive
inference, he formulated the problem as the extrapolation of a long sequence of symbols: given a
sequence x1, x2, . . . , xi−1, the task is to extrapolate the next symbol xi for each i ∈ N. This kind
of reasoning arises in many real-world contexts. Scientists infer laws of nature from empirical
observations; artificial intelligence systems learn patterns from data; and animals develop instincts
to recognize danger in their environment. All of these can be viewed as forms of inductive inference:
using observed data to predict the future. In this sense, developing an algorithmic foundation for
inductive inference is one of the most significant challenges in science.

Solomonoff’s theory presents an elegant reduction of inductive inference to the task of comput-
ing Kolmogorov complexity. Here, the Kolmogorov complexity K(x) of a string x is defined as the
length of a shortest program that prints x. Solomonoff proposed an inference algorithm that, given
a sequence x̄ = (x1, . . . , xi−1), extrapolates the next symbol xi with probability proportional to
2−K(x̄,xi). This algorithm provides a mathematical formalization of Occam’s Razor: simpler expla-
nations (i.e., those with lower Kolmogorov complexity) are assigned higher probabilities. In other
words, sequences that can be generated by shorter programs are considered more likely continua-
tions. This approach captures the intuition that patterns with concise descriptions should generalize
better than those requiring lengthy explanations. Mathematically, the algorithm of Solomonoff has
the property that, given as input the first (i − 1) symbols of a sequence x1, x2, . . . generated by
a randomized program of description length s, it can output a symbol, whose Kullback–Leibler
divergence (and statistical distance) to the next symbol xi is small for most choices of i, provided
that i ≫ s [LV19, Claim 5.2.2]. Because of its strong property, Solomonoff’s inductive inference
profoundly influenced subsequent research in the field, especially as a basis of the theory of universal
artificial intelligence [see, e.g., MF98; Hut05; HQC24].

There is one major caveat in Solomonoff’s original approach, as he himself noted [Sol64a,
§3.1.2.1]: the inference algorithm is not even theoretically implementable, because K(·) is uncom-
putable. To address this, he proposed an approximate version using what is now called time-bounded
Kolmogorov complexity. For a given time bound t ∈ N, the t-time-bounded Kolmogorov complex-
ity Kt(x) of a string x is defined to be the length of a shortest program that prints x in time
t. This brings Solomonoff’s theory into the complexity-theoretic realm, and raises the following
natural questions: What is the computational complexity of performing inductive inference in a
time-bounded setting? Is it efficiently reducible to the task of computing Kt(·)?

2 Our Results

In this paper, we present an efficient algorithm for Solomonoff’s inductive inference in a time-
bounded setting, under the assumption that time-bounded Kolmogorov complexity is efficiently
computable (on average). This establishes a complexity-theoretic counterpart to the original theory
of Solomonoff’s inductive inference, laying the groundwork for a theory of complexity-theoretic
universal inductive inference.

Specifically, our inductive inference algorithm is based on the assumption that “GapKt-vs-K ∈
pr-BPP,” which is equivalent to the existence of a randomized polynomial-time algorithm K̃ such
that for every input x ∈ {0, 1}∗ of length n and every time bound t ∈ N,

K(x) ≤ K̃(x, 1t) ≤ Kt(x) +O(log n)

1

with high probability over the internal randomness of K̃.1 In fact, this worst-case assumption is
equivalent to the existence of an errorless average-case algorithm for time-bounded Kolmogorov
complexity with respect to the uniform distribution [Hir18; Hir20b; Hir20a; GKLO22], and in
particular, follows from the average-case easiness of NP (DistNP ⊆ AvgBPP). Under such a weak
assumption, we present an efficient (worst-case) algorithm for inductive inference.

Theorem 2.1. If GapKt-vs-K ∈ pr-BPP, then there exists a polynomial-time randomized algorithm
L such that for every ϵ, δ ∈ (0, 1] and every randomized Turing machine Π described by an s-bit
string that generates at least m binary strings x1, . . . , xm ∈ {0, 1}n in time t, the following holds: if
m ≥ O(sϵ−2δ−1), then for a uniformly random round i chosen from [m] := {1, . . . ,m}, we have

Pr
i,x1,...,xi−1

[∆tv (L (x1, . . . , xi−1) , (Xi|x<i)) ≤ ϵ] ≥ 1− δ,

where ∆tv(·, ·) denotes total variation distance, and Xi|x<i is the conditional distribution of the i-th
symbol xi given the preceding symbols x1, . . . , xi−1. The parameters s, t,m, ϵ−1, δ−1, t1/δ are given
to L in unary.

In other words, our inference algorithm can efficiently extrapolate a sequence of symbols gen-
erated by an unknown randomized t-time program of size s with small statistical error on almost
all rounds, provided that the total number of rounds m is sufficiently larger than s. The running
time of L is at most a polynomial in ϵ−1 and t1/δ; in particular, for a constant δ, the running time
is poly(t/ϵ).

Prior to this work, it was well understood that the complexity of average-case inductive inference
is equivalent to the non-existence of one-way functions [IL90; HN23] as well as the task of computing
time-bounded Kolmogorov complexity on average (in the sense of error-prone average-case complex-
ity) [LP20]. Impagliazzo and Levin [IL90] presented the ideas for showing the equivalence between
the existence of efficient average-case algorithms for inductive inference and the non-existence of a
one-way function. Hirahara and Nanashima [HN23] implemented the ideas of Impagliazzo and Levin
and presented an inductive inference algorithm that works for most choices of randomized Turing
machines under the non-existence of one-way functions. Liu and Pass [LP20] showed that this
assumption is equivalent to average-case easiness of time-bounded Kolmogorov complexity. Thus,
the results of [IL90; HN23] can be regarded as a reduction from average-case inductive inference to
the task of computing time-bounded Kolmogorov complexity on average. Hirahara and Nanashima
observed that various learning tasks studied in the literature are special cases of inductive inference,
and consequently, obtained a number of average-case learning algorithms as corollaries.

The significance of Theorem 2.1 is that the algorithm is “worst-case”, i.e., it works for every
randomized Turing machine Π, despite that the assumption is weaker than the average-case easiness
of NP. As corollaries, we obtain various worst-case learning algorithms in Heuristica, which is a
hypothetical world in which NP is easy on average but is hard in the worst case [Imp95]. We discuss
details in Sections 2.1 and 2.2. (Readers interested in understanding the inference algorithm first
may wish to skip ahead to Section 3.)

2.1 Learning Distributions in Heuristica

Distributional learning, introduced by Kearns, Mansour, Ron, Rubinfeld, Schapire, and Sellie [KM-
RRSS94], is one of the standard theoretical frameworks for unsupervised learning. In this setting,
a learner aims to approximate an unknown distribution D over strings, given only independent

1The difference Kt(x)−K(x) is known as (basic) computational depth, and is in general can be close to n [AFMV06].

2

and identically distributed (i.i.d.) samples from D. Specifically, the task of the learner is to out-
put a sampler whose output distribution is statistically close to the target distribution D, given
polynomially many samples from D (see Definition 7.3 for a formal definition).

Despite the naturalness and centrality of learning distributions in machine learning, the com-
putational complexity of this task remains elusive, especially in contrast to the well-studied case of
supervised learning. Prior work has established a necessary condition: any learner for distributions
generated by polynomial-time randomized machines with polynomial-length descriptions must be
able to break the security of (auxiliary-input) one-way functions [KMRRSS94; Xia10]. In contrast,
we present the first sufficient condition for this task (apart from a trivial sufficient condition of
NP ⊆ BPP).

Corollary 2.2. If DistNP ⊆ AvgBPP, then every distribution efficiently sampled by randomized
machines with polynomial-length descriptions (i.e., randomized polynomial-size circuits) is distri-
butionally learnable in polynomial time. In particular, any distribution over n-bit strings whose
polynomial-time sampler is described using s(n) bits can be learned with accuracy error ϵ and con-
fidence error δ using O(s(n) · ϵ−2 log δ−1) i.i.d samples.

Here, distributional learning with accuracy error ϵ and confidence error δ means that, with
probability at least 1 − δ (over the choice of training samples and the learner’s randomness), the
learner outputs a sampler whose distribution is within total variation distance at most ϵ from the
target distribution D. Polynomial-time learnability means that the learner halts in time polynomial
in the sample size and in ϵ−1 and δ−1.

Notably, the exponential dependence on the confidence parameter δ in the time complexity of
Theorem 2.1 is eliminated, and the dependence in the sample complexity is improved from δ−1

to log δ−1. This improvement leverages the independence of the i.i.d. samples, similar to tech-
niques from standard supervised learning theory [HKLW88]. Specifically, we execute the inference
algorithm with constant confidence for O(log δ−1) repetitions.

Next, we consider a more general setting of learning known as adaptively changing distributions
(ACDs), introduced by Naor and Rothblum [NR06]. Informally, an ACD is a distribution with a
hidden state, and whenever a sample is drawn from the ACD, its internal state is updated. The
task of learning ACDs is to predict a next sample from an unknown ACD, given polynomially many
samples.

In fact, it is easy to observe that their model of learning ACDs is a special case of our inductive
inference framework (see Section 7.1 for formal definitions). In the ACD setting, the learner only
needs to output an accurate prediction at a single round of its choosing. By contrast, the inference
algorithm in Theorem 2.1 must perform well on almost all rounds, with no control over which ones
are selected. Thus, learnability for ACDs immediately follows from Theorem 2.1.

Corollary 2.3. If DistNP ⊆ AvgBPP, then for every constant confidence error δ, all polynomial-
time samplable ACDs of s-bit initial state (which constitute the target of learning) are learnable in
polynomial time within O(s · ϵ−2) rounds for any accuracy error ϵ.

Previously, it was shown that ACDs are learnable on average over initial states under the
assumption that one-way functions do not exist [NR06; HN23]. In contrast, Corollary 2.3 provides
the first sufficient condition for learning ACDs in the worst case over all initial states (but only for
constant confidence error).

2.2 Expected Loss Minimization in Heuristica

The second application is supervised learning, where the learner is given labeled data and asked to
predict labels in a specified manner, typically by minimizing expected loss.

3

We begin with one of the most standard and extensively studied frameworks: the Probably
Approximately Correct (PAC) model, introduced by Valiant [Val84]. In this model, the label of an
example x ∈ {0, 1}n is determined by an unknown target function f : {0, 1}n → {0, 1}, and each
sample takes the form (x, f(x)), where x is independently drawn from an unknown distribution D,
referred to as the example distribution. The learner receives i.i.d. samples (x1, f(x1)), (x2, f(x2)), . . .
and is required to produce an efficiently computable hypothesis h such that Prx∼D[h(x) ̸= f(x)] ≤ ϵ,
where ϵ is a given accuracy parameter. This condition must be satisfied with high probability over
the learner’s randomness and the training samples.2

Previously, a line of work [HN21; GKLO22; GK23] developed a method for learning binary labels
from i.i.d. samples under the same assumption that NP is easy on average. Their approach yields a
learner for polynomial-time computable target functions of description size s(n) under any example
distribution samplable with a(n)-bit advice, achieving a sample complexity of Õ((s(n)+a(n))3ϵ−8).
In contrast, we drastically reduce the sample complexity to O((s(n)+a(n))ϵ−2) in the PAC setting,
even when each label is independently flipped with some noise.

Corollary 2.4. If DistNP ⊆ AvgBPP, then for every polynomial s(n) and a(n), the class of polynomial-
time computable functions described using s(n) bits is PAC learnable in polynomial time under all
example distributions samplable with a(n)-bit advice. The required sample complexity is at most
O((s(n) + a(n))ϵ−2) for accuracy parameter ϵ ∈ (0, 1], even when each label is independently flipped
with probability η ∈ (0, 1/2] (where the hypothesis is required to agree with the label with probability
at least 1− (η + ϵ)).

In the presence of random noise, the sample complexity above is statistically tight, as it is
known that learning labels produced by s(n)-bit programs under samplable distributions (i.e., when
a(n) = O(1)) generally requires Θ(s(n)ϵ−2) samples [see HN23, Appendix A].

Notably, the prior learnability results in [HN21; GKLO22; GK23] are based on a different
strategy: they use average-case feasibility to achieve weak prediction (i.e., performing slightly better
than random guessing), and then boost the accuracy. In contrast, our approach is based on inductive
inference. Interestingly, the learnability results following from two approaches appear fundamentally
different and incomparable within Heuristica. For instance, although the prior method incurs a
significantly higher sample complexity overhead, it can handle more general noise models that fall
outside the reach of our current framework.

By contrast, we emphasize that a key advantage of our inductive inference-based framework lies
in its generality beyond conventional binary classification. Our result naturally extends to multi-
class classification, other loss functions, and even learning in non-i.i.d. settings. This generality
arises from the fact that the underlying inference algorithm in Theorem 2.1 remains effective even
in the presence of correlations among the data.

In particular, consider the case where the learner sequentially receives a stream of observations
(x1, y1), (x2, y2), . . . ∈ {0, 1}n × {0, 1}n, where each xi represents preknowledge available for pre-
diction and yi represents the outcome of interest. For ease of exposition, we assume here that the
preknowledge and outcome lie in the same domain, though this assumption can be relaxed in the
formal result. The objective of the learner is specified by a set of actions An and a loss function
ℓn : {0, 1}n × An → R≥0, where ℓn(y, a) denotes the loss incurred when the learner takes action a
(before observing the outcome) and the actual outcome is y. At each round i, the learner observes
the data seen so far and selects a decision rule hi : {0, 1}n → An to minimize the expected loss:

lossi(hi) := E(xi,yi) [ℓ(yi, hi(xi))]

2We omit the discussion of the confidence error δ in this overview, as any constant confidence error can be reduced
to an arbitrary δ ∈ (0, 1] by repeating the learning process O(log δ−1) times [HKLW88].

4

Note that in the special case of i.i.d. binary-labeled samples, this setting recovers standard PAC
learning by taking An = {0, 1} and using the 0-1 loss function ℓ(y, a) = 1l{y ̸= a}.

In what follows, we consider the case where the loss function ℓ = {ℓn} is γ-bounded for some
function γ : N→ N, meaning that ℓn(y, a) ≤ γ(n) for all n ∈ N, y ∈ {0, 1}n, and a ∈ An. We show
that our loss minimization algorithm can, at almost all rounds, make decisions whose expected loss
approximates the minimum possible, provided that the total number of rounds is sufficiently large
relative to the description size of the machine generating the data stream.

Corollary 2.5. If DistNP ⊆ AvgBPP, then for every polynomial-size action sets {An}n∈N and every
γ-bounded loss function, there exist a polynomial-time randomized algorithm P such that the follow-
ing holds: For every ϵ, δ ∈ (0, 1], and every randomized program described using s bits that generates
at least m samples (x1, y1), . . . , (xm, ym), . . . ∈ {0, 1}n ×{0, 1}n in time t, if m ≥ O(sϵ−2δ−1γ(n)2),
then for a randomly chosen round i ∼ [m], we have

Pr
i,x1,y1,...,xi−1,yi−1

[
P (x1, y1, . . . , xi−1, yi−1) outputs hi s.t. lossi(hi) ≤ min

f∗
i ∈Fn

lossi(f
∗
i) + ϵ

]
≥ 1− δ,

where Fn is the set of all functions f : {0, 1}n → An The parameters s, t,m, ϵ−1, δ−1, tδ
−1

are pro-
vided to P in unary.

We note that the corollary also applies to exponential-size action sets, as long as approximate
expected loss minimization can be performed efficiently given i.i.d. samples from any distribution
over labels (see Definition 8.1 for the formal requirements).

This form of sequential universal decision-making is a central component in the theory of uni-
versal artificial intelligence [Hut05; HQC24], which has primarily been developed in the statistical
setting. To the best of our knowledge, this is the first result to advance the understanding of the
complexity-theoretic requirements for enabling such sequential universal decision-making, going be-
yond the implicit and somewhat trivial baseline assumption NP ⊆ BPP (unless Heuristica is ruled
out).

3 Technical Overviews

We now present ideas behind the inductive inference algorithm of Theorem 2.1. At a high level, the
algorithm works as follows: Given a sequence of symbols x1, . . . , xi−1, it partitions them into two
parts, “advice” z = (x1, . . . , xj) and “context” c = (xj+1, . . . , xi−1) for some j, and then extrapolates
the next symbol xi of the context c according to the time-bounded universal distribution given advice
z. To explain the details, we review the notion of Kolmogorov complexity, time-bounded universal
distribution, and universal extrapolation [IL90; HN23] in Section 3.1.

3.1 Algorithmic Information and Universal Extrapolation

We fix an arbitrary efficient universal Turing machine U , which we assume has the following struc-
ture: three read-only one-way tapes (for input, auxiliary input, and external randomness, respec-
tively), one read/write working tape, and one write-only one-way output tape. We assume that
U cannot write blank symbols to the output tape. For each input x ∈ {0, 1}∗, auxiliary input
z ∈ {0, 1}∗, and randomness r ∈ {0, 1}∗, we write U t,z,r(x) to denote the contents of the output
tape after executing U on input x, auxiliary input z, and external randomness r, for t steps. When
the time bound t is not considered, and the auxiliary input z and randomness r are the empty
string, we omit the corresponding superscripts.

5

Kolmogorov Complexity. For each t ∈ N, the t-time-bounded Kolmogorov complexity Kt(x | z)
of a string x ∈ {0, 1}∗ given advice z ∈ {0, 1}∗ is defined as the minimum k ∈ N such that there
exists Π ∈ {0, 1}k for which U z(Π) halts within t steps and outputs x. We also define the time-
unbounded Kolmogorov complexity as K(x | z) = limt→∞Kt(x | z). If z is the empty string, we
omit the notation “| z”.

In the literature of Kolmogorov complexity [LV19], z is usually referred to as a “conditional
string” because of its connection to the conditional algorithmic probability in a recursion-theoretic
regime. In a complexity-theoretic regime, however, the distinction between a conditional string and
a conditional algorithmic probability will be crucial. We thus refer to z as an advice string to avoid
the confusion with the notion of conditioning in probability.

Universal Distribution and (q-)Computational Depth [cf. IL90; HN23]. For each t ∈ N,
the t-time-bounded universal distribution Qt,z given advice z ∈ {0, 1}∗ is defined as the distribution
of U t,z(w) for a uniformly random w chosen from {0, 1}t. If z is the empty string, we write Qt,z as Qt

by omitting z. We define qt(x | z) := − log Pr[x← Qt,z], where Pr[x← Qt,z] denotes the probability
that x is sampled according to Qt,z. We also define the t-time-bounded (q-)computational depth of
x given advice z as qcdt(x | z) := qt(x | z)−K(x | z).3

Universal Extrapolation. Following [HN23], we formalize the notion of universal extrapolation.
For each k, t ∈ N and x, z ∈ {0, 1}∗, we define Nextk(x; Qt,z) as the conditional distribution over the
k-bit prefix of a continuation of x, sampled according to Qt,z. (If x is not in the support of Qt,z, we
treat it as a distribution over the empty string.) More formally, Nextk(x; Q

t,z) is a distribution over
{0, 1}≤k. The probability that y ∈ {0, 1}≤k is sampled according to Nextk(x; Q

t,z) is defined as the
probability, over w sampled from Qt,z, that the first |x| + k bits of w (or w itself if |w| < |x| + k)
are equal to xy, conditioned that x is a prefix of w. Universal extrapolation [IL90; HN23] refers to
the task of sampling from Nextk(x; Q

t) given “context” x as input. Although x plays the role of a
“condition” in the sense of probability, we refer to it as the context of universal extrapolation in
order to avoid confusion with the notion of conditioning in Kolmogorov complexity.

3.2 Our Inference Algorithm

Our inference algorithm is obtained by carefully choosing advice z = (x1, . . . , xj) and context
c = (xj+1, . . . , xi−1) and performing the universal extrapolation with context c and advice z (i.e.,
sampling from Nextk(c; Q

t,z)). Its performance will be guaranteed by two key technical lemmas,
explained below.

To motivate the design of our algorithm, we begin by examining the limitations of previous
approaches based on average-case inversion (i.e., the task of inverting one-way functions) [IL90;
HN23]. As explicitly stated in [HN23, Theorem 8.1], their inference algorithm can actually sample
from Nextk(x; Q

t) for any input x. However, the running time of the algorithm is exponential in the
computational depth qcdt(x) of the input x. In fact, the exponential running time in the compu-
tational depth of inputs is known to characterize the running time of an average-polynomial-time
algorithm with respect to arbitrary polynomial-time samplable distributions [AF09]. Unfortunately,
in the worst case, the computational depth of sequences generated by some randomized machine of
description size s can be as large as Ω(s), and thus the algorithm of [HN23] is inefficient.

A key insight that allows us to bypass this limitation comes from the slow growth law [Ben88;
AFPS12; Hir23] (see also Lemma 4.16), which implies that for any tΠ-time randomized Turing

3This notion was denoted by cd in [HN23], whereas we use qcd here to distinguish it from other forms of compu-
tational depth based on different complexity measures.

6

machine of size s, if t is taken to be sufficiently larger than tΠ, then with high probability, the
computational depth of the output sequence (x1, . . . , xm) of the Turing machine is at most s.4 If
the output sequence is divided into more than m ≥ s/ log t blocks and the s-bit computationally
deep information is “decomposed” across them, then we may hope that the amortized computational
depth per block would become s/m ≤ log t. However, simply partitioning (x1, . . . , xm) intom blocks
{xi | i ∈ [m]} does not decrease the amortized computational depth Ei∼[m][qcd

t(xi)], for example in
the case where all x1 = · · · = xm are computationally deep.

Instead, we consider the computational depth of each block given all previous blocks as advice.
Intuitively, this ensures that the computational depth in each round reflects only the new information
not already captured, suggesting that

∑m
i=1 qcd

t(xi | x1, . . . , xi−1) would be bounded by roughly
qcdt(x1, . . . , xm). Our first lemma justifies this, under the assumption that GapKt-vs-K ∈ pr-BPP.

Lemma 3.1 (Averaging Lemma for Computational Depth; see also Lemma 6.2). If GapKt-vs-K ∈
pr-BPP, then there exists a polynomial τ such that for every n,m, t, δ−1 ∈ N, and every randomized
Turing machine Π described in s (≥ log δ−1) bits that produces x1, . . . , xm ∈ {0, 1}≤n in time tΠ, if
t ≥ τ(tΠ) and m ≥ O(s/ log t), then

Ei∼[m],x1,...,xi

[
qcdt(xi | x1, . . . , xi−1)

]
≤ O(log t).

In particular, by Markov’s inequality,

Pr
i∼[m],x1,...,xi

[
qcdt(xi | x1, . . . , xi−1) ≤ δ−1 ·O(log t)

]
≥ 1− δ.

This lemma motivates the core idea behind our inductive inference strategy. In order to avoid
computationally deep strings (i.e., strings with high computational depth), we reduce the “context
window” (the length of the context) of universal extrapolation by treating all the preceding blocks
as advice.

To implement this idea, two key questions remain: (i) how can we construct an efficient algo-
rithm that performs universal extrapolation given an arbitrary advice string, and (ii) does universal
extrapolation with a restricted context still preserve the universality guaranteed by Solomonoff’s
theory?

The first question has been addressed in prior work through a simple observation. The ex-
trapolation algorithm developed in [HN23] naturally relativizes to any advice string. This yields
a reduction from universal extrapolation under arbitrary advice strings to the task of inverting a
family of polynomial-time computable functions {fz}z∈{0,1}∗ , where a single algorithm must work
for every z but only on average over the random input of fz. This task is often referred to as
inverting auxiliary-input functions in the literature, following the notion of auxiliary-input one-way
functions introduced by Ostrovsky and Wigderson [OW93]. It is known that such inversion is
efficiently reducible to GapKt-vs-K [HS17]. As a result, we obtain a universal extrapolation algo-
rithm UE, which, given parameters n, t ∈ N (in unary), a context x, and advice z, samples from
Nextn(x; Q

t,z) in exponential time in qcdt(x | z), with small statistical error (see Lemma 6.5 for the
formal statement).

To answer the second question, we establish our second technical lemma. This result demon-
strates that, with a properly large context and total size of blocks, the strategy of restricting the
context and placing all other information in the advice does not compromise the universality of
Solomonoff’s inductive inference, assuming GapKt-vs-K ∈ BPP.

4This also follows from the definition of q or the optimal coding theorem for pK [LOZ22].

7

block 1

universal extrapolation

...
block i-1

...
block i (current)
......

context
advice

...
w w position j

Figure 1: Our Inference Algorithm

Lemma 3.2 (Universal Extrapolation with Restricted Context). Assume GapKt-vs-K ∈ pr-BPP.
Then there exists a polynomial p such that the following holds: For every n, s, b, w ∈ N and ev-
ery randomized Turing machine Π described in s bits that produces at least b · w binary strings
x1, . . . , xbw, . . . ∈ {0, 1}n in time tΠ, define for each i ∈ [b] the i-th block as x̄i = x(i−1)w+1 ◦· · ·◦xiw.

Then for any t ∈ N satisfying t ≥ p(tΠ), and for ϵ−1, δ−1 ∈ N, if b ≥ O(s/ log t) and w ≥
O(ϵ−2δ−1 log t), then

Pr
i,x̄<i,j,xi

<j

[
∆tv

(
Xi

j |x̄
≤i
<j ,Nextn

(
x̄i<j ; Q

t,z,x̄<i
))
≤ ϵ
]
≥ 1− δ,

where i ∼ [b] is a index of the current block (treated by L as a context), j ∼ [w] in the position
of extrapolation in the current block, x̄<i is a concatenation of preceded blocks up to i − 1, x̄i<j

is a concatenation of preceded messages up to j − 1 in the i-th block, and Xi
j |x̄

≤i
<j represents the

conditional distribution of x(i−1)w+j given preceded messages x̄≤i
<j = (x̄<i, x̄i<j).

The formal statement is given in terms of KL divergence (see Lemma 6.4); the above is a
simplified version derived via Pinsker’s inequality.

Final Description of the Inference Algorithm. The lemmas above yield our inference algo-
rithm L, illustrated in Figure 1. The input sequence is partitioned into a series of blocks: each block
consists of w = O(ϵ−2δ−1 log t) strings, and the total number of blocks is at least b = O(s/ log t).
This arrangement requires w · b = O(sϵ−2δ−1) total rounds, matching the bound in Theorem 2.1.

At each prediction position, L identifies the block index i and the position j within it. It then
performs universal extrapolation with:

• Context: the prefix up to position j − 1 within block i;

• Advice: the full sequence of preceding blocks 1, . . . , i− 1.

Lemma 3.2 guarantees prediction accuracy on average over all positions, while Lemma 3.1 ensures
that the universal extrapolation runs in time tδ

−1
on average over the choice of block index.

Necessity of the Universal Extrapolation Framework. One might wonder whether extrap-
olation is essential for our inference — why not simply sample from the time-bounded universal
Turing machine using the prior messages as advice? Unfortunately, this naive strategy fails to yield
accuracy better than a universal constant.

The issue lies in the fact that the universal distribution with advice dominates the one without,
due to the existence of programs that simply ignore the advice. Concretely, for any advice string
and x ∈ {0, 1}n, the t-time-bounded universal distribution assigns probability at least 2−n/c to
x (for some universal constant c when t ≥ O(n)), since there exists a trivial program of length

8

|x| + O(1) that simply outputs x by embedding it directly. Thus, even in extremely simple cases
where a program deterministically outputs a fixed string for all rounds, the total variation distance
from the universal distribution is lower bounded by a constant (depending on c).

Hence, universal extrapolation is essential to our inference result, as it enables us to overcome
the inherent limitations imposed by this trivial domination.

3.3 Proof Overview of Technical Lemmas

Both Lemmas 3.1 and 3.2 are derived from the following inequality, which can be seen as a multi-
block extension of the inequality known as the symmetry of information in algorithmic information
theory5.

Lemma 3.3. If GapKt-vs-K ∈ pr-BPP, then for every n,m, t ∈ N with t ≥ O(m + n) and every
x1, . . . , xm ∈ {0, 1}≤n, it holds

m∑
i=1

pKp(t)(xi | x1, . . . , xi−1) ≤ pKt(x1, . . . , xm) +m ·O(log t).

Here, pK denotes the probabilistic Kolmogorov complexity, introduced by Goldberg, Kabanets,
Lu, and Oliveira [GKLO22] (see Section 4 for the formal definition). It is known that pKt(· | ·)
and qt(· | ·) are equivalent up to an additive logarithmic term, with only polynomial overhead in
time [HN23].

The proof of Lemma 3.3 builds on the techniques used in establishing the time-bounded sym-
metry of information (i.e., the two-block case) as developed in [Hir22; GK22]. However, a naive
extension of these proofs to the multi-block setting leads to an additive error of m2 ·O(log t) in the
inequality, rather than the desired m ·O(log t). Such a bound is insufficient for our purposes, as it
fails to yield a meaningful averaging argument on computational depth, as outlined below. To avoid
the the quadratic dependence on m, we adapt the parameter tuning approach based on Hirahara’s
worst-case-to-average-case reduction [Hir18; Hir20b], in an adaptive manner across blocks. The
proof ideas for Lemma 3.3 are deferred to Section 5, following the preliminaries.

We now focus on how Lemma 3.3 underlies the proofs of Lemmas 3.1 and 3.2. To highlight the
conceptual structure and avoid cluttering the exposition with polynomial-time details, we use the
shorthand poly to denote time bounds implicitly bounded by some fixed polynomial. Accordingly,
we treat qpoly(· | ·) and pKpoly(· | ·) interchangeably in what follows.

Proof Sketch of Averaging Lemma (Lemma 3.1). We begin by applying Lemma 3.3, which
gives the inequality:

m∑
i=1

qpoly(xi | x1, . . . , xi−1) ≤ qpoly(x1, . . . , xm) +m ·O(log t)

≤ qcdpoly(x1, . . . , xm) + K(x1, . . . , xm) +m ·O(log t)

≤ qcdpoly(x1, . . . , xm) +
m∑
i=1

K(xi | x1 . . . , xi−1) +m ·O(log t).

5The same inequality was proved in a recent concurrent work [KK25]. In [KK25], the main focus was to explore
the relationship with natural proofs. By contrast, we develop and use the same inequality as a technical lemma to
provide guarantees for our inference algorithm.

9

From this, we derive

Ei∼[m]

[
qcdpoly(xi | x1, . . . , xi−1)

]
=

1

m

m∑
i=1

(
qpoly(xi | x1, . . . , xi−1)−K(xi | x1, . . . , xi−1)

)
≤ qcdpoly(x1, . . . , xm)

m
+O(log t).

Notice that the inequality above demonstrates the averaging of computational depth as a conse-
quence of Lemma 3.3.

Now suppose x1, . . . , xm are sampled from a randomized Turing machine Π described using s
bits. By the slow growth law, we have that with probability at least 1 − δ (over the choice of
x1, . . . , xm), the right-hand side is further bounded as

qcdpoly(x1, . . . , xm)

m
+O(log t) ≤ s+O(log δ−1)

m
+O(log t) ≤ O(s)

m
+O(log t),

where we assumed that s ≥ log δ−1. Thus, the average computational depth per block is bounded
by O(log t) whenever m ≥ O(s/ log t).

It is known that qcdt(x) + O(log t) is nonnegative, thus, by applying Markov’s inequality, we
obtain that qcdpoly(xi | x1, . . . , xi−1) ≤ δ−1 ·O(log t) with probability 1− δ over i ∼ [m].

We remark that the bottleneck in the running time of our inference algorithm, i.e., the depen-
dence on tδ

−1
arises from this Markov-based step. In particular, improving this point would yield

a fully polynomial-time inference algorithm, while keeping the rest of the framework and analysis
unchanged.

Proof Sketch of Lemma 3.2. Suppose x̄1, . . . , x̄b are sampled from a randomized Turing machine
Π described using s bits, where each x̄i represents the i-th block.

The domination property for Qpoly (cf. [HN23, Proposition 6.11]) shows that for any x̄1, . . . , x̄b

in the support,
qpoly(x̄1, . . . , x̄b) ≤ O(s)− logDΠ(x̄

1, . . . , x̄b),

where DΠ(x̄
1, . . . , x̄b) denotes the probability that Π outputs the sequence x̄1, . . . , x̄b.

Now, applying Lemma 3.3, we obtain for all such sequences:

b∑
i=1

qpoly(x̄i | x̄1, . . . , x̄i−1) ≤ qpoly(x̄1, . . . , x̄b) + b ·O(log t)

≤ O(s)− logDΠ(x̄
1, . . . , x̄b) + b ·O(log t)

= O(s)−
b∑

i=1

logDΠ(x̄
i | x̄1, . . . , x̄i−1) + b ·O(log t),

where DΠ(· | ·) denotes the conditional probability under Π.
By rearranging, we get

b∑
i=1

log
DΠ(x̄

i | x̄1, . . . , x̄i−1)

Pr
[
x̄i−1 ← Qpoly,x̄<i

] = b∑
i=1

(
qpoly(x̄i | x̄1, . . . , x̄i−1) + logDΠ(x̄

i | x̄1, . . . , x̄i−1)
)

≤ O(s) + b ·O(log t).

10

Taking the expectation over i ∼ [b] and over samples x̄1, . . . , x̄b drawn from Π, we conclude:

Ei∼[b]

[
KL
(
X̄i|X̄<i

∥∥∥Qpoly,X̄<i
)]
≤ O(s)

b
+O(log t),

where X̄i and X̄<i denote the distributions over the i-th block and its preceding blocks, respectively,
and KL(·∥·) denotes KL divergence.

In other words, if b ≥ O(s/ log t), the KL divergence between (i) the conditional distribution of
the i-th block given preceding blocks and (ii) the universal distribution given preceding blocks as
advice is at most O(log t) in expectation.

The remaining steps follow from standard arguments in probability theory, particularly applying
the chain rule for KL divergence to distribute the bound of O(log t) across the w positions in a
block, yielding an average KL divergence of O(log t)/w over positions j ∈ [w]. We refer the reader
to Section 6 for the complete proof.

3.4 Short Comments: Corollaries on Learning in Heuristica

Corollaries 2.2 to 2.5 follow directly from Theorem 2.1 via the framework of the cheating learner,
introduced in [HN23]. Below we provide a high-level overview of the derivations.

Corollary 2.3 follows immediately, since learning ACDs is a special case of inductive inference.
Corollary 2.2 is also a special case. However, to improve the dependence on the confidence parameter
from δ−2 to log δ−1, we execute the inference algorithm with constant confidence error repeatedly for
O(log δ−1) rounds. We then identify the largest cluster among the resulting O(log δ−1) hypotheses,
where each hypothesis is statistically close to the others. This clustering-based identification relies
on the algorithm for approximating statistical distance between samplers, developed in [NR06].
Corollary 2.5 is obtained by applying the inference algorithm to extrapolate label distributions and
performing empirical loss minimization against them. A naive analysis using total variation distance
would result in poor dependence on the accuracy parameter ϵ in the round complexity (see [HN23]
for a more detailed argument). Instead, we leverage the γ-boundedness condition of loss functions
in the analysis, following an approach similar to that in [MF98]. Finally, Corollary 2.4 follows easily
as a corollary of Corollary 2.5.

Organization of This Paper. The remainder of this paper is organized as follows. In Section 4,
we introduce additional preliminaries. In Section 5, we provide the proof of Lemma 3.3. In Section 6,
we establish the main theorem (Theorem 2.1), which also includes the proofs of the technical
lemmas (Lemmas 3.1 and 3.2). In Section 7 and Section 8, we present applications of our inference
algorithm to learning distributions and sequential loss minimization, respectively. The formal proofs
of Corollaries 2.2 and 2.3 are given in Section 7, while those of Corollaries 2.4 and 2.5 appear in
Section 8.

4 Preliminaries

For preliminaries on the universal Turing machine U , Kolmogorov complexity, the universal distri-
bution, qt-complexity, computational depth, and universal extrapolation, see Section 3.1.

All logarithms are base 2 unless stated otherwise. Let ⟨, ⟩ be a (standard) pairing function that
maps N× N to N.

We use the notation negl to represent some negligible function, i.e., for any polynomial p and
sufficiently large n ∈ N, it holds that negl(n) < 1/p(n). We also use the notation poly to refer to
some polynomial.

11

For each n ∈ N, define [n] := {1, 2, . . . , n}. For every x, y ∈ {0, 1}∗, let x ◦ y denote the
concatenation of x and y. For readability, we may omit the symbol ◦ and write simply xy.

For k ≤ k′ ≤ n and a string x ∈ {0, 1}n with i-th bit denoted xi, define x[k] := x1 · · ·xk and
x[k:k′] := xk · · ·xk′ .

For a sequence of strings x1, x2, . . . , xi, . . . ∈ {0, 1}∗, we let x<i := ⟨x1, . . . , xi−1⟩, namely, the
binary encoding of the i− 1 sequence of strings.

For n ∈ N, we use the notation “for every t ≥ O(n)” to mean that there exists a universal
constant c > 0 (independent of n) such that the statement holds for all t ≥ cn. In particular, for
every x ∈ {0, 1}∗ and every t ≥ O(|x|), it holds that Kt(x) ≤ |x|+O(1) ≤ 2|x|.

For each p ∈ [0, 1], let Ber(p) be a Bernoulli distribution with parameter p. For any distribution
D, we use the notation x ∼ D to refer to the sampling of x according to D. For any finite set S,
we use the notation x ∼ S to refer to the uniform sampling of x from S. For simplicity, we may
identify a distribution D with a random variable drawn from D. For any distribution D and k ∈ N,
let Dk denote the k-fold product distribution whose marginal distribution is identical to D.

For a distribution D and an oracle machine M , we write MD to indicate that M has oracle
access to D, where each oracle query returns an independent sample x ∼ D.

For any distribution D over strings and any x ∈ {0, 1}∗, let D(x) denote the probability that x
is sampled according to D.

We say that an s-size randomized Turing machine (or program) Π ∈ {0, 1}≤s that takes advice z
and produces a stream x1, . . . , xm, . . . ∈ {0, 1}∗ in t time to express that U t′,z,r(Π) outputs x1◦· · ·◦xm
as prefix for t′ ≥ t and r ∼ {0, 1}t′ (recall that we assume the output tape of U is one-way). We use
the notation x1, . . . , xm ∼ Π to denote sampling of the first m sequences from Π. When Π takes
external advice z ∈ {0, 1}∗, we write the sampling as x1, . . . , xm ∼ Π(z).

For simplicity, we may identify a Turing machine Π with its binary encoding used as input to
the universal Turing machine U .

Probability Theory. In this paper, we assume basic knowledge of probability theory, including
the union bound, Markov’s inequality, Jensen’s inequality, and Hoeffding’s inequality. For an event
E where trials to determine whether E occurs are repeated efficiently, we say that an algorithm M
performs the empirical estimation of the probability that E occurs with accuracy error ε ∈ [0, 1]
and confidence error δ ∈ [0, 1] if M computes a value v with Pr[E] − ε ≤ v ≤ Pr[E] + ε with
probability at least 1− δ over trials. By Hoeffding’s inequality, only O(ε−2 log δ−1) are needed for
such estimation.

For any distributions D and E , let ∆tv(D, E) denote the total variation distance between D and
E . Let KL(D||E) represent the KL divergence between two distributions D and E .

We also review conditional KL divergence and the chain rule for KL divergence.

Definition 4.1 (Conditional KL divergence). For random variables (X ,X ′) and (Y,Y ′), the con-
ditional KL divergence from X ′|X to Y ′|Y is defined as

KL((X ′|X)||(Y ′|Y)) = E(x,x′)∼(X ,X ′)

[
log

Pr[X ′ = x′|X = x]

Pr[Y ′ = x′|Y = x]

]
.

Lemma 4.2 (Chain rule for KL divergence [cf. CT06, Theorem 2.5.3]). For any random variables
(X ,X ′) and (Y,Y ′), it holds that

KL(X ,X ′||Y,Y ′) = KL(X||Y) + KL((X ′|X)||(Y ′|Y)).

12

In particular, for any m ∈ N and any random variables (X 1, . . . ,Xm) and (Y1, . . . ,Ym),

KL(X 1, . . . ,Xm||Y1, . . . ,Ym) =
m∑
i=1

KL((X i|X 1, . . . ,X i−1)||(Y i|Y1, . . . ,Y i−1)).

Average-Case Complexity. Let U = {Un}n∈N denote the family of uniform distributions, where
Un is the uniform distribution over {0, 1}n.

A family of distributions {Dn}n∈N over strings is said to be samplable if there exists a polynomial-
time randomized algorithm D such that, for each n ∈ N, the distribution of D(1n) is statistically
identical to Dn. Trivially, U is samplable.

We say that a randomized algorithm A solves a promise problem Π on errorless average over
D with failure probability δ ∈ (0, 1) if (1) A outputs Π(x) or ⊥ (which represents “failure”) with
probability at least 3/4 over the choice of randomness for A for every x ∈ Support(D), and (2) the
failure probability that A(x) outputs ⊥ overwhelmingly (i.e., with probability at least 3/4) over the
choice of x ∼ D is bounded above by δ.

We say that a distributional problem (Π, {Dn}n∈N) has an errorless heuristic scheme A if, for
all n, δ−1 ∈ N, the randomized algorithm A given n and δ−1 in unary solves Π on errorless average
over Dn with failure probability δ.

Let AvgBPP denote the class of distributional problems that admit a polynomial-time errorless
heuristic scheme.

Let DistNP denote the class of distributional problems (L, {Dn}n∈N) such that L ∈ NP, and
{Dn}n∈N is samplable.

Auxiliary-Input One-Way Functions. We introduce auxiliary-input one-way functions, a no-
tion first proposed by Ostrovsky and Wigderson [OW93]. Informally, these are families of functions
that are hard to invert in a weaker sense often encountered in cryptographic contexts.

An auxiliary-input function is a family of functions f = {fz}z∈{0,1}∗ indexed by binary strings
z. We say that f is polynomial-time computable if each fz(x) is polynomial-time computable from
(z, x).

Definition 4.3 (Auxiliary-Input One-Way Function). A polynomial-time computable auxiliary-
input function f = {fz : {0, 1}poly(|z|) → {0, 1}poly(|z|)}z∈{0,1}∗ is said to be an auxiliary-input one-
way function if for every polynomial-time randomized algorithm A, there exist infinitely many z ∈
{0, 1}∗ such that

Pr
r,A

[fz(A(z, fz(r))) = fz(r)] < negl(|z|),

where r ∼ {0, 1}poly(|z|) is a random seed.

4.1 Algorithmic Information and Meta-Complexity

We now review several relevant notions that were not introduced in Section 3.1.

Approximating Time-Bounded Kolmogorov Complexity. First, we formally define the
GapKt-vs-K problem used in our assumption.

Definition 4.4 (GapKt-vs-K). For c ≥ 0, the promise problem GapcK
t-vs-K = (Πyes,Πno) is

defined as follows:

Πyes :=
{
(x, 1s, 1t) : Kt(x) ≤ s

}
Πno :=

{
(x, 1s, 1t) : K(x) > s+ c log(t|x|)

}
.

13

We write GapKt-vs-K ∈ pr-BPP to denote that GapcK
t-vs-K ∈ pr-BPP for some constant c ≥ 0.

It is known that the assumption GapKt-vs-K ∈ pr-BPP follows from the average-case easiness of
NP and implies the nonexistence of auxiliary-input one-way functions:

Theorem 4.5 ([Hir20b; GKLO22]). If DistNP ⊆ AvgBPP, then GapKt-vs-K ∈ pr-BPP.

Lemma 4.6 ([cf. HS17]). If GapKt-vs-K ∈ pr-BPP, then there is no auxiliary-input one-way func-
tion.

The following proposition is straightforward.

Proposition 4.7. If GapKt-vs-K ∈ pr-BPP, then there exist a randomized polynomial time algo-
rithm K̃ and a constant c ≥ 0 such that for every x ∈ {0, 1}∗ and every t ≥ O(|x|),

Pr
K̃

[
K(x) ≤ K̃(x, 1t) ≤ Kt(x) + c log(t|x|)

]
≥ 2/3.

Proof. Let A be a randomized polynomial-time algorithm that solves GapcK
t-vs-K ∈ pr-BPP for

some constant c ≥ 0. By a standard repetition argument, we may assume that the error probability
of A on input (x, 1s, 1t) is at most 1/(6|x|).

Define the algorithm K̃ as follows: given x ∈ {0, 1}∗ and t ∈ N, it executes A(x, 1s, 1t) for all
s ∈ [2|x|] to find the smallest s∗ such that A(x, 1s

∗
, 1t) = 1. Then, it returns s∗ + c log(t|x|).

By the union bound, with probability at least 2/3, A returns the correct answer for all s ∈ [2|x|].
In that case, we have:

K(x) ≤ s∗ + c log(t|x|) ≤ Kt(x) + c log(t|x|),

where the first inequality follows from A(x, 1s
∗
, 1t) = 1, and the second follows from A(x, 1s

∗−1, 1t) =
0.

Probabilistic Kolmogorov Complexity [GKLO22]. For each t ∈ N and δ ∈ [0, 1], we define
the t-time-bounded probabilistic Kolmogorov complexity pKt

δ(x | z) of a string x ∈ {0, 1}∗ given
advice z ∈ {0, 1}∗ as the minimum k ∈ N such that

Pr
r∼{0,1}t

[
∃Π ∈ {0, 1}≤k s.t. U t,z,r(Π) halts within t steps and outputs x

]
≥ δ.

By default, we set δ = 2/3 and omit the subscript δ unless otherwise specified.
By definition, we obtain the following proposition:

Proposition 4.8. For each t ∈ N and x ∈ {0, 1}∗,

Pr
r∼{0,1}t

[
Kt(x | r) ≤ pKt(x)

]
≥ 2/3.

We also state a known relationship between pKt and K, as shown in the following lemma.

Lemma 4.9 ([GKLO22, Lemma 18]). For any t, n ∈ N with t ≥ O(n) and any x ∈ {0, 1}≤n,
K(x | t) ≤ pKt(x) + log t.

We observe that appending randomness to the advice does not significantly affect pK in expec-
tation.

Proposition 4.10. There exists a polynomial p such that for each t, n ∈ N with t ≥ O(n) and
x, y ∈ {0, 1}≤n,

pKp(t)(x | y) ≤ Er∼{0,1}t
[
pKt(x | y, r)

]
+O(log t).

14

Proof. Let v = Er∼{0,1}t [pK
t(x | y, r)]. Since t ≥ O(n), we may assume that v ≤ 2n.

We first observe that

Pr
r

[
pKt(x | y, r) ≤ v + 4

]
≥ 1

2n
. (1)

Indeed, if this inequality were false, then

v = Er∼{0,1}t
[
pKt(x | y, r)

]
> (v + 4)

(
1− 1

2n

)
= v + 4− 2

n
− v

2n
≥ v + 1,

which is trivially contradiction.

Equation (1) implies that pK
poly(t)
1/3n (x | y) ≤ v + O(1). To see this, consider the first 2t-bit of

an external random string r ∼ {0, 1}poly(t) is composed of two random strings r1, r2 ∼ {0, 1}t. The
event in Equation (1) holds for r1 with probability at least 1/(2n); conditioned on this, by the
definition of pKt(x | y, r1), there exists a program of length at most v + 4 that outputs x with
probability at least 2/3 over r2. We can simulate such a program in poly(t) time by interpreting
each bit of r1 and r2 as being read from two separate portions of r.

Goldberg, Kabanets, Lu, and Oliveira [GKLO22, Lemma 21] proved that the success probability
of pK is easily amplified by standard repetition. Thus,

pKO(n·poly(t))(x | y) ≤ pK
poly(t)
1/3n (x | y) +O(log n) ≤ v +O(log t),

as desired.

One main advantage of working with pK lies in the following coding theorem.

Theorem 4.11 (Optimal Coding for pK [LOZ22]). There exists a polynomial p such that for every
randomized Turing machine M that may take advice z ∈ {0, 1}∗ and halts in time tM (z) and for
every string x ∈ {0, 1}∗ is the support of M(z),

pKp(tM (z))(x |M, z) ≤ − log Pr
M
[x←M(z)] + log p(tM (z)).

In particular,
pKp(tM (z))(x | z) ≤ O(|M |)− log Pr

M
[x←M(z)] +O(log tM (z)).

We now review the relationship between pK and q. These two complexity measures are essentially
equivalent, up to an additive logarithmic term and a polynomial overhead in the time bound.

By applying Theorem 4.11 to the universal distribution Qt, we immediately obtain the following
upper bound:

Lemma 4.12. There exists a polynomial p such that for all x, z ∈ {0, 1}∗ and all t ≥ O(|x|),

pKp(t)(x | z) ≤ qt(x | z) + log p(t).

A corresponding lower bound is also known, following from the domination property of the
universal distribution:

Proposition 4.13 ([HN23, Proposition B.3]). There exists a constant c such that for each t ∈ N
and x, z ∈ {0, 1}∗,

qct(x | z) ≤ pKt(x | z) + c log t.

15

Direct Product Generator We review the notion of the direct product generator, explicitly
formulated in [Hir21].

Definition 4.14 (Direct Product Generator). For k : N→ N∪{0} with k(n) ≤ 2n, a k-direct product
generator DPk takes x ∈ {0, 1}∗ and z ∈ {0, 1}2|x|2 as input and outputs z◦⟨x, z1⟩F2◦· · ·◦⟨x, zk(|x|)⟩F2,
where ⟨,⟩F2 denotes the inner product in F2, and zi = z[(i−1)|x|+1:i|x|] for each i ∈ [k(|x|)].

Note that, in the literature, the seed length is often defined as k · |x| for a parameter k. Here,
we fix the seed length as 2|x| · |x| independently of k by ensuring the seed is sufficiently long.

The following lemma captures the key property of the direct product generator. Intuitively, it
transforms a string of high pK into a pseudorandom string against algorithms of bounded description
size. (The lemma is stated in the contrapositive form.)

Lemma 4.15 (DP-reconstruction for pK [Hir20b]; see also [GKLO22, Lemma 22]). There exists a
polynomial pDP such that for any ϵ ≥ 0, n, k ∈ N, and x ∈ {0, 1}n, if D is a tD-time randomized
Turing machine that ϵ-distinguishes DPk(x; z) from random, i.e.,

Pr
z∼{0,1}nk,D

[D(DPk(x; z)) = 1]− Pr
w∼{0,1}2n2+k,D

[D(w) = 1] > ϵ,

then
pKpDP(tD,n,ϵ−1)(x | D) ≤ k + log pDP(tD, n, ϵ

−1).

Slow Growth Law. We review the slow growth law [Ben88; AFPS12; Hir23], which informally
states that an efficient randomized algorithm cannot significantly increase the computational depth
of the given input.

Specifically, we will use the following form, proved in [HN23, Lemma 6.15]. The proof in that
work relativizes since it builds on a relativizing result from [Hir23, Lemma 8.13], so the result also
holds in the presence of an advice string.

Lemma 4.16 ([HN23, Lemma 6.15]). There exists a polynomial p such that that for every z ∈ {0, 1}∗
and every tΠ-time randomized Turing machine Π that takes z as advice, and every i, t, δ−1 ∈ N with
t ≥ p(tΠ + |Π|),

Pr
x∼Π(z)

[
qcdp(t)(x[i] | z) ≤ qcdt(Π | z) + log p(tδ−1)

]
≥ 1− δ.

We also state a corollary that follows as a special case of Lemma 4.16:

Lemma 4.17. There exist a polynomial p and constant c > 0 such that for every x, z ∈ {0, 1}∗ and
every i, t ∈ N with t ≥ p(|x|),

qcdp(t)(x[i] | z) ≤ qcdt(x | z) + log t+ c.

Proof. This follows by applying Lemma 4.16 to a program that simply embeds x and outputs it
(without using randomness).

5 Online and Offline Algorithmic Information

In this section, we prove the following key inequality, which can be seen as a multi-block extension
of the time-bounded symmetry of information.

16

Lemma 5.1. If GapKt-vs-K ∈ pr-BPP, then there exists a polynomial p such that for every n,m, t ∈
N with t ≥ O(m+ n) and every x1, . . . , xm ∈ {0, 1}≤n, it holds

m∑
i=1

pKp(t)(xi | x<i) ≤ pKt(x1, . . . , xm) +m · log p(t).

Before presenting the full proof, we briefly sketch the main idea.

5.1 Proof Ideas

We first consider the following simpler form:

m∑
i=1

pKp(t)(xi | x<i, k1, . . . , ki−1) ≤ pKt(x1, . . . , xm) +m ·O(log t),

where ki := pKp(t)(xi | x<i, k1, . . . , ki−1)−O(log t) for each i ∈ [m− 1].
In other words, we allow each round to receive as additional advice the previous complexity

estimates k1, . . . , ki−1. This version of the lemma can in fact be proved via a natural extension of
the symmetry of information argument from the two-block case, as developed by Hirahara [Hir22]
and Goldberg and Kabanets [GK22]. We now outline this approach. For simplicity, we may use
the shorthand poly to denote time bounds, thereby avoiding the need to explicitly track polynomial
overheads.

Let p be a large enough polynomial determined by pDP in Lemma 4.15. We define the pseudo-
random string wDP by applying the direct-product generator sequentially as follows:

wDP ∼ DPk1 (x1; z1) ◦ · · · ◦ DPkm (xm; zm) ,

where z1, . . . , zm are independent uniformly random seeds. The values k1, . . . , km are defined in-
ductively as:

ki := pKp(t)(xi | x<i, k1, . . . , ki−1)− c log t for each i ∈ [m− 1], and

km := pKt(x1, . . . , xm)−
m−1∑
i=1

ki + c log t.

for a large enough constant c > 0.
Now consider a distinguisher D that, given a string w, approximates Kpoly(t)(w) using the algo-

rithm K̃ from Proposition 4.7, and outputs 1 (i.e., interprets w as pseudorandom) if the approxi-
mated complexity is smaller than a threshold τ := pKt(x1, . . . , xm) +

∑
i |zi|+ O(log t). The value

τ can be encoded in O(log t) bits as a natural number in binary.
If the input string is indeed the pseudorandom string wDP, then intuitively, since wDP is generated

from the sequence (x1, . . . , xm) and random seeds (z1, . . . , zm), we expect:

Kpoly(wDP) ≤ pKt(x1, . . . , xm) +

m∑
i=1

|zi|+O(log t).

More precisely, one would also need to include some additional randomness to simulate the prob-
abilistic algorithm deterministically. However, this technical detail is not essential for the current
argument, so we omit it for simplicity.

17

By contrast, for a uniformly random string w of the same length |wDP| =
∑m

i=1(|zi| + ki), a
standard counting argument implies that, with high probability,

K(w) ≥
m∑
i=1

(|zi|+ ki)−O(1) = pKt(x1, . . . , xm) +
m∑
i=1

|zi|+ c log t−O(1).

Thus, by choosing c sufficiently large, the distinguisher D can distinguish the pseudorandom
string wDP from a uniformly random string w with constant advantage γ > 0.

Now, for each i ∈ [m] ∪ {0}, we define the hybrid string hybi sampled as

hybi ∼ DPk1 (x1; z1) ◦ · · · ◦ DPki (xi; zi) ◦ wi+1 ◦ · · · ◦ wm,

where each wj for j > i is an independent uniformly random string of the same length as DPkj (xj ; zj).
Notice that hyb0 is a uniformly random string, while and hybm is distributed identically to the

pseudorandom string wDP. Therefore, we have

Pr[D(hybm) = 1]− Pr[D(hyb0) = 1] ≥ γ.

Suppose that for every i ∈ [m− 1],

Pr[D(hybi) = 1]− Pr[D(hybi−1) = 1] ≤ γ

2m
. (2)

Then by the telescoping sum, we have:

Pr[D(hybm) = 1]− Pr[D(hybm−1) = 1]

= Pr[D(hybm) = 1]− Pr[D(hyb0) = 1]−
m−1∑
i=1

(
Pr[D(hybi) = 1]− Pr[D(hybi−1) = 1]

)
≥ γ − (m− 1)γ

2m
≥ γ/2.

Namely, we can construct a distinguisherDm for DPkm(xm; zm) given advice x1, . . . , xm−1, k1, . . . , km−1

as follows. Given an input wm, the distinguisher Dm executes D on the concatenated string:

DPk1 (x1; z1) ◦ · · · ◦ DPkm−1 (xm−1; zm−1) ◦ wm

Note that each DPki(xi; zi) is efficiently samplable given xi and ki. The above string behaves as
hybm when wm is sampled from DPkm(xm; zm), and as hybm−1 when wm is sampled uniformly at
random.

Since Dm is specified by D along with the external advice x1, . . . , xm−1, k1, . . . , km−1, the pK
reconstruction lemma (Lemma 4.15) yields:

pKp(t) (xm | x1, . . . , xm−1, k1, . . . , ki−1) ≤ km +O(log t)

≤ pKt(x1, . . . , xm)−
m−1∑
i=1

ki +O(log t)

= pKt(x1, . . . , xm)−
m−1∑
i=1

pKp(t) (xi | x<i, k1, · · · , ki−1) +m ·O(log t).

18

In other words, the conclusion of the lemma follows as long as the indistinguishability condition in
Equation (2) holds for every i ∈ [m− 1].

Indeed, we can observe these cases, and this is precisely where the additional advice strings
k1, . . . , ki−1 become necessary.

The argument here mirrors the construction of Dm. For any i ∈ [m− 1], suppose that

Pr[D(hybi) = 1]− Pr[D(hybi−1) = 1] >
γ

2m
.

Then, we can construct a distinguisher Di for DPki(xi) in the same way as we did for Dm. Applying
the pK reconstruction lemma (Lemma 4.15) gives

pKp(t) (xi | x<i, k1, . . . , ki−1) ≤ ki +O(log tmγ−1)

≤ pKp(t) (xi | x<i, k1, · · · , ki−1)− c log t+O(log t),

which yields a contradiction for large enough constant c.
Here, the additional advice k1, . . . , ki−1 is necessary to sample a hybrid string

DPk1 (x1; z1) ◦ · · · ◦ DPki−1
(xm−1; zm−1) ◦ wi ◦ wi+1 ◦ · · · ◦ wm,

given wi as input. Without this advice, the distinguisher Di cannot generate the appropriate prefix
of the hybrid string needed to simulate D.

Removing Advice Strings Since it is currently unclear whether each ki can be computed in
polynomial time, particularly because we do not yet know whether conditional pKt is efficiently
computable under the assumption DistNP ⊆ AvgBPP, we initially treat these as external advice.
This introduces an additive overhead of

m∑
i=1

O(log k1 + . . .+ log ki−1) = m2 ·O(log t).

This is not sufficient for our purposes, as highlighted in Section 3.3.
To eliminate these advice strings, we must replace them with quantities that are efficiently

computable. In the formal proof, we achieve this by determining each value k̃i adaptively using the
distinguisher D. Specifically, for each i, we define k̃i to be the largest value such that D cannot
distinguish DPk̃i(xi; zi) from uniform randomness, given the previously estimated values k̃1, . . . , k̃i−1.
This indistinguishability is verified empirically using sampling. The randomness ρi used during the
empirical estimation of k̃i is then treated as external advice for future steps. This parameter tuning
strategy essentially mirrors Hirahara’s worst-case-to-average-case reduction technique developed
in [Hir18; Hir20b]. In our setting, we apply it adaptively across blocks.

In fact, the amount of randomness ρi used in the empirical estimation procedure is much larger
than the binary representation of each ki. However, as shown in Proposition 4.10, adding random-
ness to the advice string does not increase the value of pK in expectation. This observation allows
us to eliminate the need for explicitly providing the advice strings k1, . . . , km.

5.2 Full Proof

We now present the full proof based on the outlined ideas.

19

Proof of Lemma 5.1. Since GapKt-vs-K ∈ pr-BPP, there exist a randomized polynomial-time algo-
rithm K̃ and a constant c0 such that for each x ∈ {0, 1}∗ and t ∈ N,

Pr
K̃

[
K(x) < K̃(x, 1t) ≤ Kt(x) + c0 log(t|x|)

]
≥ 2/3.

Let n,m, t ∈ N and x1, . . . , xm ∈ {0, 1}≤n satisfying t ≥ O(m+ n) as in the lemma. For each i,
let ni = |xi|.

Let p1 be a large enough polynomial and c1 be a constant we specify later. Let N =
∑m

i=1 ni

and M ∈ N be

M = pKt(x1, . . . , xm) + 6− c1⌈m log nt⌉ − c0⌈log(p1(t, n,m) · (|r|+ 2N2 + pKt(x1, . . . , xm) + 6)))⌉.

We consider a randomized algorithm D that is given y ∈ {0, 1}2N2+M , selects r ∼ {0, 1}t, and
outputs 1 if

K̃
(
(r, y), 1p1(t,n,m)

)
≤ pKt(x1, . . . , xm) + |r|+ 2N2 + c1m log nt+ c0 log(p1(t, n,m) · (|r|+ |y|));

outputs 0 otherwise. Here, we regard pKt(x1, . . . , xm) ∈ N as embedded advice described in
O(logmn) bits.

Let k1, . . . , km−1 ∈ N ∪ {0} be arbitrary parameters satisfying ki ≤ 2ni for each i. We define
km ∈ N as

km = M −
m−1∑
i=1

ki.

Notice that the length of DPk1(x1; z1) ◦ · · · ◦DPkm(xm; zm), where zi ∈ {0, 1}2n
2
i in our formulation,

is
∑m

i=1(2n
2
i + ki) = 2N2 +M regardless of the choices of k1, . . . , km−1.

We first observe that D distinguishes DPk1(x1; z1) ◦ · · · ◦ DPkm(xm; zm) from a truly random
string.

Notice that we can efficiently compute (r,DPk1(x1; z1) ◦ · · · ◦ DPkm(xm; zm)) from r, x1, . . . , xm,
z1, . . . , zm, and k1, . . . , km. Now, we choose p1 and c1 enough large so that for each n,m, t ∈ N,
x1, . . . , xm ∈ {0, 1}≤n, and for each r, z1, . . . , zm (where r ∈ {0, 1}t and zi ∈ {0, 1}2n

2
i for each i),

Kp1(t,n,m)(r,DPk1(x1; z1) ◦ · · · ◦ DPkm(xm; zm))

≤ Kt(x1, . . . , xm | r) + |r|+ |z1|+ · · ·+ |zm|+O(log k1 + . . .+ log km) +O(log nmt)

≤ Kt(x1, . . . , xm | r) + |r|+ 2N + c1 ·m log nt.

For each i, suppose that yi = DPki(xi; zi). Remember that with probability at least 2/3,

K̃
(
(r, y1 ◦ · · · ◦ ym), 1p1(t,n,m)

)
≤ Kp1(t,n,m)(r, y1◦· · ·◦ym)+c0 log(p1(t, n,m)·(|r|+|y1◦· · ·◦ym|))

In addition, by Proposition 4.8, Kt(x | r) ≤ pKt(x) with probability at least 2/3 over r ∼ {0, 1}t. If
these two events occur simultaneously, it holds that

K̃
(
(r, y1 ◦ · · · ◦ ym), 1p1(t,n,m)

)
≤ Kp1(t,n,m)(r, y1 ◦ · · · ◦ ym) + c0 log(p1(t, n,m) · (|r|+ |y1 ◦ · · · ◦ ym|))
≤ Kt(x1, . . . , xm | r) + |r|+ 2N2 + c1 ·m log nt+ c0 log(p1(t, n,m) · (|r|+ |y1 ◦ · · · ◦ ym|))
≤ pKt(x1, . . . , xm) + |r|+ 2N2 + c1 ·m log nt+ c0 log(p1(t, n,m) · (|r|+ |y1 ◦ · · · ◦ ym|)).

20

Thus, we have

Pr
D,z1,...,zm

[D (DPk1(x1; z1) ◦ · · · ◦ DPkm(xm; zm)) = 1] ≥ 2

3
· 2
3
=

4

9
.

In contrast, we consider the case in which yi = wi ∼ {0, 1}2n
2
i+ki for each i. By the standard

counting argument, with probability at least 1− 2−5 over r, w1, . . . , wm,

K(r, w1 ◦ · · · ◦ wm) ≥ |r|+ |w1|+ · · ·+ |wm| − 6

= |r|+ 2N2 +M − 6

≥ pKt(x1, . . . , xm) + |r|+ 2N2 + c1m log nt+ c0 log(p1(t, n,m) · (|r|+ 2N2 +M)),

where we used the definition of M and pKt(x1, . . . , xm) + 6 ≥M in the last inequality.
Since K̃((r, w1 ◦· · ·◦wm), 1t) > K(r, w1 ◦· · ·◦wm) with probability at least 2/3, the union bound

implies that

Pr
D,w1,...,wm

[D (w1 ◦ · · · ◦ wm) = 1] ≤ 1

25
+

1

3
<

7

18
.

Thus,

Pr
D,z1,...,zm

[D (DPk1(x1; z1) ◦ · · · ◦ DPkm(xm; zm)) = 1]− Pr
D,w1,...,wm

[D (w1 ◦ · · · ◦ wm) = 1] ≥ 1

18
.

Now, we consider a randomized procedure K that generates k1, . . . , km−1 in the following induc-
tive manner: Let i be the current round and assume that k1, . . . , ki−1 have been already determined.
For each j ∈ [2ni], the procedure K empirically estimates two probabilities

dpij = Pr
z1,...,zi,r,D

[
D(DPk1(x1; z1) ◦ · · · ◦ DPki−1

(xi−1; zi−1) ◦ DPj(xi; zi) ◦ r) = 1
]
,

and

trij = Pr
z1,...,zi−1,wi,r,D

[
D(DPk1(x1; z1) ◦ · · · ◦ DPki−1

(xi−1; zi−1) ◦ wi ◦ r) = 1
]
,

within additive accuracy±1/(216m) and negligible (in n,m, t) confidence error, where |wi| = 2n2
i+j,

and r is chosen so that the total length of the input becomes 2N2 + M . Let d̃p
i
j and t̃r

i
j be the

estimated values, respectively. Then, K determines ki as the maximum j ∈ [2ni] satisfying that

d̃p
i
j − t̃r

i
j ≤ 1/(54m) (if there is no such j, let ki = 0). For each i ∈ [m − 1], let ρi denote the

randomness used by K in the i-th round. Then, k1, . . . , ki are deterministically computable in
polynomial time (in n, m, and t) from x1, . . . , xi, 2N

2 + M , the description of D, and ρ1, . . . , ρi,
according to the procedure K.

Fix any ρ1, . . . , ρm such that all empirical estimations are performed successfully. Notice that
they determines each value of ki. Then, it must hold, for each i ∈ [m− 1],

dpiki − triki ≤ d̃p
i
ki − t̃r

i
ki +

2

216m
≤ 1

54m
+

1

108m
=

1

36m

and

dpiki+1 − triki+1 ≥ d̃p
i
ki+1 − t̃r

i
ki+1 −

2

216m
>

1

54m
− 1

108m
=

1

108m
.

21

Now we define km depending on k1, . . . , km−1 as above. For notational simplicity, let dpi = dpiki
for each i ∈ [m− 1], and let

dp0 := Pr
D,w1,...,wm

[D (w1 ◦ · · · ◦ wm) = 1]

dpm := Pr
D,z1,...,zm

[D (DPk1(x1; z1) ◦ · · · ◦ DPkm(xm; zm)) = 1]

trm := Pr
D,z1,...,zm−1,wm

[
D
(
DPk1(x1; z1) ◦ · · · ◦ DPkm−1(xm−1; zm−1) ◦ wm

)
= 1
]
.

Then, we can observe that

1

18
≤ dpm − dp0 =

m∑
i=1

(dpi − dpi−1) =

m∑
i=1

(dpi − tri)

= dpm − trm +

m−1∑
i=1

(dpi − tri) ≤ dpm − trm +m · 1

36m
.

By arranging the above,

dpm − trm ≥ 1

18
− 1

36
=

1

36
.

We will show that for a large enough polynomial p2, the following holds for each i ∈ [m− 1]:

pKp2(t,n,m)(xi | x<i, ρ<i) ≤ ki + 1 + log p2(n,m, t) (3)

and
pKp2(t,n,m)(xm | x<m, ρ<m) ≤ km + log p2(n,m, t) (4)

Assuming the inequalities above at first, we now proceed to derive the lemma.
The inequalities above imply that

pKp2(t,n,m)(xm | x<m, ρ<m)

≤ km + log p2(n,m, t)

= M −
m−1∑
i=1

ki + log p2(n,m, t)

≤M +m · (log p2(n,m, t) + 1) + log p2(n,m, t)−
m−1∑
i=1

pKp2(t,n,m)(xi | x<i, ρ<i).

By arranging the above, we obtain

m∑
i=1

pKp2(t,n,m)(xi | x<i, ρ<i) ≤M +m · (log p2(n,m, t) + 1) + log p2(n,m, t)

≤ pKt(x1, . . . , xm) + 6 +m · (log p2(n,m, t) + 1) + log p2(n,m, t)

≤ pKt(x1, . . . , xm) +m · log p3(n,m, t),

for a large enough polynomial p3.
Now, we take into account the choices of ρ1, . . . , ρm−1. Since the empirical estimations in K are

performed with negligible confidence error,

Pr
ρ1,...,ρm−1

[
m∑
i=1

pKp2(t,n,m)(xi | x<i, ρ<i) < pKt(x1, . . . , xm) +m · log p3(n,m, t)

]
≥ 1− negl(nm).

22

Thus, for t ≥ O(m+ n),

Eρ1,...,ρm−1

[
m∑
i=1

pKp2(t,n,m)(xi | x<i, ρ<i)

]
≤ pKt(x1, . . . , xm) +m · log p3(n,m, t) + 2nm · negl(nm)

≤ pKt(x1, . . . , xm) +m · log p4(n,m, t),

for a large enough polynomial p4.
From Proposition 4.10, for a large enough polynomial p5,

m∑
i=1

pKp5(t,n,m)(xi | x<i) ≤ Eρ1,...,ρm−1

[
m∑
i=1

pKp2(t,n,m)(xi | x<i, ρ<i)

]
+m ·O(log t).

By taking p as a large enough polynomial, we obtain that for t ≥ O(m+ n),

m∑
i=1

pKp(t)(xi | x<i) ≤
m∑
i=1

pKp5(t,n,m)(xi | x<i)

≤ Eρ1,...,ρm−1

[
m∑
i=1

pKp2(t,n,m)(xi | x<i, ρ<i)

]
+m ·O(log t)

≤ pKt(x1, . . . , xm) +m · log p4(n,m, t) +m ·O(log t)

≤ pKt(x1, . . . , xm) +m · log p(t).

Therefore, it suffices to show Equations (3) and (4). We prove them simultaneously for all
i ∈ [m] as follows.

Let ℓi = ki + 1 if i ∈ [m− 1], or ℓi = km if i = m. Then,

Pr
D,z1,...,zi,r

[
D
(
DPk1(x1; z1) ◦ · · · ◦ DPki−1

(xi−1; zi−1) ◦ DPℓi(xi; zi) ◦ r
)
= 1
]

− Pr
D,z1,...,zi−1,wi,r

[
D
(
DPk1(x1; z1) ◦ · · · ◦ DPki−1

(xi−1; zi−1) ◦ wi ◦ r
)
= 1
]
>

1

108m
. (5)

Based on the above, we construct the following algorithm Di that distinguishes DPℓi(xi; zi) from
truly random strings given D, x<i = (x1, . . . , xi−1), and ρ<i = (ρ1, . . . , ρi−1): On input y ∈
{0, 1}2n2

i+ℓi , the distinguisherDi first executesK with x<i and randomness ρ<i to obtain k1, . . . , ki−1,
and then outputs the same answer to

D
(
DPk1(x1; z1) ◦ · · · ◦ DPki−1

(xi−1; zi−1) ◦ y ◦ r
)
,

where zi ∼ {0, 1}2n
2
i , and r is selected so that the total length of the input becomes 2N2+M (note

that 2N2 +M is embedded into the description of D).
Then, Equation (5) is rewritten as

Pr
Di,zi

[Di (DPℓi(xi; zi)) = 1]− Pr
Di,wi

[Di (wi) = 1] ≥ 1

108m
.

From Lemma 4.15,
pKp6(t,n,m)(xi | Di) ≤ ℓi + log p6(t, n,m),

for a large enough polynomial p6. Thus, by taking p2 large enough,

pKp2(t,n,m)(xi | x<i, ρ<i) ≤ pKp3(t,n,m)(xi | Di) + |D|+O(log nm)

≤ ℓi + log p2(t, n,m),

as desired.

23

6 Complexity-Theoretic Inductive Inference

In this section, we prove the main theorem.

Theorem 6.1. If GapKt-vs-K ∈ pr-BPP, then there exists a polynomial-time randomized algorithm
L such that for every n,m, s, t, ϵ−1, δ−1 ∈ N and every s-size randomized Turing machine Π that
produces at least m binary strings x1, . . . , xm, . . . ∈ {0, 1}n in t (≥ s) time, if m ≥ O(sϵ−2δ−1), then

Pr
i,x<i

[
∆tv

(
L

(
x<i; 1

⟨n,m,s,t,ϵ−1,δ−1,tδ
−1 ⟩
)
, Xi|x<i

)
≤ ϵ

]
≥ 1− δ,

where i ∼ [m], and Xi|x<i represents the conditional distribution of xi given the previous samples
are x<i.

6.1 Technical Lemmas

We begin by proving the two technical lemmas that underpin our analysis.

Lemma 6.2 (Averaging Lemma for Computational Depth). If GapKt-vs-K ∈ pr-BPP, then there
exist a constant c and a polynomial τ such that for every n,m, t, δ−1 ∈ N, and every randomized
Turing machine Π that produces x1, . . . , xm ∈ {0, 1}≤n in time tΠ (≥ |Π|), if t ≥ τ(tΠ) and m ≥
(qcdt

1/c
(Π) + c log δ−1)/ log t, then

Pr
i∼[m],x1,...,xi

[
qcdt(xi | x<i) ≤ cδ−1 log t

]
≥ 1− δ.

Proof. Without loss of generality, we assume that n = maxi |xi|.
Let p be the polynomial in Lemma 5.1, c0 be the constant in Proposition 4.13, p0 be the

polynomial in Lemma 4.12, and p1 be the polynomial in Lemma 4.16. Without loss of generality,
we assume that any t ≥ τ(tΠ) satisfies p

−1(t/c0) ≥ O(n+m) and p−1
1 (p−1

0 (p−1(t/c0)/2)) ≥ t1/c by
taking τ and c large enough (notice that tΠ ≥ n+m is always required for Π to output x1, . . . , xm).

From Lemma 4.16, with probability at least 1− δ/2 over the choice of x1, . . . , xm ← Π,

qcdp
−1
0 (p−1(t/c0)/2)(x1 ◦ · · · ◦ xm) ≤ qcdp

−1
1 (p−1

0 (p−1(t/c0)/2))(Π)

≤ qcdt
1/c

(Π) +O(log tδ−1),

where we used p−1
1 (p−1

0 (p−1(t/c0)/2)) ≥ t1/c. Below, we consider such x1, . . . , xm.
From Lemma 5.1 and the inequalities above,

m∑
i=1

pKt/c0(xi | x<i)

≤ pKp−1(t/c0)(x1, . . . , xm) +m ·O(log t)

≤ pKp−1(t/c0)/2(x1 ◦ · · · ◦ xm) +m ·O(log t) +

m∑
i=1

O(log |xi|)

≤ pKp−1(t/c0)/2(x1 ◦ · · · ◦ xm) +m ·O(log t)

≤ qp
−1
0 (p−1(t/c0)/2)(x1 ◦ · · · ◦ xm) +m ·O(log t)

≤ qcdp
−1
0 (p−1(t/c0)/2)(x1 ◦ · · · ◦ xm) + K(x1, . . . , xm) +m ·O(log t)

≤ qcdt
1/c

(Π) + K(x1, . . . , xm) +O(log δ−1) +m ·O(log t)

24

≤ qcdt
1/c

(Π) + K(x1, . . . , xm | t/c0) +O(log δ−1) +m ·O(log t)

≤ qcdt
1/c

(Π) +
m∑
i=1

K(xi | x<i, t/c0) +O(log δ−1) +m ·O(log t).

By rearranging the above, we obtain that for any large enough constant c1 > 0 and any m ≥
(qcd1/c(Π) + c1 log δ

−1)/ log t,

Ei∼[m]

[
pKt/c0(xi | x<i)−K(xi | x<i, t/c0) + log(t/c0)

]
=

1

m

m∑
i=1

(
pKt/c0(xi | x<i)−K(xi | x<i, t/c0)

)
+ log(t/c0)

≤ qcdt
1/c

(Π) +O(log δ−1) +m ·O(log t)

m

≤ qcdt
1/c

(Π) +O(log δ−1)

m
+O(log t)

≤ c1 log t.

Since pKt(xi | x<i)−K(xi | x<i, t/c0)+log(t/c0) is always nonnegative from Lemma 4.9, Markov’s
inequality implies that

Pr
i∼[m]

[
pKt/c0(xi | x<i)−K(xi | x<i, t/c0) + log(t/c0) ≤ c1δ

−1 log t
]
≥ 1− δ.

We observe that if the event above is satisfied, then from Proposition 4.13,

qt(xi | x<i)−K(xi | x<i) ≤ pKt/c0(xi | x<i)−K(xi | x<i, t/c0) +O(log t)

≤ c1δ
−1 log t+O(log t).

By taking the constant c large enough, qcdt(xi | x<i) ≤ c ·δ−1 log t. Thus, we obtain the lemma.

Indeed, we use Lemma 6.2 in the following form.

Lemma 6.3. If GapKt-vs-K ∈ pr-BPP, then there exist a constant c and a polynomial τ such
that for every n,m, t, s, δ−1 ∈ N and every s-size randomized Turing machine Π that produces
x1, . . . , xm ∈ {0, 1}≤n in time tΠ (≥ s), if t ≥ τ(tΠ) and m ≥ (s+ c log δ−1)/ log t, then

Pr
i∼[m],x1,...,xi

[
qcdt(xi | x<i) ≤ cδ−1 log t

]
≥ 1− δ.

Proof. This follows directly from Lemma 6.2, noting that for t1/c ≥ O(tΠ) ≥ O(s), we have

qcdt
1/c

(Π) ≤ qt
1/c

(Π) ≤ s+O(1).

We now turn to establishing the performance of our inference rule.

Lemma 6.4 (Universal Extrapolation with Restricted Context). If GapKt-vs-K ∈ pr-BPP, then
there exist a constant c and a polynomial p satisfying the following for every n, s, b, w ∈ N and
every z ∈ {0, 1}∗: Let Π be an s-size randomized Turing machine that takes z as advice6 and

6While the advice z is not needed for the results in this work, we state the lemma in its general form to avoid
reproving it in future applications, such as learning involving prior knowledge z.

25

produces at least b ·w binary strings x1, . . . , xbw, . . . ∈ {0, 1}n in tΠ (≥ s) time. For each i ∈ [b], let
x̄i = x(i−1)w+1 ◦ · · · ◦ xiw. Then, for any t ∈ N with t ≥ p(tΠ + |z|),

Ei∼[b],j∼[w]

[
KL
(
Xi

j |X̄
≤i
<j

∥∥∥Qt,z,X̄<i

[(j−1)n+1:jn]|Q
t,z,X̄<i

[(j−1)n]

)]
≤ 1

w
·

(
c(s+ qcdt

1/c
(z))

b
+ c log t

)
,

where X̄<i, X̄i
<j, and X̄i

j represent distributions of x̄1 ◦ · · · ◦ x̄i−1, x(i−1)w+1 ◦ · · · ◦ x(i−1)w+j−1, and

x(i−1)w+j chosen according to Π(z), respectively, and X̄≤i
<j := X̄<i ◦ X̄i

<j.

In particular, if b ≥ (s+ qcdt
1/c

(z)))/ log t and w ≥ 2cϵ−1δ−1 log t for ϵ−1, δ−1 ∈ N,

Pr
i,x̄<i,j,xi

<j

[
KL
(
Xi

j |x̄
≤i
<j

∥∥∥Nextn (x̄i<j ; Q
t,z,x̄<i

))
≤ ϵ
]
≥ 1− δ,

where i ∼ [b], j ∼ [w], x̄<i ∼ X̄<i, x̄i<j ∼ X̄i
<j, x̄≤i

<j := x̄<i ◦ x̄i<j, and Xi
j |x̄

≤i
<j represents the

conditional distribution of x(i−1)w+j given X̄≤i
<j = x̄≤i

<j.

Proof. Let c0 be the constant in Proposition 4.13, p0 be the polynomial in Lemma 5.1, and p1 be
the polynomial in Lemma 4.12.

Without loss of generality, we assume that t/c0 ≥ O(w + n+ |z|), p−1
0 (t/c0) ≥ O(bw + n+ |z|),

and p−1
0 (t/c0)/4 ≥ p1(t

1/c) for any t ≥ p(tΠ + |z|) (notice that tΠ ≥ bwn must hold for Π to output
bw strings of each length n) by taking p and c large enough relative to p0, p1, c0, and the hidden
constant in O(·).

From Lemma 5.1, we obtain that

pKt/c0(z) +

b∑
i=1

pKt/c0(x̄i | z, x̄<i) ≤ pKp−1
0 (t/c0)(z, x̄1, . . . , x̄b) + b ·O(log t)

≤ pKp−1
0 (t/c0)/4(x̄1, . . . , x̄b | z) + pKp−1

0 (t/c0)/4(z) + b ·O(log t).

In addition, we assume that p is enough large so that any t ≥ p(tΠ + |z|) satisfies that the time
bound p−1

0 (t/c0)/4 is large enough for optimal coding for pK (Theorem 4.11). Then, we obtain

pKp−1(t/c0)/4(x̄1, . . . , x̄b | z) ≤ O(s) +O(log t)− log Pr
[
(X̄1, . . . , X̄b) = (x̄1, . . . , x̄b)

]
= O(s) +O(log t)−

b∑
i=1

log Pr
[
X̄i = x̄i

∣∣X̄<i = x̄<i
]
.

From the two inequalities above and Proposition 4.13, we have

b∑
i=1

(
qt(x̄i | z, x̄<i) + log Pr

[
X̄i = x̄i

∣∣X̄<i = x̄<i
])

≤
b∑

i=1

(
pKt/c0(x̄i | z, x̄<i) + log Pr

[
X̄i = x̄i

∣∣X̄<i = x̄<i
])

+ b ·O(log t)

≤ O(s) + pKp−1
0 (t/c0)/4(z)− pKt/c0(z) + b ·O(log t).

From Lemma 4.9, we have

K(z) ≤ K(z | t/c0) +O(log t) ≤ pKt/c0(z) +O(log t).

26

From Lemma 4.12 and p−1
0 (t/c0)/4 ≥ p1(t

1/c),

pKp−1
0 (t/c0)/4(z) ≤ pKp1(t1/c)(z) ≤ qt

1/c
(z) +O(log t).

The inequalities above imply

pKp−1
0 (t/c0)/4(z)− pKt/c0(z) ≤ qt

1/c
(z)−K(z) +O(log t) = qcdt

1/c
(z) +O(log t).

Therefore, we obtain

b∑
i=1

(
qt(x̄i | z, x̄<i) + log Pr

[
X̄i = x̄i

∣∣X̄<i = x̄<i
])

≤ O(s) + pKp−1
0 (t/c0)/4(z)− pKt/c0(z) + b ·O(log t)

≤ O(s) + qcdt
1/c

(z) + b ·O(log t).

Notice that

qt(x̄i | z, x̄<i) + log Pr
[
X̄i = x̄i

∣∣X̄<i = x̄<i
]
= log

Pr
[
X̄i = x̄i

∣∣X̄<i = x̄<i
]

Pr[Qt,z,x̄<i = x̄i]
.

Thus, by taking expectation over X̄1, . . . , X̄b, we get

b∑
i=1

KL
(
X̄i|X̄<i

∥∥∥Qt,z,X̄<i
)
≤ O(s) + qcdt

1/c
(z) + b ·O(log t).

By taking a large enough constant c > 0,

Ei∼[b]

[
KL
(
X̄i|X̄<i

∥∥∥Qt,z,X̄<i
)]

=
1

b

b∑
i=1

KL
(
X̄i|X̄<i

∥∥∥Qt,z,X̄<i
)
≤ c(s+ qcdt

1/c
(z))

b
+ c log t. (6)

For each i ∈ [b], we apply the chain rule for KL divergence and obtain

KL
(
X̄i|X̄<i

∥∥∥Qt,z,X̄<i
)
=

w∑
j=1

KL
(
Xi

j |X
≤i
<j

∥∥∥Qt,z,X̄<i

[(j−1)n+1:jn]|Q
t,z,X̄<i

[(j−1)n]

)
.

Along with Equation (6), we derive the first part of the lemma as follows:

Ei∼[b],j∼[w]

[
KL
(
Xi

j |X̄
≤i
<j

∥∥∥Qt,z,X̄<i

[(j−1)n+1:jn]|Q
t,z,X̄<i

[(j−1)n]

)]
=

1

w
· Ei∼[b]

 w∑
j=1

KL
(
Xi

j |X̄
≤i
<j

∥∥∥Qt,z,X̄<i

[(j−1)n+1:jn]|Q
t,z,X̄<i

[(j−1)n]

)
=

1

w
· Ei∼[b]

[
KL
(
X̄i|X̄<i

∥∥∥Qt,z,X̄<i
)]

≤ 1

w
·

(
c(s+ qcdt

1/c
(z))

b
+ c log t

)

Next, we derive the second part of the lemma from the above.

27

If b ≥ (s+ qcdt
1/c

(z))/ log t and w ≥ 2cϵ−1δ−1 log t are satisfied for ϵ−1, δ−1 ∈ N, then

1

w
·

(
c(s+ qcdt

1/c
(z))

b
+ c log t

)
≤ ϵδ

2c log t
·

(
c(s+ qcdt

1/c
(z))

(s+ qcdt
1/c

(z))/ log t
+ c log t

)
= ϵδ.

Therefore,

Ei∼[b],j∼[w]

[
KL
(
Xi

j |X̄
≤i
<j

∥∥∥Qt,z,X̄<i

[(j−1)n+1:jn]|Q
t,z,X̄<i

[(j−1)n]

)]
≤ ϵδ.

Notice that, by the definition of conditional KL divergence,

KL
(
Xi

j |X̄
≤i
<j

∥∥∥Qt,z,X̄<i

[(j−1)n+1:jn]|Q
t,z,X̄<i

[(j−1)n]

)
= Ex̄<i,x̄i

<j

[
KL
(
Xi

j |x̄
≤i
<j

∥∥∥Nextn (x̄i<j ; Q
t,z,x̄<i

))]
.

Since KL divergence is always nonnegative, by Markov’s inequality,

Pr
i,x̄<i,j,xi

<j

[
KL
(
Xi

j |x̄
≤i
<j

∥∥∥Nextn (x̄i<j ; Q
t,z,x̄<i

))
≤ ϵ
]
≥ 1− δ,

as desired.

6.2 Proof of Inductive Inference

Now, we present the proof of the main theorem. Our argument relies on the following key lemma.

Lemma 6.5 (Universal Extrapolation Lemma). If there is no auxiliary-input one-way function,
then there exists a randomized polynomial-time algorithm UE such that for all k, t, ϵ−1, α ∈ N and
all z, x ∈ {0, 1}∗ with qcdt(x | z) ≤ α,

∆tv

(
UE
(
x; z, 1⟨k,t,ϵ

−1,2α⟩
)
,Nextk

(
x; Qt,z

))
≤ ϵ.

Proof. The proof is the same as that of [HN23, Theorem 8.1] since it holds even in the presence
of auxiliary inputs (i.e., advice). Thus, we refer the reader to [HN23, Section 8] for a complete
proof.

Proof of Theorem 6.1. Let p0 and c0 be the maximum of the polynomials and constants in Lem-
mas 4.17, 6.3 and 6.4, respectively. For each t ∈ N, let t′ := p0(t) and t′′ := p0(t

′) below. Without
loss of generality, we assume that, t′′ ≥ t′ ≥ 2, c0 ≥ 1, and c0 log t

′ ≥ log t′′ for each t.
For each n,m, s, t, ϵ−1, δ−1 ∈ N with m ≥ 34c20 · sϵ−2δ−1, let b = ⌈2s/ log t′⌉. We also define

w ∈ N as the largest integer such that b · w ≤ m. Let m̃ := b · w (≤ m). The proof is based on the
context-restricting universal extrapolation as in Lemma 6.4 on m̃ strings x1, . . . , xm̃.

Below, we assume that c0 log δ
−1 ≤ s. Otherwise, 2s ≤ δ−c = poly(δ−1). In this case, we can use

universal extrapolation without any advice that works in time poly(2s, ϵ−1) ≤ poly(δ−1, ϵ−1) (this
is exactly the same setting as [HN23]) to extrapolate a prefix string produced by an s-size program
under Qt with statistical error ϵ.

We first verify that a random position i ∼ [m] almost falls in [m̃] (thus ignoring xm̃+1, . . . , xm
does not much affect the confidence error). Since m < b(w + 1) = m̃+ b, we have

Pr
i∼[m]

[i > m̃] =
m− m̃

m
<

b

m
≤
(

2s

log t′
+ 1

)
· 1

34c20 · sϵ−2δ−1
≤ δ

17c20ϵ
−2 log t′

+
δ

34c20 · sϵ−2
≤ 3

34
δ.

Since GapKt-vs-K ∈ pr-BPP, there is no auxiliary-input one-way function by Lemma 4.6 and
thus there exists the polynomial-time randomized algorithm UE in Lemma 6.5.

28

Now, we present the construction of the algorithm L based on UE. On input x<i and parameters
n,m, s, t, ϵ−1, δ−1, tδ

−1
(given in unary), the algorithm L first calculates t′, t′′, w, b, m̃ as above. If

i > m̃, the algorithm L halts with arbitrary message (we do not care this case as discussed above).
Otherwise if i ≤ m̃, the algorithm L calculates the unique pair (i′, j′) ∈ [b] × [w] such that i =
(i′ − 1) · w + j′ and outputs a sample from

UE

(
x̄i

′
<j′ ; x̄

<i′ , 1⟨n,t
′′,2ϵ−1,2c0 t′·t′3c0δ−1 ⟩

)
,

where x̄i
′
<j′ = x(i′−1)·w+1 ◦ · · · ◦ x(i′−1)·w+j′−1 and x̄<i′ = x1 ◦ · · · ◦ x(i′−1)·w (notice that x<i =

x̄<i′ ◦ x̄i′<j′). Notice that t′3c0δ
−1

= poly(tδ
−1
) since t′ = p0(t).

It is easily verified that L halts in polynomial time in |x<i| and the parameters n,m, s, t, ϵ−1, δ−1, tδ
−1
.

Below, we verify the correctness under the condition i ≤ m̃. Under this condition, a random choice
of i is regarded as random choices of (i′, j′) ∼ [b]× [w].

We first observe the lower bound on w as follows: Since (w + 1)b > m,

w >
m

b
− 1 ≥ 34c20 · sϵ−2δ−1

2s/ log t′ + 1
− 1 ≥ 16c20ϵ

−2δ−1 log t′.

Since b ≥ s/ log t′ ≥ s/ log t′′ and w ≥ 16c20ϵ
−2δ−1 log t′ ≥ 2c0 · 2ϵ−2 · 4δ−1 · log t′′, Lemma 6.4

implies

Pr
i′,x̄<i′ ,j′,xi′

<j′

[
KL
(
Xi|x<i

∥∥∥Nextn (x̄i′<j′ ; Q
t′′,x̄<i′

))
≤ ϵ2

2

]
≥ 1− δ

4
. (7)

If the event above occurs, it holds that

∆tv

(
Nextn

(
x̄i

′
<j′ ; Q

t′′,x̄<i′
)
, Xi|x<i

)
≤
√
2−1 ·KL

(
Xi|x<i

∥∥∥Nextn (x̄i′<j′ ; Q
t′′,x̄<i′

))
≤ ϵ

2
,

where the first inequality follows from Pinsker’s inequality.
In addition, since b ≥ 2s/ log t′ ≥ (s + c0 log δ

−1)/ log t′, Lemmas 4.17 and 6.3 implies that for
every j′,

Pr
i′,x̄<i′ ,xi′

<j′

[
qcdt

′′
(xi

′
<j′ | x̄<i) ≤ 3c0δ

−1 log t′ + log t′ + c0

]
≥ 1− δ

3
. (8)

When this occurs, by Lemma 6.5,

∆tv

(
UE

(
x̄i

′
<j′ ; x̄

<i′ , 1⟨n,t
′′,2ϵ−1,2c0 t′·t′3c0δ−1 ⟩

)
,Nextn

(
x̄i

′
<j′ ; Q

t′′,x̄<i′
))
≤ ϵ

2
.

Therefore, if both the events in Equations (7) and (8) occur,

∆tv

(
L

(
x<i; 1

⟨n,m,s,t,ϵ−1,δ−1,tδ
−1 ⟩
)
, Xi|x<i

)
≤ ϵ

2
+

ϵ

2
= ϵ.

By the union bound, we conclude that

Pr
i,x<i

[
∆tv

(
L

(
x<i; 1

⟨n,m,s,t,ϵ−1,δ−1,tδ
−1 ⟩
)
, Xi|x<i

)
≤ ϵ

]
≥ 1−

(
3

34
δ +

δ

4
+

δ

3

)
> 1− δ.

29

7 Learning Distributions in Heuristica

In the following sections, we present the implications of Theorem 6.1 in learning distributions.

7.1 Learning Adaptively Changing Distributions for All Initial States

One intermediate consequence is learning adaptively changing distributions in the worst-case setting.
The learning model was initiated by Naor and Rothblum [NR06] in the average-case setting and
extended to the worst-case setting by Hirahara and Nanashima [HN23]. To state the learnability
result formally, we introduce some notations and define their learning model.

An adaptively changing distribution (ACD) is a randomized Turing machine D satisfying the
following syntax: For every sample size n ∈ N,

1. D takes two inputs 1n and σ ∈ {0, 1}∗, where σ is called an internal state and initialized by
some initial state s0 ∈ {0, 1}∗.

2. For any σ ∈ {0, 1}∗, the algorithm D(1n, σ) randomly generates a sample x ∈ {0, 1}∗ and a
next state s′ ∈ {0, 1}∗ (x and s′ can be correlated).

Then, any ACD D determines an example oracle EXn,s0,D for each sample size n ∈ N and each
initial state s0, as follows:

1. EXn,s0,D has a hidden internal state σ, which is initialized by s0.

2. For each query access (without input), EXn,s0,D generates (x, s′)← A(1n, σ) and returns x as
a sample. Then, EXn,s0,D updates the internal state σ as σ := s′.

For any functions s(n) and t(n), we say that an ACD D is t(n)-time samplable and has an
s(n)-bit initial state if for every n ∈ N and every initial state σ0 ∈ {0, 1}≤s(n), for every possible
state σ in the execution with initial state σ0, D(1n, σ) halts in t(n) time (i.e., σ ∈ {0, 1}≤t(n)).

In learning ACD D, a learner has query access to EXn,s0,D for a given parameter 1n, where s0
is a hidden initial state. The goal of the learner is to select some stage i ≥ 0 and, after observing
the first i samples x1, . . . , xi from EXn,s0,D, to statistically simulate the conditional distribution of
the next sample xi+1 given the initial state s0 and x1, . . . , xi. For convenience, we use the notation
Ds0

i (x1, . . . , xi) to refer to the conditional distribution that the learner attempts to simulate at stage
i.

Definition 7.1 (Learning ACDs). Let s(n) and t(n) be polynomials. We say that t(n)-time sam-
plable ACDs of s(n)-bit initial state are learnable if there exists a randomized algorithm L such that
for every t(n)-time samplable ACD D of s(n)-bit initial state, every sufficiently large n ∈ N, every
ϵ−1, δ−1 ∈ N, the algorithm L satisfies the following with probability at least 1− δ over the choice of
samples from EXn,s0,D and randomness for L:

1. LEXn,s0,D(1n, 1ϵ
−1
, 1δ

−1
) obtains samples x1, x2, . . . , from EXn,s0,D.

2. After obtaining i samples x1, . . . , xi (where i is selected by L), LEXn,s0,D(1n, 1ϵ
−1
, 1δ

−1
) outputs

some circuit h as a hypothesis without additional access to EXn,s0,D.

3. The hypothesis h satisfies ∆tv(D
s0
i (x1, . . . , xi), h(r)) ≤ ϵ, where r represents a uniformly ran-

dom seed for h.

We define the sample complexity m(n, ϵ, δ) as the upper bound of the number of oracle accesses by
L(1n, 1ϵ

−1
, 1δ

−1
).

30

The implications for learning ACDs are stated below, restating Corollary 2.3 from Section 2.

Theorem 7.2. If GapKt-vs-K ∈ pr-BPP, then for all polynomials s(n) and t(n), all t(n)-time
samplable ACDs of s(n)-bit initial state are learnable in time (nϵ−1δ−1)O(δ−1) with sample complexity
O(s(n) · ϵ−2δ−1).

Proof. The theorem follows from Theorem 6.1. Let L be the algorithm in Theorem 6.1. We consider
a program Π of size s′ = O(s+log n) that embeds the target initial state s0 ∈ {0, 1}≤s, a description
of the sampler D, and the parameter n ∈ N (in binary). The program Π simulates the internal
memory state and produces outputs from EXn,s0,D at each round. Then, we run L on the distribution
generated by Π.

The learner for ACDs just selects the round i uniformly at random from [m] wherem = cs′ϵ−2δ−1

for a large enough universal constant c > 0, takes the samples x1, . . . , xi−1 from its oracle, and
executes L on x<i and parameters n,m, s′, t, ϵ−1, δ−1, tδ

−1
, where the time-bound t = poly(n, s,m) =

poly(n, ϵ−1, δ−1) is set to be large enough so that Π can produce at least m samples. Then by
Theorem 6.1, the total variation distance between the distributions of L and the i-th sample given
x1, . . . , xi−1 is at most ϵ with probability at least 1 − δ over x<i and i. Thus, the learner that
outputs a description of L that embeds x<i and the parameters satisfies the requirement of learning
ACDs.

The sample complexity is at most O((s+ log n)ϵ−2δ−1) = O(sϵ−2δ−1), where we assumed that
log n ≤ s. Otherwise, 2s ≤ poly(n) holds and we can learn every ACDs of s-bit initial states just by
executing UE without any advice, taking time in poly(2s) ≤ poly(n).

7.2 Worst-Case Distributional Learning from Independent Samples

One natural and special case of learning ACDs is distributional learning, initiated by Kearns, Man-
sour, Ron, Rubinfeld, Schapire, and Sellie [KMRRSS94]. Here, the target of learning is an unknown
distribution over strings, and the task of the learner is, given independently and identically dis-
tributed samples from the target, to produce a description of a distribution (in the form of circuits)
that approximates the target with a small statistical error.

Since learning distributions from i.i.d. samples is regarded as a special case of learning ACDs
where the initial state will never change throughout the learning process, Theorem 7.2 shows that
all distributions samplable by a polynomial-time machine of description size s are learnable with
the same time and sample complexity. In this section, we improve the time complexity to polyno-
mial in n, ϵ−1 and δ−1 and sample complexity from O(sϵ−2δ−1) to O(sϵ−2 log δ−1) under the same
assumption that GapKt-vs-K ∈ pr-BPP.

First, we present the learning model formally.

Definition 7.3 (Distributional Learning [KMRRSS94]). Let D = {Dn} be a class of distributions,
where Dn is a set of distributions over {0, 1}n for each n ∈ N, and m : N× (0, 1]× (0, 1]→ N be a
function.

The class D is said to be distributionally learnable in polynomial time with query complexity
m(n, ϵ, δ) if there exists a polynomial-time oracle machine L such that for any n, ϵ−1, δ−1 ∈ N and
any distribution D ∈ Dn, the algorithm LD(1n, 1ϵ

−1
, 1δ

−1
) makes at most m(n, ϵ, δ) query access to

D and produces a description of circuit h such that ∆tv(h(r),D) ≤ ϵ, where r is a random seed,
with probability at least 1− δ over the choice of samples and randomness for L.

We now present the main result of this section, restated from Corollary 2.2 in Section 2.

31

Theorem 7.4. If GapKt-vs-K ∈ pr-BPP, then for all polynomials s(n) and t(n), all distributions
samplable by t(n)-time Turing machine of description length s(n) is distributionally learnable in
polynomial time with sample complexity O(s(n) · ϵ−2 log δ−1).

The improvement in time and sample complexity relies on the testability of the statistical dis-
tance between hypotheses, which is stated formally as follows:

Lemma 7.5. If there is no auxiliary-input one-way function, then there exists a polynomial-time
randomized algorithm ∆̃ such that for every description of circuits D0 and D1 and every ϵ−1, δ−1 ∈
N,

Pr
∆̃

[
∆̃(D0, D1; 1

ϵ−1
, 1δ

−1
) ∈ [∆tv(D0,D1)− ϵ,∆tv(D0,D1) + ϵ]

]
≥ 1− δ,

where D0 (resp. D1) is a distribution of D0(r) (resp. D1) for a random seed r.

We may call ϵ and δ above an accuracy error and confidence error, respectively.
The proof of the lemma above is based on the same technique as that developed in the proof

of [NR06, Theorem 4.1]. At a high level, we use the inverter for auxiliary-input functions to (dis-
tributionally) invert a function fD0,D1(b, r) = Db(r), where b ∼ {0, 1} and D0 and D1 are regarded
as auxiliary input. Then we empirically estimate how well a random label b ∼ {0, 1} is predictable
only from x ∼ Db(r) based on the (distributional) inverter and estimate the statistical distance
from the estimated success probability of the prediction. For the formal proof, see Appendix A.

Now, we prove Theorem 7.4 based on Lemma 7.5.

Proof of Theorem 7.4. We apply the same learning algorithm L as that of learning ACDs in The-
orem 7.2, where we set the parameters ϵL and δL for L as ϵL = ϵ/5 and δL = 1/4 with respect
to the parameter ϵ for distributional learning. Since distributional learning is a special case of
learning ACDs, L produces a sampler h whose distribution is statistically close to the target dis-
tribution D within total variation distance at most ϵ/5 with probability at least 3/4. Notice that
the time complexity of the learner is at most poly(n, ϵ−1) and the sample complexity is at most
m0 := m0(s, ϵ) = O(sϵ−2).

To reduce the confidence error from 1/4 to the given parameter δ < 1/4, we execute L repeatedly
and obtain N = ⌈32 ln δ−1⌉ hypotheses h1, . . . , hN by using independent choices of samples and
randomness of L. By Hoeffding’s inequality, with probability at least 1 − δ/2, the fraction of
hypotheses that approximate D within distance ϵ/5 is at least 3/4− 1/8 = 5/8. That is, a majority
of the hypotheses are desirable.

The remaining task is to identify one such good hypothesis. For this, we use the statistical
distance estimator ∆̃ from Lemma 7.5 below. For each i ∈ [N], let Hi denote the distribution
defined by hi(r), where r is a random seed.

By applying ∆̃ for every pair of (hi, hj) with i < j with accuracy error ϵ/5 and confidence error
δ/(2N2), we obtain the estimations δ̃i,j of ∆tv(Hi,Hj). Then, we identify the maximum set C ⊆ [N]
such that

i, j ∈ C and i < j =⇒ δ̃i,j ≤
3

5
ϵ.

by solving maximum clique problem in time O(2N) = poly(δ−1). Then, we let the learning algorithm
output hi for arbitrary i ∈ C.

By the union bound, all the estimations of ∆̃ are successfully performed with probability at
least 1 − δ/2. Thus, with probability at least 1 − δ, (i) |δ̃i,j − ∆tv(Hi,Hj)| ≤ ϵ/5 for each i < j,
and (ii) at least 5/8-fraction of i ∈ [N] satisfy ∆tv(Hi,D) ≤ ϵ/5. To show the correctness of the
algorithm, it suffices to show ∆tv(Hi,D) ≤ ϵ for all i ∈ C under these conditions.

32

Let G ⊆ [N] be the set of indices i such that ∆tv(Hi,D) ≤ ϵ/5. Thus, all i, j ∈ G with i < j
satisfy that

δ̃i,j ≤ ∆tv(Hi,Hj) +
ϵ

5
≤ ∆tv(Hi,D) + ∆tv(Hj ,D) +

ϵ

5
≤ 3

5
ϵ.

Since |G| > N/2, the set G must be contained in the maximum set C, i.e., G ⊆ C.
Select i ∈ C and j ∈ G ⊆ C arbitrarily. We evaluate ∆tv(Hi,D) as follows:

∆tv(Hi,D) ≤ ∆tv(Hi,Hj) + ∆tv(Hj ,D) ≤
(
δ̃i,j +

ϵ

5

)
+

ϵ

5
≤ 3

5
ϵ+

ϵ

5
+

ϵ

5
= ϵ,

which completes the proof.

8 Expected Loss Minimization in Heuristica

We discuss the consequence of our new inductive inference techniques for supervised learning.
Notations and Models. We use Y = {Yn}n∈N and A = {An}n∈N to refer to label and action

sets, respectively. In addition, we assume that for each n ∈ N, Yn = {0, 1}β(n) and An = {0, 1}α(n)
for polynomial-time computable functions β, α : N→ N. For example, in the standard case of binary
classification, α(n) = β(n) = 1 for all n ∈ N. In addition, letXn = {0, 1}n and Fn = {f : Xn → An}
for each n ∈ N. We define a loss function as a family of functions ℓ = {ℓn} such that ℓn : Yn×An →
R≥0 for each n ∈ N. For notational simplicity, we often drop the subscript n from An, Yn, ℓn when
n is clear in context.

The task of agnostic learning under a loss function ℓ is formulated as follows: A learner receives
a sample set, where each sample (x, y) ∈ Xn×Yn is drawn from an unknown distribution D. Then,
the learner produces a hypothesis h : Xn → An that approximates the best predictor in a concept
class C = {Cn}, where Cn ⊆ Fn, that minimizes the expected loss for unseen data in future,
specifically,

E(x,y)∼D [ℓ(y, h(x))] ≤ min
f∗∈Cn

E(x,y)∼D [ℓ(y, f∗(x))] + ϵ,

where ϵ ∈ (0, 1] is a given accuracy parameter.
Note that for An = Yn = {0, 1} and for the 0-1 loss defined as ℓ(y, a) = 1l{a ̸= y}, the requirement

above is paraphrased in the following familiar form:

Pr
(x,y)∼Dn

[h(x) ̸= y] ≤ min
f∗∈Cn

Pr
(x,y)∼Dn

[f∗(x) ̸= y] + ϵ.

In this work, we allow the learner to produce only hypotheses represented as randomized circuits,
to ensure their efficient computability. In addition, we consider the concept class as the whole class,
i.e., Cn = Fn for each n ∈ N.

The requirement above is easily extended to non i.i.d. cases, where the task of learner is given
samples (x1, b1), . . . , (xi−1, yi−1) generated from an unknown environment (they are positively cor-
related) and produces a hypothesis hi that minimizes the expected loss for the next i-th sample,
i.e.,

E(xi,yi) [ℓ(yi, h(xi))] ≤ min
f∗∈Cn

E(xi,yi) [ℓ(yi, f
∗(xi))] + ϵ.

Next, we introduce some properties on loss functions.
For γ : N → N, we say that a loss function ℓ is γ-bounded if ℓn(y, a) ∈ [0, γ(n)] for each n ∈ N

and each (y, a) ∈ Yn ×An. For instance, the 0-1 loss function is 1-bounded.

33

Definition 8.1 (Loss-Minimizer). We define a loss-minimizer M for a loss function ℓ as a ran-
domized oracle machine such that for every n, ϵ−1 ∈ N and every distribution Y over Yn,

EM,y∼Y

[
ℓ(y,MY(1n, 1ϵ

−1
))
]
≤ min

a∈An

Ey∼Y [ℓ(y, a)] + ϵ.

Based on the standard empirical estimation, we can observe that a natural class of loss functions,
including 0-1 loss, admits a polynomial-time loss-minimizer.

Proposition 8.2. If action sets are polynomial size (i.e., |An| ≤ poly(n)), then all γ-bounded
polynomial-time-coumutable loss functions admit polynomial-time loss-minimizers for all polynomi-
als γ(n).

For the formal proof of Proposition 8.2, see the proof of [HN23, Theorem 10.8].

8.1 Sequential Expected Loss Minimization

In this section, we prove that minimizing loss function according to the context-restricting universal
distribution indeed approximates the best predictor in the whole class F of predictors. As a result,
we will derive the following theorem.

Theorem 8.3. If GapKt-vs-K ∈ pr-BPP, then for every γ-bounded loss function ℓ that admits a
polynomial-time loss-minimizer, there exists a polynomial-time randomized algorithm P such that
for every n,m, s, t, ϵ−1, δ−1 ∈ N and every s-size randomized program Π that produces at least m
samples (x1, y1), . . . , (xm, ym), . . . ∈ Xn × Yn in t (≥ s) time, if m ≥ O(sϵ−2δ−1γ(n)2), then

Pr
i∼[m],(xy)<i

[
EP,(xi,yi) [ℓ(y, P (xi; (xy)<i, 1

param))] ≤ min
f∗∈Fn

E(xi,yi) [ℓ(yi, f
∗(xi))] + ϵ

]
≥ 1− δ,

where (xy)<i represents a sample set {(x1, y1), . . . , (xi−1, yi−1)} selected according to Π, and 1param :=

1⟨n,m,s,t,ϵ−1,δ−1,γ(n),tδ
−1 ⟩.

Note that Corollary 2.5 in Section 2 follows directly from Theorem 8.3, combined with Propo-
sition 8.2.

To prove the theorem, we begin by observing that minimizing loss with respect to a distribution
that is statistically close to the true label distribution still yields an approximation of the optimal
predictor.

Lemma 8.4. For every n,m, ϵ−1 ∈ N, every γ-bounded loss function ℓ, every loss-minimizer Mℓ

for ℓ, and every distributions X × Y and X × Ỹ over Xn × Yn, if

Ex∼X

[
∆tv(Ỹx,Yx)

]
≤ ϵ

8γ
,

where Yx and Ỹx are conditional distributions of Y and Ỹ given x ∼ X , respectively, then

EMℓ,(x,y)∼X×Y

[
ℓ(y,M Ỹx

ℓ (1n, 14ϵ
−1
))
]
≤ min

f∗∈Fn

E(x,y)∼X×Y [ℓ(y, f∗(x))] + ϵ.

34

Proof. The lemma is verified as the following calculation:

EMℓ,(x,y)∼X×Y

[
ℓ(y,M Ỹx

ℓ (1n, 14ϵ
−1
))
]

≤ Ex

[∑
y

Yx(y)EMℓ
[ℓ(y,M Ỹx

ℓ (1n, 14ϵ
−1
))]

]

≤ Ex

[∑
y

(∣∣∣Yx(y)− Ỹx(y)∣∣∣+ Ỹx(y))EMℓ
[ℓ(y,M Ỹx

ℓ (1n, 14ϵ
−1
))]

]

≤ γ · Ex

[∑
y

∣∣∣Yx(y)− Ỹx(y)∣∣∣]+ Ex

[
Ey∼Ỹx,Mℓ

[
ℓ(y,M Ỹx

ℓ (1n, 14ϵ
−1
))
]]

≤ γ · 2 · ϵ

8γ
+ Ex

[
Ey∼Ỹx,Mℓ

[
ℓ(y,M Ỹx

ℓ (1n, 14ϵ
−1
))
]]

≤ ϵ

4
+ Ex

[
min
a∈An

Ey∼Ỹx
[ℓ(y, a)] +

ϵ

4

]
≤ ϵ

2
+ Ex

[
Ey∼Ỹx,Mℓ

[
ℓ(y,MYx

ℓ (1n, 14ϵ
−1
))
]]

=
ϵ

2
+ Ex

[∑
y

Ỹx(y)EMℓ

[
ℓ(y,MYx

ℓ (1n, 14ϵ
−1
))
]]

≤ ϵ

2
+ Ex

[∑
y

(∣∣∣Yx(y)− Ỹx(y)∣∣∣+ Yx(y))EMℓ

[
ℓ(y,MYx

ℓ (1n, 14ϵ
−1
))
]]

≤ ϵ

2
+ γ · Ex

[∑
y

∣∣∣Yx(y)− Ỹx(y)∣∣∣]+ Ex

[∑
y

Yx(y)EMℓ

[
ℓ(y,MYx

ℓ (1n, 14ϵ
−1
))
]]

≤ ϵ

2
+ γ · 2 · ϵ

8γ
+ Ex

[
Ey∼Yx,Mℓ

[
ℓ(y,MYx

ℓ (1n, 14ϵ
−1
))
]]

≤ 3ϵ

4
+ Ex

[
min
a∈An

Ey∼Yx [ℓ(y, a)] +
ϵ

4

]
≤ Ex

[
min
a∈An

Ey∼Yx [ℓ(y, a)]

]
+ ϵ

= min
f∗∈Fn

E(x,y)∼X×Y [ℓ(y, f∗(x))] + ϵ.

Next, we apply the context-restricted universal extrapolation framework to construct a sampler
that approximates the label distribution needed in Lemma 8.4.

Lemma 8.5. If GapKt-vs-K ∈ pr-BPP, then there exists a polynomial-time randomized algorithm
L such that for every n,m, s, t, ϵ−1, δ−1 ∈ N and every s-size randomized program Π that produces
at least m pairs of strings (x1, y1), . . . , (xm, ym), . . . ∈ Xn × Yn in t (≥ s) time, if m ≥ O(sϵ−2δ−1),
then

Pr
i∼[m],(xy)<i

[
Exi

[
∆tv

(
L

(
(xy)<i, xi, 1

⟨n,s,t,ϵ−1,δ−1,tδ
−1 ⟩
)
,Yi|<i

)]
≤ ϵ

]
≥ 1− δ,

where (xy)<i represents ((x1, y1), . . . , (xi−1, yi−1)) selected according to Π, and Yi|<i represents the
distribution of yi given the previous strings (xy)<i and xi.

35

Since the proof of Lemma 8.5 closely mirrors that of Theorem 6.1, we defer it to Section 8.3.
We now complete the proof of Theorem 8.3 based on the lemmas established above.

Proof of Theorem 8.3. Let L be the algorithm in Lemma 8.5 and Mℓ be the polynomial-time loss-
minimizer for the loss function ℓ. Let γ := γ(n).

For given input xi, (xy)<i, and parameters n,m, s, t, ϵ−1, δ−1, γ, tδ
−1

(represented in unary), the
predictor P just executes Mℓ(1

n, 14ϵ
−1
), where P answers the query using samples from the distri-

bution Ỹ(xy)<i,xi
, defined as the output distribution of

L

(
(xy)<i, xi; 1

⟨n,s,t,8ϵ−1γ,δ−1,tδ
−1 ⟩
)
.

From Lemma 8.5, if m ≥ O(sϵ−2δ−1γ2), then

Pr
i∼[m],(xy)<i

[
Exi

[
∆tv

(
Ỹ(xy)<i,xi

,Yi|<i

)]
≤ ϵ

8γ

]
≥ 1− δ.

Under this event, from Lemma 8.4,

EMℓ,(xi,yi)

[
ℓ(yi,M

Ỹ(xy)<i,xi

ℓ (1n, 14ϵ
−1
))

]
≤ min

f∗∈Fn

E(xi,yi) [ℓ(yi, f
∗(xi))] + ϵ.

Thus, we conclude that

Pr
i∼[m],(xy)<i

[
EP,(xi,yi) [ℓ(y, P (xi; (xy)<i, 1

param))] ≤ min
f∗∈Fn

E(xi,yi) [ℓ(yi, f
∗(xi))] + ϵ

]
≥ 1− δ.

8.2 Example: Worst-Case Binary Classification with Independent Noise

In this section, we specifically apply Theorem 8.3 in the case of binary classification from i.i.d.
samples. The following is a restatement of Corollary 2.4 from Section 2.

Theorem 8.6. If GapKt-vs-K ∈ pr-BPP, then there exist a polynomial-time randomized oracle
machine L and a function m : N× N× (0, 1]× (0, 1]→ N with m(s, a, ϵ, δ) = O((s+ a)ϵ−2 log δ−1)
such that for all n, s, a, t, ϵ−1, δ−1 ∈ N and all distribution D = (X ,B) over {0, 1}n × {0, 1}, if

• the example distribution X is samplable by a t-time a-size randomized program, and

• the label distribution B given x ∼ X is statistically equivalent to a distribution of f(x) + ξ,
where ξ ∼ Ber(η), for some function f : {0, 1}n → {0, 1} computable by a t-time s-size program
and parameter η ∈ [0, 1/2],

then

Pr
Sm,L

[
h← L(Sm; 1⟨n,ϵ

−1,δ−1⟩, 1⟨s,a,t⟩) and Pr
(x,b)∼D,h

[h(x) ̸= b] ≤ η + ϵ

]
≥ 1− δ,

where Sm is a sample set of size m(s, a, ϵ, δ) = O((s+ a) · ϵ−2 log δ−1) drawn i.i.d. from D.

Proof. It suffices to construct a learning algorithm L with time complexity (nϵ−1δ−1sat)O(δ−1) and
sample complexity O((s+a) ·ϵ−2δ−1). The improvement to polynomial time and sample complexity
O((s+a) · ϵ−2 log δ−1) follows from the well-known technique of [HKLW88]: we run the base learner

36

repeatedly with a constant confidence parameter for O(log δ−1) times, empirically evaluate the error
of each hypothesis, and output the best-performing one.

Without loss of generality, we assume that log ϵ−1 ≤ s. Otherwise, 2s < ϵ−1 and we can find the
best hypothesis of description size s by exhaustive search in time O(2s) ≤ poly(ϵ−1). Based on the
same argument, we also assume that log δ−1 ≤ s and log a ≤ s.

Let η̃ ∈ [0, 1/2] be the real value specified with the first 7s bits in the binary representation of
η ∈ [0, 1/2]. Then, it holds that η − η̃ ≤ 2−7s.

Let P denote the predictor guaranteed by Theorem 8.3 when applied with the 0-1 loss function
(which admits a polynomial-time loss-minimizer by Proposition 8.2). We consider the distribution
D̃ of (x, b), where x ∼ X and b = f(x)⊕ ξ for ξ ∼ Ber(η̃). Notice that D̃ is samplable by O(t+ s)-
time program Π̃ specified with the sampler for X , f , and η̃. Namely, for an absolute constant c > 0,
Π̃ is described in c(s+ a) bits, and m = O((s+ a)ϵ−2δ−1) samples are sufficient for the predictor P
to succeed to minimize the expected loss under samples generated from D̃ with accuracy ϵ/2 and
confidence δ/2. Let t̃ be the time required for Π̃ to generate m samples. Let τ be a large enough
polynomial such that τ(n, ϵ−1, δ−1, s, a, t) ≥ t̃ for any choice of n, ϵ−1, δ−1, s, a, t.

Furthermore, it is easily checked that ∆tv(D, D̃) ≤ 2−7s as

∆tv(D, D̃) =
1

2

∑
x,b

X (x)

∣∣∣∣∣ Pr
ξ∼Ber(η)

[ξ ⊕ f(x) = b]− Pr
ξ̃∼Ber(η̃)

[ξ̃ ⊕ f(x) = b]

∣∣∣∣∣ = |η − η̃| ≤ 2−7s.

Now, we present the learner L. On given parameters n, ϵ−1, δ−1, s, a, t ∈ N and m samples
Sm = {(x1, b1), . . . , (xm, bm)} from D, the learner L selects i ∼ [m] and outputs the hypothesis

h(x) := P (x; (xb)<i, 1
param),

where (xb)<i = {(x1, b1), . . . , (xi−1, bi−1)} and

param := ⟨n,m, c(s+ a), τ(n, ϵ−1, δ−1, s, a, t), 2ϵ−1, 2δ−1, 1, τ(n, ϵ−1, δ−1, s, a, t)2δ
−1⟩.

First, suppose that the set S̃m ofm samples are generated from D̃ instead of the true distribution
D. In this case, L executes P in the setting where the requirements in Theorem 8.3 are satisfied,
resulting in

Pr
S̃m,L

[
Pr

(x,b)∼D̃,h
[h(x) ̸= b] ≤ min

f̃∗∈Fn

Pr
(x,b)∼D̃

[
f̃∗(x) ̸= b

]
+

ϵ

2

]
≥ 1− δ

2
.

From the triangle inequality,

∆tv(Dm, D̃m) ≤ m ·∆tv(D, D̃) ≤
O((s+ a)ϵ−2δ−2)

27s
≤ O(s) · 25s

27s
≤ 1

2 · 2s
≤ δ

2
,

for all large enough s ∈ N.
Thus,

Pr
Sm∼Dm,L

[
Pr

(x,b)∼D̃,h
[h(x) ̸= b] ≤ min

f̃∗∈Fn

Pr
(x,b)∼D̃

[
f̃∗(x) ̸= b

]
+

ϵ

2

]
(9)

≥ Pr
S̃m∼D̃m,L

[
Pr

(x,b)∼D̃,h
[h(x) ̸= b] ≤ min

f̃∗∈Fn

Pr
(x,b)∼D̃

[
f̃∗(x) ̸= b

]
+

ϵ

2

]
−∆tv(Dm, D̃m)

≥ 1− δ

2
− δ

2
= 1− δ.

37

Let h be a hypothesis satisfying the event in (9) and f∗ ∈ Fn be the best predictor under D,
i.e.,

Pr
(x,b)∼D

[f∗(x) ̸= b] = min
f∗∈Fn

Pr
(x,b)∼D

[f∗(x) ̸= b] .

Then,

Pr
(x,b)∼D,h

[h(x) ̸= b] ≤ Pr
(x,b)∼D̃,h

[h(x) ̸= b] + ∆tv(D, D̃)

≤ min
f̃∗∈Fn

Pr
(x,b)∼D̃

[
f̃∗(x) ̸= b

]
+

ϵ

2
+ ∆tv(D, D̃)

≤ Pr
(x,b)∼D̃

[f∗(x) ̸= b] +
ϵ

2
+ ∆tv(D, D̃)

≤ Pr
(x,b)∼D

[f∗(x) ̸= b] +
ϵ

2
+ 2∆tv(D, D̃)

= min
f∗∈Fn

Pr
(x,b)∼D

[f∗(x) ̸= b] +
ϵ

2
+ 2∆tv(D, D̃)

≤ min
f∗∈Fn

Pr
(x,b)∼D

[f∗(x) ̸= b] +
ϵ

2
+

2

27s

≤ min
f∗∈Fn

Pr
(x,b)∼D

[f∗(x) ̸= b] + ϵ

≤ Pr
(x,b)∼D

[f(x) ̸= b] + ϵ

= η + ϵ.

Therefore, we conclude that

Pr
Sm∼Dm,L

[
Pr

(x,b)∼D,h
[h(x) ̸= b] ≤ η + ϵ

]
≥ 1− δ.

8.3 Proof of Lemma 8.5

Lemma (A reminder of Lemma 8.5). If GapKt-vs-K ∈ pr-BPP, then there exists a polynomial-time
randomized algorithm L such that for every n,m, s, t, ϵ−1, δ−1 ∈ N and every s-size randomized
program Π that produces at least m pairs of strings (x1, y1), . . . , (xm, ym), . . . ∈ Xn × Yn in t (≥ s)
time, if m ≥ O(sϵ−2δ−1), then

Pr
i∼[m],(xy)<i

[
Exi

[
∆tv

(
L

(
(xy)<i, xi, 1

⟨n,s,t,ϵ−1,δ−1,tδ
−1 ⟩
)
,Yi|<i

)]
≤ ϵ

]
≥ 1− δ,

where (xy)<i represents ((x1, y1), . . . , (xi−1, yi−1)) selected according to Π, and Yi|<i represents the
distribution of yi given the previous strings (xy)<i and xi.

Proof. Let p0 and c0 be the maximum of the polynomials and constants in Lemmas 4.17, 6.3 and 6.4,
respectively. Let p1 be a large enough polynomial we specify later. For each t ∈ N, let t′ := p0(t),
t′′ := p0(t

′), and t′′′ := p1(t
′′) below. Without loss of generality, we assume that, t′′′ ≥ t′′ ≥ t′ ≥ 2,

c0 ≥ 1, and c0 log t
′ ≥ log t′′ for each t.

For each n, β, s, t, ϵ−1, δ−1 ∈ N with m ≥ 2050c20 · sϵ−2δ−1, let b = ⌈2s/ log t′⌉. We also define
w ∈ N as the largest integer such that b · w ≤ m. Let m̃ := b · w (≤ m). The proof is based on the

38

context-restricting universal extrapolation as in Lemma 6.4 on m̃ strings x1 ◦ y1, . . . , xm̃ ◦ ym̃. For
simplicity, let zi = xi ◦ yi.

Below, we assume that c0 log δ
−1 ≤ s. Otherwise, 2s ≤ δ−c0 = poly(δ−1). In this case, we can

use universal extrapolation without any advice that works in time poly(2s, ϵ−1) ≤ poly(ϵ−1, δ−1)
(this is exactly the same setting as [HN23]) to extrapolate a prefix string produced by an s-size
program under Qt within statistical error ϵ.

From the same argument as that of Theorem 6.1, we have

Pr
i∼[m]

[i > m̃] <
3

34
δ.

Since GapKt-vs-K ∈ pr-BPP, there is no auxiliary-input one-way function by Lemma 4.6 and
thus there exists the polynomial-time randomized algorithm UE in Lemma 6.5.

Now, we present the construction of the algorithm L based on UE. On input z<i, xi, i ∼ [m], and
parameters n, s, t, ϵ−1, δ−1, tδ

−1
(given in unary), the algorithm L calculates β := β(n), t′, t′′, t′′′, w, b,

and m̃ as above. If i > m̃, the algorithm L halts with arbitrary message (we do not care this case as
discussed above). Otherwise if i ≤ m̃, the algorithm L calculates the unique pair (i′, j′) ∈ [b]× [w]
such that i = (i′ − 1) · w + j′ and outputs a sample from

UE

(
z̄i

′
<j′xi; z̄

<i′ , 1⟨β,t
′′′,4ϵ−1,p1(ϵ−1tδ

−1
)⟩
)
,

where z̄i
′
<j′ = z(i′−1)·w+1◦· · ·◦z(i′−1)·w+j′−1 and z̄<i′ = z1◦· · ·◦z(i′−1)·w. Notice that z<i = z̄<i′ ◦ z̄i′<j′ .

It is easily verified that L halts in polynomial time in the length of the given prefix and the
parameters n, s, t, ϵ−1, δ−1, tδ

−1
. Below, we verify the correctness under the condition i ≤ m̃. Under

this condition, a random choice of i is regarded as a random choice of (i′, j′) ∼ [b]× [w].
We first observe the lower bound on w as follows: Since (w + 1)b > m,

w >
m

b
− 1 ≥ 2050c20 · sϵ−2δ−1

2s/ log t′ + 1
− 1 ≥ 1024c20ϵ

−2δ−1 log t′.

Since b ≥ s/ log t′ ≥ s/ log t′′ and w ≥ 1024c20ϵ
−2δ−1 log t′ ≥ 2c0 ·128ϵ−2 ·4δ−1 · log t′′, Lemma 6.4

implies

Pr
i′,z̄<i′ ,j′,zi

′
<j′

[
KL
(
XiYi|z<i

∥∥∥Nextn+β

(
z̄i

′
<j′ ; Q

t′′,z̄<i′
))
≤ ϵ2

128

]
≥ 1− δ

4
, (10)

where Xi and Yi represents the distributions of xi and yi, respectively.
By the chain rule of KL divergence,

KL
(
XiYi|z<i

∥∥∥Nextn+β

(
z̄i

′
<j′ ; Q

t′′,z̄<i′
))

= KL
(
Xi|z<i

∥∥∥Nextn (z̄i′<j′ ; Q
t′′,z̄<i′

))
+ Exi∼Xi|z<i

[
KL
(
Yi|z<ixi

∥∥∥Nextβ (z̄i′<j′xi; Q
t′′,z̄<i′

))]
≥ Exi∼Xi|z<i

[
KL
(
Yi|z<ixi

∥∥∥Nextβ (z̄i′<j′xi; Q
t′′,z̄<i′

))]
.

39

If the event in Equation (10) occurs, it holds that

Exi∼Xi|z<i

[
∆tv

(
Yi|z<ixi,Nextβ

(
z̄i

′
<j′xi; Q

t′′,z̄<i′
))]

≤ Exi∼Xi|z<i

[√
2−1 ·KL

(
Yi|z<ixi

∥∥∥Nextβ (z̄i′<j′xi; Q
t′′,z̄<i′

))]

≤ 2−1/2

√
Exi∼Xi|z<i

[
KL
(
Yi|z<ixi

∥∥∥Nextβ (z̄i′<j′xi; Q
t′′,z̄<i′

))]
≤ 2−1/2

√
KL
(
XiYi|z<i

∥∥∥Nextn+β

(
z̄i

′
<j′ ; Q

t′′,z̄<i′
))

≤ 2−1/2

√
ϵ2

128
=

ϵ

16
,

where the first inequality follows from Pinsker’s inequality, and the second inequality follows from
Jensen’s inequality.

We also obtain that

∆tv

(
Xi|z<i,Nextn

(
z̄i

′
<j′ ; Q

t′′,z̄<i′
))

≤ ∆tv

(
XiYi|z<i,Nextn+β

(
z̄i

′
<j′ ; Q

t′′,z̄<i′
))

≤ 2−1/2

√
KL
(
XiYi|z<i

∥∥∥Nextn+β

(
z̄i

′
<j′ ; Q

t′′,z̄<i′
))

≤ 2−1/2

√
ϵ2

128
=

ϵ

16
.

Since b ≥ 2s/ log t′ ≥ (s+ c0 log δ
−1)/ log t′, Lemmas 4.17 and 6.3 implies that for every j′,

Pr
i′,z̄<i′ ,zi

′
<j′

[
qcdt

′′
(z̄i

′
<j′ | z̄<i′) ≤ 3c0δ

−1 log t′ + log t′ + c0

]
≥ 1− δ

3
. (11)

Below, we assume that both events in Equations (10) and (11) occur. By Lemma 6.5,

∆tv

(
UE

(
z̄i

′
<j′ ; z̄

<i′ , 1⟨n,t
′′,16ϵ−1,2c0 t′(t′)3c0δ

−1 ⟩
)
,Nextn

(
z̄i

′
<j′ ; Q

t′′,z̄<i′
))
≤ ϵ

16
.

Let X̃i denote the distribution of UE
(
z̄i

′
<j′ ; z̄

<i′ , 1⟨n,t
′′,16ϵ−1,2c0 t′(t′)3c0δ

−1 ⟩
)
. Then,

∆tv

(
X̃i,Xi|z<i

)
≤ ∆tv

(
X̃i,Nextn

(
z̄i

′
<j′ ; Q

t′′,z̄<i′
))

+∆tv

(
Xi|z<i,Nextn

(
z̄i

′
<j′ ; Q

t′′,z̄<i′
))

≤ ϵ

16
+

ϵ

16
=

ϵ

8
.

By Lemma 4.16, for a large enough polynomial p1 (recall that t′′′ = p1(t
′′)),

Pr
xi∼X̃i

[
qcdt

′′′
(z̄i

′
<j′xi | z̄<i′) ≤ log p1(ϵ

−1tδ
−1
)
]

≥ Pr
xi∼X̃i

[
qcdt

′′′
(z̄i

′
<j′xi | z̄<i′) ≤ 3c0δ

−1 log t′ + log t′ + 2c0 + log p0(8t
′′ϵ−1)

]
≥ Pr

xi∼X̃i

[
qcdt

′′′
(z̄i

′
<j′xi | z̄<i′) ≤ qcdt

′′
(zi

′
<j′ | z̄<i′) + log p0(8t

′′ϵ−1) + c0

]
≥ 1− ϵ

8
.

40

Thus,

Pr
xi∼Xi|z<i

[
qcdt

′′′
(z̄i

′
<j′xi | z̄<i′) ≤ log p1(ϵ

−1tδ
−1
)
]

≥ Pr
xi∼X̃i

[
qcdt

′′′
(z̄i

′
<j′xi | z̄<i′) ≤ log p1(ϵ

−1tδ
−1
)
]
−∆tv

(
X̃i,Xi|z<i

)
≥ 1− ϵ

8
− ϵ

8
= 1− ϵ

4
.

As long as qcdt
′′′
(z̄i

′
<j′xi | z̄<i′) ≤ log p1(ϵ

−1tδ
−1
) is satisfied, by Lemma 6.5,

∆tv

(
UE

(
z̄i

′
<j′xi; z̄

<i′ , 1⟨β,t
′′′,4ϵ−1,p1(ϵ−1tδ

−1
)⟩
)
,Nextβ

(
z̄i

′
<j′xi; Q

t′′,z̄<i′
))
≤ ϵ

4
.

This implies that

Pr
xi∼Xi|z<i

[
∆tv

(
UE

(
z̄i

′
<j′xi; z̄

<i′ , 1⟨β,t
′′′,4ϵ−1,p1(ϵ−1tδ

−1
)⟩
)
,Nextβ

(
z̄i

′
<j′xi; Q

t′′,z̄<i′
))
≤ ϵ

4

]
≥ 1− ϵ

4
,

and

Exi∼Xi|z<i

[
∆tv

(
UE

(
z̄i

′
<j′xi; z̄

<i′ , 1⟨β,t
′′′,4ϵ−1,p1(ϵ−1tδ

−1
)⟩
)
,Nextβ

(
z̄i

′
<j′xi; Q

t′′,z̄<i′
))]

≤ ϵ

4
+

ϵ

4
=

ϵ

2
.

Therefore, if both the events in Equations (10) and (11) occur,

Exi∼Xi|z<i

[
∆tv

(
UE

(
z̄i

′
<j′xi; z̄

<i′ , 1⟨β,t
′′′,4ϵ−1,p1(ϵ−1tδ

−1
)⟩
)
,Yi|z<ixi

)]
≤ Exi∼Xi|z<i

[
∆tv

(
UE

(
z̄i

′
<j′xi; z̄

<i′ , 1⟨β,t
′′′,4ϵ−1,p1(ϵ−1tδ

−1
)⟩
)
,Nextβ

(
z̄i

′
<j′xi; Q

t′′,z̄<i′
))]

+ Exi∼Xi|z<i

[
∆tv

(
Yi|z<ixi,Nextβ

(
z̄i

′
<j′xi; Q

t′′,z̄<i′
))]

≤ ϵ

2
+

ϵ

16
< ϵ.

By the union bound, we conclude that

Pr
i,z<i

[
Exi

[
∆tv

(
L

(
x<i; 1

⟨n,m,s,t,ϵ−1,δ−1,tδ
−1 ⟩
)
, Yi|<i

)]
≤ ϵ

]
≥ 1−

(
3

34
δ +

δ

4
+

δ

3

)
> 1− δ.

References

[AF09] Luis Filipe Coelho Antunes and Lance Fortnow. “Worst-Case Running Times for
Average-Case Algorithms”. In: Proceedings of the Conference on Computational
Complexity (CCC). 2009, pp. 298–303. doi: 10.1109/CCC.2009.12.

[AFMV06] Luis Antunes, Lance Fortnow, Dieter van Melkebeek, and N. V. Vinodchandran.
“Computational depth: Concept and applications”. In: Theor. Comput. Sci. 354.3
(2006), pp. 391–404. doi: 10.1016/j.tcs.2005.11.033.

[AFPS12] Luis Filipe Coelho Antunes, Lance Fortnow, Alexandre Pinto, and Andre Souto.
“Low-DepthWitnesses are Easy to Find”. In: Comput. Complex. 21.3 (2012), pp. 479–
497. doi: 10.1007/s00037-011-0025-1.

41

https://doi.org/10.1109/CCC.2009.12
https://doi.org/10.1016/j.tcs.2005.11.033
https://doi.org/10.1007/s00037-011-0025-1

[Ben88] C. H. Bennett. “Logical Depth and Physical Complexity”. In: The universal Turing
machine, a half century survey (1988), pp. 227–257.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.)
Wiley, 2006. isbn: 978-0-471-24195-9.

[GK22] Halley Goldberg and Valentine Kabanets. “A Simpler Proof of the Worst-Case to
Average-Case Reduction for Polynomial Hierarchy via Symmetry of Information”.
In: Electronic Colloquium on Computational Complexity (ECCC) 007 (2022).

[GK23] Halley Goldberg and Valentine Kabanets. “Improved Learning from Kolmogorov
Complexity”. In: Proceedings of the Computational Complexity Conference (CCC).
2023, 12:1–12:29. doi: 10.4230/LIPICS.CCC.2023.12.

[GKLO22] Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. “Proba-
bilistic Kolmogorov Complexity with Applications to Average-Case Complexity”. In:
37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadel-
phia, PA, USA. Ed. by Shachar Lovett. Vol. 234. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022, 16:1–16:60. doi: 10.4230/LIPICS.CCC.2022.16.
url: https://doi.org/10.4230/LIPIcs.CCC.2022.16.

[Hir18] Shuichi Hirahara. “Non-black-box Worst-case to Average-case Reductions within
NP”. In: Proceedings of the Symposium on Foundations of Computer Science (FOCS).
2018, pp. 247–258.

[Hir20a] Shuichi Hirahara. “Characterizing Average-Case Complexity of PH by Worst-Case
Meta-Complexity”. In: Proceedings of the Symposium on Foundations of Computer
Science (FOCS). 2020, pp. 50–60.

[Hir20b] Shuichi Hirahara. “Non-Disjoint Promise Problems from Meta-Computational View
of Pseudorandom Generator Constructions”. In: Proceedings of the Computational
Complexity Conference (CCC). 2020, 20:1–20:47. doi: 10.4230/LIPIcs.CCC.2020.
20.

[Hir21] Shuichi Hirahara. “Average-case hardness of NP from exponential worst-case hard-
ness assumptions”. In: Proceedings of the Symposium on Theory of Computing
(STOC). 2021, pp. 292–302. doi: 10.1145/3406325.3451065.

[Hir22] Shuichi Hirahara. “Symmetry of Information fromMeta-Complexity”. In: 37th Com-
putational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA,
USA. Ed. by Shachar Lovett. Vol. 234. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022, 26:1–26:41. doi: 10.4230/LIPICS.CCC.2022.26. url: https:
//doi.org/10.4230/LIPIcs.CCC.2022.26.

[Hir23] Shuichi Hirahara. “Capturing One-Way Functions via NP-Hardness of Meta-Complexity”.
In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, Orlando, FL, USA, June 20-23, 2023. Ed. by Barna Saha and Rocco
A. Servedio. ACM, 2023, pp. 1027–1038. doi: 10.1145/3564246.3585130. url:
https://doi.org/10.1145/3564246.3585130.

[HKLW88] David Haussler, Michael J. Kearns, Nick Littlestone, and Manfred K. Warmuth.
“Equivalence of Models for Polynomial Learnability”. In: Proceedings of the First
Annual Workshop on Computational Learning Theory, COLT ’88, Cambridge, MA,
USA, August 3-5, 1988. Ed. by David Haussler and Leonard Pitt. ACM/MIT, 1988,
pp. 42–55. url: http://dl.acm.org/citation.cfm?id=93040.

42

https://doi.org/10.4230/LIPICS.CCC.2023.12
https://doi.org/10.4230/LIPICS.CCC.2022.16
https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.4230/LIPIcs.CCC.2020.20
https://doi.org/10.4230/LIPIcs.CCC.2020.20
https://doi.org/10.1145/3406325.3451065
https://doi.org/10.4230/LIPICS.CCC.2022.26
https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://doi.org/10.1145/3564246.3585130
https://doi.org/10.1145/3564246.3585130
http://dl.acm.org/citation.cfm?id=93040

[HN21] Shuichi Hirahara and Mikito Nanashima. “On Worst-Case Learning in Relativized
Heuristica”. In: Proceedings of the Symposium on Foundations of Computer Science
(FOCS). 2021, pp. 751–758. doi: 10.1109/FOCS52979.2021.00078.

[HN23] Shuichi Hirahara and Mikito Nanashima. “Learning in Pessiland via Inductive In-
ference”. In: 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023. IEEE, 2023, pp. 447–
457. doi: 10.1109/FOCS57990.2023.00033. url: https://doi.org/10.1109/
FOCS57990.2023.00033.

[HQC24] Marcus Hutter, David Quarel, and Elliot Catt. An Introduction to Universal Arti-
ficial Intelligence. 2024. url: http://www.hutter1.net/ai/uaibook2.htm.

[HS17] Shuichi Hirahara and Rahul Santhanam. “On the Average-Case Complexity of
MCSP and Its Variants”. In: Proceedings of the Computational Complexity Con-
ference (CCC). 2017, 7:1–7:20. doi: 10.4230/LIPIcs.CCC.2017.7.

[Hut05] Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions based on Al-
gorithmic Probability. Berlin: Springer, 2005. isbn: 3-540-22139-5. doi: 10.1007/
b138233.

[IL89] Russell Impagliazzo and Michael Luby. “One-way Functions are Essential for Com-
plexity Based Cryptography (Extended Abstract)”. In: Proceedings of the Sympo-
sium on Foundations of Computer Science (FOCS). 1989, pp. 230–235. doi: 10.
1109/SFCS.1989.63483.

[IL90] Russell Impagliazzo and Leonid A. Levin. “No Better Ways to Generate Hard NP
Instances than Picking Uniformly at Random”. In: Proceedings of the Symposium
on Foundations of Computer Science (FOCS). 1990, pp. 812–821. doi: 10.1109/
FSCS.1990.89604.

[Imp95] Russell Impagliazzo. “A Personal View of Average-Case Complexity”. In: Proceed-
ings of the Structure in Complexity Theory Conference. 1995, pp. 134–147. doi:
10.1109/SCT.1995.514853.

[KK25] Valentine Kabanets and Antonina Kolokolova. “Chain Rules for Time-Bounded
Kolmogorov Complexity”. In: Electron. Colloquium Comput. Complex. TR25-089
(2025). ECCC: TR25-089. url: https://eccc.weizmann.ac.il/report/2025/
089/.

[KMRRSS94] Michael J. Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire,
and Linda Sellie. “On the learnability of discrete distributions”. In: Proceedings of
the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada. Ed. by Frank Thomson Leighton and Michael T.
Goodrich. ACM, 1994, pp. 273–282. doi: 10.1145/195058.195155. url: https:
//doi.org/10.1145/195058.195155.

[LOZ22] Zhenjian Lu, Igor C. Oliveira, and Marius Zimand. “Optimal Coding Theorems in
Time-Bounded Kolmogorov Complexity”. In: 49th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France.
Ed. by Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff. Vol. 229.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 92:1–92:14. doi:
10.4230/LIPICS.ICALP.2022.92. url: https://doi.org/10.4230/LIPIcs.
ICALP.2022.92.

43

https://doi.org/10.1109/FOCS52979.2021.00078
https://doi.org/10.1109/FOCS57990.2023.00033
https://doi.org/10.1109/FOCS57990.2023.00033
https://doi.org/10.1109/FOCS57990.2023.00033
http://www.hutter1.net/ai/uaibook2.htm
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.1007/b138233
https://doi.org/10.1007/b138233
https://doi.org/10.1109/SFCS.1989.63483
https://doi.org/10.1109/SFCS.1989.63483
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1109/SCT.1995.514853
TR25-089
https://eccc.weizmann.ac.il/report/2025/089/
https://eccc.weizmann.ac.il/report/2025/089/
https://doi.org/10.1145/195058.195155
https://doi.org/10.1145/195058.195155
https://doi.org/10.1145/195058.195155
https://doi.org/10.4230/LIPICS.ICALP.2022.92
https://doi.org/10.4230/LIPIcs.ICALP.2022.92
https://doi.org/10.4230/LIPIcs.ICALP.2022.92

[LP20] Yanyi Liu and Rafael Pass. “On One-way Functions and Kolmogorov Complexity”.
In: Electron. Colloquium Comput. Complex. 27 (2020), p. 52.

[LV19] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and
Its Applications, 4th Edition. Texts in Computer Science. Springer, 2019. isbn: 978-
3-030-11297-4. doi: 10.1007/978-3-030-11298-1.

[MF98] Neri Merhav and Meir Feder. “Universal Prediction”. In: IEEE Trans. Inf. Theory
44.6 (1998), pp. 2124–2147. doi: 10.1109/18.720534. url: https://doi.org/10.
1109/18.720534.

[NR06] Moni Naor and Guy N. Rothblum. “Learning to impersonate”. In: Machine Learn-
ing, Proceedings of the Twenty-Third International Conference (ICML 2006), Pitts-
burgh, Pennsylvania, USA, June 25-29, 2006. Ed. by WilliamW. Cohen and Andrew
W. Moore. Vol. 148. ACM International Conference Proceeding Series. ACM, 2006,
pp. 649–656. doi: 10.1145/1143844.1143926. url: https://doi.org/10.1145/
1143844.1143926.

[OW93] Rafail Ostrovsky and Avi Wigderson. “One-Way Fuctions are Essential for Non-
Trivial Zero-Knowledge”. In: Proceedings of the Symposium on Theory of Computing
(STOC). 1993, pp. 3–17. doi: 10.1109/ISTCS.1993.253489.

[Sol64a] Ray J. Solomonoff. “A Formal Theory of Inductive Inference. Part I”. In: Inf. Con-
trol. 7.1 (1964), pp. 1–22. doi: 10.1016/S0019-9958(64)90223-2.

[Sol64b] Ray J. Solomonoff. “A Formal Theory of Inductive Inference. Part II”. In: Inf.
Control. 7.2 (1964), pp. 224–254. doi: 10.1016/S0019-9958(64)90131-7.

[Val84] Leslie G. Valiant. “A Theory of the Learnable”. In: Commun. ACM 27.11 (1984),
pp. 1134–1142. doi: 10.1145/1968.1972.

[Xia10] David Xiao. “Learning to Create is as Hard as Learning to Appreciate”. In: COLT
2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010.
Ed. by Adam Tauman Kalai and Mehryar Mohri. Omnipress, 2010, pp. 516–528.
url: http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf%
5C#page=524.

A Estimating Statistical Distance

In this section, we prove the following technical lemma, building on the ideas from [NR06].

Lemma (A reminder of Lemma 7.5). If there is no auxiliary-input one-way function, then there
exists a polynomial-time randomized algorithm ∆̃ such that for every description of circuits D0 and
D1 and every ϵ−1, δ−1 ∈ N,

Pr
∆̃

[
∆̃(D0, D1; 1

ϵ−1
, 1δ

−1
) ∈ [∆tv(D0,D1)− ϵ,∆tv(D0,D1) + ϵ]

]
≥ 1− δ,

where D0 (resp. D1) is a distribution of D0(r) (resp. D1) for a random seed r.

Proof. We define the following auxiliary-input function fD0,D1 that takes a description of a pair of
circuits D0 and D1 as auxiliary input:

fd(b, r) = Db(r),

44

https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1109/18.720534
https://doi.org/10.1109/18.720534
https://doi.org/10.1109/18.720534
https://doi.org/10.1145/1143844.1143926
https://doi.org/10.1145/1143844.1143926
https://doi.org/10.1145/1143844.1143926
https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1016/S0019-9958(64)90131-7
https://doi.org/10.1145/1968.1972
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf%5C#page=524
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf%5C#page=524

where b ∈ {0, 1}, and r ∈ {0, 1}∗ is the input to D0 and D1 (without loss of generality, we assume
that the lengths of input to D0 and D1 are the same with a proper truncation).

Since we assume that there is no auxiliary-input one-way function, {fD0,D1}D0,D1 is not one-
way. Furthermore, based on the hashing technique developed in [IL89], we can also simulate uniform
sampling from f−1

D0,D1
(y) on average over y = fD0,D1(b, r) with small statistical error, where b ∼

{0, 1} and r is a randomly selected input. Notice that the distribution of y is statistically equivalent
to y ∼ Db for b ∼ {0, 1}. Thus, for a given y ∼ Db, where b ∼ {0, 1} is a secret bit chosen at
random, we can construct a natural predictor for b that empirically examines which label tends
to be occur from the (approximated) uniform sampling from f−1

D0,D1
(y). Based on this idea, Naor

and Rothblum [NR06] proved that the predictor can correctly predict the secret b with probability

roughly 1
2 + ∆tv(D0,D1)

2 , resulting in the following claim.

Claim A.1 ([NR06, Lemma 4.2]). If there is no auxiliary-input one-way function, then there exists
a polynomial-time algorithm A such that for every pair of circuits D0 and D1 and every ϵ−1 ∈ N,

Pr
b∼{0,1},y∼Db,A

[A(y;D0, D1, 1
ϵ−1

) = b] ≥ 1

2
+

∆tv(D0,D1)

2
− ϵ

2
.

By contrast, we can easily observe that 1
2 + ∆tv(D0,D1)

2 is the best possible success probability
even in the statistical case.

Claim A.2. For all distributions D0,D1 and all boolean-valued randomized functions f ,

Pr
b∼{0,1},y∼Db,f

[f(y) = b] ≤ 1

2
+

∆tv(D0,D1)

2
.

Proof. The claim is verified as the following simple calculation:

Pr
b,y,f

[f(x) = b] =
∑
y

(
1

2
D1(y) Pr

f
[f(x) = 1] +

1

2
D0(y) Pr

f
[f(x) = 0]

)
=
∑
y

(
1

2
D0(y) +

1

2
(D1(y)−D0(y)) Pr

f
[f(x) = 1]

)
=

1

2
+

1

2

(
Pr

y∼D1,f
[f(y) = 1]− Pr

y∼D0,f
[f(y) = 1]

)
≤ 1

2
+

∆tv(D0,D1)

2
.

⋄

Now, we present the construction of ∆̃. Let A be the algorithm in Claim A.1. Given descriptions
of D0 and D1 and parameters ϵ−1, δ−1 ∈ N, the algorithm ∆̃ empirically estimates the probability
that A(y;D0, D1, 1

2ϵ−1
) = b for b ∼ {0, 1}, y ∼ Db within accuracy error ϵ/4 and confidence error δ.

Let p̃ ∈ [0, 1] be the estimated value. Then ∆̃ outputs 2p̃− 1 as the estimation of ∆tv(D0,D1).
By Hoeffiding’s inequality, the empirical estimation above is accomplished by examining how

many times the event A(Db(r);D0, D1, 1
2ϵ−1

) = b occurs in M = O(ϵ−2 log δ−1) trials for fresh seeds
b and r. Thus, ∆̃ halts in polynomial time in ϵ−1, δ−1, and the description size of D0 and D1 (notice
that the length of each sample is bounded by the description size of D0 and D1).

We verify the correctness. Let p = Prb∼{0,1},y∼Db,A[A(y;D0, D1, 1
ϵ−1

) = b]. With probability at
least 1− δ, the empirical estimation is successfully performed, i.e., |p̃− p| ≤ ϵ/4 holds. We observe
that 2p̃− 1 ∈ [∆tv(D0,D1)± ϵ] in this case.

45

From Claim A.2,

p̃ ≤ p+
ϵ

4
≤ 1

2
+

∆tv(D0,D1)

2
+

ϵ

4
;

thus, 2p̃− 1 ≤ ∆tv(D0,D1) + ϵ/2 < ∆tv(D0,D1) + ϵ.
By contrast, from Claim A.1,

p̃ ≥ p− ϵ

4
≥ 1

2
+

∆tv(D0,D1)

2
− ϵ

4
− ϵ

4
=

1

2
+

∆tv(D0,D1)

2
− ϵ

2
;

thus, 2p̃− 1 ≥ ∆tv(D0,D1)− ϵ, as desired.

46
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

