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Abstract

We consider random walks on “balanced multislices” of any “grid” that respects the “sym-
metries” of the grid, and show that a broad class of such walks are good spectral expanders. (A
grid is a set of points of the form S™ for finite S, and a balanced multi-slice is the subset that
contains an equal number of coordinates taking every value in S. A walk respects symmetries
if the probability of going from u = (uy,...,u,) to v = (v1,...,v,) is invariant under simulta-
neous permutations of the coordinates of u and v.) Our main theorem shows that, under some
technical conditions, every such walk where a single step leads to an almost O(1)-wise indepen-
dent distribution on the next state, conditioned on the previous state, satisfies a non-trivially
small singular value bound.

We give two applications of our theorem to error-correcting codes: (1) We give an analog of
the Ore-DeMillo-Lipton-Schwartz-Zippel lemma for polynomials, and junta-sums, over balanced
multislices. (2) We also give a local list-correction algorithm for d-junta-sums mapping an arbi-
trary grid 8™ to an Abelian group, correcting from a near-optimal (ﬁ — ¢) fraction of errors
for every € > 0, where a d-junta-sum is a sum of (arbitrarily many) d-juntas (and a d-junta is a
function that depends on only d of the n variables).

Our proofs are obtained by exploring the representation theory of the symmetric group and
merging it with some careful spectral analysis.
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1 Introduction

Consider the following natural random walk whose states are the balanced vectors of {0,1}", i.e.,
the balanced Boolean slice with an equal number of Os and 1s, where a single step of the random
walk takes a state u to a state v at Hamming distance exactly n/2 from it. One would expect this
random walk to mix extremely rapidly, and indeed this is known. The underlying graph here is a
special case of a Johnson graph whose entire eigenspectrum is well known [Del78] and, in particular,
implies that the second eigenvalue of this graph is o, (1).

Now consider the following variant of the above random walk: The states now are elements of the
‘balanced multislice’ in {—1,0,1}", i.e. vectors with exactly 1/3rd fraction of the letters —1, 0 and
1, and in a single step from a balanced vector u to a random balanced vector v obtained by flipping
exactly 1/3 fraction of each of the letters of u to —1, 0 and 1. (So for a single coordinate i, v; is
uniform in {—1,0,1} conditioned on u;.) It is intuitive to believe that such a random walk should
also converge to the uniform distribution over all balanced vectors extremely fast, but, as far as
we know, it was not even known that the second-eigenvalue of this random walk (or its transition
probability matrix) has value o, (1).

The gap in the understanding between the Boolean and non-Boolean cases in such problems can be
significant for fundamental reasons. For example, for the alternate version of the random walk where
the transition is defined by a uniformly random transposition of coordinates, it took a decade after
optimal bounds on the mixing time were proved in the Boolean case [DS87] to prove similar results
in the non-Boolean setting [Sca97]. We refer the reader to the work of Filmus, O’Donnell, and Wu
[FOW?22] for a nice overview of the challenges posed by the non-Boolean setting in such problems.
Some of these obstructions have to do with associated representations of the symmetric group that
play a role in the corresponding proofs; these representations are simpler (‘multiplicity-free’) in
the Boolean setting than in the non-Boolean setting. This also creates difficulties in resolving the
questions we consider.

The main contribution of this work is to address some of the challenges alluded to above. In
particular, we show that the variant random walk described in the second paragraph also has
fast mixing, specifically by giving a 0,(1) bound on its second eigenvalue. Indeed, we study this
question in more generality for balanced multislices, with “nearly balanced moves”. We believe the
questions carry intrinsic interest and should find broad applications in the field. We justify this
belief partially by describing two applications in coding theory:

e The first gives a near-tight distance bound on codes obtained by evaluations of polynomials
on balanced multislices.

e The second gives a local list-correction algorithm for subclasses of polynomials evaluated on
grids. (Note that the second application does not refer to balanced multislices in the problem
definition — the multislices arise naturally in the design and analysis of the local correction
algorithm!)

We elaborate on our setting and results, the applications, and the technical challenges below.



1.1 Multislices and Random Walks

By a grid, we refer to sets of the form S™ for some finite set S and positive integer n. (Usually we
think of s := |S| as a constant and study the growth of relevant parameters as a function of n).
The balanced multislice of a grid 8™ is the set

spi=faes

Vo e S, |{ie[n]la; = o} = %}

(Note that a multislice is non-empty if and only if s divides n. We will drop the term “balanced”
in the future and simply refer to multislices to keep the term short.)

The random walks we consider have the multislice of some grid as their state space. Recall that
such a random walk can be described by a S x §); matrix W with W (a, b) denoting the probability
of transition from state a to b. We consider walks where every step of the walk makes a “nearly
balanced move”. To elaborate, let us define the generalized Hamming distance' A(a,b), for vectors
a,b € 8", to be the § x S matrix given by A, -(a,b) = [{i € [n]|la; = 0,b; = 7}|. We say that
a generalized Hamming distance parameter A € Z°*S determines a random walk matrix, denoted
Wa, if for each vertex a, the random step corresponding to W is obtained by picking, uniformly
at random, a vertex b on the multislice such that A(a,b) = A.

For constant C' < o0, we say that a generalized Hamming distance parameter A € ZS*S is C-
balanced if each entry of A is ™ + (Cy/mlogm) where m = n/s. In other words, all the entries
of A are equal up to a difference of at most 2Cy/mlogm. Informally, when considering n — o0
we refer to A, as also a random walk matrix Wa determined by A, as “nearly balanced” if A is
C-balanced for some constant C. Here, we note that Wa is a well-defined random walk matrix
over the multislice only if A/m is a doubly-stochastic matrix (i.e., every row and every column of
A sums to m).

Note that the mixing time of a random walk matrix W is closely tied to the second largest singular
value, which we denote by oo(W). (In particular, the singular values satisfy 1 = o1 > 09 >
---on = 0 and we let g9(W) = o9. If the walk is symmetric, then this captures the second
eigenvalue. Specifically, if the eigenvalues are 1 = A\; > A2 > -+ Ay = —1 where N = |S}}|, then
o2(W) = max{| 2], |A\n|}.) Our main goal is to bound the value of oo(W') by some function o, (1)
that tends to 0 with growing n for a broad class of random walk matrices W over the multislice
S);- In general, it is desirable to have such singular value bounds, and such random walk matrices
are said to have good “spectral expansion” or “fast mixing”.

The following theorem gives such a fast mixing result on the balanced multislice for all nearly
balanced walks that “respect symmetries”. More formally, for a permutation 7 € Sym,, and a € S",
let m(a) denote the action of m on S}, i.e., m(a) := (ar-1(1),---,ar-1(y)). For a stochastic matrix
M € RS:*Si | we say M respects symmetries if for all permutations 7 € Sym,, and for all a,b € S
we have M(7w(a), 7(b)) = M(a,b). Our main theorem shows that walks that respect symmetries

and are nearly balanced have fast mixing.

! Sometimes, this is also called as a “meet table” in algebraic combinatorics.



Theorem 1.1 (Singular value bound for nearly balanced walks). For every s > 2
and C' < oo, there exists T > 0 such that for every finite set S of size s and sufficiently large
n € N, the following holds:

If W is a stochastic matriz over the multislice S;; that respects symmetries, and satisfies the
condition that

W(a,b)>0 = A(a,b) is C-balanced Va,be S,

then oo(W) < 1/n".

The above result implies that the random walk on the balanced multislice mentioned earlier in this
section (which corresponds to s = 3 and C-balanced generalized distance parameter with C' = 0)
has its second largest eigenvalue polynomially bounded. In fact, Theorem 1.1 is more general and
covers multislices over any grid S of constant size (i.e., for every |S| = O(1)). Additionally, it is
robust to perturbations of transition probabilities as long as the transition probabilities are nearly
balanced.

Indeed Theorem 1.1 follows from our main technical theorem, stated as Theorem 1.3 below, which
abstracts the main properties that suffice to prove the bound on the second largest singular value.
Specifically Theorem 1.3 shows that, in addition to the symmetries respected by the matrix W, the
important features that suffice to prove fast mixing are:

1. The next state of the random walk is “almost O(1)-wise independent” conditioned on the
current state

2. The Frobenius norm of W is polynomially bounded in n.

We elaborate on these conditions below before stating our main technical result Theorem 1.3.

For a distribution D supported on 8™ and set T' < [n], we let Dy denote the marginal distribution
supported on ST induced by projecting a random variable  ~ D to its coordinates in 7. Recall
that a distribution D is k-wise independent if for every set T < [n] with |T| < k we have Dy is the
uniform distribution on ST. Recall further that D is e-almost k-wise independent if for every set
T < [n] with |T'| < k we have Dy is e-close in total variation distance to the uniform distribution
on ST

In the following definition we view the rows of a stochastic matrix M € RS+ *Si | denoted M (a) :=
(M(a,b)|b e Sy) for a € S}, as distributions supported on 8™ (which have zero support outside S}}).

Definition 1.2 (c-almost k-wise independent matrix). For parameter k € N and € > 0 we
say that a stochastic matriz M € RS:*Si s e-almost k-wise independent if for every row a € Sy

the distribution M (a) is e-almost k-wise independent.

Finally we recall that for a matrix M € RV*Y its Frobenius norm, denoted |M |, is the quantity

\/Z(i,j)eNxN M(Z7])2




We now state the main theorem of our work.

Theorem 1.3 (Singular Value Bound for Markov Chains on Balanced Multislice).
For every k > 0, and s € N with k = s there exists c1.ca,c3 < 00 such that for every e > 0
and every sufficiently large n € N that is divisible by s, the following holds:

Suppose S is a set of size s, and M € R%:*Si s a stochastic matriz that satisfies the
following three conditions:

1. The matriz M respects symmetries.
2. M| < ¢1-n".

3. The matriz M is e-almost k-wise independent for k = 10sk.

Then we have oo(M) < max {ca/n,cs - €}.

If the Markov chain is symmetric, then the singular values correspond to the eigenvalues, and
hence Theorem 1.3 yields eigenvalue bounds for symmetric Markov chains satisfying the properties
mentioned above. Theorem 1.3 is proved in Section 3. The proof involves many standard and
some new elements of representation theory for the symmetric group. We elaborate on this in
Section 1.2.2. We also note that Theorem 1.1 immediately follows from Theorem 1.3, modulo some
calculations that verify that Condition (2) above applies to C-balanced matrices. For more details,
see Section 3.5.

To illustrate the applicability of Theorem 1.1, we give two examples, both related to coding theoretic
aspects of polynomials and other polynomial-like functions that we refer to as junta-sums. These
results extend corresponding works in the Boolean setting [ABPSS25; ABSS25], obtaining natural
generalizations to non-Boolean settings.

Distance of polynomials and junta-sums on multislices. A function f: 8" — G is called
a d-junta if it depends on only d of the n variables, i.e, there exists a set I < [n], |I| < d and a
function g : ST — G such that for all a € S, f(a) = g(a|;) where a|; is the projection of a to
the coordinates in I. Here we could allow G to be any set, though in this work G will denote an
Abelian group. We say f is a degree d junta-sum (or simply a d-junta-sum) if there exists d-junta’s
fi,--, fx : 8™ — G such that f = f1 +--+ fx.

When G = F is a field and & < F, then degree d junta-sums are closely related to the notion of
degree d polynomials. In particular, every degree-d polynomial is also a degree-d junta-sum, and
degree-d junta-sums are polynomials of degree at most (s —1)d where s = |S|. Junta-sums come up
naturally when studying questions related to testing direct sums and low-degree polynomials [DG19;
BP21; ASS23].

A well-studied question about degree-d polynomials is: How often can a non-zero polynomial be
zero on a grid? The well-known and oft-discovered Ore-DeMillo-Lipton-Schwartz-Zippel lemma
[Ore22; DL78; Zip79; Sch&0] (henceforth ODLSZ lemma) asserts that a non-zero degree-d polyno-
mial over a field F is non-zero with probability at least s~%(~1) over the uniform distribution over
S™. When § = F, the precise bound is §(q,d) = (1 — 3/q)qg~ %, where a and [ are the quotient and



remainder respectively when d is divided by ¢ — 1. The former bound immediately implies that a
degree-d junta-sum is non-zero with probability at least s~ over S™ (and the claim even extends
to arbitrary S and Abelian groups G).

A natural related question then becomes — how do these bounds change when considering natural
subsets T that are not grids (or more generally product sets)? Recent work has begun to address
such questions [ABSS25; KKS24]. In this work, we consider the case of the balanced multislice
Le., T'=§];. Despite the simple nature of these questions, the answer does not seem to have been
pinned down before, with the exception of the Boolean case that was resolved recently [ABSS25].
We are able to show a clean connection between 8™ and S that allows us to show that these
probabilities (in the worst case) differ by at most A2(WW) for some nearly balanced walk over the
multislice. This allows us to prove the following theorem, which generalizes the work of [ABSS25]
beyond the Boolean case.

Theorem 1.4 (Polynomial distance over multislice). For every finite field F = Fy, if a
degree d polynomial P(x) is such that P(a) # 0 for some a € F}; on the balanced multislice,
then

1
b]i)IIE:Z[P(b) #* 0] = 5((]7 d) - mv

where §(q,d) = (1 — B/q)q~%, where o and B are the quotient and remainder respectively
when d is divided by q — 1.

We prove this theorem in Section 4.

Note that d(q,d) is exactly the distance of the space of degree-d polynomials on the field F, and
hence the above theorem says that the distance of the space of polynomials on the balanced mul-
tislice is nearly exactly what it is in the grid IF'Z.Q An analogous statement can also be made
for junta-sums, getting a bound that almost matches the bound over grids, i.e., 1/s? (see Theo-
rem 4.2).

Following the proof idea of [ABSS25], both cases are handled by a similar proof technique that
first proves a quantitatively weak bound on the probability that f is non-zero®(see Corollary 5.11),
and then randomly identifies a small grid inside the multislice. On each such grid, we can apply
the ODLSZ lemma as a black-box to assert that if f is non-zero within the randomly identified
small grid, then it is non-zero with the ‘correct’ probability (either §(q,d) or s=%). It suffices,
therefore, to prove that f is non-zero on most of the grids, which is where the main technical
theorem regarding the expansion of the walk on the balanced multislice comes into play. We use
our eigenvalue bounds along with the quantitatively weak bound already obtained to establish that
all but an n~?(M_fraction of the grids satisfy this property. See Section 1.2.3 for the proof overview

2 An important subtlety here is that there are polynomials that are non-zero in the grid Fgy but are zero at all
points on the multislice. That is the reason this theorem is only stated for polynomials that are non-zero as functions
on the multislice. This is analogous to similar restrictions we place on polynomials in the setting of grids (e.g., in the
setting of the Boolean cube, we only consider non-zero multilinear polynomials).

3 We prove these bounds by an adaptation of the standard inductive strategy used to prove the standard ODLSZ
lemma. Unfortunately, we are unable to use this strategy to prove a tight bound.



and Section 4 for a formal proof.

Local Correction of Junta-Sums. Our next application considers the local correction problem
for junta-sums over grids. Here a (possibly randomized) corrector is given oracle access to a function
f that is known to be d-close (in normalized Hamming distance) to some degree-d junta-sum P,
and also given a point a € S and needs to output P(a) (with high probability) while making few
oracle queries to f.

In the list-correction setting, the amount of error § may be too high for P to be defined uniquely by f
and ¢, but it may be known a priori that the list size is bounded. In the local list-correction problem,
the goal for the corrector is to make a few queries to f to produce several “oracle” algorithms, such
that for every degree d junta-sum P that is d-close to f, there is an algorithm with oracle access
to f that computes P. We refer the reader to Section 2 for more formal definitions.

Local correction algorithms for low-degree polynomials have played a central role in complexity
theory, for example [GL&9; STV01]. While most of the early works like [GI<Z08; BL18] considered
the setting where S = G = F, some recent works have considered the setting of S = {0,1} and
general abelian G such as [ABPS525] (Note that when |S| = 2, then degree-d polynomials are the
same as degree-d junta-sums.)

For general S and Abelian group G, even the list-decoding radius was not completely understood
till this work. We prove that for § = |S|~¢ — ¢ there are most O-(1) degree d junta-sums P that
are 0-close to any given function f. (This bound is tight in that for § = |S|~™¢ the number of
junta-sums grows with n.) This motivates the corresponding local list-correction problem, which
we solve tightly in this work. We state an informal version below and point to Theorem 5.1 for the
more precise version.

Theorem 1.5 (Local list-correction of junta-sums (Informal)). For every set S,
every Abelian group G, every integer d and € > 0, there exists an L = L(e,d,S) such that
the following holds.

There exists an algorithm A that on oracle access to a function f : S* — G, outputs L
oracle algorithms 11, ... % such that for every degree d junta-sum P : 8™ — G that s
(1/s% — €)-close to f, there exists i € [L] such that wlf() computes P (with high probability
for every input).

The query complexity of A and 1, ...,¢ is poly(logn).

This theorem is formalized as Theorem 5.1 with more explicit bounds on the error probability and
query complexity, and is proved in Section 5.

This theorem generalizes a theorem of Amireddy, Behera, Paraashar, Srinivasan, and Sudan ([ABPSS25,
Theorem 1.3.4]) who solved the corresponding problem over the Boolean cube {0,1}". (Note that in
the Boolean setting, junta-degree is the same as algebraic degree, and their result is thus expressed
in terms of the latter phrase.) Our extension follows the same sequence of steps as employed in
[ABPSS25]. Their work ultimately ends up using the expansion properties of Boolean multislices,
which, as we’ve noted earlier, is well-understood. Extending their work to general grids requires a



number of changes that we elaborate on in Section 1.2.4, with the most significant change being
the use of Theorem 1.1 instead of the expansion results on the Boolean slice.

1.2 Techniques and Proof Overview

In this section, we first review known methods for bounding the singular values of walks that
respect symmetries and explain where there is a gap in knowledge. We then show how we overcome
these challenges by overviewing the proof of our main theorem Theorem 1.3 in Section 1.2.2.
Next, we give an overview of the proof of the ODLSZ theorem for multislices, Theorem 1.4, in
Section 1.2.3. Finally, we discuss the proof of the local correction theorem for grids, Theorem 1.5
in Section 1.2.4.

1.2.1 Prior Approaches and Obstructions

We describe some prior cases where random walk matrices respecting symmetries (i.e., the first
condition of Theorem 1.3) have been studied and explain the special properties in play there.

Boolean Hypercube and Cayley graphs A broad class of examples bounding eigenvalues of
highly symmetric graphs are the bounds on the eigenvalues of Cayley graphs over abelian groups
- this captures random walks on the Boolean hypercube and many more general settings. Here it
is well known that the random walk matrix is diagonalizable* and the eigenvectors of the random
walk matrix depend only on the group (and not the set of generators). This makes it possible to
determine the entire eigenspectrum for many basic groups using Fourier analysis. We note that
Cayley graphs over some non-abelian groups have been studied, but general results are mostly
lacking. In these cases, the random walk matrix is typically not diagonalizable, but can be made
block diagonal, using the representation theory of the underlying group. This is a complex tool,
and many basic questions are unanswered as we elaborate below.

Boolean slices One well-studied setting that happens to be the special case of s = 2 of our
problem is the setting of Boolean slices. Here & = {0,1} and §); is the balanced Boolean slice
(all points in {0,1}" of Hamming weight exactly n/2). This setting has particular relevance to the
analysis of Boolean functions and combinatorics; see, e.g. [Del78; Fill6; Fil23]. The random walk
matrices in this setting lie in the Johnson scheme, which is an algebra of symmetric matrices that
commute with one another. This implies that all such matrices can be diagonalized simultaneously,
i.e., there exists one unitary matrix U such that for every random walk matrix M on the Boolean
slice that respects symmetries, we have that UMU? is diagonal. This implies that all such matrices
M have the same eigenvectors. The works [Fil16; Srill] gave explicit descriptions of the common
eigenspaces. This can be quite useful when analyzing the spectrum of such matrices and in a
recent example [ABSS25] used this description to show that a particular random walk matrix on
the balanced Boolean slice is a good spectral expander (see [ABSS25, Lemma 3.2]).

4 A matrix M € RV*¥ is said to be diagonalizable if there is a unitary matrix U € RN *Y such that UMU7T is a
diagonal matrix.
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1.2.2 Spectral Expansion of Multislice Walks

Turning to our setting, our matrix M is not diagonalizable and so the techniques from the analysis
of Cayley graphs on abelian groups as well as the random walk on the Boolean slice, do not work
in this setting. We have to resort to the use of representation theory, but here as we alluded to
earlier, our understanding is not as complete. In what follows, we explain what representation
theory implies for our setting and how we build on it.

Summary of known facts from representation theory The fact that our matrix M respects
symmetries allows us to invoke results from the representation theory of the symmetric group
Sym,,. We cover these results in detail in Proposition 3.1 and Theorem 3.3 (Parts (1) and (2)).
Essentially, we can use representation theory to show that our matrix M can be block-diagonalized
with relatively few blocks.

Specifically® there is an orthonormal matrix U = Us n such that for every M respecting symmetries
the matrix UMU? is block diagonal with blocks My, My, ..., M; where t and the “shape” of the
blocks is known from standard representation theory. In particular, My = [1] is just a 1 x 1 matrix
that contributes the top singular value (which is 1), and My, ..., M; determine o9(M) < 1.

Now let us understand the structure of M;’s in more detail. Each block M; is a Kronecker/tensor
product of a “small” matrix A; € R™>m() with a somewhat larger identity matrix i.e.,

M; = A; ® ldy), where Idy is the k£ x k identity matrix.

See Figure 1 for an informal pictorial description. Both the quantities m(i) and k(i) are known from
the representation theory of Sym,, (and in particular only depend on S and n and are independent of
the particular matrix M ). However, the small matrices A;’s do depend on M, and more importantly,
the matrix U is not too well-understood. (In particular, we need to understand the effect of U on A;
and this is not clear.) In particular, if we were to arrange i such that m(i)’s are non-decreasing, then
k(i)’s are also non-decreasing. Intuition from Fourier analysis in the Abelian world would suggest
that Ay comes from M; = A1 ® Idk(l) but, as far as we are aware, even this is not known.

Our analysis Given that the A;’s are not determined by only S and n, and U is not explicitly
understood, we need to find some crude ways to bound the singular values of M. We give such
an analysis in Section 3 and summarize the essence here. We start with the following informal
observation.

Observation 1.6. If for some i € [t], the quantity k(i) is a polynomial larger than the Frobenius
norm of M, then every singular value corresponding to the block M; must necessarily be small.

The observation follows from the fact that the Frobenius norm is lower bounded by the sum of
the squares of the singular values of M;, each of which repeats at least k(i) times, so each singular
value must be small.

5 This conclusion only requires that M respects symmetries (see Theorem 1.3).

11



k(i) > M| y M; = ® | 1
\ J

........................ 7
M;
m(i) W_J
k(i)
k(i) =~ [ M|
m(i) = O(1) .
N J
~
UMUT

Figure 1: An informal visualization for the block diagonalization of our matrix M

In the context of our goal, the observation above immediately allows us to eliminate all the large
blocks in the block diagonalization of M and turns the focus to the small blocks — where k(i)
is bounded by some polynomial in n. Here, standard facts of representations of Sym,, imply that
the corresponding matrix A; is of constant size (dependent on S and the exponent of n in k()
but not on n). However, this does not immediately translate to bounds on the singular values,
since these depend on the actual matrix A; and its entries. Ideally, we would have liked to get our
hands on the singular vectors of M corresponding to singular vectors of the A;’s (after a change of
basis according to U), but such vectors were not known (and we do not get such vectors either).
Fortunately, a collection of vectors that span the space corresponding to the singular vectors of
A;’s is known. In particular, we use a description given by Dafni, Filmus, Lifshitz, Lindzey, and
Vinyals [DFLLV21] — see Definition 3.8. Our main contribution adds two observations about this
collection of vectors, called “special vectors” below.

Our main contribution here does get something almost as good, for our purposes (i.e., to show that
each M; has top singular value o0,(1)):

We observe that the special vectors given in Definition 3.8 are “weakly orthogonal” in
the sense that they have Q(1) volume (in the space they span). We further observe
that these functions are junta-like and so shrink significantly when acted on by e-almost
k-wise independent matrices for sufficiently large constant k. (See Theorem 3.3, Parts
3(c) and 3(d)).

More specifically, the work of [DFLLV21] yields dim(A;) = m(i) many vectors (see Section 3.3)
of M that are supported on coordinates of one of the blocks of M; after transforming the basis
according to U. We show that while these vectors do not form an orthogonal basis, they are suffi-
ciently divergent to ensure their determinantal volume is large (see Lemma 3.12). Thus, bounding
the length of the vectors obtained by applying the linear map A; by o0,(1) suffices to bound the
spectral norm of A; and hence also M;. Details of this part may be found in Section 3.3. We give
some more insight in the next paragraph.
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To show our singular value bounds, we use the fact that the vectors in the basis correspond to
O(1)-junta’s. Specifically, note that a vector that M acts on can be viewed as a function f from
S;; to R, which can in turn be viewed as a partial function from S™ to R. We show that this
function depends on only O(1)-coordinates of the input vector. (See Section 3.3.) This property
now combines nicely with our third condition in Theorem 1.3 which asserts that after multiplication
by M any vector f looks essentially random when projected on O(1)-coordinates and so has little
correlation left with f — this immediately translates into an upper bound on the singular value of
M corresponding to coordinates in M;, and yields a proof of Theorem 1.3.

Why does our Theorem 1.1 hold only for nearly-balanced walks? The reason is related
to Observation 1.6. We note that the Frobenius norm condition is not completely natural, and
indeed the natural matrices in our applications do not satisfy this condition (and we have to find
workarounds). The Frobenius norm restriction is satisfied by nearly-balanced walks as considered
in Theorem 1.1, and indeed it is one of the reasons why Theorem 1.1 is restricted to such nearly
balanced walks.

1.2.3 Distance Lemma over Balanced Multislice

In this subsection, we discuss the proof overview for Theorem 1.4. The strategy is a generalization
of the proof for [ABSS25, Lemma 3.2]. The idea is to find a random copy of 8™/% inside the balanced
multislice S such that it is a good sampler for S), i.e. if we choose points from this subgrid Sn/s
at random, then the corresponding points in S); behave like random samples. As we explain now,
this guarantee essentially allows us to move from balanced multislice to subgrid, where we have
a complete understanding of distance. For every non-zero d-junta-sum P : S;; — G, we choose a
random copy of 8" inside §); and restrict P to this copy. With the sampling guarantee, we can
argue that the restricted d-junta-sum is also non-zero on the subgrid S™*, and we get the claimed
bound by applying Claim 2.6 on this restricted polynomial. Next, we explain the process of finding
a random copy of the n/s-dimensional subgrid inside the balanced multislice.

The key step in our proof is to show that we can find a random copy of S™/* inside S, which is a
sampler for S;;. We do it by randomly grouping the coordinates z1, ..., z; into n/s buckets of size s
and in each bucket, we randomly assign distinct values to the s coordinates. We prove that for two
random points in S™*, their corresponding points in the balanced multislice S, are almost pairwise
independent. We show this via the second moment method and the expander mixing lemma. We
use our main theorem Theorem 1.3 to show that the random walk on &) arising from the above
random process has good spectral expansion, making the expander mixing lemma applicable in this
context.

1.2.4 Local List Correction for Junta-Sums

Our local list corrector (see Theorem 5.1) is a generalization of [ABPSS25, Theorem 1.3.4] to d-
junta-sums and arbitrary grids 8™ (instead of degree-d polynomials and Boolean cube). We do not
dwell on the algorithm here, but only highlight and discuss the key technical difference in our work
and the previous work of [ABPSS25]. We request the reader to please refer to Section 5 for more
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details on the algorithm.

An important step of our local list corrector involves a random restriction of S°* to a subgrid S¥,
as follows: We randomly group the sk coordinates into k groups of size s, and identify all the s
coordinates in a group together by a single new coordinate. To show that our local list corrector
has small error probability, we need the following guarantee from the above random restriction: If
a d-junta-sum P € J3(S**) is non-zero on the balanced multislice, then with high probability, it
continues to be a non-zero junta-sum on S* after the random restriction. For this, we show that
the above-mentioned random process can be interpreted as finding a random copy of the balanced
multislice in S¥ inside the balanced multislice in S**. Similar to the distance lemma for multislices
(Theorem 4.2), we show that we get a good sampler using Theorem 1.3.

We now briefly touch upon some of the additional challenges in going from the Boolean case
of [ABPSS25] to junta-sums over grids 8™, in the context of local list-correction. For the local
correction algorithm in the unique decoding regime, the main idea is to reduce the problem to the
Boolean case but over a biased distribution instead of the uniform one; the proof then proceeds
by a mostly straightforward generalization of the local corrector from [ABPSS25] for the uniform
distribution. The overall template for proving the combinatorial bound is also similar to that over
the Boolean cube, except now we will need more general anti-concentration lemmas and distance
lemmas for junta-sums. As already described in the above paragraph, going from the combinatorial
bound for list-decodability to the local list-corrector is the main technical challenge we overcome
in this work by making use of the fact that a certain random embedding of the multislice of S*
inside the multislice of S™ is a good sampler.

1.3 Organization

In Section 2, we give some definitions that we are going to use throughout the article. In Section 3,
we prove the main theorem of our work (Theorem 1.3), which itself is organized as follows: we start
with giving some necessary background on representation theory for the symmetric group, then use
it to prove Theorem 1.3, and finally show that “typical” random-walk matrices are good spectral
expanders. In the subsequent sections, we give applications of our main theorem. In Section 4, we
prove a near-optimal distance lemma for junta-sums and polynomials over balanced multislice (see
Theorem 4.2 and Theorem 5.10). In Section 5, we give a local list corrector for d-junta-sums over
S™ (see Theorem 5.1).

2 Preliminaries

We begin by describing some standard notation and terminology we will use throughout the pa-
per.

For a set of parameters oy, ..., as, the notation Oy, . «,(-) hides factors depending on «y, ..., a4.
Similarly for ©q,,. .a:(-), Qas,..a.(-) and so on. Although this is not standard, we will use the
notation O(-) to hide (loglogn)®® factors (generally this notation is used to hide (logn)®®)
factors). We use |x| to denote the Hamming weight of x, i.e., the number of non-zero coordinates.
Let Bern(p)™ denote the distribution over {0,1}" where each bit is chosen from the Bernoulli dis-
tribution Bern(p) independently. For two distributions X,Y over the same finite domain, we let
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SD(X,Y’) denote the statistical distance between the distributions. We let ||v|2 denote the 2 norm
of a vector v e RV,

For any s € N, we use Zs to denote the cyclic group Z/sZ, and not to be confused by the p-adic
field Z;. We say that a group is a torsion group if all its elements have finite order. The exponent
of a torsion group is the least common multiple of the orders of all its elements.

Let n and s be two natural numbers where n is divisible by s and let S); denote the balanced
multislice over a finite set S of size s, i.e.,

Sy

= {ae S"

Vo e S, |{i € [n]la; = o}| = %}

Similarly, for any A = (Xo,...,As—1) with A\g + ... + A\;_1 = n, we define the multislice S} as
follows:

St :={aecS" |VoeS,|{icn]la = o} = A}

Then, we define the generalized Hamming distance between points in the (balanced) multislice as
follows:

Definition 2.1 (Generalized Hamming distance). We define the generalized Hamming dis-
tance A(a, b) between two points a,b € Sy to be the S x S matriz where the (o, T)-th entry is given
by [{i € [n] : a; = 0 and b; = T}|.

Example 2.1.1 (A generalized Hamming distance matrix for n = 9 and s = 3.). Let u = 000111222
and v = 110201022. Then,

1 20
A(u,v) = (1 1 1
1 0 2

We now define the notion of nearly balanced generalized Hamming distance (or C-balanced profiles
to be more precise).

Definition 2.2 (C-balanced generalized Hamming distance). For C' > 0, we say that a
generalized Hamming distance parameter P € Z5*S w.r.t a multislice S, is C-balanced if every
entry of P is in the range " £ /Cmlogm where m = n/s.

We now use generalized Hamming distance matrices to define a random walk on the balanced mul-
tislice S;.

Definition 2.3 (Random walk determined by a generalized Hamming distance matrix).
We say that a generalized Hamming distance matriz P € Z5*° determines a random walk matriz,
denoted Wp, if for each vertex a € SZ} in the multislice, the random step corresponding to Wp is
obtained by picking, uniformly at random, a vertex b € S} such that A(a,b) = P. That is, the a-th
row of Wp (denoted Wp(a)) is the uniform distribution over {b € S : A(a,b) = P}.
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We now give some necessary background for random walk matrices more generally. We refer the
reader to the survey [Vadl2] for more discussion.

We say that a matrix W e RV*¥ is a random walk matriz if for every i € [N] (which may be referred

to as vertices), the i-th row of the matrix, denoted W (i), is a probability distribution over [N]. It is
clear that every random walk matrix has an eigenvector of 1 with eigenvalue 1. If W is symmetric,
then it has real eigenvalues 1 = A\; > --- > Ay > —1; and we define \o(W) = max{|A2|, |A\n|} to be
the second largest eigenvalue of W in absolute value. Equivalently, one can show that

Ao(W) = max [V

veRN:vT1=0 ”VHQ ‘

We will also deal with random walk matrices that are not necessarily symmetric. We say a square
matrix is stochastic if all its entries are non-negative and each row element sums to 1. We say that
a matrix is doubly stochastic if both the matrix and its transpose are stochastic. We observe that
doubly stochastic matrices have 1 as both a left eigenvector and right eigenvector. Furthermore,
it has singular values 1 = 01 = 02 > ...onx = 0, where N is the order of the matrix; and we use
o2(W) to mean oy. Similar to the case of symmetric matrices, we have for every doubly stochastic
matrix W e RV*N:

Wl

veRN:vT1=0 HV”2 )

oa(W) =

For symmetric matrices, singular values are simply the absolute values of the eigenvalues. Hence,
if W is a symmetric random walk matrix with eigenvalues A1 > --- > Ay and singular values
o1 =---=20pN, then A\{ =01 =1 and )\Q(W) = OQ(W).

We observe the following property of the random walks determined by generalized Hamming dis-
tance between points on the multislice (Definition 2.3).

Observation 2.4. For every generalized Hamming distance matriz P € Z°*° defined with respect
to a multislice S, we have that W; = Whpt is a random walk matriz. In particular, Wp is doubly
stochastic.

We will now show how to bound the eigenvalues of a convex combination of random walk matrices.

Lemma 2.5 (Singular value bound for convex combinations). Suppose W = Zie[ﬂ a; Wi,

where W; € RN*N are doubly stochastic matrices and o ..., a4 € [0,1] are such that Zie[t] a; = 1.
Let S < [t] be arbitrary. Then W is also a doubly stochastic matriz with

< i i
02(W) < max{oy(Wi)} + %a

Proof. We observe that each row (similarly column) of W is a convex combination of probability
distributions, so is also a probability distribution; hence W is indeed doubly stochastic. In other
words, 1 is both a left eigenvector and right eigenvector. Hence, we have that

oo(W) = max [Wuls.
ueRN:uT1=0 and [lul2=1
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Now letting u € RY be an arbitrary vector such that |ufz = 1 and u'1 = 0, we will bound |Wuls.
We have

[Wula = | > eiWin| < ) ai|Wiula = > i Winlz + ) o[ Wiul
i€[t] 2 eft) i€S i¢S
< (Z ai) (max ||Wiu||2> + (2 ozi> (1) < max{oa(Wi)} + ). s,
ies ies i2S ies i¢S

where we are using the triangle inequality for the first inequality, and that each W; is a random
walk matrix for the second inequality. |

We now move on to the definitions needed for our local list-correction application in Section 5.

Local Correction and Junta-Sums

We say that a family of functions F from a finite domain D to a (finite or infinite) co-domain G, is
(q,€)-locally correctable if there exists a g-query algorithm A, which when given query access to a
function f : D — G such that §(f, P) < € for some P € F, and an input index i € D, outputs P(i)
with probability at least 3/4. In words, the algorithm A is able to “correct” any given index of the
received word f by making only a few queries. Since P has to be unique for such an algorithm to
exist, we are always in the regime when the fraction of errors is less than half the distance of the
code i.e., e < §(F)/2.

We say that F is (e, L)-list-decodable if if for every function f : D — F, there exists at most L
functions P € F such that 6(f, P) < e. While this is a purely combinatorial guarantee for the code,
the notion of local list-correction makes it more “algorithmic”.

We say that F is (g,q1,q2, L) locally list-correctable if there exists a gi-query algorithm A, which
when given query access to f, outputs at most L many g¢o-query local correction algorithms
Ay, Ag, ..., Ar such that for every P € F such that §(f, P) < e, there exists at least one in-
dex i € [L] such that A; is a local correction algorithm for P i.e., on input i € D, it makes go
queries to f and outputs P(i) with probability at least 3/4.

For an Abelian group G, let J4(S™, G) (or simply Jy when S and G are clear from context) denote
the family of functions from S™ — G that can be expressed as a sum of d-juntas (i.e., a d-junta-
sum). We may sometimes also refer to d-junta-sums as functions of junta-degree d. We then have
the following observation regarding d-junta-sums.

Claim 2.6 (Distance of junta-sums, see e.g. [ASS23], Claim 2.7). For every two distinct junta-sums
P # Qe Jy(S", G) where |S| = s, we have

Pr [P(a) £ Q(a)] > .

a~Sn S

That is, junta-sums form a code of distance d7 = 1/s¢ where s = |S|. Indeed, the local correction
and list-decodability properties of this family only depends on the size of S, so we will often assume
that S = Zs or S = [s] without loss of generality. We also use the following claim, where for a € Zs,
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the function 6, : Zs — Z is defined as: dp(x) = 1, and for a # 0, we define §,(x) = 1 if x = a, and
dq(x) = 0 otherwise.

Claim 2.7 (Junta-polynomial representation, [AS523] Claim 2.5). Every P € J4(Z%,G) can
be uniquely expressed as:

P(x) = Z Ja - H 0q,; (x:), where each g, € G.

aeZn:|a|<d i€[n]:a; #0

We call the above representation Zaezg Ja Hie[n]:aﬁéo da, (zi) as a junta-polynomial and its junta-
degree is the size of the largest |a| such that the coefficient g, # 0; in particular, we call the terms
being added as monomials. Generalizing Claim 2.7 one can show that every function f : Z? — G
has a unique junta-polynomial representing it and f is a d-junta-sum if and only if the degree of
that junta-polynomial is at most d. In turn, this immediately implies that f depends on the i-th
coordinate if and only if the variable x; appears (as 0,(x;) for some a € Z;\{0}) in a non-zero
monomial in the junta-polynomial representation.

Partitions and Tableaux

We end this section with some more terminology about integer partitions and multislices, which
will be needed in our proofs. All the definitions in this subsection are standard and can be found
in any standard text on algebraic combinatorics or representation theory for the symmetric group.
For example, see [Sagl3, Chapter 2] or [Stal2; Sta24].

Partitions For every natural number n € N, let P(n) denote the set of partitions of n. We will
frequently use Ferrers diagram to represent partitions. Let A* € P(n) denote the dual partition of \.

SYT and SSYT For a partition A € P(n), a standard Young tableau is a tableau of shape A
in which the entries in each row and each column are strictly increasing. A semi-standard Young
tableau is a tableau of shape A in which the entries in each row are weakly increasing and entries in
each column are strictly increasing. For a pair of partitions A, u € P(n), the set SSYT(\, i) denotes
the set of semi-standard Young tableaux of shape A and type p. Similarly, SYT(\) denotes the set
of standard Young tableaux of shape A.

For any A, u € P(n), we associate two quantities:

e f\ denotes the number of Standard Young Tableaux of shape A with content [n], i.e. f) =
ISYT(N)].

e K, denotes the number of distinct Semi-Standard Young Tableaux of shape A and type ,
ie. Ky, = [SSYT(A, p)|. This is also known as the Kostka number of the pair (A, p1).

Dominance Order For two partitions A\, u € P(n), dominance order is a partial order on parti-
tions, defined as follows: Suppose A = (A1,..., A7) and p = (p1,. .., m), then A = p if for every
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1 < i < min{l,m},

My oo+ N = pr e

For every positive integer n, Sym,, denotes the group of permutations on n elements and Sym|[S]
denotes the group of permutations on S.

Linear Algebra

Singular Value Decompositions For a matrix M € R™ ", the singular value decomposition
(SVD) of M is given by orthonormal matrices U, V' € R™*" such that:

M =UDV™' « M = UDVT, (V=1 = VT for orthonormal V),

where D is a diagonal entries and the diagonal entries of D are the singular values of M. We will
denote the singular values of M by 01 > 00 = -+ = oy,

In particular, if M has all real eigenvalues, then V' = U and the singular values correspond to the
absolute values of the eigenvalues.

We now explain how SVDs behave under the tensor product. For two matrices M7 and My with
SVDs
M, = UDVE and My, = UyDoVy,
then the SVD of M; ® M is:
Mi®@M; = (U1®Us) - (D1®Ds) - (Vi@ Vo). (1)

Definition 2.8 (Volume of a parallelepiped). Suppose {vi,...,v.} € R" is a set of linearly inde-
pendent vectors. Fiz an arbitrary total order ‘<’ on the vectors i.e., there exists a m € Sym,. such
that

Ur(1) < Ur(2) << Urn(n)-

Let U (1) = vx(1) and for every2 < i <1, let Uy ;) denote the vector orthogonal to span {vﬂ(j) ’ 7 < z}
Then the volume of the parallelepiped spanned by vy, ..., v, denoted by Vol({vi, ..., v }), is defined
to be

T
[ 11l
j=1

where || - || is the norm with respect to the standard inner product on R.
It also turns out that the volume is equal to |det(A)| where the columns of A are vy,...,v,.

For any matrix A € R™", we will denote by |A|2 the spectral norm of A i.e.

A
|Al2 = sup | Ax]> = max o. (2)
x#0 ||XH2 o is a singular value of A
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Subgrids of §"

It will be very useful in our algorithms to be able to restrict the given function to a smaller subgrid
and analyze this restriction. We construct such subgrids by first permuting a subset of the variables
and then identifying them into a smaller set of variables. More precisely, we have the following
definition.

Definition 2.9 (Embedding a smaller grid into S™). Fiz any k€ N and k < n. Let h: [n] — [k]
be a hash function. For each i € [n], let II; € Sym[S] (i.e. a permutation on elements of S) and
I = (y,...,I1,). For everyy € S*, define zn1(y) € S™ as follows:

a1 (Y)i = ILi(Yne), for all i€ [n]
and the subset Cp,;1 8™ is defined as:

Chm = {xh,n(}’) ’ y€E Sk}

Further, a random subgrid Ch 11 is obtained by sampling a uniformly random permutation 11; ~
Sym|[S] independently for all i € [n] and sampling a uniformly random hash function h : [n] — [k].

In simple words, the above definition gives us a way to embed a k-dimensional grid S* into a
n-dimensional grid §™, where the hash function h governs how the k-coordinates are mapped into
n-coordinates and IT governs which value the i** coordinate takes.

The following sampling lemma (proved in Appendix B) will be useful for local (list) correction of

junta-sums.

Lemma 2.10 (Sampling lemma for random subgrids). Let Cj 11 < S™ be a subgrid sampled
randomly as per Definition 2.9. Fix any T < 8™ and let p := |T'|/s". Then, for any e,n >0

TnC T
Pr[| kh’H|—||>€]<n
h,II S s
as long as k > max {ﬁ - log (%) ,B - s*log s} for a large enough absolute constants A, B > 0.

3 Singular Value Bounds for Random Walks on Balanced Multi-
slices
Organization of this section. In this section, we will prove Theorem 1.3. At a high level, the

proof proceeds as follows:

1. We give the necessary background on representation theory for finite groups in Proposition 3.1.
We then instantiate it for Sym,, and state the exact requirements we need to prove for our
purpose in Theorem 3.3. These two steps can be found in Section 3.1.

2. We then in Section 3.2 argue that Theorem 3.3 is sufficient to prove Theorem 1.3.

3. We devote Section 3.3 and Section 3.4 to prove Theorem 3.3. In particular, we start with
describing some “special vectors” which we use to prove Theorem 3.3. The description of these
vectors is combinatorial in nature, and we prove certain properties about them. Finally, we
prove Theorem 3.3 in Section 3.4.
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Notation For any two natural numbers n and s with n divisible by s, u denotes the s-tuple
(n/s,...,n/s) and S is the set of all points in " which are on the balanced multi-slice y. Let
N =S5} = (n/s,.n..,n/s)‘ For any n, P(n) denotes the set of partitions of n. Throughout this
section, we will assume that s is an absolute constant.

3.1 Representation Theory Primer

In this and the following subsections, whenever we mention a representation, we refer to a complex
finite-dimensional representation of finite groups. For interested readers, we refer to [Sag13, Chapter
1] for the relevant background on the representation theory of finite groups.

Let G be a finite group and V be a C-vector space with dim(V) < o0. Let (-,-): V xV — C
be an inner product that is preserved under the representation p, i.e. for every g € G, for every
u,veV,

p(g)u, p(g)vy = (u,v).

Basic results of representation theory imply the following.

Proposition 3.1 (Standard facts on representations for finite groups). Suppose p : G — GL(V)
is a representation of G and W € End(V, V) commutes with the representation p, i.e. for every
geG,

plg)o W = Wop(g) (equivalent as linear operators).

In other words, W is an intertwining operator from (p,V') to itself. Then,

1. There exists sub-representations Vi,...,V, such that
T
V= PV
i=1
where {Vi,...,V.} are orthogonal subspaces (with respect to the inner product mentioned
above).

Moreover, for every i€ [r], the following holds. There exists an irreducible representation U
and an integer m; = 1 such that

V

lIe

m;
@Vivj and ViJE-"QVZ‘m.EUi.
J=1

The subrepresentation V; is called as the isotypic component of (p,V') corresponding to the
irreducible representation U;. This means

dim(V;) = m; - dim(U;)  and  dim(V) Z m; - dim(U;).
i=1

2. Fiz any i € [r]. Let B;1 be an ordered basis for Vi 1. For every 2 < j < my, there ezists an
unique isomorphism L; ; : Vi1 — Vi ;. Let B;; denote the image of B;1 under L; ;, and B; ;
is a basis for V; ;. Let B; be an ordered basis for V; obtained by concatenating B; 1, ..., Bim,
in that order. Similarly, B obtained by concatenating By, ..., B, is an ordered basis for V.
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3. The linear map W preserves the isotypic components, i.e. for eachi€ [r], Wy, € End(V;, V;).
In particular, under the ordered basis B, the map W (when viewed as a dim(V') x dim(V)
matriz) has the following structure:

,
W = Pw, (direct sum of matrices)
i=1

where for each i € [r], W; is a dim(V;) x dim(V;) dimensional matriz.
Furthermore, for every i € [r], there exists a unique m; x m; dimensional matriz A; such that

Wi = A; ® ldgim@,); where 1dy is the k x k dimensional identity matrix.

4. Fizanyi e [r]. For every non-zerov € V; 1, define a C-space Y ,, 1= span{v, L;2(v), ..., Lim, (v)}.

Then Wily,, € End(Y;.,Yis) and Wiy, , = A; when we represent the linear map in the or-
dered basis (v, L;2(v), ..., Lim,(V)).

The following corollary is immediate from the third item of Proposition 3.1.

Corollary 3.2. We follow the same notation from Proposition 3.1. Suppose {5{, e ,ﬂfni} is the
multi-set of singular values of A; where each B; € C. Then using Equation (1), we get that in the

multi-set of singular values of Wi, the frequency of ﬂ; is equal to the frequency of 6; in the multi-set
{ﬁi, . ,Bfni} times dim(U;).

Now we turn to the representation theory for Sym,,. In particular, we will be considering the
representation of Sym,, on the space of functions on a slice of S™.

Space of functions on a slice For any partition A € P(n), let M* denote the C-vector space of
functions over the slice SY i.e.

M = {f:Sy - C}.

It is easy to see that dim(M?*) = |S}|. There is a natural action of the symmetric group Sym,, on
M?: For all m € Sym,, and for all f e M*,

(mf)(x) = fln %), where 7 1x = (Ta-1(1)s- - Tr-1(n))

Representation of Sym,, Let (p, M*) denote the following C representation of Sym,,:

p: Sym, — GL(M*)
(o(m) )(x) = f(x"'x),  VmeSym,, VfeM (3)

Invariant inner product Next we mention an inner product {-,-) on the space M* x M* which
will be invariant under the representation p. The inner product is defined as follows:

() s M# x MY — R
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(o9 = Exsplf(x) - 9(x)] = % 2 ) - g()]. (4)

n
XES]]

It is not hard to see that the above inner product is invariant under the representation p, i.e., for
every f,g € M¥, the following holds:

p(m)f, p(m)g) = {f, 9)-

This representation is quite well-studied in the representation theory for finite groups. There is a
complete understanding of the decomposition of M* into its irreducible representations. In par-
ticular, the irreducible representations of (p, M) are given by the Specht modules S = M?. See
[Sagl3, Chapter 2] for an excellent exposition on the irreducible decompositions. Next, we state
Theorem 3.3, which we will use to prove Theorem 1.3. We do not require specific details of the
irreducible representation, so we only state what is sufficient for our purpose.

Theorem 3.3. Fiz any n,s € N where n is divisible by s and let u = (n/s,...,n/s) € P(n). The
following holds:

1. The subrepresentations of MH are indexed by \ € P(n) and in particular, there exists subrep-
resentations Vy 1,...,Vam, for an integer my € N such that:

mx
M = P D Vas
Azp j=1
where Vy1 = -+ = Vy -

(a) For A = (n), my =1 and dim(Vy 1) = 1. This corresponds to the trivial subrepresenta-
tion spanned by the function that takes the value 1 at each point of S.

2. Let c € N denote an absolute constant > 1. For every partition A = (A1,..., ) € P(n), we
have
(a) If Ao > ¢, then dim(Vy 1) = -+ = dim(Vy,,,) = no%.

(b) If Ao < ¢, then my < s%. As s and c are constants, my = O, (1).

3. For every constant ¢ € N, the following holds. Fiz any X = (A1,...,\¢) € P(n) such that

A2 < c. Then there exists vectors u{‘,...,uﬁm € M* where for every j € [my], the vector

uj)‘ € Vi, satisfying the following conditions:

(a) For every j > 1, u?‘ is the image of u{‘ under the unique isomorphism between represen-
tations V1 and V) ;.

b) For every j € [my], |ul|2 = ©sc(1). Here, the norm is with respect to the invariant
] )
inner product stated in Equation (4).

(¢) If D is a probability distribution on the balanced multislice §,, such that D 1is an e-almost
k-wise independent and uniform distribution for some k = cs, then,

Ex~p[u} (X)]| < Osele), for all j € [m,].

)
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d) The volume of the parallelepiped (see Definition 2.8) formed by {u " is at least a
( y uj

constant, i.e., Vol(ui‘,...,u;\,u) = Q(1).

Remark 3.4. We note that items 1 and 2 in the Theorem 3.3 are standard results in the repre-
sentation theory of Sym,,, or simple consequences thereof. Also see Theorem 3.13 for more details
on item 1. The new technical observations we make are in proving items 3.(c) and 3.(d) of The-
orem 3.3. As we will elaborate later in Section 3.3, our proof for item 3 of Theorem 3.3 uses
[DFLLV21]. In this work, we analyze a set of functions described already in [DFLLV21] and show
that they satisfy additional properties, which allows us to prove our main theorem (Theorem 1.3).

We will first show how Theorem 3.3 implies Theorem 1.3. We defer the proof of Theorem 3.3 to
Section 3.4. We will also require the following lemma on estimating the singular values of small
matrices. It says that if we have a set of linearly independent vectors whose parallelepiped has a
significant volume, then they are “useful” in estimating the singular values.

Lemma 3.5 (Estimating singular values using special vectors). As a special case, in this lemma,
we will work with the standard inner product in Fuclidean space R". The lengths, volumes etc. below
are defined using this standard inner product.

Let Q € R™" be a matriz and {vi,...,v.} be a set of linearly independent vectors satisfying the
following conditions:

1. For each j € [r], |vjll2 < m for some m € R-y.
2. For each j € [r], |Quj|2 < q for some q € Rxy.
3. The volume (recall Definition 2.8) Vol(v1,...,vy) = T.

T 1}l
Then® HQH2<T'maX{m’ ber _

T

Proof of Lemma 3.5. By definition of spectral norm,

Qe = sup |[|Qx]2, where x € span(vy,...,v,).
x:[|x[2=1

Choose an arbitrary x € span(vi,...,v,) with |x[ = 1. We know there exists coefficients
ai,...,ap € Csuch that x = Y, o;v;. We first upper bound |oy;| for all i € [r].

Let A € R™*" denote the matrix whose columns are v1,...,v,. Let @ = (a1,...,a;). Then A = x.
In other words,

det(Ai)
o =
‘ det(A)’

where A; is the matrix whose i*" column v; is replaced by x. We have |x|s < |x|2 = 1 and for
every j € [r], |vj|w < |vj[2 < m. Combining these two, we have ||A;[|x < max {m,1}. This implies

% Recall the notation in Equation (2).
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that det(A;) < 7!+ ||Ail, < max{m”,1} - rl. Recall also that the volume of the parallelepiped
spanned by v1, ..., v, is given by |det(A)|. Thus we have,
max {m", 1} - r!

los| < . , for all i€ [r].

Now let us consider |@Qx/|2:

max {m", 1} - r!

,
jQxl2 < ) lail - [Quillz < =
i=1

T

This finishes the proof of Lemma 3.5. |

3.2 Proof of Our Main Technical Theorem (Theorem 1.3)

In this subsection, we give the proof of our main technical theorem (Theorem 1.3), assuming The-
orem 3.3. We defer the proof of Theorem 3.3 to Section 3.4.

Proof of Theorem 1.3 (using Theorem 3.3). The first condition on the matrix M implies that M
commutes with the representation (p, M) (see Equation (3)). Using the third item of Proposi-
tion 3.1 and Corollary 3.2, we know that the singular values of M can be divided into groups
indexed by partitions A € P(n). We can classify the singular values of M into three categories:

e Singular values corresponding to the partition A = (n). As stated in 1.(a) of Theorem 3.3, it
corresponds to the 1-dimensional vector space and thus has singular value 1.

e Singular values indexed by partitions A = (A1,...,A\¢) € P(n) with Ay > ¢ > 1 (here ¢ is the
constant from Theorem 3.3).

e Singular values indexed by partitions A = (A1,...,A¢) € P(n) with A2 < ¢ and XA # (n) (here
¢ is the constant from Theorem 3.3).

To bound o3(M), we only need to upper bound the singular values in the second and third
categories. Before proceeding, we set some notation for convenience. Applying the third item of
Proposition 3.1 on the matrix M, we know the following: For every partition A € P(n) with A = p,
there exists a square matrix M y of dimensions m) x my such that

M = (—D (M)\®Iddim(V>\))’ where dim(V)\) = m) 'dim(V)\’l).
AL

Corollary 3.2 tells us that the multiset of singular values of M is essentially governed by the multiset

of singular values of M \'s for different A\’s. For every A\ = pu, let { Bi\, . ,Bf;u} denote the multiset

of singular values of M (i.e. we account for repetitions too).
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To upper bound the singular values of the second category, we use the upper bound on the
Frobenius norm of M. More precisely, we will show the following lemma.

Lemma 3.6. Let k,c1 > 0 be constants such that the Frobenius norm |M|p < ¢ -n" (see
Theorem 1.3) and let ¢ = 4k. Let A = (A1,..., \¢) € P(n) with Ay > c¢. Then®,

— 1
IMrlz < —
C .
1

ns’

where ¢} is a constant depending on ¢ and k.

“Recall the notation in Equation (2).

Proof of Lemma 3.6. We know that the square of the Frobenius norm equals the sum of singular
values squared, i.e. if { B, .. ,B?M} is the multiset of singular values of M., then

My
: 2 2
D dim(Vaa) - Y1871 < [M]E
Y= =1

Fix an arbitrary A € P(n) with A2 > ¢. As every term on the left side of the above inequality is a
non-negative number, we have the following inequality for any i € [m}]:

dim(Va) - 87 < [M]%
= Q.(n*) -8 < & n¥ (Using 2.(a) of Theorem 3.3 and 2 of Theorem 1.3)

1
A

A
=1 < ——
Since the above upper bound holds for every i € [m,], we get the desired bound on |My|o. This
finishes the proof of Lemma 3.6. |

Next, we have to upper bound the singular values of the third category, and this requires more
steps in comparison to the previous lemma. We use the e-almost k-wise independence of M in
this step. We start by stating the bound.

Lemma 3.7. Let ¢ = 4k (the same constant from Lemma 3.6) and \ € P(n) be a partition
with A = p, Ay < ¢, and A # (n). Then,

1Myl < Ogule),

where € is the distance parameter in the third item of Theorem 1.3.

Proof of Lemma 3.7. Fix a partition A = p with Ao < ¢ and X # (1,1,...,1) for rest of the proof.
Let u{‘, R u;\m be the vectors guaranteed from the third item of Theorem 3.3. The idea is to use

Lemma 3.5 on the vectors uj"s and the matrix M 1, but we need to be careful, as we explain below.
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From the third and fourth items of Proposition 3.1, we have,

Muj)‘ = ]\7,\1& where ]\7}\ is the operator M|y,

A V0 A
= [Mujlz = [Myujls,

where both the norms are with respect to the invariant inner product defined in Equation (4).

Fixing an orthonormal basis. Let

Yy := span(u7, ... ,uﬁh)

and let (wy,...,wn,) be an ordered orthonormal (with respect to the invariant inner product
defined in Equation (4)) basis for the space Y.

Let Ay denote the m) x m) matrix representing the operator M), under the orthonormal basis
(wl, e ,’LUmA).

The singular values remain invariant under the choice of basis”, thus it is enough to bound | Ay o
The idea is to use Lemma 3.5 on Ay and vectors u;\’s to bound |Ax|2. There is some subtelty
regarding norms in using Lemma 3.5, which one needs to be careful about.

Expressing the u?"s in the orthonormal basis. For every j € [m,], let

A
U

= aj1wi + ...+ AW, and oy = (1, QG )-
Then,

luilz = letj]l2,

where the left norm is with respect to the invariant inner product defined in Equation (4) and the
right norm is the standard inner product on R™*. Using 3.(b) of Theorem 3.3, we get that for
every j € [my], o2 = Osc(1).

Norm after applying the operator M - Now we have the following equality:
Myuj = Aoy = [Myjla = [Arayle,

where the left norm is with respect to the invariant inner product defined in Equation (4) and the
right norm is with respect to the standard inner product. Hence, we get

|Mujls = [Axe]a, for every j e [my].

"To see this quickly, note that singular values of a matrix A are the positive square roots of the eigenvalues of
AAT and eigenvalues are independent of the choice of basis.
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Upper bounding the norm after applying the operator We now show that for every j €
[m)\]v

| A2 < Oy n(e),

where the norm is with respect to the standard inner product. From the previous paragraph, it

is enough to show that for every j € [m,], the norm | Mu?|2 < Os.(¢), where the norm is with

J
respect to the invariant inner product.

Using the definition of the invariant inner product from Equation (4), we get,

2
1M1 = Bxesy (By~areolw}9)])

For every x € S}, the third item of Theorem 1.3 says that M(x) is e-almost k-wise independent for
k = 10sk > cs. Applying item 3.(c) of Theorem 3.3 on M (x) for an arbitrary x € S}, we get

IEy~M(x) [U’}\(y)] = Os,m(g)‘
As this holds for every x € S}, we get,

2
Estﬁ (EYNM(X)[U?(y)]> = Ex~8fj (03,0(52)) = OS,H(EQ).
Hence we have shown that for every j € [my], we get

[Avaylz = [Mu}la = Osule).

Volume of the parallelepiped. Fix an arbitrary order on the u;’s and recall from Definition 2.8
that

Vol(ug, ... up, ) = @]z g, [,

where %; is as defined in Definition 2.8 and the above norms are with respect to the invariant inner
product defined in Equation (4). Similarly, we have Vol(au, ..., auy, ), in which the norm is with
respect to the standard inner product.

Observe that for every j € [my], span(ay,...,05-1) = span (i}, . . ., a]%_l), i.e. they are isometric
as inner product spaces. Now the component of ug\ orthogonal to the (j — 1) dimensional subspace
has the same norm (in the invariant inner product) as the component of a;; has norm under the
standard inner product. Thus,

Vol(uy, ... uN,) = Vol(au,...,am,) = (1),

et 115

where the final lower bound is from item 3.(d) of Theorem 3.3.

Now we apply Lemma 3.5 on ﬁ)\ and vectors o, ..., 0y, . Using 2.(b) of Theorem 3.3, we know
that my = O (1). This gives us the desired bound and finishes the proof of Lemma 3.7. |

Thus, we have proved Lemma 3.6 and Lemma 3.7, which gives an upper bound on the singular

values of the second and third categories, respectively. Combining Lemma 3.6 and Lemma 3.7, we
finish the proof of Theorem 1.3. |
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3.3 Construction of Special Vectors

In this section, we describe the vectors specified in the third item of Theorem 3.3. The construction
combines standard literature on the representation theory of the symmetric group [Sagl3] with the
recent work of [DFLLV21]. We need to recall the definition here to show that they satisfy the
properties claimed in Theorem 3.3.

Throughout this section, fix a partition A = (A1,...,A¢) € P(n) and assume that 2 < £ < s. We
will consider (Young) tableaux T' of shape A, which contain cells T'[7,j] where 1 < i < ¢ and
for 1 < j < A;. Further, we will also consider permutations of such tableaux by permutations
that rearrange the elements in each column of 7. Let C) := Sym)\* X eee X Sym)\* and given a

permutation o € C, we denote by T the tableau obtained by rearranging the contents of the cells
of T according to o. For every o = (c(1), ... c)) e C), sgn(o) := sgn(cM) - - - sgn(c)).

We define Tj to be the canonical tableau of shape A where the cells are labelled as follows:

1= D> 0+ iell, je\] (5)

p<i

The following is a diagram for the canonical tableau Ty for some partition A € P(n).

1 2 D S | BV

A F1+2] L A2

Next, we define a polynomial on S} for every semi-standard Young tableau of shape A and content®
. Recall that i € P(n) is the partition of n given by (Z,...,%).

’s

Definition 3.8. [DFLLV21, Section 5.2]. Given a tableau T of shape X\ with distinct labels from
[n] and another tableau T of shape \ with content p, we define a corresponding R-valued function
er 1Sy — {0,1} by

Loif{zppay - ey = ATE 1, ... T, A} as multisets for each 1 <i < {, (%)

0, otherwise.

6T/,T(ZU) = {
(6)

8i.e. a tableau with y; many Os, u2 many 1s, and so on until s many (s — 1)s
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Finally, given a T € SSYT(A, p), define the function xr : S} — Z by

xr(@) = ) sen(o) - erg r(), (7)

O'ECX

where T§§ is the tableau obtained after o acts on the canonical tableau Tp.

Observation 3.9. Note that condition (*) in Equation (6) could equivalently have been stated in
terms of rows i € {2,...,¢} as the condition for i = 1 is implied by the others (since the input x
s a point in Sﬁ) Overall, this implies that ers T (and hence xT) depends only on variables whose
index appears in one of the first Ao columns of T'. In particular, if Ao < c, this implies that xr is
a y-junta for v < cf < cs.

Next we define a total order on the set SSYT(A, p).

Definition 3.10 (Total order on SSYTs). Let A € P(n) and p = (n/s,...,n/s). Given two distinct
SSYTs S, T € SSYT(A, ), we say that S < T if there exists 2 < i < £ and j € [\;] such that the
following holds:

1. For every k > i and for every j' € [\¢], we have S[k,j'] = T[k,j'], i.e. the k" rows of S and
T are equal.

2. For every \; = j' > j such that S[i,j'| = T|i,j'].
3. Finally, S|i,j] < T, 7]
We leave it to the reader to check that this defines a total order on SSYT (A, u).

We will need the following claim regarding the aforementioned ordering.

Claim 3.11. Assume that S,T € SSYT (A, u) and o € Cy are such that
o cither S <T
e or S =T and o is not the identity permutation.

Then, for any o € Cy, there exists an i € {2,...,¢} such that the multisets {S?[i,1],...,S7[i, \i]}
and {T'[i,1],...,T[i, \;i]} are distinct.

Proof. Choose i to be the largest number such that ¢ moves the contents of some cell in the ith
row of S, assuming o is not the identity; otherwise, set ¢ = 0. Assuming that ¢ # 0, for each cell in
the i*" row moved by o, we note that the contents of this row can only decrease, since the columns
of S are strictly increasing and o does not change the contents of any row i’ > 4. In particular, this
implies the claim in the case that S = T. We therefore assume that S # 7T and S < T for the rest
of the proof.

Let ig be the largest number such that the z'f)h rows of S and T differ. Note that ip € {2,...,/¢}.
Further, fix jo to be the rightmost cell on this row where S and T differ. Note that S[ig, jo] <

T[iﬂa ]0]
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We note that we are immediately done if ¢ < g since in this case
{Slio, 1], ..., Slio, Nig]} = {S7[i0, 1], ..., 5% t0, Nig]} # {T'[i0,1],- .., T[i0, Nig]}
So we may assume that ¢ > ig, and in particular that ¢ is not the identity.
Now, we consider two cases.
o If i > iy, then we have
> Sl < Y, Slhdl = ), Tl 4]
je[Xil Je[\i] Je[nil
implying the claim in this case.

e If i = ip, consider the rightmost cell (numbered j, say) where S and T differ on this row.
Note that S7[4, jo] < S[i, jo] < T'[i,jo] and hence j = jo.

Consider the multiplicities of the element t := T'[i, 7] in the ith rows of S, S and T, which
we denote mg, mgo and myp respectively. Note that mg < mp because j = jp and 5 < T.
We also know that S7[i,j] # t by definition of j. Finally, note that for any j/ < j we
have either S[i,j'] = S[i, '] or S9[i,5'] < S[i, 7] < S[i,j] < T[i,j] with the latter two
inequalities following from the fact that S is an SSYT and the fact that j > jg. This implies
that mge < myp, the multisets defined by the ith row in the two tableaux S and T cannot
be equal.

This finishes the proof of the claim. |

The main result of this subsection is the following lemma, which shows the existence of the special
vectors as stated in Theorem 3.3.

Lemma 3.12. Let A € P(n) and ¢ € N. Assume that Ao < c. For every T € SSYT(\, i), the
function x satisfy the following properties:

1. For each T € SSYT(, ), we have |[xr|l2 = Os,c(1).

2. Let € > 0 be arbitrary and assume k is an integer such that k = cs. For any e-almost k-wise

independent distribution D supported on SI’]’, we have

[Ex~p[x7(x)]| < Os.c(e). (8)
3. We have,
Vol({xr | T € SSYT(\ )}) = Que(1).

Proof. The first item follows almost immediately from the definition of x7 in Equation (7) above.
From this definition, we get

Ixzll2 < lIx7lle = max [xr(z)| < [Cx] - max|ery r(x)| < |Cx] < (s1)° (9)
I ’
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where the first inequality is trivial, the second is the triangle inequality applied to Equation (7),
the third follows from the fact |erg 7(x)| < 1 for each x, and the last follows from the fact that A
is c-good.

For the second item, we note that by Observation 3.9 and the e-almost k-wise independence of D,
we have

Exvpxr(x)] < e max|xr(x)| + Bavsplxr(a)] < Osele) + Exvspxr(x)]

where the second inequality uses the bound on |x7(x)| proved above. To bound the latter term,
we note that for by symmetry, for each o € Cy, the quantity Ex.sp [erg 7(x)] is exactly the same.
Since the signed sum defining x7 has the same number of positive and negative signs, the sum of
the expectations is 0. This proves the second item of the claim.

The third item needs a definition. Given a S € SSYT(A, u1), define subset Ag = S} as follows:
As = {xe 8} | aqp = Sli,jl, i € [0, j <min{rg, A\i}},

i.e. we define Ag using the first Ao columns of S.

Note that for each x € Ag, we have the following:

e ey, 5(x) = 1. This follows immediately from the definition of er; g above.

e Now fix 7" € SSTY(\, i) and o € C) such that either " > S or S = T and o is not
the identity permutation (here the identity permutation in C) refers to id x --- x id). We
claim that eTégT(x) = 0. To see this, start by labelling each cell of T with the value of the
corresponding variable, which leads to a tableau S’ which agrees with S on all cells in the
first A2 columns. Since erg 1 depends only the variables in these columns, we may change x
in the other coordinates to ensure that S’ = S.

Now, we observe that for any o € C), the multiset {azTg[m], e ,l‘Tg[i’)\i]} is equal to the
multiset {S7[7,1],...,57[i, A;]}. In particular, by Claim 3.11, there exists an i € [{] so
that the multiset {:ETg[M], .. ,:L'Tg[i)\i]} is not equal to {T'[i,1],...,T[i, \;]}, implying that
eT&T(X) = 0.
The above implies that for each x € Ag, we have
o Xs(X) =1 and
e xr(x) =0 foreach T'> S.

For each S € SSYT(\, i), let xs denote the projection of xg to the vector space orthogonal to the
span of {xr | S <T}.

To bound ||xs||2, we recall that ys = xs — x for some y in the span of {x7 | S < T'}. By the above
argument, we know that x(x) = 0 and hence that yg(x) = 1 for each x € Ag. Hence, we get

Sz - o2 o |As]
IXsll2 = Ex~spxs(x)” = =~

where N = |S}}|. So to prove the claim, it suffices to show that the latter quantity is 2 .(1).

For each i € {0,...,s — 1}, let 7; denote the number of cells in the first Ay columns of S that are 4
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Define v := 9 + ... + 7s—1 < ¢s. Using Stirling’s approximation and v < ¢s < n/2, we get,

|As| = < e > > ("_7)n7'3n7-9< v )

B0 B e (n—s)n= (2 (%))

Again using Stirling’s approximation for N = (n /s . /s), we get,

As| o =y 1 ( Vi <2w<2>>8/2>

Sel 7 (- s T @a(R) 2 V2

()7 2) s n(()) - o

As v < cs, we get that |Ag|/N = Q,.(1).

The volume of the parallelepiped is equal to the product of |xr|'s. As we showed above, X7 =
Q.c(1), and thus we get,

Vol({xr | T'€ SSYT(A, pn)}) = [T Ixrlz = QD).
TeSSYT (1)

This finishes the proof of Lemma 3.12. |

3.4 Putting Everything Together

Now we are ready to combine everything and prove Theorem 3.3. To do so, we will use the follow-
ing standard result on the representation of Sym,. The proof can be found in standard texts on
representation theory for the symmetric group or [Sagl3].

Theorem 3.13 (Young’s Rule). (See for e.g. [Sagl3, Corollary 2.11.2]). Fiz any n,s € N where
n is divisible by s and let p = (n/s,...,n/s) € P(n). For every A € P(n) with X = pu, let V) ; and
my be as defined in Theorem 3.3. Then,

dim(V)\J) == dim(V)\7m)\) = f)\ and my = K)\u,
where f\ and Ky, are defined in Section 2.
Next we prove two claims regarding f\ and m) for certain partitions A € P(n). These two claims

will be used to prove the item 2 of Theorem 3.3.

Claim 3.14 (Lower bound on the algebraic multiplicity of certain eigenvalues). [EFP11, Lemma
2P. Let ce N be a constant with ¢ > 10s. Then for any partition X € P(n) with Ay > c,

x> Qe(nf).

9 There is a minor typo in the statement of Lemma 2 in [EFP11]. It should be “of length at most...” instead of
“of length greater than...”
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Claim 3.15 (Multiplicity for c-good partitions). Let ¢ € N be a constant and X € P(n) with Ag < ¢
and X # (n). Let my be as defined in the statement of Theorem 3.3. Then, my < 5% = Os+(1).

Proof of Claim 3.15. From Theorem 3.13, we know that my = K),, i.e. the Kostka numbers for
shape A and type p. We are interested in upper bounding K, for a c-good partition A\. We have
Ao +...+ Ay < ¢s. For each cell in the second row till the last row, there are at most s many choices.
As there are < cs such cells, we get that K, < s. This finishes the proof of Claim 3.15. |

Now we are ready to put all the claims and lemmas together to finish the proof of Theorem 3.3.

Proof of Theorem 8.3. The first item follows by combining the first item of Proposition 3.1 and
Theorem 3.13. Item 2.(a) follows from Claim 3.14 and item 2.(b) follows from Claim 3.15.
Finally, we show that the vectors y7’s meet the conditions stated in the third item.

1. For 3.(a), we note that the literature on the representation theory of Sym,, (see [Sagl3, Section
2.9 & Section 2.10]'°) identifies for each A € P(n) exactly m) many linearly independent ways
of embedding the irreducible representation S* (S* is the unique irreducible representation, or
Specht module, corresponding to partition A) into the representation M*. These embeddings
are indexed by elements of SSYT(), 1) and denoted by O7 : $* — M*. Given T € SSYT(), ),
let V) r denote the image of S* under the corresponding embedding ©.

It can be checked that the various yr are the images of the same element v € S* under Op
(see also [DFLLV21]). This implies that for S, T € SSYT(A, u) x7 is the image of yg under
the unique isomorphism from V) g to V) 7. This proves 3.(a).

2. Item 1 of Lemma 3.12 shows that they satisfy 3.(b).
3. Item 2 of Lemma 3.12 shows that they satisfy 3.(c).
4. Item 3 of Lemma 3.12 shows that they satisfy 3.(d).
This finishes the proof of Theorem 3.3. |

3.5 Singular Value Bound for Nearly Balanced Random Walks

We now use the statement of Theorem 1.3 to derive the singular value bounds for nearly balanced
random walks on the multislice, as stated in Theorem 1.1.

For this, we will need the following lemma.
Lemma 3.16. For every s = 2 and C' < o, there exists T > 0 such that for every finite set S of

size s and sufficiently large n € N, if a generalized Hamming distance parameter A € Z°*S over the
multislice S}} is C-balanced, we have that o2(Wa) < 1/n7, where W is the random walk matriz

1011 the literature of representation theory, these isomorphisms are stated in the language of tabloids and poly-
tabloids. In Appendix A, we provide a translation between the language of tabloids/polytabloids and points/func-
tions.
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determined by A.

The above statement implies the claimed general result (i.e., Theorem 1.1) for random walk matrices
that are not necessarily given by a single generalized Hamming distance parameter, but as long as
they are supported on balanced generalized Hamming distance parameters.

We first prove Lemma 3.16.

Proof of Lemma 3.16. Here we directly apply our main result Theorem 1.3, bounding the singular
values of matrices satisfying certain properties. For this, we show that W satisfies the three
properties needed to apply Theorem 1.3.

e Permutation invariance: For every permutation 7 of [n], Wa is unchanged if the rows and
columns are changed according to the permutation induced by 7 (denoted 7()) on the balanced
multislice (denoted V' in this proof). This is because the value of the entry Wa(a,b) only
depends on A(a,b), which doesn’t get altered by 7, i.e., we have A(a,b) = A(xw(a), 7(b)).

e Bounded Frobenius norm: We will show that |[Wa|r < n9(). Denoting m := n/s

and the rows of A by p(0),...,p(s — 1), we note that for each a € V, there are exactly
D = (pr(%)) .. (p(:11)) 1 points b € V such that A(a,b) = A. Hence, we have that
1/D, if A(a,b) =P

0, otherwise.

Wa(a,b) = {

Therefore, we have

IWalz = D) Wala,b)?
a,beV

= |V|D/D?

(")) (o) (o) 1o

In order to bound the above quantity, let q = (qo, . .., qs_1) € Z%* be such that ZjeZS g =m
and |gj—qj| < 1forall j,j" € Z, (such a q always exists; indeed each |m/s| < ¢; < [m/s]). We
will first show that ’;0,71;51,' is upper bounded by m® () where p := p(a) = (po, ..., ps_1)
for an arbitrary « € Zs.

Claim 3.17. M <mOs (),

qo!--gs—
Proof. We consider the following sequence of vectors: p = p@,pM, ... .p®) = q (for some
finite ¢), where two adjacent p~!) and p(? differ in exactly two coordinates (say ¢; # ¢, € Ly)

such that pg) = pgl 2 + 1 and p(l) p(i_l) 1, for all i € [t]. We note that since each p; €

C
= +y/Cmlogm (as Pis a balanced generahzed Hamming distance matrix), such a sequence
can be realized with ¢ < s4/C'mlogm by repeatedly picking the smallest and largest elements

! Here, for a vector of integers p = (p1, ..., Ps), (71:) denotes (p m ps)

,,,,,
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of p and adding one to the smallest element and subtracting one from the largest one. This

will also ensure that for each intermediate i € [¢], we have the invariant pgl) € T 1++/Cmlogm
for all j € Zs.

Now, we note that for all i € [¢],

i i—1), (i—1 i—1
ijg' Yy _ pgi )!pg’, ) _ pi’i ) <110 |Cs?logm
Hj pgi)! B @y, @y @) m '

Pe; !PEZ : Pe;

Using the above bound for all i € [¢] and multiplying them, we get

t sv/Cmlogm
I | [ g2 2
pol. .. ps_1! <(i+0 Cs?logm <(it0 Cs*logm < mO(CSQ)’
qo' ... qs—1! m m
(11)

where for the last inequality, we are using the inequality 1 + z < e*.

Now, continuing the computation of (10), we have

IWalr = <mmm>/ <<p%>> <p<sni 1)>>

< 0Cs) (sm)lqo!® ... qs—1""

m!2s

(using Equation (11))

< mOCs?) . (sm)! <[m/5]!s>s

m!s m!

< mOCs®)  gsm ((m/(es))m>s

(as g; < [m/s])

(using Stirling’s inequality)

(m/e)™

< mO(Cs?’)‘

Hence |[Wallp < n@sc®).

e-almost k-wise independence: We will show that for every k < O4(1), Wa is e-almost
k-wise independent (see Definition 1.2) for some & = 1/nf%(1). That is, for every a € V and
T e ([Z]), we will show that

SD(Wa(a)|r,Ur) < e,

where Ur denotes the uniform distribution over the coordinates given by T
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Let T =T U ... 0TG- be a partition of T, where T#) = a='(i) n T for i € Zs. We
will fix an arbitrary b € ZI" and upper bound the difference |Pr[Wa(a)|r = b] — sik . For
this, let e = (e;)jez, denote the number of occurrences of j € Z, in b. Furthermore, let
el) = (ey)) jez, Where eg-i) denotes the number of occurrences of j € Zg in b when restricted
to T, To make the notation cleaner, for the rest of the proof, we will use the notation p(®

to mean p(i). We then have:

rewatair =l = (Mo M) (L) () () )

For each i € Z, we have

m—|T® i i i i
(p(nl_e(i)') _ (m—eg)—---—eg_l)! 'p(())' .. i_)ll
(p%) (p((f) — e(()z))! . (pf:ll — egl)! m!

Y — el + 1)) e W e + 1))

m...(m—eg—...egl—i—l)

m m — |T®)]

. () i
c [ (’:—W—W\)T | (Z‘ﬂ/W)T”']
(as each pg-i) € T £+4/Cmlogm)

1 A , |
S ST {1 + mﬂsyc(l)} : (using |TW| < k < O4(1))

Plugging the above bound into (12) and using 3, |[T(®)| = |T'| = k gives that

1 1T 1 k
Prs@ir =l e [] o [14oam] o [5  |

1€l

Therefore, we have

- sk k - 1
= sz,C(l) = an,C(l).

1
sk

SD(Wa(a)lr,Ur) = 5 3

beST

Pr[Wa(a)|r = b] —

Thus we have shown that the three conditions needed to apply Theorem 1.3 hold for Wa. Therefore,
we obtain o9(Wa) < 1/n%.c() finishing the proof of Lemma 3.16. [

We now finish the proof of Theorem 1.1 using Lemma 3.16.
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Theorem 1.1 (Singular value bound for nearly balanced walks). For every s > 2 and
C < o, there exists T > 0 such that for every finite set S of size s and sufficiently large n € N, the
following holds:

If W is a stochastic matriz over the multislice S} that respects symmetries, and satisfies the con-
dition that

W(a,b)>0 = A(a,b) is C-balanced Y a,be S,
then oo(W) < 1/n7.

Proof of Theorem 1.1. The idea is to express W as a convex combination of Wa for A being C-
balanced generalized Hamming distance parameters. We first show that for every a € S}/, the a-th
row of W can be expressed as a convex combination of the a-th rows of the random walk matrix
determined by the individual generalized Hamming distance parameters (i.e, Wa). As W respects
symmetries, for every a, b € S} and permutation 7 € Sym,,, we have that W(a,b) = W(n(a), 7(b)).
Now we note that if it holds that A(a,b) = A(a, c¢) for some a, b, c, then there exists a permutation
m € Sym,, such that 7(a) = a and m(b) = c (this can be obtained by permuting the coordinates
of a that take identical values); hence we have W(a,b) = W(n(a),n(b)) = W(a,c). Since W has
positive entries only at cells corresponding to balanced generalized Hamming distance, we can thus
express the a-th row of W as the following convex combination:

W(a) = Z aaAWal(a), (13)
A is C-balanced

for some aa A = 0 such that Y], . C-balanced @a,A = 1. We now show that aaa = ap a for every
a,b € §) and generalized Hamming distance parameter A. Let m € Sym,, be a permutation such
that m(a) = b and let ¢ € S be an arbitrary point such that A(a,c) = A. Further, let tA denote
the number of points d € S} such that A(a,d) = A (note that this does not depend on a). Then
using (13) we have the following.

1
W(a,c) = aan - — (14)
ta

Since W(a,c) = W(n(a),n(c)) = W(b,n(c)) and (b, n(c)) = A, using (13) again, we have:

W (b, 7(c)) = apa - tlA (15)

From (14) and (15), we get that aa A = ap A = A; hence we can simply denote aa A by aa. Now,
using (13) for all the rows a € S} of W, we obtain

W = > aaWa,
A is C-balanced

where ap =0 and ZA is C-balanced ¥A = L
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Since WZ = WA is stochastic, we note that Wa is doubly stochastic. Thus, by applying Lemma 2.5
we conclude that Ao(WW') < maxa is c-balanced{A2(WA)} < 1/n7, where 7 > 0 is a constant given
by Lemma 3.16. This finishes the proof of Theorem 1.1.

4 Near-Optimal Distance Lemmas Over Balanced Multislices

In this section, we derive near-optimal polynomial lemmas for junta-sums and polynomials over the
balanced multislice. More formally, for a finite set S of size s > 2, integer d = 0, positive integer n
divisible by s and p = (n/s,...,n/s) (repeated s times), we recall that S} = S™ denotes the set of
points in which each element i € S appears n/s many times.

We also recall that J;(Z7, G) denotes the family of d-junta sums from the domain Z? to an Abelian
group G. Similarly, we let Py(Fy) denote the family of polynomials of degree at most d over a fi-
nite field Fy. The well-known ODLSZ lemma states that Pg(Fy) forms a code of relative distance
0 = d(q,d) independent of n. Stated more formally,

Lemma 4.1 (Polynomial distance lemma (ODLSZ lemma)). (See e.g. [G1523, Lemma 9.4.1]).
For every finite field F = g, if a polynomial P € Pq(F™) is such that P(a) # 0 for some a € F",
then

r [P(b) £ 0] > 8(0,d),
where 6(q,d) = (1 —/q)q™“, where a and 3 are the quotient and remainder respectively when d is
divided by q — 1.

With this setup, we prove the following two main theorems in this section.

Theorem 4.2 (Distance of junta-sums over multislice). If a junta-sum P € J4(S", G)
is such that P(a) # 0 for some a € S}, then

1 1
> -
JPr [P(b) # 0] > = — —5y.

As noted in Section 1 we also prove a similar theorem for algebraic degree as opposed to junta-
degree. We recall the theorem statement below.

Theorem 1.4 (Polynomial distance over multislice). For every finite field F = F,, if a
degree d polynomial P(x) is such that P(a) # 0 for some a € I}, on the balanced multislice,
then

1
bljﬁliz[P(b) # 0] = d(q, d) - )’

where 6(q,d) = (1 — B/q)q~“, where o and (B are the quotient and remainder respectively
when d is divided by q — 1.
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We first prove Theorem 4.2 below followed by the proof of Theorem 1.4, which is almost identi-
cal.

Proof of Theorem 4.2. Without loss of generality, we will assume that S = Z, so addition and
subtraction of elements of & make sense. At a high level, the proof proceeds as follows. We
consider a random walk matrix W over the multislice which we will describe below, and bound its
eigenvalues. We will then use the “expander mixing lemma” to derive the required distance lower
bound and finish the proof.

We shall define a random walk matrix WopLsz over the points in the multislice, i.e., V' = S} and
we let N = |V| = (_°" ) where m = n/s is an integer. For each a € V, we define the distribution

over the neighbors of a according to Woprsz (or equivalently, the a-th row of Woprsz, denoted
WobLsz(a)) as being the random variable output by the algorithm below (Algorithm 1).

{ 3

Algorithm 1: The random walk matrix WoprLsz
Input: aeV

1 For j € Zs, letting a=1(j) € ([:1]) denote the coordinates of a with value j, sample
uniformly random bijections M; : a=1(j) — [m] independently for all j € Z.

2 Sample y = (y1,...,Ym) ~ ZT* u.a.r.

3 Define b = (by,...,by) as follows: For i € [n], we let j := a; and b; := ypy, ) + -

4 return b

. 7

We first note that b is always on the balanced multislice, i.e., b € V', so WopLsz is a well-defined
random walk matrix over the balanced multislice. We now argue that for every fixed a € V such
that P(a) # 0 for a junta-sum P € J;(S™, G), it holds that

Pr  [P(b) #0] = 1/s%

b~WopLsz(a)

To see this, we fix the bijections M; : a~!(j) — [m] in Step 1 of Algorithm 1 arbitrarily and get
the probability bound over the uniformly random choice of y in Step 2. More precisely, letting

Q(y) = P(b) = P((ya,, (i) + @i)ie[n)):

we note that @ : 8™ — G is a d-junta-sum since P is a d-junta-sum. Moreover, Q(0) =
P(a) # 0. Therefore, by applying Claim 2.6, we get that Pry.sm[Q(y) # 0] > 1/s%, and thus
Prb"’WODLSZ(a) [P(b) 75 O] 2 1/Sd.

Letting U < V denote the set of points in V' which evaluate P to a non-zero value, from the above
discussion, we have that
Vae U, Pr [beU]>1/s (16)

b~WopLsz(a)

We now use the expander mixing lemma.

40



Theorem 4.3 (Expander mixing lemma see e.g. [HLW00] Lemma 2.5). For every symmetric
random walk matrizc W € RV*YV over a finite vertex set V and U c V,

‘L’)Q <’L‘>
Pr Jace and be U << Ao ,
bfr/l/‘(u)[ ] | | ( ) | ’

where A2(W) denotes the second largest eigenvalue of W in absolute value.

In order to apply the above theorem, we will need to show that the random walk matrix Wopr,sz
we defined is symmetric and has a small Ao(Woprsz).

Lemma 4.4. The random walk matriz WopLsz as defined in Algorithm 1 is symmetric and satisfies
X2(Woprsz) < 1/n%=M).

We prove this lemma in Section 4.1.

We can now finish the proof of Theorem 4.2 assuming the above lemma. On the one hand, (16)

implies that

P [aeU and be U] = Ul 1
r an > (= | =,

a~V ‘V| s

b~Woprsz(u)

and on the other hand, Theorem 4.3 and Lemma 4.4 imply that

Pr [anandbeU]<<|U|>(|U|+ L >

e Vi) \ v nem
b~WopLsz(u)

Putting them together, we obtain that % > s% - ﬁ, thus finishing the proof of Theorem 4.2. R

We now prove the near-optimal distance lemma for algebraic degree (Theorem 1.4).

Proof of Theorem 1.4. The proof follows exactly the same approach as that of the distance lemma
for junta-sums over the balanced multislice (i.e., Theorem 4.2). All the additions and subtraction
of the domain elements are now instead done over the field F instead of the group Zs. The only
other difference is in (16) where we now get a lower bound of (¢, d) instead of 1/s%. This is because
the restricted function @ : F* — F is now a function of degree at most d, so we can apply the
standard ODSLZ lemma (Lemma 4.1) instead of the junta-sum distance lemma (Claim 2.6) to get
this bound. Due to its similarity with the proof of Theorem 4.2, we omit the rest of the details. W

Hence, it only remains to prove the eigenvalue bounds for Woprsz, i.e., Lemma 4.4, which we do
in the next subsection.
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4.1 Eigenvalue Bounds for Woppsz

Before we proceed with the proof of Lemma 4.4, we remark that it doesn’t immediately follow
from our result for nearly balanced random walks (i.e, Theorem 1.1 from Section 3) since Woprsz
can potentially have non-zero weights even for edges whose generalized Hamming distance is far
from being balanced. Moreover, it doesn’t even immediately follow from our more general theorem
(Theorem 1.3) from Section 3 as it requires a bounded Frobenius norm which isn’t the case with
WobLsz. However, we are able to reduce it to a setting where Theorem 1.1 actually applies and
use it to get the final bound.

Proof of Lemma 4.4. At a high level, we prove this in the following steps. We first provide an
alternate description of the random walk matrix Woprsz (defined in Algorithm 1) using general-
ized Hamming distance matrices. Then, we express Woprsz as a convex combination Woprsz =
Zie[ﬂ o; W; for some random walk matrices W; where Zl a; = 1. Then, we use our expansion result
for nearly balanced walks (Theorem 1.1) from Section 3 to bound Ao(W;) for “most” i € [t], and
use this to finally bound Ao(WopLsz). Before we go into the actual proof, we need to recall a few
definitions.

For a,b € V, we recall (from Definition 2.1) that A(a, b) € Z%*%s denotes the generalized Hamming
distance matriz, i.e., the (i, j)-th entry of the matrix equals the number of coordinates where a takes
value i and b takes value j. We now recall the definition of Woprsz (from Algorithm 1): For each
a € V, its random neighbor b ~ Woprsz(a) is obtained by setting b; = Ynm, (i) T J, where j = a;
and M, : a~1(j) — [m] are bijections chosen u.i.a.r., and y ~ Z? is chosen independently. Hence,
we see that

A(a,b)(i, ) = fj—i
where f; denotes the number of times j € Z, appears in y. In fact, conditioned on A(a,b) = P for
some fixed P, the conditional distribution of b is uniform over all points b such that A(a,b) = P,
since M;’s are uniform and independent bijections. In particular, this alternate description of
WobLsz shows that it is symmetric.

Now, for a “frequency vector” f = (fo,..., fs—1) € Z% where Zj fj = m, we let W¢ denote the
random walk matrix where for each a € V, Wg(a) is the uniform distribution over

{bev:a@b) = (-0 | (1)

Then by our previous discussion, for each a € V, by conditioning on the choice of the frequency
vectors resulting from y ~ 8™ and using the total probability law, we obtain

Woprsz(a) = Y| agWe(a),
fezs
Zj fi=m

where af = (?) /s"™ denotes the probability of getting the frequency vector f from a uniformly

random y € S™.

The idea now is to apply our eigenvalue bound (Theorem 1.1) from Section 3 to the W’s and
then bound the eigenvalues of Woprsz. However, there are two issues: First, the eigenvalue
bound from Theorem 1.1 requires the matrix to be supported only on edges with nearly balanced
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generalized Hamming distance, which isn’t the case for all W¢’s. Regardless, we show that this
holds true for the “typical” Wg’s and that this suffices. And secondly, we remark that each Wy
need not be a symmetric matrix. However, since we already know that Woprsz = > arWe is

symmetric, we have that
We + W,
WopLsz = Zf:af <2f> ;

We+W, .
where now we see that the “components” % are symmetric.

We say that a frequency vector f is “bad” if there exists a j € Zs such that f; ¢ = £ 4/ W,
and say that f is “good” otherwise. We have, by a Chernoff bound, that

S
Do < — (18)
£ bad m&()

We+ W,
5

Claim 4.5 (Eigenvalue bounds for Wy). Suppose £ = (fo,..., fs—1) is such that f; € = +

10m logm . ! 1 /. We+W,T
=B for all j € Zs. Then, Ao(Wy) < —gy, where Wy = ———+t.

Now we claim that for every good f, it holds that Ap (W§) is small where W} :=

Proof. We note that the matrix W§ respects symmetries and has non-zero entries only on entries
corresponding to a balanced generalized Hamming distance of either A or AT (both of which are
(10/s)-balanced). Hence the proof follows directly by applying Theorem 1.1 to the matrix Wi. W

We now bound the eigenvalues of Woprsz and finish the proof of Lemma 4.4. By applying Lemma 2.5
with S being the set of good f, we have

A2(WobLsz) = A2 (Z afo'>
£

< max {2 (Wg)} + Z ar (using Lemma 2.5)
f good f bad

1
< | —— |+ Z af (applying Claim 4.5 to the random walk matrix WW})
nf () f bad

< PONGYE (using (18))

The above bound shows that all the eigenvalues of Woprsz except the largest one must be bounded
above by 1/an(1) in absolute value, i.e., A\o(Woprsz) < 1/an(1) proving Lemma 4.4. [ |

5 Local List Correction of Junta-Sums

In this section, we will prove the following theorem which is a restatement of Theorem 1.5 with
explicit bounds on the query complexity.
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Theorem 5.1 (Local List Correction): For every Abelian group G and for every € > 0, the
space Jy(S™,G) is (1/s? — ¢, O:(1), O:(logn)?, O(1))-locally list correctable.

In particular, there is a randomized algorithm A such that for a function f : 8™ — G and
a parameter € > 0, Af(¢) outputs with probability = 3/4 a list of randomized algorithms
{qﬁi}f:l (L = Os(1)) such that the following holds. For each junta degree-d function P € Jy
that is (1/5% — £)-close to f, there exists at least one randomized algorithm ¢; such that (ﬁzf
computes P correctly on every input in 8™ with probability at least 3/4.

The algorithm A makes O.(1) queries to f, while each ¢; makes O.(logn)? oracle queries to
f.

We remark that for the Boolean case, [ABPS525] proves that one can reduce the number of queries
to a constant depending only on ¢ and the torsion (or ezponent) of the group (see Section 2 for a
definition). Similarly, in this case, we get a similar statement where the algorithm 4 makes O (1)
queries, and each ¢; makes Ojr.(1) queries where M is the exponent of the torsion Abelian group
G. More formally, we prove the following.

Theorem 5.2. For every torsion Abelian group G of exponent M > 0 and every € > 0, the family
Ja(S™,G) is (1/s% — ,0.(1), Opre(1), O(1))-locally list correctable.

As stated earlier, [ABPSS25] gave a local list corrector for degree-d polynomials over S = {0,1}. We
note that most of their proof can be extended to junta sums and general S with some extensions to
their arguments. However, a key challenge was to show that certain random walk matrix has good
spectral expansion. In particular, [ABPSS25, Lemma 5.1.1] is proved by analyzing the eigenvalues
of matrices defined on Johnson graphs. To extend their argument to general grids, we have to
analyze the eigenvalues of random walk matrices on the balanced multi-slice. In this section, we
describe the random walk matrix arising from the analysis of our local list corrector and show that
it has “large” spectral gap, using Theorem 1.1. We first give a quick overview of the algorithm,
which is an extension of [ABPSS25, Algorithm 3 and Algorithm 4].

Overview of the local list corrector. Similar to the work of [ABPS525], our local list corrector
goes as follows:

e We design a local corrector Ju(S™, G) (see Theorem 5.3).
e We show a combinatorial list decoding bound for J3(S™, G) (see Theorem 5.4).
o We design approzimating oracles for J4(S™, G) (see Theorem 5.5).

e Combining an approximating oracle with local corrector, we get a local list corrector. The
bound on query complexity follows from the combinatorial list decoding bound.

Our key technical contribution is in analyzing the approximating oracles. We use a very similar
algorithm for approximating oracles as in [ABPSS25], however the correctness is more involved.
The first two steps are again analogous to [ABPSS25, Section 3 and Section 4]. Most of the
arguments follow with a simple extension from {0, 1} to S, and few arguments require a bit more
careful analysis. For the sake of completeness, we give a proof for local corrector and combinatorial
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list decoding bound. We state the results for them below, and after that we will proceed with the
local list corrector.

Theorem 5.3 (Local correction of junta-sums). For every € > 0, finite set S of size s = 2
and d = 0, Abelian group G, the family Jy(S™,G) is (O-(logn)?,8.7/2 —e)-locally correctable
where 6.7 = 1/s%.

Moreover, if G is a torsion Abelian group of exponent M, then the number of queries can be
made Opr (1), d.e., Ja(S™, G) is (Ope(1),05/2 — €)-locally correctable.

Theorem 5.4 (Combinatorial List Decoding Bound). For every e > 0, positive integers s, d,
and Abelian group G, the family Jy(S™, G) is (1/s¢ — &, O(1))-list decodable.

For every f : 8™ — G which is (s% —e)-close to Ju(S™, G), let List-(f) denote the set of d-junta-sums
that have distance < (1/s? — ¢) to f, i.e.

List.(f) = {P e Ja(S™,G) ) 5(f,P) < Sid - 5} .

We give a proof for Theorem 5.3 and Theorem 5.4 later. We informally state a standard observa-
tion'? in the literature of local list correctors which says that given local correctors, it is enough to
design approximating oracles (see Theorem 5.5):

If there exists a local corrector, then it suffices to design an algorithm which outputs a list of
algorithms with the guarantee - For every junta-sum P in the list, there exists an algorithm A in

the list which computes P correctly on sufficiently large fraction of 8™, and then we can run the
local corrector on A.

So the focus in this is to design the approximating oracles. The following theorem is larger-grid
analogue to [ABPSS25, Theorem 5.0.1].

Theorem 5.5 (Approximate oracles). Fixn e N, e > 0. Let f : S — G be any function and
L(e) := |Liste(f)|. There exists a randomized algorithm A{ that makes at most O(1) oracle
queries and outputs deterministic algorithms Wy, ...,V satisfying the following property:
With probability at least 3/4, for every junta-sum P € Listg, there exists a j € [L'] such that
1. §(¥;, P) < 1/(10 - 29+1)
2. For every x € 8", W; computes P(x) by making at most Oc(1) oracle queries to f.
Here L' = O(L(g/2)log L(¢)) = O.(1).

We first show that using Theorem 5.5 and Theorem 5.3, we can prove Theorem 5.1 (and Theo-
rem 5.2).

12 This is also used in [ABPSS24; ABPSS25]. See [ABPSS25, Section 5] for a more elaborate discussion on it.
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Proof of Theorem 5.1 and Theorem 5.2. We first employ Algorithm 4 with oracle access to f and it
outputs deterministic algorithms 1)1, ..., 1 where L' = O(L(g/2)log L(¢)). Next, we run the local
corrector for J;(S™, G) on each of ;. This completes the description of our local list corrector.

The correctness and query complexity now follow by combining Theorem 5.5 and Theorem 5.3. W

Organization of the section We start by proving a sampling lemma for the balanced slice of
the grid 8™ in Section 5.1. The key tool to prove this sampling lemma will be to show that a
certain random walk matrix (it arises from our sampling procedure) is a “good spectral expander”
(see Theorem 5.9). We will prove by employing Theorem 1.1. After the sampling lemma, we
then prove a sub-optimal distance lemma for d-juntas on multi-slices of 8™ (see Theorem 5.10).
Combining the sampling lemma (Lemma 5.7) and the distance lemma on slices (Theorem 5.10), we
get Corollary 5.12. This corollary will be useful in showing that our local list correctors have a small
error probability, i.e., Corollary 5.12 will bound the probability of our local list correctors making
a certain type of error. Once we have these statements, we describe a subroutine in Section 5.3
and the local list correctors in Section 5.4. Finally, we analyze the algorithms in Section 5.5.

5.1 A Sampling Lemma for the Balanced Multislice

Definition 5.6. Let k,s € N. For a s-to-1 map 7 : [sk] — [k], let C, = S** denote the k-
dimensional subgrid obtained by identifying coordinates acccording to 7. More precisely, for every
y € S*, let 2, (y) € S be defined as follows:

zr(¥)i = Yr(i)s for all i€ [sk].

Define C; := {z.r(y) | y € Sk}.

The main lemma of this subsection is to show that if we sample a uniformly random s-to-1 map T,
then C; is a good sampler for the balanced slice of S,ik o

Lemma 5.7 (Sampler for the Balanced Slice). Let k, s € N. There exists an absolute constant
n =n(s) > 0 such that for every subset S < Sj;k sk» we have,

1 1
PTr[ ZM]<OS<I€”>’

where the probability is over the choice of a random s-to-1 map T : [s*k] — [sk].

S| ISnGl
2
S5F ol ISEE

Description of the matrix W: For this section, we will assume that n is divisible by s. We will
use p to denote the balanced partition of n into s rows, i.e. u = (n/s,n/s,...,n/s). Let N denote
the number of points in the balanced slice S}, i.e. N = [S}| = (n/s,n/z,...,n/s .

Definition 5.8 (The matrix W). We will define the random walk matriz by the joint distribution
over Sl’} X Sl’} represented by the matric W/N. In particular, it is the joint probability distribution
of (u,v) corresponding to picking a uniformly random vertex u ~ S} and v ~ W (a) is its random
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neighbor corresponding to taking a random step according to W. We then define W /N according
to the distribution of the output of the following steps:

1. Picka,b ~ S;sz“,k uniformly and independently at random.
2. Pick a s-to-1 map 7 : [s*k] — [sk] uniformly at random.
3. Output (u,v) = (z-(a),z-(b)) (see Definition 5.6 for the definition of x,(-)).

We note that W is symmetric since the joint probability distribution of (u,v) above is symmetric
w.r.t. u and v. We further claim below that W has good spectral expansion:

Theorem 5.9 (Spectral expansion of the random walk matrix). Let W € RY*N pe the
symmetric random walk matrix as described previously. Denote the second largest eigenvalue
of W (in terms of absolute value) by X\o(W'). Then there exists v = v(s) > 0 such that

1
(W) < —.

nl/

We first prove Lemma 5.7 assuming Theorem 5.9.

Proof of Lemma 5.7. Let o := |S|/|8§zk |- For every y € S*, define Z(y) to be the indicator vari-
able which is 1 if z-(y) € S. For a uniformly random s-to-1 map 7, for every y € S,jk i» the random

variable z,(y) is uniformly distributed in Sj,ik .- Thus for every y € Si* | the E.[Z(y)] = 0.
Let Z := |SnC;| = Zyesz """
will now bound the variance of Z.

Using the linearity of expectation, we have,

E[2°] = ) EJ[Z(a)-Z(b)] = ] Pr[z-(a) € S A 2.(b) € 5]
abeSik | abeSik

If we sample a, b uniformly and independently at random from S ,‘:k «» then by the definition of the
matrix W (Definition 5.8), we get the following equality:

Pr [z-(a)eS A z:(b)eS] = Pr [ueS A vels] (19)
ab”‘slzﬁ..,k u~$§,§k ok
T v~ (u)

Using the Expander Mixing Lemma (see e.g. Theorem 4.3),

Pr [ueS A vesS] < o?+ W)

= E[Z°] < IS 417 (0 + X (W)
—(E[Z])" < ISEE k- 2 ().



Now using Chebyshev’s inequality on Z, we get,

< Var(Z _k < Xo(W) - k21
< Var( )|S;zkk|2 < (W) -

1
Pr ||z - o 15l > 015
T FR) k’f] PERRE)

From Theorem 5.9, we know that \o(W) < 1/k", which implies that

1 1

This finishes the proof of Lemma 5.7. |
We now prove Theorem 5.9 which bounds the eigenvalues of the random walk matrix W.

Proof of Theorem 5.9. We recall (from Definition 5.8) that the random walk W is over the balanced
multislice V := Sffk = Sj;ksk and N = [S};| denotes the number of vertices where n = s2k. We
will use the following equivalent description of W. We observe that W /N is the joint probability
distribution of (u,v) corresponding to picking a uniformly random vertex u ~ V and v ~ W (a) is
its random neighbor corresponding to a taking a random step according to W. We now rephrase
the description of W/N from Definition 5.8:

1. Pick a,b ~ S,jk i uniformly and independently at random.
2. Let P = A(a,b) and P = sP.
3. Output (u,v) such that A(u,v) = P uniformly at random.

The above output is indeed distributed according to W /N by noting that the map 7 used in Def-
inition 5.8 is chosen uniformly and independently from a,b ~ S,ik . and for every such 7 used
in Definition 5.8, we have that A(u,v) = A(z,(a),z-(b)) = s - A(é, b). Now, applying a total
probability rule over the choice of a and b in Step 1, we have:

w WsP
N0y (20)

where we use ap to denote the probability that A(a,b) = P for a,b chosen uniformly and in-
dependently at random; and Wgp denotes the random walk over the multislice, determined by
the generalized Hamming distance matrix sP (see Definition 2.3). We now say that a generalized
Hamming distance matrix P is good if it is (10/s)-balanced (by Definition 2.2, this is equivalent

. . k 10k log k
to saying all entries of P are T £ 4/—27)

10-balanced w.r.t. the multislice Sffk if P is good. We first show that the mass of ap on bad P is
small: that is, we show that > 5.4 @p, which denotes the probability that A(a,b) is not (10/s)-
balanced, is at most 1 /kQS(l). By fixing a and noting that b is still uniformly distributed over Sjk ,
we see that each entry of P is distributed according to a hypergeometric distribution with a total
of sk states and k success states, and we are picking k draws without replacement. By applying

Hoeffding bound [Hoe94], we get that this probability is at most 1/2~ sy logk/k)?k < 1/k—$%(),

and P is bad otherwise. It is easy to see that sP is
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Now by a union bound over all the k? entries of the matrix P, we get that the probability that P
is not (10/s)-balanced is at most 1/n*(1) as claimed. That is,

Z ap < 1/]693(1). (21)
P bad

We now use our main eigenvalue bound from Section 3 to bound A2 (W!,) when P is good, where

W!p = % In particular, since we have that sP and (sP)" are (10/s)-balanced for good P,

by applying Theorem 1.1, we have for all good P that
Ao(Wlp) < 1/k%0). (22)

We note that since we showed that W is symmetric, (20) implies that

W
W = Z ap ( sP + ) 2 apW
We can therefore apply Lemma 2.5 with the set S being the set of good P to conclude that

Ao(W) < max {Aa(Wip)} + D1 ap < 1k <1/
good P bad

by using (21) and (22). This finishes the proof of Theorem 5.9. |

5.2 Sub-optimal Distance Lemma Over Multislices

In this subsection, we prove that if a junta sum does mot vanish on a multi-slice, then it does not
vanish on at least a constant fraction of that multi-slice. It is a generalization of the distance
lemma for junta-sums (Claim 2.6), generalized from grids to slices. In the case of S = {0, 1}, such
a statement was proved in [ABPSS25, Lemma 5.1.6]. They proved it by induction on the degree
d. We observe that a similar induction also works for junta sums. We provide a proof below. For
S = {0, 1}, our lower bound matches [ABPSS25, Lemma 5.1.6].

For this, we will need the following notation. For integers d > 0 and s > 2 and (n;)es, let
n = ZieS ni, n = (n;)jes € S". Let the multi-slice S} € S™ denote the set of points which contain
n;4+1 many occurrences of the element ¢ for all 7 € S. Let (z) = (no,m,?.,ns_l) denote the size of Sy
(so it is zero if some n; is negative). We also use the notation n—d to denote the tuple ((n; —d));es.

Theorem 5.10 (Sub-optimal distance lemma for junta sums on multi-slices). For every
n = (n;)ies with Y ,.gni = n, the following holds. If a junta-sum P € J4(S™, G) is non-zero
on the multi-slice 8! i.e. there exists a point a € S such that P(a) # 0, then

e o2 (1)

49



Proof of Theorem 5.10. The proof of the theorem is by induction on d. The base case d = 0 is
handled by noting that P is a constant function in this case. Now suppose d > 1. We shall assume
that n > sd + 1 and n; = d for all ¢ € Zg, as the theorem statement is trivial otherwise.

We will assume that P is not a constant function over ([Z]) as otherwise we are done. In particular,
we can always find two points a,b € ([z]) such that P(a) # P(b) and they differ in exactly two
coordinates; this follows by noting that we can move from any point on the multislice to any other
point by swapping elements a finite number of times. Without loss of generality, we can assume
that a and b differ on the first and last coordinates; i.e., a; = b, = « and a,, = b; = [ for some
a # B € Zs. Let n' = (n})iez, be defined by n, = n; for i ¢ {a, 8} and n, = n; — 1 for i € {a, 5}.
We now consider the function Q : S"~2 — G defined as:

Q(x27"' >$n—1) = P(Oé,.%'g,... 71‘n—1’6) - P(ﬁ,l’g,. . '7xn—1705)'

As P(a) — P(b) # 0, we see that @ is not identically zero over ([”;,2]). We also claim that @ is a
(d — 1)-junta-sum. Indeed, if

P(zy,...,x,) = Z Je H e, (),

ceZ?:|c|<d i€[n]:c; #0

then in the junta-polynomial of @, all the monomials that do not contain either xy or x, will be
canceled, while the monomials of degree d that contain either x; or x, (or both) will reduce in
degree. Hence, Q € Jy_1(S"2,d — 1). Now, by induction hypothesis, we have that there are
at least (";?:(Z(fz)l)) choices for d € (["r:,z]) such that Q(d) # 0. For each such d, we have that
Q(d) = P(a,d, ) — P(B8,d,a) # 0 so either a’ = (a,d,3) or b’ = (8,d,«a) is a non-zero of P.
Furthermore, we can verify that a’,b’ € ([:,]). Let e denote the tuple which is 1 at all indices

i ¢ {a, B} and is 0 for i € {«, 8}. Hence, the number of non-zeroes of P over ([ﬁ]) is at least the
number of such d which is at least

(o)) = () - ()= G 0= G
n

Using Theorem 5.10, we immediately get the following corollary, which gives a lower bound on
the fraction of non-zeroes on the balanced multislice.

Corollary 5.11. Let n,s,d € N with n = sd divisible by s. Let = (n/s,...,n/s). If a junta-sum

P e J(8",d,G) is non-zero over Sy}, i.e. there exists a€ S;} such that P(a) # 0, then:

Pr [P = .
X~«£]}[ (X) 75 O] (Sd)Sd

Proof of Corollary 5.11. Let n = ms for some m € Z. By Theorem 5.10, we have that the proba-
bility of a random point in S); being non-zero for P is at least:

" (n—sd)! ml®

M (m-dF

n
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mm—1)...(m—d+1) mm—1)...(m—d+1)
nn—1)...(n—d+1) " (n—(s=1d)(n—(s—1)d—1)...(n—sd + 1)

\n n-1 n—d+1) "\n—(s—1)d n—(s—1)d—1 n—sd+1
m—d+1 d m—d+1 d '

<n—d+1> (n—5d+1> (using § = §=; for 0 <i <a <b)
n—sd+s \™

=

s(n—d+1)
1

> (sd)sd (using ?;_Sf:ls > 1 since n > sd — 1)

Using Lemma 5.7 and Corollary 5.11, we get the following corollary.

Corollary 5.12. There exists an absolute constant n > 0 for which the following holds. Let

R e J4(85°% @) be a non-zero function and there ewists a w € Sj;ksk such that R(w) # 0.

Let 7 : [s?k] — [sk] be a random s-to-1 map and C, be the subgrid as defined before. Then,
1

g sk -
f;r[R|cT vanishes on Sj ;] < —

Proof of Corollary 5.12. Let S denote the set of non-zeroes of R on the slice S sk e S =
{a € SS sk ‘ R(a) # 0} From Corollary 5.11, we know that

s S
51 /(s ) -S54 ol = b — = (1)
‘ sk‘,...,sk’

R|c. does not vanish on SSk k if S nC; # . Using Lemma 5.7, we know that the probability of
S nC; = (over the randomness in choice of 7) is at most 1/k". [ |

5.3 Subroutine for Approximating Oracles

Definition 5.13 (Subgrid containing b). Let C = Cj 11 be a k-dimensional subgrid of S"™ as de-
fined in Definition 2.9, where h : [n] — [k] is a hash function and II € (Sym[S])" is a tuple of
permutations. For an arbitrary b € 8™ and a permutation o € Symg;, define a new hash function
B [n] — [sk] as follows:

B (i) = o(h(i) + k- b;), for all i€ [n]

For every z € S°*, define rp1(z) == i(zp(;)). Define the subset Cb = 8" as follows

C‘g = {mh’n(z) ‘ z € SSk}.
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We make a few observations from Definition 5.13. The first observation is that b is indeed in CP.
The second observation is that for random h,II, b and o, the subgrid C},’ is a random embedding
of a sk-dimensional subgrid. The third observation is that C is a subgrid of C? and is obtained by
“randomly pairing” coordinates.

Observation 5.14. The point b € S™ lies inside the subgrid C2, i.e. there exists a string w € Sﬁk’ K
such that xp 1(w) = b. More explicitly,

Whi)+kb; -~ I (bs), for all i € [n].

Also it is easy to see that the partition of [n] induced by h' (as defined in Definition 5.13) is a refinement
of the partition induced by h. This means C = CP.

Observation 5.15. Let h,I1, and b (as stated in Definition 5.13) be randomly chosen. Then CP is a
random embedding of a sk-dimensional subgrid, i.e. there exists a random hash function H : [n] — [sk]
and a random II' € (Sym[S])™ such that C2 has the same distribution as C; 1.

Observation 5.16. Let h,II, and b (as stated in Definition 5.13) be randomly chosen. Conditioned
on the grid C?, the subgrid C has the following distribution:
Sample a random s-to-1 map'® 7 : [sk] — [k] and we identify s variables together.

5.4 The Algorithm

In this subsection, we give the description of the algorithms to prove Theorem 5.5. The algorithm
proceeds in two steps, and this is similar to the algorithms in [ABPSS25, Section 5.2.2], barring a
few changes to handle larger grids S. We request the reader to refer to [ABPSS25, Section 5.2.2]
for an overview and discussion on the algorithms.

In the following description, let L(e) = |List-(f)|, where recall that List.(f) is the set of d-junta-
sums that are (1/s% — ¢)-close to f. Note that Algorithm 2 is a deterministic algorithm and all the
randomness is in Algorithm 4,

13 A map is s-to-1 if the pre-image of every element under the map has size exactly s, i.e., exactly s elements from
the domain have the same image.
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Algorithm 2: Approximating Algorithm ¥[C, o, Q]
Input: Oracle access to the function f, a point b e §”

1 Let C' be a subgrid spanned by C and b using o € Sym,, // see Definition 5.13
2 Let w € S*F such that x(w) € C' and #(w) =b  // see Observation 5.14, |w|e S
3 Query f on the subgrid c // Number of queries is s°"

I

Find all degree-d junta-sums Ry, ..., Rp» € J3(S**, G) that are (Sid — %)—close to
fle
if there exists an i € [L"] such that R;|c = Q then

o

6 L pick any such i and return R;(w)
7 else
8 L return 0 // An arbitrary value

\. J

Now we describe the randomized Algorithm 3 that returns the descriptions of the deterministic
oracles.

s D

Algorithm 3: Algorithm A,
Input: Oracle access to the function f

(&
1 Choose k < Bd (@) // B4 and c are constants, chosen later in the analysis
2 Set £ < log L(¢)
3T —
4 repeat
5 Sample IT € (Sym[S])"™ and a random hash function h : [n] — [k]  // the first
source of randomness
6 Construct the subgrid C := Cj 11 // see Definition 2.9
7 Query f on the subgrid C // Number of queries is 2°
8 Find all junta-sums Q1,...,Q € J4(S*, G) that are (sld — %)—close to flc
9 Pick a uniformly random permutation o ~ Sym,, // the second source of
randomness
10 T<—TU{(C,U,Ql),...,(C,U,QL/)}

11 until ¢ times

12 return V[C,0,Q] for all (C,0,Q) e T // Size of T is < (L'

5.5 Analysis of the Local List Corrector

In this subsection, we analyze Algorithm 4 and Algorithm 2 to prove Theorem 5.5. We recall the
statement of Theorem 5.5.
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Theorem 5.5 (Approximate oracles). Fiz n € N, ¢ > 0. Let f : S® — G be any function and
L(e) := |Liste(f)|. There exists a randomized algorithm A{ that makes at most O-(1) oracle queries
and outputs deterministic algorithms W1,..., Y, satisfying the following property:

With probability at least 3/4, for every junta-sum P € List!, there exists a j € [L'] such that

1. 6(¥;, P) < 1/(10-24+1)
2. For every x € ", W; computes P(x) by making at most Oc(1) oracle queries to f.
Here L' = O(L(¢/2)log L(g)) = O(1).

We start by show that in a single iteration of Algorithm 3, for every junta-sum P € Listg , with prob-
ability at least = 99/100, there exists an approximating oracle ¥[C, o, Q)] such that 6(P, ¥[C, o, Q])
is at most < 1/(10 - s7+1).

Lemma 5.17 (Error w.r.t a fixed junta-sum in one iteration). Fiz a junta-sum P € List{. Then
for every iteration of Algorithm 3, the following holds:

With probability = 99/100, over the randomness of Algorithm 3, there exists a tuple (C,0,Q) such
that

1

(P, ¥[C,0,Q]) < 10 sd 1"

Proof of Lemma 5.17. Fix a particular iteration of the main loop of Algorithm 3. In this iteration,
there are three sources of errors:

1. Event & p (depends on IT and h): There does not exist a junta-sum @ € J4(S¥, G) such that
Q = P|c.

2. Event & p (depends on II, h,0,b): Consider a tuple (C,0,Q;) € T added in this iteration.
For the approximating algorithm ¥[C, o, Q;] (Algorithm 2), there does not exist a junta-sum
R e Jy(S%F,G) such that R = P|c:. Observe that this event is independent of Q; and only
depends on C, b, and o.

3. Event & p (depends on I1, h, o, b): Consider a tuple (C, 0, Q;) € T added in this iteration. For
the approximating algorithm V[C, o, Q;] (Algorithm 2), there exists two distinct junta-sums
Ri, R; € J4(S%%, G) such that R;|c = Rj|c but R;(w) # Rj(w). In this situation, Line 6 of
Algorithm 2 is not a well-defined instruction. This event also only depends on C, b, and o.

The probability of & p and & p can be upper bounded by using Lemma 2.10 on C and C’ respec-
tively. To upper bound, we use Corollary 5.12.

Claim 5.18 (Probabilities of the first two error events). Let &1 p and & p be as defined above.
Then,

1 1
Pri&pl < and  Pr [fap] € — .
rlérl < oogo st Pr lEer] < Joagp

Proof. Let us start with & p. Non-existence of a @ € J4(S*, G) such that Q = P|c is equivalent
to d(P|c, flc) > (1/s% —€/2). Using Lemma 2.10, we get the desired bound.
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For & p, we use Observation 5.15 and then proceed as in the case of £; p. This finishes the proof
of the claim. [

The next claim is to upper bound the probability of the third error. Upper bounding this error
uses the spectral expansion and is very different from the Boolean setting as in [ABPSS25].

Claim 5.19 (Probability of the third error event). Let £ p be as defined above. Then,

1
P < -
n,h,ﬁ,b[&’f] 10000 - sd+1

Proof. Fix a subgrid C'. This fixes the junta sums Ry, ..., Ry~ in Line 4 of Algorithm 2. Consider
any two distinct junta sums R; and R; such that they differ on at least one point in S,j’“ ;o (this

includes the pairs which differ on w). This means R := R; — R; is non-zero on Slik s We want to
upper bound the probability that R;|c = Rj|c i.e. R|c =0.

Using Observation 5.16 and Corollary 5.12, for appropriately chosen constants By and ¢, the prob-
ability of R|c vanishing is < 1/(10000 - sdJrl L(g/2)?). We know that L” < L(¢/2). Doing an union
bound on all possible pairs (R;, R;), we get the error probability is < 1/(10000-s%*1). This finishes
the proof of the claim. |

Combining the above three claims to bound the final error probability is analogous to the proof in
[ABPSS25, Lemma 5.3.1]. As the proof is quite similar, we skip it here.
This finishes the proof of Lemma 5.17. |

The above lemma shows that for a fixed P € List.(f), the algorithm returns an approximating oracle
with high probability in a single iteration. We now use it to finish the proof of Theorem 5.5.

Proof of Theorem 5.5. We first show the correctness of Algorithm 4. Fix any P € List.(f). From
Lemma 5.17, we know that Algorithm 4 returns a tuple (C, o, Q) for which ¥[C,0,Q] is < 1/(10 -
s*1)-close with probability > 0.99. Algorithm 4 has ¢ = log L(¢) many independent iterations.
Thus at the end of ¢ iterations, the probability of the event that there is no tuple (C, o, Q) added
in T such that ¥[C,0,Q] is < 1/(10 - s7*1)-close to P is < 1/100°. By a union bound over all
P € Listc(f), we get the desired correctness probability.

In Line 8 of Algorithm 4, L’ < L(g/2). So in each iteration of Algorithm 4, at most L(g/2) tuples
are added in 7. Thus over ¢ iterations, at most O(L(g/2)log L(¢)) tuples are added.

It remains to argue about the query complexity. In a single iteration of Algorithm 4, we make
sk = sBaL(/2)/2)° queries to f. There are £ = log L(¢) iterations. From Theorem 5.4, we know that
L(e/2) = O,(1). Thus Algorithm 4 outputs the deterministic algorithms Wy,..., ¥, by making
O:(1) queries to f.

For each deterministic algorithm W[C, o, @], Algorithm 2 makes s% = s5Ba(L(/2)/2) queries to f.
From Theorem 5.4, we know that L(e) = O,(1). Thus each ¥; makes O.(1) queries to f. This
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shows the claimed query complexity.
This finishes the proof of Theorem 5.5. |
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A Tabloids, Polytabloids, Multislices, and Functions

For a tableau ¢, tabloid of ¢, denoted by {t} is an equivalence class of tableaux (of the same shape)
under the row equivalence relation. See [Sagl3, Definition 2.1.4] for a formal definition. For a
partition A € P(n), Tabloids()) is a set of tabloids of shape A. The symmetric group Sym,, acts
naturally on tabloids as follows: For a permutation m € Sym,,, 7 acts on a {T'} € Tabloids(\) by
permuting the entries of {T'}. For example if 7 = (125)(46) € S, then

(125)(46) 3

1 2 2 5 3
4 5 6 1
6

W

Tabloids and multislice In the remaining section, we will always use A to denote a partition
such that A = u, where yu = (n/s,...,n/s). Note that £(\) < s. We will use the convention that A
has exactly s many parts, where we append a A with fewer than s parts with 0’s.

We now observe that Tabloids(A) and Sy are in bijection, as follows. For any tabloid {t} e
Tabloids(\), it corresponds to the point a € S where,

aj=1i ifje(i+1)" rowof {t}, for all j e [n].

Similarly, for any point a € SY, we get a corresponding tabloid {t} € Tabloids(\) where for every
j € [n], the (i + 1) row of {t} contains j if a; = j. In simple words, the entries in the (i + 1)
row of {T'} correspond to the coordinates which are 7. Following is an example for n = 9 and
A= (4,3,2):

001210201 <«

co| Ot =
OO N
| w

For a tableau t, a polytabloid for t, denoted by et is a linear combination of tabloids obtained by
permuting the columns of t. See [Sagl3, Definition 2.3.2] for a formal definition. Using the above
bijection, it is easy to see that for every tableau t, the associated polytabloid e; is a function on
SY.
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B Subgrid Sampling Lemma

Here we give the proof of the subgrid sampling lemma from Section 2.

Proof of Lemma 2.10. The proof is an application of the second moment method with a conse-
quence of the following hypercontractivity theorem (Theorem B.1) being used to bound the vari-
ance.

Theorem B.1 ([ODol4, Section 10.3]). Let E € Z? be a subset of density 9§, i.e. |E|/s" = 6. Let
q=2. Then for any 0 < |p| < (1/(q—1)) - (1/s)'~2/1,

Pr [xeE andye E] <§>7%/1,

More formally, for each y € Z¥, let Zy € {0,1} be the indicator random variable that is 1 exactly
when z(y) € T. Let Z denote the sum of all Zy, (y € Z¥). The statement of the lemma is equivalently
stated as

Pr['Z—u-sk’>6'sk]<n (23)
for k as specified above.
Since each z(y) is uniformly distributed over Z7, it follows that each Zy is a Bernoulli random
variable that is 1 with probability x. In particular, the mean of Z is u - s*.

We now bound the variance of Z. Let I, be the interval [(177)8(571), (H’Y)S(S*l)] where v < 1/(s—1).
We have

Var(Z) = ). Cov(Zy, Zy)

vy’

= Y Cov(Zy,Zy)+ Y. Cov(Zy,Zy)

vy :8(y,y" )L, y.y':6(y.y )¢y

< D Cov(Zy, Zy)+ > 1

v,y :6(y,y" )L, y.y':0(y.y' )¢y

< D Cov(Zy, Zy) + 5% exp(—Q(72 - (k(s — 1)/5))). (24)

Y.y 0(y,y )¢y

where the final inequality is an application of the Chernoff bound. On the other hand, for any y,y’

such that 0(y,y’) € Iy, we have seen above that the pair (z(y), z(y’)) have the same distribution as

a pair of random variables (z,z’) where z is chosen uniformly at random from Z” and z’ is sampled
50(y.y")

from the distribution N,(z), where p = 1 — =292 € [—v,7]. Thus |p| <.

Choose 7 such that v < 1/(s — 1) and

slogk ) {1 1 1}
——— < v < min —_— .}

C = .
" (s =1k 47 (k/logk)Y/* s

for a large enough constant C'. Such a v exists since k > B - s*log s for a large constant B.
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Set ¢ = (klogk)"/%. From Theorem B.1, and since v < 1/4, for (y,y’) satisfying d(y,y’) € I, we
have

Cov(Zy, Zy) = Pr[ (y)eT and z(y’') e T] —

min{y, 12 - (exp(O((1/q) - log(1/)) — 1)}.

Plugging into Equation (24) we get the following inequalities:

Var(Z) < 8% . s + 2% 1 5%k O(k) (ifu<]1)

1/4 1/4
e o () ) = Lo of (') (o021

where we used the fact that e < 1+ 2z for |z| < 1/2 for the first inequality and the fact that © < 1
for the second.

Finally, using Chebyshev’s inequality, we get
PrHZ—u-sk‘ >€-sk] :P£[|Z—E[Z]| 2&3’“]
a,

Var(Z) 1 log k\ /4
<E%%<§'O<<k ) =

using the lower bound on k in the statement of the lemma. |

C Local Correction

In this section, we show that the family of junta-sums can be locally corrected up to error ap-
proaching half the distance of the underlying code, i.e., we prove Theorem 5.3:

Theorem 5.3 (Local correction of junta-sums). For every € > 0, finite set S of size s = 2 and
d = 0, Abelian group G, the family Jy(S™ G) is (O-(logn)?, 67/2 — €)-locally correctable where
(5j = 1/Sd.

Moreover, if G is a torsion Abelian group of exponent M, then the number of queries can be made
Onme(1), ie., Ja(S™,G) is (Ome(1),07/2 — €)-locally correctable.

Similar to the prior work on local correction of low-degree over the Boolean cube [ABPSS25], we
divide the proof into two main steps:

e Error reduction: In this step, we give a way of reducmg the error of the oracle f : [s]" — G
from 1/(2s%) — ¢ to 1 for any given &1 < 1/Qg4(logn)?, by making ¢ = O-(1) queries to
f. In particular, there exists a 55(1) query algorithm A such that, when given as oracle
f:[s]™ — G such that 6(f, P) < 1/(2s%) — ¢ for some P € Jy([s]", G), it satisfies

PrlA/ (x) # P(x)] <1,
where the above probability is both over the randomness of A and x ~ [s]” is independently

and uniformly chosen.
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e Correction in low-error regime: Here, we now assume access to a randomized oracle
I+ [s]™ — G such that Pr[f’(x) # P(x)] < &1 for x ~ [s]" for some P € Jy([s]", G), and
design a g2 = O 4(1/€1) query algorithm A’ such that for every x € [s]", we have

Pr[AY (x) # P(x)] < 1/4.

Hence, composing the algorithms A and A’, we get a local corrector for f that uses at most
qL-q2 = 55(log n)d queries. For the case of groups with small order, we follow the same line, except
we change the threshold €1 to be at most 1/Q/.(1), resulting in g1 = g2 = Op(1). This would
then finish the proof of Theorem 5.3.

While the error reduction procedure closely follows similar ideas as for the Boolean cube (s = 2)
from prior work, the low-error regime needs some changes. We give the proofs for error reduction
in Appendix C.1, and for the low-error local corrector in Appendix C.2. For the remainder of the
section, we fix G to be an arbitrary Abelian group and assume that s > 2 (as Jy([s]", G) is a trivial
family otherwise).

C.1 Error Reduction

The main goal of this subsection is to prove the following:

Lemma C.1 (Error reduction). For every e = 1/0 4(logn)?, there exists a q1 = 6576175(1)
query algorithm A such that for every f : [s]® — G satisfying 5(f, P) < 1/(25%) — ¢ for some
P e J4u([s]™, G), the following holds:

Pr[Af (x) # P(x)] < e,

where the probability is over a uniformly random x ~ [s|", and an independent choice of the
randomness of A.

We will proceed in an almost identical way as done by [ABPSS25] with a natural extension of the
notion of a subcube from s = 2 (i.e., Boolean cube) to general s. We show the following two key
lemmas: the first one reduces the error from a small enough constant to “sub-constant” and the
second one reduces it from 1/(25%) — ¢ to a small enough constant.

Lemma C.2 (Reduction from small constant to sub-constant error). Fiz any Abelian
group G, any s = 2, and any positive integer d. The following holds for § < l/so(d) and K = s©(d)
where the O(-) hides a large enough absolute constant. For any n,d, where n < §, there exists
a randomized algorithm A with the following properties: Let f : Z? — G be a function and let
P :Z" — G be a junta-degree-d function such that §(f, P) < &, and let Af denote that A has oracle
access to f. Then,

Pr[6(Af, P) > ] < 1/10,

where the above probability is over the internal randomness of Af. Further, for every x € {0,1}",

. log(l/ n)
b T _ 0L/
Al makes K* queries to f and T = O (log <10 (1/5) .
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We now state the second key error reduction lemma.

Lemma C.3 (Reduction to small constant error). Fiz any Abelian group G, any integer
s > 2, and a positive integer d. For any n,d, where n < § and § < 1/(2-5%) — ¢ for e > 0, there
exists a randomized algorithm A with the following properties: Let f : Z7 — G be a function and
let P: 77 — G be a junta-degree d function such that 5(f, P) < 6, and let Af denotes that A has
oracle access to f, then

Pr[6(A7, P) > 5] < 1/10,

where the above probability is over the internal randomness of A, and for every x € Z7, AT makes

s® queries to f, where k = poly(%, %,3).

We prove the first lemma in Appendix C.1.1 and the second lemma in Appendix C.1.2. Below, we
finish the proof of the main error reduction lemma of this section using the above two lemmas.

Proof of Lemma C.1. The proof proceeds in a similar way to [ABPSS24]: we apply the first step
of error reduction (Lemma C.3) with n = 71 = Os 4(1) being smaller than the value of § needed to
apply the second step (Lemma C.2), i.e., < Og4(1). This results in a number of queries which
is the product of the number of queries from both the steps. Taking 1 = 72 in the second error
reduction step (i.e., Lemma C.2) to be equal to 1 = 1/ 4(logn)?, we get that the total number
of queries is Og (i> -Os7d(1)log<log<%)> < (loglog n) Qs (1), u

me

C.1.1 Reduction from Small Constant to Sub-Constant Error

We will show that there is a randomized algorithm Af that given oracle access to any function f
that is d-close to a junta-degree-d function P (think of § as being a small enough constant depend-
ing on d), has the following property: with high probability over the internal randomness of A/,
the function computed by Af is n-close to P, where 7 can be much smaller than §. We restate it
formally below.

Lemma C.2 (Reduction from small constant to sub-constant error). Fiz any Abelian
group G, any s = 2, and any positive integer d. The following holds for § < 1/50(d) and K = s9(@)
where the O(-) hides a large enough absolute constant. For any n,d, where n < §, there exists
a randomized algorithm A with the following properties: Let f : Z} — G be a function and let
P : 7" — G be a junta-degree-d function such that §(f, P) < 6, and let AT denote that A has oracle
access to f. Then,

Pr[6(A’, P) > ] < 1/10,

where the above probability is over the internal randomness of Af. Further, for every x € {0,1}",

AT makes KT queries to f and T = O (log <10g(1/77)>>'

log(1/4)
In the rest of this subsection, we will prove Lemma C.2. The algorithm Af in Lemma C.2 will be
a recursive algorithm. Each recursive iteration of the algorithm A/ uses the same ‘base algorithm’
B, which will be the core of our error reduction algorithm from small constant error. In the next
lemma, we formally state the properties of the base algorithm.
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Lemma C.4 (Base Error Reduction Algorithm). Fiz any Abelian group G, any integer s = 2,
and a positive integer d. The following holds for K = s9@ . For any 0 < v < 1, there exists
a randomized algorithm B with the following properties: Let g : Z? — G be a function and let
P : 77} — G be a junta-degree-d function such that 6(g, P) <y, and let BY denote that B has oracle
access to g, then

E[5(B%, P)] < O(K?) -4
where the above expectation is over the internal randomness of B. Further, for every x € Z7, BY
makes K queries to g.

We defer the construction of the base algorithm and proof of Lemma C.4 to later. For now, we as-
sume Lemma C.4 and proceed to describe the recursive construction of Af and prove Lemma C.2.

Proof of Lemma C.2. Let B be the algorithm given by Lemma C.4. We define a sequence of algo-
rithms Ag , A{ ,..., as follows.

{ A

The algorithm A{ computes a function mapping inputs in Z along with a uniformly random
string from {0, 1}"* to a random group element in G.

° Ag just computes the function f. (In particular, ro = 0.)

e For each t > 0, we inductively define r, = r4_1 +7, where r is the amount of randomness
required by the base error reduction algorithm 5. On input x € Z? and a uniformly
random string oy, the algorithm .Af algorithm runs the algorithm B on x using the
first r bits of o; as its source of randomness, and with oracle access to At71 using the
remaining r;_1 bits of o; as randomness.

og(1/n)

1
The algorithm A7 will be .A% for T = Clog (

log(1/9)
constant chosen below.

\ J

) where C' is a large enough absolute

Query complexity: An easy inductive argument shows that A/ makes at most K7 queries to f.

Error probability: We now analyze the error made by the above algorithms. We will argue
inductively that for each t < T and §; := D' e have

—_
o

t

1 1

S(A! — < = 25

Pl Co)P) > 6) < X 5 (25)
=& -

In the inductive proof, we will need that §y = § < s~¢1'¢ for a large enough absolute constant Cy.

We now proceed with the induction. The base case (t = 0) is trivial as § (.A{ , P) = 0y by definition.

Now assume that ¢t > 1. We decompose the random string o; into its first r bits, denoted o, and
its last 74— bits, denoted o;—1. We bound the probability in Equation (25) as follows. (Note that
the event &_1 below only depends on oy_1.)

f;tl‘[(gt] < Ulfrl[gt 1] + PI‘[(c;t | =& 1 Z m + PI‘ gt | =& _ 1] (26)
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where we used the induction hypothesis for the second inequality. To bound Pry,[& | —&—1], fix
any choice of o;_1 so that —&_1 holds, i.e. so that (5(.4{_1, P) < 0;—1. By the guarantee on B, i.e.
Lemma C.4, we know that

Eo[6(Al (- 00), P)] < O(K?) - 41,

where vy = (5(./4{_1(-, ot—1), P). Substituting it above, we get,
Eo[6(A] (-, 00), P)] < O(K?) 61 < 6%
where for the final inequality, we use the fact that
O(K?) - 0% < O(K?) - 5% <1
as long as 8y = 0 < s~ ¢ for a large enough constant C;. Continuing the above computation, we
see that by Markov’s inequality

1

0,
1007

Ot
where the final inequality holds for all ¢ as long as 6 < s~“1¢ for a large enough constant Cj.

Since this inequality holds for any choice of o;_1 so that —&_1 holds, we can plug this bound into
Equation (26) to finish the inductive case of Equation (25).

— 59((1-1)t) <

~

Pr[é't] <

log(1

Setting T" = C' - log (%) for a large enough constant C, we see that ér < 7. In this case,
0g

Equation (25) implies the required bound on the error probability of Al |

Thus we have shown so far that given the base algorithm B, we do get an error reduction algorithm
from small constant error to error O(1/logn). Now it remains to describe the base error reduction
algorithm. In the next subsection, we describe the base algorithm B and prove Lemma C.4.

The base algorithm and its analysis. In the rest of this subsection, we prove Lemma C.4,
which will then complete the proof of Lemma C.2. Before we describe B, we will define an error
reduction gadget.

Definition C.5 (Error-reduction Gadget for 7). For p € (0,1/(s — 1)), an (p,q)-error reduction
gadget for Jy is a distribution D over (Z2)? satisfying the following two properties:

1. There exists c1,...,cq € Z such that for any (y,...,y9D) € supp(D), the following holds
true for each P € J; and each a € Z7

P(a) = Pla+yW) + ... +¢,P(a+y?) (27)
where the a +y® e Z7} 1is computed via a co-ordinate-wise sum modulo s.

2. For any i € [q], the co-ordinates of y® are i.i.d. random variables in Zg that take the value
0 with probability p; such that

e ()t ()

1-p;
S

and each non-zero value in Zg with probability . We call such distributions p-noisy dis-

tributions over Zs.
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To prove Lemma C.4, we need an error-reduction gadget for J;, the space of junta-degree-d func-
tions over a group G. This is given by the following lemma.

Lemma C.6 (Constructing an error-reduction gadget for J;). Fiz any Abelian group G, s = 2 and
any p € (0,1/(s—1)). Then Jg(Z", G) has a (p, q)-error-reduction gadget where ¢ = ((1/p) + )9,

Assuming the above lemma, we first finish the proof of Lemma C.4. For this, we will need the
following technical claim.

Claim C.7. Let y, z be independent random variables taking values in Zg such that their distribu-
tions are p1-noisy and py-noisy respectively. Then, y — z is (p1 - p2)-noisy.

Proof. Let Dy and D, denote the probability distributions of y and z respectively, which we think
of as elements of R?.
We note that the condition that y is p;-noisy can be restated as

Dy=€1-50+(1—61)~u
where U denotes the uniform distribution over Zg, dy denotes the distribution that places all its
mass on 0, and ¢; is a (possibly negative) number satisfying |e1| < p1.

A similar fact also holds for the random variable —z € Zg, since z being ps-noisy implies the same
for —z.

Now, the distribution D of y — z is the convolution D, * D, giving us
D= (61 '50+ (1*61) 'U)*(82'50+(1*62)'U) =€1€2-50+(1*€162) -U

where the latter equality is by distributivity and the fact that the convolution of I/ with any
distribution is U.

Since |e1| < p1 and |e2]| < p2, we have the claim. [ |

In the algorithm, we use the error-reduction gadget to correct the junta-sum at a random point
a € {0,1}™. This process is likely to give the right answer except with probability ¢y since, after
shifting, each query is now wuniformly distributed and hence the chance that any of the queried
points is an error point of g is at most v. We reduce the error by repeating this process three times
and taking a majority vote. To analyze this algorithm, we need to understand the probability that
two iterations of this process both evaluate g at an error point. We do this using hypercontractivity
(more specifically Theorem B.1).

Proof of Lemma C.4. Let D be a (1/10s, q)-error-reduction gadget as given by Lemma C.6. The
algorithm B, given oracle access to g : Z? — G and a € Z?, does the following.

e Repeat the following three times independently. Sample (y(l), e ,y(q)) from D and compute
cigla+yM) +- 4 cpgla+ y?)

where c1, ..., ¢4 are the coefficients corresponding to the error-reduction gadget, and the sums
a+ y@ are computed in 77
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e Output the plurality among the three group elements by, by, b3 computed above.

The number of queries made by the algorithm is K = O(q) = (10s + 5)°@ = 59 a5 claimed. So
it only remains to analyze 6(B9, P). From now on, let a be a uniformly random input in {0, 1}".

For i € {1,2,3}, let & denote the event that b; # P(a). We have

E[0(BY, P)] = Pr[B?(a) # P(a)] < Pr[&1 A &) + Pr[€x A E3] + Pr[&1 A &3].
It therefore suffices to show that each of the three terms in the final expression above is at most
O(q®) -7

Without loss of generality, consider the event & A &. Let (y(, ..., y@) and (2z(V, ... 29) be the
two independent samples from D in the two corresponding iterations.

It follows from Equation (27) that the algorithm correctly computes P(a) in the first iteration
as long as none of the queried points lie in the set T of points where g and P differ. A similar
statement also holds for the second iteration. This reasoning implies that

~

q
Pr[&1 A &) < 2 Prla+y® eT na+2zU) eT]. (28)

Jj=1

u® v(d)

We bound the latter expression using Theorem B.1.

Fix 7,5 € [q]. Note that for every fixing of y(®, the vector ul” is distributed uniformly over Zy
(because a is uniform over Z?). In particular, this implies that u® is uniformly distributed and
moreover that u® and y® are independent random variables.

Note, moreover, that y(i) is independent of z(Y) and their entries are i.i.d. random variables over
Zs that are p-noisy. By Claim C.7 above, we see that the entries of y* — zU) are ii.d. and
p? = (1/100s?)-noisy.

This means that v(9) = u® 4+ y(® — 20) is drawn from the noise distribution N (u), where the
parameter o < 1/100s. Using Theorem B.1 with ¢ = 4, we have

Pru® e T A v e T] <412,

Plugging this into Equation (28) implies the required bound on the probability of & A &. This
concludes the analysis of B. |

We now show how to construct the error-reduction gadget and prove Lemma C.6. This requires
the following claim (implied e.g. by Mobius inversion) that shows that any junta-degree-d function
over {0,1}" (even with group coefficients) can be interpolated from its values on a Hamming ball
of radius d. For completeness, we give a short proof.

Lemma C.8. Fiz d e N. For any natural number m = d and any Hamming ball B of radius d,

P(0™) = ) apP(b)
beB

where the ay, are integer coefficients.
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Proof. Assume that

P(x) = Z Ja - 1_[ da,; ().

acZy i€[n]: a; #0
#a<d

By Mobius inversion, we know that

ga= Y, (=1)"VIP(1;0a)
JcrI

where 17 € {0,1}™ denotes the indicator vector of set J and o denots co-ordinate-wise product.
Putting the above equalities together gives us

P(x) = ) a},,P(b)
#b<d

for suitable integer coefficients o .

Now, assume B is the Hamming ball of radius d around the point ¢ € Z7'. Replacing x by x + ¢ in
P does not increase the junta-degree of the function (since each co-ordinate of x + ¢ depends only
on a single co-ordinate of x). Applying this substitution above yields

Px+c)= > ap,Pb+c)= > apxP(b).
#b<d beB

Setting x = —c yields the statement of the lemma. |
We end this section by completing the proof of Lemma C.6.

Proof of Lemma C.6. The idea is to apply Lemma C.8 on a random subcube, as defined in Defini-
tion 2.9.

More precisely, let k, d be positive integers such that £ is divisible by s and k > s - d. Let a € Z7
be arbitrary. For each i € [n], let II; € Sym[Z] be chosen uniformly from among bijections that
map 0 to a;, and let IT denote (IIy,...,II,). Also assume that h : [n] — [k] is chosen uniformly
at random. Let C' = Ctpy be the corresponding subcube of Z] as defined in Definition 2.9. Let
Q(y1,--.,yx) denote P|c, the restriction of P to this subcube.

Fix a Hamming ball B of radius d in Z¥ centred at a point ¢ with exactly k/s many occurrences of
0. Since @ is a function of junta-degree at most d, applying Lemma C.8 to () and the ball B yields
an equality

Q(0%) = > apQ(b).

beB

Since @) is a restriction of P, the above equality can be rephrased in terms of P as

P(a(0%) = 3 apP(a(b)).

beB

From the definition of the cube C, it follows that z(0¥) = a and thus the above gives us an equality
of the type desired in an error-reduction gadget (Equation (27)). To finish the proof, we only need
to argue that each z(b) has the required distribution.
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Note that for each b € B, we have
z(b) =a+b’

where b’ is the random vector in Z that at co-ordinate i takes the random value I1;(by;)). Since h
is chosen uniformly at random and the II;’s are independent and uniform subject to the constraint
that II;(0) = a;, it follows that the entries of b, are independent and the ith co-ordinate is a
Zs-valued random variable that takes the value 0 with probability equal to the proportion of 0’s in
b (which we denote o) and each non-zero value in Zs with the probability (1 —o)/(s—1). In other
words, the entries of by, are p-noisy as long as

e (-2 e (-2)

To conclude the argument, note that b is at Hamming distance at most d from c, implying that o

is in the range
1 d1 d
s ks k|

Setting k to be the smallest multiple of s larger than 2d/p gives us the desired value for the
parameter of the distribution of b.

Finally, the number of queries ¢ made by the error-reduction gadget is dictated by the size of a
Hamming ball in k£ = O(d/p) dimensions. This can be bounded by

@ 25t < (k/d) 0D s < (1/p+ )7 st = (1/p +5)71.

It follows that we have a (p, ((1/p) + 5)°@)-error-reduction gadget. [

C.1.2 Reduction to Small Constant Error

Now, we will show that there is a randomized algorithm A that given oracle access to any function
f that is d-close to a low junta-degree function P (think of d to be very close to half the minimum
distance, i.e. 1/(2-s%) — ¢ for junta-degree d), has the following property: with high probability
over the internal randomness of A, Af is n-close to P, where 1 is much smaller than . We recall
it formally below.

Lemma C.3 (Reduction to small constant error). Fiz any Abelian group G, any integer
s > 2, and a positive integer d. For any 1,0, where n < § and § < 1/(2-5%) — & for e > 0, there
exists a randomized algorithm A with the following properties: Let f : Z7 — G be a function and
let P: 7" — G be a junta-degree d function such that 5(f, P) < 6, and let Af denotes that A has
oracle access to f, then

Pr[6(Af, P) > n] < 1/10,

where the above probability is over the internal randomness of A, and for every x € Z', A makes

s* queries to f, where k = poly(%, %,s).
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Now we state an algorithm A7 below and use it to prove Lemma C.3..

( )

Algorithm 4: Error Reduction Algorithm Af
Input: f and a€ Z?
1 Choose k = (s/(en))*°
2 Sample a uniformly random h : [n] — [k] // h is the internal randomness of Af
3 Sample IIy, ..., II, € Sym|[Z;] independently and uniformly at random subject to the
condition that II;(0) = a; for each i € [n].
4 Construct the cube C:= Cpy, according to Definition 2.9

5 Let f 3= f|c // flc is the restriction of f to the subcube C
6 Query f on all inputs in 7k to find the junta-sum P on C such that

(5(]E, P) < 1/(2 : Sd) ~ // s* queries to f
7 if such a junta-sum P is found then

L return P(0F) /1 z(0%) =a
9 else
10 L return 0 // An arbitrary value

\ J

Proof of Lemma C.5. Let P be the (unique) junta-degree d function such that o(f, P) < 1/(2- 5.
The junta-degree of P is at most d when P is restricted to C = Crpp. If 6(P|c, f) < 1/(2- 5%), then
P = P|c. In particular, P(z(0%)) = P(a), i.e. the output of the algorithm is correct.

Equivalently, Af(a) = P(a) unless §(P|c, f) = 1/ (2 5%). In the next lemma, we will show that
with high probability over random a and h, §((P|c, f) < 1/(2 - s%).

Lemma C.9. Sample a, IT = (II1,...,1I1,,) and h as in the algorithm above. Let C = Cry, be the
subcube of dimension k as described in Definition 2.9. Then,

Pr0(Ple.f) > 1/(2-5)] < /10

We prove Lemma C.9 below. For now, let us assume Lemma C.9 and finish the proof of Lemma C.3.
We have,

P [8(Ple. f) = 1/(2- )] < /10
= Byt [Pr{o(Ple, f) = 1/(2- s9)]| < /10

Note that if we fix the internal randomness of A’ (i.e. the random bits used to choose h,IT), then
5(AS, P) is at most Pra[d(Plc, f) = 1/(2- 57))], as the algorithm always outputs P(a) correctly
when §(P|c, f) < 1/(2-s%) . Then from the above inequality, we have,
Epm [6(A7, f)] <n/10
= ,Fﬁ[é(Af’ f)>n] <1/10 (Markov’s Inequality)

)

As commented in Algorithm 4, for each a € Z?, A/ makes s* queries to f. |
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Now we give the proof of Lemma C.9.

Proof of Lemma C.9. Let E denote the subset of points in Z7 where P and f disagree, i.e. E :=
{x € Z"| f(x) # P(x)}. We know that |E|/s" < 1/(2-5%) — .

The fractional Hamming distance between P|c, f is given by the relative size of the set £ n C inside
C. Note that since a is chosen at random and each II; is chosen at random satisfying II;(0) = a; (for
each i € [n]), we see that each II; is indeed a uniformly independent element of Sym[Z]. Hence,
the subcube C = Ctyy is a random subcube in the sense of Definition 2.9.

Applying the sampling lemma from Section 2 (i.e., Lemma 2.10), we get that for & = (s/(en))*°
(we assume without loss of generality that £, are small enough for k to satisfy the hypothesis of
Lemma 2.10)

Pr[8(Ple, ) = 1/(2- )] < n/10,

and this completes the proof of Lemma C.9. |

C.2 Correction in Low-Error Regime

Having just shown how to reduce the error, we will now prove that there is a local correction algo-
rithm in this “low-error” regime.

Lemma C.10 (Local correction in low-error regime). There exists 61 = 1/0; 4(logn)? and
a q2 = Os 4(1/e1) query algorithm A such that for every randomized oracle f : [s]" — G satisfying
Pry [sn[f (%) # P(x)] < &1 for some P e Jy([s]",G), it holds for every x € [s]" that:

Pr[ A (x) # P(x)] < 1/4.

Using the above two lemmas, we can finish the proof of the first part of Theorem 5.3.

Proof of Theorem 5.3 for general Abelian groups. The proof follows by applying Lemma C.10 with
the randomized oracle being A’ given by Lemma C.1. This yields a total number of queries of
q1-q2 = Os g.(logn)? = O-(logn)? as we can assume that e < §7/2 = 1/(2s9). [ |

Before we prove Lemma C.10, we show the following claim which reduces the problem of local
correction of junta-sums to local correction over the Boolean cube but with a biased distribution.

Lemma C.11 (Reduction to correction over biased cube). Suppose there exists a q query
algorithm A such that for every randomized oracle f : {0,1}" — G satisfying Pry gern(1/s)» [f(¥) #
P(y)] < 10e1 for some P e J4({0,1}",G), it holds that Pr[Af(1) # P(1)] < 1/4.

Then, there exists a O(q/e1) query algorithm A’ such that for every randomized oracle f' : [s]" — G
satisfying Pry_gn[f'(x) # P'(x)] < &1 for some P" € Jy([s]",G), it holds for every x € [s]" that
Pr[A7 (x) # P'(x)] < 1/4.
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Proof. We design A’ using A. Fix x € [s]™ be arbitrarily and sample x’ € [s]™ but choosing
x} € [s]\{z;} uniformly and independently at random. We then define f : {0,1}" — G as follows:
Given y € {0,1}", let z = z(y) € [s]|" be defined by z; = z; if y; = 1 and z; = =] otherwise — then
we define f(y) to be equal to f'(y(z)); similarly we define P : {0,1}" — G by P(y) = P'(y(z)).
Since P’ is a d-junta-sum, so is P (for every choice of x'), i.e., P € J;({0,1}", G). Furthermore, we
observe that for y ~ Bern(1/s)", the point z(y) is uniformly distributed over [s]™ (over a random
choice of X’ and y). In particular, we have

& L~Bor1§<1/s>"[ﬂ[f(y) g P(Y)]]} = o [f(z) # Plla)] <er.

By Markov’s inequality, therefore, Pry gem(1/s)»[f(¥) # P(y)] < 10e1 with probability at least 0.9
over the choice of x’. Now using A and oracle access to f (which can be simulated using the oracle
access to f'), we get a ¢ query algorithm that outputs P’(x) with probability at least 3/4 — 0.1,
which can be made at least 2/4 by repeating this subroutine constant number of times. Finally, we
have a O(q) query algorithm A’ such that Pr[A7 (x) # P'(x)] < 1/4. [ ]

Proof of Lemma C.10. Using Lemma C.11, we have the ability to work with a biased distribution
over the Boolean cube instead of a uniform distribution over [s]™ (we note that the change of error
from £1 to 10e; and the queries from ¢ to O(q/e1) are insignificant to the final asymptotic query
complexity). Hence, it suffices to show that there exists e; = 1/0;4(logn)? and a O 4(logn)?
query algorithm A4 such that for every randomized oracle f : {0,1}" — G satisfying

p P(x)] <
x~Bernr(1/s)n [f(X) 7 (X)] ©l

for some P € J4({0,1}", G), it holds that Pr[Af(1) # P(1)] < 1/4. In other words, we want
to locally correct low-junta-degree functions over the Boolean cube under a biased distribution.
The high level idea is to adapt the construction for the unbiased distribution from [ABPSS25]. In
particular, we prove the following key result, and the local corrector is then described in Algorithm 5.

Theorem C.12. For a growing parameter k divisible by 10s2d, there exists S < {0,1}* of size at
most Os 4(k?) such that the following conditions hold:

e S is weight-balanced: i.e., there exists a probability distribution D over [k], such that for
every b € S: it holds that

< (29)

e S is an interpolating set: i.e., for every Abelian group G and every Q € J4({0, 1}k, G), there
exist integers (cp)pes such that

Q(1) = > Q(b).

beS
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Algorithm 5: Local corrector in low-error regime
Input: Oracle access to the function f:{0,1}" - G

1 Set k = O 4(logn) so that the RHS term in (29) (i.e., W) is at most # and let

S < {0,1}* be given by Theorem C.12.

2 Let D be the probability distribution over [k] also given by Theorem C.12.

3 For be S, let x = x(b) € {0,1}" be the point obtained by setting x; = b;, where
j ~ D is sampled independently for all i € [n].

4 Output Y g cpf(x(b)), where cp, are integers given from Theorem C.12.

\ J

We first prove the correctness of Algorithm 5 before we provide a proof of Theorem C.12. We first
note that the number of queries made by the local correction algorithm is equal to |S|, which is
Os.4(k%) = O 4(logn)? as desired. It now remains to show that the probability of error Pr[ A/ (1) #
P(1)] is at most 1/4, where A/(1) = Y _scbf(x(b)) is the output of Algorithm 5. Let Q :
{0,1}* — G be defined by Q(y) = P(x(y)) i.e. it depends on the choice of randomness used in
Step 3 of Algorithm 5. Since P is a d-junta-sum, so is @), so by Theorem C.12, we know that

Q(1) = Y apQ(b).

beS

Equivalently, we thus get

P(1) = > epP(x(b)).

Hence, if all the queries to f by A output the value of P, then there is no error in the algorithm.
However, there are two sources of error: firstly, f(x(b)) need not always be equal to P(x(b)).
Indeed we are only guaranteed that they are equal with high probability for an input chosen from
Bern(1/s)™ distribution. And secondly, the distribution of x(b) is not exactly identical to the
Bern(1/s)™ distribution, but only statistically close to it. More precisely, we have

P P(x)] < &1,
B /S)n[f(X)sﬁ (x)] <&

and the statistical distance between the distributions Bern(1/s)™ and x(b) is:

SD(Bern(1/s)",x(b)) < %,

for every b € S by the weight-balanced property of S as each bit of x(b) is #-close to Bern(1/s)
and the n bits are all independent (see Step 3 of Algorithm 5); here are we using the property
SD((X1, X2), (Y1,Y2)) < SD(X1,Y7) + SD(X9,Ys) if X3, Xy are independent and so are Y7,Ys (see
e.g. [Vadl2] Lemma 6.3). Thus, we have for each b € S, Pr[f(x(b)) # P(x(b))] < &1 + L. Now,
applying a union bound over the queries made, we get

Pr[Af (1) # P(1)] < |S|- <51 + i) <1/4,

by taking £1 = 1/, 4(logn)? appropriately small.
This finishes the proof of Lemma C.10. |
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We now prove Theorem C.12.

Proof of Theorem C.12. We let k = rm, where r = 10s2d and identify [k] with [r] x [m] arbitrarily
and treat y € {0,1}* as a tuple of points in {0,1}", i.e., we let y = (y1,¥2,...,¥m) where each
yi € {0,1}" (equivalently we treat the point y as a Boolean r x m matrix with y; being the column
vectors). Then, we define the distribution D = D(m) over [k] = [r] x [m] so that the probability

mass for (i,7) is proportional to Wj(m)

where we denote W = W) = T Wj(m) = %

= s™7J; in particular, we have Prij~p = I/Vj(m)/W(m),

There exists a subset S = Sy, 4 S {0,1}7*™ of size at most (4rm)? such that
e S is weight-balanced: i.e., for every b € S, we have
wi™

J
o e L
Giretixpm W s| - wim

e S is a hitting set: i.e., for every Abelian group G and every non-zero Q € J4({0,1}%, G), there
exists b € S such that Q(b) # 0.

We note that the notion of a hitting set in the second item implies the interpolating set property

in the statement of Theorem C.12 by using Claim 3.2.4 of [ABPSS25]. Moreover, we note that the

RHS of the first item is at most OQ(f;Ld) = W as required. Thus, it remains to show the existence

of the subset S, 4 < {0,1}""™ satisfying the above two conditions; we do this by induction on m.

Base case m = 1. We will make use of the following claim from [ABPSS25].

Claim C.13 ([ABPSS25] Claim 3.2.3). For every interval I < {0,1,...,7} of size at least d + 1,
there exists a subset Hrq S {0,1}" of size at most (4r)? such that

e Hy 4 consists only of points z such that |z| € I, and
e For every non-zero Q € Jy({0,1}*,G), there exists z € Hyq such that Q(z) # 0.
Using the above with I = [ —d, £ + d], we directly get S1 4 = H 4 as the desired set — the weight-

balanced property of S follows by the immediately as for every b € Sy 4, we have ||b| — | < d by
the first property of Claim C.13.

Induction step m > 1. Let S,,—1 4 < {0, 1}7(m=1) he given by the induction hypothesis, and
similarly Hy 4 < {0,1}" be given by Claim C.13 for 0 < d’ < d. Let b = (by,...,bp_1) € Sp—1.4
be arbitrary. This gives us that

(m—1)
N owm - W —|<d (30)
(i,g)€elr]x [m—1]
We now show that there exists an interval Iy, < {0,1,...,7} of size at least d + 1 such that for

every by, € {0,1}" with |b,,| € Iy, it holds that b’ = (by,...,b,,—1,by,) € {0,1}7*™ satisfies the
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weight-balanced property, i.e., by letting 7 = Z(i,j)e[r]x[m—l] Wj(m*l)bj,i — W(?_l) and Iy, to be the

interval £ — s7 £ d (which is well-defined as |7| < d < g7 from (30)), we have:

wm)
(m)y . _ r
E Wj bji . ‘ ‘]bml . + s7| < d. (31)

(i,5)€[r]x[m]

Now, we are ready to describe S = Sy, 4:

S= |J bxHpaw : beSn 14}

0<d’'<d
In particular, we show the following three properties for the above definition of S.

e Size. We have that

d
S| < D3 ISmoval - [Hrya-a]

=0
d

< > (@Wm—=1)r)? - (4r)t

d'=0
(using the induction hypothesis to upper bound |S,,,—1 ()

d
< (@) Y (m—1)?
d'=0

< (4mr)?.

e Weight-balanced. This follows from the discussion leading to (31).

e Hitting set. Let Q € J3({0,1}"*™ G) be an arbitrary non-zero d-junta-sum. Treating it
as a junta-polynomial in the last column of variables, we have for every x = (x1,...,X;) €
{0’ 1}r><m:

Qx) = Z QA(X1,. .., Xm_1) - X0

Ac[r]:|Al<d

Since @ is non-zero, let A < [r] be such that Q4 is a non-zero function of junta-degree d’ < d.
By induction hypothesis, we know there exists b € S,,_1 ¢ such that Q4(b) # 0. Letting
Q' : {0,1}" — G denote the restriction of @ obtained on setting x; = b; for all 7 € [m — 1],
we note that Q' is a non-zero junta-polynomial of degree at most d — d’. Hence, there exists
by, € H;, & such that Q'(b) # 0. Effectively, this shows that there exists b’ € S such that
Q(b') # 0.

C.3 Correction for Torsion Groups

We now finish the proof for the “moreover” part of Theorem 5.3, i.e., we show a constant query
local correction algorithm over torsion groups of constant exponent.
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Proof of Theorem 5.3 for torsion Abelian groups. Similar to the case of general Abelian groups, we
first apply the error reduction step from Appendix C.1 (but with a different threshold £;) and the
reduce the local correction problem to that over the Boolean cube but with a biased distribution
(i.e., Lemma C.11). Thus, it suffices to show that there exists a ¢ = O 5,4(1) query algorithm A
such that for every randomized oracle f : {0,1}" — G satisfying Pry pern(1/s)n[f(X) # P(x)] < &1
for some P e J({0,1}",d), it holds that Pr[Af(1) # P(1)] < 1/4.

In particular, we set g1 = %k) for a suitably large k = Op5.4(1) (so €1 = Qpr5.a(1)). We state it

10(%
as a lemma below:

Lemma C.14. For every Abelian torsion group G of exponent M, there exists k = Onrsa(1)
and a ¢ = Opsa(l) query algorithm A such that for every randomized oracle f : {0,1}" — G
satisfying Pry Bem(1/s)n[f(X) # P(x)] < &1 for some P € J({0,1}",d) and &1 = 1sk), it holds

10(%
that Pr[A7(1) # P(1)] < 1/4.

—~

Now we note that by using the error-reduction lemma Lemma C.3 with n = &1 > Qps54(1), we
can convert a local corrector for error £1 to one with error up to 1/(2s%) — ¢ with a O.(1) factor
blow-up. Combining with the low-error local corrector of Lemma C.14, we obtain a local corrector
over the biased distribution Bern(1/s)” making Ops s 4(1) queries. Therefore, by Lemma C.11, we
also get a Opr.(1) query local corrector for d-junta-sums over S™ for error up to 1/(2s?) — e.

We now prove Lemma C.14.

Proof of Lemma C.14. The proof proceeds in an identical manner to the analysis of [ABPSS25] by
making use of Kummer’s theorem which may be thought of as an analog of Lucas’ theorem for
prime powers. We state Kummer’s theorem below, where the notation Sp(n) denotes the sum of
the digits of n when written in base p.

Theorem C.15 (Kummer’s theorem [[Kumb52]). Let p € N be a prime. Then for any integers
Sp(b)+Sp(a71b)75'p(a) .
=

a>=b2=0, the largest power of p that divides (Z) s equal to

Let M = H?le;j be the prime factorization of the exponent M of G (so ¢ < log M). For each

3785

J € [4], let s; € N be the smallest integer such that pgjsj > d. Then, we choose k = Hje[e] p; .
Note that p;jl(sj_l) < d and hence k < ]_[je[e](dp;j):)’ < d3*M? = O)p14(1) as needed. We then recall
that g1 = @ = QM7S7d(1)'

We claim that the algorithm below (Algorithm 6) is the desired local corrector. It queries f at a
few inputs from some distribution and outputs P(1) with probability at least 9/10, where P € Jy
is the unique degree-d junta-sum such that §(f, P) < 1. We will need the following claim in order
to describe the local corrector.
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Claim C.16. There exist integers cp € Z for b € ([S,f]) such that for every d-junta-sum Q(y) €

Ja({0,1}*%, @), we have that
Q1) = > - Qb). (32)

be([skk])

Algorithm 6: Local corrector for torsion groups

Input: Oracle access to a randomized function f : {0,1}" - G

1 Sample a uniformly random function h : [n] — [sk].
2 Forbe ([Slf]), let x = x(b) € {0,1}" be the point obtained by setting x; = by,; for

i€ [n].

3 Output Zbe([skk]) cbf(xp(b)), where cp, are integers given by Claim C.16.

" 7

The above algorithm is similar to Algorithm 5 with the main difference being the choice of the
interpolating set in the last step from Claim C.16 (as opposed to the “weight balanced interpolating
set” of Theorem C.12).

Assuming the correctness of Claim C.16, we shall now finish the proof of Lemma C.14.

Firstly, we note that the local corrector makes (S,f) = Ons,d(1) queries as required. To prove
correctness, for every b € ([S:]), we note that the corresponding query point xp(b) € {0,1}" is
distributed according to Bern(1/s)™ since the map h used in Algorithm 6 is uniformly random and
b has 1/s fraction of indices as ones. Thus, we have that f(x(b)) # P(xp(b)) with probability at
most €1, so by a union bound over b, we have that with probability at least 1 — &7 - (s,f) = 9/10
(over the random choice of h and the randomness of f), that f(xp(b)) = P(xx(b)) forall b e ([s:]).
Now, letting Q € J4({0,1}**, G) denote the restriction of P defined as Q(y) = P(xx(y)), we see

that the output of Algorithm 6 is equal to

S aPa®d) = Y Q) = Q1) = P(1),

be() be()

where we are using Claim C.16 for the second equality and x; (1) = 1 for the last equality. Therefore,
the output of the local correction algorithm (Algorithm 6) is indeed P(1) with probability at least
9/10. |

It now remains to prove Claim C.16.

Proof of Claim C.16. By replacing the variables x; with 1 — x;, we note that the claim is equiv-

alent to proving that there exists ¢, € Z for b € ((S[fli])k) such that for every d-junta-sum @ €

J4({0,1}%%, @), it holds that



To show this, we proceed with the following assignments. For every b € ((S[fli]) 5

b contains a 1 in any of the last k — d coordinates and we set ¢, = A otherwise, where A € Z will
be decided later. Recall that M = [ pj' and k = [ ;¢ pj’rj *7 and we have that pgj >d >

p;J(S] Y for all j € [£]. By linearity, it sufﬁces to show (33) for Q(y) of the form g - [];.; y; for all
Ie ([ ]) and g € G. According to our assignment of ¢y, it is clear that (33) holds true (with LHS =
RHS = 0) if I contains any of the last k — d coordinates. Otherwise, we have that I < ([(s i)fJ“d])

X

If I = ¢, we have Q(0°%) = g and Dbe e( )cb Q(b) = (S 1V‘;er)A g. On the other hand, if

|[I| =i > 1, we have Q(0°*) = 0 and Zbe( [241) Cb Q(b) = ((S(si)lk);gi;l)A - g since every non-zero
k

term must have b; = 1 for all j € I. Hence, it suffices to find an integer A satisfying the following

),Weset cp = 0 if

two conditions:

g= <(S_1)k+d>A-g, for all g € G, and

(s — 1)k
0= ((S(— 1)11<3)de1>14.97 for augeGandie [d]
S — —1

Let k' := (s — 1)k. Since the order of every element g divides the exponent M of the group, for

the above two conditions to hold, it suffices if for all j € [¢] and i € [d], p; does not divide (k/]:fd)

and that pgj divides (k/,:,ri_’) for all i € [d]. Then we can take A to be any integer such that

A(k/kf d) + A’M =1 for some integer A’ (such A and A’ are guaranteed to exist as M and (k +d)
are coprime). The rest of the proof is dedicated to verifying these divisibility constraints hold.

¢ p; does not divide (k//,:,r d) We will represent all the numbers &', d, i etc. in base p;. We note

that the last r;s; digits of k" are zeroes since P; "7 divides k’. Furthermore, since d < p;’ % all
the digits of d except the last 7;s; many are zeroes. Hence, the sum of digits of &' +d is equal
to the sum of the digits of &’ and d combined. That is, Sy (k') + Sp,(d) — Sy, (K’ +d) = 0
Applying Kummer’s theorem (Theorem C.15) now finishes the proof.

) p;j divides (kl,:,rf?z) By Kummer’s theorem (Theorem C.15), it suffices to show that

Sp;(d) + Sp, (K — i) — Sy,

(K 4 d — 1)
pj—1

=1y, (34)

We note that S, (k' +d —i) = Sp, (k') + Sp;(d — i) by the same argument as the above
paragraph. In addition, we have the trivial bounds Sy, (d) = 1 and S, (d — i) < (p; — 1)7;s;.
Finally, we give a lower bound for Sy (k" — ). Since k' has at least 3r;s; trailing zeroes,
we get that S, (K — 1) = S, (k') + 3rjsj(p; — 1) — 1. But we observe that S, (k' —i) =
Sp; (K —=1) — (z —1)) = S, (k' —1) =S, (i — 1) since the number of trailing (p; —1)’s of &' — 1
exceeds the total number of (non-zero) digits of (i — 1). Therefore, we get

Sp;(d) + Sp; (K — i) = Sp, (K +d—1i) =1+ 5y, (K —1) = Sp, (i —1) = Sp, (k') — Sp,(d —7)
=1+ (3rysi(pj — 1) = 1) — (pj — Drysj — (pj — D)rys;
=>r;sj(p; — 1)
= ri(pj — 1)
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This finishes the proof of (34), and hence Claim C.16 and Lemma C.14.

D Combinatorial List-Decodability

We prove the combinatorial list-decodability bound for junta-sums (i.e., Theorem 5.4).
Theorem 5.4 (Combinatorial List Decoding Bound). For every € > 0, positive integers s,d, and
Abelian group G, the family Jy(S™, G) is (1/s¢ — e, 0-(1))-list decodable.
The proof can be broken into the following four steps:
e First, we reduce to the setting where G is finite.

e Second, we show the combinatorial bound for finite groups where every element has a suffi-
ciently large order.

e Third, we show the combinatorial bound for p-primary groups where p is a sufficiently small

prime.'4

e Finally, we combine the above bounds to get a combinatorial bound for arbitrary Abelian
groups.

In particular, we prove the following two theorems.
Theorem D.1 (Combinatorial bound for large order). For every e > 0, positive integers s,d, there

exists a p = p(s,d,e) such that for every Abelian group G which does not have any element of order
at most p, the family Jy([s]", G) is (1/s% — &, 0c(1))-list decodable.

And we have:

Theorem D.2 (Combinatorial bound for p-primary groups). For every e > 0, positive integers s, d,
prime p, and finite p-primary group G, the family Jy([s]", G) is (1/s? — &, O »(1)-list decodable.
Using the above two theorems, we finish the proof of Theorem 5.4.

Proof of Theorem 5.4. Given Theorem D.1 and Theorem D.2, the proof follows the same outline

as the prior work [ABPSS25] on combinatorial bound for low-degree polynomials over the Boolean
cube, so we defer the proof. |

We now show the proof for the large order case in Appendix D.1 and the p-primary groups case
in Appendix D.2.
D.1 Combinatorial Bound for Large Order

We prove Theorem D.1 in this subsection. Throughout this section, we assume that all the elements
of G have order at least p (where p = p(¢) is to be determined), s > 2, and € € (0, 1/s%) is arbitrary.

14 An Abelian group is said to be p-primary if every element has order that is an exponent of p.
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Following along the lines of the proof for the Boolean case (s = 2) from [ABPSS25], we prove (and
use) an anti-concentration inequality for junta-sums depending on many variables. Once the right
anti-concentration lemma is in place, the rest of the proof of the combinatorial bound is more or less
identical to the Boolean case, except we are able to make some simplifications as we are only aiming
for a bound of O.(1) (as opposed to poly(1/e) from [ABPSS25]). We state the anti-concentration
inequality below and defer its proof to the end of this subsection. In order to state the lemma,
we need a definition — we say that a function f : [s]® — G depends on the i-th variable if there
exists x € [s]™ such that f(x) # f(x/) for some x’' € [s]™ that agrees with x on the coordinates
[n]\{i}.

Lemma D.3 (Anti-concentration lemma). For integers s = 2 and d > 1, and every € > 0,
there exists r = r(s,d,e) > 0 and p = p(s,d,e) such that for every Abelian group G which does
not contain any element of order less than p, and every P € J4([s]™, G) that depends on at least r
variables, it holds that:

Pr [P(a) #0] > 1/s% —¢.

a~[s]"

Note that this improves on the trivial bound of 1/s¢ for general non-zero junta-sums. Given the
above lemma, we now prove Theorem D.1. The proof proceeds in multiple stages — in each stage,
we make the junta-sums in the list (of close-by junta-sums to a fixed function) more structured,
thus pruning the list at each stage.

D.1.1 Pruning the List

For a function f : [s]” — G, let L.(f) < Ju([s]", G) denote the set (or rather “list”) of junta-sums
P such that §(f, P) < 1/s% —e. Our goal is to show that |L.(f)| < O:(1). We first reduce the

problem to counting the number of junta-sums in the list that depend only on a few variables.

Reducing to counting junta-sums depending on a few variables. If P, P, € L.(f), note
that
5(P1 — PQ,O) = (S(Pl,PQ) < 5(f, Pl) + (S(f, Pz) < 2/8d — 2¢.

Now applying Lemma D.3 for P = P} — P, (which is also a d-junta-sum), we get that P, — P» depends
on at most r(¢) variables, as otherwise we get 1/s9~1 —¢ < §(P;— Py, 0) < 2/5%—2¢ which would be a
contradiction. Hence, if L.(f) = {P1, P, ..., P;}, we observe that P| —P;, Po— P;,..., P,_1 — P, are
distinct junta-sums that are in L.(P; — f) and depend on at most » = O,(1) variables. Therefore,
it suffices to count such junta-sums to get a final combinatorial bound. In order to do this, we first
count such junta-sums depending on the same set of variables.

Counting junta-sums depending on the same set of few variables. Without loss of gen-
erality, let the variable set on which the junta-sums depend on be [r]. That is, let Pi,..., P; be
the d-junta-sums that are at distance at most 1/s¢ — ¢ from a function f : [s]® — G, and each P
only depends on the first r variables. For a € [s]"™", let fa: [s]” — G be the function obtained by
setting the last n —r variables of f to be uniformly random independently. Since §(f, P;) < 1/s%—¢
for every i € [t], we have Ea[0(fa, P;)] < 1/s% — ¢, hence with probability at least £/2 over the
choice of a, it holds that §(fa, P;) < 1/5% — £/2 (where we are thinking of P; as being a function
from [s]” to G). By linearity of expectation, this means that the expected number of junta-sums
P; such that P; € L.j(fa) is at least t/2. Hence, it suffices to show that |L.,(f’)| for every
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J": [s]" — G is O(1) to conclude that ¢ = O.(1). To do this, we note that Py # P> € L./5(f')
cannot agree on more than 1 —1/s¢ fraction of inputs, so for a given subset of [s]” of size s" — 5",

there is at most one junta-sum in the list L, /2( /') that agrees with f’ on that subset. Therefore
|Leso(f)] < (o *0rma) = O:(1) as 7 = O(1).

Reducing to the case where the variable sets form a sunflower. We recall that our goal
is to prove that the number of d-junta-sums that are at distance at most 1/5% — ¢ from a given
f:[s]" = G is O (1). However, from the above paragraph, we see that the number of such junta-
sums depending on the same set of variables is O.(1). Thus, it suffices to show the following:

Suppose Pp,...,P, € L.(f) are such that they depend on distinct subsets of variables. Then,
t=0:(1).

Now, consider the set system formed over the universe [n]| by the subsets of variables each P;
depends on. Applying the sunflower lemma (e.g. [ER60], Theorem 3) to this set system, we observe
that if ¢ > r!(m — 1)", then there exists P;,,..., P;, € L:(f) such that the subset of variables they
depend on forms a sunflower: that is, if the subset of variables that P; depends on is denoted by
Vi € [n], then there exists a core C' € [n] such that V;; nV;, = C for every ji # j2 € [m] and the
petals V; \C are non-empty. Hence, it suffices to show that m = O.(1) to get that t = O.(1). For
the remainder of the proof, we shall assume that i; = j for j € [m], without loss of generality.

Reducing to the case where the variable sets are pairwise disjoint. While the application
of the sunflower lemma in the above step results in a core C which can be non-empty, the goal
of this step is to show that we can essentially assume that C' = ¢ without loss of generality. We
prove this by carefully setting the variables in C' (which is assumed to be non-empty) to constants.
We will switch the domain of the functions from [s]™ to Z? as we will be using junta-polynomial
representations.

Letx=2zu (y(l) uy@ ... y(m)) U W be a partition of the variable set where z denotes the variables
indexed by C, and y® denotes the variables that P; depends on other than z (i.e., y® corresponds

to the variables indexed by V;\C), and w are the remaining variables. We let ng = |C| = |z| and
ni = |y”|. Then we note that we can express each P; (for i € [m]) as follows:
Pi(x) = B(z,y") = >, daly"?”): Pia(2),

acZyt:|a|<d

where we use the notation d,(y®) = [ Licpni 9a; (y](z)) Let y-degree of P; denote the maximum

value of |a| for which P, is non-zero; since P; depends on y(® variables, the y-degree must be
in [d]. Moreover, since |z| < r = O.(1), the number of possible monomials (without considering
coefficients) in P4 is Os4.(1) = O(1). Thus, assuming m is a large enough function of 1/e
(otherwise, we are done), using the pigeon-hole principle, we can assume without loss of generality
that the y-degree of the P,;’s are all the same (say d’ € [d]) and that each P;, contains a non-
zero coefficient for the monomial oy, (z) for some b € Z7°, and that dy(z) is a non-zero monomial
with the maximal degree. Without loss of generality, let the first n{ coordinates of b be zero and
the remaining ones be non-zero, where 0 < ng < ng. We will first set the first ny variables in z
(if ny = 0, we skip this step) uniformly at random: we note that setting these variables cannot

cancel the monomial dy(z) as by assumption, it is a monomial with maximal degree. Denoting the
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restricted functions by PJ, ..., P/ and the restriction of f by f’, we have that these are all distinct
and each P! satisfies 6(f/, P!/) < 1/s?—¢/2 with probability at least £/2. Thus, there exists a choice
of assignments to the first n( variables of z such that for at least et/2 many P/ s, it holds that
§(f',P!) < 1/s? — ¢/2. Without loss of generality, we assume that these are the initial ¢ = et/2
junta-sums. We now set the remaining variables of z uniformly at random. We note that for i € [¢'],
since P 4 is still non-zero even after setting some variables of z in the earlier step, with probability
at least 1/3”0*”6, it holds that P; is non-zero. However, since the junta-degree of P; is at most
d and the y-degree of P; is d’, we must have that ng — n{, < d — d’. That is, denoting the final
junta-sums after setting all the variables of z by P/ respectively and the restricted function of f
by f”, we have that P/ is non-zero with .(1) probability. Furthermore, each P/ if non-zero has
junta-degree at most d’. Since §(f', P/) < 1/s¢ — &/2 and we are only setting ng — nf) < d — d’
variables when going from P/ to P/, we must have that d(f”, P/') < 1/s% — ¢/2. Thus, we have
reduced to the case where the junta-sums we want to count all depend on pairwise disjoint sets
of variables (although the degree changes from d to d’, we will use d for the rest of the proof for

simplicity; similarly we use ¢ instead of €/2).

Counting junta-sums depending on pairwise disjoint variables. To recap, we are now
in the following setup: We have an arbitrary function f : [s]” — G and distinct d-junta-sums
Py, ..., P, depending on pairwise disjoint subsets of variables such that §(f, P;) < 1/s? —¢, and the
goal is to show that ¢ = O,(1). The main idea is that the junta-sums behave “independently” as
they depend on disjoint subsets of variables and so there cannot be many of them correlated with
the same function f. More formally, we consider the following quantity:

P[r] [3@' € [t]: I{] e [t]: Pj(x) = Pi(x)}| = (1 —1/s% +¢/2)t — 1]. (35)
x~|s|™

On the one hand, since Pry_[gn i~ [ f(x) = Pi(x)] = 1 —1/s% + &, we have that (35) is at least £/2
(i.e., with probability /2, at least 1 — 1/s% + £/2 fraction of the junta-sums agree with f and so
with each other). On the other hand, since any two distinct junta-sums agree on at most 1 — 1/s¢
fraction of inputs and the events Pj(x) = P;(x) are independent across different j # i, we have
that (35) is at most /22", Combining both, we get ¢ = O.(1).

Proof of Theorem D.1. The above discussion finishes the proof of Theorem D.1. |

D.1.2 Anti-concentration Lemma

We end with a proof of the anti-concentration lemma (Lemma D.3). For this, we will need the
following claim about junta-sums that have a certain matching structure. This is analogous (and
extends) the corresponding result of Meka, Nguyen and Vu [MNV16] used in the analysis for the
Boolean case (s = 2) in [ABPSS25]. To state the claim, we say that two monomials of a junta-
polynomial: 0, and dp, (where a, b € Z?), are disjoint, if the non-zero indices of a and b are disjoint.

Claim D.4. For integerss = 2 andd > 1 and every e > 0, there exists u = u(s,d,e) and p = p(d, €)
such that for every Abelian group G which does not contain any element of order less than p, and
every d-junta-sum

P(x) = Z 9a - 0a(X)

aceZ?:|a|<d
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with at least u many pairwise disjoint non-zero monomials of degree d, it holds that:

Pr [P(a) = 0] <.

Proof. The main idea is to reduce to the Boolean case and use the following result from [ABPSS25],
which itself is derived using the anti-concentration result of Meka, Nguyen and Vu [MNV16] over
the reals.

Lemma D.5 ([MNV16], [ABPS525] Theorem 4.1.6 and Claim 4.1.5). For every positive integer d
and e > 0, there existst = t(d,e) and p = p(d, ) such that for every Abelian group G which does not
contain any element of order less than p, and every junta-degree-d polynomial P € J4({0,1}", G)
with at least t many pairwise disjoint non-zero monomials, it holds that:

Pr [P(a) =0] <e.
atglP@) = 0] <&

We now show how to use the above lemma to deduce a similar inequality for general s i.e., we
prove Claim D.4. Let u denote the number of pairwise disjoint non-zero monomials of degree d in
the junta-polynomial representation of P. Assuming a sufficiently large lower bound on u, our goal
is to show that

Pr [P(a) =0] <e.

a~Z77%
We choose a uniformly random a € Z as follows:

e Choose a random subcube C < Z7 by picking u,v € Z7, where u; # v; € Zs are chosen

uniformly at random and independently over i € [n]: more specifically, C' = {uj,v1} x -+ x

{un7vn}
e Choose a € C uniformly at random.

Let t = t(d,e/2) and p = p(d,e/2) be given by the functions ¢(.,.) and p(.,.) in Lemma D.5. Let
ay,...,a, € Z? (where u = u(s,d,e) will be decided later) be such that the monomials d,,(x) are
pairwise disjoint monomials, with |a;| = d, and have non-zero coefficients in P, where i € [u]. Let
S; € [n] denote the indices where a; is non-zero, so that S; are pairwise disjoint for ¢ € [u]. Now,
if uj = 0 and v; = a; for all j € S;, we note that if we treat P restricted to C' as function over
the Boolean cube (with u; — 0 and v; — 1 for j € S; and rest of the coordinates are mapped
arbitrarily), the monomial [ [, 5 2, has the same coefficient as that of da,(x) in P (which is non-
zero), since no other monomials can cancel this. Thus, if we can prove that there are at least ¢
many of the a;’s for which it holds that (u;,v;) = (0,a;) for j € S;, then we have a multilinear
polynomial over C' (or equivalently over {0,1}") with at least ¢ many non-zero disjoint monomials,
in which case, we apply Lemma D.5 to conclude that for a random point in a ~ C, the probability
that P(a) = 0 is at most /2. Therefore,
Pr [P(a) = 0] <e/2+Pr[[{i € [r] : (uj,v;) = (0,a;) Vj € S;}| = t].

a~Zmn
Now, we observe that the events (uj,v;) = (0, a;) are independent across j € S; and 4. In particular,

d
we have Pr[(uj,v;) = (0,a;) Vi € S;] = (ﬁ) > 2 4(1). Hence, if u is a sufficiently large enough
function of s, d, e, by applying the Chernoff bound, we get that

Pr[|{i € [u] : (uj,vj) = (0,a;) Vj € Si}| = t] <e/2,
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which in turn implies that Pra~z»[P(a) = 0] <e. |
Finally, we finish the proof of the anti-concentration lemma.

Proof of Lemma D.3. The proof is by induction on d.

Base case d = 1. We take r = u(s,1,¢e), where u(.,.) is given by the function in Claim D.4,
so that if P depends on r variables, we are guaranteed that there are at least r degree 1 pairwise
disjoint monomials. Then, applying Claim D.4, we get Prac(qn[P(a) # 0] > 1 —¢.

Induction step d > 1. The analysis is based on three cases.

e Case 1: There exists a variable (say x; w.l.o.g.) and an index j € [s — 1] such that in the
junta-polynomial representation

s—1

P(x) = Po(z2,...,2n) + Y. 85(x1)Pj(2, ..., 2n),
j=1

P; depends on at least 71 = r(s,d — 1,¢) variables. In this case, we note that for a random
choice of ag, ..., ay € [s], by applying the induction hypothesis to P; (which is a (d —1)-junta-
sum), we have that Pj(as, ..., a,) # 0 with probability at least 5'1%2 —¢e. Thus, the restriction
of P unto the variable x; is a non-constant function on setting x; = a; for ¢ > 1. Therefore,
we have Pr, [s»[P(a # 0)] > 1. (Sdl,2 —g) > sd%l —e.

e Case 2: Suppose there exists ro = u(s, d,1/2) many pairwise disjoint non-zero monomials of
degree d in P, where u(.) is given by Claim D.4. Then, we immediately get

1
aNP[g]n[P(a) =0] < 3 a1

e Case 3: Suppose neither Case 1 nor Case 2 occur. We now consider the set system A over
[n], where we include S € A for S < [n] if there exists b € Z7 such that the coefficient of oy, (x)
is non-zero in P, and S is the set of non-zero indices of b. Since there cannot be r5 many
S € A that are pairwise disjoint and each S € A is of size at most d, we can guarantee that
there exists a small “cover”; i.e., there exists indices i1, ..., € [n] with £ < dry such that for
every degree d non-zero monomial d,(x) in P, there exists j € [¢] such that b;, # 0 (i.e., 7y
is contained in the corresponding monomial). We now count the number of monomials in P
which contain the variable z;; for some j € [£]. Since Case 1 does not occur, we can bound

this by (s —1) - ((8;2“), where the s — 1 factor accounts for the number of monomials where

x;; appears as 0 (x;;) for j' € [s — 1], and the second factor ((Szd)”) bounds the number of
non-zero monomials of a function depending only on at most r; variables. Now, we set the
variables {x;; : j € [¢]} arbitrarily and show that the restricted function of P is still non-zero.
We note that once we set these variables, all the degree d monomials would reduce in degree
as the variables begin set form a “cover”, thus we can bound the probability of the restriction

of P being non-zero as being at least sd%l' Hence, it only remains to prove that the restriction

(s—1)r

<d ); this ensures that even

is non-zero. To see this, we set 7 = r(s,d,e) = 1 + 2{(s — 1)(
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after setting all the variables x;; : j € [{], there is at least one non-zero monomial in the
restricted function.

D.2 Combinatorial Bound for p-primary groups

In this section, we prove Theorem D.2. The high level proof approach again follows closely as that
of the Boolean case s = 2 from [ABPSS25]. The proof consists of the following steps:

e The first step is to reduce the problem from general p-primary groups to the case of Z,. We
prove a combinatorial bound for this case and “lift” it to the general case.

e Then we show that that we can instead count polynomials over a field F, (for some ¢ = O(s, p))
rather than junta-sums.

e In order to get the bound for the [F, case, we show that we can essentially assume without
loss of generality that the polynomials in the list have pairwise disjoint leading monomials.

e Finally, we show a tail bound for the roots of polynomials with pairwise disjoint leading
monomials, which results in a list size bound.

We divide the proof into two subsections; we prove the first two items above in Appendix D.2.1
and the next two items in Appendix D.2.2.

D.2.1 Reducing to the Case of Constant-sized Field F,

For a field F and a subset S € F of size |S| = s = 2, we note that J4(S™,F) is exactly the family of
functions that can be uniquely expressed as a polynomial where each (non-zero) monomial has at
most d variables and individual degree at most (s — 1) in each variable. For the remainder of this
subsection, we will use this interpretation. We show next that we can always assume that S € F

(and then use the polynomial interpretation) without much loss in parameters for the combinatorial
bound.

Lemma D.6 (Reducing counting junta-sums to polynomials). If J;(S",F,) is (1/s¢ —
€,04,(1))-list-decodable for every e > 0 and every finite field F, and subset S < F, of size s, then
Ja([s]™, Zy) is also (1/s¢ — €,0, -(1))-list-decodable for every prime p and every e > 0.

Proof. Fix an arbitrary prime p and let ¢ be the smallest power of p that is at least s. Let f : [s]” —
Z, be arbitrary and Pi,..., P, € Ju([s]",Zp) be distinct junta-sums such that §(f,P;) < 4 —¢
for i € [t]. We will prove that t = O,.(1) assuming that Ju(S",F,) is (1/s¢ — &,0,(1))-list-
decodable. We shall identify Z, with a subgroup of F, of order p: in particular, let H < [,
be a subgroup of F, that is homomorphic to Z,, via a group homomorphism o : Z, — H. Let
¢ : [s] — S be an arbitrary bijection and let g : S® — F, be defined by g(x) = o(f(¢1(x))).
Similarly, for i € [t], let Q; : S® — F, be defined by Q;(x) = o(Pi(¢1(x))). We claim that
Qi € Ja(S",Fy): indeed, if Pi(x) = Zle(@;) P [(x1) for functions P : [s]! — Z,, then we have
Qilx) = o (Lot Pur(@7 (x1)) = Xy o(Por(é7! (x1)). Moreover, 8(f, ;) = 6(g, Qs) and
Q;’s are pairwise distinct functions since o and ¢ are bijections. By our assumption that J4(S™,F,)
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is (1/s — €,04(1))-list-decodable, we get that t < Oy (1) = Op(1).
|

Lemma D.7 (Lifting the bound to general p-primary groups). If Ju([s]",Z,) is (1/s% —
g,0p.c(1))-list-decodable for every ¢ > 0 and every prime p, then Jy([s]",G) is also (1/s¢ —
g,0p(1))-list-decodable for every finite p-primary group G and every e > 0.

Proof. The proof essentially follows the same outline as that from [ABPSS25] which handles s = 2.
For arbitrary fixed € > 0, let L be the list size; i,e., for every g : [s]" — Z,, there exists at most
L < O, (1) junta-sums Q € J4([s]", Zp) such that 6(g, Q) < 1/s¢—e. We will now show that for an
arbitrary f : [s]” — G, that the number of junta-sums P € J4([s]", G) such that §(f, P) < 1/s% —¢
is at most LOU08(1/€))  thus giving the required bound. Using the notation L.(f) to denote the set
of junta-sums P € Jy([s]", G) such that 6(f, P) < 1/s%—¢, our goal now is to prove an upper bound
on |L:(f)|. In order to prove this, we will need the following setup. Since G is a finite p-primary
group, there exists an element hg € G of order p; let Hy € G be the subgroup generated by hg. We
then note that the quotient group G/Hy is again a p-primary group. By continuing this argument,
we have a sequence of groups G = Gy, G, ...,Gy for some h € N such that G411 = G;/H;, where
H; < Gj is a subgroup of order p (generated by some h; € G;) and Gy, is the trivial group containing
just the identity element. Now, we let fy = f and for 0 < i < h, we define f; : [s]" — G; by the
recurrence

fir1(x) = fi(x) mod H;.

We now define a rooted tree T as follows: there are h + 1 levels of the tree, with the root being
level h and the leaves being level 0. We now describe the vertices and their labels bottom-up. The
vertices in level 0 are in bijection with the junta-sums L.(f) (we treat these junta-sums as the
“labels” of the vertices). For a vertex with label Py € L.(f) in level 0, we let P, € J4([s]", G1)
defined by

Pl (X) = P()(X) mod _HO

be the label of the parent of this vertex: we note that P; € L.(f1) since if f and Py agree, so do
f1 and P;. Proceeding in a similar way, we construct all the above levels of the tree T and label
its vertices. In particular, the parent of a vertex in level i labeled with P, € L.(f;) is set to be the
junta-sum Py € L.(fiy+1) defined as:

Pii1(x) = Pi(x) mod H,.
For a vertex v of T at level i € [0..h] and labeled with P; € L.(f;), we let
p(v) =1/ = 6(fi, P).

Note that p(v) = ¢ for all vertices v of T'. We further show the following properties of p(-).

Claim D.8. For the tree T and the function p defined over the vertices of T defined above, the
following properties hold:

e Fach non-leaf vertex of T has at most L children.
e [f u is the parent of v, then p(u) = p(v).
e If u has two distinct children v and w, then p(u) = p(v) + p(w).
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We now finish the proof of Lemma D.7 using the above claim. We recall that the number of leaves
in T is exactly |Lc(f)|, which is what we want to upper bound. To do this, we argue that for any
non-leaf node u of T" with children vy, ..., v; (for some 1 <t < L), it holds that

plw) = 3 (i), (36)

i€[t]

where ¢ = [log L]. Then, applying this inequality for all the non-leaf vertices of the tree, we get
that
p(root)’ = Z p(v)t = (#leaves) - €.
v is a leaf

Using p(root) < 1, we thus get that |L.(f)| = (# leaves) < (1/¢)¢ = LO06(/2) = O, (1) as
desired. Hence, it only remains to show that (36) holds. For this, we will assume that ¢, the
number of children of u is at least 2 as otherwise, we immediately have p(u)¢ = p(v1)? using Ttem 2
of Claim D.8. Further, let p(vi) = p(v2) = --- = p(v;) without loss of generality. Then using Item
3 of Claim D.8 and t < L < 2¢, we have

p(u)" = (p(v1) + p(v2))*
> p(v1)" + (2° = Dp(v)"
> p(v1)" + (t = 1)p(v2)*
> p(v1)’ + p(v2)" + -+ + p(wr)"

We now prove Claim D.8.

Proof of Claim D.8. Let u be an arbitrary non-leaf vertex of T at level i + 1 (for some fixed
i € [0..h — 1]), with children vy, ..., v;. Suppose u is labeled by a junta-sum P € L.(f;+1) and v; is
labeled by a junta-sum Q; € L.(f;) for j € [t]. Therefore, for all j € [t], we have that

P(x) = Qj(x) mod H;. (37)

Hence, if f; and Q; agree on some input, so do fiy1 and P; so 0(fi+1, P) < 0(fi,@Q;) and p(u) >
p(vj), thus proving Item 2. Our goal now is to show that ¢ < L and p(u) > p(vj,) + p(vj,) for
J1 # jo € [t]. To do this, we let ¢1, o, ..., ca € G be fixed coset representatives (where M = |G;|/p
and the cosets are ordered arbitrarily) corresponding to the subgroup H; of G;. Then each element
g € G; can be uniquely written as ¢ = ¢’ + g with ¢’ € H; and g € {c1,...,cp} being a coset
representative.

Let

Qi) = > gia-da(x),

acZ?:|a|<d

for some gja € Gi. From (37), we see that gja = g1,a for all j € [t]. Now we define Q:[s]" - G;
to be: R
0x)= Y adax),

acZ?:|a|<d
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and d-junta-sums @j € Ja([s]™, H;) for j € [t], to be:

)= Y gha-balx).

acZ”:|a|<d

Since Q;(x) = @(x) + CNQJ- (x) and @) are pairwise distinct for j € [t], we have that @j are pairwise
distinct for j € [t]. Moreover for the function f : [s]" — G; defined as f(x) = f;(x) — Q(x), we
have that 5(f, @]) = 0(fi,Q;) < 1/s? —e. Therefore, we get t < L as H; is isomorphic to Z,
and we have a list size bound of L for junta-sums over Z,. This proves Item 1 of the claim. To
prove Item 3, let j; # jo € [t] be arbitrary and let A1, Ay € [s]™ be the subset of points where f;
agrees with @;, and @Q;, respectively. Let A < [s]" be the subset of points where f; ;1 agrees with
P. From the proof of Item 2, we have that A1, As © A. Since two distinct d-junta-sums cannot
agree on more than 1 — 1/s? fraction of inputs (Claim 2.6), we have |A; n Ag| < (1 — 1/s%)s™.
Hence, |A] > [A; U Ag| = |A1] + |As| — |41 1 Ag| = 5™ (2= 6(fi,Qj,) — 0(fi, Qjy) — 1 + 1/5%)).
Since |A| = s™ (1 — 0(fis1, P)), we get 8(fiv1, P) < 0(fi,Qjy) + 8(fi,Qj,) — 1/5%, or equivalently
p(u) = pl(vz) + plvs,): =

Having reduced the problem to showing combinatorial bound over F,, which we state below and
prove in the next subsection.

Theorem D.9. For every € > 0, finite field F, and subset S = F, of size s > 2, the family
Ja(S™,Fy) is (1/s% — ,04¢(1))-list-decodable.

With the above theorem, we can now finish the proof of the combinatorial bound for p-primary
groups.

Proof of Theorem D.2. The proof follows by combining Lemma D.7, Lemma D.6 and Theorem D.9.
[

D.2.2 Combinatorial Bound for F,

Throughout this subsection, we fix a finite field IF, and a subset S < FF, of size s arbitrarily. We
think of ¢ > 2,5 > 2 and d > 1 as constants. Furthermore, we fix a monomial ordering (denoted
<) over the monomials to be the graded lexicographic order (see [ABPSS25] for a definition) and
denote by LM(P) the leading monomial of a polynomial P (assuming it is non-zero). We will use
the notation my > ms9 to mean that mo < mj and mi1 > ms to mean that mo < my and mq # ma.

We show the following lemma which effectively reduces the list-decoding problem to bounding the
number of polynomials in the list with pairwise distinct monomials.

Lemma D.10 (Distinct leading monomials). If P, ..., P, € J4(S™,F,) are such that 6(f, P;) <
1/s%—¢ for alli € [t] and some f : S™ — F,, then there exists a function f': S™ — F, such that there
are at least £ = Q(log, t) many polynomials Q1,...,Q¢ € Ja(S™,F,) such that 5(f',Q;) < 1/s% — ¢
and LM(Q;) are pairwise distinct for i € [{].
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Then, we prove the following “tail bound” for polynomials with pairwise disjoint leading monomials.

Lemma D.11 (Tail bound for disjoint leading monomials). Let Py,..., P, € J;(S",F,) be
such that LM(P;) are pairwise disjoint for i € [t]. Then:

Pr [
a~Sn

With the above lemmas in place, we are ready to finish the proof of the main result of this subsection
i.e., Theorem D.9.

{ie[t]: P(a) =0} = (1 —1/s% + n)t} < exp(—Q(n?t)).

Proof of Theorem D.9. Using Lemma D.10, it suffices to show that if Q1,...,Q, € Jq(S™,F,) are
such that LM(Q;) are pairwise distinct for i € [¢] and 6(Q;, f) < 1/s% — € for some f : S" — F,,
then that £ = Oy .(1). Applying the sunflower lemma (see e.g. [ERG0]) for the multisets determined
by the leading monomials of @;’s, we can find a subset of indices i1, ...,4y for some ¢ > Qd(ﬁl/ )

such that LM(Q;;) form a sunflower for j € [¢']. That is, there exists variables {z; : j € C'} and
{ej € Zs:je C} where C e ([g{) such that LM(Q;;) = [ [;cc xji" -m; and m; are monomials over

the variables indexed by [n]\C and are pairwise disjoint for j € [¢']. Without loss of generality, we
will assume that i; = j for all j € [¢']. We will now express each Q); for i € [¢] (uniquely) as follows:

Qix) =[]« QM (xpape) + QP (),

jeC
where le) is a polynomial over variables indexed by [n]\C and Q§2) does not contain any monomial
dividing [ [ e :cjj . We note that since the leading monomial of Q; is [ [ ;e :c?j -m;, by our definition

of monomial ordering, we must have that LM(QEI)) = m;. Let a ~ S™ be sampled by first

choosing a’ ~ S"\C uniformly at random and then a” ~ S¢ uniformly and independently. Letting
d' = d — |C|, we may now apply the tail bound (Lemma D.11) to le) to get that

Pr [
al

In fact, by applying it to QZ(»U — a for a € F; and by a union bound, we get that

ielt]: QM @) = 0}‘ >(1-1/s7 + 5/2)4 < exp(—Q(e2)).

Pr [Ela e F, such that |{i € [t] : le)(a’) = o}
a/

> (-1 e | < e (9

Now, let us use the notation
Qi(xc) = Qi(xc,2)

to denote the corresponding restricted functions obtained by setting the variables in [n]\C to a’.
Similarly, let f': S¢ — F, be the restricted function f'(x¢) = f(x¢,a’). For a uniformly random
choice of @', let B denote the “bad” event that the multiset of functions {Q’ : i € [¢']} has a function
occurring at least (1 — 1/s% + ¢/2)¢ many times. The bound from Equation (38) immediately
implies that

Pr[B] < ¢ - exp(—Q(e20')). (39)

a/
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Conditioned on B not occurring, we note that there are at least (1/s% —¢/2)¢ indices i € [¢'] such
that Q) # f’ as functions over SC. More formally,

AR SR

Since two different functions over |C| variables must differ on a random input with probability at
least 1/s/°l, we further get:

roon rean ] 1 € 1 1 _ €
z'~[lz]r,a~ [Qi(a ) # f(@") | B} > <sd' 33z g (40)
Combining (39) and (40), we obtain
P Q@) # f@)] 2 - 5 - st
il a~sn | O a V=5 27 aEn;

However, we note that since §(Q;, f) < 1/s% — ¢ for all i € [¢'], the left hand side of the above
inequality must be at most Sid — e. Put together, they give the required bound of ¢ = O, (1), and
thus ¢ = Oy -(1). [

We now give the proofs of the above two lemmas. First, we start with the reduction to counting
polynomials with distinct leading monomials, i.e., Lemma D.10.

Proof of Lemma D.10. Let £ be an integer such that ¢ € [¢*, ¢"™!) (so we have £ > Q(log, ). We
will prove the following inductive claim. We recall that L.(f) denotes the set of polynomials in
Ja(S™,F,) that are at distance at most 1/s¢ — ¢ from the function f.

Inductive claim. For every 0 < ¢ < /, there exists a function f; : S" — [y, polynomials
Q1,Q2,...,Qi € Ju(S™, Fy), and a set of polynomials Q; = J4(S™,F,) such that:

) Ql, .. .,Qi € Lg(fl) and Q € Lg(fl) for all Q € Qi,
o LM(Q1) > LM(Q2) > - > LM(Q;) > LM(Q) for all Q € Q;, and
o |Q] = qefi-

We note that the base case i = 0 is true with fy = f and Qy = {P, P»,..., P;}. And proving the
inductive claim for ¢ = £ finishes the proof of Lemma D.10. We now assume the inductive claim
holds for a fixed 7 < £ and prove it for ¢ + 1.

Let P e J4(S™,F,) be the “plurality polynomial” of Q;, i.e., we determine each coefficient of P by
taking a plurality vote of the corresponding coefficients from the polynomials in Q; (by breaking
ties arbitrarily). We then define f;1; : S™ — F, to be

fix1=fi— P.

We now define Q',...,Q;, Qi € J4(S™,Fy) and Q) < J4(S™,F,) such that the three items of
the inductive claim hold for them. We let Q) = {Q — P : Q € Q;} and set Q; = Q; — P for j € [i].
We now set @Q;,; to be a polynomial from Q; with the greatest leading monomial (ignoring the
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zero polynomial if it exists and breaking ties arbitrarily). Then we set Q; . ; to be the subset of
polynomials in @} with leading monomial strictly smaller than that of @}, i.e.:

i ={Q € 9 LM(Q') < LM(Qi11)}-

It remains to prove that the three conditions of the inductive claim actually hold for the above
definitions.

o We have that §(Q%, fi+1) = 0(Q; — P, fi = P) = 8(Qj, fi) < 1/5% — ¢, therefore Q) € Le(fit1)
for all j € [¢]. Similarly, we have Q;,, € L:(fi+1) and Q' € L.(fit1) for all Q' € Qerl

e We note that LM(P) < LM(Q;) since the coefficients of all monomials m > LM(Q;) in all
@ € Q; (and hence in P) are zero by the induction hypothesis. Therefore, LM(Q}) = LM(Q;)
for j € [i] and we have LM(Q)) > LM(Q5) > --- > LM(Q;). It also follows that LM(Q?) >
LM(Q/, ) and LM(Q/, ;) > LM(Q) for all Q € Qz+1 by the definitions of Q7 and Q.

e We have that |Q}| = |Q;| > ¢"~* by induction hypothesis. By the definition of @}, ;, we observe
that LM(Q') < LM(Q;,,) for all Q' € Q] and we will show that at least 1/q fraction of Q"’s
have leading monomial strictly smaller than that of Q;, ;. By the nature of the construction
of P using the plurality vote, we observe that at least 1/q fraction of the polynomials Q) € Q}
agree with P on the coefficient LM(Q7, ;). The corresponding polynomials Q' = Q — P have
coefficient of LM(Q;+1) as zero. In other words there are at least |Q;|/¢q polynomials Q' € Q}
with leading coefficient strictly smaller than LM(Q)_ ), and hence by our definition of Q},

it must be of size |Q}, | = |0Q}|/q = ¢~ FV.

This finishes the proof of the inductive claim. |
We now prove the tail bound for polynomials with pairwise disjoint leading monomials (Lemma D.11).

Proof of Lemma D.11. We will use the following theorem of Panconesi and Srinivasan [PS97] which
reduces the task of showing tail bounds to proving a certain “independence” relation among the
events.

Theorem D.12 ([PS97] Theorem 3.4). Let Zu,...,Z; be Boolean random variables and o € [0, 1]
be such that for every subset S < [t], we have that Pr[N,.q Zi = 1] < a!Sl. Then, for every n > 0,
we have

[ Z Zi=(a+n) ] < exp(—Q(n°t)).

Because of the above theorem, it suffices to show the following: for every ¢t € N and non-zero
polynomials P, ..., P € Jq(S™, F,) for which LM(F;) are pairwise disjoint for i € [¢t], that:

Pr [Pi(a) —0 forallie [t]] <1 - Sld)t (41)

a~Sn
The proof follows the same footprint bound technique as used in [ABPSS25]. In particular, letting

Z ={aeS": P(a)=0forall i€ [t]}
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denote the set of common zeroes, we will prove an upper bound on the dimension of all functions
from Z to F, ie., |Z|. Let f : Z — F, be an arbitrary function. We will show that it can be
expressed as a polynomial of individual degree at most s — 1 over F,, without using any monomial
divisible by any of the LM(P;) for i € [t]. That is, these are the monomials x® for e € E, where
E C Z" is defined below, and LM(P;) = x™i for some m; € Z"!°:

E={eeZ} :Vie[t] 3j € [n] e; < m; }.

Using the fact that the supports of m; are pairwise disjoint (over ¢ € [t]) and are of size at most

d, we get that |E| < (1— Sid)t - s"™. We will show that there exists field elements (ce)ecr such that
f(X) = Yecp Ce - x° for all x € Z. This shall finish the proof of (41) and thus Lemma D.11 as

it shows that |Z| < |E| < (1 — Sid)t - s™. Hence, it remains to prove that f can be expressed as
a linear combination of monomials in E. Since Z € S", we know that there exists a polynomial
representation for f of individual degree at most s—1: suppose Q(x) = > cyn Ce X for some ce € F,
is such that f(x) = Q(x) for all x € Z. If ¢, = 0 for all e ¢ E, we are done. Otherwise, there exists
an i € [t] such that LM(P;) divides x® for some €’ such that ce # 0 (say that x® = LM(P;) - x®");
w.Lo.g. let x¢ be the largest monomial in the monomial ordering such that this holds. Then, we note
that we can replace the monomial x® with the polynomial x" (LM(P;) — P;/c) in the polynomial
ZeeZg Ce - x° while still computing f, where c € F is the coefficient of LM(F;) in P;. This is due to
the fact that P; (and therefore P;/c) evaluates to 0 over Z. Let @’ denote the polynomial obtained
by such a transformation. We claim that LM(Q’) < LM(Q). This is because all the new non-zero
monomials introduced by the transformation are of the form x¢" - x®” for some x¢” < LM(F;),
and so x® - x¢" < x¢" . LM(P;) = x® = LM(Q) using the monomial ordering property. Hence,
LM(Q') < LM(Q). While the leading monomial of the polynomial computing has decreased, it
may be possible that Q' contains monomials with individual degree at least s. We now argue that
we can design a new polynomial " such that LM(Q") < LM(Q’) and Q"(x) = Q'(x) = f(x) for
all x € Z. The idea is to use the equation [ [, ¢(x; — a) = 0 to replace the powers of the variable
x; greater than s — 1 with smaller powers — this only results in monomials that are smaller in the
monomial order. Thus, by repeating the above two steps for a finite number of times, we will have

a polynomial representing f only using monomials from F. |
15 Here we treat ZZ = {0,1,...,5s — 1} as a subset of Z" and define the monomial x™ = Hie[n] x
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