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Abstract

We show that for a randomly sampled unsatisfiable O(log n)-CNF over n variables the ran-
domized two-party communication cost of finding a clause falsified by the given variable assign-
ment is linear in n.

1 Introduction

This paper studies the communication complexity of Falsified Clause Search Problem.

Definition 1 ([LNNW95]). Let X,Y be two disjoint sets of boolean variables and φ be a CNF
formula over the variables X ⊔Y . We define Falsified Clause Search Problem or Searchφ associated
with formula φ in the following way:

input: a pair (x, y) ∈ {0, 1}X × {0, 1}Y ;
output: a clause C ∈ φ that is violated by the input (x, y).

Communication lower bounds for search problems have applications in many areas of com-
plexity theory. We consider two areas that are the most relevant and explain the applicability of
communication lower bounds.

Proof complexity. This area of complexity theory studies how hard it is to prove that a given
formula φ is unsatisfiable; in other words, what is the length of the shortest proof in a certain proof
system. Lower bounds for the proof systems often correspond to lower bounds on a run-time of
SAT-solvers, and there are intricate connections to other areas of complexity theory, such as, for
example, circuit complexity.

There is a general framework for obtaining lower bounds on the length of the shortest proofs
via communication. Suppose that, for an unsatisfiable CNF formula φ, we divide the variables
into two disjoint groups X and Y in an arbitrary way. For a fixed proof system C we can try to
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transform efficient proof of φ into an efficient communication protocol for Searchφ. A lower bound
on the communication complexity of Searchφ then implies a lower bound on the length of a proof
of φ in C.

This framework seems to originate from [LNNW95]. Following this reduction, lower bounds
for many different proof systems were obtained, for example: tree-like Cutting Planes [IPU94,
HN12, dRNV16, BW25], tree-like Threshold proof system [BPS07], tree-like Res(⊕) [IS20], etc.
[HN12, GP18a]. Depending on the communication model, even dag-like proofs can be analyzed via
this framework [Kra97, Pud97, HP17, FPPR22, GGKS20, Sok24].

The lower bounds that can be achieved via this technique depend on the power of the commu-
nication model: the more powerful model we consider, the bigger class of proof systems we get the
lower bound for. The choice of the formula φ is important here as well, in a sense that we need
to be able to show the lower bound on the communication complexity of Searchφ. Typically, φ
is artificially built for this purpose. In this paper, we show a communication lower bound for the
natural class of formulas (without usage of ad hoc constructions) that is a candidate for being hard
for all propositional proof systems.

Circuit complexity. Natural embedding of Searchφ into a monotone Karchmer–Wigderson re-
lation [KW90, Raz90] gives us the opportunity to use it for proving lower bounds for the mono-
tone models of computation. From communication lower bounds, strong results are known for
monotone formulas [RPRC16], monotone circuits [GGKS20, LMM+22], monotone span programs
[RPRC16, PR18], etc. Communication is also the main instrument for showing separation between
those models [PR18, GKRS19], and trade-off results [dRFJ+25, GMRS25]. These type of results
are based on ad hoc constructions of the formulas φ. Namely, φ is designed in order to able to
show communication lower bound.

1.1 Random CNF

To be more precise we start with the definition of random CNF formulas.

Definition 2. Let F(m,n,∆) denote the distribution of random ∆-CNF on n variables obtained
by sampling m clauses (out of the

(
n
∆

)
2∆ possible clauses) uniformly at random with repetitions.

The famous result of Chvátal–Szemerédi says that if we pick a formula from this distribution
with the proper parameters, the resulting formula will be unsatisfiable with high probability.

Theorem 3 (Chvátal–Szemerédi, [CS88]). For any ∆ ≥ 3 whp φ ∼ F(m,n,∆) is unsatisfiable if
m ≥ ln 2 · 2∆n.

These types of distributions appear not only in most of the areas in computer science, but
in general mathematics and physics as well [MPZ02]. An interesting application is due to Feige
[Fei02], who conjectured the following statement: no polynomial time algorithm may prove whp
the unsatisfiability of a random O(1)-CNF formula with arbitrary large constant clause density.
Assuming Feige’s conjecture, it is known that some problems are hard to approximate: vertex
covering, PAC learning DNFs [DSS16], etc.

As a candidate to be hard to refute in all proof systems, random CNFs are actively studied and
lower bounds are known for many different proof systems [Gri01, BKPS02, AR03, Ale11, SS22].
Recent developments in this direction utilize the connection between proof complexity of φ and
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communication complexity of Searchφ. In particular, lower bounds for the Cutting Planes proofs
of random O(log n)-CNF [HP17, FPPR22, Sok24] follow this strategy. However, these results only
consider lower bounds on deterministic dag-like communication complexity of Searchφ based on
random O(log n)-CNF.

In this paper, we analyse the randomized tree-like communication of this problem that is incom-
parable with deterministic dag-like communication. This is a natural problem in a natural model,
which also provides a way to explore how techniques used for structured formulas might extend to
more typical instances like random CNFs. The main result is the following.

Theorem 4. Let c > 0 be a large enough constant, n > 0,∆ ≥ c log n,m = O(n2∆). If φ ∼
F(m,n,∆) and X,Y ⊆ [n] is a partition of variables that is taken uniformly at random, then whp
over choice of φ and partition X,Y the randomized communication complexity of Searchφ is Ω(n).

1.2 Prior Results and Technique

For several types of formulas φ, the randomized communication complexity of Searchφ is well-
studied. The approach for proving such bounds is the reduction of Unique Disjointness function
to Searchφ. The main success in this direction is the reduction based on critical block sensitivity
[HN12, GP18b], we also include some earlier results, though there is some difference in the technique
[BPS07]. More precisely, for this technique one should assume that φ = ψ ◦ g (we take some
formula ψ and, in place of each variable, we substitute a carefully chosen gadget g with fresh
variables). Assuming that Searchψ has critical block sensitivity m (that is a generalization of the
block sensitivity measure), it is possible to reduce instances of unique disjointness of size poly(m)
to Searchφ.

The general framework for working with such formulas of ψ ◦ g is called lifting, and the idea
is to “lift” the hardness of ψ with respect to another complexity measure to communication com-
plexity via gadget. Lifting can be based on the other complexity measures as well. For example,
it can also be implemented for randomized decision tree complexity instead of critical block sensi-
tivity [GJPW18]; however, this method requires the lower bound on the randomized decision tree
complexity, which might be non-trivial, especially in case of Searchφ problem. Such lower bound
is known for Tseitin formulas [GJW18], together with [GJPW18] it yields the lower bound for
randomized communication complexity of Search for Tseitin formulas lifted by Inner Product.

The notable exception here is the lower bound on Search problem for Binary Pigeonhole Princi-
ple (BPHP) [IR21]. These formulas are not lifted, however the proof is also the reduction of Unique
Disjointness to the Search problem. This reduction based on the inner symmetry of BPHP.

A different kind of proof of a Searchφ lower bound was given by Yang and Zhang [YZ24] (based
on [WYZ23, YZ24]), who prove a lower bound for a weak version of BPHP. In contrast to the
previous works this one is not a reduction from Unique Disjointness. Instead, they directly apply
the structure versus randomness framework from the lifting literature [GLM+16, GJPW18] to the
potential protocol that computes Searchφ.

Our proof of Theorem 4 combines the approach of [GLM+16, GJPW18, YZ24] with the analysis
of expander graphs via closure argument that was developed for proof complexity purposes in
[AR03, ABSRW04]. However, we use the iterative construction of the closure from [Sok20]. In
part, this is also inspired by [GNRS24].

More precisely, the proof of our result is based on the following steps.
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1. Following [HP17, FPPR22, Sok24] we divide variables between Alice and Bob uniformly at
random.

2. Following the line of work on lifting of randomized decision trees [GLM+16, GJPW18, YZ24,
GGJL25] we show that every communication protocol can be converted into a more structured
one, a so-called subcube-like protocol. In such a communication protocol, each rectangle is a
product of two sets with some bits fixed and the remaining pseudorandom.

3. Due to the nature of our random CNFs, the invariant that all clauses contain pseudorandom
variables is not strong enough on its own. Search problem still might become trivial early
on in communication protocol; for example, if the contradiction could be narrowed down to
a small set of clauses. To avoid this problem, we use the closure trick [AR03, ABSRW04,
Sok20, GNRS24], that allows us to maintain expansion property on the pseudorandom part
of the graph.

4. Following [GGJL25], we show that the number of fixed bits in each rectangle is at most O(d/ε)
if we allow error ε, where d is the communication complexity of the original protocol.

In addition, we show the better error bound dependency on the protocol depth d than in [GGJL25].
We give a more refined analysis of the conversion to the subcube-like protocols. More precisely, we
show that the number of fixed bits in each rectangle is O(d) even when we allow for the exp(−d)
error.

2 Notation and Tools

We denote the standard binary entropy function by H(p) := p log(1/p) + (1− p) log(1/(1− p)).

Definition 5. A bipartite graph G = (L,R,E) is called an (r,∆, α∆)-expander, if all vertices in
L have degree at most ∆ and for any set S ⊆ L such that |S| ≤ r it holds that |N(S)| ≥ α∆|S|,
where NG(S) denotes the set of neighbours of S in G (we omit the subscript if the graph is clear
from the context).

With a CNF formula φ over n variables and with m clauses we associate a graph Gφ :=
([m], [n], E) in a natural way: (i, j) ∈ E iff the i-th clause contains the j-th variable. The following
Lemma gives us some useful properties of underlying graphs of random CNFs. It follows from a
standard computation, which was featured, for example, in [Sok24, Lemma A.2].

Lemma 6. Let n > 0, η > 0 be an arbitrary constant, ∆ = c log n, for a large enough constant c
depends on η, m = O(n2∆). Let G := ([m], [n], E) be a bipartite graph, such that each i ∈ [m] choses
∆ neighbours uniformly at random over

(
n
∆

)
possibilities. Then G is an (r,∆, (1 − η)∆)-expander

for r = Ω(n/∆).

Instead of working directly with randomized communication, we use the equivalent characteri-
zation through distributional communication complexity. That is, we prove a lower bound against
deterministic protocols that achieve error ε with respect to a certain distribution on inputs (here
we use uniform distribution), and a lower bound against randomized protocols that achieve error ε
follows. Below, “communication protocol” refers to a deterministic communication protocol.
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3 Refuting Bipartite CNFs

In this section we mainly prove a special “bipartite” case of Theorem 4. We show in Section 3.1
that it actually implies the general case.

Theorem 7. Let α > 0 be an absolute constant. Let G1 := ([m], [n], E1), G2 := ([m], [n], E2) be two
(r,∆, α∆)-expanders, and X,Y := {0, 1}n. For each i ∈ [m], let Ci be a disjunction of variables in
{xj | j ∈ NG1(i)} ∪ {yj | j ∈ NG2(i)} with arbitrary signs. Then for every communication protocol
Π: {0, 1}n × {0, 1}n → [m] of depth d at most O(∆r):

Pr
(x,y)∼X×Y
i∼Π(x,y)

[Ci(x,y) = 0] ≤ d · 2−Ω(∆) + exp(−d).

This section is organized as follows. In Section 3.1, we derive Theorem 4 from Theorem 7.
In Section 3.2, we formally define subcube-like protocols and provide necessary tools. In Section 3.3,
we give a more refined analysis of the conversion from general protocols to subcube-like ones
in [GGJL25]. In Section 3.4, we show the hardness of Searchφ against subcube-like protocols when
the underlying graphs are good expanders. Finally, in Section 3.5, we put everything together and
derive Theorem 7.

3.1 Deriving Theorem 4 from Theorem 7

The main part of the argument that reduces the general case to the bipartite is a clean-up lemma
essentially saying that incurring a small error we can treat the general case as bipartite. Similar
arguments have been made in [HP17, FPPR22, Sok24].

Let φ =
∧
i∈[n]Ci be a ∆-CNF with the set of variables [n]. Let A⊔B = [n] be a partition of the

variables. Let GA := ([m], A,EA) and GB := ([m], B,EB) be the graphs with edges connecting a
clause with all variables from one of the sets mentioned in it. Let ErrorA ⊆ [m] and ErrorB ⊆ [m]
be the sets of clauses with degree exceeding (1 − δ)∆ in GA and GB respectively. It means that
clauses from [m] ∖ (ErrorA ∪ ErrorB) have at least δ∆ variables from A and B. We then say
that (A,B) is δ-good partition for φ if

1. Pr
x∼{0,1}A

[∀i ∈ ErrorA we have Ci(x, ·) ≡ 1] ≥ 1− 2−Ω(∆).

2. Pr
y∼{0,1}B

[∀i ∈ ErrorB we have Ci(·,y) ≡ 1] ≥ 1− 2−Ω(∆).

3. GA − ErrorA − ErrorB and GB − ErrorA − ErrorB are (r,∆, δ∆/2)-expanders, where
r = Ω(n/∆).

In this definition we assume that δ is an absolute constant and hidden constants depend on it.

Lemma 8. Let φ ∼ F(m,n,∆) with ∆ = c log n and m = α2∆n, where c, α > 0 are constants, and
c ≥ 40. Let X,Y be a uniformly random partition of [n]. Then whp (X,Y ) is a δ-good partition
for φ for any δ ≤ 1/10.

We defer the proof of this lemma to Appendix A.

5



Proof of Theorem 4. Applying Lemma 8, we get that the variable partition X ⊔ Y = [n] is 1/10-
good wrt φ. Let G1 := GX − ErrorX − ErrorY , G2 := GY − ErrorX − ErrorY . Note that
the left parts of these graphs have equal size. We can add dummy variables to the right parts of
these graphs to make them equal for the simplicity of notation.

By Lemma 8, the probability over (x,y) ∼ {0, 1}X × {0, 1}Y for the ErrorX or ErrorY to
not be immediately satisfied is 2−Ω(∆). This means that if we consider a protocol for the problem
Searchφ for the variable partition X ⊔Y with the probability of success ε, we can reinterpret it as
a protocol for G1 and G2 with the probability of success at least ε− 2−Ω(∆).

We apply Theorem 7 with α := 1
20 . Since r∆ can be as large as Ω(n) by Lemma 6, we can pick

the constants depending on α such that the probability from Theorem 7 is less than 1
100 . Then the

probability of success for the problem from Theorem 4 is less than 1
100 + 2−Ω(∆), and the theorem

follows.

3.2 Density Restoring Machinery

Every communication protocol Π can be seen as a tree (not necessarily binary). Let N (Π) denote
the set of all nodes in Π. Each node v ∈ N (Π) is associated with a rectangle, denoted Rv = Xv×Yv.

Definition 9 (Min-entropy). For a random variable x, let H∞(x) = minx log
1

Pr[x=x] .

Definition 10 (Spread variables). Let x ∈ {0, 1}n be a random boolean vector. We say x is
γ-spread if for every I ⊆ [n] we have H∞(xI) ≥ γ|I|.

Definition 11 (Structured variables). Let x ∈ {0, 1}n be a random boolean vector and I ⊆ [n].
We say x is (I, γ)-structured if there exists some aI ∈ {0, 1}I such that

• Pr[xI = aI ] = 1;

• x[m]∖I is γ-spread.

Definition 12 (Subcube-like rectangle). A rectangle R = X × Y ⊆ {0, 1}n × {0, 1}n is γ-
subcube-like with respect to (I, J) where I, J ⊆ [n] if x ∼ X is (I, γ)-structured and y ∼ Y is
(J, γ)-structured. In which case, we use fix(X) := I and fix(Y ) := J to denote the fixed part of X
and Y respectively.

Definition 13 (Subcube-like protocols [GGJL25]). A communication protocol Π: {0, 1}n ×
{0, 1}n → S is γ-subcube-like if for every node v ∈ N (Π) in the protocol tree, Rv is γ-subcube-like.

Definition 14 (Codimension). The codimension of a subcube-like rectangle R = X×Y is defined
as the total number of fixed positions in X and Y , denoted codim(R) := |fix(X)| + |fix(Y )|. The
codimension of a subcube-like protocol Π is the maximum codimension of subcube-like rectangles
associated with any nodes in the protocol tree of Π, denoted codim(Π) := maxv∈N (Π) codim(Rv).

Lemma 15 (Density Restoring Partition [GPW20]). Let x ∈ {0, 1}n be a random boolean vector
with support X ⊆ {0, 1}n and 0 < γ < 1 be a fixed parameter. There exists a partition

X = X1 ⊔X2 ⊔X3 · · · ⊔Xr

such that for each j ∈ [r], x | x ∈ Xj is (Ij , γ)-structured with respect to some Ij ⊆ [n].
Moreover, if we denote p≥j := Pr

[
x ∈ Xj ⊔ · · · ⊔Xℓ

]
, then it holds that:

H∞(x[m]∖Ij | x ∈ Xj) ≥ H∞(x)− γ|Ij | − log
(
1/p≥j

)
.
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3.3 Subcube-like protocols from general protocols

Göös et al. [GGJL25] show how to convert an arbitrary communication protocol into a subcube-like
one. Specifically, they prove the following.

Lemma 16 ([GGJL25]). Let Π be a communication protocol of depth d and ε > 0. There exists a
subcube-like protocol Π̃ of codimension codim(Π̃) = O(d/ε) such that

Pr
x,y

[Π(x,y) ̸= Π̃(x,y)] ≤ ε.

Their bound is tight in the constant-error regime. However, it degenerates when ε = O(d/n).
In this subsection, we give a more refined analysis of the reduction in [GGJL25], which makes

the bound applicable in the inverse polynomial error regime (when d = Ω(log n)). We remark that
such an analysis has been implicitly provided in [GPW20].

Lemma 17. Let Π be a communication protocol of depth d. There exists a γ-subcube-like protocol
Π̃ of codimension codim(Π̃) = 7

1−γ · d such that

Pr
x,y

[Π(x,y) ̸= Π̃(x,y)] ≤ exp(−d).

We include a simplified version of the algorithm for such conversion from [GGJL25] for com-
pleteness. This algorithm simulates a subcube-like protocol Π′ on an input (x, y), given a general
protocol Π.

Algorithm 2 (simplified) conversion from [GGJL25]

v ← root of Π, X × Y = {0, 1}n × {0, 1}n, I ← ∅.
while v is not a leaf do

v0, v1 ← children of v
Suppose Alice sends a bit at v (otherwise swap X and Y , I and J)
Let X = X0 ⊔X1 be the partition according to the bit Alice sends
Let Xb =

⊔
iX

b,i be the density-restoring partition (with parameter γ and sets Ii, respec-
tively), where x ∈ Xb.

X ← Xb,i, I ← I ∪ Ii where x ∈ Xi

Alice sends (b, C(i)) to Bob (here C(i) is any encoding of i)
v ← vb

end while
Output the label Π(v)

Proof. Let Π′ be as given by Algorithm 2 in [GGJL25]. More precisely, let the protocol tree of Π′

consist all the possible configurations at the end of each iteration plus the initial one as the root
(so the tree is not necessarily binary). Observe that Π′ has depth d, though may have much larger
communication complexity.

For any x, y ∈ {0, 1}n, we have Π(x, y) = Π′(x, y). It suffices to show Prx,y[codim(R(x,y)) >
7

1−γ · d] ≤ exp(−d), where R(x, y) is the unique rectangle associated with the leaves of Π that

contains (x, y). The desired Π̃ can then be obtained by shaving all the nodes in the protocol tree
of Π′ associated with a rectangle of codimension greater than 7

1−γ · d.
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For each node v ∈ N (Π′), define the entropy deficiency of v as

D∞(v) := D∞(Xv) +D∞(Yv),

where

D∞(Xv) := n− |fix(Xv)| −H∞(x[n]∖fix(Xv)), x ∼ Xv

and D∞(Yv) is defined analogously.
Now consider running Π′ on x, y, and let v0, . . . , vd ∈ N (Π′) denote all the nodes on the execution

path. Fix any k ∈ [d] and let us simply use u and v to denote vk−1 and vk. Suppose without loss
of generality that it is Alice who sends a bit to Bob in the k-th iteration. Recall that in each
iteration Alice first partitions Xu = X0

u ⊔ X1
u according to the bit she sends. Then she performs

the density-restoring partition with parameter γ on Xb
u = Xb,1

u ⊔ . . . ⊔Xb,r
u where x ∈ Xb

u. Finally,
she determines the unique Xb,i

u that contains x. Then for the next configuration, Xv = Xb,i
u . Let

us define

qbu := Pr
[
x ∈ Xb

u | x ∈ Xu

]
,

pb,≥ju := Pr

x ∈ ⋃
k≥j

Xb,k
u

∣∣∣∣x ∈ Xb
u

 ∀j ∈ [r],

hk(x, y) := log
(
1/qbu

)
+ log

(
1/pb,≥iu

)
,

nk(x, y) := |fix(Xv)∖ fix(Xu)|.

We have the following simple fact.

Fact 18. D∞(v) ≤ D∞(u)− (1− γ)nk(x, y) + hk(x, y).

Proof. For proof see appendix D.

Together with the nonnegativity of D∞, we can bound the codimension of R(x, y) by h(x, y) :=∑d
k=1 hk(x, y) up to a multiplicative factor.

Claim 19. For every x, y ∈ {0, 1}n, codim(R(x, y)) ≤ 1
1−γ · h(x, y).

Proof. Consider the path in the tree leading to the leaf R(x, y), this path being of length d. Sum-
ming up the inequalities from Fact 18 along that path, we get:

D∞(vd)−D∞(v0) ≤ −(1− γ)
d∑
j=1

nj(x, y) +

d∑
j=1

hj(x, y)

Since D∞(vd) is non-negative and D∞(v0) = 0, it follows that:

codim(R(x, y)) =

d∑
j=1

nj(x, y) ≤
1

1− γ

d∑
j=1

hj(x, y) =
1

1− γ
· h(x, y).

We also observe that hk(x,y) has an exponential tail for each k ∈ [d], even conditioned on any
node v of depth k − 1 being reached.
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Claim 20. For every node v ∈ N (Π′) of depth 0 ≤ k < d and threshold γ ≥ 0,

Pr
x,y

[hk+1(x,y) ≥ 1 + γ | vk = v] ≤ 2−γ .

Proof. Let b, i be as defined in the (k + 1)-th iteration of Algorithm 2 given x,y. We have

Pr
x,y

[hk+1(x,y) ≥ 1 + γ | vk = v]

=
∑

b∈{0,1}

Pr[b = b | vk = v] · Pr
[
log
(
1/qbv

)
+ log

(
1/pb,≥i

v

)
≥ 1 + γ | b = b,vk = v

]
=
∑

b∈{0,1}

qbv · Pr
[
qbv · pb,≥i ≤ 2−γ−1

∣∣∣∣b = b,vk = v

]
≤
∑

b∈{0,1}

qbv ·min
{
1, 2−γ−1 · qbv

}
≤2−γ ,

where in the second last inequality, we use the property that Pr
[
pb,≥i
v ≤ t | b = b,vk = v

]
≤ t for

all t ∈ [0, 1].

Finally, we need the following adaptive version of Bernstein’s inequality, whose proof can be
found in Appendix C.

Lemma 21. Let a1, . . . ,an ∈ R be a random sequence of reals and ζ > 0 be some fixed parameter.
If for any 1 ≤ k ≤ n and a1, . . . , ak−1 ∈ R such that Pr[a1 = a1, . . . ,ak−1 = ak−1] > 0,

Pr[ak ≥ x | a1 = a1, . . . ,ak−1 = ak−1] ≤ exp(−ζx),

then

Pr

[
n∑
i=1

ai ≥
4

ζ
n

]
≤ exp(−n).

We are now ready to bound the codimension of R(x,y). Let (ak := hk(x,y)− 1)k∈[d] ∈ Rd be
a random sequence of reals. By Claim 20, a satisfies the condition in Lemma 21 with ζ = ln 2.
Therefore,

Pr[h(x,y) ≥ 7d] = Pr

[
d∑
i=1

ai ≥ 6d

]
≤ exp(−d).

Together with Claim 19, we conclude that

Pr

[
codim(R(x,y)) ≥ 7

1− γ
· d
]
≤ Pr[h(x,y) ≥ 7d] ≤ exp(−d).
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3.4 Lower bound against subcube-like protocols

The following lemma is implicit in [GNRS24], we include its proof in Appendix B for completeness.
In fact

Lemma 22. Let 0 < β < α < 1 and let Π: {0, 1}n × {0, 1}n → S be a subcube-like protocol of
codimension d := codim(Π) where d ≤ (α−β)2r∆/4, and G1 = ([m], [n], E1), G2 = ([m], [n], E2) be
two (r,∆, α∆)-expanders. Then there exist families {ClX(v)}v∈N (Π), {ClY (v)}v∈N (Π) of subsets of
[m] such that the following conditions hold:

1. For every non-root v ∈ N (Π), let u denote v’s parent. Then ClX(u) ⊆ ClX(v) and ClY (u) ⊆
ClY (v).

2. For every v ∈ N (Π), G1−ClX(v)−N(ClX(v))−fix(Xv) and G2−ClY (v)−N(ClY (v))−fix(Yv)
are both (r,∆, β∆)-expanders.

3. For every v ∈ N (Π), |ClX(v)|, |ClY (v)| ≤ 1
α−β ·

d
∆ .

Lemma 23. As in Theorem 7 let G1 := ([m], [n], E1), G2 := ([m], [n], E2) be two (r,∆, α∆)-
expanders, and X,Y := {0, 1}n. For each i ∈ [m], let Ci be a disjunction of variables in {xj |
j ∈ NG1(i)}∪{yj | j ∈ NG2(i)} with arbitrary signs. Let Π: {0, 1}n×{0, 1}n → [m] be a γ-subcube-
like communication protocol of d := codim(Π). If d ≤ α2r∆/4, then

Pr
x,y

[Ci(x,y) = 0 | i = Π(x,y)] ≤ O(2−γα∆/2 · d).

Proof. We rephrase the success probability of Π as follows: Sample a random leaf ℓ of Π with
probability |Rℓ|/22n. Then

Pr
x,y

[Ci(x,y) = 0 | i = Π(x,y)] = Eℓ

[
Pr

(x,y)∼Rℓ

[CΠ(ℓ)(x,y) = 0]
]
. (1)

Let {ClX(v)}v∈N (Π), {ClY (v)}v∈N (Π) be given by Lemma 22 with respect to Π, G1, G2 and β =

α/2. For each node v ∈ N (Π), define Jv := ClX(v) ∪ ClY (v). We first observe that for each leaf ℓ,
Π has low success probability on Rℓ if Π(ℓ) /∈ Jℓ.

Claim 24. Let ℓ be any leaf in the protocol tree of Π. Suppose that i ̸∈ Jℓ. Then

Pr
(x,y)∼Rℓ

[Ci(x,y) = 0] ≤ 2−γα∆/2.

Proof. By the definition of Jℓ, we have i ̸∈ ClX(ℓ). Let A ⊆ [n] ∖ (fix(X) ∪ N(ClX(ℓ))) be the
set of neighbors of i in G1 − ClX(ℓ) − N(ClX(ℓ)) − fix(Xℓ), by the expansion we get |A| ≥ α∆/2.
Since Xℓ × Yℓ is γ-subcube-like we have that x[n]∖fix(Xℓ) is γ-spread. In particular, H∞(xA) ≥
γ|A| ≥ γα∆/2. Let τ ∈ {0, 1}A be the unique assignment that violates all literals of Ci in A. The
min-entropy bound above then implies Pr[Ci(x,y) = 0] ≤ Pr[xA = τ ] ≤ 2−γα∆/2.

On the other hand, unfortunately, it is possible that

pi(ℓ) := Pr
(x,y)∼Rℓ

[Ci(x,y) = 0]

is close to 1 for some i ∈ Jℓ. Nevertheless, we can show that this can happen only for a small
fraction of leaves.
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Claim 25. Let ℓ be a random leaf sampled as stated above. Then

Eℓ

[∑
i∈Jℓ

pi(ℓ)

]
≤ 2−γα∆/2 · d.

Proof. First, we can write

Eℓ

[∑
i∈Jℓ

pi(ℓ)

]
=
∑
i∈[m]

Eℓ[1i∈Jℓ · pi(ℓ)]

(where ℓx,y is the leaf containing (x,y)) =
∑
i∈[m]

Pr
x,y

[i ∈ Jℓx,y ∧ Ci(x,y) = 0]

=
∑
i∈[m]

Pr
x,y

[Ci(x,y) = 0 | i ∈ Jℓx,y ] · Prx,y
[i ∈ Jℓx,y ]

≤ max
i∈[m]

Pr
x,y

[Ci(x,y) = 0 | i ∈ Jℓx,y ] ·
∑
i∈[m]

Pr
x,y

[i ∈ Jℓx,y ]

= max
i∈[m]

Pr
x,y

[Ci(x,y) = 0 | i ∈ Jℓx,y ] · Eℓ[|Jℓ|].

Observe that |Jℓ| ≤ d for every leaf ℓ, it suffices to show

Pr
x,y

[Ci(x,y) = 0 | i ∈ Jℓx,y ] ≤ 2−γα∆/2.

for every i ∈ [m]. Now let us fix an arbitrary i ∈ [m]. The event “i ∈ Jℓx,y” can be reinterpreted
as follows: with

Vi := {v ∈ N (Π) | i ∈ Jv and the parent of v does not satisfy that}

we have that i ∈ Jℓx,y if and only if (x,y) ∈
⊔
v∈Vi Rv (the rectangles form a partition since the

nodes in Vi are maximally close to the root). Then

Pr
x,y

[Ci(x,y) = 0 | i ∈ Jℓx,y ] ≤
∑
v∈Vi

Pr
x,y

[(x,y) ∈ Rv | i ∈ Jℓx,y ] · Prx,y
[Ci(x,y) = 0 | (x,y) ∈ Rv].

Since the right-hand side is a convex combination of Pr[Ci(x,y) = 0 | (x,y) ∈ Rv] for v ∈ Vi, it
suffices to bound the maximum of these probabilities.

The crucial observation to conclude the proof is that i ̸∈ ClX(v) if Bob spoke in the parent node
of v and i ̸∈ ClY (v) if Alice spoke in that node. In any case, an argument similar to that in Claim 24
applies and we have Pr[Ci(x,y) = 0 | (x,y) ∈ Rv] ≤ 2−γα∆/2, which concludes the proof.

Now we are ready to show the desired bound. Combining the above two claims, we have

(1) = Pr[Π(ℓ) /∈ Jℓ] · Eℓ[ Pr
(x,y)∼Rℓ

[CΠ(ℓ)(x,y) = 0] | Π(ℓ) /∈ Jℓ]

+ Pr[Π(ℓ) ∈ Jℓ] · Eℓ[ Pr
(x,y)∼Rℓ

[CΠ(ℓ)(x,y) = 0] | Π(ℓ) ∈ Jℓ]

≤ 2−γα∆/2 + Eℓ[
∑
i∈Jℓ

pi(ℓ)]

= O(d/2γα∆/2).
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3.5 Proof of Theorem 7

We first restate the theorem for convenience.

Theorem 7. Let α > 0 be an absolute constant. Let G1 := ([m], [n], E1), G2 := ([m], [n], E2) be two
(r,∆, α∆)-expanders, and X,Y := {0, 1}n. For each i ∈ [m], let Ci be a disjunction of variables in
{xj | j ∈ NG1(i)} ∪ {yj | j ∈ NG2(i)} with arbitrary signs. Then for every communication protocol
Π: {0, 1}n × {0, 1}n → [m] of depth d at most O(∆r):

Pr
(x,y)∼X×Y
i∼Π(x,y)

[Ci(x,y) = 0] ≤ d · 2−Ω(∆) + exp(−d).

Proof. Let Π̃ be a subcube-like protocol given by Lemma 17 with respect to Π and γ = α. Then
codim(Π′) ≤ 7d

1−α . Moreover,

Pr
x,y

[Π(x,y) ̸= Π̃(x,y)] ≤ exp(−d).

We can then apply Lemma 23 and conclude that

Pr
x,y

[Ci(x,y) = 0 | i = Π(x,y)] ≤ Pr
x,y

[Ci(x,y) = 0 | i = Π̃(x,y)]+exp(−d) = d·2−Ω(∆)+exp(−d).
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Keren Censor-Hillel, Fabrizio Grandoni, Joël Ouaknine, and Gabriele Puppis, editors,
52nd International Colloquium on Automata, Languages, and Programming (ICALP
2025), volume 334 of Leibniz International Proceedings in Informatics (LIPIcs), pages

12

https://doi.org/10.1137/S0097539701389944
https://doi.org/10.1007/s00037-011-0026-0
http://people.cs.uchicago.edu/~razborov/files/misha.pdf
https://doi.org/10.1137/S0097539700369156
https://doi.org/10.1137/060654645


21:1–21:20, Dagstuhl, Germany, 2025. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.21,
doi:10.4230/LIPIcs.ICALP.2025.21.
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A Proof of Lemma 8

We start by proving Item 1 (Item 2 is analogous). Let NX(i) for i ∈ [m] be the set of neighbors of
i in X and NY (i) — in Y . Then ErrorX = {i ∈ [m] | |NX(i)| > (1− δ)∆}. We then write

E[|ErrorX |] =
∑
i∈[m]

Pr
[
|NX(i)| > (1− δ)∆

]
=
∑
i∈[m]

∑
S⊆N(i) : |S|≥(1−δ)∆

Pr[X ∪N(i) = S]

= m
∑
j≤δ∆

(
m

m− j

)
2−∆

≤ m2−(1−H(δ))∆

= αn · 2H(δ)∆

= αn1+cH(δ)
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On the other hand for every i ∈ ErrorX we have

Pr
x∼{0,1}X

[Ci(x, ·) ̸≡ 1] = 2−|NX(i)| ≤ 2−(1−δ)∆ = n−c(1−δ).

Then by a union bound we get

Pr
x∼{0,1}X

[∃i ∈ ErrorX : Ci(x, ·) ̸≡ 1] ≤ |ErrorX | · n−c(1−δ).

Then by Markov’s inequality applied to |ErrorX | with probability 1− ε over X we have

Pr
x∼{0,1}X

[∃i ∈ ErrorX : Ci(x, ·) ̸≡ 1] ≤ 1/ε · E[|ErrorX |] · n−c(1−δ)

= α/ε · n1+cH(δ)−c(1−δ)

= α/ε · n1−c(1−δ−H(δ))

Now it remains to prove Item 3. First, let G := ([m], [n], EX⊔EY ) be the union of GX and GY .
By Lemma 6 whp over φ the graph G is an (r,∆, (1 − η)∆)-expander for any η and r = Ωη

(
n
∆

)
.

Now it is sufficient to show GX − ErrorY is an (r,∆, (δ − 2η)∆)-expander whp, GY − ErrorX

is distributed identically to GX −ErrorY and removing additional nodes from the left-hand side
does not reduce expansion.

We in fact show that conditioned on the fact that G is an (r,∆, (1 − η)∆)-expander, GX −
ErrorY is (r,∆, (δ − 2η)∆)-expander with probability 1. Consider an arbitrary subset U ⊆ [m]
of size at most r. For every such subset we need to have |N(U) ∖ Y ∖ N(ErrorY )| ≥ (δ −
2η)∆|U ∖ ErrorY |. Here and below N(S) = NG(S). Consider the set ∂U := {v ∈ N(U) |
v is connected with a single node in U}. Then |∂U | ≥ (1 − 2η)|U |∆: indeed the number of edges
incident to U can be estimated in two ways:

∆|U | = |E ∩ (U × [n])| ≥ |∂U |+ 2(|N(U)| − |∂U |) ≥ 2(1− η)∆|U | − |∂U |.

Then we can partition the setN(U) into setsNi for i ∈ U whereNi ⊆ N(i) and |Ni| ≥ (1−2η)∆:
find a node i ∈ U such that |∂U ∩N(i)| ≥ (1− 2η)∆, let Ni := ∂U ∩N(i) and continue the process
for U ∖ {i}, the reason the resulting sets form a partition is that Ni ∩ N(U ∖ {i}) = ∅ by the
definition of ∂U .

For every Y ⊆ [n] if |N(i)∖Y | ≥ δ∆, then |Ni∖Y | ≥ |N(i)∖Y | − |N(i)∖Ni| ≥ (δ− 2η)∆. It
follows that after removing ErrorY (vertices for which |N(i)∖Y | < δ∆), every vertex i in the set
U ∖ ErrorY in GX has at least (δ − 2η)∆ neighbours in Ni ∖ Y . As Ni is a partition, it follows
that |N(U)∖ErrorY ∖N(ErrorY )| ≥ (δ − 2η)∆|U ∖ErrorY |.

Finally, choosing η = δ/4 completes the proof. By Lemma 6 this particular choice only affects
the hidden constant in r = Ω(n/∆).

B Proof of Lemma 22

Since ClX and ClY are independent of each other, we just focus on constructing ClX . It suffices to
prove the following lemma:
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Lemma 26. Let G = ([m], [n], E) be an (r,∆, α∆)-expander. Let T be a tree with nodes labeled
with subsets of [n], where Sv ⊆ [n] denotes the label of v such that

• For the root of T , the node r we have Sr = ∅.

• If u is a parent of v, then Su ⊆ Sv.

• For every u we have |Su| ≤ d ≤ (α− β)2r∆/4.

Then there for every node u to T there exists a set Tu ⊆ [m] such that

(a) The graph Gu := G− Tu − Su −N(Tu) is an (r,∆, β∆)-expander.

(b) If u is a parent of v, then Tu ⊆ Tv.

(c) |Tu| ≤ 1
α−βd/∆.

To finish the proof of Lemma 22 given Lemma 26 we just let T be the tree of the protocol and
Su be fix(Xu), then take ClX(u) := Tu.

We now proceed to prove Lemma 26. Wlog we may assume that if u is a parent of v we have
|Sv ∖ Su| ≤ 1 (just by replacing a single edge in T by a chain of edges).

We construct the sets Tu inductively starting from the root r where Tr = ∅. Suppose u is a
parent of node v and we have constructed Tu. If Su = Sv, we just let Tv := Tu, so assume that
Sv ∖ Su = {i}. Let G′

u := Gu − i. Let us find the largest set Bv ⊆ [m] ∖ Tu such that |Bv| ≤ r
and |NG′

u
(Bv)| ≤ β∆|Bv| and let Tv := Tu ∪Bv. Then Gv = G′

u − Tu −NG′
u
(Tu). It is clear that T

satisfies Item (b).

Proof of Item (c) We show by induction on the depth ℓ of a node u that |Tu| ≤ 1
α−β ℓ/∆. The

base case is satisfied since for the root r the set Tr is empty. Now let u be a node at depth ℓ and v
be its child at depth ℓ+ 1. We have that |Tu| ≤ 1

α−β ℓ/∆, we need to prove that |Tv| = |Tu ⊔Bv| ≤
1

α−β (ℓ+ 1)/∆.
On the one hand NG′

u
(Bv) = NG(Bv)∖(NG(Tu)∪Sv). On the other hand, |NG′

u
(Bv)| ≤ β∆|Bv|.

By the expansion of G we have |NG(Bv)| ≥ α∆|Bv|. Hence |NG(Tu) ∪ Sv| ≥ (α − β)∆|Bv|.
By the assumption on the tree |Sv| = ℓ + 1, and by induction hypothesis |Tu| ≤ 1

α−β ℓ/∆, so

|NG(Tu))| ≤ 1
α−β ℓ.

Combining the two inequalities, we get 1
α−β ℓ+ (ℓ+ 1) ≥ (α− β)∆|Bv|.

From that, we get |Bv| ≤ 2 · 1
(α−β)2∆ · (ℓ+ 1) ≤ r/2, where the last inequality follows from the

assumptions on ℓ. Then we get that |Tv| ≤ |Tu| + |Bv| ≤ r. Now we can use expansion of G to
bound |NG(Tv)| ≥ α∆|Tv|. On the other hand, let r = w0, w1, . . . , wℓ = u,wℓ+1 = v be the path in
T from the root to v. We then have

NG(Tv) ⊆
ℓ⋃
i=0

NG′
wi
(Bwi+1) ∪ Sv.

By the choice of sets B we get |NG(Tv)| ≤ β∆|Tv| + |Sv|. Combining the two bounds we get
|Tv| ≤ 1

α−β |Sv|/∆, which concludes the proof.
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Proof of Item (a) Pick the node v at depth ℓ + 1 such that Gv is not an (r,∆, β∆)-expander,
and v is the closest to the root among such nodes. In particular, for its parent u the graph Gu is
(r,∆, β∆)-expander. Then there exists a set T of size at most r such that NGv(T ) < β∆|T |. By
expansion of G we get |NG(T )| ≥ α∆|T |. Then, since NGv(T ) = NG(T )∖ (NG(Tv) ∪ Sv) we have

1

2
(α− β)∆r ≥ 2

α− β
ℓ ≥ 1

α− β
ℓ+ (ℓ+ 1) ≥ |NG(Tv) ∪ Sv| ≥ (α− β)∆|T |.

The left-hand side follows from Item (c) and the right-hand side follows from the analysis above.
Then |T | ≤ r/2. Since by the proof of Item (c) we have that |Bv| ≤ r/2, we get |T ∪ Bv| ≤ r, yet
|NG′

u
(T ∪Bv)| < β∆|Bv|+ β∆|T | ≤ β∆|Bv ⊔ T |, contradicting the choice of Bv.

C Proof of Lemma 21

Lemma 21. Let a1, . . . ,an ∈ R be a random sequence of reals and ζ > 0 be some fixed parameter.
If for any 1 ≤ k ≤ n and a1, . . . , ak−1 ∈ R such that Pr[a1 = a1, . . . ,ak−1 = ak−1] > 0,

Pr[ak ≥ x | a1 = a1, . . . ,ak−1 = ak−1] ≤ exp(−ζx),

then

Pr

[
n∑
i=1

ai ≥
4

ζ
n

]
≤ exp(−n).

Proof. Let λ ∈ (0, ζ) be some parameter that will be determined later. First, observe that for any
1 ≤ k ≤ n and a1, . . . , ak−1 ∈ R such that Pr[a1 = a1, . . . ,ak−1 = ak−1] > 0,

E[exp(λak) | a1 = a1, . . . ,ak−1 = ak−1] ≤ ζ
∞∫
0

exp(λx) · exp(−ζx) · dx = ζ/(ζ − λ). (2)

Next, we prove by induction on k from n to 1 that

E

[
exp

(
λ

n∑
i=k

ai

)∣∣∣∣∣a1 = a1, . . . ,ak−1 = ak−1

]
≤
(

ζ

ζ − λ

)n−k+1

. (3)

The base case k = n is exactly (2). Now assume that (3) holds for all k ≥ m+ 1. Then

E

[
exp

(
λ

n∑
i=m

ai

)∣∣∣∣∣a1 = a1, . . . ,am−1 = am−1

]
≤
∑
am

Pr[am = am | a1 = a1, . . . ,am−1 = am−1] · exp(λam)·

· E

[
exp

(
λ

n∑
i=m+1

ai

)∣∣∣∣∣a1 = a1, . . . ,am = am

]

≤
(

λ

ζ − λ

)n−m
· E[exp(λam) | a1 = a1, . . . ,am−1 = am−1]

=

(
λ

ζ − λ

)n−m+1

.
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Finally, by setting λ = ζ/2, we conclude that

Pr

[
n∑
i=1

ai ≥
4

ζ
n

]
= Pr

[
exp

(
λ

n∑
i=1

ai

)
≥ exp

(
4λ

ζ
n

)]

≤ E

[
exp

(
λ

n∑
i=1

ai

)]
· exp(−2n)

≤
(

ζ

ζ − λ

)n
· exp(−2n)

≤ exp(−n).

D Proof of Fact 18

Follows from the computation:

D∞(v)−D∞(u) = −|fix(Xv)|+ |fix(Xu)|+H∞(Xv)−H∞(Xu)

= −nk(x, y) + (H∞(Xv)−H∞(Xb
u)) + (H∞(Xb

u)−H∞(Xv))

≤ −nk + log
(
1/qbu

)
+
(
γ · nk(x, y) + log

(
1/pb,≥iu

))
(from Lemma 15)

= −(1− γ)nk(x, y) + hk(x, y).

20

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


