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Abstract

A zero-knowledge proof demonstrates that a fact (like that a Sudoku puzzle has a solution) is true
while, counterintuitively, revealing nothing else (like what the solution actually is). This remarkable
guarantee is extremely useful in cryptographic applications, but it comes at a cost. A classical impossi-
bility result by Goldreich and Oren [J. Cryptol. ’94] shows that zero-knowledge proofs must necessarily
sacrifice basic properties of traditional mathematical proofs — namely perfect soundness (that no proof
of a false statement exists) and non-interactivity (that a proof can be transmitted in a single message).

Contrary to this impossibility, we show that zero-knowledge with perfect soundness and no interaction
is effectively possible. We do so by defining and constructing a powerful new relaxation of zero-knowledge.
Intuitively, while the classical zero-knowledge definition requires that an object called a simulator actually
exists, our new definition only requires that one cannot rule out that a simulator exists (in a particular
logical sense). Using this, we show that every falsifiable security property of (classical) zero-knowledge can
be achieved with no interaction, no setup, and perfect soundness. This enables us to remove interaction
and setup from (classical) zero-knowledge in essentially all of its applications in the literature, at the
relatively mild cost that such applications now have security that is “game-based” instead of “simulation-
based.”

Our construction builds on the work of Kuykendall and Zhandry [TCC ’20] and relies on two central,
longstanding, and well-studied assumptions that we show are also necessary. The first is the existence
of non-interactive witness indistinguishable proofs, which follows from standard assumptions in cryptog-
raphy. The second is Krajicek and Pudlak’s 1989 conjecture that no optimal proof system exists. This
is one of the main conjectures in the field of proof complexity and is the natural finitistic analogue of
the impossibility of Hilbert’s second problem (and, hence, also Godel’s incompleteness theorem). Our
high-level idea is to use these assumptions to construct a prover and verifier where no simulator exists,
but the non-existence of a simulator is independent (in the logical sense of unprovability) of an arbitrarily
strong logical system. One such logical system is the standard axioms of mathematics: ZFC.
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1 Introduction

Imagine Alice wants to convince Bob that the Sudoku puzzle he is working on actually has a solution. Alice
could simply reveal a solution to Bob. But this would ruin the puzzle for Bob. Ideally, Alice could prove to
Bob that the puzzle is solvable without revealing any additional information (like how to solve it). This is
exactly what zero-knowledge proofs [GMR89] guarantee.

In a zero-knowledge proof, a prover (like Alice) convinces a verifier (like Bob) that a statement is true,
while — counterintuitively — revealing nothing. The crux of Goldwasser, Micali, and Rackoff’s definition
is a mathematical formalization of “revealing nothing.” Their beautiful idea is to do so via the notion of a
simulator.

A simulator is an efficient algorithm that the verifier can use to simulate — on its own — any interaction
the verifier could possibly have with the prover. This guarantees that the verifier learns “nothing new” by
interacting with the prover. Intuitively, if you already know everything someone else is going to say, then
you cannot learn anything by talking to them.

Remarkably, a proof of any statement can be transformed into a zero-knowledge proof, under a stan-
dard assumption in cryptography (one-way functions exist) [GMWS86]. This is extremely useful, and zero-
knowledge proofs have become a basic tool in cryptography, important in theoretical and practical crypto-
graphic systems alike. However, using zero-knowledge proofs comes at a cost.

Drawbacks of zero-knowledge. All existing zero-knowledge proofs diverge from the traditional notion
of a proof (such as Alice simply revealing a Sudoku solution to Bob) in two undesirable ways.

e Interaction: The prover and verifier need to interact — either explicitly, via sending messages back
and forth, or implicitly, via trusted setup.! (What is often called “non-interactive” zero-knowledge
(NIZK) [BFM88; BSMP91] requires trusted setup.) In contrast, a traditional proof is a single string
that the prover can send in a single message.

e Imperfect Soundness: The verifier sometimes accepts “proofs” of false statements. In contrast,
traditional proofs offer perfect soundness: if there is a proof of a statement, it must be true.

One might hope that these drawbacks are avoidable. Unfortunately, Goldreich and Oren [GO94] show that
neither interaction nor imperfect soundness can be removed from zero-knowledge proofs.? Moreover, this
impossibility seems conceptually inherent and not easily avoidable, as Barak, Ong, and Vadhan [BOV07]
remark.

“Given the aforementioned impossibility results [GO94], reducing the interaction further [than
trusted setup| seems unlikely. Indeed, a truly noninteractive proof system, in which the prover
sends a single proof string to the verifier, seems to be inherently incompatible with the intuitive
notion of ‘zero-knowledge’: from such a proof, the verifier gains the ability to prove the same
statement to others.”

In fact, there are difficulties even if one significantly relaxes the guarantees of zero-knowledge. For example,
it was open (until this paper) to construct proofs — without interaction or trusted setup — that are even
just witness hiding, meaning that a proof of an NP-statement does not reveal a witness to it [FS90; KZ20].

This work. This paper’s main contribution is to define and construct a powerful new relaxation of zero-
knowledge that bypasses these barriers. To give a taste, our results imply that every falsifiable® security

1 An example of trusted setup is that both parties share a common reference/random string (crs) that is trusted to have been
sampled from a distribution [BFM88; BSMP91]. As noted in previous work [BOVO07], this is itself a limited form of interaction.

21t is easy to see that perfect soundness actually suffices to remove interaction. If the verifier is perfectly sound, then it is
also sound when its random coins are set to be all zero. But then one can collapse the interaction to a single prover message.

3 As we describe later, falsifiability [Nao03] roughly means that one can check in polynomial (or, in our case, even exponential)
time if a given adversary breaks the security property. This is true for many common security definitions, including one-way
functions, semantically-secure encryption, and indistinguishability obfuscation.



property of (classical) zero-knowledge is achievable with no interaction, no setup, and perfect soundness.
This enables us to remove setup and interaction from zero-knowledge in essentially all of its applications
in the literature, at the mild cost that the end applications now have security that is “game-based” (in-
stead of perhaps “simulation-based”). To explain our new definition, we first need the notion of a logical
system [CRT9].

Background: logical systems. For us, a logical system is specified by a deterministic Turing machine
L. You can think of £ as taking as input a string called a statement (for now, do not worry about what a
statement actually is) and a string called a proof, and accepting or rejecting depending on whether the proof
is “valid.” There are just two requirements on a Turing machine in order for it to be a logical system:

e Ffficiency: £ must run in polynomial time.
e Soundness: whenever a L accepts a proof of a statement, that statement must actually be true.*

We stress that this definition of a logical system is extremely general. Almost any notion of a mathe-
matical proof fits into this framework, including ZFC (Zermelo-Fraenkel with Choice, the standard axioms
in mathematics), or even ZFC with extra cryptographic axioms added, such as “language L requires circuits
of size at least n'°8™ for all n > 256,” assuming they meet our soundness criterion. See Section 3.1 for more
details.

Finally, before we proceed, we modify our terminology. What we have been calling a logical system so far
is actually called a proof system in the field of proof complexity, as defined by Cook and Reckhow [CRT79].
Henceforth, we adopt the proof complexity meaning. To avoid confusion, we will use different terms (usually
prover and verifier) for cryptographic proof systems.

Our new definition. We can now discuss our new relaxation of zero-knowledge. Recall that being (clas-
sically) zero-knowledge means that (a quantitative form of) the statement X = “a simulator exists for the
prover” is true. We can also think of X as a sequence of statements X, = “a simulator exists for the prover
on security parameter \.”®

Our new definition — effectively zero-knowledge to L — replaces the requirement that X is actually true
with a weaker relazation of truth. In particular, if X is actually true, then we know £ cannot prove =X,
(because L is sound). We relax this property. Effectively zero-knowledge to £ roughly says that any L-proof
of =X has length A", Loosely speaking, this means £ cannot efficiently rule out that the prover has a
simulator.

This turns out to be an extremely powerful guarantee. As we will see, there is some formal sense in
which it implies the prover is guaranteed to have every consequence of being zero-knowledge that (a) is
“polynomial-time observable” and (b) has polynomial-length £-proofs.

But isn’t that impossible? At first glance, the unprovability guarantee above may seem too strong to
be true. For example, shouldn’t one be able to use Goldreich and Oren’s impossibility result [GO94] to prove
—X = “the prover P has no simulator” in any sufficiently powerful £?

But [GO94] only yields the disjunction “either the verifier V' is not perfectly sound or the prover P has
no simulator.” This is okay for us, as it will turn out that our construction is “dual-mode” in the sense that
L cannot determine whether (a) V' is perfectly sound and P has no simulator or (b) P has a simulator and
V' is not sound.

4There are some technicalities here related to (a) what constitutes a statement and (b) what it means for an arbitrary
statement to be true. Our actual requirement is soundness on just a small class of statements related to computation. See
Section 3.1 for a formal definition.

5For readers not familiar with cryptography, the security parameter A roughly plays the role that the input length does in
complexity theory.



Our results. We now state our main result, which holds under three central, longstanding, and well-
studied assumptions from complexity theory, proof complexity, and cryptography. We will give a detailed
discussion of these assumptions and the meaning of “falsifiable” in a few paragraphs. Below, zero-interaction®
provers and verifiers refer to uniform polynomial-time algorithms that use no interaction (the prover sends
one message to the verifier) and involve no setup.

Theorem 1.1 (Zero-Interaction Effectively Zero-Knowledge Proofs (Z1ZK)). Assume P = BPP, no infinitely
often optimal proof system exists, and non-interactive witness indistinguishable proofs’ (NIWIs) for SAT
exist. Then both of the following hold (in fact, the second implies the first):

1. For every falsifiable security property 11 of (classical) zero-knowledge, there is a zero-interaction prover
and verifier for SAT with perfect soundness and with property II.

2. For every proof system L, there is a zero-interaction prover and verifier for SAT that is effectively
zero-knowledge to L.

Moreover, subexponentially-secure® versions of (1) and (2) hold assuming subezponential versions of the

second and third assumptions hold (see Theorem 2.1 and Theorem 3.1 for a formal statement).

We view Theorem 1.1 and especially (2) as showing that zero-knowledge with zero-interaction and per-
fect soundness is effectively possible. For example, one way to use (2) is as follows. Suppose you have
an application — such as maliciously secure multi-party computation — where one achieves a (possibly
simulation-based) security property II* via interactive zero-knowledge proofs. By using (2), one can remove
all interaction from the proofs, while still preserving every falsifiable security property II that is logically
implied by II* (in the logical system of one’s choice). We interpret this as saying that we can remove in-
teraction from zero-knowledge, at the mild cost that applications now have game-based security. Indeed,
Theorem 1.1 suggests that — with a few exceptions® — interaction is only necessary in zero-knowledge if
one wants simulation-based guarantees.

We also offer a few extensions of our result.

e A Concrete Candidate: We give a concrete zero-interaction prover and verifier for SAT that we conjec-
ture is effectively zero-knowledge to ZFC (Conjecture 3.14) and that we further informally conjecture
enjoys every “natural” falsifiable security property of zero-knowledge (Conjecture 2.12).

e The First Construction of Non-Interactive Witness Hiding Proofs. An immediate corollary of our re-
sults is the first construction of non-interactive witness hiding proofs with a uniform prover and verifier
(Corollary 2.8). Previously, the best construction required a non-uniform prover and verifier [KZ20].

o A Generic Transformation from Search-NP to TFNP via ZIZKs. TENP [MP91] is the class of NP search
problems where a solution is guaranteed to exist. A natural way [HNY17] to try to convert a hard
Search-NP problem to a hard TFNP problem is to include a proof 7 that a solution exists. But this
transformation may not preserve hardness, as knowing 7 could make the problem easier.

An immediate corollary of Theorem 1.1 (in the subexponential regime) is that we can use the above
approach to generically transform any Search-NP problem to a corresponding TFNP problem, while pre-
serving worst-case circuit complexity almost exactly (Corollary 7.28). In other words, under the subex-
ponential assumptions in Theorem 1.1, every Search-NP problem (including Search-SAT) is equally
hard, even given a proof that there is a solution.

6We use the term zero-interaction because non-interactive zero-knowledge [BFM88; BSMP91] is used for the case where the
prover and verifier have access to trusted setup, which is a limited form of interaction. As an analogy, non-alcoholic drinks can
have a small amount of alcohol, as opposed to zero alcohol. We thank Neekon Vafa for suggesting this name.

7Our definition of a NTWI differs mildly from the usual definition in that we require its indistinguishability € to be at most
some efficiently computable negligible function. This is a very weak requirement. See Definition 4.3 for the details.

8In this paper, subexponential refers to 2)‘Q(l>.

90ne trivial exception is the aforementioned attack [BOVO07] that “the verifier gains the ability to prove the same statement
to others.” More generally, our results do not preserve aspects of zero-knowledge related to deniability. We do not view this as
a significant deficiency because non-interactive zero-knowledge with trusted setup (NIZKs) have the same deficiency [Pas03a].



o A Generic Transformation from UP to NP N coNP wvia ZIZKs. We also show an analogous statement
for UP and NPNcoNP languages, building on [GIK+23], who gave a similar result in the random oracle
model. Specifically, under the subexponential versions of the assumptions in Theorem 1.1, we show
that for every UP language there is a corresponding NP N coNP language with matching worst-case
circuit complexity.

e A Strengthening in the Non-Uniform Setting: We construct a non-uniform zero-interaction prover and
verifier that (under plausible assumptions) is effectively zero-knowledge to every proof system and
hence has every falsifiable property of zero-knowledge (Theorem 7.6).

Actually, this particular “extension” predates our main result and fell out as an application of a result
in a different work [Ila25] by the author. After realizing we could prove this paper’s main theorem
(Theorem 1.1), we decided to split into two papers: this one (focused on zero-knowledge) and [Ila25]
(focused on the meta-mathematics of lower bounds in complexity theory). We did keep a variant of
the non-uniform construction (Theorem 7.6) as an application in [I1a25] because the proof is short and
it naturally falls out of it.!? But [I1a25] explicitly defers to this paper on both how to use this object
and how to make it significantly more applicable (by making it uniform).

We now discuss the meaning of falsifiability and also our assumptions.

What does falsifiable mean? A security property is falsifiable [Nao03] if one can (somewhat) efficiently
test if a given adversary breaks the security property. To illustrate, we give a few examples. We advise the
reader to skip an example if they are not familiar with the underlying cryptographic object.

e Being a One-Way Function: The test checks if the adversary inverts the function on random inputs.

e Being an Encryption Scheme: The adversary’s description includes two messages m; and mo. The
test checks if the adversary distinguishes between random encryptions of m; and ms.

e Being a Witness Indistinguishable Prover [FS90]: The adversary’s description includes a formula ¢
and two satisfying assignments w and w’. The test checks if the adversary distinguishes between the
prover’s proofs of “p is satisfiable” generated using w from those generated using w’.

e Being an Indistinguishability Obfuscator [BGI+12]: The adversary’s description includes circuits Cy
and C; of the same size. The test first uses brute force to verify that Cy and C; compute the same
function, and, if so, then tests if the adversary distinguishes between obfuscations of Cy and Cj.

In contrast to the previous examples, here the test runs in exponential time (to do the brute force
check), rather than polynomial time.

Along these lines, we give a definition of a falsifiable security property of zero-knowledge (Definition 2.6).
Conclusion (1) in Theorem 1.1 applies if the test runs in polynomial time. The subexponential version
of (1) even handles tests that run in 2P°Y(™) time (by setting the security parameter A = poly(n) to be a
sufficiently large polynomial). The latter is very general and captures, to the best of our knowledge, all
indistinguishability-based security properties in the literature.

Plausibility of our assumptions. All of the assumptions in Theorem 2.1 are longstanding, well-studied,
and (in our opinion) very plausible. Moreover, these assumptions are “win-win.” This means that breaking
one constitutes an unexpected and fundamental discovery in proof complexity, cryptography, or complexity
theory. We now discuss each assumption in detail.

e No Optimal Proof System: This is one of the main conjectures in the field of proof complexity. For ex-
ample, it is one of the three!! major problems mentioned on proof complexity’s Wikipedia page [Wik24].

10For completeness, we also give a proof of Theorem 7.6 in this paper.
HThe other two are whether NP = coNP and automatability (whether one can efficiently generate short proofs whenever
they exist).



It is also well-studied [KP89; BG98; MT98; KM98; Mef399; BEFMO00; Sad02; KMT03; GSSZ04; Pud06;
Bey07; Sad07; Sad08; BKMO09; BS09; Beyl0; CF10; BKM11; BS11; HIMS12; Pud13; CFM14; Krald;
PS19; DG20; Kha22; Kha24].

The notion of an optimal proof system was first defined by Krajicek and Pudldk [KP89], who also
conjectured their non-existence. Very roughly speaking, a proof system is optimal if it has shorter
proofs (up to polynomial blowup) of every coNP statement, when compared to any other proof system.*?
Somewhat amusingly, the definition of an optimal proof system and the definition of a zero-knowledge
proof were published in journals in the same year [KP89; GMR&9].

We encourage the reader to think of the non-existence of optimal proof systems as a stronger version of
NP # coNP. Recall NP # coNP (roughly) says that, for every proof system L, there exist unsatisfiable
formulas v, that lack poly(n)-length L-proofs of unsatisfiability. In contrast, the non-existence of an
optimal proof system turns out to be equivalent [KP89] to saying something stronger: that there is a
P-uniform'® sequence of such v,. In fact, this uniform sequence is what we use in our construction.

Intriguingly, optimal proof systems are closely related to old questions in mathematical logic. One of
Krajicek and Pudldk’s main results [KP89] is that if an optimal proof system exists, then there is a
single proof system that can prove the “finitary consistency” of all other proof systems. As Krajicek
and Pudlak remark, this means that if an optimal proof system exists, then “we could realize the
Hilbert program in a modified, finitistic sense. We conjecture that this is not possible.”

In other words, it is natural to view the existence of an optimal proof system as a scaled-down version
of Hilbert’s second problem, which Gddel’s incompleteness theorem [G6d31] famously resolved nega-
tively. Indeed, the non-existence of optimal (respectively, subexponentially optimal) proof systems is
immediately implied by Pudlak’s (respectively, Mycielski’s) conjectured finitary analogue of Godel’s
incompleteness theorem [Pud86].

Optimal proof systems are also related to complexity theory questions. Krajicek and Pudldk [KP89]
show that if no optimal proof system exists, then NE # coNE. Kdébler, Messner, and Tordn [KMTO3]
show that no optimal proof system exists if NP N SPARSE lacks a complete problem.'*

As is usual when using hardness assumptions in cryptography, we need to rule out even an infinitely
often upper bound. For example, “SAT is not in P infinitely often” is necessary for one-way functions
to exist. Similarly, we need to assume that no infinitely often optimal proof system exists. This
assumption appears just as plausible as the non-infinitely-often version.

e Non-interactive Witness Indistinguishable Proofs (NIWIs): NIWIs (henceforth, we just say NIWIs
instead of NIWIs for SAT) are themselves a powerful relaxation of zero-knowledge achievable with
perfect soundness and zero interaction [BOV07]. In more detail, a NIWI consists of a zero-interaction
prover and verifier with perfect soundness and the following witness indistinguishable (W) guarantee:
for all p(w) = p(w’) = 1, the following two distributions are computationally indistinguishable

— the proof m of “p is satisfiable” generated by the prover when given witness w, and
— the proof 7 of “p is satisfiable” generated by the prover when given witness w’.'?

At first glance (similar to indistinguishability obfuscation [BGI+12]), it is not clear how useful WT is.
For example, if ¢ only has one witness, then WI provides no guarantee whatsoever. Nevertheless, WI
turns out to be quite powerful [FS90; FLS90], as we will also see in this paper.

There are several different constructions of NIWIs from various widely-believed cryptographic assump-
tions. For example, NIWIs exist

— if indistinguishability obfuscation and one-way permutations exist [BP15],

128ee Definition 3.8 and Conjecture 3.10 for formal definitions.

13This means that one can produce vy, in uniform polynomial-time given 1™.
TSPARSE is the set of languages L with poly(n) many n-bit YES instances.
15See Definition 4.3 for a formal definition of NIWTs.



— if a trapdoor one-way permutation exists and E'¢ requires 2°(")-size non-deterministic circuits [BOVOT],

— if indistinguishability obfuscation and one-way functions exist and E requires 29(")-size non-
deterministic circuits [BOV07; BP15], or

— assuming certain hardness [BF03] for bilinear groups [GOS12].

e P = BPP: This is one of the main conjectures in complexity theory, and it follows from widely-believed
assumptions. For example, a celebrated result by Impagliazzo and Wigderson [IW97] shows that
P = BPP if E requires 2°(")-size circuits.

As is often done (e.g., Goldreich [Golll]), we write P = BPP to mean that their promise classes coincide,
i.e., Promise-P = Promise-BPP. This abuse of notation is done because all known approaches'” to
showing that P = BPP (for languages) also imply that Promise-P = Promise-BPP.

Necessity of our assumptions. Since witness indistinguishability is a falsifiable property of zero-knowledge,
the existence of NIWIs is necessary for conclusion (1) of Theorem 1.1. Somewhat surprisingly, we show that
the non-existence of infinitely often optimal proof systems is also necessary for conclusion (1) of Theorem 1.1,
assuming injective one-way functions exist with, say, quasipolynomial security (see Theorem 7.22).18

Avoiding barriers. We now discuss how our results bypass the aforementioned barriers. Our prover does
not actually have a simulator, so Goldreich and Oren’s impossibility result [GO94] does not apply. Relatedly,
the existence of a simulator is not falsifiable.

Next, avoiding the “inherent incompatibility” mentioned in [BOVO07] is more subtle. Recall that the
incompatibility is that if a prover is truly non-interactive, then “the verifier gains the ability to prove the
same statement to others.” Indeed, this is true in our construction. However, somewhat remarkably, our
definition seems to cleanly separate this “obviously broken” security property from other security properties
of zero-knowledge. In particular, it turns out that the “obviously broken” security property is unprovable in
L, essentially for the same reason that the non-existence of a simulator is unprovable in L.

The high-level construction. We now give an overview of our construction. As we describe in detail in
Section 3.5, our construction builds on a long sequence of ideas in the cryptographic literature, including
the notion of witness indistinguishability by Feige and Shamir [FS90], the “OR proof” construction of
Feige, Lapidot, and Shamir [FLS90], the realizability of ZAPs and NIWIs by Dwork and Naor [DNO7] and
Barak, Ong, and Vadhan [BOV07] respectively, and especially Kuykendall and Zhandry’s approach [KZ20]
to constructing non-interactive witness hiding proofs. The construction works as follows.

1. Fiz a proof system and get a hard sequence of unsatisfiable formulas. Fix an arbitrary proof system. To
be concrete, we fix ZFC in this overview. The proof complexity assumption we use will guarantee the
following. There is a P-uniform sequence!? of unsatisfiable formulas vy such that, for each A, the length
of any ZFC-proof that “ib is unsatisfiable” is \*(1). (In fact, these 1 correspond to the consistency
of another proof system, which hints at the relationship with Gédel’s incompleteness theorem.)

2. Construct the prover. We construct the prover P as follows. Given a SAT instance ¢ and a witness w,
output a NIWI proof that “either ¢ is satisfiable or 1 is satisfiable.”

3. Construct the verifier. Given a formula ¢ and a purported proof 7, the verifier accepts if 7w is a NIWI
proof of “either ¢ is satisfiable or 1 is satisfiable” for some A.

4. Perfect soundness. A NIWI proof enjoys perfect soundness (meaning there are no proofs of false
statements). Thus, since the v, are all unsatisfiable (by construction), a NIWI proof that “either ¢ is
satisfiable or 1) is satisfiable” implies that ¢ is satisfiable. Thus, we get perfect soundness.

16E refers to the complexity class DTIME[2C()].

17See Chen and Tell [CT23] for a discussion of this.

181f one only considers “natural” falsifiable properties, then this may be avoidable. See Section 2.5.
19This means one can produce ¥ in uniform polynomial time given 1*.



5. Effectively zero-knowledge. Pretend for a second that ) is satisfiable at x (of course, 1, is unsatisfiable
so this is not the case, but pretend). Then it turns out there is a simple circuit that simulates the
prover. On input ¢, the simulator outputs a NIWI proof m that “either ¢ is satisfiable or v, is
satisfiable,” where it uses the witness z) with ¥, (xy) = 1 to generate the proof 7.2

To show that this is indeed a simulator, we need to prove that the output of this simulator is indis-
tinguishable from the output of the prover. This will follow from the witness indistinguishable (WT)
guarantee of a NIWI. In more detail, the WI guarantee says that given a proof 7 of the statement
“either ¢ is satisfiable or v, is satisfiable,” one cannot tell whether = was generated using a witness
for ¢ or a witness for 1. Hence, the output of this simulator is indistinguishable from the output of
the prover (where one outputs a NIWI proof using a witness for ).

To summarize, if 1 were satisfiable, then there is a simulator for the prover on security parameter
A. In the contrapositive, if there is no simulator for the prover on security parameter A, then v, is
unsatisfiable. But we choose the ¥ to lack short ZFC-proofs of unsatisfiability. Hence, ZFC does not
have short proofs refuting the existence of a simulator for the prover on security parameter \.2!

This also guarantees that certain “polynomial-time observable” consequences of having a simulator are
true. In more detail, suppose ZFC has a short proof of

“the prover having a simulator on A implies U(M) outputs 1 in time at most ¢,” (1)

where U is a fixed efficient universal Turing machine. Our goal is to show that indeed U(M) = 1.
For contradiction, suppose not. Then one gets a short proof that “the prover lacks a simulator on \”:
just run U(M) for t steps, see that it doesn’t output one, and use the contrapositive of (1). But this
contradicts the fact that there is no short proof of the non-existence of a simulator.

Interpretations. We believe our ideas could help achieve other “impossible” objects in cryptography and
complexity theory. We state a few different interpretations that may be useful for future definitions.

o Irrefutability of a Simulator and Other Properties: Instead of requiring that a simulator actually exists,
one can require that it is hard to prove that no simulator exists. One could also apply this to other
properties beyond simulators. For example, if an object has dual-modes A and B, it might be hard to
prove that it is not in mode B, even though the object is in mode A.

e Proof-Theoretic Relazations: Often in cryptography, one would like an information-theoretic security
definition D to hold, but it is impossible to achieve. To cope with this, one considers a computational
relaxation D of the definition that is achievable.

In our setting, we relax a definition in a different way. If a definition D holds, then every security
property p that is implied by D holds. To relax this, instead of hoping that every p implied by D holds,
we consider a proof-theoretically interesting subset of properties and only require that these hold.

In fact, this particular perspective already features prominently in a line of work [JJ22; JKLV24;
JKLM25; MDS25] initiated by Jain and Jin [JJ22], who were the first to use proof complexity in
cryptography, to our knowledge. Loosely speaking, [JJ22] shows that one can get better guarantees from
indistinguishability obfuscation if one has a short proof that two circuits are equivalent in a particular
proof system (extended Frege). Follow-up work builds on this framework to construct succinct non-
interactive arguments (SNARGs) [JKLV24; JKLM25] and practical obfuscation candidates [MDS25].

One interesting direction to explore is whether some proof-theoretic relaxation of the random oracle
heuristic [BR93] might hold.

20This simulator is non-uniform, as it needs to know xy. This suffices for most applications (since security is usually against
non-uniform adversaries). We discuss how to handle cases where one needs a uniform simulator in Section 2.4.

21 Actually, this step requires ZFC to be able to prove the security of the NIWI. To avoid this, we actually choose 1y to lack
short proofs of unsatisfiability in the proof system (ZFC + an axiom for the NIWI’s security).



e Axioms as a Resource: The impossibility of truly non-interactive zero-knowledge is (roughly speaking)
because of tension between soundness and the simulator. What we have done, in some sense, is create a
setup where the security definition does not have access to the axiom needed to discern soundness. As
a result, there is no tension between security and soundness because, in the eyes of security, soundness
might not even hold. In some ways, this is analogous to a technique in cryptography called “complexity
leveraging” but on axioms.

This suggests that, in settings where one wants to avoid an “uninteresting” counterattack on a security
definition, one might be able to proof-theoretically concoct a security notion where it is impossible to
even talk about the “uninteresting” counterattack because of a lack of axioms. Perhaps then the new
definition is achievable.

Related work. We now discuss related work. There are several prior works [BP04; BOV07; BL18; KZ20]
studying relaxations of zero-knowledge achievable with zero-interaction. One line of work [BP04; BL18§],
which we have not yet discussed, achieves (weak [Pas03b]) zero-knowledge with zero-interaction by relaxing
statistical soundness to computational soundness (for comparison, we consider perfect soundness). Specif-
ically, Barak and Pass [BP04] give a construction with uniform soundness (i.e., no uniform algorithm can
prove a false statement). Bitansky and Lin [BL18] extend this to a weak form of soundness against non-
uniform adversaries (the number of false statements an adversary can generate is bounded by its amount of
non-uniformity).

There is a long line of work beginning with [Pap94], and especially inspired by [BPR15], that shows
TFNP hardness using cryptographic objects, including witness indistinguishable proofs [HNY17]. We point
the reader to [HKKS20] for a good overview of this line of work. In contrast to previous work, our TFNP
result applies to any worst-case hard Search-NP problem.

As we mentioned earlier, we are not the first to use proof complexity in cryptography [JJ22; JKLV24;
JKLM25; MDS25]. However, to our knowledge, our work is the first that uses hardness assumptions from
proof complexity and also the first that considers very strong proof systems, like ZFC.

The next two sections. At this point, we would like to give a more detailed discussion of our results
and how to use them. However, one difficulty is that our main theorem requires some proof complexity
background and a few minor (but subtle) modifications of standard cryptographic definitions. As a result,
we decided that the best approach is a longer exposition that both formally states our definitions and provides
several examples. In contrast, the main technical content of this paper is actually quite short (a few pages).

We split the exposition into two parts. In the first part (Section 2), we warm up with a weaker version of
our results, which suffices for most applications and requires no proof complexity background. In the second
part (Section 3), we review the necessary proof complexity background and formally state our main result.
We discuss some open questions in Section 3.6.

2 An Exposition of Our Results: Part 1 (No Proof Complexity)

In this section, we will formally state a weaker version of our main result and give a few examples of how to
use it. As a preview, we state the theorem now. We define the terminology it uses in the next subsection.

Theorem 2.1 (Weak Version of Main Result). Assume
e P =BPP,
o NIWIs exist (respectively, subexponentially secure NIWIs exist), and
e there is no infinitely often optimal (respectively, subexponentially optimal) proof system.

For every falsifiable property of zero-knowledge 11, there exists a perfectly sound prover for which I1 holds
(respectively, holds with subexponential security).
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2.1 Definitions: Provers, Simulators, and Falsifiable Properties of Zero-Knowledge

We will now spend about a page spelling out several definitions. Most of these definitions are standard in
cryptography with minor variations (mostly, we need non-asymptotic “pointwise” versions). We encourage
the reader to go through all of them, but a seasoned cryptographer can likely focus on the parts we have
highlighted in fuchsia and skim the rest.

We start with our notion of a prover. For brevity, a prover will refer to both a prover and its verifier.??
Since all provers in this paper will use zero interaction, we also omit writing zero-interaction.

Definition 2.2 (Provers). A prover P consists of two uniform polynomial-time algorithms P.prove and
P.verify with the following behavior:

e P.prove(p,w, 1) is randomized and takes as input a formula o with || < X.23

o P.verify(p, m,1*) is deterministic** and has Pr [P.verify(p,m,1) = 1] = 1 if p(w) = 1.

m+P.prove(p,w,1)
Next, say a prover is perfectly sound if the verifier always rejects proofs of false statements.

Definition 2.3 (Perfect Soundness). A prover P is perfectly sound if P.verify(¢, 7, 1) = 0 for all 7, \, and
unsatisfiable .

Next, we define our notion of a simulator, which is just the non-asymptotic, pointwise version of the
standard definition [GMRS&9]. Indeed, we stress that the definition below makes sense for any choice of

natural numbers A, s, %, which is why we call it pointwise.

Definition 2.4 (Pointwise Simulators). For A, s, % € N, we say a prover P has an s-size e-indistinguishable
simulator on A\ if there exists an s-size probabilistic circuit Simy such that for all ¢ of size at most A with
pw) =1
Simy(¢) = P.prove(p,w, 17).

Here ~, denotes computational indistinguishability (adversary circuits of size at most % cannot distinguish
with advantage €).2%

Many natural security definitions are equivalent to bounding the probability adversaries of a certain size
can win a game. These are often referred to as falsifiable security properties, as defined by Naor [Nao03].
We will need a version of falsifiable security properties for provers.

Definition 2.5 (Game). A game is a (not necessarily efficient) randomized algorithm G (P, A, 1) with
e Input: a prover (represented by its code), an adversary circuit A, and a security parameter 1.
e Qutput: a bit (think of G as outputting 1 when the adversary “breaks” a security property).

Now we are ready to define falsifiable properties of zero-knowledge. Roughly speaking, these are games
with upper bounds on an adversary’s success probability whenever there is a simulator.

Definition 2.6 (Falsifiable Property of Zero-Knowledge). A falsifiable property of zero-knowledge II is a
tuple (G, A) where G is a game and A is a polynomial-time computable function such that if P has an s-size
e-indistinguishable simulator on X\, then for all A

Pr[G(P, A, 1Y) = 1] < A(\, 4, 5,€).%20

We say II holds (respectively, holds with subexponential security) on a prover P* if there exist functions
s* =poly(\) and 7* = L+ = XM (respectively, 2/\0(1)) such that for all X and all A

Pr[G(P*, A, 1) outputs 1 in time at most 7 | < A(\, A, s*,€*) + €*.

22 As we mentioned earlier, usually one would call this a “proof system,” but we reserve that term for the notion of proof
systems in proof complexity.

23We require that |¢| < X because it makes Definition 2.4 much cleaner.

24 A verifier can always be derandomized if P = BPP.

25See Definition 4.2 for a more detailed definition of computational indistinguishability.

26We stress that the values )\, s, e that A takes as input are concrete numbers A, s, % eN.
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As we will see in the next example, the requirement that A is efficiently computable is quite mild.

2.2 Illustrative Example of Definitions: Witness Hiding

We now give an example, both to illustrate the above definitions and to set up a future application. In-
formally, a prover is witness hiding [FS90] if getting a proof that ¢ is satisfiable does not help one find a
satisfying assignment to ¢. One way to formalize this is as follows [KZ20].

e Let D = {Dy}ren be a P-samplable distribution?” on formulas and corresponding witnesses (i.e., the
distribution outputs a pair (@, w) with ¢(w) = 1).

e The Witness Hiding Game for D is the game G(P, A,1*) given by:

1. Sample (¢, w) < Dy and 7 < P.prove(p, w, 11).

2. Output 1 if and only if A(p,7) is a satisfying assignment to .

We say a prover P is witness hiding for D if there is an S(\) = X¢() such that

1
Pr[G(P, A,1M)] < S0

whenever |A| < S(A).

e Of course, we can only hope to be witness hiding if it is actually hard to solve Search-SAT on D.

We say D is a hard Search-SAT distribution if there exists a polynomial-time computable function
S(A) = A“() such that for all A and all adversary circuits A of size S(\) we have that

(WP;LDA[@(A(@) =1]< 50

We note that polynomial-time computability is an extremely mild requirement on S. For example, let
log* denote the iterated logarithm. For every § = \(l°g" 102" A) “there is a constant ¢ > 0 such that S
is at least the polynomial-time computable superpolynomial function cAclos” log” A

It is easy to show that witness hiding is a falsifiable property of zero-knowledge, as long as the corre-
sponding distribution is hard. We give a rigorous proof of this and encourage the reader to go through it,
as it helps illustrate our definitions.

Proposition 2.7. Let D be a hard Search-SAT distribution and G be its corresponding game. Then (G, A)
is a falsifiable property of zero-knowledge for some A = (A™“(1) 4 ¢) - poly(|A|, A, 5).

Proof. Fix a hard Search-SAT distribution D with corresponding polynomial-time computable function Sy =
So(\) = X*(M). Let P be a prover with an s-size e-indistinguishable simulator Simy on A. Fix an adversary
A. Then we have

Pr{G(P, A1) =11 <~ Pr_ [p(A(p, Sima(9)) = 1] + ¢ poly(|A], \)

(p,w)+Dx
1
< (=—=+¢€) - poly(|A|, A, s
(o + )~ Polv(l41 )
where the first line is by the simulator guarantee and the second is by the definition of Sj. O

27This means there is a probabilistic polynomial-time Turing machine that on input 1* samples from the distribution Dy.
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2.3 The (Weaker) Result

We have now defined all the terminology needed to understand the weaker version of our main result.
Theorem 2.1 (Weak Version of Main Result). Assume

e P=BPP,

o NIWIs exist (respectively, subexponentially secure NIWIs exist), and

e there is no infinitely often optimal (respectively, subexponentially optimal) proof system.

For every falsifiable property of zero-knowledge 11, there exists a perfectly sound prover for which I1 holds
(respectively, holds with subexponential security).

The following corollary follows easily from Theorem 2.1, Proposition 2.7, and the definition of witness
hiding.

Corollary 2.8. Assume the assumptions in Theorem 2.1 hold. For every hard Search-SAT distribution,
there exists a perfectly sound prover that is witness hiding for it.

While the prover in Corollary 2.8 depends on the underlying distribution, we do not view this as a
deficiency. This is because it seems likely that such a dependence is actually necessary (see the discussion
in Appendix A) and because of what we will discuss in Section 2.5 (a single prover with every “natural”
falsifiable property of zero-knowledge).

Exponential-time games: from Search-NP to TFNP. Theorem 2.1 is especially powerful in the subex-
ponential regime. We illustrate this with another corollary: one can generically convert Search-NP problems
to TENP problems, while preserving worst-case hardness.

Corollary 2.9 (Informal Corollary 7.28). Assume the subexponential assumptions in Theorem 2.1 hold. For
every Search-NP problem, there is a corresponding TENP problem with matching worst-case hardness.

We briefly sketch the proof of this corollary for the special case of Search-SAT (i.e., output a satisfying
assignment to a given ¢, whenever one exists). One can consider a natural TFNP version of Search-SAT,
where one is given ¢ and also a proof 7 (in some chosen proof system) of “p is satisfiable.” To prove
hardness of this TFNP version, we consider the following game, which outputs 1 if the given adversary solves
the problem in the worst-case.

G(P, A, 17):
1. Suppose A takes s-size formulas as input. For all ¢ of size s:

(a) By brute force, find a satisfying assignment w to ¢. If none exists, then go to the next .

(b) Using P = BPP, deterministically estimate (to within additive error .01)

Pr [A(p, ™) outputs a satisfying assignment to ¢].

m<—P.prove(p,w,1)

(¢) Output 0 if the estimate is less than 2/3.

2. Output 1.

One can show (see Claim 7.29) that IT = (G, A) is a falsifiable property of zero-knowledge for some A that
roughly corresponds to the worst-case circuit complexity of Search-SAT.

On the other hand, G runs in time poly(2°1°8% |A| \). At first, this may seem bad because G runs in
exponential time and Theorem 2.1 only offers subexponential security. But this just means we need to set the
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security parameter A appropriately (as is often done in proofs using subexponential security). In particular,
by setting A = poly(s) sufficiently large, the game will run in time poly(2>‘5, |A]) for an arbitrarily small 4.
Appealing to the subexponential version of Theorem 2.1 completes our sketch.

In the remainder of this section, we address two aspects of Theorem 2.1:

e But does it work for X scenario? In Section 2.4, we discuss how to use Theorem 2.1 and its extensions
for applications where it is a priori not clear how to use it.

o A single “universal” prover? The prover in the statement of Theorem 2.1 can depend on the desired
falsifiable property of zero-knowledge. Ideally, one would want a single “universal” prover with every
falsifiable property of zero-knowledge. We discuss this in Section 2.5.

2.4 Using the Result

What if a security property needs both a simulator and soundness? We now address a potential
concern with our definition, which is best explained with an example. Consider the following somewhat
artificial protocol related to oblivious transfer.?® Let Commit be a commitment scheme?® that is perfectly
binding and computationally hiding. Let P be an arbitrary prover.

Example Protocol
Alice is given z < {0,1}2. Bob is given b + {0, 1}.
1. Bob sends Alice a commitment ¢, < Commit(b).
2. Alice sends Bob a commitment ¢, «+— Commit(z).
3. Bob sends the bit b and also a P-proof that ¢, was a commitment to b.

4. Alice sends the bit x; and gives a P-proof 7, that this is consistent with the commitment c,.®

%In more detail, Alice proves that there exists a string consistent with the commitment whose b’th bit is xy.

Now suppose that Alice wants to be sure that if Bob acts maliciously in step (3) — but is otherwise
honest — he cannot learn zpg1 with non-negligible advantage. This is easy to see if we replace P with a
standard (interactive) zero-knowledge proof. Critically, however, this relies on interactive zero-knowledge
having both soundness and a simulator. In particular, we need soundness so that Bob does not lie about b
in step (3). On the other hand, we need a simulator in order to say that m, does not leak x1gp in step (4).

In contrast, our notion of a falsifiable property of zero-knowledge only captures properties that follow
from just a simulator existing. As a result, the straightforward way to model this as a game G — where Bob
is the adversary and winning corresponds to distinguishing xpq1 = 0 from 21 = 1 — does not fit into our
framework of a falsifiable property of zero-knowledge.

But this is easily overcome. To do so, we consider a modified game G’. G’ is exactly like G except that
G’ outputs zero if Bob lies in step (3). Note that G’ knows b (it samples it and simulates running Bob on
it), so it can easily tell if Bob lies. With this modification, II' = (G’, A) is easily shown to be a falsifiable
property of zero-knowledge with A = 1/2 + (A™“() + ¢) - poly(|A], s, A).?C Thus, Theorem 2.1 guarantees
there is a perfectly sound prover P* on which II’ holds. Now, because P* is perfectly sound, the assumption
that Bob does not lie at step (3) is without loss of generality. In other words, any adversary that succeeds on
G with prover P* must also succeed on G’ with prover P*. Hence, Il = (G, A) holds for P*. This completes
the argument.

28The reader does not need to know what oblivious transfer [Rab05] is to understand the example.

291f the reader is not familiar with such schemes, think of Commit as follows. It is a randomized algorithm with the property
that the output Commit(x) completely determines z information-theoretically but hides  computationally.

30We assume that the security of the commitment scheme is at least some efficiently computable superpolynomial function.
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It is worth noting that, in this example, we used the fact that we can easily tell when Bob lies (because
the game gets access to Bob’s input and random coins). This is true for many examples. But, even if this is
not true, one can generically use complexity leveraging to check whether a given statement is true via brute
force. This incurs only a polynomial blow-up if the subexponentially-secure version of Theorem 2.1 holds.

What if a security property needs a uniform simulator? Our definitions view simulators as circuits,
with no assumption about uniformity. This suffices for most settings in cryptography, as one usually considers
security against non-uniform adversaries.

It turns out, however, that our results hold even if one restricts to simulators with only about |¢)| bits
of non-uniformity, where v, are the sequence of formulas that parameterize our construction.?! As a result,
if one makes, say, subexponential assumptions, one can afford to set |1\| = polylog A and still get A@)
security. This means a version of our results holds even when restricting simulators to polylog A bits of
non-uniformity (see Theorem 7.16). Similarly, one could also restrict to uniform simulators running in, say,
quasipolynomial time by brute forcing over all potential satisfying assignments to .

2.5 A Single Universal Prover?

In Theorem 2.1, the prover depends on the precise falsifiable property one wants to hold. Could there be a
“universal” prover with every falsifiable property of zero-knowledge? Unfortunately, this is likely impossible
(see Proposition 7.10) because of the aforementioned attack [BOVO07] that “a verifier gains the ability to
prove the same statement to others.” Indeed, a universal prover seems unlikely even for witness hiding (see
Appendix A).

On the other hand, our results suggest there is a single (uniform) prover that enjoys every “natural”
falsifiable property of zero-knowledge! In an attempt to make this formal, let Natural be the collection of all
falsifiable properties of zero-knowledge whose underlying game has appeared in the literature prior to this
work (and does not depend on our choice of prover or involve statements about its verifier®?). We stress
that, while the definition of Natural is not formal, everything we discuss below can be made formal modulo
defining Natural.

Definition 2.10. Say a prover Pyiimate 15 an ultimate prover if every II € Natural holds for Putimate-

At this point, we will need a little bit of proof complexity, but we hope that what we say is intuitive
enough to understand at a high level. It turns out that the prover guaranteed in Theorem 2.1 depends only
on what axioms one needs in order to prove a formalization of the statement “II is a falsifiable property
of zero-knowledge.” If one believes that a single set of polynomial-time decidable axioms (for example,
ZFC) should prove all of these natural statements (perhaps up to some slack in A) — as appears to be
the working hypothesis in complexity theory — then Theorem 2.1 gives a single prover that enjoys every
“natural” falsifiable security property (up to the same slack in A).

Theorem 2.11 (Informal Version of Theorem 7.12). If P = BPP, NIWIs exist, and a single non-optimal
proof system proves ‘Il is a falsifiable property of zero-knowledge” for every II € Natural, then an ultimate
prover exists.

In fact, one can relax this even further. We actually do not need that, say, ZFC can prove X =“II is
a falsifiable property of zero-knowledge.” It (roughly) suffices to have a uniform sequence of unsatisfiable
formulas v, with the property that ZFC lacks a short proof of “if X, then ) is unsatisfiable.” We formalize
this in Theorem 7.14.

Furthermore, we propose an explicit candidate for such a sequence 1y: formulas expressing? the consis-
tency of ZFCy on A-length proofs. Here, ZFC, denotes adding the axiom that ZFC is consistent to ZFC.

31Indeed, the non-uniformity precisely corresponds to a potential satisfying assignment to .

32We do this to eliminate obvious counterexamples. For example, the ability, given a proof of a statement, to prove the
statement to others.

33See Section 3.4 for a formal definition.
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Our choice is inspired by Pudldk’s work [Pud86] on a finitary analogue of Gddel’s incompleteness theorem,
which we discuss in Section 3.4. Our intuition for this choice is very simple. We believe ZFC lacks short
proofs of the consistency of ZFCy (see Conjecture 3.13). Why should a natural statement in cryptography
help ZFC prove the consistency of ZFC_,?

Conjecture 2.12 (Informal). Instantiating our construction with formulas corresponding to the consistency
of ZFCy and with a subezponentially secure NIWI construction that existed prior to this work™ yields an
ultimate prover.

(This conjecture is not formal because the definition of Natural is not formal.)

3 An Exposition of Our Results: Part 2 (With Proof Complexity)

In this section, we will discuss our main result, stated below as a preview. In the coming subsections, we
will explain the background needed to understand the statement.

Theorem 3.1 (Main Result). Assume
o NIWIs (respectively, subexponentially-secure NIWIs) exist, and
e there is no infinitely often optimal (respectively, subexponentially optimal) proof system.

Then for every proof system L, there exists a perfectly sound prover P that is effectively zero-knowledge
(respectively, subexponentially zero-knowledge) to L.

3.1 Proof Complexity Background: Proof Systems

To start, we need the notion of a (proof complexity) proof system, as defined by Cook and Reckhow [CR79].
Cook and Reckhow’s definition is extremely broad. We will give a formal definition next, but essentially
they just require the following.

e Statements are Language Membership: A “statement” is just an assertion of the form “x € L” for some
fixed but arbitrary language L. For example, L might be SAT, UNSAT (the complement of SAT), or
HALT (the language for the Halting problem).3

e Soundness: If there is a proof of a statement, then that statement is true.

e Polynomial-Time Checkability: There is a polynomial-time Turing machine that checks if a given proof
proves a given statement.

For our purposes, we do not require completeness.

Based on the properties above, one might expect the definition of a proof system to be a polynomial-time
machine £ that takes as input a purported proof 7, a statement z, and either accepts (implying « € L) or
rejects. Cook and Reckhow’s definition is essentially equivalent but slightly nicer to work with.

Definition 3.2 (Proof System [CR79]). A proof system for a language L is a polynomial-time algorithm
L£:4{0,1}* —» L. We say there is an {-length L-proof of x if L(7) = x for some |r| < L.

Essentially, £ takes as input a “proof” 7 € {0,1}* and outputs a “theorem statement” x € L. There is
no notion of an “invalid proof,” but there is also no guarantee that the output of £ is “interesting.” The
fact that the range of £ is contained in L enforces soundness.

34We add this constraint to avoid pathological NIWI constructions (e.g., ones that are only secure if ZFCy is consistent).

35In the literature, the term “Cook-Reckhow proof system” often refers to the special case where L is the coNP-complete
language TAUT. However, Cook and Reckhow’s original definition was for an arbitrary language L, which is the definition we
use in this paper.
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Examples of Cook-Reckhow Proof Systems. To illustrate the concept, we give a few examples.

e Constant Output: Let x be an element of language L. Then the constant Turing machine £, given by
L,(m) = x is a proof system for L.

e The SAT Verifier: The polynomial-time Turing machine £ with the following behavior is a proof
system for SAT.

Ll ) = {cp, if p(x) =1

a fixed trivially satisfiable formula (e.g. ©» = x1), otherwise.

e ZF'C: Roughly, a proof 7 in ZFC consists of a sequence of lines ¢1,..., ¢y, where each line is either
an axiom or can be obtained by applying one of finitely many inference rules (e.g., modus ponens) to
previous lines. The final line in the proof is the statement that 7 proves. The axioms of ZFC have the
property that one can decide if ¢ is an axiom of ZFC in polynomial-time. Indeed, the only fact about
ZFC that we will need for this bullet point is that one can check whether a given 7 is a valid proof in
polynomial time.

The polynomial-time Turing machine £ with the following behavior is a proof system3¢ for HALT (it
is easily generalized to other languages).

(M, z), if 7 is a ZFC proof that “M (x) halts”

ﬁ(”Ta M, $) = { .. . . .
a fixed trivially halting machine , otherwise.

e The ultimate cryptographic system: ZFC + Azioms for {DDH, LWE, RSA, ...}: Suppose one believes
a certain cryptographic assumption Y is true. Currently, we may not know if Y is provable in ZFC.
But one could always add Y as an axiom to ZFC. Indeed, assuming Y is true (so that we maintain
soundness), then the polynomial-time Turing machine £ with the following behavior is a proof system
for HALT (it is easily generalized to other languages).

(M, x), if  is a ZFC-proof of “if Y, then M (z) halts”

a fixed halting machine, otherwise.

E(W,M,x){

Conventions for Proof Systems in This Paper. We now make some choices specific to this paper.

1. Choice of Language: PHALT In this paper, we are free to choose as powerful a language L as we wish
for our proof systems. Indeed, since we incur no cost whatsoever for our choice, we go somewhat
overboard, as it makes our life as easy as possible. We choose L to be the natural complete problem
for PHALT: the circuit evaluation problem with HALT-oracle gates.?” In other words, L is the set

{(C,z) : CHAT () = 1}.
We abuse notation and refer to this language as PHALT. We choose PHALT for two reasons.

o Analyzing Computation: We will want to be able to prove statements about computation that
are obviously encodable as instances of HALT. Choosing HALT instead of a time-bounded version
lets us avoid having to keep track of time complexity.

o Closure Under Implications: We want to be able to prove statements like “if X, then Y,” where
X and Y are themselves statements. Recall, “if X, then Y really means “(not X) or Y.” Thus,
we want to choose a language L such that (z ¢ L or y € L) is equivalent to z € L for some z that
we can compute in, say, polynomial-time from x and y. A generic way to take a language L and
give it this property is to consider circuit evaluation with L-oracle gates.

36Here, we are implicitly assuming that ZFC is sound on such statements, as we do throughout the paper.
37If the reader is uncomfortable with the fact that HALT is undecidable, the results in the paper can be made to go through
by replacing PPALT with bounded-time variants of the Halting problem.
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Henceforth, unless otherwise stated, a proof system refers to a proof system for PHALT,

Definition 3.3 (Proof System). A proof system (with L omitted) refers to a proof system for PHALT,

2. Notation for Statements: Double Quotes. We usually put statements being proved in double quotes and
write an English language or mathematical description of the statement (the corresponding encoding
as an instance of PHALT should be clear).

3. Sufficiently Strong. It will be helpful to assume that the proof systems we consider are strong enough
to prove some useful facts. We stress this can be done without loss of generality (essentially by just
adding axioms). In particular, throughout the paper, we assume any proof system we consider:

o Can simulate ZFC. Tt will be helpful that £ is at least strong enough to carry out some basic
reasoning. To be concrete, we assume that £ is at least as strong as, say, ZFC.

(Formally, if there is an {-length L-proof of “X” and there is an ¢'-length ZFC-proof of “if X,
then Y,” then there is a poly(¢, £')-length L-proof of “Y.” Any proof system L can be transformed
into one that has this property (see Proposition 4.1).)

e Knows P = BPP (when we assume it). Sometimes it will be helpful to assume that P = BPP,
in which case there is a deterministic polynomial-time algorithm Estimate(M, x, 1¥) that takes as
input the code of a probabilistic Turing machine M, a string x, and a parameter k and outputs
a value v such that

1
v— l?wr[M(:r) outputs 1 in time at most k]| < Z (2)

Without loss of generality, any proof system can be transformed into one that also can prove the
correctness of Estimate. In other words, for some constant ¢, it can prove

“for all M, x and k, Estimate(M, x,1%) runs in time (|M|+ |z| 4 k)¢ and satisfies (2).”

We note that the above statement can be encoded as an instance of PHALT,

3.2 Relaxing Truth

A useful way of thinking about our results is via a certain way of relaxing truth. In particular, we give a
definition that, roughly speaking, relaxes the requirement that

“X is true”
to the requirement that
every “t-time consequence of X being true” is true.

We will apply this notion to relax the requirement that a zero-knowledge simulator exists.

To formalize a t-time consequence, let U be an efficient universal Turing machine (recall, this means
that U takes as input M = (My, z), where My is a description of a Turing machine and x is a string, and
simulates running My(z)). Let U'(M) denote cutting off U(M) after ¢ steps and outputting zero if it did
not already output something.

Definition 3.4 (t-time Indistinguishable From True). Let £ be a proof system. Let X be a statement. We
say that X is t-time indistinguishable from true to L if the following holds. For all M, if there is a t-length
L-proof that

“if X, then U'(M) =1,”

then UY(M) = 1.

We make a few remarks on this definition.
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We can specify t in binary. We note that we can encode the statement “if X, then U*(M) = 1" as a
poly(|X|,logt,|M]|)-length instance of PHALT. Note that the dependency on t is logarithmic. This is
important because otherwise the t-length proof requirement would be too stringent.

o ¢ will be large. As we will see soon, t will be large (i.e., superpolynomial in our security parameter).

e X is often false. In this paper, we will usually be in the case where X is false. This means that (if £ is
sufficiently strong) one can prove that X implies anything, including false statements. This definition
says that if there is a short proof that “X implies a t-time statement Y,” then Y must be true.

o We will usually write M (y) instead of U*(M,y). For readability, we will usually write M (y) instead
of UY(M,y).

e Close relationship to unprovability. This definition is essentially equivalent to “-~X” lacking a short
L-proof.

— If £ is sufficiently strong and has a short proof that “X implies U*(M) = 17 but U*(M) # 1,
then one gets a short proof of “—X.”38

— If “-X” has a short £-proof and L is sufficiently strong, then £ has a short vacuous proof of “if
X, then UY(M) = 1" for all M (even ones that trivially have U?(M) # 1).

We use the ¢-time indistinguishable from true definition rather than the unprovability definition because
it is both more operationally useful in proofs and because we feel it more intuitively reflects what is
happening in our results.

Example: Non-asymptotic One-Way Functions. Now we give an example to illustrate this definition.
Recall that a circuit C : {0,1}™ — {0,1}™ is an S-secure one-way function if for every S-size adversary circuit

A we have that 1

Aw) =yl < 5-

Pr [
z+{0,1}",y=C(x)
We observe that if a statement X is indistinguishable from true and if X provably implies C' is an S-secure

one-way function, then C' is indeed a one-way function (with a tiny security loss). This argument works
more generally for non-asymptotic falsifiable properties.

Proposition 3.5. Assume P = BPP. Let L be a (sufficiently strong) proof system. Let S € N and C be a
circuit.® If there is an l-length L-proof that “if X, then C is an S-secure one-way function” and if X is
poly(¢, S)-time indistinguishable from true to L, then C is an S/3-secure one-way function.

Proof. Let G(C, A) be the probabilistic Turing machine that, given C' and A, samples x « {0,1}", sets
y = C(z) and outputs 1 if C(A(y)) = y. Recall that f being an S-secure one-way function means that
Pr[G(C,A) =1] < % for all |[A] < S.
Now fix an adversary A of size at most S/3. Using that £ is sufficiently strong (enough to simulate ZFC),
the assumed f-length proof implies that there is also a poly(,|C|, S) = poly(¢, S)-length*® L-proof that
“f X, then Pr[G(C,A4) =1] <

”

0|~

Next, since L is sufficiently strong (enough to show P = BPP), we get that there is a poly(¢, S)-length £-proof
that 5
“if X, then Estimate(G, (C, A),1%) < 5
38The proof is just run U?(M), see that it does not output 1, and then use the contrapositive of “X implies U*(M) = 1.”

39We stress that S is a single number and C is a single circuit. We are not viewing them as asymptotic objects here.

40The fact that |C| = poly(£) follows from the following argument. By assumption there is an £-length proof of “if X, then
C is an S-secure one-way function.” This means there exists a 7 € {0,1}=¢ such that £(7) = “if X, then C is an S-secure
one-way function.” Hence, because £ runs in polynomial time, it must be the case that |C| = poly(¥).
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Then because Estimate(G, (C, A), 1°) runs in time poly(S, |G|, |C|, |A]) = poly(S, £) and because X is poly (¥, S)-
time indistinguishable from true to £, we get that

Estimate(G, (C, A),1%) <

I

and hence that Pr[G(C,A) =1] < 2.

3.3 Owur Main Result

We will now formally state our relaxation of zero-knowledge. We note that it relies on definitions made in
Section 2.1 and Section 3.2.

Definition 3.6 (Effectively Zero-Knowledge to £). Let P be a prover, and let L be a proof system. We say
P is effectively zero-knowledge (respectively, subexponentially zero-knowledge) to £ if for some t = A\*(1)

(respectively, t = ZAQ(I)) and s = poly(\) we have that for all A € N

1
“P has an s(\)-size ——-indistinguishable simulator on \”*! (3)

t(A)
is t(\)-time indistinguishable from true to L.
We now have all the background needed to understand the conclusion of our main result.
Theorem 3.1 (Main Result). Assume
o NIWIs (respectively, subexponentially-secure NIWIs) exist, and
e there is no infinitely often optimal (respectively, subexponentially optimal) proof system.

Then for every proof system L, there exists a perfectly sound prover P that is effectively zero-knowledge
(respectively, subexponentially zero-knowledge) to L.

We remark that Theorem 3.1 itself does not assume P = BPP. But it is often helpful to assume P = BPP
when one wants to use Theorem 3.1.

One drawback of Theorem 3.1 is that it is existential. It only guarantees the existence of such a P,
but it does not say how to construct P. Under a variant of a conjecture of Khaniki [Kha24], we show a
constructive version of Theorem 3.1 holds: given the code of L, one can efficiently find a P that is effectively
zero-knowledge to £ (see Theorem 7.18). In the next subsection, we also describe a concrete candidate for
a P that is effectively zero-knowledge to ZFC.

3.4 Proof Complexity Background: Optimal Proof Systems

In this subsection, we discuss the background needed to understand our assumption about optimal proof
systems. A key notion in proof complexity is simulation [CR79], which gives a natural partial ordering on
the power of proof systems.

Definition 3.7 (Simulating a Proof System [CR79]). Let £ and L' be proof systems for a language L. We
say that L simulates L' if there is a polynomial p such that the following holds. For every X, if there is an
L-length L'-proof of “X,” there is also a p(£)-length L-proof of “X.”

An optimal proof system is one that simulates all other proof systems [KP89].

Definition 3.8 (Optimal Proof System [KP89]). Let L be a proof system for a language L. We say that L
is optimal if it simulates every proof system L' for L.

41Tn Remark 5.1, we clarify potential ambiguities arising from notation in (3).
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This definition can be straightforwardly extended to the infinitely often or subexponential settings (see
Definition 6.7).

A natural question is whether an optimal proof system exists for a given language. An immediate
consequence of Godel’s incompleteness theorem is that there is no optimal proof system for UNHALT, the
complement of the halting problem.*?> There is an easy proof based on the undecidability of HALT.

Theorem 3.9 ([G6d31; Tur37]). There is no optimal proof system for UNHALT.

Proof. For every (M,z) € UNHALT, there exists a proof system for UNHALT that proves “M (z) does not

halt” (you can take the constant machine that always outputs (M, z)). Hence, if £ were an optimal proof

system for UNHALT, it must be the case that (M, z) € UNHALT if and only if £(7m) = (M, ) for some 7.
Then given (M, z), one can solve the halting problem by running the following two algorithms in parallel:

e simulate M (x) and accept if it ever halts
e try all possible 7 and reject if L(m) = (M, x).
This contradicts the undecidability of the halting problem. O

It turns out this means that for every proof system £ for UNHALT, there is another proof system L’
for UNHALT such that £’ simulates £ but not vice versa. In fact, Godel shows that if £ is a “sufficiently
nice” proof system, then one can take £’ to be £ with the extra axiom that “L is consistent.” Here, “L is
consistent” means that it never proves both a statement and its negation (note that consistency is naturally
encoded as an instance of UNHALT).

Proof Systems for UNSAT. The field of proof complexity is primarily interested in the proof systems for
UNSAT, referred to as propositional proof systems.*> One of the main conjectures in the field is that there is
no optimal proof system for UNSAT. (We often omit saying “propositional” when referring to this conjecture
to match the literature.)

Conjecture 3.10 (No Optimal (Propositional) Proof System [KP89]). There is no optimal propositional
proof system.

The following is one of the main results in [KP89] and is very useful for us. It roughly says that if no
optimal proof system exists, then there is a uniform sequence of (propositional) statements hard to prove in
any given proof system.

Theorem 3.11 (Krajicek and Pudldk [KP89]). Assume there is no optimal proof system. Then for every
propositional proof system L, there exists a P-uniform** sequence of unsatisfiable formulas 1)y such that L

lacks poly(\)-length L-proofs of “iy is unsatisfiable.”

Indeed, the sequence v, corresponds to the consistency of a proof system £’ that £ does not simulate.
As this suggests, Conjecture 3.10 is closely related to longstanding conjectures about extending Godel’s
incompleteness theorem.

In more detail, in his 1986 paper, Pudlék [Pud86] investigates whether “scaled down” versions of Godel’s
incompleteness theorem hold. Specifically, for a proof system L, let Cony (L) be the formula that is unsatis-
fiable if and only if £ is consistent on proofs of length at most A\. Based on G&del’s incompleteness theorem,
one might then expect that for all A, there are, for example, no short ZFC-proofs that “Cony(ZFC) is unsat-
isfiable.” Somewhat surprisingly, Pudldk [Pud86] showed that this is false. But Pudldk [Pud86] conjectured
that a modification of this should hold (see also [Pud17] and [Pudl3, Conjecture 5]).

42In fact, it rules out optimality even under a much weaker notion of simulation, where statements provable in £’ just need
to be provable in £, without any length considerations.

43In proof complexity, one usually considers the language of tautologies TAUT = {¢ : ¢(z) = 1 Vz} instead of UNSAT = {¢:
¢(z) =0 Vz}. Both languages are coNP-complete, so the choice makes no difference. We use UNSAT because it is both more
familiar to cryptographers and because it makes our construction slightly cleaner.

44This means that there is a polynomial-time algorithm that outputs 1 on input 1*.
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Conjecture 3.12 (Informal Finite Godel Conjecture [Pud86, Problem 1)). Let £ be a “sufficiently nice”
proof system. Let L be the proof system corresponding to L with the axiom that L is consistent added. Then
there is no poly(X)-length L-proof of “Conx(L4).”

Conjecture 3.12 immediately implies the non-existence of optimal proof systems (see, e.g., [Pud13, Section
6.4]). Moreover, Mycielski conjectures (see [Pud86] and the discussion in [Pud13]) that the length of these
proofs should be exponential in A\, which implies there are no subexponentially optimal proof systems. In
particular, the following conjecture seems reasonable.

Conjecture 3.13 (Finite Godel Conjecture for ZFC). The length of the shortest ZFC-proof that Cony(ZFCy.)
is 227
Motivated by this, we make the following conjecture.

Conjecture 3.14. Our construction, instantiated with a subexponentially secure NIWI construction that
existed prior to this work® and the sequence Cony(ZFC.), is effectively subexponentially zero-knowledge to
ZFC.

3.5 Cryptography Background: Ideas We Build On

We now give an overview of the main cryptographic ideas our construction builds on.

Witness Indistinguishability. Feige and Shamir [FS90] defined the notion of witness indistinguishability
(WI). In contrast to zero-knowledge (ZK), WI has nice composition properties, which were partly Feige and
Shamir’s motivation. They also show it suffices for some important applications of ZK [FS90].

OR proofs. At first, the ability to do WI proofs seems much weaker than the ability to do ZK proofs.
Contrary to this, Feige, Lapidot, and Shamir [FLS90] show how to get ZK guarantees by using WI. They do
so using the following “OR proof” idea.

“OR proof” [FLS90]

Parameterized by a formula 1.

1. The prover outputs a WI proof 7 that “p V v is satisfiable” using its witness for .

The key to their analysis is that

e if 1) is satisfiable at, say, x: then one can simulate 7 by giving a WI proof that “¢ V1) is satisfiable”
using the witness x. Thus, in this case, the protocol is zero-knowledge.

e if ¢ is unsatisfiable: the construction will be sound because ¢ V ¥ being satisfiable implies that ¢ is
satisfiable.

Feige, Lapidot, and Shamir [FLS90] then choose 1 to be the statement that a uniformly random string r is in
the range of a length-doubling PRG G. Thus, with high probability, ¢ is unsatisfiable, leading to soundness.
But one can simulate the protocol by choosing r = G(x).

Non-interactive Witness Indistinguishability. Building on the work of Dwork and Naor [DNOT],
Barak, Ong, and Vadhan [BOV07] show (perhaps surprisingly) that one can produce traditional mathe-
matical proofs that are witness indistinguishable. In particular, they show (under plausible assumptions)
that there is a zero-interaction prover that is perfectly sound and witness indistinguishable. Follow-up
work [GOS12; BP15] gives constructions under different assumptions.

45We add this constraint to avoid pathological NTWT constructions (e.g., ones that are only secure if ZFC is consistent).
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A new analysis of the “OR proof.” Recall that a proof 7 is witness hiding (WH) [FS90] if (roughly
speaking) a proof 7 that “p is satisfiable” does not help an adversary find a satisfying assignment to ¢.

Kuykendall and Zhandry [KZ20] study the possibility of using NIWIs to achieve truly non-interactive
WH proofs (NIWH), whose existence was unclear. One of their key ideas is a novel analysis of the OR
proof above. They choose 1 to be unsatisfiable so that soundness holds. But they observe that if WH does
not hold on a specific distribution D of instances 1, then this can be used to certify that 1 is unsatisfiable
(since if 4 is satisfiable, the proof is simulatable and hence witness hiding). But under the widely-believed
complexity assumption NP # coNP (and its randomized extension), every unsatisfiable formula ¢ cannot
have a certificate that it is unsatisfiable. Thus, there must exist some 1 such that this construction is witness
hiding. Moreover, their argument generalizes to falsifiable security properties.

Kuykendall and Zhandry [KZ20] use this to construct distribution-dependent non-uniform NIWH. They
remark (with notation changed to match the presentation above):

“Unfortunately, we cannot use this protocol in a uniform setting as the 1 needed to achieve
witness hiding may be hard to compute. Furthermore, the choice of ¥ is not universal; it depends
on the underlying distribution D from which the statements are drawn. Thus the construction
is not a single witness hiding proof system for NP, but rather a family of proof systems, one
for each hard distribution. Non-uniform protocols should be viewed as existential results: unlike
common reference string protocols, the non-uniform model does not require the joint input to be
sampleable.

Nevertheless, this result at least suggests a fundamental difficulty of ruling out non-interactive
witness hiding protocols. Indeed, ruling out such protocols in the non-uniform setting would
yield a surprising complexity implication, coming close to showing that the polynomial hierarchy
collapses. Given that non-interactive witness hiding cannot be ruled out, we believe our result
is also strongly suggestive that it should be possible to actually find a non-interactive witness
hiding proof system, under plausible computational assumptions. Finding an explicit procedure
for generating appropriate ¢ clearly would suffice to make this scheme uniform; however, it is
unclear how to do so.”

In some sense, we accomplish this via proof complexity. A key insight is to shift focus from D and the
falsifiable property to the specific proof system in which one can certify 1 is unsatisfiable.

3.6 Conclusion and Open Questions
There are many questions left open by this work. We discuss a few here.

e What security properties cannot be captured? We suspect that there are at least a few natural
examples of security properties of zero-knowledge that are possible to achieve with zero interaction and
that are not captured in our framework. However, we currently lack such a natural example (i.e., all
the natural examples we thought of are either impossible or can be captured in our framework).

One general (but somewhat unnatural) class of properties we seem unable to handle is security proper-
ties that only follow from, say, a uniform simulator and that are only falsifiable in, say, subexponential-
time.

e What if optimal proof systems do exist? Our construction relies on the assumption that optimal
(propositional) proof systems do not exist. Can one get interesting cryptographic consequences if opti-
mal proof systems do exist? For example, Kuykendall and Zhandry [KZ20] show that “best-possible”
L-proofs exist, in the following sense: one can efficiently generate an L-proof of “y is satisfiable” that,
very loosely speaking, is “most zero-knowledge” among all short L-proofs. If one chooses £ to be an
optimal proof system, then can one get more power out of this?

Also, we note that even if optimal proof systems do exist, the construction we use can still offer a
human ignorance guarantee [Rog06]. To illustrate, we could choose 9 in the construction to be a
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formula whose unsatisfiability corresponds to a mathematical statement that is believed to be true,
but is not yet proven. For instance, consider the Collatz function (n € N maps to n/2 if n is even and
3"—2“ otherwise) underlying the famous Collatz conjecture in mathematics. One quantitative version of
the Collatz conjecture supported by empirical evidence and probabilistic models [LW92; KL10] is that
for all n € N, the Collatz function repeatedly applied to n reaches one after at most clnn iterations

for some constant ¢ ([LW92; KL10] suggest ¢ ~ 41.68).

Based on this, one could choose ¥ such that it is unsatisfiable if and only if the quantitative Collatz
conjecture is true on all A\-bit numbers for, say, ¢ = 100. Then any attack on the corresponding prover
constitutes a proof — modulo cryptographic assumptions — that 1 is unsatisfiable and hence that the
quantitative Collatz conjecture on A-bit numbers is true. To our knowledge, such proofs are not known
for, say, A = 128. Hence, such a prover seems to offer a human ignorance guarantee. Intriguingly, even
if no optimal proof systems exist, constructions like this might still offer more practical efficiency.

VBB and other “impossible” objects. Can one build on our ideas to achieve other “impossible”
definitions? For example, Virtual Black Box Obfuscation [BGI+12] (VBB) is a dream object in cryp-
tography that is ruled out by an arguably contrived impossibility result. To avoid this impossibility
result, cryptographers use a different definition, called indistinguishability obfuscation (i0) [BGI+12],
that is significantly restricted.

On the other hand, a common informal analogy is that NIWIs are to (truly) non-interactive zero-
knowledge as iO is to VBB. The idea is that both non-interactive zero-knowledge and VBB are impos-
sible simulation-based definitions, and NIWIs and iO are indistinguishability-based relaxations that
can be achieved. In this work, we show how to use NIWIs to essentially achieve non-interactive zero-
knowledge. Can similar ideas show that (if iO exists) we can essentially achieve VBB?

For example, one concrete approach is examining what happens if we pick a family of unsatisfiable
formulas ¢ with some “nice” properties and look at the construction that obfuscates a circuit C' by
outputting the iO of C'V .

Also, as discussed in the previous bullet point, there is a sense [GK16; KZ20] in which NIWIs and iO
both give the “best possible” security guarantees. On the other hand, Proposition 7.10 and Theorem 2.1
together suggest that truly best possible proofs are impossible, at least if there is no optimal proof
system. Is there an analogue of this for iO, or is this a fundamental difference between the two settings?
Perhaps this points toward further examining obfuscators which lack perfect functionality.

Applications of zero-interaction zero-knowledge. We expect that there are more applications of
zero-interaction zero-knowledge. What else can one achieve?

In an upcoming follow-up work we use zero-interaction zero-knowledge to refute the “scaled-down
Rice’s theorem” conjecture from [BGI+12].

Choosing some satisfiable v,?7 In our construction, we choose ) to always be unsatisfiable in
order to get perfect soundness. One could, alternatively, consider a sequence of formulas that is mostly
unsatisfiable but is rarely satisfiable. In this case, one would lose perfect soundness on a small fraction
of A, but perhaps by carefully choosing 1, one could plausibly be effectively zero-knowledge to every
proof system. This object could be useful, for example, in applications related to impossibility results,
where it suffices for an attacker to work on infinitely many input lengths. One could also hope for
other weakenings of soundness, like uniform soundness [BP04].

A good test case is understanding whether such 1 exist in the random oracle model.
Either a dream world for cryptography or proof complexity. In what follows we are informal,
but we suspect that this can be made formal. Suppose a prover P is effectively zero-knowledge to £

(think, £ = ZFC). Then we know that if a falsifiable property IT does not hold for P, then it must be that
“IT is a falsifiable security property of zero-knowledge” lacks a short proof in £. Indeed, the adversary
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falsifying II constitutes a proof — in the proof system £ = (£ 4+ “P is effectively zero-knowledge to
L) — that “L lacks a short proof that ‘II is a falsifiable security property of zero-knowledge.” ”

Hence, one of two things is true for all such II. Either II holds for P or £’ can prove that “£ lacks a
short proof that ‘II is a falsifiable property of zero-knowledge’ ” (in a certain quantitative sense).

One can interpret this as follows: either we live in a cryptographic dream world — P has most natural
falsifiable properties of zero-knowledge — or we live in a proof complexity dream world — for every
proof system L, there is another proof system £’ in which we can prove concrete lower bounds on the
length of L-proofs for many natural statements in complexity theory.

This phenomenon seems worthy of further investigation. Is there some sense in which the proof
complexity dream world is unlikely?

4 Preliminaries

We now discuss a few preliminaries not already covered in Sections 2 and 3. We assume basic background
in cryptography, as can be found in Goldreich’s textbooks [Gol01; Gol04].

The size |C] of a circuit C' is the number of wires in the circuit, including input wires. When we say a
problem requires circuits of size s, we mean it requires circuits of size at least s to compute.

We write {0, 1}=" for the set of binary strings of length at most n. When choosing parameters, we often
say things such as: set o = n®(1) sufficiently small. This means choose a to be a sufficiently slow growing
superpolynomial function.

4.1 Proof Systems

One can always close a proof system under implications provable in another proof system.

Proposition 4.1 (Folklore?). Let £ and L' be proof systems. There is a proof system L* with both of the
following properties:

e simulation of £: For all X, if there is an £-length L-proof of X, then there is a poly(£)-length L*-proof
of X.

e polynomial closure under £'-deduction: For all X and Y, if there is an £y-length L*-proof of X and
there is an £1-length L' -proof of “if X, then Y ,” then there is a poly({y, £1)-length L*-proof of Y.

Proof. We construct L* as follows.

Proof System L*
Given a string which we interpret as a tuple (7, 7’) :
1. If 7 is the empty string, output L(7’).
2. Otherwise, if £*(r) = X and £'(7") = “if X, then Y,” then output Y.

3. Otherwise, output some fixed element of PHALT,

Step (1) ensures that £* polynomially-simulates £. Step (2) ensures L£* is polynomially closed under £’
deduction. Because £* makes at most one recursive call to a shorter input length, it is easy to see that £*
runs in polynomial-time. O
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4.2 Cryptography

We recall the definition of computational indistinguishability in both the non-asymptotic and asymptotic
setting.

Definition 4.2 (Computational Indistinguishability). First, we give a pointwise definition: Let C' and D
be multi-output circuits that just take as input randomness r, and let € € R. We let C =, D denote that
C and D are e-computationally indistinguishable. This means that for every adversary circuit A of size at
most 1/e we have that

Pr[A(C(r)) = 1] - Pr[A(D(r)) = 1]] <e

T

The asymptotic definition is analogous: Let € : N — R and let D = {Dy}reny and D' = {D)}ren be

sequences of distributions. We say D and D' are e-computationally indistinguishable (written D =, D’) if

for all X € N and every circuit A of size at most le) we have that

Pr [A(z) =1]— Pr [A(z)= 1]‘ < €(N).

z< Dy D

Next, we recall the definition of a non-interactive witness indistinguishable proof system (NIWT) [FS90;
BOVO07]. We note that the definition below differs mildly from the usual definition in that we require that e
be efficiently computable.

Definition 4.3 (Non-Interactive Witness Indistinguishable Proof (NITWT)). A non-interactive witness indis-
tinguishable proof system is a tuple of uniform polynomial-time algorithms (NIWILProve, NIWI. Verify)
where NIWIL.Prove is randomized, NIWI. Verify is deterministic,*® and all of the following hold:

e Functionality: For all formulas ¢ with p(w) =1 and all A

Pr[NIWTI. Verify (o, NIWLProve(p, w, 1*),1*) = 1] = 1.

e Perfect Soundness: NIWI. Verify (p, 7, 1) = 0 for all 7, A\ and unsatisfiable .

e Security (Witness Indistinguishability): There exists a polynomial-time computable function e(\) =
A=) such that for all formulas ¢ with p(w) = @(w') = 1, we have that

NIWILProve(p, w, 1) ~y NIWLProve(p, w’, 1*).

We say the NIWI is subexponentially secure if the above holds for some polynomial-time computable*”
€ — 27)\52(1) '

When the underlying NIWT is clear from context, we say output a NIWI proof of ¢ with witness w and

security parameter 1* to mean output NIWIL.Prove(p,w,1*). Similarly, a NIWI-proof of ¢ (on security
parameter \) means a 7 satisfying NIWI. Verify (o, 7, 1*) = 1.

5 Our Relaxation of Zero-Knowledge

We now (re)state our main definition.

46 Assuming P = BPP, the verifier can always be made deterministic.
47 Actually, this requirement is without loss of generality. Any e = 2_>‘Q(1) is upper bounded by a polynomial-time computable
function ¢ = 2~
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Definition 3.6 (Effectively Zero-Knowledge to £). Let P be a prover, and let L be a proof system. We say
P is effectively zero-knowledge (respectively, subexponentially zero-knowledge) to £ if for some t = A1)

(respectively, t = 2>‘Q(1)) and s = poly(\) we have that for all A € N

“P has an s(\)-size -indistinguishable simulator on A% (3)

1
t(A)
is t(N\)-time indistinguishable from true to L.
Remark 5.1. We clarify the precise meaning of (3) on a fixed A to avoid any ambiguity arising from
notation. Let s*,t* € N be the concrete natural numbers with s* = s(A) and t* = t(\). Let Py be the

concrete poly(\)-sized circuit that computes P.prove(-, -, 1) on inputs ¢ and w of size at most A\. Then (3)
refers to the statement that

“there exists an s*-size circuit Sim such that Sim(p) ~1 4+ Px(p,w) whenever |p| < A and p(w) = 1.7

In particular, the statement does not include any further information about how to compute s, ¢t or P.

We also make the following definitions, which will be useful for extending our results. We advise the
reader to skip these definitions on their first read through. The first definition lets us precisely quantify how
non-uniform a simulator is.

Definition 5.2 (Non-Uniformity Quantified Simulator). Let A, %, s,a € N. We say P has an s-size a-non-
uniform e-indistinguishable simulator on X if there is an M € {0,1}=% such that*® Simy = U*(M) is a
probabilistic circuit satisfying Sim(¢) ~. P.prove(p,w,1*) for all p with o(w) =1 and |p| < A.

We can then define effectively zero-knowledge to £ in a way that quantifies non-uniformity.

Definition 5.3 (a-Non-Uniform Effectively Zero-Knowledge to L). Let P be a prover, and let L be a
proof system. We say P is a-non-uniform effectively zero-knowledge (respectively, subexponentially zero-

knowledge) to £ if for some t = A1) (respectively, t = 2’\Q(1)) and s = poly(\) and for all A € N

1
“P has an s(X)-size a(X)-non-uniform —— -indistinguishable simulator on \,”

t(A)
is t(X)-time indistinguishable from true to L.
Finally, we introduce another parameter to our definition.

Definition 5.4 (Effectively Zero-Knowledge to £ with Hardness ¥). Let P be a prover, and let L be a proof
system. Let ¥ = {1y} be a sequence of formulas of size at most A. We say P is effectively zero-knowledge
(respectively, subexponentially zero-knowledge) to £ with hardness ¥ if for some € = A~ (respectively,

€= 2_>‘Q(1)) and s = poly()\) the following holds for all \, M,t, and X : if there is an £-length L-proof that
“if P has an s(\)-size e(\)-indistinguishable simulator on X and X is true, then U'(M) =1,”

then either UY(M) =1 or there is a poly(t, £, \)-length L-proof that “if X, then 1y is unsatisfiable.”

6 Our Construction

Let U = {4} be a sequence of A-sized formulas (when we say A-sized we mean size at most \). We now
state the construction of our prover, which is parameterized by a choice of ¥ and an implicit choice of NIWI
that we fix for the remainder of this paper. The prover will be uniform when the sequence ¥ is P-uniform
(i.e., there is a deterministic polynomial-time algorithm that, given 1%, outputs vy ).

48In Remark 5.1, we clarify potential ambiguities arising from notation in (3).
49We are essentially saying that Simy has low time-bounded Kolmogorov complexity.
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Prover P[¥]
P[V].prove on input (¢, w,1*):
1. Reject if o] > A. Also reject if p(w) = a(w) = 0.

2. Output a NIWI proof of “either ¢ or ¥, is satisfiable” with witness w and security parameter .

P[¥].verify on input (¢, m, 1*):

1. Accept if 7 is a valid NIWI proof of “either ¢ or 1) is satisfiable.”

It is easy to see that this prover is perfectly sound if every ) is unsatisfiable.
Lemma 6.1 (Perfect Soundness of P[V]). If ¥y is unsatisfiable for all A, then P[¥] is perfectly sound.
Proof. If P[¥].verify(p, m,1*) accepts, then (by the perfect soundness of the NIWI) we have that either ¢ is
satisfiable or v, is satisfiable. Since 1 is unsatisfiable, this means that ¢ is satisfiable. O
6.1 Analysis

In our analysis, it will be helpful to isolate the circuit corresponding to our prover on 1* inputs. In particular,
consider the following probabilistic circuit, which is parameterized by a A € N and a single formula ) of size
at most A.

Probabilistic Circuit P[y, ]
Given a formula ¢ of size at most A and w:

1. If p(w) = 0 and ¥ (w) = 0, then reject.

2. Output a NIWI proof of “either ¢ or v is satisfiable” with witness w and security parameter \.

We can naturally extend the definition of a simulator to P[¢, A]. That is, for s, % € N, we say that P[y), A]
has an s-size e-indistinguishable simulator if there exists an s-size circuit Sim) such that, for all ¢ of size
at most A with p(w) =1,

Simk(@) Re 73[1/% A](@v w)

We analogously define Py, \] having an s-size a-non-uniform e-indistinguishable simulator.

Note that the definition of “P[¥] has an s-size e-indistinguishable simulator on A” is exactly that “P[ix, A]
has an s-size e-indistinguishable simulator.”

We now prove the key lemma regarding this construction, which builds on the ideas of Kuykendall
and Zhandry [KZ20]. The lemma roughly says that either (a strengthening of) £ has short proofs of
unsatisfiability for ¥, or P[¥] has all the “time-bounded” consequences of zero-knowledge that are provable
in £. Properties (2) and (3) below will only be relevant for extensions of our main result; we recommend
the reader ignore them on their first read through.

Lemma 6.2. Assume a NIWI (respectively, subexponentially secure NIWI) exists. There exist functions
e(\) = A=W (respectively e(\) = 2*)‘52(1)) and s(A) = poly(\) such that the following three statements hold
for every proof system L, every A\t € N, every statement X, and every formula ¢ of size at most A.

1. If there is an £-length L-proof of the statement
“if P[, A] has an s()\)-size e(\)-indistinguishable simulator, then U*(M) =1,”

then etther:
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o U(M) =1, or
e in the proof system Legtended (Which is defined below and depends only on L and the choice of
NIWI), there is a poly(¢, A, t)-length proof that “) is unsatisfiable.”

2. If there is an £-length L-proof of the statement
“if Plb, \] has an s(\)-size s(|1b|)-non-uniform e(\)-indistinguishable simulator, then U'(M) =1,”
then either:

o U(M)=1, or
e in the proof system Legtended there is a poly(¢, A, t)-length proof that “) is unsatisfiable.”

3. If there is an £-length L-proof of the statement
“if Plab, \] has an s(\)-size e(\)-indistinguishable simulator and X is true, then U'(M) =1,”

then either:

o U(M)=1, or
o there is a poly(¢, \,t)-length Leztendea-proof that “if X, then ¢ is unsatisfiable.”
Proof. Let €(\) be the polynomial-time computable function corresponding to the security of the NIWI. Let

s(A\) = poly(X) be a sufficiently large polynomial satisfying s(\) > |P[¢’, A]| for every v’ of size at most .
Now fix any proof system L. Let Leztendeq be the proof system defined as follows.

Proof System L., icnded
On input 7,1*, 1%, and o € [4]:
1. Output “¢ is unsatisfiable” if & =1 and |[¢| < A and
o L(m) = “if P[ih, \] has an s())-size e(A)-indistinguishable® simulator, then U*(M) = 17° and
e U'(M) # 1 (we check this by just running it).
2. Output “¢ is unsatisfiable” if « = 2 and |¢| < A and

o L(m) = “if Py, A] has s(\)-size s(|¢)|)-non-uniform e(A)-indistinguishable simulator, then
Ut(M)=1."

o UY(M) # 1.
3. Output “if X, then v is unsatisfiable” if « = 3 and |¢)| < X and
o L(m) = “if P, A] has an s())-size €(\)-indistinguishable simulator and X is true, then
Ut(M) =1, and
o UY(M) # 1.
4. Otherwise, output L(m)

%This is where we need that € is efficiently computable.
bWe choose a reasonable encoding such that this step is efficient.

By construction, Leytendeq Tuns in polynomial time. Moreover, if Leptendeq 1S indeed a proof system, the
lemma follows immediately by construction of Leytendeq- It remains to show the following claim.

Claim 6.3. L.y iended 18 a proof system.
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Proof. We need to show that if Leptendeq Outputs a statement, then that statement is true. We divide into
cases depending on whether it terminates at step (1), (2), (3), or (4). If it terminates at step (4), then we
are done because L is a proof system.

Next, suppose that it terminates at step (3). By the soundness of £, we know that if “X” is true, then
Py, A] does not have an s(\)-size €(A)-indistinguishable simulator. On the other hand, if it was the case
that ¥ (w*) = 1 for some w*, then NIWI security guarantees that the probabilistic circuit

Sim}\(@) = ,ija )‘](907 w*)

is an s(\)-sized e(A)-indistinguishable simulator for P[i), \]. Hence, ¢ is unsatisfiable if “X” is true. So the
statement output at step (3) is true.

The argument for termination at step (1) is similar to the argument for step (3). Finally, suppose it
terminates at step (2). The argument is again similar to the one for step (3). However, note that the
potential simulator

Sim,\(w) = ,P['(/Jv )‘](90’ w)

is determined by a choice of ¥ and w and the constant size code of the NIWI. All this can be encoded
by strings of length at most poly(|¢)|). Hence by setting the polynomial s sufficiently large, we get that
UM (M) = Simy for some M of length at most s(|¢]). O

O
Motivated by Lemma 6.2, we define a notion of ¥ being hard for L.

Definition 6.4 (VU is hard for £). Let ¥ = {1x} be a sequence of A-sized formulas. Let L be a proof system.
We say U is hard (respectively, subexponentially hard) for £ if there is an £ = \*(Y) (respectively £ = 2)‘9(1))
such that for all X there is no L(A)-length Leytendea-proof that “y is unsatisfiable.” We stress that the

previous sentence talks about Leytended-proofs.

Note that this definition depends on the definition of L. iended, which depends on our choice of NIWI.
Also note that this definition does not require that the formulas v, actually be unsatisfiable. For example,
any sequence of satisfiable formulas is hard for L.

Combining this definition with Lemma 6.2, we get the following theorem. It roughly says that, if ¥ is
hard for £, then P[¥] is effectively zero-knowledge to L.

Theorem 6.5. Assume U is hard (respectively, subexponentially hard) for £. Then P[¥] is effectively zero-
knowledge (respectively, subexponentially zero-knowledge) to L. Furthermore, P[¥] is poly(|1)a|)-non-uniform
effectively zero-knowledge (respectively, subexponentially zero-knowledge) to L.

Proof. Let e = A=*() (respectively, € = 2”\9(”) and s = poly(A) be the functions given by Lemma 6.2. Let
a(X) = s(|al). Let t = ¢(\) be a function we set later. Let P = P[¥].

Suppose there is a t(A)-length L-proof that
“if P has an s(\)-size €())-indistinguishable simulator on A, then U*(M) = 1.

Then, by Lemma 6.2, either U*(M) = 1 or there is a poly(t(\))-length Leztendeqd-proof that “iy is unsatisfi-
able.” By assumption, any Legtendeq-proof that “iy is unsatisfiable” has length at least A\~ > poly(t(X))
(respectively, A S poly(t(\))) by setting ¢t = A1) (respectively ¢t = 2/\0(1)) sufficiently small. Hence,
Ut(M) = 1. This shows that P[¥] is effectively zero-knowledge (respectively, subexponentially zero-
knowledge) to L.

The proof that P[¥] is a-non-uniform effectively zero-knowledge (respectively, subexponentially zero-
knowledge) to L is similar. O

We also prove the following proposition, which is useful for an extension of our main result.
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Proposition 6.6. For every L, we have that P[V] is effectively zero-knowledge (respectively, subexponentially
zero-knowledge) to Leztended With hardness U.

Proof. Let € = A=) (respectively, € = 2_’\9(”), and s = A°(1) be the parameters given by Lemma 6.2. Let

P = P[¥]. Suppose there is an ¢-length L-proof that
“if P has an s(\)-size e())-indistinguishable simulator on A and X is true, then U*(M) = 17.

Then by Lemma 6.2, either U*(M) = 1 or there is a poly(¢, A, t)-length L., tendeq-proof that “if X, then 1)y
is unsatisfiable,” as desired. O

6.2 Optimal Proof Systems
We begin by recalling the definition of an optimal propositional proof system.

Definition 6.7 (Optimal Propositional Proof System [KP89]). A propositional proof system L is optimal
(respectively, subexponentially optimal) if the following holds. For every propositional proof system L', there
exists a p(£) = poly(£) (respectively, p(¢) = 2é0(1)) such that for all ¢ and all €', we have that if there is an
0 -length L'-proof that “) is unsatisfiable,” then there is a p(¢')-length L-proof that “) is unsatisfiable.”

We say that L is an infinitely often optimal (respectively, subexponentially optimal) propositional proof
system if the analogous statement holds but for infinitely many £'.

It is conjectured that there is no optimal propositional proof system.

Conjecture 6.8 (No Optimal Proof System [KP89])). There is no optimal propositional proof system.
It is natural to extend this conjecture to the infinitely often setting.

Conjecture 6.9. There is no infinitely often optimal propositional proof system.

Using this conjecture, we can get P-uniform W that are hard for an arbitrary £. The proof is a slight
modification of a result by Krajicek and Pudldk [KP89].

Theorem 6.10. Assume there is no infinitely often optimal (respectively, subexponentially optimal) propo-
sitional proof system. Then for every proof system L, there is a P-uniform sequence ¥ = {ix} of A-sized
unsatisfiable formulas that are hard (respectively, subexponentially hard) for L.°°

Proof. We prove the contrapositive. Assume L is a proof system for which there is no uniform sequence
of unsatisfiable formulas that is hard (respectively, subexponentially hard) for £. We will construct an
infinitely often optimal (respectively, subexponentially optimal) propositional proof system. Consider the
propositional proof system L£* defined as follows.

L*(m, 7', circuit C):
1. Output “¢ is unsatisfiable” if C'(7') = ¢ and Leztended(m) = “C only outputs unsatisfiable formu-
las.” @
2. Otherwise, output the trivially unsatisfiable formula xy A —z7.

“Note that “C' only outputs unsatisfiable formulas” is a coNP statement: to witness it is false, provide an z and w
with C'(z) = ¢ and ¢(w) = 1. Hence, it also encodable as an instance of UNSAT.

We now show L£* is an infinitely often optimal (respectively, subexponentially optimal) propositional
proof system. Let £’ be an arbitrary propositional proof system, and let C be the corresponding circuit
that computes £’ on inputs of length up to A\. Then let ¥, be the formula of size poly(A) that is unsatisfiable
if and only if C% only outputs unsatisfiable formulas.

50The definition of hard for £ involves Leytendeq. In turn, the definition of Legztendeqd depends on an underlying NIWI. Thus,
implicitly this theorem statement says that for all choices of NIWIs, this statement holds.
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Since L' is sound, {t,} is a P-uniform sequence of polynomial-size unsatisfiable formulas. To make these
formulas have size at most A, let ¥} be equal to the ¢); where i € [A] is the largest number with |¢;| < A (if

there is no such i, output a trivially unsatisfiable formula). Note that we have i = A1) since [5| = poly()\).

Then by (the contrapositive) assumption, there are poly(A)-length (respectively, 2>‘0(1)—length) Leztended-
proofs that “¢ is unsatisfiable” for infinitely many X. Hence, there are poly(\)-length (respectively, I
length) Leztendeq-proofs that “i is unsatisfiable” for infinitely many A. Then, by the definition of £*, it

follows that A-length proofs in £’ have analogous poly(A)-length (respectively, QAO(l)—length) proofs in £* for
infinitely many A. O

6.3 Main Result
We can now prove our main result.
Theorem 3.1 (Main Result). Assume
o NIWIs (respectively, subexponentially-secure NIWIs) exist, and

e there is no infinitely often optimal (respectively, subexponentially optimal) proof system.

Then for every proof system L, there exists a perfectly sound prover P that is effectively zero-knowledge
(respectively, subexponentially zero-knowledge) to L.

Proof. Fix a proof system £. By Theorem 6.10, there exists a P-uniform sequence ¥ of A-sized unsatisfiable
formulas that are hard (respectively, subexponentially hard) for £. Set P = P[¥]. By Theorem 6.5, we get
that P is effectively zero-knowledge (respectively, subexponentially zero-knowledge) to £. By Lemma 6.1,
P is perfectly sound. O

7 Extensions

7.1 Effectively Zero-Knowledge to Every Proof System?

One might wonder whether there is a perfectly sound prover that is effectively zero-knowledge to every proof
system. This is unlikely, essentially because of the impossibility results of Goldreich and Oren [GO94].

Proposition 7.1. Assume SAT does not have circuits of size n®1°8" ™) infinitely often.®® Then no perfectly
sound prover P is effectively zero-knowledge to every proof system.

Proof. For contradiction, suppose this is not the case for P. Let ¢ be a sufficiently large polynomial. We
will show the following two claims.

Claim 7.2. P has a \°8" *-size ﬁ—mdistinguishable simulator on A for infinitely many A.

Claim 7.3. Let A\ € N. If P has a \'°8" *-size ﬁ—indistinguishable simulator Simy on A, then there is a

circuit of size N8N solving SAT on all formulas of size at most .
The proposition follows immediately from combining the two claims. We now prove the claims.

Proof of Claim 7.2. For contradiction, suppose not. Then there is a constant A\g € N such that, for all
A > \g, there is no \l°8" Asize q(l/\)-indistinguishable simulator for P on A. Thus, we can construct a proof

sAt
€

system £ with poly(log

)-length proofs of all statements of the form
“if P has an s-size e-indistinguishable simulator on A, then U*(M) = 17

where A > Ao and € < 1/g()\) and s < A°¢"* and where M is a fixed string we choose satisfying U*(M) = 0
for all t. Since P is effectively zero-knowledge to L, it follows that U*(M) = 1 for some ¢, which is a
contradiction. O

51Here n denotes the actual input length to SAT, not the number of inputs the formula has.

32



Proof of Claim 7.3. Consider the following randomized circuit.

On an input ¢ of size at most \:

1. Accept ¢ if and only if Simy(p) outputs a proof of “p is satisfiable” that P.verify accepts.

By perfect soundness, this circuit rejects all NO instances of SAT. Setting ¢ to be sufficiently large, the
security of Sim, implies the circuit accepts every YES instance of SAT with probability at least 2/3. Thus,
there is a probabilistic circuit of size A21°8" Y that solves SAT on instances of size .

This can be converted into a deterministic circuit of size A°(1°8"») using Adleman’s trick (i.e., make the
failure probability exponentially small by taking the majority of polynomially many independent trials and
then use non-uniformity to choose random bits that work for all inputs). O

O

Perhaps surprisingly, one can avoid the above impossibility result by considering non-uniform provers.
To do so, consider the following definition.

Definition 7.4 (Distribution Hard for All Propositional Proof Systems). Let Dy be a polynomial-time
samplable distribution on A-sized formulas. We say that D) is a distribution hard for all propositional proof
systems if for all proof systems L there is an £(\) = A1) such that

1
¢P% [either ¢ is satisfiable or there is an £(\)-length L-proof that “) is unsatisfiable”] = O(F)‘
DX

One candidate for such a distribution comes from Rudich’s conjectured extension of the natural proofs

barrier [Rud97]. Specifically, the candidate distribution is: sample a uniformly random truth table 7" and

output a poly(|T|)-sized formula ¢ that is satisfiable if and only if T" is computable by an unexpectedly small

(e |7
‘8 T0log [T

Next, we show that sampling from a distribution hard for all propositional proof systems leads (with
high probability) to a sequence of unsatisfiable formulas hard for every proof system L.

) circuit.

Proposition 7.5. Assume there is a distribution Dy hard for all propositional proof systems. Then there is
a non-uniform sequence ¥ = {i\} of A-sized unsatisfiable formulas that is hard for every proof system L.

Proof. We will do this by a probabilistic argument. In particular, we will set 1) <— D, and show that, with
positive probability, it has the desired properties.

For a polynomial ¢ and proof system L, let E. ¢ » be the event that either ¢, is satisfiable or there is an
C(N)-length Ly tendeq-proof that “iy is unsatisfiable.”

By assumption, we have that for every proof system £ and every polynomial ¢

1

PI‘[EL[’)\} = O(ﬁ)

The set consisting of all pairs (£, £) is countable. So, by Proposition 7.9 below (essentially the Borel-Cantelli
lemma), we get that

Prifor every £ and every ¢, only finitely many E. , » occur] = 1,

proving the proposition (replace the at most finitely many satisfiable formulas with a trivial unsatisfiable
formula). O

This leads to a non-uniform prover that is effectively zero-knowledge to every proof system.

Theorem 7.6. Assume NIWIs exist and there is a universally hard distribution Dy for UNSAT. Then there
ezists a non-uniform prover that is effectively zero-knowledge to every proof system.
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Proof. By Proposition 7.5, we get a non-uniform sequence ¥ = {15} of A-sized unsatisfiable formulas hard
for every proof system. Our non-uniform prover is P[¥]. By Theorem 6.5, we have that P[¥] is effectively
zero-knowledge to every proof system. By Lemma 6.1, we have that P[] is perfectly sound. O

We note that the non-uniformity in Theorem 7.6 is essentially just a uniformly random string (to sample
from Dy). Thus, one could also view Theorem 7.6 as a version of a NIZK (non-interactive zero-knowledge
with trusted setup) that even has security against adversaries that non-uniformly depend on the common
random string.

It remains to prove the aforementioned consequence of the Borel-Cantelli lemma.

Lemma 7.7 (Borel-Cantelli Lemma). Let {E, }nen be a collection of events. Assume Y _Pr[Ey,] is finite.

Then, with probability one, only a finite number of events E,, occur.

neN

A simple consequence of the Borel-Cantelli lemma is the following.

Proposition 7.8. Let {Ey n}mnen be a collection of events. Assume that ), Zm<g(n) PrE,, ] is finite
for some function g(n) = w(1). Then

Pr[for every m, only finitely many E,, ., occur] = 1.

Proof. Let G,, be the event that E,,, occurs for some m < g(n). By the Borel-Cantelli lemma, with
probability one, only finitely many G,, occur. On the other hand, if for some m, infinitely many E,, ,, occur,
then infinitely many G,, occur (using that g = w(1)). The proposition follows. O

In particular, one setting of parameters gives the following.

Proposition 7.9. Let {Ey, n}tmonen be a collection of events. Assume that for all m, there exists an integer

Ny, Such that
1

PrE,, ] < 5

n

for alln > n,,. Then
Pr{for every m, only finitely many E, ,, occur] =1

Proof. Define g : N — N by g(n) = max{m < \/n : n > ny, for all m’ < m}. Observe that ¢ = w(1). Then

we have that .
Z Z Pr[Em,n] < Z g = Z m

neENm<g(n) neN neN

is finite. Then the result follows from Proposition 7.8. O

7.2 Falsifiable Properties of Zero-Knowledge

We now prove the weak version of our main result from Section 2.
Theorem 2.1 (Weak Version of Main Result). Assume
e P =BPP,
o NIWIs exist (respectively, subexponentially secure NIWIs exist), and
e there is no infinitely often optimal (respectively, subexponentially optimal) proof system.

For every falsifiable property of zero-knowledge 11, there exists a perfectly sound prover for which 11 holds
(respectively, holds with subexponential security).
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Proof. Since I = (G, A) is a falsifiable property of zero-knowledge, we have that
1
Estimate(G, (P, A,1%),17) < = + A(\, 4, 5,¢) (4)
T

whenever P has an s-size e-indistinguishable simulator on A.
Since A is computable in polynomial time, we can construct a proof system £ such that
“If P has an s-size e-indistinguishable simulator on A, then (4) holds”
always has a proof of length poly(|P|,|A|,log g>‘TT) By Theorem 3.1, there is a perfectly sound prover P* that
is effectively zero-knowledge (respectively, subexponentially zero-knowledge) to £ with associated parameters

s* = poly(\) and t* = A1) (respectively, t* = 22"} and e* = 1/t*.
Effectively zero-knowledge to £ implies that for some 7% = A\*()) (respectively, 7% = 2’\0(1))

* 1
Estimate(G, (P*,A4,1%),17) < — AN A, 5" €).
T
Hence, by the correctness of Estimate,
2
PGr[G(’P*,A, 1) outputs 1 in 7* time] < — + AN A, s €).
T

The theorem follows, by redefining 7* = min{%, %} and then redefining ¢* = T% O

We also show that it is unlikely that a single perfectly sound prover has every falsifiable property of
zero-knowledge. The proof is essentially Barak, Ong, and Vadhan’s attack [BOV07] that “the verifier gains
the ability to prove the same statement to others.”

Proposition 7.10 (No Universal Prover for Falsifiable Properties). Assume there is a cryptographic pseu-
dorandom generator PRG that is n~ 08" ") indistinguishable from random. Then for every perfectly sound
prover P*, there is a falsifiable property of zero-knowledge that does not hold on P*.

Proof. Set n = A1) sufficiently small. Consider the following game G.
G(P, A, 17):

1. Let « < {0,1}" and y = PRG(z) and let ¢, be the SAT instance corresponding to “y is in the
range of PRG on n-length inputs.” Set n sufficiently small so that |¢,] < A.

2. Let 7 < P.prove(yy, z,1*). Let 7* = A(y, ).

3. Accept if and only if P*.verify(¢,, 7%, 1*) = 1. We stress that this is the verifier for P*, not P.

Now we show that IT = (G, A) is a falsifiable property of zero-knowledge for a suitable A. Fix a A. Let
P be a prover with an s-size e-indistinguishable simulator Sim) on A, and let A be an adversary circuit.
Consider the circuit A" given by

A'(y) = Proverify(ipy, Ay, Sima(py)), 1%).
Because P* is perfectly sound, the security of the PRG implies that
Pr[A'(y) = 1] < A=20%%Y). poly(|A|, ).
y

Then by the security of Sim) and the construction of GG, we have that
PriG(1*, P, A) = 1] < (xﬂﬂog* Ny e) - poly(JA, \, ).

Thus, IT = (G, A) is a falsifiable property of zero-knowledge for some A = (A=1°8" %) 4 ¢) . poly(| 4], A, s).
On the other hand, let A* be the poly(\A)-sized adversary given by A*(z,7) = m. By construction, for
every A we have that G(P*, A*, 1) outputs 1 in polynomial time. Hence, IT does not hold for P*.
O
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7.3 Ultimate Provers

Let Natural be a collection of falsifiable properties of zero-knowledge. Our results in this subsection will be
parameterized by a choice of Natural. For simplicity in this subsection, we only consider security against
polynomial-time adversaries.

First, we define what it means for a proof system to prove every falsifiable property of zero-knowledge in
Natural.

Definition 7.11. We say a proof system L proves all of Natural if for every Il € Natural, there exists an
L-proof (of any length) of “Il is a falsifiable property of zero-knowledge.”

A natural candidate for such a proof system is ZFC. If indeed such a proof system exists, then we get an
ultimate prover.

Theorem 7.12. Assume P = BPP, NIWIs exist, a proof system L proves all of Natural, and there is a
P-uniform sequence W of \-sized unsatisfiable formulas that is hard for L. Then there exists a perfectly
sound prover P such that every I € Natural holds on P.

Proof. By Theorem 6.5 and Lemma 6.1, there is a perfectly sound prover P* that is effectively zero-knowledge

to £ with associated parameters s* = poly()) and t* = A\*(1) and e* = L.

Fix a IT = (G, A) € Natural. Since £ proves all of Natural and is (without loss of generality) sufficiently
strong, there is always a poly(|A|, |P|, log 27 )-length proof that

1
“if P has an s-size e-indistinguishable simulator on ), then Estimate(G, (P, 4,1%),17) < = 4+ A()\, A, 5,¢€)”.
T

The proof is then the same as the proof of Theorem 2.1 in Section 7.2. O

As discussed in Section 2.5, we can also consider a different hypothesis to get an ultimate prover. We
state this for ZFC for simplicity, but one could consider other proof systems.

Definition 7.13. We say there is a hard UNSAT sequence for Natural if all of the following are true.
e For some choice of NIWI, ZFC simulates ZFCeptended-
o ZFC proves the correctness of a polynomial-time deterministic Estimate algorithm.

e There is a P-uniform sequence U = {1y} of unsatisfiable formulas with the following property. For
every I1 € Natural, there exists an £ = A1) such that any ZFC-proof of

“f I is a falsifiable property of zero-knowledge, then 1y is unsatisfiable”

has length at least £(\).
We get the following theorem.

Theorem 7.14. Assume NIWIs exist and there is a hard UNSAT sequence for Natural. Then there exists a
perfectly sound prover P such that every I € Natural holds on P.

Proof. Let ¥ = {t¢»} be as in Definition 7.13. Let P = P[¥]. By Lemma 6.1, P is perfectly sound.
By Proposition 6.6, we have that P is effectively zero-knowledge to ZFC with hardness ¥ with associated
parameters ¢ = A=) and s* = poly(\).

Now fix a IT = (G, A) € Natural, a A, and an adversary A.

Claim 7.15. There is a poly(| A, |G|, |P|,log 2:T)-length ZFC-proof that

“f P has an s-size e-indistinguishable simulator on A and I1 is a falsifiable property of zero-knowledge,

then Estimate(G, (P, A,1%),17) < 1 + AN A s,€)7
T
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Proof. This follows from the definition of a falsifiable property of zero-knowledge and because we assumed
the correctness of Estimate is provable in ZFC. O

Hence, because P[V] is effectively zero-knowledge to ZFC with hardness ¥, we get that for some suffi-
ciently small 7% = \*(1) that we choose later

. T 1 *
Estimate(G, (P, A,1*),17) < s + AN A, ™€),
and thus that

Pr[G(P, A,1*) outputs one in time 7*] < 3* + AN A, s*,€) (5)
T

As*T*

as long as there is no poly(|4l, |G|, |P|,7*,log 25~ )-length ZFC.ytendea-proof of
“if 11 is a falsifiable property of zero-knowledge, then 1 is unsatisfiable.”

Indeed, by assumption the above statement requires A*()-length ZFC-proofs and hence also ZFCeytended-
proofs (since we assumed ZFC simulates ZFCeytended). SO we can choose 7% = Aw@) sufficiently small such
that (5) indeed holds. Thus, IT holds on P. O

7.4 Low Non-uniformity Simulators

We extend our result to simulators with a small amount of non-uniformity.
Theorem 7.16. Assume

o NIWIs exist, and

e there is no infinitely often subexponentially optimal proof system.

Then for every proof system L, there exists a perfectly sound (uniform) prover P that is (polylog\)-non-
uniform effectively zero-knowledge to L.

Proof. Fix a proof system £. By Theorem 6.10 (and reindexing over A appropriately), there exists a P-
uniform sequence ¥ of polylog())-size unsatisfiable formulas that are hard for £. Set P = P[V]. By
Theorem 6.5 we get that P is (poly log A)-non-uniform effectively zero-knowledge to £. By Lemma 6.1, P is
perfectly sound. O

7.5 Hard Tautology Generators

A hard tautology®? generator [Kha24] is, roughly, a polynomial-time algorithm that takes as input the code
of a propositional proof system and outputs an unsatisfiable formula that is hard to prove unsatisfiable in
that proof system.

Definition 7.17 (Efficient Almost Everywhere Hard Tautology Generator). Let H be a polynomial-time
Turing machine. We say H is an efficient almost everywhere hard tautology generator if for every proposi-
tional proof system L, there is an £(N\) = A1) such that 1y = H(L, 1) is an unsatisfiable formula with
no £(\)-length L-proof of “by is unsatisfiable.”

Khaniki [Kha24] conjectures that an efficient hard tautology generator exists and shows that this is
implied by (even a weak version of) Pudldk’s finite Gédel conjecture [Pud86]. But the definition we use
actually differs from the definition used in [Kha24] in the following way. While Definition 7.17 requires that
¢(\) is A1) Khaniki only requires that £(\) = A“() for infinitely many A. In other words, we require

52Even though we use UNSAT rather than TAUT, we keep “tautology” in the name to match the literature.
53Here, H takes as input the underlying code of L.
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almost everywhere hardness as opposed to infinitely often hardness. Henceforth, we skip writing “almost
everywhere” for brevity.

If efficient hard tautology generators exist, then we can efficiently generate perfectly sound provers that
are effectively zero-knowledge to a given proof system. However, we are admittedly less certain that efficient
hard tautology generators exist (in full generality), compared to assuming no infinitely often optimal proof
system exists.

Theorem 7.18. Assume NIWIs exist and there is an efficient hard tautology generator H. Then there is
a polynomial-time algorithm A such that for every proof system L we have that A(L) outputs the code of a
perfectly sound uniform prover that is effectively zero-knowledge to L.

Proof. For every proof system L, we can consider the related propositional proof system LP"°P given by

LProP (1) = @, if L(x) = “p is unsatisfiable” .
r1 A —x1, otherwise.

The algorithm A works as follows. Given L, it constructs Leztended and lets vy = H(LETP ™). Tt

extended’
then outputs the code of the prover P = P[¥]. Clearly, A runs in polynomial time. It remains to argue for

correctness.
By construction, ¥ = {¢,} is hard for £, so by Theorem 6.5, we have that P is effectively zero-knowledge
to L. Since each v is unsatisfiable, we get that P is perfectly sound by Lemma 6.1. O

7.6 An Alternative Definition

We formally define the alternative to our main definition that is based on unprovability rather than t-time
indistinguishability.

Definition 7.19 (Unprovability-Based Definition of Effectively Zero-Knowledge to £). Let P be a prover,
and let L be a proof system. We say P is unprovability-based effectively zero-knowledge to L if for some
t = XU and some s = poly(\), we have that for all A\ € N

1
“P does not have an s(\)-size ——-indistinguishable simulator on \”

)

lacks a t(\)-length L-proof.

7.7 The Necessity of No Optimal Proof Systems

In this subsection, we give evidence that the non-existence of optimal proof systems is necessary for our
results. To do so, the following cryptographic object will be useful.

Definition 7.20 (Bit Commitment Scheme [Blu82]). An S-secure perfectly-binding bit commitment scheme
is a randomized polynomial-time algorithm Commit(b € {0,1},1*) with the following two properties:

e perfectly binding: the support of Commit(0,-) and Commit(1,-) are disjoint, and
e computationally hiding: for all A\, we have Commit(0, 1) ~1/5(n) Commit(l, ).
Such schemes exist assuming the existence of injective one-way functions.

Theorem 7.21 ([Blu82; Yao82; GL89]). Assume there is an injective one-way function f : {0,1}" —

Q(1)
{0,1}PoY(™) with security S(n). Then there is an (pflg/(\;)) -secure perfectly-binding bit commitment

scheme.
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Assuming the existence of injective one-way functions with slightly superpolynomial security, we show
the necessity of the optimal proof system assumption. The high-level idea is this. Recall Barak, Ong, and
Vadhan’s attack that “the verifier gains the ability to prove the same statement to others.” It turns out that
one can strengthen this attack by using the guarantees of an optimal proof system. The reason is that an
optimal proof system can (almost) prove the soundness of any perfectly sound verifier.

Theorem 7.22 (Necessity of No Optimal Proof Systems). Assume an injective one-way function with
security n®1°8" ") exists and an infinitely often optimal proof system Lope exists. Then there is a falsifiable
property of zero-knowledge that does not hold on any perfectly sound prover.

Proof. Let Commit be the commitment scheme guaranteed by Theorem 7.21. Let £ be a proof system we
choose later. Set X'(\) = A?() sufficiently small. Consider the following game G.

G(P, A, 17):

1. Let ¢ <= Commit(1, 1 r), where r is the internal randomness used. Let . be the SAT instance
corresponding to “c = Commit(1,1* ;7') for some 7'.” We set X' = A1) sufficiently small such
that |p.| < A.

2. Sample 7 + P.prove(p.,, 11).

3. Accept if A(c, ) outputs a L-proof that “p. is satisfiable.”

We begin by showing this is a falsifiable property of zero-knowledge.
Claim 7.23. I1 = (G, A) is a falsifiable property of zero-knowledge for some A = (A=) +¢)-poly(|A], s, \).

Proof. Let P be a prover with an s-size e-indistinguishable simulator Simy on A, and let A be an adversary.
Consider the circuit A’(c) that outputs one if and only if A(c, Simy(¢.)) outputs a L-proof that “p. is
satisfiable.” Because L is a proof system (and hence is perfectly sound), the security of the commitment
scheme implies that

[A'(c) = 1] < A=208" A poly(|A”)).

Ir
c+—Commit(1,1*)

Then by the security of Sim) and the construction of G, we have that
PG, P, 4) = 1] < (A~20°") - ¢) - poly(| 4], 5, A)

O

It remains to show that II does not hold on any perfectly sound prover. Note that for every prover P
“for all A € [¢] and all ¢ - Commit(0,1%) and all = € {0,1}=* we have P.verify(p.,7,1*) =0 ”

can be encoded as an instance ¢p ¢ of UNSAT of size poly(¢), where the polynomial can depend on P. We
make the following claim.

Claim 7.24. For every perfectly sound prover P, there are infinitely many ¢ such that “Yp ¢ is unsatisfiable”
has an Lopi-proof of length poly({), where the polynomial can depend on P.

Proof. Fix a perfectly sound prover P. By perfect soundness, we have that vp , is unsatisfiable for all
¢. Thus, we can construct a trivial propositional proof system with poly(¢)-length proofs that “i@p, is
unsatisfiable.” Then the claim follows from the infinitely often optimality of L. O

We now choose L as follows.
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E(P’ (p’ A? Tr? 7r/):
1. Output “p is satisfiable” if P.verify(p, 7, 1*) = 1 and Lyt (7') = ¢p ¢, where £ > max{\, |7|}.

2. Output a fixed element of PHALT otherwise.

We have constructed L specifically so that the following claim holds, which finishes the proof.
Claim 7.25. II does not hold on any perfectly sound prover.

Proof. Fix a perfectly sound prover P. Let £ = £()\) = poly(X) be the length of the 7 generated in step (2) of
G when run on P and 1*. By Claim 7.24, there are infinitely many X such that there exists a poly(¢)-length
Lopt-proof mp of “ip 4 is unsatisfiable.” For such a A, consider the adversary circuit A(c, 7) which has 7, as
non-uniform advice and outputs (P, ¢., A, 7, m¢). By construction of G and £, we will have that G(P, A, 1)
outputs 1 in poly(A) time. Hence, we have that II does not hold on P. O

O

7.8 Application to TFNP
We recall the definitions of Search-NP and TFNP [MP91].

Definition 7.26 (Search-NP and TFNP Problems). A Search-NP problem is defined by a polynomial-time
Turing machine R that takes as input an “instance” x € {0,1}* and a “witness” w € {0,1}PWD) qnd
outputs a bit. We say an n-input circuit C computes R if for all x € {0,1}" we have that R(z,C(z)) =1

whenever there exists a w with R(x,w) = 1. We say R is a TENP problem if for all x there exists a w with
R(zx,w) = 1.

Every Search-NP problem has a natural TFNP analogue modulo a choice of perfectly sound prover [HNY17].
The idea is that one also includes a proof 7 that the instance has a witness.

Definition 7.27. Let R be a Search-NP problem. Let P be a perfectly sound prover. Define the related
TENP problem

1, ifR(x,w)=1
Rpp((x,m,1%),w) = {1, if Poverify(paz, m,1%) = 0
0, otherwise

where @y is the poly(|x|)-sized formula encoding “there exists a w with R(x,w) =1.”

It is easy to see that solving Ry p is only easier (up to polynomial blow-up) than solving R. We show a
converse to this.

Corollary 7.28. Assume
e P=BPP,
o subexponentially-secure NIWIs exist, and
e there is no infinitely often subexponentially optimal proof system.

Let S : N — N be a polynomial-time computable function. If a Search-NP problem R requires circuits
of size S(n), then there exists a perfectly sound prover P such that solving Rp p on inputs of the form

(z € {0,1}", 7 € {0, 1}PY() 1PN () requires circuits of size pflgl?zl).

Proof. Consider the following game G.
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G(P, A, 1M):
1. Let n be the number of input bits to the circuit A.
2. For all z € {0,1}™

(a) Let @, (w) be the formula of size poly(n) that outputs one if and only if R(z,w) = 1.
(b) By brute force, find a w with ¢, (w) = 1. If none exists, then go to the next x.
[R(z, A(z, 7)) =

(c) Using Estimate, deterministically compute an estimate v of Pr . p prove(
1] to within additive error .01.

(d) Output 0 if v < .75.

Pz,w,1N)

3. Output 1.

Observe that G is deterministic and runs in time 2P°Y("™) . poly(|A|,\). We now show this is a falsifiable
property of zero-knowledge.

Claim 7.29. II = (G, A) is a falsifiable property of zero-knowledge where

A= laz min {5 L poy(s)}].

poly(n,s)’ €

Proof. Fix a A, an adversary A, and a perfectly sound prover with an s-size e-indistinguishable simulator
Simy on A. Suppose that G(P, A,1*) = 1 (recall G is deterministic). Our goal is to show that |A| is large. If
|A| > L — poly(s), then we are done. Otherwise, |A| < L — poly(s), so we have that A'(z) = A(x, Simx(¢s))
is a randomized circuit that solves R with probability at least .74 — e > .51. Then, by Adleman’s trick,>*
there is a circuit A” of size poly(n) - |A’| that solves R. Hence, we have that

S(n) < |A"] < |A"] - poly(n) < |A] - poly(n, 5),
which implies that |A| > S(n)/poly(n, s). O

Hence, by Theorem 2.1, there exists a perfectly sound prover P on which II holds with subexponential
security. Now let A = A(n) = poly(n) be a sufficiently large polynomial we choose later. Now fix an adversary
circuit A that solves Ry, p(x € {0,1}",7 € {0,1}PoYP) 12). It follows that G(P, A,1*) = 1 in time at most
2P9Y(7) . poly(|A]). By setting A = poly(n) sufficiently large, we conclude that

A1 min { Z0 2k > S0)/poly(n)

poly(n)’ 272"

since II holds on P with subexponential security and since S(n) < 2™ - poly(n) (by the trivial circuit upper
bound for computing R). O

7.9 Application to NP N coNP

Recall a language L is in NP if and only if there is a polynomial-time Turing machine R such that x € L if
and only if R(x,w) = 1 for some w of length at most poly(|z|). Furthermore, L is in UP if and only if there
exists such a R with the additional property that for all z we have that [{w : R(z,w) = 1}| < 1.

As done in [GIK+23], for any UP language, one can construct a related NP N coNP language modulo a
choice of a perfectly sound prover.

54Repeat A independently polynomial many times until the failure probability becomes small enough that one can non-
uniformly fix a setting of random coins that work for all inputs.

41



Definition 7.30. Let L € UP. Let P be a perfectly sound prover. Define the related NP N coNP language
Lp whose membership function is given by

0,  if P.verify(p,, 7, 1) =0
w;, otherwise, where w; is the i’th bit of the unique witness for x

L'p(l’,’i,’fr, 1)\) = {

where @, is the poly(|x|)-sized formula encoding “there exists a w with R(x,w) =1.”
We show that Lp is roughly as hard as L for some choice of P.
Corollary 7.31. Assume
e P=BPP,
o subexponentially secure NIWIs exist, and
e there is no infinitely often subexponentially optimal proof system.

Let S : N = N be a polynomial-time computable function. If L € UP requires circuits of size S(n), then there
exists a perfectly sound prover such that solving Lp on inputs of the form (z € {0,1}",i € [poly(n)], 7 €

{0, 1P () 1P (") requires circuits of size pfly(?«b)'

Proof. The proof is similar to the proof of Corollary 7.28, except on the following game.

G(P, A, 17):
1. Let n be the number of inputs to the circuit A. For all z € {0,1}™:

(a) Let @y (w) be the formula of size poly(n) that is satisfiable if z € L.
(b) By brute force, find a w with ¢, (w) = 1. If none exists, then go to the next z.
(c) For all ¢ € [Jw]]:

i. Using Estimate, deterministically compute an estimate v of

[R(z, A(x,i,7)) = w]

T
<P .prove(pg,w,1*)

to within additive error .01.
ii. Output 0 if v < .75.

2. Output 1.
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A “Universal” Non-Interactive Witness Hiding?

We conjecture there is no “universal” non-interactive witness hiding prover.

Conjecture A.1 (No Universal Witness Hiding Conjecture). For every (uniform) perfectly sound prover
P, there exists a hard Search-SAT distribution D for which P is not witness hiding.

Our intuition comes from obfuscation and follows previous impossibility results [BGI+12]. It seems likely
we are not the first to consider the following argument, but we could not find it in the literature.
Imagine a distribution D that outputs tuples of the form (¢ = @1 V @9, w) where

e w is a satisfying assignment to @1,

e given just 1, it is hard to find a satisfying assignment to 1,

® (5 is a trivially unsatisfiable formula, but its description encodes an obfuscated Turing machine M
with the following behavior: given a proof m of “p is satisfiable” that P.verify accepts, it outputs w.

Because of the last property, P cannot be witness hiding for D. If M is “sufficiently obfuscated,” one could
hope that D is a hard Search-SAT distribution.
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