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Abstract

We consider random walks on “balanced multislices” of any “grid” that respects the “sym-
metries” of the grid, and show that a broad class of such walks are good spectral expanders. (A
grid is a set of points of the form Sn for finite S, and a balanced multi-slice is the subset that
contains an equal number of coordinates taking every value in S. A walk respects symmetries
if the probability of going from u “ pu1, . . . , unq to v “ pv1, . . . , vnq is invariant under simulta-
neous permutations of the coordinates of u and v.) Our main theorem shows that, under some
technical conditions, every such walk where a single step leads to an almost Op1q-wise indepen-
dent distribution on the next state, conditioned on the previous state, satisfies a non-trivially
small singular value bound.

We give two applications of our theorem to error-correcting codes: (1) We give an analog of
the Ore-DeMillo-Lipton-Schwartz-Zippel lemma for polynomials, and junta-sums, over balanced
multislices. (2) We also give a local list-correction algorithm for d-junta-sums mapping an arbi-
trary grid Sn to an Abelian group, correcting from a near-optimal p 1

|S|d
´ εq fraction of errors

for every ε ą 0, where a d-junta-sum is a sum of (arbitrarily many) d-juntas (and a d-junta is a
function that depends on only d of the n variables).

Our proofs are obtained by exploring the representation theory of the symmetric group and
merging it with some careful spectral analysis.
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1 Introduction

Consider the following natural random walk whose states are the balanced vectors of t0, 1un, i.e.,
the balanced Boolean slice with an equal number of 0s and 1s, where a single step of the random
walk takes a state u to a state v at Hamming distance exactly n{2 from it. One would expect this
random walk to mix extremely rapidly, and indeed this is known. The underlying graph here is a
special case of a Johnson graph whose entire eigenspectrum is well known [Del78] and, in particular,
implies that the second eigenvalue of this graph is onp1q.

Now consider the following variant of the above random walk: The states now are elements of the
‘balanced multislice’ in t´1, 0, 1un, i.e. vectors with exactly 1{3rd fraction of the letters ´1, 0 and
1, and in a single step from a balanced vector u to a random balanced vector v obtained by flipping
exactly 1{3 fraction of each of the letters of u to ´1, 0 and 1. (So for a single coordinate i, vi is
uniform in t´1, 0, 1u conditioned on ui.) It is intuitive to believe that such a random walk should
also converge to the uniform distribution over all balanced vectors extremely fast, but, as far as
we know, it was not even known that the second-eigenvalue of this random walk (or its transition
probability matrix) has value onp1q.

The gap in the understanding between the Boolean and non-Boolean cases in such problems can be
significant for fundamental reasons. For example, for the alternate version of the random walk where
the transition is defined by a uniformly random transposition of coordinates, it took a decade after
optimal bounds on the mixing time were proved in the Boolean case [DS87] to prove similar results
in the non-Boolean setting [Sca97]. We refer the reader to the work of Filmus, O’Donnell, and Wu
[FOW22] for a nice overview of the challenges posed by the non-Boolean setting in such problems.
Some of these obstructions have to do with associated representations of the symmetric group that
play a role in the corresponding proofs; these representations are simpler (‘multiplicity-free’) in
the Boolean setting than in the non-Boolean setting. This also creates difficulties in resolving the
questions we consider.

The main contribution of this work is to address some of the challenges alluded to above. In
particular, we show that the variant random walk described in the second paragraph also has
fast mixing, specifically by giving a onp1q bound on its second eigenvalue. Indeed, we study this
question in more generality for balanced multislices, with “nearly balanced moves”. We believe the
questions carry intrinsic interest and should find broad applications in the field. We justify this
belief partially by describing two applications in coding theory:

• The first gives a near-tight distance bound on codes obtained by evaluations of polynomials
on balanced multislices.

• The second gives a local list-correction algorithm for subclasses of polynomials evaluated on
grids. (Note that the second application does not refer to balanced multislices in the problem
definition — the multislices arise naturally in the design and analysis of the local correction
algorithm!)

We elaborate on our setting and results, the applications, and the technical challenges below.
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1.1 Multislices and Random Walks

By a grid, we refer to sets of the form Sn for some finite set S and positive integer n. (Usually we
think of s :“ |S| as a constant and study the growth of relevant parameters as a function of n).
The balanced multislice of a grid Sn is the set

Sn
µ :“

!

a P Sn
ˇ

ˇ

ˇ
@σ P S, |ti P rns|ai “ σu| “

n

s

)

.

(Note that a multislice is non-empty if and only if s divides n. We will drop the term “balanced”
in the future and simply refer to multislices to keep the term short.)

The random walks we consider have the multislice of some grid as their state space. Recall that
such a random walk can be described by a Sn

µˆSn
µ matrixW withW pa,bq denoting the probability

of transition from state a to b. We consider walks where every step of the walk makes a “nearly
balanced move”. To elaborate, let us define the generalized Hamming distance1 ∆pa,bq, for vectors
a,b P Sn, to be the S ˆ S matrix given by ∆σ,τ pa,bq “ |ti P rns|ai “ σ, bi “ τu|. We say that
a generalized Hamming distance parameter ∆ P ZSˆS determines a random walk matrix, denoted
W∆, if for each vertex a, the random step corresponding to W∆ is obtained by picking, uniformly
at random, a vertex b on the multislice such that ∆pa,bq “ ∆.

For constant C ă 8, we say that a generalized Hamming distance parameter ∆ P ZSˆS is C-
balanced if each entry of ∆ is m

s ˘
`

C
?
m logm

˘

where m “ n{s. In other words, all the entries
of ∆ are equal up to a difference of at most 2C

?
m logm. Informally, when considering n Ñ 8

we refer to ∆, as also a random walk matrix W∆ determined by ∆, as “nearly balanced” if ∆ is
C-balanced for some constant C. Here, we note that W∆ is a well-defined random walk matrix
over the multislice only if ∆{m is a doubly-stochastic matrix (i.e., every row and every column of
∆ sums to m).

Note that the mixing time of a random walk matrix W is closely tied to the second largest singular
value, which we denote by σ2pW q. (In particular, the singular values satisfy 1 “ σ1 ě σ2 ě
¨ ¨ ¨σN ě 0 and we let σ2pW q “ σ2. If the walk is symmetric, then this captures the second
eigenvalue. Specifically, if the eigenvalues are 1 “ λ1 ě λ2 ě ¨ ¨ ¨λN ě ´1 where N “ |Sn

µ |, then
σ2pW q “ maxt|λ2|, |λN |u.) Our main goal is to bound the value of σ2pW q by some function onp1q
that tends to 0 with growing n for a broad class of random walk matrices W over the multislice
Sn
µ . In general, it is desirable to have such singular value bounds, and such random walk matrices

are said to have good “spectral expansion” or “fast mixing”.

The following theorem gives such a fast mixing result on the balanced multislice for all nearly
balanced walks that “respect symmetries”. More formally, for a permutation π P Symn and a P Sn,
let πpaq denote the action of π on Sn

µ , i.e., πpaq :“ paπ´1p1q, . . . , aπ´1pnqq. For a stochastic matrix

M P RSn
µˆSn

µ , we say M respects symmetries if for all permutations π P Symn and for all a,b P Sn
µ

we have Mpπpaq, πpbqq “ Mpa,bq. Our main theorem shows that walks that respect symmetries
and are nearly balanced have fast mixing.

1 Sometimes, this is also called as a “meet table” in algebraic combinatorics.
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Theorem 1.1 (Singular value bound for nearly balanced walks). For every s ě 2
and C ă 8, there exists τ ą 0 such that for every finite set S of size s and sufficiently large
n P N, the following holds:
If W is a stochastic matrix over the multislice Sn

µ that respects symmetries, and satisfies the
condition that

W pa,bq ą 0 ñ ∆pa,bq is C-balanced @ a,b P Sn
µ ,

then σ2pW q ď 1{nτ .

The above result implies that the random walk on the balanced multislice mentioned earlier in this
section (which corresponds to s “ 3 and C-balanced generalized distance parameter with C “ 0)
has its second largest eigenvalue polynomially bounded. In fact, Theorem 1.1 is more general and
covers multislices over any grid S of constant size (i.e., for every |S| “ Op1q). Additionally, it is
robust to perturbations of transition probabilities as long as the transition probabilities are nearly
balanced.

Indeed Theorem 1.1 follows from our main technical theorem, stated as Theorem 1.3 below, which
abstracts the main properties that suffice to prove the bound on the second largest singular value.
Specifically Theorem 1.3 shows that, in addition to the symmetries respected by the matrix W , the
important features that suffice to prove fast mixing are:

1. The next state of the random walk is “almost Op1q-wise independent” conditioned on the
current state

2. The Frobenius norm of W is polynomially bounded in n.

We elaborate on these conditions below before stating our main technical result Theorem 1.3.

For a distribution D supported on Sn and set T Ď rns, we let DT denote the marginal distribution
supported on ST induced by projecting a random variable x „ D to its coordinates in T . Recall
that a distribution D is k-wise independent if for every set T Ď rns with |T | ď k we have DT is the
uniform distribution on ST . Recall further that D is ε-almost k-wise independent if for every set
T Ď rns with |T | ď k we have DT is ε-close in total variation distance to the uniform distribution
on ST .

In the following definition we view the rows of a stochastic matrix M P RSn
µˆSn

µ , denoted Mpaq :“
pMpa,bq|b P Sn

µ q for a P Sn
µ , as distributions supported on Sn (which have zero support outside Sn

µ ).

Definition 1.2 (ε-almost k-wise independent matrix). For parameter k P N and ϵ ą 0 we
say that a stochastic matrix M P RSn

µˆSn
µ is ε-almost k-wise independent if for every row a P Sn

µ ,
the distribution Mpaq is ε-almost k-wise independent.

Finally we recall that for a matrix M P RNˆN , its Frobenius norm, denoted }M}F , is the quantity
b

ř

pi,jqPNˆN Mpi, jq2.
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We now state the main theorem of our work.

Theorem 1.3 (Singular Value Bound for Markov Chains on Balanced Multislice).
For every κ ą 0, and s P N with κ ě s there exists c1.c2, c3 ă 8 such that for every ε ą 0
and every sufficiently large n P N that is divisible by s, the following holds:
Suppose S is a set of size s, and M P RSn

µˆSn
µ is a stochastic matrix that satisfies the

following three conditions:

1. The matrix M respects symmetries.
2. }M}F ď c1 ¨ n

κ.
3. The matrix M is ε-almost k-wise independent for k “ 10sκ.

Then we have σ2pMq ď max tc2{n, c3 ¨ εu.

If the Markov chain is symmetric, then the singular values correspond to the eigenvalues, and
hence Theorem 1.3 yields eigenvalue bounds for symmetric Markov chains satisfying the properties
mentioned above. Theorem 1.3 is proved in Section 3. The proof involves many standard and
some new elements of representation theory for the symmetric group. We elaborate on this in
Section 1.2.2. We also note that Theorem 1.1 immediately follows from Theorem 1.3, modulo some
calculations that verify that Condition (2) above applies to C-balanced matrices. For more details,
see Section 3.5.

To illustrate the applicability of Theorem 1.1, we give two examples, both related to coding theoretic
aspects of polynomials and other polynomial-like functions that we refer to as junta-sums. These
results extend corresponding works in the Boolean setting [ABPSS25; ABSS25], obtaining natural
generalizations to non-Boolean settings.

Distance of polynomials and junta-sums on multislices. A function f : Sn Ñ G is called
a d-junta if it depends on only d of the n variables, i.e, there exists a set I Ď rns, |I| ď d and a
function g : SI Ñ G such that for all a P Sn, fpaq “ gpa|Iq where a|I is the projection of a to
the coordinates in I. Here we could allow G to be any set, though in this work G will denote an
Abelian group. We say f is a degree d junta-sum (or simply a d-junta-sum) if there exists d-junta’s
f1, . . . , fk : Sn Ñ G such that f “ f1 ` ¨ ¨ ¨ ` fk.
When G “ F is a field and S Ď F, then degree d junta-sums are closely related to the notion of
degree d polynomials. In particular, every degree-d polynomial is also a degree-d junta-sum, and
degree-d junta-sums are polynomials of degree at most ps´1qd where s “ |S|. Junta-sums come up
naturally when studying questions related to testing direct sums and low-degree polynomials [DG19;
BP21; ASS23].

A well-studied question about degree-d polynomials is: How often can a non-zero polynomial be
zero on a grid? The well-known and oft-discovered Ore-DeMillo-Lipton-Schwartz-Zippel lemma
[Ore22; DL78; Zip79; Sch80] (henceforth ODLSZ lemma) asserts that a non-zero degree-d polyno-
mial over a field F is non-zero with probability at least s´d{ps´1q over the uniform distribution over
Sn. When S “ F, the precise bound is δpq, dq “ p1´ β{qqq´α, where α and β are the quotient and
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remainder respectively when d is divided by q ´ 1. The former bound immediately implies that a
degree-d junta-sum is non-zero with probability at least s´d over Sn (and the claim even extends
to arbitrary S and Abelian groups G).

A natural related question then becomes — how do these bounds change when considering natural
subsets T that are not grids (or more generally product sets)? Recent work has begun to address
such questions [ABSS25; KKS24]. In this work, we consider the case of the balanced multislice
i.e., T “ Sn

µ . Despite the simple nature of these questions, the answer does not seem to have been
pinned down before, with the exception of the Boolean case that was resolved recently [ABSS25].
We are able to show a clean connection between Sn and Sn

µ that allows us to show that these
probabilities (in the worst case) differ by at most λ2pW q for some nearly balanced walk over the
multislice. This allows us to prove the following theorem, which generalizes the work of [ABSS25]
beyond the Boolean case.

Theorem 1.4 (Polynomial distance over multislice). For every finite field F “ Fq, if a
degree d polynomial P pxq is such that P paq ‰ 0 for some a P Fn

µ on the balanced multislice,
then

Pr
b„Fn

µ

rP pbq ‰ 0s ě δpq, dq ´
1

nΩqp1q
,

where δpq, dq “ p1 ´ β{qqq´α, where α and β are the quotient and remainder respectively
when d is divided by q ´ 1.

We prove this theorem in Section 4.

Note that δpq, dq is exactly the distance of the space of degree-d polynomials on the field Fq and
hence the above theorem says that the distance of the space of polynomials on the balanced mul-
tislice is nearly exactly what it is in the grid Fn

q .
2 An analogous statement can also be made

for junta-sums, getting a bound that almost matches the bound over grids, i.e., 1{sd (see Theo-
rem 4.2).

Following the proof idea of [ABSS25], both cases are handled by a similar proof technique that
first proves a quantitatively weak bound on the probability that f is non-zero3(see Corollary 5.11),
and then randomly identifies a small grid inside the multislice. On each such grid, we can apply
the ODLSZ lemma as a black-box to assert that if f is non-zero within the randomly identified
small grid, then it is non-zero with the ‘correct’ probability (either δpq, dq or s´d). It suffices,
therefore, to prove that f is non-zero on most of the grids, which is where the main technical
theorem regarding the expansion of the walk on the balanced multislice comes into play. We use
our eigenvalue bounds along with the quantitatively weak bound already obtained to establish that
all but an n´Ωp1q-fraction of the grids satisfy this property. See Section 1.2.3 for the proof overview

2 An important subtlety here is that there are polynomials that are non-zero in the grid Fn
q but are zero at all

points on the multislice. That is the reason this theorem is only stated for polynomials that are non-zero as functions
on the multislice. This is analogous to similar restrictions we place on polynomials in the setting of grids (e.g., in the
setting of the Boolean cube, we only consider non-zero multilinear polynomials).

3 We prove these bounds by an adaptation of the standard inductive strategy used to prove the standard ODLSZ
lemma. Unfortunately, we are unable to use this strategy to prove a tight bound.
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and Section 4 for a formal proof.

Local Correction of Junta-Sums. Our next application considers the local correction problem
for junta-sums over grids. Here a (possibly randomized) corrector is given oracle access to a function
f that is known to be δ-close (in normalized Hamming distance) to some degree-d junta-sum P ,
and also given a point a P Sn and needs to output P paq (with high probability) while making few
oracle queries to f .
In the list-correction setting, the amount of error δ may be too high for P to be defined uniquely by f
and δ, but it may be known a priori that the list size is bounded. In the local list-correction problem,
the goal for the corrector is to make a few queries to f to produce several “oracle” algorithms, such
that for every degree d junta-sum P that is δ-close to f , there is an algorithm with oracle access
to f that computes P . We refer the reader to Section 2 for more formal definitions.

Local correction algorithms for low-degree polynomials have played a central role in complexity
theory, for example [GL89; STV01]. While most of the early works like [GKZ08; BL18] considered
the setting where S “ G “ F, some recent works have considered the setting of S “ t0, 1u and
general abelian G such as [ABPSS25] (Note that when |S| “ 2, then degree-d polynomials are the
same as degree-d junta-sums.)

For general S and Abelian group G, even the list-decoding radius was not completely understood
till this work. We prove that for δ “ |S|´d ´ ϵ there are most Oεp1q degree d junta-sums P that
are δ-close to any given function f . (This bound is tight in that for δ “ |S|´d the number of
junta-sums grows with n.) This motivates the corresponding local list-correction problem, which
we solve tightly in this work. We state an informal version below and point to Theorem 5.1 for the
more precise version.

Theorem 1.5 (Local list-correction of junta-sums (Informal)). For every set S,
every Abelian group G, every integer d and ε ą 0, there exists an L “ Lpε, d,Sq such that
the following holds.

There exists an algorithm A that on oracle access to a function f : Sn Ñ G, outputs L
oracle algorithms ψ1, . . . , ψL such that for every degree d junta-sum P : Sn Ñ G that is
p1{sd ´ εq-close to f , there exists i P rLs such that ψf

i p¨q computes P (with high probability
for every input).
The query complexity of A and ψ1, . . . , ψL is polyplog nq.

This theorem is formalized as Theorem 5.1 with more explicit bounds on the error probability and
query complexity, and is proved in Section 5.

This theorem generalizes a theorem of Amireddy, Behera, Paraashar, Srinivasan, and Sudan ([ABPSS25,
Theorem 1.3.4]) who solved the corresponding problem over the Boolean cube t0, 1un. (Note that in
the Boolean setting, junta-degree is the same as algebraic degree, and their result is thus expressed
in terms of the latter phrase.) Our extension follows the same sequence of steps as employed in
[ABPSS25]. Their work ultimately ends up using the expansion properties of Boolean multislices,
which, as we’ve noted earlier, is well-understood. Extending their work to general grids requires a
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number of changes that we elaborate on in Section 1.2.4, with the most significant change being
the use of Theorem 1.1 instead of the expansion results on the Boolean slice.

1.2 Techniques and Proof Overview

In this section, we first review known methods for bounding the singular values of walks that
respect symmetries and explain where there is a gap in knowledge. We then show how we overcome
these challenges by overviewing the proof of our main theorem Theorem 1.3 in Section 1.2.2.
Next, we give an overview of the proof of the ODLSZ theorem for multislices, Theorem 1.4, in
Section 1.2.3. Finally, we discuss the proof of the local correction theorem for grids, Theorem 1.5
in Section 1.2.4.

1.2.1 Prior Approaches and Obstructions

We describe some prior cases where random walk matrices respecting symmetries (i.e., the first
condition of Theorem 1.3) have been studied and explain the special properties in play there.

Boolean Hypercube and Cayley graphs A broad class of examples bounding eigenvalues of
highly symmetric graphs are the bounds on the eigenvalues of Cayley graphs over abelian groups
- this captures random walks on the Boolean hypercube and many more general settings. Here it
is well known that the random walk matrix is diagonalizable4 and the eigenvectors of the random
walk matrix depend only on the group (and not the set of generators). This makes it possible to
determine the entire eigenspectrum for many basic groups using Fourier analysis. We note that
Cayley graphs over some non-abelian groups have been studied, but general results are mostly
lacking. In these cases, the random walk matrix is typically not diagonalizable, but can be made
block diagonal, using the representation theory of the underlying group. This is a complex tool,
and many basic questions are unanswered as we elaborate below.

Boolean slices One well-studied setting that happens to be the special case of s “ 2 of our
problem is the setting of Boolean slices. Here S “ t0, 1u and Sn

µ is the balanced Boolean slice
(all points in t0, 1un of Hamming weight exactly n{2). This setting has particular relevance to the
analysis of Boolean functions and combinatorics; see, e.g. [Del78; Fil16; Fil23]. The random walk
matrices in this setting lie in the Johnson scheme, which is an algebra of symmetric matrices that
commute with one another. This implies that all such matrices can be diagonalized simultaneously,
i.e., there exists one unitary matrix U such that for every random walk matrix M on the Boolean
slice that respects symmetries, we have that UMUT is diagonal. This implies that all such matrices
M have the same eigenvectors. The works [Fil16; Sri11] gave explicit descriptions of the common
eigenspaces. This can be quite useful when analyzing the spectrum of such matrices and in a
recent example [ABSS25] used this description to show that a particular random walk matrix on
the balanced Boolean slice is a good spectral expander (see [ABSS25, Lemma 3.2]).

4 A matrix M P RNˆN is said to be diagonalizable if there is a unitary matrix U P RNˆN such that UMUT is a
diagonal matrix.
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1.2.2 Spectral Expansion of Multislice Walks

Turning to our setting, our matrix M is not diagonalizable and so the techniques from the analysis
of Cayley graphs on abelian groups as well as the random walk on the Boolean slice, do not work
in this setting. We have to resort to the use of representation theory, but here as we alluded to
earlier, our understanding is not as complete. In what follows, we explain what representation
theory implies for our setting and how we build on it.

Summary of known facts from representation theory The fact that our matrixM respects
symmetries allows us to invoke results from the representation theory of the symmetric group
Symn. We cover these results in detail in Proposition 3.1 and Theorem 3.3 (Parts (1) and (2)).
Essentially, we can use representation theory to show that our matrix M can be block-diagonalized
with relatively few blocks.

Specifically5 there is an orthonormal matrix U “ US,n such that for everyM respecting symmetries
the matrix UMUT is block diagonal with blocks M0,M1, . . . ,Mt where t and the “shape” of the
blocks is known from standard representation theory. In particular, M0 “ r1s is just a 1ˆ 1 matrix
that contributes the top singular value (which is 1), and M1, . . . ,Mt determine σ2pMq ă 1.

Now let us understand the structure of Mi’s in more detail. Each block Mi is a Kronecker/tensor
product of a “small” matrix Ai P Rmpiqˆmpiq with a somewhat larger identity matrix i.e.,

Mi “ Ai b Idkpiq, where Idk is the k ˆ k identity matrix.

See Figure 1 for an informal pictorial description. Both the quantitiesmpiq and kpiq are known from
the representation theory of Symn (and in particular only depend on S and n and are independent of
the particular matrixM). However, the small matrices Ai’s do depend onM , and more importantly,
the matrix U is not too well-understood. (In particular, we need to understand the effect of U on Ai

and this is not clear.) In particular, if we were to arrange i such thatmpiq’s are non-decreasing, then
kpiq’s are also non-decreasing. Intuition from Fourier analysis in the Abelian world would suggest
that λ2 comes from M1 “ A1 b Idkp1q but, as far as we are aware, even this is not known.

Our analysis Given that the Ai’s are not determined by only S and n, and U is not explicitly
understood, we need to find some crude ways to bound the singular values of M . We give such
an analysis in Section 3 and summarize the essence here. We start with the following informal
observation.

Observation 1.6. If for some i P rts, the quantity kpiq is a polynomial larger than the Frobenius
norm of M , then every singular value corresponding to the block Mi must necessarily be small.

The observation follows from the fact that the Frobenius norm is lower bounded by the sum of
the squares of the singular values of Mi, each of which repeats at least kpiq times, so each singular
value must be small.

5 This conclusion only requires that M respects symmetries (see Theorem 1.3).
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1

M1

Mt

Mi

kpiq " }M}F

kpiq « }M}F
mpiq “ Op1q

Mi Ai
Id

mpiq

kpiq

b“

U M UT

. . .

. . .

Figure 1: An informal visualization for the block diagonalization of our matrix M

In the context of our goal, the observation above immediately allows us to eliminate all the large
blocks in the block diagonalization of M and turns the focus to the small blocks — where kpiq
is bounded by some polynomial in n. Here, standard facts of representations of Symn imply that
the corresponding matrix Ai is of constant size (dependent on S and the exponent of n in kpiq
but not on n). However, this does not immediately translate to bounds on the singular values,
since these depend on the actual matrix Ai and its entries. Ideally, we would have liked to get our
hands on the singular vectors of M corresponding to singular vectors of the Ai’s (after a change of
basis according to U), but such vectors were not known (and we do not get such vectors either).
Fortunately, a collection of vectors that span the space corresponding to the singular vectors of
Ai’s is known. In particular, we use a description given by Dafni, Filmus, Lifshitz, Lindzey, and
Vinyals [DFLLV21] — see Definition 3.8. Our main contribution adds two observations about this
collection of vectors, called “special vectors” below.

Our main contribution here does get something almost as good, for our purposes (i.e., to show that
each Mi has top singular value onp1q):

We observe that the special vectors given in Definition 3.8 are “weakly orthogonal” in
the sense that they have Ωp1q volume (in the space they span). We further observe
that these functions are junta-like and so shrink significantly when acted on by ε-almost
k-wise independent matrices for sufficiently large constant k. (See Theorem 3.3, Parts
3(c) and 3(d)).

More specifically, the work of [DFLLV21] yields dimpAiq “ mpiq many vectors (see Section 3.3)
of M that are supported on coordinates of one of the blocks of Mi after transforming the basis
according to U . We show that while these vectors do not form an orthogonal basis, they are suffi-
ciently divergent to ensure their determinantal volume is large (see Lemma 3.12). Thus, bounding
the length of the vectors obtained by applying the linear map Ai by onp1q suffices to bound the
spectral norm of Ai and hence also Mi. Details of this part may be found in Section 3.3. We give
some more insight in the next paragraph.
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To show our singular value bounds, we use the fact that the vectors in the basis correspond to
Op1q-junta’s. Specifically, note that a vector that M acts on can be viewed as a function f from
Sn
µ to R, which can in turn be viewed as a partial function from Sn to R. We show that this

function depends on only Op1q-coordinates of the input vector. (See Section 3.3.) This property
now combines nicely with our third condition in Theorem 1.3 which asserts that after multiplication
by M any vector f looks essentially random when projected on Op1q-coordinates and so has little
correlation left with f — this immediately translates into an upper bound on the singular value of
M corresponding to coordinates in Mi, and yields a proof of Theorem 1.3.

Why does our Theorem 1.1 hold only for nearly-balanced walks? The reason is related
to Observation 1.6. We note that the Frobenius norm condition is not completely natural, and
indeed the natural matrices in our applications do not satisfy this condition (and we have to find
workarounds). The Frobenius norm restriction is satisfied by nearly-balanced walks as considered
in Theorem 1.1, and indeed it is one of the reasons why Theorem 1.1 is restricted to such nearly
balanced walks.

1.2.3 Distance Lemma over Balanced Multislice

In this subsection, we discuss the proof overview for Theorem 1.4. The strategy is a generalization
of the proof for [ABSS25, Lemma 3.2]. The idea is to find a random copy of Sn{s inside the balanced
multislice Sn

µ such that it is a good sampler for Sn
µ , i.e. if we choose points from this subgrid Sn{s

at random, then the corresponding points in Sn
µ behave like random samples. As we explain now,

this guarantee essentially allows us to move from balanced multislice to subgrid, where we have
a complete understanding of distance. For every non-zero d-junta-sum P : Sn

µ Ñ G, we choose a

random copy of Sn{s inside Sn
µ and restrict P to this copy. With the sampling guarantee, we can

argue that the restricted d-junta-sum is also non-zero on the subgrid Sn{s, and we get the claimed
bound by applying Claim 2.6 on this restricted polynomial. Next, we explain the process of finding
a random copy of the n{s-dimensional subgrid inside the balanced multislice.

The key step in our proof is to show that we can find a random copy of Sn{s inside Sn
µ , which is a

sampler for Sn
µ . We do it by randomly grouping the coordinates x1, . . . , xn into n{s buckets of size s

and in each bucket, we randomly assign distinct values to the s coordinates. We prove that for two
random points in Sn{s, their corresponding points in the balanced multislice Sn

µ are almost pairwise
independent. We show this via the second moment method and the expander mixing lemma. We
use our main theorem Theorem 1.3 to show that the random walk on Sn

µ arising from the above
random process has good spectral expansion, making the expander mixing lemma applicable in this
context.

1.2.4 Local List Correction for Junta-Sums

Our local list corrector (see Theorem 5.1) is a generalization of [ABPSS25, Theorem 1.3.4] to d-
junta-sums and arbitrary grids Sn (instead of degree-d polynomials and Boolean cube). We do not
dwell on the algorithm here, but only highlight and discuss the key technical difference in our work
and the previous work of [ABPSS25]. We request the reader to please refer to Section 5 for more
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details on the algorithm.

An important step of our local list corrector involves a random restriction of Ssk to a subgrid Sk,
as follows: We randomly group the sk coordinates into k groups of size s, and identify all the s
coordinates in a group together by a single new coordinate. To show that our local list corrector
has small error probability, we need the following guarantee from the above random restriction: If
a d-junta-sum P P JdpSskq is non-zero on the balanced multislice, then with high probability, it
continues to be a non-zero junta-sum on Sk after the random restriction. For this, we show that
the above-mentioned random process can be interpreted as finding a random copy of the balanced
multislice in Sk inside the balanced multislice in Ssk. Similar to the distance lemma for multislices
(Theorem 4.2), we show that we get a good sampler using Theorem 1.3.

We now briefly touch upon some of the additional challenges in going from the Boolean case
of [ABPSS25] to junta-sums over grids Sn, in the context of local list-correction. For the local
correction algorithm in the unique decoding regime, the main idea is to reduce the problem to the
Boolean case but over a biased distribution instead of the uniform one; the proof then proceeds
by a mostly straightforward generalization of the local corrector from [ABPSS25] for the uniform
distribution. The overall template for proving the combinatorial bound is also similar to that over
the Boolean cube, except now we will need more general anti-concentration lemmas and distance
lemmas for junta-sums. As already described in the above paragraph, going from the combinatorial
bound for list-decodability to the local list-corrector is the main technical challenge we overcome
in this work by making use of the fact that a certain random embedding of the multislice of Sk

inside the multislice of Sn is a good sampler.

1.3 Organization

In Section 2, we give some definitions that we are going to use throughout the article. In Section 3,
we prove the main theorem of our work (Theorem 1.3), which itself is organized as follows: we start
with giving some necessary background on representation theory for the symmetric group, then use
it to prove Theorem 1.3, and finally show that “typical” random-walk matrices are good spectral
expanders. In the subsequent sections, we give applications of our main theorem. In Section 4, we
prove a near-optimal distance lemma for junta-sums and polynomials over balanced multislice (see
Theorem 4.2 and Theorem 5.10). In Section 5, we give a local list corrector for d-junta-sums over
Sn (see Theorem 5.1).

2 Preliminaries

We begin by describing some standard notation and terminology we will use throughout the pa-
per.

For a set of parameters α1, . . . , αt, the notation Oα1,...,αtp¨q hides factors depending on α1, . . . , αt.
Similarly for Θα1,...,αtp¨q,Ωα1,...,αtp¨q and so on. Although this is not standard, we will use the

notation rOp¨q to hide plog lognqOp1q factors (generally this notation is used to hide plog nqOp1q)
factors). We use |x| to denote the Hamming weight of x, i.e., the number of non-zero coordinates.
Let Bernppqn denote the distribution over t0, 1un where each bit is chosen from the Bernoulli dis-
tribution Bernppq independently. For two distributions X,Y over the same finite domain, we let
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SDpX,Y q denote the statistical distance between the distributions. We let }v}2 denote the ℓ2 norm
of a vector v P RN .

For any s P N, we use Zs to denote the cyclic group Z{sZ, and not to be confused by the p-adic
field Zs. We say that a group is a torsion group if all its elements have finite order. The exponent
of a torsion group is the least common multiple of the orders of all its elements.

Let n and s be two natural numbers where n is divisible by s and let Sn
µ denote the balanced

multislice over a finite set S of size s, i.e.,

Sn
µ :“

!

a P Sn
ˇ

ˇ

ˇ
@σ P S, |ti P rns|ai “ σu| “

n

s

)

.

Similarly, for any λ “ pλ0, . . . , λs´1q with λ0 ` . . . ` λs´1 “ n, we define the multislice Sn
λ as

follows:

Sn
λ :“ ta P Sn | @σ P S, |ti P rns|ai “ σu| “ λiu .

Then, we define the generalized Hamming distance between points in the (balanced) multislice as
follows:

Definition 2.1 (Generalized Hamming distance). We define the generalized Hamming dis-
tance ∆pa,bq between two points a,b P Sn

µ to be the SˆS matrix where the pσ, τq-th entry is given
by |ti P rns : ai “ σ and bi “ τu|.

Example 2.1.1 (A generalized Hamming distance matrix for n “ 9 and s “ 3.). Let u “ 000111222
and v “ 110201022. Then,

∆pu,vq “

»

–

1 2 0
1 1 1
1 0 2

fi

fl .

We now define the notion of nearly balanced generalized Hamming distance (or C-balanced profiles
to be more precise).

Definition 2.2 (C-balanced generalized Hamming distance). For C ě 0, we say that a
generalized Hamming distance parameter P P ZSˆS w.r.t a multislice Sn

µ is C-balanced if every
entry of P is in the range m

s ˘
?
Cm logm where m “ n{s.

We now use generalized Hamming distance matrices to define a random walk on the balanced mul-
tislice Sn

µ .

Definition 2.3 (Random walk determined by a generalized Hamming distance matrix).
We say that a generalized Hamming distance matrix P P ZSˆS determines a random walk matrix,
denoted WP , if for each vertex a P Sn

µ in the multislice, the random step corresponding to WP is
obtained by picking, uniformly at random, a vertex b P Sn

µ such that ∆pa,bq “ P . That is, the a-th
row of WP (denoted WP paq) is the uniform distribution over tb P Sn

µ : ∆pa,bq “ P u.
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We now give some necessary background for random walk matrices more generally. We refer the
reader to the survey [Vad12] for more discussion.

We say that a matrixW P RNˆN is a random walk matrix if for every i P rN s (which may be referred
to as vertices), the i-th row of the matrix, denotedW piq, is a probability distribution over rN s. It is
clear that every random walk matrix has an eigenvector of 1 with eigenvalue 1. If W is symmetric,
then it has real eigenvalues 1 “ λ1 ě ¨ ¨ ¨ ě λN ě ´1; and we define λ2pW q “ maxt|λ2|, |λn|u to be
the second largest eigenvalue of W in absolute value. Equivalently, one can show that

λ2pW q “ max
vPRN :vJ1“0

}Wv}2
}v}2

.

We will also deal with random walk matrices that are not necessarily symmetric. We say a square
matrix is stochastic if all its entries are non-negative and each row element sums to 1. We say that
a matrix is doubly stochastic if both the matrix and its transpose are stochastic. We observe that
doubly stochastic matrices have 1 as both a left eigenvector and right eigenvector. Furthermore,
it has singular values 1 “ σ1 ě σ2 ě . . . σN ě 0, where N is the order of the matrix; and we use
σ2pW q to mean σ2. Similar to the case of symmetric matrices, we have for every doubly stochastic
matrix W P RNˆN :

σ2pW q “ max
vPRN :vJ1“0

}Wv}2
}v}2

.

For symmetric matrices, singular values are simply the absolute values of the eigenvalues. Hence,
if W is a symmetric random walk matrix with eigenvalues λ1 ě ¨ ¨ ¨ ě λN and singular values
σ1 ě ¨ ¨ ¨ ě σN , then λ1 “ σ1 “ 1 and λ2pW q “ σ2pW q.

We observe the following property of the random walks determined by generalized Hamming dis-
tance between points on the multislice (Definition 2.3).

Observation 2.4. For every generalized Hamming distance matrix P P Zsˆs defined with respect
to a multislice Sn

µ , we have that WJ
P “WPJ is a random walk matrix. In particular, WP is doubly

stochastic.

We will now show how to bound the eigenvalues of a convex combination of random walk matrices.

Lemma 2.5 (Singular value bound for convex combinations). Suppose W “
ř

iPrts αiWi,

where Wi P RNˆN are doubly stochastic matrices and α1 . . . , αt P r0, 1s are such that
ř

iPrts αi “ 1.
Let S Ď rts be arbitrary. Then W is also a doubly stochastic matrix with

σ2pW q ď max
iPS
tσ2pWiqu `

ÿ

iRS

αi.

Proof. We observe that each row (similarly column) of W is a convex combination of probability
distributions, so is also a probability distribution; hence W is indeed doubly stochastic. In other
words, 1 is both a left eigenvector and right eigenvector. Hence, we have that

σ2pW q “ max
uPRN :uJ1“0 and }u}2“1

}Wu}2.
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Now letting u P RN be an arbitrary vector such that }u}2 “ 1 and uJ1 “ 0, we will bound }Wu}2.
We have

}Wu}2 “

›

›

›

›

ÿ

iPrts

αiWiu

›

›

›

›

2

ď
ÿ

iPrts

αi}Wiu}2 “
ÿ

iPS

αi}Wiu}2 `
ÿ

iRS

αi}Wiu}2

ď

˜

ÿ

iPS

αi

¸

ˆ

max
iPS

}Wiu}2

˙

`

˜

ÿ

iRS

αi

¸

p1q ď max
iPS
tσ2pWiqu `

ÿ

iRS

αi,

where we are using the triangle inequality for the first inequality, and that each Wi is a random
walk matrix for the second inequality. ■

We now move on to the definitions needed for our local list-correction application in Section 5.

Local Correction and Junta-Sums

We say that a family of functions F from a finite domain D to a (finite or infinite) co-domain G, is
pq, εq-locally correctable if there exists a q-query algorithm A, which when given query access to a
function f : D Ñ G such that δpf, P q ď ε for some P P F , and an input index i P D, outputs P piq
with probability at least 3{4. In words, the algorithm A is able to “correct” any given index of the
received word f by making only a few queries. Since P has to be unique for such an algorithm to
exist, we are always in the regime when the fraction of errors is less than half the distance of the
code i.e., ε ă δpFq{2.

We say that F is pε, Lq-list-decodable if if for every function f : D Ñ F , there exists at most L
functions P P F such that δpf, P q ď ε. While this is a purely combinatorial guarantee for the code,
the notion of local list-correction makes it more “algorithmic”.

We say that F is pε, q1, q2, Lq locally list-correctable if there exists a q1-query algorithm A, which
when given query access to f , outputs at most L many q2-query local correction algorithms
A1,A2, . . . ,AL such that for every P P F such that δpf, P q ď ε, there exists at least one in-
dex i P rLs such that Ai is a local correction algorithm for P i.e., on input i P D, it makes q2
queries to f and outputs P piq with probability at least 3{4.

For an Abelian group G, let JdpSn, Gq (or simply Jd when S and G are clear from context) denote
the family of functions from Sn Ñ G that can be expressed as a sum of d-juntas (i.e., a d-junta-
sum). We may sometimes also refer to d-junta-sums as functions of junta-degree d. We then have
the following observation regarding d-junta-sums.

Claim 2.6 (Distance of junta-sums, see e.g. [ASS23], Claim 2.7). For every two distinct junta-sums
P ‰ Q P JdpSn, Gq where |S| “ s, we have

Pr
a„Sn

rP paq ‰ Qpaqs ě
1

sd
.

That is, junta-sums form a code of distance δJ “ 1{sd where s “ |S|. Indeed, the local correction
and list-decodability properties of this family only depends on the size of S, so we will often assume
that S “ Zs or S “ rss without loss of generality. We also use the following claim, where for a P Zs,
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the function δa : Zs Ñ Z is defined as: δ0pxq “ 1, and for a ‰ 0, we define δapxq “ 1 if x “ a, and
δapxq “ 0 otherwise.

Claim 2.7 (Junta-polynomial representation, [ASS23] Claim 2.5). Every P P JdpZn
s , Gq can

be uniquely expressed as:

P pxq “
ÿ

aPZn
s :|a|ďd

ga ¨
ź

iPrns:ai‰0

δaipxiq, where each ga P G.

We call the above representation
ř

aPZn
s
ga ¨

ś

iPrns:ai‰0 δaipxiq as a junta-polynomial and its junta-
degree is the size of the largest |a| such that the coefficient ga ‰ 0; in particular, we call the terms
being added as monomials. Generalizing Claim 2.7 one can show that every function f : Zn

s Ñ G
has a unique junta-polynomial representing it and f is a d-junta-sum if and only if the degree of
that junta-polynomial is at most d. In turn, this immediately implies that f depends on the i-th
coordinate if and only if the variable xi appears (as δapxiq for some a P Zszt0u) in a non-zero
monomial in the junta-polynomial representation.

Partitions and Tableaux

We end this section with some more terminology about integer partitions and multislices, which
will be needed in our proofs. All the definitions in this subsection are standard and can be found
in any standard text on algebraic combinatorics or representation theory for the symmetric group.
For example, see [Sag13, Chapter 2] or [Sta12; Sta24].

Partitions For every natural number n P N, let Ppnq denote the set of partitions of n. We will
frequently use Ferrers diagram to represent partitions. Let λ˚ P Ppnq denote the dual partition of λ.

SYT and SSYT For a partition λ P Ppnq, a standard Young tableau is a tableau of shape λ
in which the entries in each row and each column are strictly increasing. A semi-standard Young
tableau is a tableau of shape λ in which the entries in each row are weakly increasing and entries in
each column are strictly increasing. For a pair of partitions λ, µ P Ppnq, the set SSYTpλ, µq denotes
the set of semi-standard Young tableaux of shape λ and type µ. Similarly, SYTpλq denotes the set
of standard Young tableaux of shape λ.

For any λ, µ P Ppnq, we associate two quantities:

• fλ denotes the number of Standard Young Tableaux of shape λ with content rns, i.e. fλ “
|SYTpλq|.

• Kλµ denotes the number of distinct Semi-Standard Young Tableaux of shape λ and type µ,
i.e. Kλµ “ |SSYTpλ, µq|. This is also known as the Kostka number of the pair pλ, µq.

Dominance Order For two partitions λ, µ P Ppnq, dominance order is a partial order on parti-
tions, defined as follows: Suppose λ “ pλ1, . . . , λℓq and µ “ pµ1, . . . , µmq, then λ İ µ if for every
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1 ď i ď min tℓ,mu,

λ1 ` . . .` λi ě µ1 ` . . .` µi.

For every positive integer n, Symn denotes the group of permutations on n elements and SymrSs
denotes the group of permutations on S.

Linear Algebra

Singular Value Decompositions For a matrix M P Rnˆn, the singular value decomposition
(SVD) of M is given by orthonormal matrices U, V P Rnˆn such that:

M “ UDV ´1 ô M “ UDV T , pV ´1 “ V T for orthonormal V q,

where D is a diagonal entries and the diagonal entries of D are the singular values of M . We will
denote the singular values of M by σ1 ě σ2 ě ¨ ¨ ¨ ě σn.
In particular, if M has all real eigenvalues, then V “ U and the singular values correspond to the
absolute values of the eigenvalues.

We now explain how SVDs behave under the tensor product. For two matrices M1 and M2 with
SVDs

M1 “ U1D1V
T
1 and M2 “ U2D2V

T
2 ,

then the SVD of M1 bM2 is:

M1 bM2 “ pU1 b U2q ¨ pD1 bD2q ¨ pV1 b V2q
T . (1)

Definition 2.8 (Volume of a parallelepiped). Suppose tv1, . . . , vru P Rr is a set of linearly inde-
pendent vectors. Fix an arbitrary total order ’ă’ on the vectors i.e., there exists a π P Symr such
that

vπp1q ă vπp2q ă ¨ ¨ ¨ ă vπpnq.

Let rvπp1q “ vπp1q and for every 2 ď i ď r, let rvπpiq denote the vector orthogonal to span
␣

vπpjq

ˇ

ˇ j ă i
(

.
Then the volume of the parallelepiped spanned by v1, . . . , vr, denoted by Volptv1, . . . , vruq, is defined
to be

r
ź

j“1

}rvi},

where } ¨ } is the norm with respect to the standard inner product on R.
It also turns out that the volume is equal to | detpΛq| where the columns of Λ are v1, . . . , vr.

For any matrix A P Rrˆr, we will denote by }A}2 the spectral norm of A i.e.

}A}2 “ sup
x‰0

}Ax}2
}x}2

“ max
σ is a singular value of A

σ. (2)
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Subgrids of Sn

It will be very useful in our algorithms to be able to restrict the given function to a smaller subgrid
and analyze this restriction. We construct such subgrids by first permuting a subset of the variables
and then identifying them into a smaller set of variables. More precisely, we have the following
definition.

Definition 2.9 (Embedding a smaller grid into Sn). Fix any k P N and k ď n. Let h : rns Ñ rks
be a hash function. For each i P rns, let Πi P SymrSs (i.e. a permutation on elements of S) and
Π “ pΠ1, . . . ,Πnq. For every y P Sk, define xh,Πpyq P Sn as follows:

xh,Πpyqi “ Πipyhpiqq, for all i P rns

and the subset Ch,Π Ă Sn is defined as:

Ch,Π “

!

xh,Πpyq
ˇ

ˇ

ˇ
y P Sk

)

Further, a random subgrid Ch,Π is obtained by sampling a uniformly random permutation Πi „

SymrSs independently for all i P rns and sampling a uniformly random hash function h : rns Ñ rks.

In simple words, the above definition gives us a way to embed a k-dimensional grid Sk into a
n-dimensional grid Sn, where the hash function h governs how the k-coordinates are mapped into
n-coordinates and Π governs which value the ith coordinate takes.

The following sampling lemma (proved in Appendix B) will be useful for local (list) correction of
junta-sums.

Lemma 2.10 (Sampling lemma for random subgrids). Let Ch,Π Ă Sn be a subgrid sampled
randomly as per Definition 2.9. Fix any T Ď Sn and let µ :“ |T |{sn. Then, for any ε, η ą 0

Pr
h,Π

„ˇ

ˇ

ˇ

ˇ

|T X Ch,Π|

sk
´
|T |

sn

ˇ

ˇ

ˇ

ˇ

ě ε

ȷ

ă η

as long as k ě max
!

A
ε8η4

¨ log
´

1
εη

¯

, B ¨ s4 log s
)

for a large enough absolute constants A,B ą 0.

3 Singular Value Bounds for Random Walks on Balanced Multi-
slices

Organization of this section. In this section, we will prove Theorem 1.3. At a high level, the
proof proceeds as follows:

1. We give the necessary background on representation theory for finite groups in Proposition 3.1.
We then instantiate it for Symn and state the exact requirements we need to prove for our
purpose in Theorem 3.3. These two steps can be found in Section 3.1.

2. We then in Section 3.2 argue that Theorem 3.3 is sufficient to prove Theorem 1.3.

3. We devote Section 3.3 and Section 3.4 to prove Theorem 3.3. In particular, we start with
describing some “special vectors” which we use to prove Theorem 3.3. The description of these
vectors is combinatorial in nature, and we prove certain properties about them. Finally, we
prove Theorem 3.3 in Section 3.4.
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Notation For any two natural numbers n and s with n divisible by s, µ denotes the s-tuple
pn{s, . . . , n{sq and Sn

µ is the set of all points in Sn which are on the balanced multi-slice µ. Let
N :“ |Sn

µ | “
`

n
n{s,...,n{s

˘

. For any n, Ppnq denotes the set of partitions of n. Throughout this
section, we will assume that s is an absolute constant.

3.1 Representation Theory Primer

In this and the following subsections, whenever we mention a representation, we refer to a complex
finite-dimensional representation of finite groups. For interested readers, we refer to [Sag13, Chapter
1] for the relevant background on the representation theory of finite groups.

Let G be a finite group and V be a C-vector space with dimpV q ă 8. Let x¨, ¨y : V ˆ V Ñ C
be an inner product that is preserved under the representation ρ, i.e. for every g P G, for every
u, v P V ,

xρpgqu, ρpgqvy “ xu, vy.

Basic results of representation theory imply the following.

Proposition 3.1 (Standard facts on representations for finite groups). Suppose ρ : G Ñ GLpV q
is a representation of G and W P EndpV, V q commutes with the representation ρ, i.e. for every
g P G,

ρpgq ˝W ” W ˝ ρpgq (equivalent as linear operators).

In other words, W is an intertwining operator from pρ, V q to itself. Then,

1. There exists sub-representations V1, . . . , Vr such that

V –

r
à

i“1

Vi

where tV1, . . . , Vru are orthogonal subspaces (with respect to the inner product mentioned
above).
Moreover, for every i P rrs, the following holds. There exists an irreducible representation Ui

and an integer mi ě 1 such that

V –

mi
à

j“1

Vi,j and Vi,1 – ¨ ¨ ¨ – Vi,mi – Ui.

The subrepresentation Vi is called as the isotypic component of pρ, V q corresponding to the
irreducible representation Ui. This means

dimpViq “ mi ¨ dimpUiq and dimpV q “
r
ÿ

i“1

mi ¨ dimpUiq.

2. Fix any i P rrs. Let Bi,1 be an ordered basis for Vi,1. For every 2 ď j ď mi, there exists an
unique isomorphism Li,j : Vi,1 Ñ Vi,j. Let Bi,j denote the image of Bi,1 under Li,j, and Bi,j

is a basis for Vi,j. Let Bi be an ordered basis for Vi obtained by concatenating Bi,1, . . . ,Bi,mi

in that order. Similarly, B obtained by concatenating B1, . . . ,Br is an ordered basis for V .
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3. The linear map W preserves the isotypic components, i.e. for each i P rrs, W |Vi P EndpVi, Viq.
In particular, under the ordered basis B, the map W (when viewed as a dimpV q ˆ dimpV q
matrix) has the following structure:

W “

r
à

i“1

Wi, pdirect sum of matricesq

where for each i P rrs, Wi is a dimpViq ˆ dimpViq dimensional matrix.
Furthermore, for every i P rrs, there exists a unique miˆmi dimensional matrix Ai such that

Wi “ Ai b IddimpUiq
, where Idk is the k ˆ k dimensional identity matrix.

4. Fix any i P rrs. For every non-zero v P Vi,1, define a C-space Yi,v :“ span tv,Li,2pvq, . . . ,Li,mipvqu.
Then Wi|Yi,v P EndpYi,v, Yi,vq and Wi|Yi,v “ Ai when we represent the linear map in the or-
dered basis pv,Li,2pvq, . . . ,Li,mipvqq.

The following corollary is immediate from the third item of Proposition 3.1.

Corollary 3.2. We follow the same notation from Proposition 3.1. Suppose
␣

βi1, . . . , β
i
mi

(

is the
multi-set of singular values of Ai where each βij P C. Then using Equation (1), we get that in the

multi-set of singular values of Wi, the frequency of βij is equal to the frequency of βij in the multi-set
␣

βi1, . . . , β
i
mi

(

times dimpUiq.

Now we turn to the representation theory for Symn. In particular, we will be considering the
representation of Symn on the space of functions on a slice of Sn.

Space of functions on a slice For any partition λ P Ppnq, let Mλ denote the C-vector space of
functions over the slice Sn

λ i.e.

Mλ “ tf : Sn
λ Ñ Cu .

It is easy to see that dimpMλq “ |Sn
λ |. There is a natural action of the symmetric group Symn on

Mλ: For all π P Symn and for all f PMλ,

pπfqpxq “ fpπ´1xq, where π´1x “ pxπ´1p1q, . . . , xπ´1pnqq

Representation of Symn Let pρ,Mµq denote the following C representation of Symn:

ρ : Symn Ñ GLpMµq

pρpπq fqpxq “ fpπ´1xq, @ π P Symn, @ f PMµ. (3)

Invariant inner product Next we mention an inner product x¨, ¨y on the space MµˆMµ which
will be invariant under the representation ρ. The inner product is defined as follows:

x¨, ¨y : Mµ ˆMµ Ñ Rě0
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xf, gy “ Ex„Sn
µ
rfpxq ¨ gpxqs “

1

N

ÿ

xPSn
µ

rfpxq ¨ gpxqs. (4)

It is not hard to see that the above inner product is invariant under the representation ρ, i.e., for
every f, g PMµ, the following holds:

xρpπqf, ρpπqgy “ xf, gy.

This representation is quite well-studied in the representation theory for finite groups. There is a
complete understanding of the decomposition of Mλ into its irreducible representations. In par-
ticular, the irreducible representations of pρ,Mµq are given by the Specht modules Sλ Ă Mλ. See
[Sag13, Chapter 2] for an excellent exposition on the irreducible decompositions. Next, we state
Theorem 3.3, which we will use to prove Theorem 1.3. We do not require specific details of the
irreducible representation, so we only state what is sufficient for our purpose.

Theorem 3.3. Fix any n, s P N where n is divisible by s and let µ “ pn{s, . . . , n{sq P Ppnq. The
following holds:

1. The subrepresentations of Mµ are indexed by λ P Ppnq and in particular, there exists subrep-
resentations Vλ,1, . . . , Vλ,mλ

for an integer mλ P N such that:

Mµ –
à

λİµ

mλ
à

j“1

Vλ,j ,

where Vλ,1 – ¨ ¨ ¨ – Vλ,mλ
.

(a) For λ “ pnq, mλ “ 1 and dimpVλ,1q “ 1. This corresponds to the trivial subrepresenta-
tion spanned by the function that takes the value 1 at each point of Sn

µ .

2. Let c P N denote an absolute constant ą 1. For every partition λ “ pλ1, . . . , λℓq P Ppnq, we
have

(a) If λ2 ą c, then dimpVλ,1q “ ¨ ¨ ¨ “ dimpVλ,mλ
q ě n0.8c.

(b) If λ2 ď c, then mλ ď scs. As s and c are constants, mλ “ Os,cp1q.

3. For every constant c P N, the following holds. Fix any λ “ pλ1, . . . , λℓq P Ppnq such that
λ2 ď c. Then there exists vectors uλ1 , . . . , u

λ
mλ

P Mµ where for every j P rmλs, the vector

uλj P Vλ,j, satisfying the following conditions:

(a) For every j ą 1, uλj is the image of uλ1 under the unique isomorphism between represen-
tations Vλ,1 and Vλ,j.

(b) For every j P rmλs, }u
λ
j }2 “ Θs,cp1q. Here, the norm is with respect to the invariant

inner product stated in Equation (4).

(c) If D is a probability distribution on the balanced multislice Sn
µ such that D is an ε-almost

k-wise independent and uniform distribution for some k ě cs, then,

ˇ

ˇ

ˇ

ˇ

Ex„Dru
λ
j pxqs

ˇ

ˇ

ˇ

ˇ

ď Os,cpεq, for all j P rmλs.
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(d) The volume of the parallelepiped (see Definition 2.8) formed by
!

uλj

)mλ

j“1
is at least a

constant, i.e., Volpuλ1 , . . . , u
λ
mλ
q “ Ωs,cp1q.

Remark 3.4. We note that items 1 and 2 in the Theorem 3.3 are standard results in the repre-
sentation theory of Symn, or simple consequences thereof. Also see Theorem 3.13 for more details
on item 1. The new technical observations we make are in proving items 3.(c) and 3.(d) of The-
orem 3.3. As we will elaborate later in Section 3.3, our proof for item 3 of Theorem 3.3 uses
[DFLLV21]. In this work, we analyze a set of functions described already in [DFLLV21] and show
that they satisfy additional properties, which allows us to prove our main theorem (Theorem 1.3).

We will first show how Theorem 3.3 implies Theorem 1.3. We defer the proof of Theorem 3.3 to
Section 3.4. We will also require the following lemma on estimating the singular values of small
matrices. It says that if we have a set of linearly independent vectors whose parallelepiped has a
significant volume, then they are “useful” in estimating the singular values.

Lemma 3.5 (Estimating singular values using special vectors). As a special case, in this lemma,
we will work with the standard inner product in Euclidean space Rr. The lengths, volumes etc. below
are defined using this standard inner product.

Let Q P Rrˆr be a matrix and tv1, . . . , vru be a set of linearly independent vectors satisfying the
following conditions:

1. For each j P rrs, }vj}2 ď m for some m P Rą0.

2. For each j P rrs, }Qvj}2 ď q for some q P Rą0.

3. The volume (recall Definition 2.8) Volpv1, . . . , vrq ě τ .

Then6 }Q}2 ď r ¨
max tmr, 1u ¨ r!

τ
¨ q.

Proof of Lemma 3.5. By definition of spectral norm,

}Q}2 “ sup
x:}x}2“1

}Qx}2, where x P spanpv1, . . . , vrq.

Choose an arbitrary x P spanpv1, . . . , vrq with }x}2 “ 1. We know there exists coefficients
α1, . . . , αr P C such that x “

řr
i“1 αivi. We first upper bound |αi| for all i P rrs.

Let Λ P Rrˆr denote the matrix whose columns are v1, . . . , vr. Let α “ pα1, . . . , αrq. Then Λα “ x.
In other words,

αi “
detpΛiq

detpΛq
,

where Λi is the matrix whose ith column vi is replaced by x. We have }x}8 ď }x}2 “ 1 and for
every j P rrs, }vj}8 ď }vj}2 ď m. Combining these two, we have }Λi}8 ď max tm, 1u. This implies

6 Recall the notation in Equation (2).
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that detpΛiq ď r! ¨ }Λi}
r
8 ď max tmr, 1u ¨ r!. Recall also that the volume of the parallelepiped

spanned by v1, . . . , vr is given by | detpΛq|. Thus we have,

|αi| ď
max tmr, 1u ¨ r!

τ
, for all i P rrs.

Now let us consider }Qx}2:

}Qx}2 ď
r
ÿ

i“1

|αi| ¨ }Qvi}2 ď r ¨
max tmr, 1u ¨ r!

τ
¨ q.

This finishes the proof of Lemma 3.5. ■

3.2 Proof of Our Main Technical Theorem (Theorem 1.3)

In this subsection, we give the proof of our main technical theorem (Theorem 1.3), assuming The-
orem 3.3. We defer the proof of Theorem 3.3 to Section 3.4.

Proof of Theorem 1.3 (using Theorem 3.3). The first condition on the matrix M implies that M
commutes with the representation pρ,Mµq (see Equation (3)). Using the third item of Proposi-
tion 3.1 and Corollary 3.2, we know that the singular values of M can be divided into groups
indexed by partitions λ P Ppnq. We can classify the singular values of M into three categories:

• Singular values corresponding to the partition λ “ pnq. As stated in 1.(a) of Theorem 3.3, it
corresponds to the 1-dimensional vector space and thus has singular value 1.

• Singular values indexed by partitions λ “ pλ1, . . . , λℓq P Ppnq with λ2 ą c ą 1 (here c is the
constant from Theorem 3.3).

• Singular values indexed by partitions λ “ pλ1, . . . , λℓq P Ppnq with λ2 ď c and λ ‰ pnq (here
c is the constant from Theorem 3.3).

To bound σ2pMq, we only need to upper bound the singular values in the second and third
categories. Before proceeding, we set some notation for convenience. Applying the third item of
Proposition 3.1 on the matrix M , we know the following: For every partition λ P Ppnq with λ İ µ,

there exists a square matrix ĂMλ of dimensions mλ ˆmλ such that

M “
à

λİµ

´

ĂMλ b IddimpVλq

¯

, where dimpVλq “ mλ ¨ dimpVλ,1q.

Corollary 3.2 tells us that the multiset of singular values ofM is essentially governed by the multiset
of singular values of ĂMλ’s for different λ’s. For every λ İ µ, let

␣

βλ1 , . . . , β
λ
mλ

(

denote the multiset

of singular values of ĂMλ (i.e. we account for repetitions too).
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To upper bound the singular values of the second category, we use the upper bound on the
Frobenius norm of M . More precisely, we will show the following lemma.

Lemma 3.6. Let κ, c1 ą 0 be constants such that the Frobenius norm }M}F ď c1 ¨ n
κ (see

Theorem 1.3) and let c “ 4κ. Let λ “ pλ1, . . . , λℓq P Ppnq with λ2 ą c. Thena,

}ĂMλ}2 ď
1

c1
1 ¨ n

κ
,

where c1
1 is a constant depending on c1 and κ.

a Recall the notation in Equation (2).

Proof of Lemma 3.6. We know that the square of the Frobenius norm equals the sum of singular
values squared, i.e. if

␣

βγ1 , . . . , β
γ
mγ

(

is the multiset of singular values of ĂMγ , then

ÿ

γİµ

dimpVγ,1q ¨

mγ
ÿ

i“1

|βγi |
2 ď }M}2F .

Fix an arbitrary λ P Ppnq with λ2 ą c. As every term on the left side of the above inequality is a
non-negative number, we have the following inequality for any i P rmλs:

dimpVλ,1q ¨ |β
λ
i |

2 ď }M}2F

ñ Ωκpn
4κq ¨ |βλi |

2 ď c21 ¨ n
2κ (Using 2.(a) of Theorem 3.3 and 2 of Theorem 1.3q

ñ |βλi | ď
1

c1 ¨ nκ
.

Since the above upper bound holds for every i P rmλs, we get the desired bound on }ĂMλ}2. This
finishes the proof of Lemma 3.6. ■

Next, we have to upper bound the singular values of the third category, and this requires more
steps in comparison to the previous lemma. We use the ε-almost k-wise independence of M in
this step. We start by stating the bound.

Lemma 3.7. Let c “ 4κ (the same constant from Lemma 3.6) and λ P Ppnq be a partition
with λ İ µ, λ2 ď c, and λ ‰ pnq. Then,

}ĂMλ}2 ď Os,κpεq,

where ε is the distance parameter in the third item of Theorem 1.3.

Proof of Lemma 3.7. Fix a partition λ İ µ with λ2 ď c and λ ‰ p1, 1, . . . , 1q for rest of the proof.
Let uλ1 , . . . , u

λ
mλ

be the vectors guaranteed from the third item of Theorem 3.3. The idea is to use

Lemma 3.5 on the vectors uλj ’s and the matrix ĂMλ, but we need to be careful, as we explain below.
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From the third and fourth items of Proposition 3.1, we have,

Muλj “
ĂMλu

λ
j , where ĂMλ is the operator M |Yλ

ñ }Muλj }2 “ }ĂMλu
λ
j }2,

where both the norms are with respect to the invariant inner product defined in Equation (4).

Fixing an orthonormal basis. Let

Yλ :“ spanpuλ1 , . . . , u
λ
mλ
q

and let pw1, . . . , wmλ
q be an ordered orthonormal (with respect to the invariant inner product

defined in Equation (4)) basis for the space Yλ.

Let rAλ denote the mλ ˆ mλ matrix representing the operator ĂMλ under the orthonormal basis
pw1, . . . , wmλ

q.

The singular values remain invariant under the choice of basis7, thus it is enough to bound } rAλ}2.
The idea is to use Lemma 3.5 on rAλ and vectors uλj ’s to bound } rAλ}2. There is some subtelty
regarding norms in using Lemma 3.5, which one needs to be careful about.

Expressing the uλj ’s in the orthonormal basis. For every j P rmλs, let

uλj “ αj,1w1 ` . . .` αj,mλ
wmλ

and αj :“ pαj,1, . . . , αj,mλ
q.

Then,

}uλj }2 “ }αj}2,

where the left norm is with respect to the invariant inner product defined in Equation (4) and the
right norm is the standard inner product on Rmλ . Using 3.(b) of Theorem 3.3, we get that for
every j P rmλs, }αj}2 “ Θs,cp1q.

Norm after applying the operator ĂMλ. Now we have the following equality:

ĂMλu
λ
j “

rAλαj ñ }ĂMλu
λ
j }2 “ } rAλαj}2,

where the left norm is with respect to the invariant inner product defined in Equation (4) and the
right norm is with respect to the standard inner product. Hence, we get

}Muλj }2 “ } rAλαj}2, for every j P rmλs.

7 To see this quickly, note that singular values of a matrix A are the positive square roots of the eigenvalues of
AAT and eigenvalues are independent of the choice of basis.
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Upper bounding the norm after applying the operator We now show that for every j P
rmλs,

} rAλαj}2 ď Os,κpεq,

where the norm is with respect to the standard inner product. From the previous paragraph, it
is enough to show that for every j P rmλs, the norm }Muλj }2 ď Os,cpεq, where the norm is with
respect to the invariant inner product.

Using the definition of the invariant inner product from Equation (4), we get,

}Muλj }
2
2 “ Ex„Sn

µ

´

Ey„Mpxqru
λ
j pyqs

¯2

For every x P Sn
µ , the third item of Theorem 1.3 says that Mpxq is ε-almost k-wise independent for

k “ 10sκ ě cs. Applying item 3.(c) of Theorem 3.3 on Mpxq for an arbitrary x P Sn
µ , we get

Ey„Mpxqru
λ
j pyqs “ Os,κpεq.

As this holds for every x P Sn
µ , we get,

Ex„Sn
µ

´

Ey„Mpxqru
λ
j pyqs

¯2
“ Ex„Sn

µ

`

Os,cpε
2q
˘

“ Os,κpε
2q.

Hence we have shown that for every j P rmλs, we get

} rAλαj}2 “ }Muλj }2 “ Os,κpεq.

Volume of the parallelepiped. Fix an arbitrary order on the uj ’s and recall from Definition 2.8
that

Volpuλ1 , . . . , u
λ
mλ
q “ }ũλ1}2 ¨ ¨ ¨ }ũ

λ
mλ
}2,

where ruj is as defined in Definition 2.8 and the above norms are with respect to the invariant inner
product defined in Equation (4). Similarly, we have Volpα1, . . . ,αmλ

q, in which the norm is with
respect to the standard inner product.

Observe that for every j P rmλs, spanpα̃1, . . . , α̃j´1q – spanpũλ1 , . . . , ũ
λ
j´1q, i.e. they are isometric

as inner product spaces. Now the component of uλj orthogonal to the pj ´ 1q dimensional subspace
has the same norm (in the invariant inner product) as the component of αj has norm under the
standard inner product. Thus,

Volpuλ1 , . . . , u
λ
mλ
q “ Volpα1, . . . ,αmλ

q “ Ωs,κp1q,

where the final lower bound is from item 3.(d) of Theorem 3.3.

Now we apply Lemma 3.5 on rAλ and vectors α1, . . . ,αmλ
. Using 2.(b) of Theorem 3.3, we know

that mλ “ Os,cp1q. This gives us the desired bound and finishes the proof of Lemma 3.7. ■

Thus, we have proved Lemma 3.6 and Lemma 3.7, which gives an upper bound on the singular
values of the second and third categories, respectively. Combining Lemma 3.6 and Lemma 3.7, we
finish the proof of Theorem 1.3. ■
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3.3 Construction of Special Vectors

In this section, we describe the vectors specified in the third item of Theorem 3.3. The construction
combines standard literature on the representation theory of the symmetric group [Sag13] with the
recent work of [DFLLV21]. We need to recall the definition here to show that they satisfy the
properties claimed in Theorem 3.3.

Throughout this section, fix a partition λ “ pλ1, . . . , λℓq P Ppnq and assume that 2 ď ℓ ď s. We
will consider (Young) tableaux T of shape λ, which contain cells T ri, js where 1 ď i ď ℓ and
for 1 ď j ď λi. Further, we will also consider permutations of such tableaux by permutations
that rearrange the elements in each column of T . Let Cλ :“ Symλ˚

1
ˆ ¨ ¨ ¨ ˆ Symλ˚

λ1
and given a

permutation σ P Cλ, we denote by T
σ the tableau obtained by rearranging the contents of the cells

of T according to σ. For every σ “ pσp1q, . . . , σpλ1qq P Cλ, sgnpσq :“ sgnpσp1qq ¨ ¨ ¨ sgnpσpλ1qq.

We define T0 to be the canonical tableau of shape λ where the cells are labelled as follows:

T0ri, js :“
ÿ

păi

λp ` j, i P rℓs, j P rλis. (5)

The following is a diagram for the canonical tableau T0 for some partition λ P Ppnq.

T0 “

1 2 . . . λ1 ´ 1 λ1

λ1 ` 1 λ1 ` 2 . . . λ2

...
...

n´ 2 n´ 1

n

Next, we define a polynomial on Sn
µ for every semi-standard Young tableau of shape λ and content8

µ. Recall that µ P Ppnq is the partition of n given by pns , . . . ,
n
s q.

Definition 3.8. [DFLLV21, Section 5.2]. Given a tableau T 1 of shape λ with distinct labels from
rns and another tableau T of shape λ with content µ, we define a corresponding R-valued function
eT 1,T : Sn

µ Ñ t0, 1u by

eT 1,T pxq “

#

1, if txT 1ri,1s, . . . , xT 1ri,λis
u “ tT ri, 1s, . . . , T ri, λisu as multisets for each 1 ď i ď ℓ, (*)

0, otherwise.

(6)

8 i.e. a tableau with µ1 many 0s, µ2 many 1s, and so on until µs many ps ´ 1qs
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Finally, given a T P SSYTpλ, µq, define the function χT : Sn
µ Ñ Z by

χT pxq “
ÿ

σPCλ

sgnpσq ¨ eTσ
0 ,T pxq, (7)

where T σ
0 is the tableau obtained after σ acts on the canonical tableau T0.

Observation 3.9. Note that condition (*) in Equation (6) could equivalently have been stated in
terms of rows i P t2, . . . , ℓu as the condition for i “ 1 is implied by the others (since the input x
is a point in Sn

µ ). Overall, this implies that eTσ
0 ,T (and hence χT ) depends only on variables whose

index appears in one of the first λ2 columns of T . In particular, if λ2 ď c, this implies that χT is
a γ-junta for γ ď cℓ ď cs.

Next we define a total order on the set SSYTpλ, µq.

Definition 3.10 (Total order on SSYTs). Let λ P Ppnq and µ “ pn{s, . . . , n{sq. Given two distinct
SSYTs S, T P SSYTpλ, µq, we say that S ă T if there exists 2 ď i ď ℓ and j P rλis such that the
following holds:

1. For every k ą i and for every j1 P rλks, we have Srk, j1s “ T rk, j1s, i.e. the kth rows of S and
T are equal.

2. For every λi ě j1 ą j such that Sri, j1s “ T ri, j1s.

3. Finally, Sri, js ă T ri, js.

We leave it to the reader to check that this defines a total order on SSYTpλ, µq.

We will need the following claim regarding the aforementioned ordering.

Claim 3.11. Assume that S, T P SSYTpλ, µq and σ P Cλ are such that

• either S ă T

• or S “ T and σ is not the identity permutation.

Then, for any σ P Cλ, there exists an i P t2, . . . , ℓu such that the multisets tSσri, 1s, . . . , Sσri, λisu
and tT ri, 1s, . . . , T ri, λisu are distinct.

Proof. Choose i to be the largest number such that σ moves the contents of some cell in the ith
row of S, assuming σ is not the identity; otherwise, set i “ 0. Assuming that i ‰ 0, for each cell in
the ith row moved by σ, we note that the contents of this row can only decrease, since the columns
of S are strictly increasing and σ does not change the contents of any row i1 ą i. In particular, this
implies the claim in the case that S “ T . We therefore assume that S ‰ T and S ă T for the rest
of the proof.

Let i0 be the largest number such that the ith0 rows of S and T differ. Note that i0 P t2, . . . , ℓu.
Further, fix j0 to be the rightmost cell on this row where S and T differ. Note that Sri0, j0s ă
T ri0, j0s.
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We note that we are immediately done if i ă i0 since in this case

tSri0, 1s, . . . , Sri0, λi0su “ tS
σri0, 1s, . . . , S

σri0, λi0su ‰ tT ri0, 1s, . . . , T ri0, λi0su

So we may assume that i ě i0, and in particular that σ is not the identity.

Now, we consider two cases.

• If i ą i0, then we have

ÿ

jPrλis

Sσri, js ă
ÿ

jPrλis

Sri, js “
ÿ

jPrλis

T ri, js

implying the claim in this case.

• If i “ i0, consider the rightmost cell (numbered j, say) where Sσ and T differ on this row.
Note that Sσri, j0s ď Sri, j0s ă T ri, j0s and hence j ě j0.

Consider the multiplicities of the element t :“ T ri, js in the ith rows of S, Sσ and T , which
we denote mS ,mSσ and mT respectively. Note that mS ď mT because j ě j0 and S ă T.
We also know that Sσri, js ‰ t by definition of j. Finally, note that for any j1 ă j we
have either Sσri, j1s “ Sri, j1s or Sσri, j1s ă Sri, j1s ď Sri, js ď T ri, js with the latter two
inequalities following from the fact that S is an SSYT and the fact that j ě j0. This implies
that mSσ ă mT , the multisets defined by the ith row in the two tableaux Sσ and T cannot
be equal.

This finishes the proof of the claim. ■

The main result of this subsection is the following lemma, which shows the existence of the special
vectors as stated in Theorem 3.3.

Lemma 3.12. Let λ P Ppnq and c P N. Assume that λ2 ď c. For every T P SSYTpλ, µq, the
function χT satisfy the following properties:

1. For each T P SSYTpλ, µq, we have ∥χT ∥2 “ Os,cp1q.

2. Let ε ą 0 be arbitrary and assume k is an integer such that k ě cs. For any ε-almost k-wise
independent distribution D supported on Sn

µ , we have

|Ex„DrχT pxqs| ď Os,cpεq. (8)

3. We have,

VolptχT | T P SSYTpλ, µquq “ Ωs,cp1q.

Proof. The first item follows almost immediately from the definition of χT in Equation (7) above.
From this definition, we get

∥χT ∥2 ď ∥χT ∥8 “ max
xPSn

µ

|χT pxq| ď |Cλ| ¨max
σ,x

|eTσ
0 ,T pxq| ď |Cλ| ď ps!q

c (9)
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where the first inequality is trivial, the second is the triangle inequality applied to Equation (7),
the third follows from the fact |eTσ

0 ,T pxq| ď 1 for each x, and the last follows from the fact that λ
is c-good.

For the second item, we note that by Observation 3.9 and the ε-almost k-wise independence of D,
we have

Ex„DrχT pxqs ď ε ¨max
xPSn

|χT pxq| ` Ea„Sn
µ
rχT paqs. ď Os,cpεq ` Ex„Sn

µ
rχT pxqs

where the second inequality uses the bound on |χT pxq| proved above. To bound the latter term,
we note that for by symmetry, for each σ P Cλ, the quantity Ex„Sn

µ
reTσ

0 ,T pxqs is exactly the same.
Since the signed sum defining χT has the same number of positive and negative signs, the sum of
the expectations is 0. This proves the second item of the claim.

The third item needs a definition. Given a S P SSYTpλ, µq, define subset AS Ă Sn
µ as follows:

AS :“
␣

x P Sn
µ

ˇ

ˇ xT0ri,js “ Sri, js, i P rℓs, j ď mintλ2, λiu
(

,

i.e. we define AS using the first λ2 columns of S.

Note that for each x P AS , we have the following:

• eT0,Spxq “ 1. This follows immediately from the definition of eT0,S above.

• Now fix T P SSTYpλ, µq and σ P Cλ such that either T ą S or S “ T and σ is not
the identity permutation (here the identity permutation in Cλ refers to id ˆ ¨ ¨ ¨ ˆ id). We
claim that eTσ

0 ,T pxq “ 0. To see this, start by labelling each cell of T0 with the value of the
corresponding variable, which leads to a tableau S1 which agrees with S on all cells in the
first λ2 columns. Since eTσ

0 ,T depends only the variables in these columns, we may change x
in the other coordinates to ensure that S1 “ S.

Now, we observe that for any σ P Cλ, the multiset txTσ
0 ri,1s, . . . , xTσ

0 ri,λis
u is equal to the

multiset tSσri, 1s, . . . , Sσri, λisu. In particular, by Claim 3.11, there exists an i P rℓs so
that the multiset txTσ

0 ri,1s, . . . , xTσ
0 ri,λis

u is not equal to tT ri, 1s, . . . , T ri, λisu, implying that
eTσ

0 ,T pxq “ 0.

The above implies that for each x P AS , we have

• χSpxq “ 1 and

• χT pxq “ 0 for each T ą S.

For each S P SSYTpλ, µq, let χ̃S denote the projection of χS to the vector space orthogonal to the
span of tχT | S ă T u.
To bound ∥χ̃S∥2, we recall that χ̃S “ χS ´χ for some χ in the span of tχT | S ă T u. By the above
argument, we know that χpxq “ 0 and hence that χ̃Spxq “ 1 for each x P AS . Hence, we get

∥χ̃S∥22 “ Ex„Sn
µ
χ̃Spxq

2 ě
|AS |

N

where N “ |Sn
µ |. So to prove the claim, it suffices to show that the latter quantity is Ωs,cp1q.

For each i P t0, . . . , s´ 1u, let γi denote the number of cells in the first λ2 columns of S that are i
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Define γ :“ γ0 ` . . .` γs´1 ď cs. Using Stirling’s approximation and γ ď cs ď n{2, we get,

|AS | “

ˆ

n´ γ
n
s ´ γ0, . . . ,

n
s ´ γs´1

˙

ě
pn´ γqn´γ ¨ sn´γ

pn´ sqn´γ
¨ Ω

ˆ ?
πn

p2πpns qq
s{2

˙

Again using Stirling’s approximation for N “
`

n
n{s,...,n{s

˘

, we get,

|AS |

|Sn
µ |

ě
pn´ γqn´γ

pn´ sqn´γ
¨

1

sγ
¨ Ω

˜ ?
πn

p2πpns qq
s{2
¨
p2πpns qq

s{2

?
2πn

¸

ě

ˆ

1´
γ ´ s

n´ s

˙n´γ

¨
1

sγ
¨ Ωp1q

ě Ω

˜

ˆ

1´
2γ

n

˙n{2γ¨2γ

¨
1

sγ

¸

ě Ω

ˆˆ

1

e2s

˙γ˙

“ Ωs,γp1q.

As γ ď cs, we get that |AS |{N “ Ωs,cp1q.

The volume of the parallelepiped is equal to the product of }χ̃T }
1s. As we showed above, rχT “

Ωs,cp1q, and thus we get,

VolptχT | T P SSYTpλ, µquq ě
ź

TPSSYTpλ,µq

}χ̃T }2 “ Ωs,cp1q.

This finishes the proof of Lemma 3.12. ■

3.4 Putting Everything Together

Now we are ready to combine everything and prove Theorem 3.3. To do so, we will use the follow-
ing standard result on the representation of Symn. The proof can be found in standard texts on
representation theory for the symmetric group or [Sag13].

Theorem 3.13 (Young’s Rule). (See for e.g. [Sag13, Corollary 2.11.2]). Fix any n, s P N where
n is divisible by s and let µ “ pn{s, . . . , n{sq P Ppnq. For every λ P Ppnq with λ İ µ, let Vλ,j and
mλ be as defined in Theorem 3.3. Then,

dimpVλ,1q “ ¨ ¨ ¨ “ dimpVλ,mλ
q “ fλ and mλ “ Kλµ,

where fλ and Kλµ are defined in Section 2.

Next we prove two claims regarding fλ and mλ for certain partitions λ P Ppnq. These two claims
will be used to prove the item 2 of Theorem 3.3.

Claim 3.14 (Lower bound on the algebraic multiplicity of certain eigenvalues). [EFP11, Lemma
2]9. Let c P N be a constant with c ą 10s. Then for any partition λ P Ppnq with λ2 ą c,

fλ ą Ωcpn
cq.

9 There is a minor typo in the statement of Lemma 2 in [EFP11]. It should be “of length at most...” instead of
“of length greater than...”
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Claim 3.15 (Multiplicity for c-good partitions). Let c P N be a constant and λ P Ppnq with λ2 ď c
and λ ‰ pnq. Let mλ be as defined in the statement of Theorem 3.3. Then, mλ ď ssc “ Os,cp1q.

Proof of Claim 3.15. From Theorem 3.13, we know that mλ “ Kλµ, i.e. the Kostka numbers for
shape λ and type µ. We are interested in upper bounding Kλµ for a c-good partition λ. We have
λ2` . . .`λℓ ď cs. For each cell in the second row till the last row, there are at most s many choices.
As there are ď cs such cells, we get that Kλµ ď scs. This finishes the proof of Claim 3.15. ■

Now we are ready to put all the claims and lemmas together to finish the proof of Theorem 3.3.

Proof of Theorem 3.3. The first item follows by combining the first item of Proposition 3.1 and
Theorem 3.13. Item 2.(a) follows from Claim 3.14 and item 2.(b) follows from Claim 3.15.
Finally, we show that the vectors χT ’s meet the conditions stated in the third item.

1. For 3.(a), we note that the literature on the representation theory of Symn (see [Sag13, Section
2.9 & Section 2.10]10) identifies for each λ P Ppnq exactly mλ many linearly independent ways
of embedding the irreducible representation Sλ (Sλ is the unique irreducible representation, or
Specht module, corresponding to partition λ) into the representation Mµ. These embeddings
are indexed by elements of SSYTpλ, µq and denoted by ΘT : Sλ ÑMµ. Given T P SSYTpλ, µq,
let Vλ,T denote the image of Sλ under the corresponding embedding ΘT .

It can be checked that the various χT are the images of the same element v P Sλ under ΘT

(see also [DFLLV21]). This implies that for S, T P SSYTpλ, µq χT is the image of χS under
the unique isomorphism from Vλ,S to Vλ,T . This proves 3.(a).

2. Item 1 of Lemma 3.12 shows that they satisfy 3.(b).

3. Item 2 of Lemma 3.12 shows that they satisfy 3.(c).

4. Item 3 of Lemma 3.12 shows that they satisfy 3.(d).

This finishes the proof of Theorem 3.3. ■

3.5 Singular Value Bound for Nearly Balanced Random Walks

We now use the statement of Theorem 1.3 to derive the singular value bounds for nearly balanced
random walks on the multislice, as stated in Theorem 1.1.

For this, we will need the following lemma.

Lemma 3.16. For every s ě 2 and C ă 8, there exists τ ą 0 such that for every finite set S of
size s and sufficiently large n P N, if a generalized Hamming distance parameter ∆ P ZSˆS over the
multislice Sn

µ is C-balanced, we have that σ2pW∆q ď 1{nτ , where W∆ is the random walk matrix

10 In the literature of representation theory, these isomorphisms are stated in the language of tabloids and poly-
tabloids. In Appendix A, we provide a translation between the language of tabloids/polytabloids and points/func-
tions.
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determined by ∆.

The above statement implies the claimed general result (i.e., Theorem 1.1) for random walk matrices
that are not necessarily given by a single generalized Hamming distance parameter, but as long as
they are supported on balanced generalized Hamming distance parameters.

We first prove Lemma 3.16.

Proof of Lemma 3.16. Here we directly apply our main result Theorem 1.3, bounding the singular
values of matrices satisfying certain properties. For this, we show that W∆ satisfies the three
properties needed to apply Theorem 1.3.

• Permutation invariance: For every permutation π of rns, W∆ is unchanged if the rows and
columns are changed according to the permutation induced by π (denoted πpq) on the balanced
multislice (denoted V in this proof). This is because the value of the entry W∆pa,bq only
depends on ∆pa,bq, which doesn’t get altered by π, i.e., we have ∆pa,bq “ ∆pπpaq, πpbqq.

• Bounded Frobenius norm: We will show that }W∆}F ď nOsp1q. Denoting m :“ n{s
and the rows of ∆ by pp0q, . . . ,pps ´ 1q, we note that for each a P V , there are exactly
D :“

`

m
pp0q

˘

. . .
`

m
pps´1q

˘

11 points b P V such that ∆pa,bq “ ∆. Hence, we have that

W∆pa,bq “

#

1{D, if ∆pa,bq “ P

0, otherwise.

Therefore, we have

}W∆}
2
F “

ÿ

a,bPV

W∆pa,bq
2

“ |V |D{D2

“

ˆ

sm

m, . . . ,m

˙Nˆˆ

m

pp0q

˙

. . .

ˆ

m

pps´ 1q

˙˙

(10)

In order to bound the above quantity, let q “ pq0, . . . , qs´1q P ZZs be such that
ř

jPZs
qj “ m

and |qj´qj1 | ď 1 for all j, j1 P Zs (such a q always exists; indeed each tm{su ď qj ď rm{ss). We

will first show that p0!...ps´1!
q0!...qs´1!

is upper bounded by mOsp1q, where p :“ ppαq “ pp0, . . . , ps´1q

for an arbitrary α P Zs.

Claim 3.17. p0!...ps´1!
q0!...qs´1!

ď mOsp1q.

Proof. We consider the following sequence of vectors: p “ pp0q,pp1q, . . . ,pptq “ q (for some
finite t), where two adjacent ppi´1q and ppiq differ in exactly two coordinates (say ci ‰ c1

i P Zs)

such that p
piq
ci “ p

pi´1q
ci ` 1 and p

piq
c1
i
“ p

pi´1q

c1
i

´ 1, for all i P rts. We note that since each pj P
m
s ˘

?
Cm logm (as P is a balanced generalized Hamming distance matrix), such a sequence

can be realized with t ď s
?
Cm logm by repeatedly picking the smallest and largest elements

11 Here, for a vector of integers p “ pp1, . . . , psq,
`

m
p

˘

denotes
`

m
p1,...,ps

˘

.
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of p and adding one to the smallest element and subtracting one from the largest one. This

will also ensure that for each intermediate i P rts, we have the invariant p
piq
j P m

s ˘
?
Cm logm

for all j P Zs.

Now, we note that for all i P rts,

ś

j p
pi´1q

j !
ś

j p
piq
j !

“
p

pi´1q
ci !p

pi´1q

c1
i

!

p
piq
ci !p

piq
c1
i
!

“
p

pi´1q

c1
i

p
piq
ci

ď 1`O

˜

c

Cs2 logm

m

¸

.

Using the above bound for all i P rts and multiplying them, we get

p0! . . . ps´1!

q0! . . . qs´1!
ď

˜

1`O

˜

c

Cs2 logm

m

¸¸t

ď

˜

1`O

˜
c

Cs2 logm

m

¸¸s
?
Cm logm

ď mOpCs2q,

(11)

where for the last inequality, we are using the inequality 1` x ď ex.

■

Now, continuing the computation of (10), we have

}W∆}
2
F “

ˆ

sm

m, . . . ,m

˙Nˆˆ

m

pp0q

˙

¨ ¨ ¨

ˆ

m

pps´ 1q

˙˙

ď mOpCs3q ¨
psmq!q0!

s . . . qs´1!
s

m!2s
(using Equation (11))

ď mOpCs3q ¨
psmq!

m!s
¨

ˆ

rm{ss!s

m!

˙s

(as qj ď rm{ss)

ď mOpCs3q ¨ ssm ¨

ˆ

pm{pesqqm

pm{eqm

˙s

(using Stirling’s inequality)

ď mOpCs3q.

Hence }W∆}F ď nOs,Cp1q.

• ε-almost k-wise independence: We will show that for every k ď Osp1q, W∆ is ε-almost
k-wise independent (see Definition 1.2) for some ε “ 1{nΩsp1q. That is, for every a P V and

T P
`

rns

k

˘

, we will show that

SDpW∆paq|T , UT q ď ε,

where UT denotes the uniform distribution over the coordinates given by T .
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Let T “ T p0q Y ¨ ¨ ¨ Y T ps´1q be a partition of T , where T piq “ a´1piq X T for i P Zs. We
will fix an arbitrary b P ZT

s and upper bound the difference
∣∣PrrW∆paq|T “ bs ´ 1

sk

∣∣. For
this, let e “ pejqjPZs denote the number of occurrences of j P Zs in b. Furthermore, let

epiq “ pe
piq
j qjPZs where e

piq
j denotes the number of occurrences of j P Zs in b when restricted

to T piq. To make the notation cleaner, for the rest of the proof, we will use the notation ppiq

to mean ppiq. We then have:

PrrW∆paq|T “ bs “

ˆ

m´ |T p0q|

pp0q ´ ep0q

˙

. . .

ˆ

m´ |T ps´1q|

pps´1q ´ eps´1q

˙Nˆˆ

m

pp0q

˙

. . .

ˆ

m

pps´1q

˙˙

. (12)

For each i P Zs, we have

`m´|T piq|

ppiq´epiq

˘

`

m
ppiq

˘ “
pm´ e

piq
0 ´ ¨ ¨ ¨ ´ e

piq
s´1q!

pp
piq
0 ´ e

piq
0 q! . . . pp

piq
s´1 ´ e

piq
s´1q!

¨
p

piq
0 ! . . . p

piq
s´1!

m!

“
pp

piq
0 . . . pp

piq
0 ´ e

piq
0 ` 1qq . . . pp

piq
s´1 . . . pp

piq
s´1 ´ e

piq
s´1 ` 1qq

m. . . pm´ ei0 ´ . . . e
piq
s´1 ` 1q

P

„

˜

m
s ´

?
Cm logm´ |T piq|

m

¸|T piq|

,

ˆ m
s `

?
Cm logm

m´ |T piq|

˙|T piq| ȷ

(as each p
piq
j P m

s ˘
?
Cm logm)

Ď
1

s|T piq|

„

1˘
1

mΩs,Cp1q

ȷ|T piq|

. (using |T piq| ď k ď Osp1q)

Plugging the above bound into (12) and using
ř

i |T
piq| “ |T | “ k gives that

PrrW∆paq|T “ bs P
ź

iPZs

1

s|T piq|

„

1˘
1

mΩsp1q

ȷ|T piq|

Ď

„

1

sk
˘

k

mΩsp1q

ȷ

.

Therefore, we have

SDpW∆paq|T , UT q “
1

2

ÿ

bPST

ˇ

ˇ

ˇ

ˇ

PrrW∆paq|T “ bs ´
1

sk

ˇ

ˇ

ˇ

ˇ

ď
sk ¨ k

mΩs,Cp1q
ď

1

nΩs,Cp1q
.

Thus we have shown that the three conditions needed to apply Theorem 1.3 hold forW∆. Therefore,
we obtain σ2pW∆q ď 1{nΩs,Cp1q, finishing the proof of Lemma 3.16. ■

We now finish the proof of Theorem 1.1 using Lemma 3.16.
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Theorem 1.1 (Singular value bound for nearly balanced walks). For every s ě 2 and
C ă 8, there exists τ ą 0 such that for every finite set S of size s and sufficiently large n P N, the
following holds:
If W is a stochastic matrix over the multislice Sn

µ that respects symmetries, and satisfies the con-
dition that

W pa,bq ą 0 ñ ∆pa,bq is C-balanced @ a,b P Sn
µ ,

then σ2pW q ď 1{nτ .

Proof of Theorem 1.1. The idea is to express W as a convex combination of W∆ for ∆ being C-
balanced generalized Hamming distance parameters. We first show that for every a P Sn

µ , the a-th
row of W can be expressed as a convex combination of the a-th rows of the random walk matrix
determined by the individual generalized Hamming distance parameters (i.e, W∆). As W respects
symmetries, for every a,b P Sn

µ and permutation π P Symn, we have thatW pa,bq “W pπpaq, πpbqq.
Now we note that if it holds that ∆pa,bq “ ∆pa, cq for some a,b, c, then there exists a permutation
π P Symn such that πpaq “ a and πpbq “ c (this can be obtained by permuting the coordinates
of a that take identical values); hence we have W pa,bq “ W pπpaq, πpbqq “ W pa, cq. Since W has
positive entries only at cells corresponding to balanced generalized Hamming distance, we can thus
express the a-th row of W as the following convex combination:

W paq “
ÿ

∆ is C-balanced

αa,∆W∆paq, (13)

for some αa,∆ ě 0 such that
ř

∆ is C-balanced αa,∆ “ 1. We now show that αa,∆ “ αb,∆ for every
a,b P Sn

µ and generalized Hamming distance parameter ∆. Let π P Symn be a permutation such
that πpaq “ b and let c P Sn

µ be an arbitrary point such that ∆pa, cq “ ∆. Further, let t∆ denote
the number of points d P Sn

µ such that ∆pa,dq “ ∆ (note that this does not depend on a). Then
using (13) we have the following.

W pa, cq “ αa,∆ ¨
1

t∆
(14)

Since W pa, cq “W pπpaq, πpcqq “W pb, πpcqq and δpb, πpcqq “ ∆, using (13) again, we have:

W pb, πpcqq “ αb,∆ ¨
1

t∆
(15)

From (14) and (15), we get that αa,∆ “ αb,∆ “ ∆; hence we can simply denote αa,∆ by α∆. Now,
using (13) for all the rows a P Sn

µ of W , we obtain

W “
ÿ

∆ is C-balanced

α∆W∆,

where α∆ ě 0 and
ř

∆ is C-balanced α∆ “ 1.
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SinceWJ
∆ “W∆J is stochastic, we note thatW∆ is doubly stochastic. Thus, by applying Lemma 2.5

we conclude that λ2pW
1q ď max∆ is C-balancedtλ2pW

1
∆qu ď 1{nτ , where τ ą 0 is a constant given

by Lemma 3.16. This finishes the proof of Theorem 1.1.

■

4 Near-Optimal Distance Lemmas Over Balanced Multislices

In this section, we derive near-optimal polynomial lemmas for junta-sums and polynomials over the
balanced multislice. More formally, for a finite set S of size s ě 2, integer d ě 0, positive integer n
divisible by s and µ “ pn{s, . . . , n{sq (repeated s times), we recall that Sn

µ Ď Sn denotes the set of
points in which each element i P S appears n{s many times.

We also recall that JdpZn
s , Gq denotes the family of d-junta sums from the domain Zn

s to an Abelian
group G. Similarly, we let PdpFn

q q denote the family of polynomials of degree at most d over a fi-
nite field Fq. The well-known ODLSZ lemma states that PdpFn

q q forms a code of relative distance
δ “ δpq, dq independent of n. Stated more formally,

Lemma 4.1 (Polynomial distance lemma (ODLSZ lemma)). (See e.g. [GRS23, Lemma 9.4.1]).
For every finite field F “ Fq, if a polynomial P P PdpFnq is such that P paq ‰ 0 for some a P Fn,
then

Pr
b„Fn

rP pbq ‰ 0s ě δpq, dq,

where δpq, dq “ p1´ β{qqq´α, where α and β are the quotient and remainder respectively when d is
divided by q ´ 1.

With this setup, we prove the following two main theorems in this section.

Theorem 4.2 (Distance of junta-sums over multislice). If a junta-sum P P JdpSn, Gq
is such that P paq ‰ 0 for some a P Sn

µ , then

Pr
b„Sn

rP pbq ‰ 0s ě
1

sd
´

1

nΩsp1q
.

As noted in Section 1 we also prove a similar theorem for algebraic degree as opposed to junta-
degree. We recall the theorem statement below.

Theorem 1.4 (Polynomial distance over multislice). For every finite field F “ Fq, if a
degree d polynomial P pxq is such that P paq ‰ 0 for some a P Fn

µ on the balanced multislice,
then

Pr
b„Fn

µ

rP pbq ‰ 0s ě δpq, dq ´
1

nΩqp1q
,

where δpq, dq “ p1 ´ β{qqq´α, where α and β are the quotient and remainder respectively
when d is divided by q ´ 1.
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We first prove Theorem 4.2 below followed by the proof of Theorem 1.4, which is almost identi-
cal.

Proof of Theorem 4.2. Without loss of generality, we will assume that S “ Zs, so addition and
subtraction of elements of S make sense. At a high level, the proof proceeds as follows. We
consider a random walk matrix W over the multislice which we will describe below, and bound its
eigenvalues. We will then use the “expander mixing lemma” to derive the required distance lower
bound and finish the proof.

We shall define a random walk matrix WODLSZ over the points in the multislice, i.e., V “ Sn
µ and

we let N “ |V | “
`

sm
m,...,m

˘

where m “ n{s is an integer. For each a P V , we define the distribution
over the neighbors of a according to WODLSZ (or equivalently, the a-th row of WODLSZ, denoted
WODLSZpaq) as being the random variable output by the algorithm below (Algorithm 1).

Algorithm 1: The random walk matrix WODLSZ

Input: a P V

1 For j P Zs, letting a´1pjq P
`

rns

m

˘

denote the coordinates of a with value j, sample
uniformly random bijections Mj : a

´1pjq Ñ rms independently for all j P Zs.
2 Sample y “ py1, . . . , ymq „ Zm

s u.a.r.
3 Define b “ pb1, . . . , bnq as follows: For i P rns, we let j :“ ai and bi :“ yMjpiq ` j.

4 return b

We first note that b is always on the balanced multislice, i.e., b P V , so WODLSZ is a well-defined
random walk matrix over the balanced multislice. We now argue that for every fixed a P V such
that P paq ‰ 0 for a junta-sum P P JdpSn, Gq, it holds that

Pr
b„WODLSZpaq

rP pbq ‰ 0s ě 1{sd.

To see this, we fix the bijections Mj : a´1pjq Ñ rms in Step 1 of Algorithm 1 arbitrarily and get
the probability bound over the uniformly random choice of y in Step 2. More precisely, letting

Qpyq “ P pbq “ P ppyMai piq ` aiqiPrnsq,

we note that Q : Sm Ñ G is a d-junta-sum since P is a d-junta-sum. Moreover, Qp0q “
P paq ‰ 0. Therefore, by applying Claim 2.6, we get that Pry„SmrQpyq ‰ 0s ě 1{sd, and thus
Prb„WODLSZpaqrP pbq ‰ 0s ě 1{sd.

Letting U Ď V denote the set of points in V which evaluate P to a non-zero value, from the above
discussion, we have that

@a P U, Pr
b„WODLSZpaq

rb P U s ě 1{sd. (16)

We now use the expander mixing lemma.

40



Theorem 4.3 (Expander mixing lemma see e.g. [HLW06] Lemma 2.5). For every symmetric
random walk matrix W P RV ˆV over a finite vertex set V and U Ă V ,

Pr
a„V

b„W puq

ra P U and b P U s ď

ˆ

|U |

|V |

˙2

` λ2pW q

ˆ

|U |

|V |

˙

,

where λ2pW q denotes the second largest eigenvalue of W in absolute value.

In order to apply the above theorem, we will need to show that the random walk matrix WODLSZ

we defined is symmetric and has a small λ2pWODLSZq.

Lemma 4.4. The random walk matrixWODLSZ as defined in Algorithm 1 is symmetric and satisfies
λ2pWODLSZq ď 1{nΩsp1q.

We prove this lemma in Section 4.1.

We can now finish the proof of Theorem 4.2 assuming the above lemma. On the one hand, (16)
implies that

Pr
a„V

b„WODLSZpuq

ra P U and b P U s ě

ˆ

|U |

|V |

˙

1

sd
,

and on the other hand, Theorem 4.3 and Lemma 4.4 imply that

Pr
a„V

b„WODLSZpuq

ra P U and b P U s ď

ˆ

|U |

|V |

˙ˆ

|U |

|V |
`

1

nΩsp1q

˙

.

Putting them together, we obtain that |U |

|V |
ě 1

sd
´ 1

nΩsp1q , thus finishing the proof of Theorem 4.2. ■

We now prove the near-optimal distance lemma for algebraic degree (Theorem 1.4).

Proof of Theorem 1.4. The proof follows exactly the same approach as that of the distance lemma
for junta-sums over the balanced multislice (i.e., Theorem 4.2). All the additions and subtraction
of the domain elements are now instead done over the field F instead of the group Zs. The only
other difference is in (16) where we now get a lower bound of δpq, dq instead of 1{sd. This is because
the restricted function Q : Fm Ñ F is now a function of degree at most d, so we can apply the
standard ODSLZ lemma (Lemma 4.1) instead of the junta-sum distance lemma (Claim 2.6) to get
this bound. Due to its similarity with the proof of Theorem 4.2, we omit the rest of the details. ■

Hence, it only remains to prove the eigenvalue bounds for WODLSZ, i.e., Lemma 4.4, which we do
in the next subsection.
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4.1 Eigenvalue Bounds for WODLSZ

Before we proceed with the proof of Lemma 4.4, we remark that it doesn’t immediately follow
from our result for nearly balanced random walks (i.e, Theorem 1.1 from Section 3) since WODLSZ

can potentially have non-zero weights even for edges whose generalized Hamming distance is far
from being balanced. Moreover, it doesn’t even immediately follow from our more general theorem
(Theorem 1.3) from Section 3 as it requires a bounded Frobenius norm which isn’t the case with
WODLSZ. However, we are able to reduce it to a setting where Theorem 1.1 actually applies and
use it to get the final bound.

Proof of Lemma 4.4. At a high level, we prove this in the following steps. We first provide an
alternate description of the random walk matrix WODLSZ (defined in Algorithm 1) using general-
ized Hamming distance matrices. Then, we express WODLSZ as a convex combination WODLSZ “
ř

iPrts αiWi for some random walk matrices Wi where
ř

i αi “ 1. Then, we use our expansion result
for nearly balanced walks (Theorem 1.1) from Section 3 to bound λ2pWiq for “most” i P rts, and
use this to finally bound λ2pWODLSZq. Before we go into the actual proof, we need to recall a few
definitions.

For a,b P V , we recall (from Definition 2.1) that ∆pa,bq P ZZsˆZs denotes the generalized Hamming
distance matrix, i.e., the pi, jq-th entry of the matrix equals the number of coordinates where a takes
value i and b takes value j. We now recall the definition of WODLSZ (from Algorithm 1): For each
a P V , its random neighbor b „ WODLSZpaq is obtained by setting bi “ yMjpiq ` j, where j “ ai
and Mj : a

´1pjq Ñ rms are bijections chosen u.i.a.r., and y „ Zn
s is chosen independently. Hence,

we see that
∆pa,bqpi, jq “ fj´i,

where fj denotes the number of times j P Zs appears in y. In fact, conditioned on ∆pa,bq “ P for
some fixed P , the conditional distribution of b is uniform over all points b such that ∆pa,bq “ P ,
since Mj ’s are uniform and independent bijections. In particular, this alternate description of
WODLSZ shows that it is symmetric.

Now, for a “frequency vector” f “ pf0, . . . , fs´1q P ZZs where
ř

j fj “ m, we let Wf denote the
random walk matrix where for each a P V , Wf paq is the uniform distribution over

"

b P V : ∆pa,bq “ pfj´iqpi,jqPZ2
s

*

. (17)

Then by our previous discussion, for each a P V , by conditioning on the choice of the frequency
vectors resulting from y „ Sm and using the total probability law, we obtain

WODLSZpaq “
ÿ

fPZs
ř

j fj“m

αfWf paq,

where αf “
`

m
f

˘

{sm denotes the probability of getting the frequency vector f from a uniformly
random y P Sm.

The idea now is to apply our eigenvalue bound (Theorem 1.1) from Section 3 to the Wf ’s and
then bound the eigenvalues of WODLSZ. However, there are two issues: First, the eigenvalue
bound from Theorem 1.1 requires the matrix to be supported only on edges with nearly balanced
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generalized Hamming distance, which isn’t the case for all Wf ’s. Regardless, we show that this
holds true for the “typical” Wf ’s and that this suffices. And secondly, we remark that each Wb

need not be a symmetric matrix. However, since we already know that WODLSZ “
ř

f αfWf is
symmetric, we have that

WODLSZ “
ÿ

f

αf

ˆ

Wf `W
J
f

2

˙

,

where now we see that the “components”
Wf`WJ

f
2 are symmetric.

We say that a frequency vector f is “bad” if there exists a j P Zs such that fj R
m
s ˘

b

10m logm
s ,

and say that f is “good” otherwise. We have, by a Chernoff bound, that

ÿ

f bad

αf ď
s

mΩp1q
. (18)

Now we claim that for every good f , it holds that λ2 pW
1
f q is small where W 1

f :“
Wf`WJ

f
2 :

Claim 4.5 (Eigenvalue bounds for W 1
f). Suppose f “ pf0, . . . , fs´1q is such that fj P

m
s ˘

b

10m logm
s for all j P Zs. Then, λ2pW

1
f q ď

1
nΩsp1q , where W

1
f :“

Wf`WJ
f

2 .

Proof. We note that the matrix W 1
f respects symmetries and has non-zero entries only on entries

corresponding to a balanced generalized Hamming distance of either ∆ or ∆J (both of which are
p10{sq-balanced). Hence the proof follows directly by applying Theorem 1.1 to the matrix W 1

f . ■

We now bound the eigenvalues ofWODLSZ and finish the proof of Lemma 4.4. By applying Lemma 2.5
with S being the set of good f , we have

λ2pWODLSZq “ λ2

˜

ÿ

f

αfW
1
f

¸

ď max
f good

tλ2pW
1
f qu `

ÿ

f bad

αf (using Lemma 2.5)

ď

ˆ

1

nΩsp1q

˙

`

˜

ÿ

f bad

αf

¸

(applying Claim 4.5 to the random walk matrix W 1
f )

ď
1

nΩsp1q
. (using (18))

The above bound shows that all the eigenvalues ofWODLSZ except the largest one must be bounded
above by 1{nΩsp1q in absolute value, i.e., λ2pWODLSZq ď 1{nΩsp1q proving Lemma 4.4. ■

5 Local List Correction of Junta-Sums

In this section, we will prove the following theorem which is a restatement of Theorem 1.5 with
explicit bounds on the query complexity.
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Theorem 5.1 (Local List Correction). For every Abelian group G and for every ε ą 0, the
space JdpSn, Gq is p1{sd ´ ε, Oεp1q, Õεplog nq

d, Oεp1qq-locally list correctable.

In particular, there is a randomized algorithm A such that for a function f : Sn Ñ G and
a parameter ε ą 0, Af pεq outputs with probability ě 3{4 a list of randomized algorithms
tϕiu

L
i“1 (L “ Oεp1q) such that the following holds. For each junta degree-d function P P Jd

that is p1{sd ´ εq-close to f , there exists at least one randomized algorithm ϕi such that ϕfi
computes P correctly on every input in Sn with probability at least 3{4.

The algorithm A makes Oεp1q queries to f , while each ϕi makes Õεplog nq
d oracle queries to

f .

We remark that for the Boolean case, [ABPSS25] proves that one can reduce the number of queries
to a constant depending only on ε and the torsion (or exponent) of the group (see Section 2 for a
definition). Similarly, in this case, we get a similar statement where the algorithm A makes Oεp1q
queries, and each ϕi makes OM,εp1q queries where M is the exponent of the torsion Abelian group
G. More formally, we prove the following.

Theorem 5.2. For every torsion Abelian group G of exponent M ą 0 and every ε ą 0, the family
JdpSn, Gq is p1{sd ´ ε,Oεp1q,OM,εp1q,Oεp1qq-locally list correctable.

As stated earlier, [ABPSS25] gave a local list corrector for degree-d polynomials over S “ t0, 1u. We
note that most of their proof can be extended to junta sums and general S with some extensions to
their arguments. However, a key challenge was to show that certain random walk matrix has good
spectral expansion. In particular, [ABPSS25, Lemma 5.1.1] is proved by analyzing the eigenvalues
of matrices defined on Johnson graphs. To extend their argument to general grids, we have to
analyze the eigenvalues of random walk matrices on the balanced multi-slice. In this section, we
describe the random walk matrix arising from the analysis of our local list corrector and show that
it has “large” spectral gap, using Theorem 1.1. We first give a quick overview of the algorithm,
which is an extension of [ABPSS25, Algorithm 3 and Algorithm 4].

Overview of the local list corrector. Similar to the work of [ABPSS25], our local list corrector
goes as follows:

• We design a local corrector JdpSn, Gq (see Theorem 5.3).

• We show a combinatorial list decoding bound for JdpSn, Gq (see Theorem 5.4).

• We design approximating oracles for JdpSn, Gq (see Theorem 5.5).

• Combining an approximating oracle with local corrector, we get a local list corrector. The
bound on query complexity follows from the combinatorial list decoding bound.

Our key technical contribution is in analyzing the approximating oracles. We use a very similar
algorithm for approximating oracles as in [ABPSS25], however the correctness is more involved.
The first two steps are again analogous to [ABPSS25, Section 3 and Section 4]. Most of the
arguments follow with a simple extension from t0, 1u to S, and few arguments require a bit more
careful analysis. For the sake of completeness, we give a proof for local corrector and combinatorial
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list decoding bound. We state the results for them below, and after that we will proceed with the
local list corrector.

Theorem 5.3 (Local correction of junta-sums). For every ε ą 0, finite set S of size s ě 2
and d ě 0, Abelian group G, the family JdpSn, Gq is p rOεplog nq

d, δJ {2´εq-locally correctable
where δJ :“ 1{sd.
Moreover, if G is a torsion Abelian group of exponent M , then the number of queries can be
made OM,εp1q, i.e., JdpSn, Gq is pOM,εp1q, δJ{2´ εq-locally correctable.

Theorem 5.4 (Combinatorial List Decoding Bound). For every ε ą 0, positive integers s, d,
and Abelian group G, the family JdpSn, Gq is p1{sd ´ ε,Oεp1qq-list decodable.

For every f : Sn Ñ G which is p 1
sd
´εq-close to JdpSn, Gq, let Listεpfq denote the set of d-junta-sums

that have distance ď p1{sd ´ εq to f , i.e.

Listεpfq “

"

P P JdpSn, Gq

ˇ

ˇ

ˇ

ˇ

δpf, P q ď
1

sd
´ ε

*

.

We give a proof for Theorem 5.3 and Theorem 5.4 later. We informally state a standard observa-
tion12 in the literature of local list correctors which says that given local correctors, it is enough to
design approximating oracles (see Theorem 5.5):

If there exists a local corrector, then it suffices to design an algorithm which outputs a list of
algorithms with the guarantee - For every junta-sum P in the list, there exists an algorithm A in
the list which computes P correctly on sufficiently large fraction of Sn, and then we can run the
local corrector on A.

So the focus in this is to design the approximating oracles. The following theorem is larger-grid
analogue to [ABPSS25, Theorem 5.0.1].

Theorem 5.5 (Approximate oracles). Fix n P N, ε ą 0. Let f : Sn Ñ G be any function and

Lpεq :“ |Listεpfq|. There exists a randomized algorithm Af
1 that makes at most Oεp1q oracle

queries and outputs deterministic algorithms Ψ1, . . . ,ΨL1 satisfying the following property:
With probability at least 3{4, for every junta-sum P P Listfε , there exists a j P rL1s such that

1. δpΨj , P q ă 1{p10 ¨ 2d`1q

2. For every x P Sn, Ψj computes P pxq by making at most Oεp1q oracle queries to f .
Here L1 “ OpLpε{2q logLpεqq “ Oεp1q.

We first show that using Theorem 5.5 and Theorem 5.3, we can prove Theorem 5.1 (and Theo-
rem 5.2).

12 This is also used in [ABPSS24; ABPSS25]. See [ABPSS25, Section 5] for a more elaborate discussion on it.
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Proof of Theorem 5.1 and Theorem 5.2. We first employ Algorithm 4 with oracle access to f and it
outputs deterministic algorithms ψ1, . . . , ψL1 where L1 “ OpLpε{2q logLpεqq. Next, we run the local
corrector for JdpSn, Gq on each of ψj . This completes the description of our local list corrector.
The correctness and query complexity now follow by combining Theorem 5.5 and Theorem 5.3. ■

Organization of the section We start by proving a sampling lemma for the balanced slice of
the grid Sn in Section 5.1. The key tool to prove this sampling lemma will be to show that a
certain random walk matrix (it arises from our sampling procedure) is a “good spectral expander”
(see Theorem 5.9). We will prove by employing Theorem 1.1. After the sampling lemma, we
then prove a sub-optimal distance lemma for d-juntas on multi-slices of Sn (see Theorem 5.10).
Combining the sampling lemma (Lemma 5.7) and the distance lemma on slices (Theorem 5.10), we
get Corollary 5.12. This corollary will be useful in showing that our local list correctors have a small
error probability, i.e., Corollary 5.12 will bound the probability of our local list correctors making
a certain type of error. Once we have these statements, we describe a subroutine in Section 5.3
and the local list correctors in Section 5.4. Finally, we analyze the algorithms in Section 5.5.

5.1 A Sampling Lemma for the Balanced Multislice

Definition 5.6. Let k, s P N. For a s-to-1 map τ : rsks Ñ rks, let Cτ Ă Ssk denote the k-
dimensional subgrid obtained by identifying coordinates acccording to τ . More precisely, for every
y P Sk, let xτ pyq P Ssk be defined as follows:

xτ pyqi “ yτpiq, for all i P rsks.

Define Cτ :“
␣

xτ pyq
ˇ

ˇ y P Sk
(

.

The main lemma of this subsection is to show that if we sample a uniformly random s-to-1 map τ ,
then Cτ is a good sampler for the balanced slice of Ssk

k,...,k.

Lemma 5.7 (Sampler for the Balanced Slice). Let k, s P N. There exists an absolute constant
η “ ηpsq ą 0 such that for every subset S Ď Ss2k

sk,...,sk, we have,

Pr
τ

«ˇ

ˇ

ˇ

ˇ

ˇ

|S|

|Ss2k
sk,...,sk|

´
|S X Cτ |

|Ssk
k,...,k|

ˇ

ˇ

ˇ

ˇ

ˇ

ě
1

kη

ff

ď Os

ˆ

1

kη

˙

,

where the probability is over the choice of a random s-to-1 map τ : rs2ks Ñ rsks.

Description of the matrix W : For this section, we will assume that n is divisible by s. We will
use µ to denote the balanced partition of n into s rows, i.e. µ “ pn{s, n{s, . . . , n{sq. Let N denote
the number of points in the balanced slice Sn

µ , i.e. N “ |Sn
µ | “

`

n
n{s,n{s,...,n{s

˘

.

Definition 5.8 (The matrix W ). We will define the random walk matrix by the joint distribution
over Sn

µ ˆ Sn
µ represented by the matrix W {N . In particular, it is the joint probability distribution

of pu,vq corresponding to picking a uniformly random vertex u „ Sn
µ and v „W paq is its random

46



neighbor corresponding to taking a random step according to W . We then define W {N according
to the distribution of the output of the following steps:

1. Pick a,b „ Ssk
k,...,k uniformly and independently at random.

2. Pick a s-to-1 map τ : rs2ks Ñ rsks uniformly at random.

3. Output pu,vq “ pxτ paq, xτ pbqq (see Definition 5.6 for the definition of xτ p¨q).

We note that W is symmetric since the joint probability distribution of pu,vq above is symmetric
w.r.t. u and v. We further claim below that W has good spectral expansion:

Theorem 5.9 (Spectral expansion of the random walk matrix). Let W P RNˆN be the
symmetric random walk matrix as described previously. Denote the second largest eigenvalue
of W (in terms of absolute value) by λ2pW q. Then there exists ν “ νpsq ą 0 such that

λ2pW q ď
1

nν
.

We first prove Lemma 5.7 assuming Theorem 5.9.

Proof of Lemma 5.7. Let σ :“ |S|{|Ss2k
sk,...,sk|. For every y P Sk, define Zpyq to be the indicator vari-

able which is 1 if xτ pyq P S. For a uniformly random s-to-1 map τ , for every y P Ssk
k,...,k, the random

variable xτ pyq is uniformly distributed in Ss2k
sk,...,sk. Thus for every y P Ssk

k,...,k, the Eτ rZpyqs “ σ.

Let Z :“ |S XCτ | “
ř

yPSsk
k,...,k

Zy and by linearity of expectation, we have Eτ rZs “ |Ssk
k,...,k| ¨ σ. We

will now bound the variance of Z.

Using the linearity of expectation, we have,

Eτ rZ
2s “

ÿ

a,bPSsk
k,...,k

Eτ rZpaq ¨ Zpbqs “
ÿ

a,bPSsk
k,...,k

Pr
τ
rxτ paq P S ^ xτ pbq P Ss

If we sample a,b uniformly and independently at random from Ssk
k,...,k, then by the definition of the

matrix W (Definition 5.8), we get the following equality:

Pr
a,b„Ssk

k,...,k
τ

rxτ paq P S ^ xτ pbq P Ss “ Pr
u„Ss2k

sk,...,sk

v„W puq

ru P S ^ v P Ss. (19)

Using the Expander Mixing Lemma (see e.g. Theorem 4.3),

Pr
u„Ss2sk,...,sk

v„W puq

ru P S ^ v P Ss ď σ2 ` λ2pW q

ñ Eτ rZ
2s ď |Ssk

k,...,k|
2 ¨ pσ2 ` λ2pW qq

ñ VarrZs “ ErZ2s ´ pErZsq2 ď |Ssk
k,...,k|

2 ¨ λ2pW q.
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Now using Chebyshev’s inequality on Z, we get,

Pr
τ

„

ˇ

ˇ

ˇ
Z ´ σ ¨ |Ssk

k,...,k|

ˇ

ˇ

ˇ
ě

1

kη
¨ |Ssk

k,...,k|

ȷ

ď VarpZq ¨
k2η

|Ssk
k,...,k|

2
ď λ2pW q ¨ k

2η

From Theorem 5.9, we know that λ2pW q ď 1{kη, which implies that

Pr
τ

„

ˇ

ˇ

ˇ
Z ´ σ ¨ |Ssk

k,...,k|

ˇ

ˇ

ˇ
ě

1

kη
¨ |Ssk

k,...,k|

ȷ

ď
1

kη
.

This finishes the proof of Lemma 5.7. ■

We now prove Theorem 5.9 which bounds the eigenvalues of the random walk matrix W .

Proof of Theorem 5.9. We recall (from Definition 5.8) that the random walkW is over the balanced
multislice V :“ Ss2k

µ “ Ss2k
sk,...,sk and N “ |Sn

µ | denotes the number of vertices where n “ s2k. We
will use the following equivalent description of W . We observe that W {N is the joint probability
distribution of pu,vq corresponding to picking a uniformly random vertex u „ V and v „W paq is
its random neighbor corresponding to a taking a random step according to W . We now rephrase
the description of W {N from Definition 5.8:

1. Pick a,b „ Ssk
k,...,k uniformly and independently at random.

2. Let P “ ∆pa,bq and rP “ sP .

3. Output pu,vq such that ∆pu,vq “ rP uniformly at random.

The above output is indeed distributed according to W {N by noting that the map τ used in Def-
inition 5.8 is chosen uniformly and independently from a,b „ Ssk

k,...,k and for every such τ used
in Definition 5.8, we have that ∆pu,vq “ ∆pxτ paq, xτ pbqq “ s ¨ ∆pa,bq. Now, applying a total
probability rule over the choice of a and b in Step 1, we have:

W

N
“
ÿ

P

αP
WsP

N
, (20)

where we use αP to denote the probability that ∆pa,bq “ P for a,b chosen uniformly and in-
dependently at random; and WsP denotes the random walk over the multislice, determined by
the generalized Hamming distance matrix sP (see Definition 2.3). We now say that a generalized
Hamming distance matrix P is good if it is p10{sq-balanced (by Definition 2.2, this is equivalent

to saying all entries of P are k
s ˘

b

10k log k
s ) and P is bad otherwise. It is easy to see that sP is

10-balanced w.r.t. the multislice Ss2k
µ if P is good. We first show that the mass of αP on bad P is

small: that is, we show that
ř

P bad αP , which denotes the probability that ∆pa,bq is not p10{sq-
balanced, is at most 1{kΩsp1q. By fixing a and noting that b is still uniformly distributed over Ssk

µ ,
we see that each entry of P is distributed according to a hypergeometric distribution with a total
of sk states and k success states, and we are picking k draws without replacement. By applying

Hoeffding bound [Hoe94], we get that this probability is at most 1{2´Ωsp
?

log k{kq2k ď 1{k´Ωsp1q.
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Now by a union bound over all the k2 entries of the matrix P , we get that the probability that P
is not p10{sq-balanced is at most 1{nΩsp1q as claimed. That is,

ÿ

P bad

αP ď 1{kΩsp1q. (21)

We now use our main eigenvalue bound from Section 3 to bound λ2pW
1
sP q when P is good, where

W 1
sP :“

WsP `WJ
sP

2 . In particular, since we have that sP and psP qJ are p10{sq-balanced for good P ,
by applying Theorem 1.1, we have for all good P that

λ2pW
1
sP q ď 1{kΩsp1q. (22)

We note that since we showed that W is symmetric, (20) implies that

W “
ÿ

P

αP

ˆ

WsP `W
J
sP

2

˙

“
ÿ

P

αPW
1
sP .

We can therefore apply Lemma 2.5 with the set S being the set of good P to conclude that

λ2pW q ď max
P good

tλ2pW
1
sP qu `

ÿ

P bad

αP ď 1{kΩsp1q ď 1{nΩsp1q,

by using (21) and (22). This finishes the proof of Theorem 5.9. ■

5.2 Sub-optimal Distance Lemma Over Multislices

In this subsection, we prove that if a junta sum does not vanish on a multi-slice, then it does not
vanish on at least a constant fraction of that multi-slice. It is a generalization of the distance
lemma for junta-sums (Claim 2.6), generalized from grids to slices. In the case of S “ t0, 1u, such
a statement was proved in [ABPSS25, Lemma 5.1.6]. They proved it by induction on the degree
d. We observe that a similar induction also works for junta sums. We provide a proof below. For
S “ t0, 1u, our lower bound matches [ABPSS25, Lemma 5.1.6].

For this, we will need the following notation. For integers d ě 0 and s ě 2 and pniqiPS , let
n “

ř

iPS ni, n “ pniqiPS P Sn. Let the multi-slice Sn
n Ď Sn denote the set of points which contain

ni`1 many occurrences of the element i for all i P S. Let
`

n
n

˘

“
`

n
n0,n1,...,ns´1

˘

denote the size of Sn
n

(so it is zero if some ni is negative). We also use the notation n´d to denote the tuple ppni´dqqiPS .

Theorem 5.10 (Sub-optimal distance lemma for junta sums on multi-slices). For every
n “ pniqiPS with

ř

iPS ni “ n, the following holds. If a junta-sum P P JdpSn, Gq is non-zero
on the multi-slice Sn

n i.e. there exists a point a P Sn
n such that P paq ‰ 0, then

| ta P Sn
n | P paq ‰ 0u | ě

ˆ

n´ sd

n´ d

˙

.
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Proof of Theorem 5.10. The proof of the theorem is by induction on d. The base case d “ 0 is
handled by noting that P is a constant function in this case. Now suppose d ě 1. We shall assume
that n ě sd` 1 and ni ě d for all i P Zs, as the theorem statement is trivial otherwise.

We will assume that P is not a constant function over
`

rns

n

˘

as otherwise we are done. In particular,

we can always find two points a,b P
`

rns

n

˘

such that P paq ‰ P pbq and they differ in exactly two
coordinates; this follows by noting that we can move from any point on the multislice to any other
point by swapping elements a finite number of times. Without loss of generality, we can assume
that a and b differ on the first and last coordinates; i.e., a1 “ bn “ α and an “ b1 “ β for some
α ‰ β P Zs. Let n1 “ pn1

iqiPZs be defined by n1
i “ ni for i R tα, βu and n

1
i “ ni ´ 1 for i P tα, βu.

We now consider the function Q : Sn´2 Ñ G defined as:

Qpx2, . . . , xn´1q “ P pα, x2, . . . , xn´1, βq ´ P pβ, x2, . . . , xn´1, αq.

As P paq ´ P pbq ‰ 0, we see that Q is not identically zero over
`

rn´2s

n1

˘

. We also claim that Q is a
pd´ 1q-junta-sum. Indeed, if

P px1, . . . , xnq “
ÿ

cPZn
s :|c|ďd

gc ¨
ź

iPrns:ci‰0

δcipxiq,

then in the junta-polynomial of Q, all the monomials that do not contain either x1 or xn will be
canceled, while the monomials of degree d that contain either x1 or xn (or both) will reduce in
degree. Hence, Q P Jd´1pSn´2, d ´ 1q. Now, by induction hypothesis, we have that there are

at least
`n´2´spd´1q

n1´pd´1q

˘

choices for d P
`

rn´2s

n1

˘

such that Qpdq ‰ 0. For each such d, we have that

Qpdq “ P pα,d, βq ´ P pβ,d, αq ‰ 0 so either a1 “ pα,d, βq or b1 “ pβ,d, αq is a non-zero of P .

Furthermore, we can verify that a1,b1 P
`

rns

n1

˘

. Let e denote the tuple which is 1 at all indices

i R tα, βu and is 0 for i P tα, βu. Hence, the number of non-zeroes of P over
`

rns

n

˘

is at least the
number of such d which is at least
ˆ

n´ 2´ spd´ 1q

n1 ´ pd´ 1q

˙

“

ˆ

n´ sd` ps´ 2q

n1 ´ pd´ 1q

˙

“

ˆ

n´ sd` ps´ 2q

pn´ dq ` e

˙

ě

ˆ

n´ sd

n´ d

˙

¨

ˆ

s´ 2

e

˙

ě

ˆ

n´ sd

n´ d

˙

.

■

Using Theorem 5.10, we immediately get the following corollary, which gives a lower bound on
the fraction of non-zeroes on the balanced multislice.

Corollary 5.11. Let n, s, d P N with n ě sd divisible by s. Let µ “ pn{s, . . . , n{sq. If a junta-sum
P P J pSn, d,Gq is non-zero over Sn

µ , i.e. there exists a P Sn
µ such that P paq ‰ 0, then:

Pr
x„Sn

µ

rP pxq ‰ 0s ě
1

psdqsd
.

Proof of Corollary 5.11. Let n “ ms for some m P Z. By Theorem 5.10, we have that the proba-
bility of a random point in Sn

µ being non-zero for P is at least:

`

n´sd
n´d

˘

`

n
n

˘ “
pn´ sdq!

pm´ dq!s
¨
m!s

n!
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“
mpm´ 1q . . . pm´ d` 1q

npn´ 1q . . . pn´ d` 1q
. . .

mpm´ 1q . . . pm´ d` 1q

pn´ ps´ 1qdqpn´ ps´ 1qd´ 1q . . . pn´ sd` 1q

“

ˆ

m

n
¨
m´ 1

n´ 1
¨ ¨ ¨ ¨ ¨

m´ d` 1

n´ d` 1

˙

. . .

ˆ

m

n´ ps´ 1qd
¨

m´ 1

n´ ps´ 1qd´ 1
¨ ¨ ¨ ¨ ¨

m´ d` 1

n´ sd` 1

˙

ě

ˆ

m´ d` 1

n´ d` 1

˙d

. . .

ˆ

m´ d` 1

n´ sd` 1

˙d

(using a
b ě

a´i
b´i for 0 ă i ă a ă b)

ě

ˆ

n´ sd` s

spn´ d` 1q

˙sd

ě
1

psdqsd
. (using n´sd`s

n´d`1 ě
1
d since n ě sd´ 1)

■

Using Lemma 5.7 and Corollary 5.11, we get the following corollary.

Corollary 5.12. There exists an absolute constant η ą 0 for which the following holds. Let
R P JdpSs2k, Gq be a non-zero function and there exists a w P Ss2k

sk,...,sk such that Rpwq ‰ 0.

Let τ : rs2ks Ñ rsks be a random s-to-1 map and Cτ be the subgrid as defined before. Then,

Pr
τ
rR|Cτ vanishes on Ssk

k,...,ks ď
1

kη
.

Proof of Corollary 5.12. Let S denote the set of non-zeroes of R on the slice Ss2k
sk,...,sk, i.e. S “

!

a P Ss2k
sk,...,sk

ˇ

ˇ

ˇ
Rpaq ‰ 0

)

. From Corollary 5.11, we know that

|S| ě p1{psdqsdq ¨ |Ss2k
sk,...,sk| ñ

|S|

|Ss2k
sk,...,sk|

“ Ωp1q.

R|Cτ does not vanish on Ssk
k,...,k if S X Cτ ‰ H. Using Lemma 5.7, we know that the probability of

S X Cτ “ H (over the randomness in choice of τ) is at most 1{kη. ■

5.3 Subroutine for Approximating Oracles

Definition 5.13 (Subgrid containing b). Let C “ Ch,Π be a k-dimensional subgrid of Sn as de-
fined in Definition 2.9, where h : rns Ñ rks is a hash function and Π P pSymrSsqn is a tuple of
permutations. For an arbitrary b P Sn and a permutation σ P Symsk define a new hash function
h1 : rns Ñ rsks as follows:

h1piq “ σphpiq ` k ¨ biq, for all i P rns

For every z P Ssk, define xh1,Πpzq :“ Πipzh1piqq. Define the subset Cb
σ Ă Sn as follows

Cb
σ :“

!

xh,Πpzq
ˇ

ˇ

ˇ
z P Ssk

)

.
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We make a few observations from Definition 5.13. The first observation is that b is indeed in Cb
σ .

The second observation is that for random h,Π,b and σ, the subgrid Cb
σ is a random embedding

of a sk-dimensional subgrid. The third observation is that C is a subgrid of Cb
σ and is obtained by

“randomly pairing” coordinates.

Observation 5.14. The point b P Sn lies inside the subgrid Cb
σ , i.e. there exists a string w P Ssk

k,...,k

such that xh1,Πpwq “ b. More explicitly,

whpiq`k¨bi :“ Π´1
i pbiq, for all i P rns.

Also it is easy to see that the partition of rns induced by h1 (as defined in Definition 5.13) is a refinement
of the partition induced by h. This means C Ă Cb

σ .

Observation 5.15. Let h,Π, and b (as stated in Definition 5.13) be randomly chosen. Then Cb is a
random embedding of a sk-dimensional subgrid, i.e. there exists a random hash function H : rns Ñ rsks
and a random Π1 P pSymrSsqn such that Cb

σ has the same distribution as CH,Π1 .

Observation 5.16. Let h,Π, and b (as stated in Definition 5.13) be randomly chosen. Conditioned
on the grid Cb, the subgrid C has the following distribution:
Sample a random s-to-1 map13 τ : rsks Ñ rks and we identify s variables together.

5.4 The Algorithm

In this subsection, we give the description of the algorithms to prove Theorem 5.5. The algorithm
proceeds in two steps, and this is similar to the algorithms in [ABPSS25, Section 5.2.2], barring a
few changes to handle larger grids S. We request the reader to refer to [ABPSS25, Section 5.2.2]
for an overview and discussion on the algorithms.

In the following description, let Lpεq “ |Listεpfq|, where recall that Listεpfq is the set of d-junta-
sums that are p1{sd´ εq-close to f . Note that Algorithm 2 is a deterministic algorithm and all the
randomness is in Algorithm 4,

13 A map is s-to-1 if the pre-image of every element under the map has size exactly s, i.e., exactly s elements from
the domain have the same image.

52



Algorithm 2: Approximating Algorithm ΨrC, σ,Qs

Input: Oracle access to the function f , a point b P Sn

1 Let C1 be a subgrid spanned by C and b using σ P Symsk // see Definition 5.13

2 Let w P Ssk such that xpwq P C1 and xpwq “ b // see Observation 5.14, |w| P Ssk
k,...,k

3 Query f on the subgrid C1 // Number of queries is ssk

4 Find all degree-d junta-sums R1, . . . , RL2 P JdpSsk, Gq that are
`

1
sd
´ ε

2

˘

-close to

f |C1

5 if there exists an i P rL2s such that Ri|C “ Q then
6 pick any such i and return Ripwq

7 else
8 return 0 // An arbitrary value

Now we describe the randomized Algorithm 3 that returns the descriptions of the deterministic
oracles.

Algorithm 3: Algorithm A1

Input: Oracle access to the function f

1 Choose k Ð Bd

´

Lpε{2q

ε

¯c
// Bd and c are constants, chosen later in the analysis

2 Set ℓÐ logLpεq
3 T ÐH

4 repeat
5 Sample Π P pSymrSsqn and a random hash function h : rns Ñ rks // the first

source of randomness

6 Construct the subgrid C :“ Ch,Π // see Definition 2.9

7 Query f on the subgrid C // Number of queries is 2k

8 Find all junta-sums Q1, . . . , QL1 P JdpSk, Gq that are
`

1
sd
´ ε

2

˘

-close to f |C
9 Pick a uniformly random permutation σ „ Symsk // the second source of

randomness

10 T Ð T Y tpC, σ,Q1q, . . . , pC, σ,QL1qu

11 until ℓ times

12 return ΨrC, σ,Qs for all pC, σ,Qq P T // Size of T is ď ℓL1

5.5 Analysis of the Local List Corrector

In this subsection, we analyze Algorithm 4 and Algorithm 2 to prove Theorem 5.5. We recall the
statement of Theorem 5.5.
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Theorem 5.5 (Approximate oracles). Fix n P N, ε ą 0. Let f : Sn Ñ G be any function and

Lpεq :“ |Listεpfq|. There exists a randomized algorithm Af
1 that makes at most Oεp1q oracle queries

and outputs deterministic algorithms Ψ1, . . . ,ΨL1 satisfying the following property:
With probability at least 3{4, for every junta-sum P P Listfε , there exists a j P rL1s such that

1. δpΨj , P q ă 1{p10 ¨ 2d`1q

2. For every x P Sn, Ψj computes P pxq by making at most Oεp1q oracle queries to f .

Here L1 “ OpLpε{2q logLpεqq “ Oεp1q.

We start by show that in a single iteration of Algorithm 3, for every junta-sum P P Listfε , with prob-
ability at least ě 99{100, there exists an approximating oracle ΨrC, σ,Qs such that δpP,ΨrC, σ,Qsq
is at most ď 1{p10 ¨ sd`1q.

Lemma 5.17 (Error w.r.t a fixed junta-sum in one iteration). Fix a junta-sum P P Listfε . Then
for every iteration of Algorithm 3, the following holds:
With probability ě 99{100, over the randomness of Algorithm 3, there exists a tuple pC, σ,Qq such
that

δpP,ΨrC, σ,Qsq ď
1

10 ¨ sd`1
.

Proof of Lemma 5.17. Fix a particular iteration of the main loop of Algorithm 3. In this iteration,
there are three sources of errors:

1. Event E1,P (depends on Π and h): There does not exist a junta-sum Q P JdpSk, Gq such that
Q ” P |C.

2. Event E2,P (depends on Π, h, σ,b): Consider a tuple pC, σ,Qiq P T added in this iteration.
For the approximating algorithm ΨrC, σ,Qis (Algorithm 2), there does not exist a junta-sum
R P JdpSsk, Gq such that R ” P |C1 . Observe that this event is independent of Qi and only
depends on C,b, and σ.

3. Event E3,P (depends on Π, h, σ,b): Consider a tuple pC, σ,Qiq P T added in this iteration. For
the approximating algorithm ΨrC, σ,Qis (Algorithm 2), there exists two distinct junta-sums
Ri, Rj P JdpSsk, Gq such that Ri|C ” Rj |C but Ripwq ‰ Rjpwq. In this situation, Line 6 of
Algorithm 2 is not a well-defined instruction. This event also only depends on C,b, and σ.

The probability of E1,P and E2,P can be upper bounded by using Lemma 2.10 on C and C1 respec-
tively. To upper bound, we use Corollary 5.12.

Claim 5.18 (Probabilities of the first two error events). Let E1,P and E2,P be as defined above.
Then,

Pr
Π,h
rE1,P s ď

1

10000 ¨ sd`1
and Pr

Π,h,σ,bs
rE2,P s ď

1

10000 ¨ sd`1
.

Proof. Let us start with E1,P . Non-existence of a Q P JdpSk, Gq such that Q ” P |C is equivalent
to δpP |C, f |Cq ą p1{s

d ´ ε{2q. Using Lemma 2.10, we get the desired bound.
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For E2,P , we use Observation 5.15 and then proceed as in the case of E1,P . This finishes the proof
of the claim. ■

The next claim is to upper bound the probability of the third error. Upper bounding this error
uses the spectral expansion and is very different from the Boolean setting as in [ABPSS25].

Claim 5.19 (Probability of the third error event). Let E3,P be as defined above. Then,

Pr
Π,h,σ,b

rE3,P s ď
1

10000 ¨ sd`1
.

Proof. Fix a subgrid C1. This fixes the junta sums R1, . . . , RL2 in Line 4 of Algorithm 2. Consider
any two distinct junta sums Ri and Rj such that they differ on at least one point in Ssk

k,...,k (this

includes the pairs which differ on w). This means R :“ Ri ´Rj is non-zero on Ssk
k,...,k. We want to

upper bound the probability that Ri|C ” Rj |C i.e. R|C ” 0.

Using Observation 5.16 and Corollary 5.12, for appropriately chosen constants Bd and c, the prob-
ability of R|C vanishing is ď 1{p10000 ¨ sd`1 ¨Lpε{2q2q. We know that L2 ď Lpε{2q. Doing an union
bound on all possible pairs pRi, Rjq, we get the error probability is ď 1{p10000 ¨sd`1q. This finishes
the proof of the claim. ■

Combining the above three claims to bound the final error probability is analogous to the proof in
[ABPSS25, Lemma 5.3.1]. As the proof is quite similar, we skip it here.
This finishes the proof of Lemma 5.17. ■

The above lemma shows that for a fixed P P Listεpfq, the algorithm returns an approximating oracle
with high probability in a single iteration. We now use it to finish the proof of Theorem 5.5.

Proof of Theorem 5.5. We first show the correctness of Algorithm 4. Fix any P P Listεpfq. From
Lemma 5.17, we know that Algorithm 4 returns a tuple pC, σ,Qq for which ΨrC, σ,Qs is ď 1{p10 ¨
sd`1q-close with probability ě 0.99. Algorithm 4 has ℓ “ logLpεq many independent iterations.
Thus at the end of ℓ iterations, the probability of the event that there is no tuple pC, σ,Qq added
in T such that ΨrC, σ,Qs is ď 1{p10 ¨ sd`1q-close to P is ď 1{100ℓ. By a union bound over all
P P Listεpfq, we get the desired correctness probability.

In Line 8 of Algorithm 4, L1 ď Lpε{2q. So in each iteration of Algorithm 4, at most Lpε{2q tuples
are added in T . Thus over ℓ iterations, at most OpLpε{2q logLpεqq tuples are added.

It remains to argue about the query complexity. In a single iteration of Algorithm 4, we make
sk “ sBdpLpε{2q{εqc queries to f . There are ℓ “ logLpεq iterations. From Theorem 5.4, we know that
Lpε{2q “ Oεp1q. Thus Algorithm 4 outputs the deterministic algorithms Ψ1, . . . ,ΨL1 by making
Oεp1q queries to f .
For each deterministic algorithm ΨrC, σ,Qs, Algorithm 2 makes ssk “ ssBdpLpε{2q{εqc queries to f .
From Theorem 5.4, we know that Lpεq “ Oεp1q. Thus each Ψj makes Oεp1q queries to f . This
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shows the claimed query complexity.
This finishes the proof of Theorem 5.5. ■
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A Tabloids, Polytabloids, Multislices, and Functions

For a tableau t, tabloid of t, denoted by ttu is an equivalence class of tableaux (of the same shape)
under the row equivalence relation. See [Sag13, Definition 2.1.4] for a formal definition. For a
partition λ P Ppnq, Tabloidspλq is a set of tabloids of shape λ. The symmetric group Symn acts
naturally on tabloids as follows: For a permutation π P Symn, π acts on a tT u P Tabloidspλq by
permuting the entries of tT u. For example if π “ p125qp46q P S6, then

p125qp46q
1 2 3

4 5

6

“
2 5 3

6 1

4

Tabloids and multislice In the remaining section, we will always use λ to denote a partition
such that λ İ µ, where µ “ pn{s, . . . , n{sq. Note that ℓpλq ď s. We will use the convention that λ
has exactly s many parts, where we append a λ with fewer than s parts with 0’s.

We now observe that Tabloidspλq and Sn
λ are in bijection, as follows. For any tabloid ttu P

Tabloidspλq, it corresponds to the point a P Sn
λ where,

aj “ i if j P pi` 1qth row of ttu , for all j P rns.

Similarly, for any point a P Sn
λ , we get a corresponding tabloid ttu P Tabloidspλq where for every

j P rns, the pi ` 1qth row of ttu contains j if ai “ j. In simple words, the entries in the pi ` 1qth

row of tT u correspond to the coordinates which are i. Following is an example for n “ 9 and
λ “ p4, 3, 2q:

001210201 Ø
1 2 3 4

5 6 7

8 9

For a tableau t, a polytabloid for t, denoted by et is a linear combination of tabloids obtained by
permuting the columns of t. See [Sag13, Definition 2.3.2] for a formal definition. Using the above
bijection, it is easy to see that for every tableau t, the associated polytabloid et is a function on
Sn
λ .

60

https://doi.org/10.1561/0400000010
https://doi.org/10.1561/0400000010
http://dx.doi.org/10.1561/0400000010
https://doi.org/10.1007/3-540-09519-5_73
https://doi.org/10.1007/3-540-09519-5_73


B Subgrid Sampling Lemma

Here we give the proof of the subgrid sampling lemma from Section 2.

Proof of Lemma 2.10. The proof is an application of the second moment method with a conse-
quence of the following hypercontractivity theorem (Theorem B.1) being used to bound the vari-
ance.

Theorem B.1 ([ODo14, Section 10.3]). Let E Ď Zn
s be a subset of density δ, i.e. |E|{sn “ δ. Let

q ě 2. Then for any 0 ď |ρ| ď p1{pq ´ 1qq ¨ p1{sq1´2{q,

Pr
x„Zn

s
y„Nρpxq

rx P E and y P Es ď δ2´2{q.

More formally, for each y P Zk
s , let Zy P t0, 1u be the indicator random variable that is 1 exactly

when xpyq P T. Let Z denote the sum of all Zy (y P Zk
sq. The statement of the lemma is equivalently

stated as
Pr

”ˇ

ˇ

ˇ
Z ´ µ ¨ sk

ˇ

ˇ

ˇ
ě ε ¨ sk

ı

ă η (23)

for k as specified above.

Since each xpyq is uniformly distributed over Zn
s , it follows that each Zy is a Bernoulli random

variable that is 1 with probability µ. In particular, the mean of Z is µ ¨ sk.

We now bound the variance of Z. Let Iγ be the interval r p1´γqps´1q

s , p1`γqps´1q

s s where γ ď 1{ps´1q.
We have

VarpZq “
ÿ

y,y1

CovpZy, Zy1q

“
ÿ

y,y1:δpy,y1qPIγ

CovpZy, Zy1q `
ÿ

y,y1:δpy,y1qRIγ

CovpZy, Zy1q

ď
ÿ

y,y1:δpy,y1qPIγ

CovpZy, Zy1q `
ÿ

y,y1:δpy,y1qRIγ

1

ď
ÿ

y,y1:δpy,y1qRIγ

CovpZy, Zy1q ` s2k ¨ expp´Ωpγ2 ¨ pkps´ 1q{sqqq. (24)

where the final inequality is an application of the Chernoff bound. On the other hand, for any y,y1

such that δpy,y1q P Iγ , we have seen above that the pair pxpyq, xpy1qq have the same distribution as
a pair of random variables pz, z1q where z is chosen uniformly at random from Zn

s and z1 is sampled

from the distribution Nρpzq, where ρ “ 1´ sδpy,y1q

s´1 P r´γ, γs. Thus |ρ| ď γ.

Choose γ such that γ ď 1{ps´ 1q and

C1

d

s log k

ps´ 1qk
ď γ ď min

"

1

4
,

1

pk{ log kq1{4
¨
1

s

*

,

for a large enough constant C1. Such a γ exists since k ě B ¨ s4 log s for a large constant B.
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Set q “ pk log kq1{4. From Theorem B.1, and since γ ď 1{4, for py,y1q satisfying δpy,y1q P Iγ we
have

CovpZy, Zy1q “ Prrxpyq P T and xpy1q P T s ´ µ2

ď µ2´2{q ´ µ2

ď mintµ1.5, µ2 ¨ pexppOpp1{qq ¨ logp1{µqq ´ 1qu.

Plugging into Equation (24) we get the following inequalities:

VarpZq ď s2k ¨ µ1.5 ` s2k ¨
1

k
ď s2k ¨O

ˆ

1

k

˙ ˆ

if µ ď
1

k

˙

VarpZq ď s2k ¨ µ2 ¨O

˜

ˆ

log k

k

˙1{4

¨ logp1{µq

¸

` s2k ¨
1

k
ď s2k ¨O

˜

ˆ

log k

k

˙1{4
¸

ˆ

if µ ą
1

k

˙

where we used the fact that ex ď 1`2x for |x| ď 1{2 for the first inequality and the fact that µ ď 1
for the second.

Finally, using Chebyshev’s inequality, we get

Pr
”
ˇ

ˇ

ˇ
Z ´ µ ¨ sk

ˇ

ˇ

ˇ
ě ε ¨ sk

ı

“ Pr
a,h

”

|Z ´ ErZs| ě ε ¨ sk
ı

ď
VarpZq

ε2s2k
ď

1

ε2
¨O

˜

ˆ

log k

k

˙1{4
¸

ă η

using the lower bound on k in the statement of the lemma. ■

C Local Correction

In this section, we show that the family of junta-sums can be locally corrected up to error ap-
proaching half the distance of the underlying code, i.e., we prove Theorem 5.3:

Theorem 5.3 (Local correction of junta-sums). For every ε ą 0, finite set S of size s ě 2 and
d ě 0, Abelian group G, the family JdpSn, Gq is p rOεplog nq

d, δJ {2 ´ εq-locally correctable where
δJ :“ 1{sd.

Moreover, if G is a torsion Abelian group of exponent M , then the number of queries can be made
OM,εp1q, i.e., JdpSn, Gq is pOM,εp1q, δJ{2´ εq-locally correctable.

Similar to the prior work on local correction of low-degree over the Boolean cube [ABPSS25], we
divide the proof into two main steps:

• Error reduction: In this step, we give a way of reducing the error of the oracle f : rssn Ñ G
from 1{p2sdq ´ ε to ε1 for any given ε1 ď 1{Ωs,dplog nq

d, by making q1 “ rOεp1q queries to

f . In particular, there exists a rOεp1q query algorithm A such that, when given as oracle
f : rssn Ñ G such that δpf, P q ď 1{p2sdq ´ ε for some P P Jdprss

n, Gq, it satisfies

PrrAf pxq ‰ P pxqs ď ε1,

where the above probability is both over the randomness of A and x „ rssn is independently
and uniformly chosen.
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• Correction in low-error regime: Here, we now assume access to a randomized oracle
f 1 : rssn Ñ G such that Prrf 1pxq ‰ P pxqs ď ε1 for x „ rssn for some P P Jdprss

n, Gq, and
design a q2 “ Os,dp1{ε1q query algorithm A1 such that for every x P rssn, we have

PrrA1f 1

pxq ‰ P pxqs ď 1{4.

Hence, composing the algorithms A and A1, we get a local corrector for f that uses at most
q1 ¨q2 “ rOεplog nq

d queries. For the case of groups with small order, we follow the same line, except
we change the threshold ε1 to be at most 1{ΩM,εp1q, resulting in q1 “ q2 “ OM,εp1q. This would
then finish the proof of Theorem 5.3.

While the error reduction procedure closely follows similar ideas as for the Boolean cube (s “ 2)
from prior work, the low-error regime needs some changes. We give the proofs for error reduction
in Appendix C.1, and for the low-error local corrector in Appendix C.2. For the remainder of the
section, we fix G to be an arbitrary Abelian group and assume that s ě 2 (as Jdprss

n, Gq is a trivial
family otherwise).

C.1 Error Reduction

The main goal of this subsection is to prove the following:

Lemma C.1 (Error reduction). For every ε1 “ 1{Θs,dplog nq
d, there exists a q1 “ rOs,d,εp1q

query algorithm A such that for every f : rssn Ñ G satisfying δpf, P q ď 1{p2sdq ´ ε for some
P P Jdprss

n, Gq, the following holds:

PrrAf pxq ‰ P pxqs ď ε1,

where the probability is over a uniformly random x „ rssn, and an independent choice of the
randomness of A.

We will proceed in an almost identical way as done by [ABPSS25] with a natural extension of the
notion of a subcube from s “ 2 (i.e., Boolean cube) to general s. We show the following two key
lemmas: the first one reduces the error from a small enough constant to “sub-constant” and the
second one reduces it from 1{p2sdq ´ ε to a small enough constant.

Lemma C.2 (Reduction from small constant to sub-constant error). Fix any Abelian
group G, any s ě 2, and any positive integer d. The following holds for δ ă 1{sOpdq and K “ sOpdq

where the Op¨q hides a large enough absolute constant. For any η, δ, where η ă δ, there exists
a randomized algorithm A with the following properties: Let f : Zn

s Ñ G be a function and let
P : Zn

s Ñ G be a junta-degree-d function such that δpf, P q ď δ, and let Af denote that A has oracle
access to f . Then,

PrrδpAf , P q ą ηs ă 1{10,

where the above probability is over the internal randomness of Af . Further, for every x P t0, 1un,

Af makes KT queries to f and T “ O
ˆ

log

ˆ

logp1{ηq

logp1{δq

˙˙

.
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We now state the second key error reduction lemma.

Lemma C.3 (Reduction to small constant error). Fix any Abelian group G, any integer
s ě 2, and a positive integer d. For any η, δ, where η ă δ and δ ă 1{p2 ¨ sdq ´ ε for ε ą 0, there
exists a randomized algorithm A with the following properties: Let f : Zn

s Ñ G be a function and
let P : Zn

s Ñ G be a junta-degree d function such that δpf, P q ď δ, and let Af denotes that A has
oracle access to f , then

PrrδpAf , P q ą ηs ă 1{10,

where the above probability is over the internal randomness of A, and for every x P Zn
s , Af makes

sk queries to f , where k “ polyp1ε ,
1
η , sq.

We prove the first lemma in Appendix C.1.1 and the second lemma in Appendix C.1.2. Below, we
finish the proof of the main error reduction lemma of this section using the above two lemmas.

Proof of Lemma C.1. The proof proceeds in a similar way to [ABPSS24]: we apply the first step
of error reduction (Lemma C.3) with η “ η1 “ Os,dp1q being smaller than the value of δ needed to
apply the second step (Lemma C.2), i.e., δ ď Os,dp1q. This results in a number of queries which
is the product of the number of queries from both the steps. Taking η “ η2 in the second error
reduction step (i.e., Lemma C.2) to be equal to ε1 “ 1{Θs,dplog nq

d, we get that the total number

of queries is Os

´

1
η1ε

¯

¨Os,dp1q
log

´

log
´

logp1{η2q

logp1{δq

¯¯

ď plog log nqOs,d,εp1q. ■

C.1.1 Reduction from Small Constant to Sub-Constant Error

We will show that there is a randomized algorithm Af that given oracle access to any function f
that is δ-close to a junta-degree-d function P (think of δ as being a small enough constant depend-
ing on d), has the following property: with high probability over the internal randomness of Af ,
the function computed by Af is η-close to P , where η can be much smaller than δ. We restate it
formally below.

Lemma C.2 (Reduction from small constant to sub-constant error). Fix any Abelian
group G, any s ě 2, and any positive integer d. The following holds for δ ă 1{sOpdq and K “ sOpdq

where the Op¨q hides a large enough absolute constant. For any η, δ, where η ă δ, there exists
a randomized algorithm A with the following properties: Let f : Zn

s Ñ G be a function and let
P : Zn

s Ñ G be a junta-degree-d function such that δpf, P q ď δ, and let Af denote that A has oracle
access to f . Then,

PrrδpAf , P q ą ηs ă 1{10,

where the above probability is over the internal randomness of Af . Further, for every x P t0, 1un,

Af makes KT queries to f and T “ O
ˆ

log

ˆ

logp1{ηq

logp1{δq

˙˙

.

In the rest of this subsection, we will prove Lemma C.2. The algorithm Af in Lemma C.2 will be
a recursive algorithm. Each recursive iteration of the algorithm Af uses the same ‘base algorithm’
B, which will be the core of our error reduction algorithm from small constant error. In the next
lemma, we formally state the properties of the base algorithm.
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Lemma C.4 (Base Error Reduction Algorithm). Fix any Abelian group G, any integer s ě 2,
and a positive integer d. The following holds for K “ sOpdq. For any 0 ă γ ă 1, there exists
a randomized algorithm B with the following properties: Let g : Zn

s Ñ G be a function and let
P : Zn

s Ñ G be a junta-degree-d function such that δpg, P q ď γ, and let Bg denote that B has oracle
access to g, then

ErδpBg, P qs ă OpK2q ¨ γ1.5

where the above expectation is over the internal randomness of B. Further, for every x P Zn
s , Bg

makes K queries to g.

We defer the construction of the base algorithm and proof of Lemma C.4 to later. For now, we as-
sume Lemma C.4 and proceed to describe the recursive construction ofAf and prove Lemma C.2.

Proof of Lemma C.2. Let B be the algorithm given by Lemma C.4. We define a sequence of algo-
rithms Af

0 ,A
f
1 , . . . , as follows.

The algorithm Af
t computes a function mapping inputs in Zn

s along with a uniformly random
string from t0, 1urt to a random group element in G.

• Af
0 just computes the function f. (In particular, r0 “ 0.)

• For each t ą 0, we inductively define rt “ rt´1`r, where r is the amount of randomness
required by the base error reduction algorithm B. On input x P Zn

s and a uniformly
random string σt, the algorithm Af

t algorithm runs the algorithm B on x using the

first r bits of σt as its source of randomness, and with oracle access to Af
t´1 using the

remaining rt´1 bits of σt as randomness.

The algorithm Af will be Af
T for T “ C ¨ log

ˆ

logp1{ηq

logp1{δq

˙

where C is a large enough absolute

constant chosen below.

Query complexity: An easy inductive argument shows that Af makes at most KT queries to f.

Error probability: We now analyze the error made by the above algorithms. We will argue
inductively that for each t ď T and δt :“ δp1.1qt , we have

Pr
σt

r δpAf
t p¨, σtq, P q ą δt

looooooooooomooooooooooon

:“ Et

s ď

t
ÿ

j“1

1

100j
ă

1

10
. (25)

In the inductive proof, we will need that δ0 “ δ ă s´C1¨d for a large enough absolute constant C1.

We now proceed with the induction. The base case (t “ 0) is trivial as δpAf
t , P q “ δ0 by definition.

Now assume that t ą 1. We decompose the random string σt into its first r bits, denoted σ, and
its last rt´1 bits, denoted σt´1. We bound the probability in Equation (25) as follows. (Note that
the event Et´1 below only depends on σt´1.)

Pr
σt

rEts ď Pr
σt´1

rEt´1s ` Pr
σt

rEt | ␣Et´1s ď

t´1
ÿ

j“1

1

100j
` Pr

σt

rEt | ␣Et´1s (26)
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where we used the induction hypothesis for the second inequality. To bound PrσtrEt | ␣Et´1s, fix

any choice of σt´1 so that ␣Et´1 holds, i.e. so that δpAf
t´1, P q ď δt´1. By the guarantee on B, i.e.

Lemma C.4, we know that
EσrδpAf

t p¨, σtq, P qs ă OpK2q ¨ γ1.5,

where γ “ δpAf
t´1p¨, σt´1q, P q. Substituting it above, we get,

EσrδpAf
t p¨, σtq, P qs ď OpK2q ¨ δ1.5t´1 ď δ1.25t´1

where for the final inequality, we use the fact that

OpK2q ¨ δ0.25t´1 ď OpK2q ¨ δ0.250 ď 1

as long as δ0 “ δ ď s´C1d for a large enough constant C1. Continuing the above computation, we
see that by Markov’s inequality

Pr
σ
rEts ď

δ1.25t´1

δt
“ δΩpp1.1qtq ď

1

100t

where the final inequality holds for all t as long as δ ď s´C1d for a large enough constant C1.
Since this inequality holds for any choice of σt´1 so that ␣Et´1 holds, we can plug this bound into
Equation (26) to finish the inductive case of Equation (25).

Setting T “ C ¨ log

ˆ

logp1{ηq

logp1{δq

˙

for a large enough constant C, we see that δT ă η. In this case,

Equation (25) implies the required bound on the error probability of Af . ■

Thus we have shown so far that given the base algorithm B, we do get an error reduction algorithm
from small constant error to error Op1{ log nq. Now it remains to describe the base error reduction
algorithm. In the next subsection, we describe the base algorithm B and prove Lemma C.4.

The base algorithm and its analysis. In the rest of this subsection, we prove Lemma C.4,
which will then complete the proof of Lemma C.2. Before we describe B, we will define an error
reduction gadget.

Definition C.5 (Error-reduction Gadget for Jd). For ρ P p0, 1{ps ´ 1qq, an pρ, qq-error reduction
gadget for Jd is a distribution D over pZn

s q
q satisfying the following two properties:

1. There exists c1, . . . , cq P Z such that for any pyp1q, . . . ,ypqqq P supppDq, the following holds
true for each P P Jd and each a P Zn

s

P paq “ c1P pa` yp1qq ` . . .` cqP pa` ypqqq (27)

where the a` ypiq P Zn
s is computed via a co-ordinate-wise sum modulo s.

2. For any i P rqs, the co-ordinates of ypiq are i.i.d. random variables in Zs that take the value
0 with probability pi such that

pi P

„

1

s
´ ρ ¨

ˆ

1´
1

s

˙

,
1

s
` ρ ¨

ˆ

1´
1

s

˙ȷ

and each non-zero value in Zs with probability 1´pi
s . We call such distributions ρ-noisy dis-

tributions over Zs.
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To prove Lemma C.4, we need an error-reduction gadget for Jd, the space of junta-degree-d func-
tions over a group G. This is given by the following lemma.

Lemma C.6 (Constructing an error-reduction gadget for Jd). Fix any Abelian group G, s ě 2 and
any ρ P p0, 1{ps´1qq. Then JdpZn

s , Gq has a pρ, qq-error-reduction gadget where q “ pp1{ρq` sqOpdq.

Assuming the above lemma, we first finish the proof of Lemma C.4. For this, we will need the
following technical claim.
Claim C.7. Let y, z be independent random variables taking values in Zs such that their distribu-
tions are ρ1-noisy and ρ2-noisy respectively. Then, y ´ z is pρ1 ¨ ρ2q-noisy.

Proof. Let Dy and Dz denote the probability distributions of y and z respectively, which we think
of as elements of Rs.

We note that the condition that y is ρ1-noisy can be restated as

Dy “ ε1 ¨ δ0 ` p1´ ε1q ¨ U

where U denotes the uniform distribution over Zs, δ0 denotes the distribution that places all its
mass on 0, and ε1 is a (possibly negative) number satisfying |ε1| ď ρ1.

A similar fact also holds for the random variable ´z P Zs, since z being ρ2-noisy implies the same
for ´z.

Now, the distribution D of y ´ z is the convolution Dy ˚Dz giving us

D “ pε1 ¨ δ0 ` p1´ ε1q ¨ Uq ˚ pε2 ¨ δ0 ` p1´ ε2q ¨ Uq “ ε1ε2 ¨ δ0 ` p1´ ε1ε2q ¨ U

where the latter equality is by distributivity and the fact that the convolution of U with any
distribution is U .

Since |ε1| ď ρ1 and |ε2| ď ρ2, we have the claim. ■

In the algorithm, we use the error-reduction gadget to correct the junta-sum at a random point
a P t0, 1un. This process is likely to give the right answer except with probability qγ since, after
shifting, each query is now uniformly distributed and hence the chance that any of the queried
points is an error point of g is at most γ. We reduce the error by repeating this process three times
and taking a majority vote. To analyze this algorithm, we need to understand the probability that
two iterations of this process both evaluate g at an error point. We do this using hypercontractivity
(more specifically Theorem B.1).

Proof of Lemma C.4. Let D be a p1{10s, qq-error-reduction gadget as given by Lemma C.6. The
algorithm B, given oracle access to g : Zn

s Ñ G and a P Zn
s , does the following.

• Repeat the following three times independently. Sample pyp1q, . . . ,ypqqq from D and compute

c1gpa` yp1qq ` ¨ ¨ ¨ ` cqgpa` ypqqq

where c1, . . . , cq are the coefficients corresponding to the error-reduction gadget, and the sums
a` ypiq are computed in Zn

s .

67



• Output the plurality among the three group elements b1, b2, b3 computed above.

The number of queries made by the algorithm is K “ Opqq “ p10s` sqOpdq “ sOpdq as claimed. So
it only remains to analyze δpBg, P q. From now on, let a be a uniformly random input in t0, 1un.

For i P t1, 2, 3u, let Ei denote the event that bi ‰ P paq. We have

ErδpBg, P qs “ PrrBgpaq ‰ P paqs ď PrrE1 ^ E2s ` PrrE2 ^ E3s ` PrrE1 ^ E3s.

It therefore suffices to show that each of the three terms in the final expression above is at most
Opq2q ¨ γ1.5.

Without loss of generality, consider the event E1^E2. Let pyp1q, . . . ,ypqqq and pzp1q, . . . , zpqqq be the
two independent samples from D in the two corresponding iterations.

It follows from Equation (27) that the algorithm correctly computes P paq in the first iteration
as long as none of the queried points lie in the set T of points where g and P differ. A similar
statement also holds for the second iteration. This reasoning implies that

PrrE1 ^ E2s ď
q
ÿ

i,j“1

Prra` ypiq
looomooon

upiq

P T ^ a` zpjq
looomooon

vpjq

P T s. (28)

We bound the latter expression using Theorem B.1.

Fix i, j P rqs. Note that for every fixing of ypiq, the vector upiq is distributed uniformly over Zn
s

(because a is uniform over Zn
s ). In particular, this implies that upiq is uniformly distributed and

moreover that upiq and ypiq are independent random variables.

Note, moreover, that ypiq is independent of zpjq and their entries are i.i.d. random variables over
Zs that are ρ-noisy. By Claim C.7 above, we see that the entries of ypiq ´ zpjq are i.i.d. and
ρ2 “ p1{100s2q-noisy.

This means that vpjq “ upiq ` ypiq ´ zpjq is drawn from the noise distribution Nσpu
piqq, where the

parameter σ ď 1{100s2. Using Theorem B.1 with q “ 4, we have

Prrupiq P T ^ vpjq P T s ď γ1.5.

Plugging this into Equation (28) implies the required bound on the probability of E1 ^ E2. This
concludes the analysis of B. ■

We now show how to construct the error-reduction gadget and prove Lemma C.6. This requires
the following claim (implied e.g. by Möbius inversion) that shows that any junta-degree-d function
over t0, 1un (even with group coefficients) can be interpolated from its values on a Hamming ball
of radius d. For completeness, we give a short proof.
Lemma C.8. Fix d P N. For any natural number m ě d and any Hamming ball B of radius d,

P p0mq “
ÿ

bPB

αbP pbq

where the αb are integer coefficients.
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Proof. Assume that
P pxq “

ÿ

aPZn
s

#aďd

ga ¨
ź

iPrns: ai‰0

δaipxiq.

By Möbius inversion, we know that

ga “
ÿ

JĎI

p´1q|IzJ |P p1J ˝ aq

where 1J P t0, 1u
m denotes the indicator vector of set J and ˝ denots co-ordinate-wise product.

Putting the above equalities together gives us

P pxq “
ÿ

#bďd

α1
b,xP pbq

for suitable integer coefficients α1
b,x.

Now, assume B is the Hamming ball of radius d around the point c P Zm
s . Replacing x by x` c in

P does not increase the junta-degree of the function (since each co-ordinate of x` c depends only
on a single co-ordinate of x). Applying this substitution above yields

P px` cq “
ÿ

#bďd

α1
b,xP pb` cq “

ÿ

bPB

αb,xP pbq.

Setting x “ ´c yields the statement of the lemma. ■

We end this section by completing the proof of Lemma C.6.

Proof of Lemma C.6. The idea is to apply Lemma C.8 on a random subcube, as defined in Defini-
tion 2.9.

More precisely, let k, d be positive integers such that k is divisible by s and k ě s ¨ d. Let a P Zn
s

be arbitrary. For each i P rns, let Πi P SymrZss be chosen uniformly from among bijections that
map 0 to ai, and let Π denote pΠ1, . . . ,Πnq. Also assume that h : rns Ñ rks is chosen uniformly
at random. Let C “ CΠ,h be the corresponding subcube of Zn

s as defined in Definition 2.9. Let
Qpy1, . . . , ykq denote P |C , the restriction of P to this subcube.

Fix a Hamming ball B of radius d in Zk
s centred at a point c with exactly k{s many occurrences of

0. Since Q is a function of junta-degree at most d, applying Lemma C.8 to Q and the ball B yields
an equality

Qp0kq “
ÿ

bPB

αbQpbq.

Since Q is a restriction of P , the above equality can be rephrased in terms of P as

P pxp0kqq “
ÿ

bPB

αbP pxpbqq.

From the definition of the cube C, it follows that xp0kq “ a and thus the above gives us an equality
of the type desired in an error-reduction gadget (Equation (27)). To finish the proof, we only need
to argue that each xpbq has the required distribution.
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Note that for each b P B, we have
xpbq “ a` b1

where b1 is the random vector in Zn
s that at co-ordinate i takes the random value Πipbhpiqq. Since h

is chosen uniformly at random and the Πi’s are independent and uniform subject to the constraint
that Πip0q “ ai, it follows that the entries of bh are independent and the ith co-ordinate is a
Zs-valued random variable that takes the value 0 with probability equal to the proportion of 0’s in
b (which we denote σ) and each non-zero value in Zs with the probability p1´σq{ps´ 1q. In other
words, the entries of bh are ρ-noisy as long as

σ P

„

1

s
´ ρ ¨

ˆ

1´
1

s

˙

,
1

s
` ρ ¨

ˆ

1´
1

s

˙ȷ

.

To conclude the argument, note that b is at Hamming distance at most d from c, implying that σ
is in the range

„

1

s
´
d

k
,
1

s
`
d

k

ȷ

.

Setting k to be the smallest multiple of s larger than 2d{ρ gives us the desired value for the
parameter of the distribution of b.

Finally, the number of queries q made by the error-reduction gadget is dictated by the size of a
Hamming ball in k “ Opd{ρq dimensions. This can be bounded by

ˆ

k

d

˙

¨ sd ď pk{dqOpdq ¨ sd ď p1{ρ` sqOpdq
¨ sd “ p1{ρ` sqOpdq .

It follows that we have a pρ, pp1{ρq ` sqOpdqq-error-reduction gadget. ■

C.1.2 Reduction to Small Constant Error

Now, we will show that there is a randomized algorithm A that given oracle access to any function
f that is δ-close to a low junta-degree function P (think of δ to be very close to half the minimum
distance, i.e. 1{p2 ¨ sdq ´ ε for junta-degree d), has the following property: with high probability
over the internal randomness of A, Af is η-close to P , where η is much smaller than δ. We recall
it formally below.
Lemma C.3 (Reduction to small constant error). Fix any Abelian group G, any integer
s ě 2, and a positive integer d. For any η, δ, where η ă δ and δ ă 1{p2 ¨ sdq ´ ε for ε ą 0, there
exists a randomized algorithm A with the following properties: Let f : Zn

s Ñ G be a function and
let P : Zn

s Ñ G be a junta-degree d function such that δpf, P q ď δ, and let Af denotes that A has
oracle access to f , then

PrrδpAf , P q ą ηs ă 1{10,

where the above probability is over the internal randomness of A, and for every x P Zn
s , Af makes

sk queries to f , where k “ polyp1ε ,
1
η , sq.
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Now we state an algorithm Af below and use it to prove Lemma C.3..

Algorithm 4: Error Reduction Algorithm Af

Input: f and a P Zn
s

1 Choose k “ ps{pεηqq10

2 Sample a uniformly random h : rns Ñ rks // h is the internal randomness of Af

3 Sample Π1, . . . ,Πn P SymrZss independently and uniformly at random subject to the
condition that Πip0q “ ai for each i P rns.

4 Construct the cube C :“ CΠ,h according to Definition 2.9

5 Let f̃ :“ f |C // f |C is the restriction of f to the subcube C

6 Query f̃ on all inputs in Zk
s to find the junta-sum P̃ on C such that

δpf̃ , P̃ q ă 1{p2 ¨ sdq // sk queries to f

7 if such a junta-sum P̃ is found then

8 return P̃ p0kq // xp0kq “ a

9 else
10 return 0 // An arbitrary value

Proof of Lemma C.3. Let P be the (unique) junta-degree d function such that δpf, P q ă 1{p2 ¨ sdq.
The junta-degree of P is at most d when P is restricted to C “ CΠ,h. If δpP |C, f̃q ă 1{p2 ¨ sdq, then
P̃ “ P |C. In particular, P̃ pxp0kqq “ P paq, i.e. the output of the algorithm is correct.

Equivalently, Af paq “ P paq unless δpP |C, f̃q ě 1{p2 ¨ sdq. In the next lemma, we will show that
with high probability over random a and h, δppP |C, f̃q ă 1{p2 ¨ sdq.

Lemma C.9. Sample a, Π “ pΠ1, . . . ,Πnq and h as in the algorithm above. Let C “ CΠ,h be the
subcube of dimension k as described in Definition 2.9. Then,

Pr
a,Π,h

rδpP |C, f̃q ě 1{p2 ¨ sdqqs ă η{10

We prove Lemma C.9 below. For now, let us assume Lemma C.9 and finish the proof of Lemma C.3.
We have,

Pr
a,Π,h

rδpP |C, f̃q ě 1{p2 ¨ sdqs ă η{10

ñ Eh,Π

”

Pr
a
rδpP |C, f̃q ě 1{p2 ¨ sdqs

ı

ă η{10

Note that if we fix the internal randomness of Af (i.e. the random bits used to choose h,Π), then
δpAf , P q is at most PrarδpP |C, f̃q ě 1{p2 ¨ sdqqs, as the algorithm always outputs P paq correctly
when δpP |C, f̃q ă 1{p2 ¨ sdq . Then from the above inequality, we have,

Eh,Π rδpAf , fqs ă η{10

ñ Pr
h,Π
rδpAf , fq ą ηs ď 1{10 (Markov’s Inequality)

As commented in Algorithm 4, for each a P Zn
s , Af makes sk queries to f . ■
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Now we give the proof of Lemma C.9.

Proof of Lemma C.9. Let E denote the subset of points in Zn
s where P and f disagree, i.e. E :“

tx P Zn
s | fpxq ‰ P pxqu. We know that |E|{sn ď 1{p2 ¨ sdq ´ ε.

The fractional Hamming distance between P |C, f̃ is given by the relative size of the set EXC inside
C. Note that since a is chosen at random and each Πi is chosen at random satisfying Πip0q “ ai (for
each i P rns), we see that each Πi is indeed a uniformly independent element of SymrZss. Hence,
the subcube C “ CΠ,h is a random subcube in the sense of Definition 2.9.

Applying the sampling lemma from Section 2 (i.e., Lemma 2.10), we get that for k “ ps{pεηqq10

(we assume without loss of generality that ε, η are small enough for k to satisfy the hypothesis of
Lemma 2.10)

Pr
a,Π,h

rδpP |C, f̃q ě 1{p2 ¨ sdqs ă η{10,

and this completes the proof of Lemma C.9. ■

C.2 Correction in Low-Error Regime

Having just shown how to reduce the error, we will now prove that there is a local correction algo-
rithm in this “low-error” regime.

Lemma C.10 (Local correction in low-error regime). There exists ε1 “ 1{Θs,dplog nq
d and

a q2 “ Os,dp1{ε1q query algorithm A such that for every randomized oracle f : rssn Ñ G satisfying
Prx„rssnrfpxq ‰ P pxqs ď ε1 for some P P Jdprss

n, Gq, it holds for every x P rssn that:

PrrAf pxq ‰ P pxqs ď 1{4.

Using the above two lemmas, we can finish the proof of the first part of Theorem 5.3.

Proof of Theorem 5.3 for general Abelian groups. The proof follows by applying Lemma C.10 with
the randomized oracle being Af given by Lemma C.1. This yields a total number of queries of
q1 ¨ q2 “ rOs,d,εplog nq

d “ rOεplog nq
d as we can assume that ε ă δJ {2 “ 1{p2sdq. ■

Before we prove Lemma C.10, we show the following claim which reduces the problem of local
correction of junta-sums to local correction over the Boolean cube but with a biased distribution.

Lemma C.11 (Reduction to correction over biased cube). Suppose there exists a q query
algorithm A such that for every randomized oracle f : t0, 1un Ñ G satisfying Pry„Bernp1{sqnrfpyq ‰

P pyqs ď 10ε1 for some P P Jdpt0, 1u
n, Gq, it holds that PrrAf p1q ‰ P p1qs ď 1{4.

Then, there exists a Opq{ε1q query algorithm A1 such that for every randomized oracle f 1 : rssn Ñ G
satisfying Prx„rssnrf

1pxq ‰ P 1pxqs ď ε1 for some P 1 P Jdprss
n, Gq, it holds for every x P rssn that

PrrA1f 1

pxq ‰ P 1pxqs ď 1{4.
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Proof. We design A1 using A. Fix x P rssn be arbitrarily and sample x1 P rssn but choosing
x1
i P rssztxiu uniformly and independently at random. We then define f : t0, 1un Ñ G as follows:

Given y P t0, 1un, let z “ zpyq P rssn be defined by zi “ xi if yi “ 1 and zi “ x1
i otherwise – then

we define fpyq to be equal to f 1pypzqq; similarly we define P : t0, 1un Ñ G by P pyq “ P 1pypzqq.
Since P 1 is a d-junta-sum, so is P (for every choice of x1), i.e., P P Jdpt0, 1u

n, Gq. Furthermore, we
observe that for y „ Bernp1{sqn, the point zpyq is uniformly distributed over rssn (over a random
choice of x1 and y). In particular, we have

E
x1

„

E
y„Bernp1{sqn

r1rfpyq ‰ P pyqss

ȷ

“ Pr
z„rssn

rf 1pzq ‰ P 1pzqs ď ε1.

By Markov’s inequality, therefore, Pry„Bernp1{sqnrfpyq ‰ P pyqs ď 10ε1 with probability at least 0.9
over the choice of x1. Now using A and oracle access to f (which can be simulated using the oracle
access to f 1), we get a q query algorithm that outputs P 1pxq with probability at least 3{4 ´ 0.1,
which can be made at least 2{4 by repeating this subroutine constant number of times. Finally, we
have a Opqq query algorithm A1 such that PrrA1f 1

pxq ‰ P 1pxqs ď 1{4. ■

Proof of Lemma C.10. Using Lemma C.11, we have the ability to work with a biased distribution
over the Boolean cube instead of a uniform distribution over rssn (we note that the change of error
from ε1 to 10ε1 and the queries from q to Opq{ε1q are insignificant to the final asymptotic query
complexity). Hence, it suffices to show that there exists ε1 “ 1{Θs,dplog nq

d and a Os,dplog nq
d

query algorithm A such that for every randomized oracle f : t0, 1un Ñ G satisfying

Pr
x„Bernp1{sqn

rfpxq ‰ P pxqs ď ε1

for some P P Jdpt0, 1u
n, Gq, it holds that PrrAf p1q ‰ P p1qs ď 1{4. In other words, we want

to locally correct low-junta-degree functions over the Boolean cube under a biased distribution.
The high level idea is to adapt the construction for the unbiased distribution from [ABPSS25]. In
particular, we prove the following key result, and the local corrector is then described in Algorithm 5.

Theorem C.12. For a growing parameter k divisible by 10s2d, there exists S Ď t0, 1uk of size at
most Os,dpk

dq such that the following conditions hold:

• S is weight-balanced: i.e., there exists a probability distribution D over rks, such that for
every b P S: it holds that

ˇ

ˇ

ˇ

ˇ

E
i„D
rbis ´

1

s

ˇ

ˇ

ˇ

ˇ

ď
1

2Ωs,dpkq
. (29)

• S is an interpolating set: i.e., for every Abelian group G and every Q P Jdpt0, 1u
k, Gq, there

exist integers pcbqbPS such that

Qp1q “
ÿ

bPS
cbQpbq.
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Algorithm 5: Local corrector in low-error regime

Input: Oracle access to the function f : t0, 1un Ñ G

1 Set k “ Θs,dplog nq so that the RHS term in (29) (i.e., 1

2
Ωs,dpkq ) is at most 1

n2 and let

S Ď t0, 1uk be given by Theorem C.12.
2 Let D be the probability distribution over rks also given by Theorem C.12.
3 For b P S, let x “ xpbq P t0, 1un be the point obtained by setting xi “ bj , where

j „ D is sampled independently for all i P rns.
4 Output

ř

bPS cbfpxpbqq, where cb are integers given from Theorem C.12.

We first prove the correctness of Algorithm 5 before we provide a proof of Theorem C.12. We first
note that the number of queries made by the local correction algorithm is equal to |S|, which is
Os,dpk

dq “ Os,dplog nq
d as desired. It now remains to show that the probability of error PrrAf p1q ‰

P p1qs is at most 1{4, where Af p1q “
ř

bPS cbfpxpbqq is the output of Algorithm 5. Let Q :
t0, 1uk Ñ G be defined by Qpyq “ P pxpyqq i.e. it depends on the choice of randomness used in
Step 3 of Algorithm 5. Since P is a d-junta-sum, so is Q, so by Theorem C.12, we know that

Qp1q “
ÿ

bPS
cbQpbq.

Equivalently, we thus get
P p1q “

ÿ

bPS
cbP pxpbqq.

Hence, if all the queries to f by A output the value of P , then there is no error in the algorithm.
However, there are two sources of error: firstly, fpxpbqq need not always be equal to P pxpbqq.
Indeed we are only guaranteed that they are equal with high probability for an input chosen from
Bernp1{sqn distribution. And secondly, the distribution of xpbq is not exactly identical to the
Bernp1{sqn distribution, but only statistically close to it. More precisely, we have

Pr
x„Bernp1{sqn

rfpxq ‰ P pxqs ď ε1,

and the statistical distance between the distributions Bernp1{sqn and xpbq is:

SDpBernp1{sqn,xpbqq ď
1

n
,

for every b P S by the weight-balanced property of S as each bit of xpbq is 1
n2 -close to Bernp1{sq

and the n bits are all independent (see Step 3 of Algorithm 5); here are we using the property
SDppX1, X2q, pY1, Y2qq ď SDpX1, Y1q ` SDpX2, Y2q if X1, X2 are independent and so are Y1, Y2 (see
e.g. [Vad12] Lemma 6.3). Thus, we have for each b P S, Prrfpxpbqq ‰ P pxpbqqs ď ε1 `

1
n . Now,

applying a union bound over the queries made, we get

PrrAf p1q ‰ P p1qs ď |S| ¨
ˆ

ε1 `
1

n

˙

ď 1{4,

by taking ε1 “ 1{Θs,dplog nq
d appropriately small.

This finishes the proof of Lemma C.10. ■
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We now prove Theorem C.12.

Proof of Theorem C.12. We let k “ rm, where r “ 10s2d and identify rks with rrsˆrms arbitrarily
and treat y P t0, 1uk as a tuple of points in t0, 1ur, i.e., we let y “ py1,y2, . . . ,ymq where each
yi P t0, 1u

r (equivalently we treat the point y as a Boolean rˆm matrix with yi being the column
vectors). Then, we define the distribution D “ Dpmq over rks ” rrs ˆ rms so that the probability

mass for pi, jq is proportional to W
pmq

j “ sm´j ; in particular, we have Prpi,jq„D “ W
pmq

j {W pmq,

where we denote W “W pmq “ r
řm

j“1W
pmq

j “
rpsm´1q

s´1 .

There exists a subset S “ Sm,d Ď t0, 1u
rˆm of size at most p4rmqd such that

• S is weight-balanced: i.e., for every b P S, we have

ˇ

ˇ

ˇ

ˇ

ÿ

pi,jqPrrsˆrms

W
pmq

j

W pmq
bj,i ´

1

s

ˇ

ˇ

ˇ

ˇ

ď
d

W pmq
.

• S is a hitting set: i.e., for every Abelian group G and every non-zero Q P Jdpt0, 1u
k, Gq, there

exists b P S such that Qpbq ‰ 0.

We note that the notion of a hitting set in the second item implies the interpolating set property
in the statement of Theorem C.12 by using Claim 3.2.4 of [ABPSS25]. Moreover, we note that the

RHS of the first item is at most Opsdq

2m “ 1

2
Ωs,dpkq as required. Thus, it remains to show the existence

of the subset Sm,d Ď t0, 1u
rˆm satisfying the above two conditions; we do this by induction on m.

Base case m “ 1. We will make use of the following claim from [ABPSS25].

Claim C.13 ([ABPSS25] Claim 3.2.3). For every interval I Ď t0, 1, . . . , ru of size at least d ` 1,
there exists a subset HI,d Ď t0, 1u

r of size at most p4rqd such that

• HI,d consists only of points z such that |z| P I, and

• For every non-zero Q P Jdpt0, 1u
k, Gq, there exists z P HI,d such that Qpzq ‰ 0.

Using the above with I “ r rs ´ d,
r
s ` ds, we directly get S1,d “ HI,d as the desired set – the weight-

balanced property of S follows by the immediately as for every b P S1,d, we have ||b| ´ r
s | ď d by

the first property of Claim C.13.

Induction step m ą 1. Let Sm´1,d1 Ď t0, 1urˆpm´1q be given by the induction hypothesis, and
similarly HI,d1 Ď t0, 1ur be given by Claim C.13 for 0 ď d1 ď d. Let b “ pb1, . . . ,bm´1q P Sm´1,d

be arbitrary. This gives us that

ˇ

ˇ

ˇ

ˇ

ÿ

pi,jqPrrsˆrm´1s

W
pm´1q

j bj,i ´
W pm´1q

s

ˇ

ˇ

ˇ

ˇ

ď d. (30)

We now show that there exists an interval Ib Ď t0, 1, . . . , ru of size at least d ` 1 such that for
every bm P t0, 1ur with |bm| P Ib, it holds that b1 “ pb1, . . . ,bm´1,bmq P t0, 1u

rˆm satisfies the
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weight-balanced property, i.e., by letting τ “
ř

pi,jqPrrsˆrm´1s W
pm´1q

j bj,i´
W pm´1q

s and Ib to be the
interval r

s ´ sτ ˘ d (which is well-defined as |τ | ď d ď r
10s2

from (30)), we have:

ˇ

ˇ

ˇ

ˇ

ÿ

pi,jqPrrsˆrms

W
pmq

j bj,i ´
W pmq

s

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

|bm| ´
r

s
` sτ

ˇ

ˇ

ˇ

ˇ

ď d. (31)

Now, we are ready to describe S “ Sm,d:

S “
ď

0ďd1ďd

tbˆHIb,d´d1 : b P Sm´1,d1u.

In particular, we show the following three properties for the above definition of S.

• Size. We have that

|S| ď
d
ÿ

d1“0

|Sm´1,d1 | ¨ |HIb,d´d1 |

ď

d
ÿ

d1“0

p4pm´ 1qrqd
1

¨ p4rqd´d1

(using the induction hypothesis to upper bound |Sm´1,d1 |)

ď p4rqd
d
ÿ

d1“0

pm´ 1qd
1

ď p4mrqd.

• Weight-balanced. This follows from the discussion leading to (31).

• Hitting set. Let Q P Jdpt0, 1u
rˆm, Gq be an arbitrary non-zero d-junta-sum. Treating it

as a junta-polynomial in the last column of variables, we have for every x “ px1, . . . ,xmq P

t0, 1urˆm:

Qpxq “
ÿ

AĎrrs:|A|ďd

QApx1, . . . ,xm´1q ¨ x
A
m.

Since Q is non-zero, let A Ď rrs be such that QA is a non-zero function of junta-degree d1 ď d.
By induction hypothesis, we know there exists b P Sm´1,d1 such that QApbq ‰ 0. Letting
Q1 : t0, 1ur Ñ G denote the restriction of Q obtained on setting xi “ bi for all i P rm ´ 1s,
we note that Q1 is a non-zero junta-polynomial of degree at most d´ d1. Hence, there exists
bm P HIb,d1 such that Q1pbq ‰ 0. Effectively, this shows that there exists b1 P S such that
Qpb1q ‰ 0.

■

C.3 Correction for Torsion Groups

We now finish the proof for the “moreover” part of Theorem 5.3, i.e., we show a constant query
local correction algorithm over torsion groups of constant exponent.
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Proof of Theorem 5.3 for torsion Abelian groups. Similar to the case of general Abelian groups, we
first apply the error reduction step from Appendix C.1 (but with a different threshold ε1) and the
reduce the local correction problem to that over the Boolean cube but with a biased distribution
(i.e., Lemma C.11). Thus, it suffices to show that there exists a q “ OM,s,dp1q query algorithm A
such that for every randomized oracle f : t0, 1un Ñ G satisfying Prx„Bernp1{sqnrfpxq ‰ P pxqs ď ε1
for some P P J pt0, 1un, dq, it holds that PrrAf p1q ‰ P p1qs ď 1{4.

In particular, we set ε1 “
1

10pskk q
for a suitably large k “ OM,s,dp1q (so ε1 ě ΩM,s,dp1q). We state it

as a lemma below:

Lemma C.14. For every Abelian torsion group G of exponent M , there exists k “ OM,s,dp1q
and a q “ OM,s,dp1q query algorithm A such that for every randomized oracle f : t0, 1un Ñ G
satisfying Prx„Bernp1{sqnrfpxq ‰ P pxqs ď ε1 for some P P J pt0, 1un, dq and ε1 “ 1

10pskk q
, it holds

that PrrAf p1q ‰ P p1qs ď 1{4.

Now we note that by using the error-reduction lemma Lemma C.3 with η “ ε1 ě ΩM,s,dp1q, we
can convert a local corrector for error ε1 to one with error up to 1{p2sdq ´ ε with a Oεp1q factor
blow-up. Combining with the low-error local corrector of Lemma C.14, we obtain a local corrector
over the biased distribution Bernp1{sqn making OM,s,dp1q queries. Therefore, by Lemma C.11, we
also get a OM,εp1q query local corrector for d-junta-sums over Sn for error up to 1{p2sdq ´ ε.

■

We now prove Lemma C.14.

Proof of Lemma C.14. The proof proceeds in an identical manner to the analysis of [ABPSS25] by
making use of Kummer’s theorem which may be thought of as an analog of Lucas’ theorem for
prime powers. We state Kummer’s theorem below, where the notation Sppnq denotes the sum of
the digits of n when written in base p.

Theorem C.15 (Kummer’s theorem [Kum52]). Let p P N be a prime. Then for any integers

a ě b ě 0, the largest power of p that divides
`

a
b

˘

is equal to
Sppbq`Sppa´bq´Sppaq

p´1 .

Let M “
śℓ

j“1 p
rj
j be the prime factorization of the exponent M of G (so ℓ ď logM). For each

j P rℓs, let sj P N be the smallest integer such that p
rjsj
j ą d. Then, we choose k “

ś

jPrℓs p
3rjsj
j .

Note that p
rjpsj´1q

j ď d and hence k ď
ś

jPrℓspdp
rj
j q

3 ď d3ℓM3 “ OM,dp1q as needed. We then recall

that ε1 “
1

10pskk q
“ ΩM,s,dp1q.

We claim that the algorithm below (Algorithm 6) is the desired local corrector. It queries f at a
few inputs from some distribution and outputs P p1q with probability at least 9{10, where P P Jd

is the unique degree-d junta-sum such that δpf, P q ď ε1. We will need the following claim in order
to describe the local corrector.
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Claim C.16. There exist integers cb P Z for b P
`

rsks

k

˘

such that for every d-junta-sum Qpyq P
Jdpt0, 1u

sk, Gq, we have that

Qp1q “
ÿ

bPprsks

k q

cb ¨Qpbq. (32)

Algorithm 6: Local corrector for torsion groups

Input: Oracle access to a randomized function f : t0, 1un Ñ G

1 Sample a uniformly random function h : rns Ñ rsks.

2 For b P
`

rsks

k

˘

, let x “ xhpbq P t0, 1u
n be the point obtained by setting xi “ bhpiq for

i P rns.
3 Output

ř

bPprsks

k q
cbfpxhpbqq, where cb are integers given by Claim C.16.

The above algorithm is similar to Algorithm 5 with the main difference being the choice of the
interpolating set in the last step from Claim C.16 (as opposed to the “weight balanced interpolating
set” of Theorem C.12).

Assuming the correctness of Claim C.16, we shall now finish the proof of Lemma C.14.

Firstly, we note that the local corrector makes
`

sk
k

˘

“ OM,s,dp1q queries as required. To prove

correctness, for every b P
`

rsks

k

˘

, we note that the corresponding query point xhpbq P t0, 1u
n is

distributed according to Bernp1{sqn since the map h used in Algorithm 6 is uniformly random and
b has 1{s fraction of indices as ones. Thus, we have that fpxhpbqq ‰ P pxhpbqq with probability at
most ε1, so by a union bound over b, we have that with probability at least 1 ´ ε1 ¨

`

sk
k

˘

“ 9{10

(over the random choice of h and the randomness of f), that fpxhpbqq “ P pxhpbqq for all b P
`

rsks

k

˘

.
Now, letting Q P Jdpt0, 1u

sk, Gq denote the restriction of P defined as Qpyq “ P pxhpyqq, we see
that the output of Algorithm 6 is equal to

ÿ

bPprsks

k q

cbP pxhpbqq “
ÿ

bPprsks

k q

cbQpbq “ Qp1q “ P p1q,

where we are using Claim C.16 for the second equality and xhp1q “ 1 for the last equality. Therefore,
the output of the local correction algorithm (Algorithm 6) is indeed P p1q with probability at least
9{10. ■

It now remains to prove Claim C.16.

Proof of Claim C.16. By replacing the variables xi with 1 ´ xi, we note that the claim is equiv-
alent to proving that there exists cb P Z for b P

`

rsks

ps´1qk

˘

such that for every d-junta-sum Q P

Jdpt0, 1u
sk, Gq, it holds that

Qp0q “
ÿ

bPp rsks

ps´1qkq

cb ¨Qpbq. (33)
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To show this, we proceed with the following assignments. For every b P
`

rsks

ps´1qk

˘

, we set cb “ 0 if

b contains a 1 in any of the last k ´ d coordinates and we set cb “ A otherwise, where A P Z will
be decided later. Recall that M “

ś

jPrℓs p
rj
j and k “

ś

jPrℓs p
3rjsj
j , and we have that p

rjsj
j ą d ě

p
rjpsj´1q

j for all j P rℓs. By linearity, it suffices to show (33) for Qpyq of the form g ¨
ś

jPI yj for all

I P
`

rsks

ďd

˘

and g P G. According to our assignment of cb, it is clear that (33) holds true (with LHS =

RHS = 0) if I contains any of the last k´ d coordinates. Otherwise, we have that I Ď
`

rps´1qk`ds

ďd

˘

.

If I “ H, we have Qp0skq “ g and
ř

bPp rsks

ps´1qkq
cb ¨ Qpbq “

`

ps´1qk`d
ps´1qk

˘

A ¨ g. On the other hand, if

|I| “ i ě 1, we have Qp0skq “ 0 and
ř

bPprsks

k q
cb ¨ Qpbq “

`

ps´1qk`d´i
ps´1qk´i

˘

A ¨ g since every non-zero

term must have bj “ 1 for all j P I. Hence, it suffices to find an integer A satisfying the following
two conditions:

g “

ˆ

ps´ 1qk ` d

ps´ 1qk

˙

A ¨ g, for all g P G, and

0 “

ˆ

ps´ 1qk ` d´ i

ps´ 1qk ´ i

˙

A ¨ g, for all g P G and i P rds.

Let k1 :“ ps ´ 1qk. Since the order of every element g divides the exponent M of the group, for

the above two conditions to hold, it suffices if for all j P rℓs and i P rds, pj does not divide
`

k1`d
k1

˘

and that p
rj
j divides

`

k1`d´i
k1´i

˘

for all i P rds. Then we can take A to be any integer such that

A
`

k1`d
k1

˘

` A1M “ 1 for some integer A1 (such A and A1 are guaranteed to exist as M and
`

k1`d
k1

˘

are coprime). The rest of the proof is dedicated to verifying these divisibility constraints hold.

• pj does not divide
`

k1`d
k1

˘

: We will represent all the numbers k1, d, i etc. in base pj . We note
that the last rjsj digits of k1 are zeroes since p

rj
j divides k1. Furthermore, since d ă p

rjsj
j , all

the digits of d except the last rjsj many are zeroes. Hence, the sum of digits of k1`d is equal
to the sum of the digits of k1 and d combined. That is, Spj pk

1q ` Spj pdq ´ Spj pk
1 ` dq “ 0.

Applying Kummer’s theorem (Theorem C.15) now finishes the proof.

• p
rj
j divides

`

k1`d´i
k1´i

˘

: By Kummer’s theorem (Theorem C.15), it suffices to show that

Spj pdq ` Spj pk
1 ´ iq ´ Spj pk

1 ` d´ iq

pj ´ 1
ě rj . (34)

We note that Spj pk
1 ` d ´ iq “ Spj pk

1q ` Spj pd ´ iq by the same argument as the above
paragraph. In addition, we have the trivial bounds Spj pdq ě 1 and Spj pd´ iq ď ppj ´ 1qrjsj .
Finally, we give a lower bound for Spj pk

1 ´ iq. Since k1 has at least 3rjsj trailing zeroes,
we get that Spj pk

1 ´ 1q ě Spj pk
1q ` 3rjsjppj ´ 1q ´ 1. But we observe that Spj pk

1 ´ iq “
Spj ppk

1´1q´pi´1qq “ Spj pk
1´1q´Spj pi´1q since the number of trailing ppj´1q’s of k1´1

exceeds the total number of (non-zero) digits of pi´ 1q. Therefore, we get

Spj pdq ` Spj pk
1 ´ iq ´ Spj pk

1 ` d´ iq ě 1` Spj pk
1 ´ 1q ´ Spj pi´ 1q ´ Spj pk

1q ´ Spj pd´ iq

ě 1` p3rjsjppj ´ 1q ´ 1q ´ ppj ´ 1qrjsj ´ ppj ´ 1qrjsj

ě rjsjppj ´ 1q

ě rjppj ´ 1q.
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This finishes the proof of (34), and hence Claim C.16 and Lemma C.14.

■

D Combinatorial List-Decodability

We prove the combinatorial list-decodability bound for junta-sums (i.e., Theorem 5.4).

Theorem 5.4 (Combinatorial List Decoding Bound). For every ε ą 0, positive integers s, d, and
Abelian group G, the family JdpSn, Gq is p1{sd ´ ε,Oεp1qq-list decodable.

The proof can be broken into the following four steps:

• First, we reduce to the setting where G is finite.

• Second, we show the combinatorial bound for finite groups where every element has a suffi-
ciently large order.

• Third, we show the combinatorial bound for p-primary groups where p is a sufficiently small
prime.14

• Finally, we combine the above bounds to get a combinatorial bound for arbitrary Abelian
groups.

In particular, we prove the following two theorems.

Theorem D.1 (Combinatorial bound for large order). For every ε ą 0, positive integers s,d, there
exists a p “ pps, d, εq such that for every Abelian group G which does not have any element of order
at most p, the family Jdprss

n, Gq is p1{sd ´ ε,Oεp1qq-list decodable.

And we have:

Theorem D.2 (Combinatorial bound for p-primary groups). For every ε ą 0, positive integers s, d,
prime p, and finite p-primary group G, the family Jdprss

n, Gq is p1{sd ´ ε,Oε,pp1q-list decodable.

Using the above two theorems, we finish the proof of Theorem 5.4.

Proof of Theorem 5.4. Given Theorem D.1 and Theorem D.2, the proof follows the same outline
as the prior work [ABPSS25] on combinatorial bound for low-degree polynomials over the Boolean
cube, so we defer the proof. ■

We now show the proof for the large order case in Appendix D.1 and the p-primary groups case
in Appendix D.2.

D.1 Combinatorial Bound for Large Order

We prove Theorem D.1 in this subsection. Throughout this section, we assume that all the elements
of G have order at least p (where p “ ppεq is to be determined), s ě 2, and ε P p0, 1{sdq is arbitrary.

14 An Abelian group is said to be p-primary if every element has order that is an exponent of p.
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Following along the lines of the proof for the Boolean case (s “ 2) from [ABPSS25], we prove (and
use) an anti-concentration inequality for junta-sums depending on many variables. Once the right
anti-concentration lemma is in place, the rest of the proof of the combinatorial bound is more or less
identical to the Boolean case, except we are able to make some simplifications as we are only aiming
for a bound of Oεp1q (as opposed to polyp1{εq from [ABPSS25]). We state the anti-concentration
inequality below and defer its proof to the end of this subsection. In order to state the lemma,
we need a definition – we say that a function f : rssn Ñ G depends on the i-th variable if there
exists x P rssn such that fpxq ‰ fpx1q for some x1 P rssn that agrees with x on the coordinates
rnsztiu.
Lemma D.3 (Anti-concentration lemma). For integers s ě 2 and d ě 1, and every ε ą 0,
there exists r “ rps, d, εq ą 0 and p “ pps, d, εq such that for every Abelian group G which does
not contain any element of order less than p, and every P P Jdprss

n, Gq that depends on at least r
variables, it holds that:

Pr
a„rssn

rP paq ‰ 0s ě 1{sd´1 ´ ε.

Note that this improves on the trivial bound of 1{sd for general non-zero junta-sums. Given the
above lemma, we now prove Theorem D.1. The proof proceeds in multiple stages – in each stage,
we make the junta-sums in the list (of close-by junta-sums to a fixed function) more structured,
thus pruning the list at each stage.

D.1.1 Pruning the List

For a function f : rssn Ñ G, let Lεpfq Ď Jdprss
n, Gq denote the set (or rather “list”) of junta-sums

P such that δpf, P q ď 1{sd ´ ε. Our goal is to show that |Lεpfq| ď Oεp1q. We first reduce the
problem to counting the number of junta-sums in the list that depend only on a few variables.

Reducing to counting junta-sums depending on a few variables. If P1, P2 P Lεpfq, note
that

δpP1 ´ P2,0q “ δpP1, P2q ď δpf, P1q ` δpf, P2q ď 2{sd ´ 2ε.

Now applying Lemma D.3 for P “ P1´P2 (which is also a d-junta-sum), we get that P1´P2 depends
on at most rpεq variables, as otherwise we get 1{sd´1´ε ď δpP1´P2,0q ď 2{sd´2ε which would be a
contradiction. Hence, if Lεpfq “ tP1, P2, . . . , Ptu, we observe that P1´Pt, P2´Pt, . . . , Pt´1´Pt are
distinct junta-sums that are in LεpP1 ´ fq and depend on at most r “ Oεp1q variables. Therefore,
it suffices to count such junta-sums to get a final combinatorial bound. In order to do this, we first
count such junta-sums depending on the same set of variables.

Counting junta-sums depending on the same set of few variables. Without loss of gen-
erality, let the variable set on which the junta-sums depend on be rrs. That is, let P1, . . . , Pt be
the d-junta-sums that are at distance at most 1{sd ´ ε from a function f : rssn Ñ G, and each Pi

only depends on the first r variables. For a P rssn´r, let fa : rssr Ñ G be the function obtained by
setting the last n´r variables of f to be uniformly random independently. Since δpf, Piq ď 1{sd´ε
for every i P rts, we have Earδpfa, Piqs ď 1{sd ´ ε, hence with probability at least ε{2 over the
choice of a, it holds that δpfa, Piq ď 1{sd ´ ε{2 (where we are thinking of Pi as being a function
from rssr to G). By linearity of expectation, this means that the expected number of junta-sums
Pi such that Pi P Lε{2pfaq is at least εt{2. Hence, it suffices to show that |Lε{2pf

1q| for every
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f 1 : rssr Ñ G is Oεp1q to conclude that t “ Oεp1q. To do this, we note that P1 ‰ P2 P Lε{2pf
1q

cannot agree on more than 1´ 1{sd fraction of inputs, so for a given subset of rssr of size sr´ sr´d,
there is at most one junta-sum in the list Lε{2pf

1q that agrees with f 1 on that subset. Therefore

|Lε{2pf
1q| ď

`

sr

sr´sr´d

˘

“ Oεp1q as r “ Oεp1q.

Reducing to the case where the variable sets form a sunflower. We recall that our goal
is to prove that the number of d-junta-sums that are at distance at most 1{sd ´ ε from a given
f : rssn Ñ G is Oεp1q. However, from the above paragraph, we see that the number of such junta-
sums depending on the same set of variables is Oεp1q. Thus, it suffices to show the following:

Suppose P1, . . . , Pt P Lεpfq are such that they depend on distinct subsets of variables. Then,
t “ Oεp1q.

Now, consider the set system formed over the universe rns by the subsets of variables each Pi

depends on. Applying the sunflower lemma (e.g. [ER60], Theorem 3) to this set system, we observe
that if t ą r!pm´ 1qr, then there exists Pi1 , . . . , Pim P Lεpfq such that the subset of variables they
depend on forms a sunflower: that is, if the subset of variables that Pi depends on is denoted by
Vi Ď rns, then there exists a core C Ď rns such that Vij1 X Vij2 “ C for every j1 ‰ j2 P rms and the
petals VijzC are non-empty. Hence, it suffices to show that m “ Oεp1q to get that t “ Oεp1q. For
the remainder of the proof, we shall assume that ij “ j for j P rms, without loss of generality.

Reducing to the case where the variable sets are pairwise disjoint. While the application
of the sunflower lemma in the above step results in a core C which can be non-empty, the goal
of this step is to show that we can essentially assume that C “ H without loss of generality. We
prove this by carefully setting the variables in C (which is assumed to be non-empty) to constants.
We will switch the domain of the functions from rssn to Zn

s as we will be using junta-polynomial
representations.

Let x “ zYpyp1qYyp2q . . .ypmqqYw be a partition of the variable set where z denotes the variables
indexed by C, and ypiq denotes the variables that Pi depends on other than z (i.e., ypiq corresponds
to the variables indexed by VizC), and w are the remaining variables. We let n0 “ |C| “ |z| and
ni “ |y

piq|. Then we note that we can express each Pi (for i P rms) as follows:

Pipxq “ Pipz,y
piqq “

ÿ

aPZni
s :|a|ďd

δapy
piqq ¨ Pi,apzq,

where we use the notation δapy
piqq “

ś

jPrnis
δaj py

piq
j q. Let y-degree of Pi denote the maximum

value of |a| for which Pi,a is non-zero; since Pi depends on ypiq variables, the y-degree must be
in rds. Moreover, since |z| ď r “ Oεp1q, the number of possible monomials (without considering
coefficients) in Pi,a is Os,d,εp1q “ Oεp1q. Thus, assuming m is a large enough function of 1{ε
(otherwise, we are done), using the pigeon-hole principle, we can assume without loss of generality
that the y-degree of the Pi’s are all the same (say d1 P rds) and that each Pi,a contains a non-
zero coefficient for the monomial δbpzq for some b P Zn0

s , and that δbpzq is a non-zero monomial
with the maximal degree. Without loss of generality, let the first n1

0 coordinates of b be zero and
the remaining ones be non-zero, where 0 ď n1

0 ď n0. We will first set the first n1
0 variables in z

(if n1
0 “ 0, we skip this step) uniformly at random: we note that setting these variables cannot

cancel the monomial δbpzq as by assumption, it is a monomial with maximal degree. Denoting the
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restricted functions by P 1
1, . . . , P

1
t and the restriction of f by f 1, we have that these are all distinct

and each P 1
i satisfies δpf

1, P 1
i q ď 1{sd´ε{2 with probability at least ε{2. Thus, there exists a choice

of assignments to the first n1
0 variables of z such that for at least εt{2 many P 1

i s, it holds that
δpf 1, P 1

i q ď 1{sd ´ ε{2. Without loss of generality, we assume that these are the initial t1 “ εt{2
junta-sums. We now set the remaining variables of z uniformly at random. We note that for i P rt1s,
since Pi,a is still non-zero even after setting some variables of z in the earlier step, with probability
at least 1{sn0´n1

0 , it holds that Pi is non-zero. However, since the junta-degree of Pi is at most
d and the y-degree of Pi is d

1, we must have that n0 ´ n1
0 ď d ´ d1. That is, denoting the final

junta-sums after setting all the variables of z by P 2
i respectively and the restricted function of f

by f2, we have that P 2
i is non-zero with Ωεp1q probability. Furthermore, each P 2

i if non-zero has
junta-degree at most d1. Since δpf 1, P 1

i q ď 1{sd ´ ε{2 and we are only setting n0 ´ n1
0 ď d ´ d1

variables when going from P 1
i to P 2

i , we must have that δpf2, P 2
i q ď 1{sd

1

´ ε{2. Thus, we have
reduced to the case where the junta-sums we want to count all depend on pairwise disjoint sets
of variables (although the degree changes from d to d1, we will use d for the rest of the proof for
simplicity; similarly we use ε instead of ε{2).

Counting junta-sums depending on pairwise disjoint variables. To recap, we are now
in the following setup: We have an arbitrary function f : rssn Ñ G and distinct d-junta-sums
P1, . . . , Pt depending on pairwise disjoint subsets of variables such that δpf, Piq ď 1{sd´ ε, and the
goal is to show that t “ Oεp1q. The main idea is that the junta-sums behave “independently” as
they depend on disjoint subsets of variables and so there cannot be many of them correlated with
the same function f . More formally, we consider the following quantity:

Pr
x„rssn

„

Di P rts :

ˇ

ˇ

ˇ

ˇ

tj P rts : Pjpxq “ Pipxqu

ˇ

ˇ

ˇ

ˇ

ě p1´ 1{sd ` ε{2qt´ 1

ȷ

. (35)

On the one hand, since Prx„rssn,i„rtsrfpxq “ Pipxqs ě 1´ 1{sd` ε, we have that (35) is at least ε{2

(i.e., with probability ε{2, at least 1 ´ 1{sd ` ε{2 fraction of the junta-sums agree with f and so
with each other). On the other hand, since any two distinct junta-sums agree on at most 1´ 1{sd

fraction of inputs and the events Pjpxq “ Pipxq are independent across different j ‰ i, we have

that (35) is at most t{2Ωpε2tq. Combining both, we get t “ Oεp1q.

Proof of Theorem D.1. The above discussion finishes the proof of Theorem D.1. ■

D.1.2 Anti-concentration Lemma

We end with a proof of the anti-concentration lemma (Lemma D.3). For this, we will need the
following claim about junta-sums that have a certain matching structure. This is analogous (and
extends) the corresponding result of Meka, Nguyen and Vu [MNV16] used in the analysis for the
Boolean case (s “ 2) in [ABPSS25]. To state the claim, we say that two monomials of a junta-
polynomial: δa and δb (where a,b P Zn

s ), are disjoint, if the non-zero indices of a and b are disjoint.

Claim D.4. For integers s ě 2 and d ě 1 and every ε ą 0, there exists u “ ups, d, εq and p “ ppd, εq
such that for every Abelian group G which does not contain any element of order less than p, and
every d-junta-sum

P pxq “
ÿ

aPZn
s :|a|ďd

ga ¨ δapxq
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with at least u many pairwise disjoint non-zero monomials of degree d, it holds that:

Pr
a„Zn

s

rP paq “ 0s ď ε.

Proof. The main idea is to reduce to the Boolean case and use the following result from [ABPSS25],
which itself is derived using the anti-concentration result of Meka, Nguyen and Vu [MNV16] over
the reals.

Lemma D.5 ([MNV16], [ABPSS25] Theorem 4.1.6 and Claim 4.1.5). For every positive integer d
and ε ą 0, there exists t “ tpd, εq and p “ ppd, εq such that for every Abelian group G which does not
contain any element of order less than p, and every junta-degree-d polynomial P P Jdpt0, 1u

n, Gq
with at least t many pairwise disjoint non-zero monomials, it holds that:

Pr
a„t0,1un

rP paq “ 0s ď ε.

We now show how to use the above lemma to deduce a similar inequality for general s i.e., we
prove Claim D.4. Let u denote the number of pairwise disjoint non-zero monomials of degree d in
the junta-polynomial representation of P . Assuming a sufficiently large lower bound on u, our goal
is to show that

Pr
a„Zn

s

rP paq “ 0s ď ε.

We choose a uniformly random a P Zn
s as follows:

• Choose a random subcube C Ď Zn
s by picking u,v P Zn

s , where ui ‰ vi P Zs are chosen
uniformly at random and independently over i P rns: more specifically, C “ tu1, v1u ˆ ¨ ¨ ¨ ˆ
tun, vnu.

• Choose a P C uniformly at random.

Let t “ tpd, ε{2q and p “ ppd, ε{2q be given by the functions tp., .q and pp., .q in Lemma D.5. Let
a1, . . . ,ar P Zn

s (where u “ ups, d, εq will be decided later) be such that the monomials δaipxq are
pairwise disjoint monomials, with |ai| “ d, and have non-zero coefficients in P , where i P rus. Let
Si Ď rns denote the indices where ai is non-zero, so that Si are pairwise disjoint for i P rus. Now,
if uj “ 0 and vj “ aj for all j P Si, we note that if we treat P restricted to C as function over
the Boolean cube (with uj ÞÑ 0 and vj ÞÑ 1 for j P Si and rest of the coordinates are mapped
arbitrarily), the monomial

ś

jPSi
xj has the same coefficient as that of δaipxq in P (which is non-

zero), since no other monomials can cancel this. Thus, if we can prove that there are at least t
many of the ai’s for which it holds that puj , vjq “ p0, ajq for j P Si, then we have a multilinear
polynomial over C (or equivalently over t0, 1un) with at least t many non-zero disjoint monomials,
in which case, we apply Lemma D.5 to conclude that for a random point in a „ C, the probability
that P paq “ 0 is at most ε{2. Therefore,

Pr
a„Zn

s

rP paq “ 0s ď ε{2` Prr|ti P rrs : puj , vjq “ p0, ajq @j P Siu| ě ts.

Now, we observe that the events puj , vjq “ p0, ajq are independent across j P Si and i. In particular,

we have Prrpuj , vjq “ p0, ajq @i P Sis “
´

1
sps´1q

¯d
ě Ωs,dp1q. Hence, if u is a sufficiently large enough

function of s, d, ε, by applying the Chernoff bound, we get that

Prr|ti P rus : puj , vjq “ p0, ajq @j P Siu| ě ts ď ε{2,
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which in turn implies that Pra„Zn
s
rP paq “ 0s ď ε. ■

Finally, we finish the proof of the anti-concentration lemma.

Proof of Lemma D.3. The proof is by induction on d.

Base case d “ 1. We take r “ ups, 1, εq, where up., .q is given by the function in Claim D.4,
so that if P depends on r variables, we are guaranteed that there are at least r degree 1 pairwise
disjoint monomials. Then, applying Claim D.4, we get PraPrssnrP paq ‰ 0s ě 1´ ε.

Induction step d ą 1. The analysis is based on three cases.

• Case 1: There exists a variable (say x1 w.l.o.g.) and an index j P rs ´ 1s such that in the
junta-polynomial representation

P pxq “ P0px2, . . . , xnq `
s´1
ÿ

j“1

δjpx1qPjpx2, . . . , xnq,

Pj depends on at least r1 “ rps, d ´ 1, εq variables. In this case, we note that for a random
choice of a2, . . . , an P rss, by applying the induction hypothesis to Pj (which is a pd´1q-junta-
sum), we have that Pjpa2, . . . , anq ‰ 0 with probability at least 1

sd´2 ´ε. Thus, the restriction
of P unto the variable x1 is a non-constant function on setting xi “ ai for i ą 1. Therefore,
we have Pra„rssnrP pa ‰ 0qs ě 1

s ¨
`

1
sd´2 ´ ε

˘

ě 1
sd´1 ´ ε.

• Case 2: Suppose there exists r2 “ ups, d, 1{2q many pairwise disjoint non-zero monomials of
degree d in P , where up.q is given by Claim D.4. Then, we immediately get

Pr
a„rssn

rP paq “ 0s ď
1

2
ď 1´

1

sd´1
.

• Case 3: Suppose neither Case 1 nor Case 2 occur. We now consider the set system ∆ over
rns, where we include S P ∆ for S Ď rns if there exists b P Zn

s such that the coefficient of δbpxq
is non-zero in P , and S is the set of non-zero indices of b. Since there cannot be r2 many
S P ∆ that are pairwise disjoint and each S P ∆ is of size at most d, we can guarantee that
there exists a small “cover”; i.e., there exists indices i1, . . . , iℓ P rns with ℓ ď dr2 such that for
every degree d non-zero monomial δbpxq in P , there exists j P rℓs such that bij ‰ 0 (i.e., xij
is contained in the corresponding monomial). We now count the number of monomials in P
which contain the variable xij for some j P rℓs. Since Case 1 does not occur, we can bound

this by ps´ 1q ¨
`

ps´1qr1
ďd

˘

, where the s´ 1 factor accounts for the number of monomials where

xij appears as δj1pxij q for j
1 P rs´ 1s, and the second factor

`

ps´1qr1
ďd

˘

bounds the number of
non-zero monomials of a function depending only on at most r1 variables. Now, we set the
variables txij : j P rℓsu arbitrarily and show that the restricted function of P is still non-zero.
We note that once we set these variables, all the degree d monomials would reduce in degree
as the variables begin set form a “cover”, thus we can bound the probability of the restriction
of P being non-zero as being at least 1

sd´1 . Hence, it only remains to prove that the restriction

is non-zero. To see this, we set r “ rps, d, εq “ 1 ` 2ℓps ´ 1q
`

ps´1qr1
ďd

˘

; this ensures that even
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after setting all the variables xij : j P rℓs, there is at least one non-zero monomial in the
restricted function.

■

D.2 Combinatorial Bound for p-primary groups

In this section, we prove Theorem D.2. The high level proof approach again follows closely as that
of the Boolean case s “ 2 from [ABPSS25]. The proof consists of the following steps:

• The first step is to reduce the problem from general p-primary groups to the case of Zp. We
prove a combinatorial bound for this case and “lift” it to the general case.

• Then we show that that we can instead count polynomials over a field Fq (for some q “ Ops, pq)
rather than junta-sums.

• In order to get the bound for the Fq case, we show that we can essentially assume without
loss of generality that the polynomials in the list have pairwise disjoint leading monomials.

• Finally, we show a tail bound for the roots of polynomials with pairwise disjoint leading
monomials, which results in a list size bound.

We divide the proof into two subsections; we prove the first two items above in Appendix D.2.1
and the next two items in Appendix D.2.2.

D.2.1 Reducing to the Case of Constant-sized Field Fq

For a field F and a subset S Ď F of size |S| “ s ě 2, we note that JdpS
n,Fq is exactly the family of

functions that can be uniquely expressed as a polynomial where each (non-zero) monomial has at
most d variables and individual degree at most ps´ 1q in each variable. For the remainder of this
subsection, we will use this interpretation. We show next that we can always assume that S Ď F
(and then use the polynomial interpretation) without much loss in parameters for the combinatorial
bound.

Lemma D.6 (Reducing counting junta-sums to polynomials). If JdpS
n,Fqq is p1{sd ´

ε,Oq,εp1qq-list-decodable for every ε ą 0 and every finite field Fq and subset S Ď Fq of size s, then
Jdprss

n,Zpq is also p1{sd ´ ε,Op,εp1qq-list-decodable for every prime p and every ε ą 0.

Proof. Fix an arbitrary prime p and let q be the smallest power of p that is at least s. Let f : rssn Ñ
Zp be arbitrary and P1, . . . , Pt P Jdprss

n,Zpq be distinct junta-sums such that δpf, Piq ď
1
sd
´ ε

for i P rts. We will prove that t “ Oq,εp1q assuming that JdpS
n,Fqq is p1{sd ´ ε,Oq,εp1qq-list-

decodable. We shall identify Zp with a subgroup of Fq of order p: in particular, let H Ď Fq

be a subgroup of Fq that is homomorphic to Zp, via a group homomorphism σ : Zp Ñ H. Let
ϕ : rss Ñ S be an arbitrary bijection and let g : Sn Ñ Fq be defined by gpxq “ σpfpϕ´1pxqqq.
Similarly, for i P rts, let Qi : Sn Ñ Fq be defined by Qipxq “ σpPipϕ

´1pxqqq. We claim that
Qi P JdpS

n,Fqq: indeed, if Pipxq “
ř

IPprns

ďdq
Pi,IpxIq for functions Pi,I : rssI Ñ Zp, then we have

Qipxq “ σ
´

ř

IPprns

ďdq
Pi,Ipϕ

´1pxIqq

¯

“
ř

IPprns

ďdq
σpPi,Ipϕ

´1pxIqqq. Moreover, δpf, Piq “ δpg,Qiq and

Qi’s are pairwise distinct functions since σ and ϕ are bijections. By our assumption that JdpS
n,Fqq
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is p1{sd ´ ε,Oq,εp1qq-list-decodable, we get that t ď Oq,εp1q “ Op,εp1q.
■

Lemma D.7 (Lifting the bound to general p-primary groups). If Jdprss
n,Zpq is p1{s

d ´

ε,Op,εp1qq-list-decodable for every ε ą 0 and every prime p, then Jdprss
n, Gq is also p1{sd ´

ε,Op,εp1qq-list-decodable for every finite p-primary group G and every ε ą 0.

Proof. The proof essentially follows the same outline as that from [ABPSS25] which handles s “ 2.
For arbitrary fixed ε ą 0, let L be the list size; i,e., for every g : rssn Ñ Zp, there exists at most
L ď Op,εp1q junta-sums Q P Jdprss

n,Zpq such that δpg,Qq ď 1{sd´ε. We will now show that for an
arbitrary f : rssn Ñ G, that the number of junta-sums P P Jdprss

n, Gq such that δpf, P q ď 1{sd´ ε
is at most LOplogp1{εqq, thus giving the required bound. Using the notation Lεpfq to denote the set
of junta-sums P P Jdprss

n, Gq such that δpf, P q ď 1{sd´ε, our goal now is to prove an upper bound
on |Lεpfq|. In order to prove this, we will need the following setup. Since G is a finite p-primary
group, there exists an element h0 P G of order p; let H0 Ď G be the subgroup generated by h0. We
then note that the quotient group G{H0 is again a p-primary group. By continuing this argument,
we have a sequence of groups G “ G0, G1, . . . , Gh for some h P N such that Gi`1 “ Gi{Hi, where
Hi Ď Gi is a subgroup of order p (generated by some hi P Gi) and Gh is the trivial group containing
just the identity element. Now, we let f0 “ f and for 0 ď i ď h, we define fi : rss

n Ñ Gi by the
recurrence

fi`1pxq “ fipxq mod Hi.

We now define a rooted tree T as follows: there are h ` 1 levels of the tree, with the root being
level h and the leaves being level 0. We now describe the vertices and their labels bottom-up. The
vertices in level 0 are in bijection with the junta-sums Lεpfq (we treat these junta-sums as the
“labels” of the vertices). For a vertex with label P0 P Lεpfq in level 0, we let P1 P Jdprss

n, G1q

defined by
P1pxq “ P0pxq mod H0

be the label of the parent of this vertex: we note that P1 P Lεpf1q since if f and P0 agree, so do
f1 and P1. Proceeding in a similar way, we construct all the above levels of the tree T and label
its vertices. In particular, the parent of a vertex in level i labeled with Pi P Lεpfiq is set to be the
junta-sum Pi`1 P Lεpfi`1q defined as:

Pi`1pxq “ Pipxq mod Hi.

For a vertex v of T at level i P r0..hs and labeled with Pi P Lεpfiq, we let

ρpvq “ 1{sd ´ δpfi, Piq.

Note that ρpvq ě ε for all vertices v of T . We further show the following properties of ρp¨q.

Claim D.8. For the tree T and the function ρ defined over the vertices of T defined above, the
following properties hold:

• Each non-leaf vertex of T has at most L children.

• If u is the parent of v, then ρpuq ě ρpvq.

• If u has two distinct children v and w, then ρpuq ě ρpvq ` ρpwq.
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We now finish the proof of Lemma D.7 using the above claim. We recall that the number of leaves
in T is exactly |Lεpfq|, which is what we want to upper bound. To do this, we argue that for any
non-leaf node u of T with children v1, . . . , vt (for some 1 ď t ď L), it holds that

ρpuqℓ ě
ÿ

iPrts

ρpviq
ℓ, (36)

where ℓ “ rlogLs. Then, applying this inequality for all the non-leaf vertices of the tree, we get
that

ρprootqℓ ě
ÿ

v is a leaf

ρpvqℓ ě p#leavesq ¨ εℓ.

Using ρprootq ď 1, we thus get that |Lεpfq| “ (# leavesq ď p1{εqℓ “ LOplogp1{εqq “ Op,εp1q as
desired. Hence, it only remains to show that (36) holds. For this, we will assume that t, the
number of children of u is at least 2 as otherwise, we immediately have ρpuqℓ ě ρpv1q

ℓ using Item 2
of Claim D.8. Further, let ρpv1q ě ρpv2q ě ¨ ¨ ¨ ě ρpvtq without loss of generality. Then using Item
3 of Claim D.8 and t ď L ď 2ℓ, we have

ρpuqℓ ě pρpv1q ` ρpv2qq
ℓ

ě ρpv1q
ℓ ` p2ℓ ´ 1qρpv2q

ℓ

ě ρpv1q
ℓ ` pt´ 1qρpv2q

ℓ

ě ρpv1q
ℓ ` ρpv2q

ℓ ` ¨ ¨ ¨ ` ρpvtq
ℓ.

■

We now prove Claim D.8.

Proof of Claim D.8. Let u be an arbitrary non-leaf vertex of T at level i ` 1 (for some fixed
i P r0..h´ 1s), with children v1, . . . , vt. Suppose u is labeled by a junta-sum P P Lεpfi`1q and vj is
labeled by a junta-sum Qj P Lεpfiq for j P rts. Therefore, for all j P rts, we have that

P pxq “ Qjpxq mod Hi. (37)

Hence, if fi and Qj agree on some input, so do fi`1 and P ; so δpfi`1, P q ď δpfi, Qjq and ρpuq ě
ρpvjq, thus proving Item 2. Our goal now is to show that t ď L and ρpuq ě ρpvj1q ` ρpvj2q for
j1 ‰ j2 P rts. To do this, we let c1, c2, . . . , cM P Gi be fixed coset representatives (whereM “ |Gi|{p
and the cosets are ordered arbitrarily) corresponding to the subgroup Hi of Gi. Then each element
g P Gi can be uniquely written as g “ g1 ` pg with g1 P Hi and pg P tc1, . . . , cMu being a coset
representative.

Let
Qjpxq “

ÿ

aPZn
s :|a|ďd

gj,a ¨ δapxq,

for some gj,a P Gi. From (37), we see that ygj,a “ yg1,a for all j P rts. Now we define pQ : rssn Ñ Gi

to be:
pQpxq “

ÿ

aPZn
s :|a|ďd

yg1,a ¨ δapxq,

88



and d-junta-sums rQj P Jdprss
n, Hiq for j P rts, to be:

rQjpxq “
ÿ

aPZn
s :|a|ďd

g1
j,a ¨ δapxq.

Since Qjpxq “ pQpxq ` rQjpxq and Qj are pairwise distinct for j P rts, we have that rQj are pairwise

distinct for j P rts. Moreover for the function rf : rssn Ñ Gi defined as rfpxq “ fipxq ´ pQpxq, we
have that δp rf, rQjq “ δpfi, Qjq ď 1{sd ´ ε. Therefore, we get t ď L as Hi is isomorphic to Zp

and we have a list size bound of L for junta-sums over Zp. This proves Item 1 of the claim. To
prove Item 3, let j1 ‰ j2 P rts be arbitrary and let A1, A2 Ď rss

n be the subset of points where fi
agrees with Qj1 and Qj2 respectively. Let A Ď rssn be the subset of points where fi`1 agrees with
P . From the proof of Item 2, we have that A1, A2 Ď A. Since two distinct d-junta-sums cannot
agree on more than 1 ´ 1{sd fraction of inputs (Claim 2.6), we have |A1 X A2| ď p1 ´ 1{sdqsn.
Hence, |A| ě |A1 Y A2| “ |A1| ` |A2| ´ |A1 X A2| ě sn

`

2´ δpfi, Qj1q ´ δpfi, Qj2q ´ 1` 1{sdq
˘

.
Since |A| “ sn p1´ δpfi`1, P qq, we get δpfi`1, P q ď δpfi, Qj1q ` δpfi, Qj2q ´ 1{sd, or equivalently
ρpuq ě ρpvj1q ` ρpvj2q. ■

Having reduced the problem to showing combinatorial bound over Fq, which we state below and
prove in the next subsection.

Theorem D.9. For every ε ą 0, finite field Fq and subset S Ď Fq of size s ě 2, the family
JdpS

n,Fqq is p1{s
d ´ ε,Oq,εp1qq-list-decodable.

With the above theorem, we can now finish the proof of the combinatorial bound for p-primary
groups.

Proof of Theorem D.2. The proof follows by combining Lemma D.7, Lemma D.6 and Theorem D.9.
■

D.2.2 Combinatorial Bound for Fq

Throughout this subsection, we fix a finite field Fq and a subset S Ď Fq of size s arbitrarily. We
think of q ě 2, s ě 2 and d ě 1 as constants. Furthermore, we fix a monomial ordering (denoted
ĺ) over the monomials to be the graded lexicographic order (see [ABPSS25] for a definition) and
denote by LMpP q the leading monomial of a polynomial P (assuming it is non-zero). We will use
the notation m1 ľ m2 to mean that m2 ĺ m1 and m1 ŋ m2 to mean that m2 ĺ m1 and m1 ‰ m2.

We show the following lemma which effectively reduces the list-decoding problem to bounding the
number of polynomials in the list with pairwise distinct monomials.

Lemma D.10 (Distinct leading monomials). If P1, . . . , Pt P JdpS
n,Fqq are such that δpf, Piq ď

1{sd´ε for all i P rts and some f : Sn Ñ Fq, then there exists a function f 1 : Sn Ñ Fq such that there
are at least ℓ ě Ωplogq tq many polynomials Q1, . . . , Qℓ P JdpS

n,Fqq such that δpf 1, Qiq ď 1{sd ´ ε
and LMpQiq are pairwise distinct for i P rℓs.
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Then, we prove the following “tail bound” for polynomials with pairwise disjoint leading monomials.

Lemma D.11 (Tail bound for disjoint leading monomials). Let P1, . . . , Pt P JdpS
n,Fqq be

such that LMpPiq are pairwise disjoint for i P rts. Then:

Pr
a„Sn

„ˇ

ˇ

ˇ

ˇ

ti P rts : Pipaq “ 0u

ˇ

ˇ

ˇ

ˇ

ě p1´ 1{sd ` ηqt

ȷ

ď expp´Ωpη2tqq.

With the above lemmas in place, we are ready to finish the proof of the main result of this subsection
i.e., Theorem D.9.

Proof of Theorem D.9. Using Lemma D.10, it suffices to show that if Q1, . . . , Qℓ P JdpS
n,Fqq are

such that LMpQiq are pairwise distinct for i P rℓs and δpQi, fq ď 1{sd ´ ε for some f : Sn Ñ Fq,
then that ℓ “ Oq,εp1q. Applying the sunflower lemma (see e.g. [ER60]) for the multisets determined
by the leading monomials of Qi’s, we can find a subset of indices i1, . . . , iℓ1 for some ℓ1 ě Ωdpℓ

1{dq

such that LMpQij q form a sunflower for j P rℓ1s. That is, there exists variables txj : j P Cu and

tej P Zs : j P Cu where C P
`

rns

ďd

˘

such that LMpQij q “
ś

j1PC x
ej1

j1 ¨mj and mj are monomials over

the variables indexed by rnszC and are pairwise disjoint for j P rℓ1s. Without loss of generality, we
will assume that ij “ j for all j P rℓ1s. We will now express each Qi for i P rℓ

1s (uniquely) as follows:

Qipxq “
ź

jPC

x
ej
j ¨Q

p1q

i pxrnszCq `Q
p2q

i pxq,

where Q
p1q

i is a polynomial over variables indexed by rnszC and Q
p2q

i does not contain any monomial
dividing

ś

jPC x
ej
j . We note that since the leading monomial of Qi is

ś

jPC x
ej
j ¨mi, by our definition

of monomial ordering, we must have that LMpQ
p1q

i q “ mi. Let a „ Sn be sampled by first
choosing a1 „ SrnszC uniformly at random and then a2 „ SC uniformly and independently. Letting

d1 “ d´ |C|, we may now apply the tail bound (Lemma D.11) to Q
p1q

i to get that

Pr
a1

„
ˇ

ˇ

ˇ

ˇ

ti P rts : Q
p1q

i pa
1q “ 0u

ˇ

ˇ

ˇ

ˇ

ě p1´ 1{sd
1

` ε{2qℓ1

ȷ

ď expp´Ωpε2ℓ1qq.

In fact, by applying it to Q
p1q

i ´ α for α P Fq and by a union bound, we get that

Pr
a1

„

Dα P Fq such that

ˇ

ˇ

ˇ

ˇ

ti P rts : Q
p1q

i pa
1q “ αu

ˇ

ˇ

ˇ

ˇ

ě p1´ 1{sd
1

` ε{2qℓ1

ȷ

ď q ¨ expp´Ωpε2ℓ1qq. (38)

Now, let us use the notation
Q1

ipxCq “ QipxC ,a
1q

to denote the corresponding restricted functions obtained by setting the variables in rnszC to a1.
Similarly, let f 1 : SC Ñ Fq be the restricted function f 1pxCq “ fpxC ,a

1q. For a uniformly random
choice of a1, let B denote the “bad” event that the multiset of functions tQ1

i : i P rℓ
1su has a function

occurring at least p1 ´ 1{sd
1

` ε{2qℓ1 many times. The bound from Equation (38) immediately
implies that

Pr
a1
rBs ď q ¨ expp´Ωpε2ℓ1qq. (39)
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Conditioned on B not occurring, we note that there are at least p1{sd
1

´ ε{2qℓ1 indices i P rℓ1s such
that Q1

i ‰ f 1 as functions over SC . More formally,

Pr
i„rℓ1s

„

Q1
i ‰ f 1 | B

ȷ

ě 1{sd
1

´ ε{2.

Since two different functions over |C| variables must differ on a random input with probability at
least 1{s|C|, we further get:

Pr
i„rℓ1s,a2

„

Q1
ipa

2q ‰ f 1pa2q | B
ȷ

ě

ˆ

1

sd1 ´
ε

2

˙

1

s|C|
ě

1

sd
´
ε

2
. (40)

Combining (39) and (40), we obtain

Pr
i„rℓ1s,a„Sn

„

Qipaq ‰ fpaq

ȷ

ě
1

sd
´
ε

2
´

q

2Ωpε2ℓ1q
.

However, we note that since δpQi, fq ď 1{sd ´ ε for all i P rℓ1s, the left hand side of the above
inequality must be at most 1

sd
´ ε. Put together, they give the required bound of ℓ1 “ Oq,εp1q, and

thus ℓ “ Oq,εp1q. ■

We now give the proofs of the above two lemmas. First, we start with the reduction to counting
polynomials with distinct leading monomials, i.e., Lemma D.10.

Proof of Lemma D.10. Let ℓ be an integer such that t P rqℓ, qℓ`1q (so we have ℓ ě Ωplogq tq). We
will prove the following inductive claim. We recall that Lεpfq denotes the set of polynomials in
JdpS

n,Fqq that are at distance at most 1{sd ´ ε from the function f .

Inductive claim. For every 0 ď i ď ℓ, there exists a function fi : Sn Ñ Fq, polynomials
Q1, Q2, . . . , Qi P JdpS

n,Fqq, and a set of polynomials Qi Ď JdpS
n,Fqq such that:

• Q1, . . . , Qi P Lεpfiq and Q P Lεpfiq for all Q P Qi,

• LMpQ1q ŋ LMpQ2q ŋ ¨ ¨ ¨ ŋ LMpQiq ŋ LMpQq for all Q P Qi, and

• |Qi| ě qℓ´i.

We note that the base case i “ 0 is true with f0 “ f and Q0 “ tP1, P2, . . . , Ptu. And proving the
inductive claim for i “ ℓ finishes the proof of Lemma D.10. We now assume the inductive claim
holds for a fixed i ă ℓ and prove it for i` 1.

Let P P JdpS
n,Fqq be the “plurality polynomial” of Qi, i.e., we determine each coefficient of P by

taking a plurality vote of the corresponding coefficients from the polynomials in Qi (by breaking
ties arbitrarily). We then define fi`1 : S

n Ñ Fq to be

fi`1 “ fi ´ P.

We now define Q1
1, . . . , Q

1
i, Q

1
i`1 P JdpS

n,Fqq and Q1
i`1 Ď JdpS

n,Fqq such that the three items of
the inductive claim hold for them. We let Q1

i “ tQ´ P : Q P Qiu and set Q1
j “ Qj ´ P for j P ris.

We now set Q1
i`1 to be a polynomial from Q1

i with the greatest leading monomial (ignoring the
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zero polynomial if it exists and breaking ties arbitrarily). Then we set Q1
i`1 to be the subset of

polynomials in Q1
i with leading monomial strictly smaller than that of Q1

i`1, i.e.:

Q1
i`1 “ tQ

1 P Q1
i : LMpQ

1q ň LMpQ1
i`1qu.

It remains to prove that the three conditions of the inductive claim actually hold for the above
definitions.

• We have that δpQ1
j , fi`1q “ δpQj ´ P, fi ´ P q “ δpQj , fiq ď 1{sd ´ ε, therefore Q1

j P Lεpfi`1q

for all j P ris. Similarly, we have Q1
i`1 P Lεpfi`1q and Q

1 P Lεpfi`1q for all Q
1 P Q1

i`1.

• We note that LMpP q ň LMpQiq since the coefficients of all monomials m ľ LMpQiq in all
Q P Q1

i (and hence in P ) are zero by the induction hypothesis. Therefore, LMpQ1
jq “ LMpQjq

for j P ris and we have LMpQ1
1q ŋ LMpQ1

2q ŋ ¨ ¨ ¨ ŋ LMpQ1
iq. It also follows that LMpQ1

iq ŋ

LMpQ1
i`1q and LMpQ1

i`1q ŋ LMpQq for all Q P Q1
i`1 by the definitions of Q1

i`1 and Q1
i`1.

• We have that |Q1
i| “ |Qi| ě qℓ´i by induction hypothesis. By the definition ofQ1

i`1, we observe
that LMpQ1q ĺ LMpQ1

i`1q for all Q
1 P Q1

i and we will show that at least 1{q fraction of Q1’s
have leading monomial strictly smaller than that of Q1

i`1. By the nature of the construction
of P using the plurality vote, we observe that at least 1{q fraction of the polynomials Q P Q1

i

agree with P on the coefficient LMpQ1
i`1q. The corresponding polynomials Q1 “ Q´ P have

coefficient of LMpQi`1q as zero. In other words there are at least |Qi|{q polynomials Q1 P Q1
i

with leading coefficient strictly smaller than LMpQ1
i`1q, and hence by our definition of Q1

i`1,

it must be of size |Q1
i`1| ě |Q1

i|{q ě qℓ´pi`1q.

This finishes the proof of the inductive claim. ■

We now prove the tail bound for polynomials with pairwise disjoint leading monomials (Lemma D.11).

Proof of Lemma D.11. We will use the following theorem of Panconesi and Srinivasan [PS97] which
reduces the task of showing tail bounds to proving a certain “independence” relation among the
events.

Theorem D.12 ([PS97] Theorem 3.4). Let Z1, . . . , Zt be Boolean random variables and α P r0, 1s
be such that for every subset S Ď rts, we have that Prr

Ź

iPS Zi “ 1s ď α|S|. Then, for every η ą 0,
we have

Pr

„

ÿ

iPrts

Zi ě pα` ηqt

ȷ

ď expp´Ωpη2tqq.

Because of the above theorem, it suffices to show the following: for every t P N and non-zero
polynomials P1, . . . , Pt P JdpS

n,Fqq for which LMpPiq are pairwise disjoint for i P rts, that:

Pr
a„Sn

„

Pipaq “ 0 for all i P rts

ȷ

ď

ˆ

1´
1

sd

˙t

. (41)

The proof follows the same footprint bound technique as used in [ABPSS25]. In particular, letting

Z “ ta P Sn : Pipaq “ 0 for all i P rtsu
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denote the set of common zeroes, we will prove an upper bound on the dimension of all functions
from Z to Fq i.e., |Z|. Let f : Z Ñ Fq be an arbitrary function. We will show that it can be
expressed as a polynomial of individual degree at most s´ 1 over Fq, without using any monomial
divisible by any of the LMpPiq for i P rts. That is, these are the monomials xe for e P E, where
E Ď Zn

s is defined below, and LMpPiq “ xmi for some mi P Zn
s
15:

E “ te P Zn
s : @i P rts Dj P rns ej ă mi,ju.

Using the fact that the supports of mi are pairwise disjoint (over i P rts) and are of size at most

d, we get that |E| ď
`

1´ 1
sd

˘t
¨ sn. We will show that there exists field elements pceqePE such that

fpxq “
ř

ePE ce ¨ x
e for all x P Z. This shall finish the proof of (41) and thus Lemma D.11 as

it shows that |Z| ď |E| ď
`

1´ 1
sd

˘t
¨ sn. Hence, it remains to prove that f can be expressed as

a linear combination of monomials in E. Since Z Ď Sn, we know that there exists a polynomial
representation for f of individual degree at most s´1: suppose Qpxq “

ř

ePZn
s
ce ¨x

e for some ce P Fq

is such that fpxq “ Qpxq for all x P Z. If ce “ 0 for all e R E, we are done. Otherwise, there exists
an i P rts such that LMpPiq divides x

e1

for some e1 such that ce1 ‰ 0 (say that xe1

“ LMpPiq ¨ x
e2

);
w.l.o.g. let xe1

be the largest monomial in the monomial ordering such that this holds. Then, we note
that we can replace the monomial xe1

with the polynomial xe2

pLMpPiq ´ Pi{cq in the polynomial
ř

ePZn
s
ce ¨x

e while still computing f , where c P Fˆ
q is the coefficient of LMpPiq in Pi. This is due to

the fact that Pi (and therefore Pi{c) evaluates to 0 over Z. Let Q1 denote the polynomial obtained
by such a transformation. We claim that LMpQ1q ň LMpQq. This is because all the new non-zero
monomials introduced by the transformation are of the form xe2

¨ xe3

for some xe3

ň LMpPiq,
and so xe2

¨ xe3

ň xe2

¨ LMpPiq “ xe1

“ LMpQq using the monomial ordering property. Hence,
LMpQ1q ň LMpQq. While the leading monomial of the polynomial computing has decreased, it
may be possible that Q1 contains monomials with individual degree at least s. We now argue that
we can design a new polynomial Q2 such that LMpQ2q ĺ LMpQ1q and Q2pxq “ Q1pxq “ fpxq for
all x P Z. The idea is to use the equation

ś

aPSpxi ´ aq “ 0 to replace the powers of the variable
xi greater than s´ 1 with smaller powers — this only results in monomials that are smaller in the
monomial order. Thus, by repeating the above two steps for a finite number of times, we will have
a polynomial representing f only using monomials from E. ■

15 Here we treat Zn
s “ t0, 1, . . . , s ´ 1u

n as a subset of Zn and define the monomial xm
“

ś

iPrns
xmi
i .
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