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1. In the paper where he first defined Communication Complexity [3], Yao asks: Is computing
CC(f) (the 2-way communication complexity of a given function f) NP-complete? The
problem of deciding whether CC(f) ≤ k, when given the communication matrix for f and a
number k, is easily seen to be in NP. Kushilevitz and Weinreb have shown that this problem
is cryptographically hard [2]. Here we show it is NP-hard.

The proof consists of a small collection of observations, on top of a previous reduction
by Jiang and Ravikumar [1] from vertex cover. They showed implicitly that it is NP-hard
to compute χ1(f), the 1-partition number (we will give a formal definition later) of a given
function. We will begin by describing their reduction in the language of communication
matrices. Using their reduction and a few additional tricks, we will conclude that the
communication complexity of f is NP-hard to compute exactly.

2 Notation and definitions. Let f : X × Y → {0, 1} be a communication matrix. We let
CC(f) be deterministic communication complexity of f , i.e., the smallest depth of a binary
protocol tree for computing f .1

A rectangle (of f : X × Y → {0, 1}) is a product set A × B where A ⊆ X and B ⊆ Y .
We let χ1(f) denote the 1-partition number, i.e., the smallest number of pairwise disjoint
1-monochromatic rectangles needed to cover f−1(1). Because the 1-monochromatic leaves of
any communication protocol for f form a partition of f−1(1), we have:

CC(f) ≥ ⌈log χ1(f)⌉.

3. We now describe a previous result by Jiang and Ravikumar [1], where they implicitly show
that χ1 is NP-hard. The reduction is via the vertex cover problem. Recall, in the vertex
cover problem, we are given as input an undirected graph G = ([n], E), with E ⊆

([n]
2

)
, and

we wish to find the size κ(G) of a smallest-possible set C ⊆ [n] such that |e ∩ C| ≥ 1 for all
e ∈ E. Given G, we will now describe a communication matrix fG : X × Y → {0, 1}, such
that

χ1(fG) = n + 4|E| + κ(G).

The matrix fG and the proof that χ1(f) = n + 4|E| + κ(G) appears as Lemma 3.3. of Jiang
and Ravikumar’s paper [1]. They actually showed this for the normal set basis problem,
which turns out to be equivalent to χ1, and here we translate their reduction to the language
of communication complexity.

The communication matrix of fG consists of 2n + 4|E| rows, indexed by the set

([n] × {0, 1}) ∪ (E × [4]),

1 It should be noted that the original definition appearing in Yao’s paper [3] requires the players to speak
alternatingly. We here adopt the more modern, perhaps one could say correct, definition, which uses
protocol trees.
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and n + 5|E| columns, indexed by

[n] ∪ (E × [5]).

The communication matrix is given by the following picture. All missing entries are 0, and
some zeroes are included for emphasis.

We now show that χ1(fG) = n + 4|E| + κ(G). Let us start with the “≤” direction. Given
a vertex cover C ⊆ [n] of size k = |C|, we construct the following 1-partition. ’ For each
i /∈ C, we include the single rectangle containing all the ones in the i column. If i ∈ C,
we instead include two rectangles containing all the ones in the (i, 0) row and (i, 1) row
respectively. Observe that, by construction, these rectangles will cover all the 1s contained
in the “upper left” rectangle

([n] × {0, 1}) × [n].
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Moreover, because C is a vertex cover, for every edge {i, j}, we must have already covered
all the 1s in the (v, 0) and (v, 1) rows for some v ∈ {i, j}. It is then easy to see that we can
use only 4 rectangles to cover all the remaining 1s in the submatrix corresponding to that
edge.2 This yields a 1-partition with n − k + 2k + 4|E| = n + 4|E| + k rectangles.

Next we show the “≥” direction. Fix a minimum-sized partition of the 1s of fG into
1-monochromatic rectangles. We say a rectangle in the partition is a node rectangle if it
covers ((i, b), i) for some i ∈ [n] and b ∈ {0, 1}. We form a vertex set C ′ ⊆ [n] by including i

in C ′ if and only if the entries ((i, 0), i) and ((i, 1), i) are covered by different node rectangles
in the partition. Observe that we must have at least n + |C ′| node rectangles.

We first show that we may assume, without loss of generality, that the given smallest
1-partition has the following property: if i /∈ C ′, then there do not exist two edges {i, j} and
{i, j′} such that the 1 entries in the (i, 0) and (i, 1) rows of their gadgets share a rectangle.
Indeed, suppose we have that three distinct indices i, j, j′ such that {i, j} and {i, j′} are
edges of G, ((i, 0), ({i, j}, 1)) and ((i, 0), ({i, j′}, 1)) are in the same rectangle R, and yet
i /∈ C ′, meaning ((i, 0), i) and ((i, 1), i) are both in the same rectangle S. Then the rectangle
R, being 1-monochromatic, cannot include any rows other than (i, 0). We may then remove
the entry ((i, 0), i) from the rectangle S it shares with ((i, 1), i), and put it in R instead.
The new 1-partition has the same size, but now i ∈ C ′ is forced to hold. So we may assume
without loss of generality that we are given a minimum-size 1-partition, where additionally
there are no such i, j, j′.

Now, there are two kinds of edges {i, j}: edges in E1 are such that i /∈ C ′ and j /∈ C ′,
and edges in E2 = E \ E1 are such that i ∈ C ′ or j ∈ C ′ (or both). Edges in E1 cannot
use the node rectangles to cover the 1s in their gadget, and hence they require at least 5
rectangles. This follows by noting that the five 1s outlined in the figure above form a fooling
set. Edges in E2 of the second kind can use the node rectangles to cover the 1s in the top
part of their edge gadget, but they still need 4 rectangles to cover the bottom part. All of
the rectangles used to cover the top part must be disjoint, by our without-loss-of-generality
assumption above. It follows that χ1(fG) ≥ n + |C ′| + 5|E1| + 4|E2| = n + |C ′| + 4|E| + |E1|.
By adding one node to C ′ per edge in E1 we obtain a vertex cover of size |C ′| + |E1| and so
χ1(fG) ≥ n + 4|E| + κ(G), as required.

NP-hardness of CC(f)

We now show how NP-hardness of CC(f) follows from the above, with a few tricks.

4. We now observe that, for such G, fG can be computed by a non-binary protocol π which
is, informally speaking, fairly balanced. Indeed, let us define the binary depth of a leaf ℓ in
a non-binary protocol tree as the sum, over every node in the path from the root to ℓ, of
the ceiling of the logarithm of the number of children of the node. The binary depth of a
non-binary protocol, then, is the maximum binary depth among its leaves. Then, the binary
depth of our non-binary protocol for fG will be at most:

⌈log (n + 2|E| + κ(G))⌉ + 2.

We are justified in calling this a fairly balanced protocol, since χ1(fG) = n + 4|E| + κ(G) is a
lower-bound on the number of its leaves.

2 Namely, the submatrix given by the rectangle A × B where A = ({i, j} × {0, 1}) ∪ ({i, j} × [4]) and
B = {i, j} × [5]
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The protocol proceeds as follows. Let C ⊆ [n] be a vertex cover for G. Bob, the column
player, speaks first. He sends Alice a bit indicating whether he has a column in the set

NFCV = {({i, j}, c) ∈ E × [5] | i < j, and (i ∈ C ∧ c ∈ {3, 4}) ∨ (i /∈ C ∧ c ∈ {1, 2}}.

NFCV stands for “Not First Cover Vertex”. Indeed, Bob tells Alice whether or not his column
is one of the two edge-gadget columns (1 and 2, or 3 and 4) corresponding to a vertex which
is not the smallest vertex in C. Meaning, Bob sends a 1 to Alice if he has an edge column
({i, j}, c) such that i < j, i ∈ C and c ∈ {3, 4}, or an edge column ({i, j}, c) such that i < j,
i /∈ C (hence j ∈ C because C is a vertex cover) and c ∈ {1, 2}. Otherwise, Bob sends a 0.

If he sent a 1, meaning he has a column in NFCV, then Bob further tells Alice exactly
which column (out of 2|E| possibilities) he has, and Alice replies whether Bob’s column entry
in Alice’s row is 0 or 1. This sub-tree of the protocol has exactly 4|E| leaves and binary
depth ≤ 1 + ⌈log(2|E|)⌉ + 1 ≤ ⌈log(n + 2|E| + |C|)⌉ + 2.

Now suppose Bob’s column is not in NFCV. Then Alice will tell Bob which of the following
cases applies to her row:
(1) She has row (i, r) with i ∈ C, and in this case she sends (i, r) to Bob;
(2) She has a row (i, r) with i /∈ C, and in this case she sends i to Bob;
(3) She has a row ({i, j}, r) with i ∈ C and r ∈ {1, 2}, or with i /∈ C and r ∈ {1, 3}, and in

this case she sends {i, j} to Bob;
(4) She has a row ({i, j}, r) with i ∈ C and r ∈ {3, 4} or with i /∈ C and r ∈ {2, 4}, and in

this case she sends {i, j} to Bob, also.
After receiving this information, Bob can now tell Alice the value of fG. Indeed, in case
(1), Bob learns exactly which row Alice has. In case (2), Bob learns that Alice has one of
two rows (i, 0) or (i, 1); but i /∈ C, and Bob’s column is not in NFCV, and in the remaining
columns, fG is constant in both of Alice’s rows. In case (3), Bob learns, for example, Alice’s
row is either ({i, j}, 1) or ({i, j}, 2) for some i ∈ C, and one can see from the figure that for
the columns outside of NFCV, fG is constant in both of Alice’s rows. Case (3) with i /∈ C

and both subcases of case (4) are similar.
This sub-tree of the protocol has exactly 2n + 4|E| + 2|C| leaves: 4|C| for case (1),

2(n − |C|) for case (2), 2|E| for each of cases (3) and (4). The binary depth of the leaves in
this sub-tree is 1 + ⌈log(n + 2|E| + |C|)⌉ + 1. This is illustrated in the following figure (we
ignore the gray part, for now).

...... ... ...

5. Now we do a trick to make the protocol binary and balanced at the same time, where we
may formally call a binary tree balanced if its depth equals the ceiling of the log of the number
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of leaves. First, notice the following. Let us convert the above protocol into binary, by
encoding each message using ⌈log(# of children)⌉ bits at each node. In this binary protocol,
Bob communicates the first bit, and then the two resulting sub-trees are balanced, with the
left sub-tree having 2n + 4|E| + 2κ(G) useful leaves, and the right sub-tree having 4|E| useful
leaves, plus some extra unused leaves that are left dangling because of our conversion of the
protocol into binary — these unused leaves will never be reached by any input to the protocol.
Precisely half of the useful leaves are 1-monochromatic, and half are 0-monochromatic.

Now suppose we are given a number k, and we wish to distinguish whether κ(G) ≤ k

or κ(G) > k. Then let ℓ be the natural number such that 2ℓ−1 < n + 2|E| + k ≤ 2ℓ. Let
d0 = 2ℓ − n − 2|E| − k, d1 = 2ℓ − 2|E|, and d = d0 + d1. In other words, for the case when
κ(G) = k, d0 is the number of leaves that are missing from (the useful part of) the left
sub-tree of the above nearly balanced protocol, so that it would have exactly 2ℓ leaves in
this left sub-tree. And d1 is the number of leaves missing from (the useful part of) the right
sub-tree, so that it would also have 2ℓ leaves.

Now consider the communication matrix f ′
G, given by

f ′
G =

(
fG 0
0 Idd

)
where Idd is the d × d identity matrix. It now follows that χ1(f ′

G) = χ1(fG) + d, and so

χ1(f ′
G) = 2ℓ+1 + κ(G) − k.

On the other hand, a binary protocol for f ′
G can proceed very similarly to a protocol for fG.

Bob begins by saying whether he has a column in NFCV, or one of the last d1-many extra
columns. In that case, he says which, and Alice replies with the function value. Otherwise,
Alice sends a message as before, with an extra case (5) if she has one of the first d0-many
extra rows, and in this case she says which row. Bob then replies with the function value as
before. The difference between the old and new protocol is the gray part illustrated in the
figure. This protocol has depth exactly ℓ + 2 if k ≤ κ(G). And this protocol needs depth
ℓ + 3 if k > κ(G). All we are missing is a matching lower-bound, saying that there is no
protocol that can solve f ′

G in depth less than ℓ + 3, when k > κ(G).

6. Now observe that, for every non-constant communication matrix f ,

CC(f) ≥ ⌈log χ1(f)⌉ + 1.

The observation is trivial without the +1, but it is not immediately obvious with it.
Let us prove this by strong induction on CC(f). Because f is non-constant, we have that

CC(f) ≥ 1. Our base case is CC(f) = 1. In this case, it is easy to see that χ1(f) = 1 and
thus the theorem holds.

Now suppose that CC(f) = s > 1. Take any optimal protocol for f , and look at its left
and right sub-trees. The left sub-tree computes some function f0 and the right sub-tree
computes some function f1 over disjoint rectangles. Since CC(f) > 1, we have that at least
one of f0 and f1 is non-constant. Finally, we can conclude that

CC(f) = 1 + max{CC(f0), CC(f1)}
≥ 2 + max{⌈log χ1(f0)⌉, ⌈log χ1(f1)⌉}
≥ 1 + ⌈log(2 · max{χ1(f0), χ1(f1)})⌉
≥ 1 + ⌈log(χ1(f0) + χ1(f1)})⌉
≥ 1 + ⌈log χ1(f)⌉,
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where the first line uses that the protocol for f is optimal and the second line uses the
inductive hypothesis and that at least one of f0 and f1 is non-constant (and the fact that
CC(f) ≥ 1 + ⌈log χ1(g)⌉ for all non-constant functions f and all constant functions g).

7. Finally, we may conclude the following:
if k ≤ κ(G), then CC(f ′

G) ≤ ℓ + 2 by the protocol of §4 and §5, and CC(f ′
G) ≥

⌈log(χ1(f ′
G))⌉ + 1 = ℓ + 2 by §5 and §6, so CC(f ′

G) = ℓ + 2.
if k > κ(G), however, we get CC(f ′

G) ≥ ⌈log(χ1(f ′
G))⌉ + 1 = ℓ + 3.

And so it follows that communication complexity CC(f) of a given function f is NP-hard to
compute exactly.

8 Final remarks. It should be noted that the above result does not give us any hardness-
of-approximation. It could well be that CC(f) is not NP-hard to compute for an additive
error of 1! Do recall, however, that Kushilevitz and Weinreb have shown that approximating
CC(f) up to a factor of (roughly) 1.1 is cryptographically hard [2], so we do expect that the
problem is hard to approximate, just not necessarily NP-hard to approximate.

As we mentioned in footnote, we have proven NP-hardness of communication complexity,
as defined by the smallest depth of a protocol tree, and not as per Yao’s original definition,
of the smallest number of rounds in an alternating protocol. These two definitions of
communication complexity are the same up to a constant factor of 2, but our proof is
not robust up to such a factor, hence, strictly speaking, Yao’s original question remains
unanswered. We are currently working on this problem: it seems to require significantly new
ideas.

We should also remark that the reduction of Jiang and Ravikumar, together with the
known hardness of approximation results for vertex cover, already show that χ1(f) is hard to
approximate up to some constant γ > 1. One would think that this would lead to a similar
hardness-of-approximation for L(f), the smallest number of leaves in a protocol for f , but it
is unclear how to generalize the crucial observation of §6. The analogous conjecture to §6 for
L, which would state that L(f) ≥ 2χ1(f), is not true: certain functions with imbalanced
protocols serve as a counter-example.

As such our result, which does hold for the usual model of communication complexity,
is not very robust. What one would ideally like is an NP-hardness of approximation result
for CC(f), up to a reasonably large constant factor (e.g. 4 would be enough, but not 2),
since this would make the hardness robust up to rebalancing the protocol tree. This would
require reducing from a different problem, such as graph coloring, since vertex cover can be
approximated with a factor of 2, and so it cannot prove any hardness of approximation on
CC(f).

In a very distant future one could even hope for hardness of approximation up to a small
exponent. Proving hardness of approximation to an arbitrary constant exponent would
disprove the log rank conjecture, assuming P ̸= NP, and we have even wondered if this was a
viable way to attack the log-rank conjecture.

In summary: the question of whether CC(f) is hard to approximate is wide open, and an
entirely new approach will have to be developed to attack this question.
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