
On the Limits of Computationally Sound IPPs

in the Isolated Model

Hadar Strauss

Weizmann Institute of Science

July 16, 2025

Abstract

Interactive proofs of proximity (IPPs) are a relaxation of interactive proofs, analogous to
property testing, in which soundness is required to hold only for inputs that are far from the
property being verified. In such proof systems, the verifier has oracle access to the input, and
it engages in two types of activities before making its decision: querying the input oracle and
communicating with the prover. The main objective is to achieve protocols where both the
query and communication complexities are extremely low.

Of particular interest are IPPs in which the querying and the interacting activities are
performed independently, with no information flow from one activity to the other. Such IPPs
were systematically studied by Goldreich, Rothblum, and Skverer (ITCS 2023), who introduced
two variants: the pre-coordinated model, where the querying and interacting activities may use
a common source of randomness, and the isolated model, where the two activities are fully
independent, each operating with a separate source of randomness.

We focus on what is possible under these models when soundness is relaxed to computational
soundness. Our previous work (ECCC, TR24-131) showed that the pre-coordinated model
becomes significantly more powerful under this relaxation. In this work, we consider the isolated
model under the same relaxation and show a separation between the two models. We consider
a property that, by our previous work, has a computationally sound IPP in the pre-coordinated
model with poly-logarithmic complexities (assuming the existence of collision-resistant hashing
functions), and show that any computationally sound IPP in the isolated model for this property
must have either query complexity or communication complexity that is nΩ(1), where n is the
length of the input.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 97 (2025)

Contents

1 Introduction 3
1.1 General background . 3
1.2 This work – computationally sound IPPs. 4
1.3 Techniques . 5

1.3.1 Main technique . 6
1.3.2 Alternative technique for non-adaptive queries . 7
1.3.3 Comparing the actual bounds . 8
1.3.4 The setting of [6, Apdx. A.4] and its connection to our setting 9

1.4 Organization . 9

2 Preliminaries and definitions 10

3 An upper bound on the isolated model for PERM 13

4 Preliminaries for the lower bounds 14
4.1 Notation . 14
4.2 A partially random function is far from PERM w.h.p. 15

5 A lower bound on the isolated model for PERM 15
5.1 Proof of Theorem 5.1 . 15

5.1.1 Proof of Lemma 5.4. 22

6 A lower bound on the isolated model with non-adaptive queries for PERM 25
6.1 Proof of Theorem 6.1 . 27
6.2 Alternative proof, achieving a slightly weaker lower bound . 29

Acknowledgments 31

References 31

Appendices 33

A Coloring a directed graph with bounded out-degree 33

B Reducing the amount of randomness in the isolated model 33

C Emulation of the isolated model with public coins 34
C.1 Preliminaries . 34
C.2 Proof of Theorem C.1 . 36

D MAPs and the hybrid model 38
D.1 An upper bound on MAPs for PERM . 39
D.2 A lower bound on MAPs with non-adaptive queries for PERM 39

D.2.1 Preliminaries . 41
D.2.2 Proof of Theorem D.2 . 41
D.2.3 Alternative proof . 43

D.3 A lower bound for a hybrid model . 45
D.4 Emulation of the hybrid model by MAPs . 46

E Proof of Lemma D.3 47

2

1 Introduction

This work studies interactive proofs of proximity (IPPs) in which the queries to the input and
the interaction with the prover are performed independently from one another. We study what
is possible under such IPPs when the soundness condition is relaxed to computational soundness.
Our focus is on showing a gap between two models of such IPPs: one in which the querying and the
interacting components have a shared source of randomness, and one in which their randomness is
independent. We begin with a wider background.

1.1 General background

Property testing. The field of property testing [5, 12] studies a relaxed notion of decision
problems. Rather than deciding exact membership, a property tester is only required to distinguish
(w.h.p.) between objects in the property and objects that are ǫ-far from the property, where ǫ > 0
is a proximity parameter. An object x ∈ Σn is considered ǫ-far from a property Πn ⊆ Σn if it differs
from any object in the property on more than ǫ · n locations.

Standard decision problems generally require reading the entire input, since flipping a single
bit can change the decision. In contrast, relaxed decision opens the possibility of algorithms that
(probabilistically) read only a sub-linear portion of the input. Thus, in property testing, the input
is viewed as a huge object to which the tester gets only oracle access, and the goal is to obtain
testers with extremely low query complexity (e.g., query complexity that is poly-logarithmic in the
input size).

Interactive proofs of proximity. Interactive proofs of proximity (IPPs) [3, 11] extend the
relaxation considered in property testing to the realm of proof systems, analogously to the extension
of standard decision algorithms to standard interactive proofs (IPs). Specifically, an interactive
proof of proximity for a property is a protocol between two parties, called a verifier and a prover.
The verifier has oracle access to the input, and it interacts with an (untrusted) prover that tries
to convince it to accept the input. The goal is for the verifier to be convinced to accept inputs
that satisfy the property (“completeness”), and to not be fooled into accepting inputs that are far
from the property (“soundness”). The prover is assumed to have explicit access to the input and
is computationally unbounded.

The main complexity measures considered in IPPs are the verifier’s query complexity and the
communication complexity (i.e., the total number of bits exchanged during the interaction with
the prover). Like the query complexity, the communication complexity should be sublinear in the
input length. With linear communication complexity, the prover could simply send the entire input,
and the verifier could verify that (a) the alleged input is indeed in the property (which requires
no queries to the oracle); and (b) the alleged input is ǫ-close to the actual input, by checking for
consistency with O(1/ǫ) random locations in the actual input. Another complexity measure of
interest is the round complexity (the number of back-and-forth communication rounds). The goal
is to obtain proof systems with significantly lower query complexity than a tester for the property
can achieve, while also minimizing the communication and round complexities.

The isolated and pre-coordinated models. The verifier in an IPP performs two distinct
activities: querying the input oracle and interacting with the prover. The general definition of
IPPs allows the verifier to fully coordinate these two activities; that is, it can choose where to
query the input based on its communication with the prover, and likewise, it can send challenges
to the prover based on values seen in the input.

3

Goldreich, Rothblum, and Skverer [6] considered highly restricted models where the querying
and interacting activities are assigned to separate modules such that no information can flow
between them. The two modules feed their final views to a separate deciding module that decides
whether to accept or reject based on the combined views.

They introduced two versions of this model. In the first model, called the isolated model, the
querying and the interacting modules each get a separate and independent source of randomness,
making them completely independent. The second model, called the pre-coordinatedmodel, provides
both modules with a shared source of randomness, which allows for some amount of coordination.1

Goldreich et al. showed that the isolated model is extremely weak; that is, it can only offer a
very limited advantage over property testers. Specifically, they showed that IPPs in the isolated
model that use q queries and c bits of communication can be emulated by property testers with
query complexity O(c · q).

In contrast, they showed that the pre-coordinated model is much more powerful. They showed
that there are pre-coordinated IPPs of extremely low complexity for properties that are extremely
hard to test. They further showed that the pre-coordinated model can efficiently2 emulate any
public-coin IPP for any property of low-degree polynomials.

Still, they also showed that the pre-coordinated model is considerably limited compared to
general IPPs. They showed that public-coin O(1)-round IPPs in the pre-coordinated model can be
efficiently emulated by standard property testers.

1.2 This work – computationally sound IPPs.

In this work (as well as in our previous work [13]), we extend the study of the isolated and pre-
coordinated models to the context of computationally sound interactive proofs of proximity (cs-
IPPs). That is, we consider what is possible under these models when relaxing the soundness
condition to hold only against computationally bounded provers.

In our previous work [13], we showed that relaxing the soundness condition to computational
soundness significantly increases the power of the pre-coordinated model. Specifically, we showed
that, assuming the existence of collision-resistant hashing functions (CRHF), any public-coin cs-IPP
can be efficiently emulated by a cs-IPP in the pre-coordinated model.

The focus of this work is on cs-IPPs in the isolated model. Specifically, we show the following
result:

Theorem 1.1 (separation between cs-IPPs in the isolated model and cs-IPPs in the pre-coordinated
model). There exists a property Π =

⋃

n∈N
Πn such that:

1. Assuming the existence of strong CRHF, Π has a cs-IPP in the pre-coordinated model in
which the query and communication complexities are poly-logarithmic in n.

2. Any cs-IPP for Π in the isolated model must have either query complexity or communication
complexity that is nΩ(1).

The property that we consider is PERM, the set of all permutations over [n]. The first part
of Theorem 1.1 follows immediately from our emulation of public-coin cs-IPPs by cs-IPPs in the
pre-coordinated model. Specifically, PERM has the following simple public-coin IPP (which is also

1The isolated and pre-coordinated models were originally studied in [6] as restricted versions of IPPs with proof-

oblivious queries. Proof-oblivious queries restrict only the information flow from the interacting module to the querying
module.

2We usually consider an emulation of one model in a second model to be efficient if the communication and query
complexity in the second model are polynomial in the complexities in the first model.

4

a cs-IPP), presented in [8, Sec. 4.1]: Given input f : [n] → [n], the verifier selects a random value
v ∈ [n] and sends it to the prover, who is required to reply with the pre-image of v under f . The
verifier then queries f on this alleged pre-image, and checks that it indeed leads to the claimed
value v. If f is ǫ-far from PERM, then more than ǫ · n points in [n] have no pre-image under f . This
means that, with probability greater than ǫ, the random value v will have no pre-image under f ;
hence, no matter what the prover sends, the verifier will reject. To get constant soundness error we
repeat this system O(1/ǫ) times. Note that this protocol is not pre-coordinated. However, using
the emulation in [13], it can be transformed into a pre-coordinated protocol with computational
soundness, while preserving poly-logarithmic query and communication complexities.3

Hence, the focus of this work is on showing the second part of Theorem 1.1, establishing a lower
bound on cs-IPPs for PERM in the isolated model.

An open problem. A natural open question is whether all computationally sound isolated IPPs
can be efficiently emulated by testers, as in the standard soundness case. The emulation shown
by [6] for the standard soundness case does not extend to computational soundness. Their emulation
relies on the fact that in standard soundness, the acceptance probability when interacting with the
optimal prover strategy is at least 2/3 if the input is a YES-instance, and at most 1/3 if the input
is a NO-instance. This enables the tester in their emulation to distinguish between YES and NO
instances by estimating the optimal acceptance probability within an additive deviation of 1/6
(and accepting if the estimate is greater than 1/2). However, in computationally sound systems,
only efficient provers must have low acceptance probability on NO-instances. The optimal prover
strategy can succeed with arbitrary probability, breaking the emulation.

We stress that the method of [6] heavily relies on the ability to estimate the optimal strategy’s
acceptance probability, while making relatively few query access to the input. Specifically, their
method relies on the fact that the optimal strategy for a given input f can be computed from the
probabilities that the verifier accepts f given each possible interaction transcript.4 However, the
optimal strategy may not be implemented efficiently, and so (as stated above) its performance (on
NO instances) is not relevant in the context of cs-IPPs.

1.3 Techniques

Our technique for showing the lower bound on isolated cs-IPPs for PERM is adopted from [6,
Apdx. A.4], where a similar method was used in a related setting, albeit only for non-adaptive
queries5 (see Section 1.3.4 for further details on their setting). The main challenge in adapting
their technique to our setting is in extending it to handle adaptive queries. When describing the
technique, we first explain the overall approach while initially ignoring the issue of adaptive queries.
This initial explanation, though presented in the context of cs-IPPs in the isolated model, is analo-
gous to the approach of [6]. We then address the issue of adaptive queries and show how we handle
it.

We also present an alternative technique for proving the lower bound in the special case of
non-adaptive queries. This technique has a similar structure as the first and shares the same
underlying intuition, but diverges in how it formally establishes this intuition. In our opinion, this
approach is more straightforward and provides clearer insight into what underlies the lower bound.
In addition, it improves the lower bound itself in the non-adaptive case (see Section 1.3.3 for a

3In fact, the query complexity will even be independent of n, specifically O(1/ǫ).
4They showed that it is possible to obtain an estimation of all these probabilities using only O(q · c) queries to f ,

where q is the query complexity and c is the communication complexity of the isolated IPP.
5A verifier uses non-adaptive queries if its queries do not depend on the answers it has received to previous queries.

5

detailed comparison of the bounds). However, this alternative technique does not extend readily
to adaptive queries.

1.3.1 Main technique

Recall that the query complexity of testing PERM is Ω(
√
n) (see [13, Apdx. A] following [8, Lem. 4.3]).

In Theorem 5.1, we show that in any isolated cs-IPP for PERM the product of the query complexity
and the communication complexity must be at least nΩ(1). We show the lower bound by an
indistinguishability argument.

In [13, Apdx. A], the lower bound for testing PERM is established by showing that a random
permutation Π and a random function F (which is far from PERM w.h.p.) are indistinguishable
using less than Ω(

√
n) queries. We aim to show an analogous indistinguishability for isolated cs-

IPPs when both the query and communication complexities are restricted. Specifically, we fix an
arbitrary isolated cs-IPP with query complexity q and communication complexity c that we claim
are impossible to achieve. We then construct a distribution over input functions G that is far from
PERM (w.h.p.), and a corresponding distribution over (efficient) cheating provers P , such that the
view of the verifier when it interacts with P on input G is indistinguishable from its view when
interacting with the honest prover on a random permutation Π.

A natural first attempt is to take G to be a random function (as in the aforementioned lower
bound for testers) and have the cheating prover emulate the honest prover on a random permutation.
Since we are in the isolated model, where the verifier’s messages are independent of the input, the
interaction transcript will be distributed identically in both the honest and cheating interactions.
The problem with this attempt is that there may be a correlation between the transcript and
the query answers. For example, consider a simple system where the honest prover sends the
first few locations of the input function, and the verifier queries these same locations and checks
for consistency. If the cheating prover emulates the honest prover using a random permutation
independent of G, then (w.h.p.) the values it sends will not be consistent with G, and the verifier
will be able to distinguish the two cases.

Notice that we can fool the foregoing verifier (in the example) by simply having the cheating
prover emulate the honest prover on a permutation that is consistent with the actual input G on
the first few locations. For this to work, we need the first few locations in G to behave like a
permutation.

Thus, we take the following approach: We identify a small set of “heavy” locations, which
are the locations that the verifier queries with high probability. We take G = G(Π, F) to be the
function that on the heavy locations behaves like a random permutation Π, and on the remaining
locations behaves like a random function F , and we have the cheating prover emulate the honest
prover on the same permutation Π. Since there are only a small number of heavy locations, and on
the remaining (“light”) locations G behaves like a random function, G will be far from PERM with
high probability.

We want to show that under this construction, the verifier’s view when interacting with the
cheating prover on G is indistinguishable from its view when interacting with the honest prover
on Π. To do so, we will essentially need to show that in expectation over the randomness of the
querying module, the interaction transcript together with the answers to heavy queries have little
information on the answers to light queries. The basic intuition for this is that light queries are
dispersed across many locations, and the short transcript can only contain significant information
on a small number of them. To argue this formally, we will consider multiple independent executions
of the querying module and show that we expect to see many different light locations across these
executions. This results in a large total entropy, while the transcript can reduce the total entropy

6

by at most c bits.

Adaptive queries. Up to this point, we have described heavy locations as those that “the
verifier queries with high probability”, ignoring the issue of adaptive queries. When the queries
are adaptive, the locations that are queried with high probability at the kth query depend on the
values observed in the first k − 1 queries.

To illustrate, consider again the foregoing example in which the verifier queries the first few
locations and checks for consistency with the prover’s message. Consider a variant, where instead
of querying the first few locations, the verifier adaptively queries a “chain” starting at location 1;
that is, given oracle access to f , it begins by querying f at position 1, obtaining v := f(1), then
it queries position v, and continues in the same way for several steps, at each step querying the
location given by the previous answer. The honest prover sends the same chain, and the verifier
checks for consistency.

Following our general approach to fool this system, we would provide the verifier with an input
function G = G(Π, F) that behaves like a random permutation Π on heavy locations and like a
random function F elsewhere, and let it interact with a cheating prover that emulates the honest
prover on input Π. For the verifier to falsely accept G, the chain revealed by querying G must
match the chain from Π sent by the cheating prover. This means that we want the heavy locations
to be the locations of Π’s chain. However, these locations depend on the values of Π at previous
positions in the chain.

In light of this, we define the heavy locations recursively, query by query, branching according to
the values assigned to the heavy locations of previous queries. Consequently, different permutations
will correspond to different heavy locations, and G(π, f) will equal π on the heavy locations that
correspond to π, and equal f elsewhere.

We begin with a single set of heavy locations for the first query, denoted H1. Since the first
query is independent of the input, these are simply the locations that the verifier queries with high
probability on the first query. Next, we branch into different sets of heavy locations based on the
possible values that can be observed in the first heavy locations. For each possible assignment of
values a1 ∈ [n]|H1| to the locations in H1, we define H2(a1) to be the locations that the verifier
queries with high probability on its second query when the values it observed in the first query are
given by a1 on heavy locations and by a random permutation (consistent with a1 on H1) on light
locations. In other words, H2(a1) consists of locations that the verifier queries with high probability
on its second query when querying a random permutation Π, conditioned on Π agreeing with the
assignment a1 on the locations in H1.

We continue recursively, such that in the kth query we fix assignments of values (a1, . . . , ak−1)
to the heavy locations of all previous queries, where each ai ∈ [n]|Hi(a1,...,ai−1)|. For each such
sequence of assignments, we define Hk(a1, . . . , ak−1) to be the locations that are queried with high
probability in the kth query when querying a random permutation Π, conditioned on Π agreeing
with each of the assignments a1, . . . , ak−1 on their corresponding heavy sets. The final heavy set of
each permutation π is the union of the sets H1,H2(a1), . . . ,Hq(a1, . . . , aq−1), where each ai is the
values that π assigns to the corresponding heavy set Hi(a1, . . . , ai−1).

1.3.2 Alternative technique for non-adaptive queries

In Section 6, we present a different technique for proving the lower bound in the special case
of non-adaptive queries. The general framework remains the same: We consider a distribution
G = G(Π, F) that behaves like a random permutation Π on “heavy” locations and like a random
function F on the remaining locations. (We again show that the verifier’s view when querying

7

G = G(Π, F) and interacting with a cheating prover that emulates the honest prover on Π is
indistinguishable from its view when querying Π and interacting with the honest prover.) However,
we use a different definition of heavy locations than the one used in the main technique (actually,
we are going to show two possible definitions, one that is the same as in the main technique, and
one that is different). More importantly, the main difference in the new approach is in how we
establish that the views are indistinguishable. Specifically, we use a different approach to argue
that the interaction transcript, together with the answers to heavy queries, cannot have much
information on the answers to light queries in expectation. While the previous approach analyzes
the information on all the light queries together, in the new approach, we consider the information
on each light query individually.

Consider again the example of the system in which the honest prover sends the first few loca-
tions of the input while the verifier queries the same locations and checks for consistency. Notice
that there are two aspects in which the first few locations in this example are special. First, they
are queried by the verifier with high probability, and second, these locations in Π have high mu-
tual information with the interaction transcript T (Π). In the general case, considering the mutual
information with T (Π) alone is insufficient; we need to consider the mutual information with T (Π)
together with answers to potential other queries made by the verifier.6 Thus, we think of each
location i ∈ [n] as having an associated “information-weight”, which represents the maximal infor-
mation that can be gained on Π(i) by T (Π) and any other q − 1 locations in Π. Specifically, this
weight equals maxS⊆[n]\{i},|S|<q

{

I
(

Π(i) ; (T (Π),Π(S))
)}

.
Intuitively, since the interaction transcript is short and q is small, there cannot be many

“information-heavy” locations. Indeed, in Lemma 6.2 we bound the total information-weight of all
locations, which in turn bounds the number of information-heavy locations.

We show that we can effectively think of the verifier as aiming to maximize the expected
total information-weight of the locations it queries. On the other hand, we can view designating
certain locations as “heavy” (i.e., making them locations on which G behaves like a permutation),
as preventing the verifier from gaining the information-weight of these locations. Our goal is to
choose these locations such that the verifier cannot gain much information-weight (in expectation
over its randomness).

This leads to two possible strategies: The first is to directly choose the heavy locations to be
the information-heavy locations. For the second strategy, note that since there can only be a small
number of information-heavy locations, the verifier will likely not hit them if it queries locations
uniformly at random. Thus, in order to gain a high expected total information-weight, the verifier
must query the information-heavy locations with high probability. Therefore, we can choose the
heavy locations to be the locations that the verifier queries with high probability (this strategy
corresponds to the definition of heavy locations used in the main technique). We show two proofs,
following each of these strategies. The first proof, presented in Section 6.1, follows the second
strategy, whereas the second proof, presented in Section 6.2, follows the first strategy.

1.3.3 Comparing the actual bounds

Our main technique, which handles adaptive queries, yields a lower bound of q5 · c = Ω(n/ log(n)),
where q is the query complexity and c is the communication complexity. To compare this with

6Think of the case where the honest prover sends the first few locations of Π each XORed with the last location
of Π (i.e., Π(n)). Here, the mutual information between the transcript and each of the first few locations is very
small. However, the verifier can still verify consistency by querying the first few locations as well as the last location
and XORing the results. Indeed, when combined with the last location of Π, the transcript has significant mutual
information with each of the first locations of Π.

8

the bound obtained by our alternative technique, which only handles non-adaptive queries, we first
mention what the main technique achieves in the specialized case of non-adaptive queries. Recall
that our main technique is an adaptation of the method from [6, Apdx. A.4], which was originally
used for a related setting with non-adaptive queries and which we modify to handle adaptive queries.
A direct adaptation of [6, Apdx. A.4] to our setting, without the modification, would yield a lower
bound of q4 · c2 = Ω(n/ log(n)) for the non-adaptive case. Note that while our extension to the
adaptive case worsens the dependence of the lower bound on q (from q4 to q5), due to a more refined
analysis our dependence on c is improved (from c2 to c). An analogous refinement can be applied
to the non-adaptive case, which will improve its bound to q4 · c = Ω(n/ log(n)).7 Compared to this,
our alternative technique for the non-adaptive case achieves a stronger lower bound of q3 ·c = Ω(n).

1.3.4 The setting of [6, Apdx. A.4] and its connection to our setting

As mentioned at the beginning of Section 1.3, our main technique for establishing the lower bound
on isolated cs-IPPs for PERM is adopted from [6, Apdx. A.4]. The contents of [6, Apdx. A.4] focuses
on the property PwI (standing for Permutations with Inverse), consisting of pairs (π, π−1) of a
permutation π over [n] and its inverse π−1. For this property, they established a lower bound on
MAPs, which are IPPs in which there is only a single message (a “proof”) from the prover to the
verifier. Specifically, they showed a lower bound on the tradeoff between the query complexity and
the proof length of any MAP for PwI that uses non-adaptive queries.

The main challenge in adapting their technique to the setting of isolated cs-IPPs is in extending
it to handle adaptive queries. We stress that this extension to adaptive queries does not apply to
the setting of [6], since PwI has an efficient adaptive tester.

In Appendix D, we shed some light on why the technique from the setting of MAPs could be
adapted to ours. We show that the lower bound for non-adaptive isolated IPPs for PERM can be
extended to (non-adaptive) IPPs in a hybrid model that extends both isolated IPPs and MAPs.
We further show a more general connection between the two settings (beyond just PERM), by show-
ing that, similarly to the emulation of the isolated model by testers shown in [6, Thm. 1.2], the
aforementioned hybrid model can be efficiently emulated by MAPs.

1.4 Organization

In Section 2 we give formal definitions of the computational models discussed in the introduc-
tion, as well as recall some basic definitions and claims from information theory. In Section 3 we
present a simple isolated IPP for PERM that demonstrates a general tradeoff between the query and
communication complexities.

The remaining sections are devoted to proving corresponding lower bounds. Section 4 contains
preliminaries that are used in both subsequent sections; specifically, it includes notation and a claim
showing that a partially random function is far from PERM with high probability. In Section 5, we
establish our main result: a lower bound on the tradeoff between the query and communication
complexities for any isolated cs-IPP for PERM. In Section 6 we present a tighter lower bound for the
special case of non-adaptive queries.

Section 6 may be read before Section 5 and can serve as a warm-up to Section 5. While the proofs
in these two sections follow different approaches, they share the same underlying framework and
intuitions, with the non-adaptive case being technically simpler and potentially providing clearer
insight into the main ideas.

7This improvement can be applied also to the case considered in [6].

9

2 Preliminaries and definitions

Property Testers, IPPs, MAPs, and cs-IPPs

A property is a collection of sets Π =
⋃

n∈N
Πn such that Πn is a set of functions from [n] to Σ.8 The

relative hamming distance between two functions f, g : [n] → Σ is the fraction of inputs on which
they differ. We say f is ǫ-far from g if the relative hamming distance between f and g is greater
than ǫ, and otherwise we say they are ǫ-close. A function f : [n] → Σ is ǫ-far from a property
Π =

⋃

n∈N
Πn if it is ǫ-far from any g ∈ Πn; otherwise, it is ǫ-close to Π. A tester for a property Π

is a probabilistic algorithm that, on input parameters n ∈ N, ǫ > 0 and oracle access to a function
f : [n] → Σ, outputs 1 with probability at least 2/3 if f is in Π, and outputs 0 with probability at
least 2/3 if f is ǫ-far from Π. The query complexity of the tester is q : N× [0, 1] → N if, on input n,
ǫ and oracle access to any f : [n] → Σ, the tester makes at most q(n, ǫ) queries to f .

An interactive proof of proximity for a property Π is a two-party protocol for parties called verifier
and prover. The verifier has oracle access to a function f : [n] → Σ, and also gets explicit inputs n
and ǫ > 0. The prover gets f as explicit input, and its aim is to convince the verifier that f is in Π.
We require that the prover can convince the verifier to accept any f in Π (w.h.p.), but cannot fool
the verifier into accepting f that is ǫ-far from Π (except for with low probability). The prover is
defined by its strategy, which is a (computationally unbounded) function that maps a party’s input
and all messages it has received so far, to the next message it will send.

Definition 2.1 (interactive proofs of proximity (IPPs)). A randomized and interactive oracle ma-
chine, denoted V , constitutes a verifier for an interactive proof of proximity for a property Π =
⋃

n∈N
Πn, if for every ǫ > 0 the following two conditions hold.

(completeness): There exists a prover P , called the honest prover, such that for any n ∈ N, on
input n, ǫ and oracle access to any f ∈ Πn, after interacting with P that gets f as explicit
input, V rejects with probability at most 1/3.

(soundness): For any prover P (referred to as a cheating prover), for any n ∈ N, on input n,
ǫ and oracle access to any f : [n] → Σ that is ǫ-far from Πn, after interacting with P , the
verifier V accepts with probability at most 1/3.

The system has perfect completeness if the verifier accepts each f ∈ Π with probability 1. The
functions q, c, r : N × [0, 1] → N are the system’s query complexity, communication complexity, and
round complexity, respectively, if on input n, ǫ, on oracle access to any f : [n] → Σ and when
interacting with any prover, the verifier makes at most q(n, ǫ) queries to f , the parties exchange at
most c(n, ǫ) bits, and the interaction consists of at most r(n, ǫ) communication rounds (with two
messages per round). The system is public-coin if each message sent by the verifier consists only of
the outcomes of its coin tosses. The system uses non-adaptive queries if the verifier’s queries to the
input function are determined based on the verifier’s randomness and the message it has received
from the prover, but do not depend (directly) on the answers to prior queries.

More generally, IPPs with general soundness (resp., completeness) error e : N× [0, 1] → [0, 1] are
defined by replacing the term 1/3 in the soundness (resp., completeness) condition with e(n, ǫ). In
that case, we may refer to 1− e as the soundness (resp., completeness) of the IPP.

MA-proofs of proximity (MAPs) [9] are IPPs in which the communication is unidirectional, with
the prover sending a single message. In this case, we call the prover’s message a proof and instead
of communication complexity we use the term proof length.

8Equivalently, properties are sometimes defined as sets of strings over alphabet Σ, rather than sets of functions
from n to Σ.

10

The soundness condition in Definition 2.1 (which holds against computationally unbounded
provers) is sometimes referred to as statistical soundness. In computationally-sound IPPs (cs-IPPs),
the soundness condition is relaxed to hold only against computationally efficient provers. This leads
to restricting also the computational power of the prover in the completeness condition. Actually,
we even require the honest prover’s strategy to be implementable in probabilistic polynomial-time,
although our result holds also if it is allowed to be implemented by a non-uniform polynomial-size
family of circuits.

Definition 2.2 (computationally sound interactive proofs of proximity (cs-IPPs)). A randomized
and interactive oracle machine, denoted V , constitutes a verifier for a computationally sound inter-

active proof of proximity for a property Π =
⋃

n∈N
Πn, if for every ǫ > 0 the following two conditions

hold.

(completeness): There exists a prover P , called the honest prover that can be implemented by
a randomized, polynomial-time machine, such that for any n ∈ N, on input n, ǫ and oracle
access to any f ∈ Πn, after interacting with P that gets f as explicit input, V rejects with
probability at most 1/3.

(computational soundness): For any prover P (referred to as a cheating prover) that can be
implemented by a (non-uniform) polynomial-size family of circuits, for all sufficiently large
n’s, on input n, ǫ and oracle access to any f : [n] → Σ that is ǫ-far from Πn, after interacting
with P , the verifier V accepts with probability at most 1/3.

Note that in the above definitions of IPPs and cs-IPPs, the verifier is not required to be compu-
tationally efficient. This follows the convention in the property testing literature, where the focus
is on query complexity rather than computational complexity. This definition only strengthens
our lower bound results, but weakens the emulations presented in Claim B.1 and Theorem C.1, in
which the resulting verifier is computationally inefficient.9

The isolated and pre-coordinated models

To define the isolated and pre-coordinated models, we follow the framework of [6], where the verifier
is decomposed into three modules: the querying module Q, the interacting module I, and the deciding
module D. The querying module is the only part that queries the input, and the interacting module
is the only part that interacts with the prover. The final decision is made by the deciding module,
which is fed with the outputs of the two other modules.

Both the isolated and pre-coordinated models are restricted forms of IPPs in which there is
no information flow between the querying and the interacting modules. In the isolated model, the
querying and the interacting modules each get a separate and independent source of randomness,
whereas in the pre-coordinated model, the modules get a shared source of randomness.

Recall that in standard interactive proofs, one denotes the output of the verifier V when in-
teracting with a prover P by 〈P, V 〉(x), where x is the common input. In extensions that allow
private inputs, one uses the notation 〈P (y), V (z)〉(x), where z and y are private inputs given to V
and P , respectively. In the isolated model, we write the random variable representing the decision
of the verifier as D(Qf (RQ), 〈P (f), I(RI)〉), where RQ and RI are independent random variables
representing the randomness of each module. In the pre-coordinated model, we write the ran-
dom variable representing the decision as D(Qf (R), 〈P (f), I(R)〉), where R is a random variable
representing the shared randomness of both modules.

9We also note that this definition differs from the one we used in [13] (where we required the verifier to be
computationally efficient). There, the efficiency of the verifier is necessary for the main result (i.e., [13, Theorem 1.4]).

11

Information theoretic functions

The entropy of a random variable X is defined as

H(X)
def
=
∑

x

Pr[X = x] · log2
(

1

Pr[X = x]

)

The conditional entropy of a random variable X given another random variable Y is defined as

H(X |Y)
def
= Ey∼Y [H(X |Y = y)]

where H(X |Y = y) is the entropy of (X |Y = y); that is:

H(X |Y = y)
def
=
∑

x

Pr[X = x|Y = y] · log2
(

1

Pr[X = x|Y = y]

)

The mutual information between random variables X and Y is defined as

I(X;Y)
def
= H(X)−H(X |Y) = H(Y)−H(Y |X)

The Kullback-Leibler (KL) divergence between random variables X and X ′ is defined as

D(X ||X ′)
def
=
∑

x

Pr[X = x] · log2
(

Pr[X = x]

Pr[X ′ = x]

)

= Ex∼X

[

log2

(

1

Pr[X ′ = x]

)]

−H(X)

Note that for the uniform distribution U over a support of size N , it holds that

D(X ||U) = log2(N)−H(X)

The conditional KL divergence between random variables X and X ′ given another random variable
Y is defined as

D(X |Y ||X ′ |Y)
def
= Ey∼Y

[

D(X |Y = y ||X ′ |Y = y)
]

= Ex∼X
y∼Y

[

log2

(

1

Pr[X ′ = x|Y = y]

)]

−H(X |Y)

where D(X |Y = y ||X ′ |Y = y) is the KL divergence between (X |Y = y) and (X ′ |Y = y); that
is:

D(X |Y = y ||X ′ |Y = y)
def
=
∑

x

Pr[X = x|Y = y] · log2
(

Pr[X = x|Y = y]

Pr[X ′ = x|Y = y]

)

We next present some simple claims regarding the foregoing quantities. The first claim states
standard properties of entropy (see, e.g., the textbook [2]).

Claim 2.3. For any random variables X and Y it holds that:

• (conditioning reduces entropy) H(X |Y) ≤ H(X).

• (chain rule for entropy) H(X,Y) = H(X) + H(Y |X).

• (sub-additivity of entropy) H(X,Y) ≤ H(X) + H(Y).

• 0 ≤ H(X) ≤ log2(N) where N is the support size of X.

12

Claim 2.4. For any random variables X, Y and Z, it holds that H(X |Y, Z) ≥ H(X |Y)−H(Z).

Proof: We have: H(X |Y, Z) = H(X,Z |Y)−H(Z |Y) ≥ H(X |Y)−H(Z |Y) ≥ H(X |Y)−H(Z). �

Claim 2.5. For any random variables X, Y and Y ′, it holds that

D(X,Y ||X,Y ′) = D(Y |X ||Y ′ |X).10

Proof: Noticing that Pr[X=x,Y=y]
Pr[X=x,Y ′=y] =

Pr[Y=y|X=x]
Pr[Y ′=y|X=x] , the claim follows immediately from the defini-

tions of KL divergence and conditional KL divergence. �

Statistical distance and indistinguishability

The statistical distance between random variables X and X ′ is defined as

∆(X,X ′)
def
=

1

2
·
∑

x

|Pr[X = x]− Pr[X ′ = x]| = max
f :{0,1}∗→{0,1}

{Pr[f(X) = 1]− Pr[f(X ′) = 1]}

We say that a (deterministic) algorithm A distinguishes between a pair of sequences of random
variables {Xn}n∈N and {X ′

n}n∈N if

|Pr[A(Xn) = 1]− Pr[A(X ′
n) = 1]| = Ω(1).

Note that it implies that ∆(Xn, X
′
n) = Ω(1). We say that a pair of sequences of random variables

{Xn}n∈N and {X ′
n}n∈N are indistinguishable if ∆(Xn, X

′
n) 6= Ω(1) (i.e., for every constant α > 0,

for infinitely many n’s it holds that ∆(Xn, X
′
n) < α). For simplicity of presentation, we will often

consider random variables X and X ′ that implicitly depend on n ∈ N. In such cases, we say that
an algorithm A distinguishes X and X ′ if it distinguishes the corresponding sequences {Xn}n∈N

and {X ′
n}n∈N. Likewise, we say that X and X ′ are indistinguishable if the corresponding sequences

{Xn}n∈N and {X ′
n}n∈N are indistinguishable.

3 An upper bound on the isolated model for PERM

In this section we present an isolated IPP for PERM that demonstrates a general tradeoff between
the query and communication complexities. We stress that this IPP is statistically sound.

Theorem 3.1. For every q > 0, there exists an isolated IPP for PERM with query complexity q,

communication complexity O
(

n
q · log(n)

)

, soundness Ω(ǫ), and perfect completeness.

Proof: We begin with an outline of the proof. Recall that if f : [n] → [n] is ǫ-far from PERM, then
more than ǫ · n points in [n] have no pre-image under f . The isolated verifier that we construct
will ask the prover to provide the pre-image of m = Θ(n/q) randomly selected points in [n], and
separately query the input on q random locations. The choice of m such that m · q = Ω(n) ensures
that w.h.p., there would be a collision between one of the queries and one of the alleged pre-images
provided by the prover, in which case the verifier can check that the query answer matches the
prover’s claim. If the input is ǫ-far from PERM, then with probability greater than ǫ, the value (sent
by the verifier) for which the prover has claimed to provide the pre-image that collided with a
query, does not have a pre-image, meaning the check will fail.

We proceed with the formal description of the protocol. Given input f : [n] → [n], the isolated
protocol proceeds as follows.

10This claim is a special case of the chain rule for KL divergence, that asserts that for any random variables X,
X ′, Y and Y ′, it holds that D(X,Y ||X ′, Y ′) = D(X ||X ′) + Ex∼X [D(Y |X = x ||Y ′ |X ′ = x)].

13

• The interacting module selects m = Θ(n/q) distinct random points v1, . . . , vm ∈ [n] and sends
them to the prover.

• The prover sends what it claims to be the pre-images of v1, . . . , vm under f , denoted a =
(a1, . . . , am) respectively. If a contains duplicates, the verifier immediately rejects.

• The querying module queries f on q random points i1, . . . , iq ∈ [n], obtaining their values
f(i1), . . . , f(iq).

• The deciding module accepts if and only if for every l ∈ [m] such that al was queried (i.e.,
al = ik for some k ∈ [q]), the claimed image vl equals the actual image (i.e., f(ik)).

Clearly, the protocol has perfect completeness. For soundness, consider an arbitrary function f
that is ǫ-far from PERM. Let a collision be the event that there exists l ∈ [m] such that al equals to
one of the verifier’s queries ik. When a collision occurs, let L be the random variable representing
the index such that aL equals to one of the verifier’s queries (if there is more than one collision,
then we take L to be the first such index).

We will show that with probability at least Ω(ǫ), both a collision occurs and the corresponding
value vL has no pre-image under f , which together guarantee the verifier rejects. We do so in
two steps: we first show that a collision occurs with constant probability, and then show that
conditioned on a collision occurring, vL has no pre-image under f with probability greater than ǫ.

To argue that a collision occurs with constant probability, we first fix v1, . . . , vm to arbitrary
values, which in turn fixes the (optimal) prover’s answers a1, . . . , am. We can assume that a1, . . . , am
are all distinct, since otherwise the verifier immediately rejects. Now, notice that the queries
i1, . . . , iq are independent, and each will collide with one of the (distinct) values a1, . . . , am with
probability m/n. Thus, the expected number of collisions is q ·m/n = Ω(1), and by the Chernoff
Bound, there will be a collision with constant probability.

Next, we condition on a collision occurring and show that vL has no pre-image under f with
probability greater than ǫ. First, since f is ǫ-far from PERM, more than ǫ ·n points in [n] have no pre-
image under f . Now, observe that conditioned on a collision occurring, vL is uniformly distributed
in [n]. This is because each vi is uniformly distributed in [n] and the values of v1, . . . , vm do
not affect the probability of collisions (since i1, . . . , iq are uniform over [n] and independent of
v1, . . . , vm). Hence, condition on a collision occurring, the uniform vL has no pre-image under f
with probability greater than ǫ.

All together, the probability that both a collision occurs and vL has no pre-image under f is at
least Ω(ǫ), concluding the soundness claim. �

4 Preliminaries for the lower bounds

This section establishes notation and a claim that are used in both the lower bound proofs in
Sections 5 and 6.

4.1 Notation

For a function f : [n] → [n] and a subset S ⊆ [n], we reserve the notation f(S) to denote the

restriction of f to locations S; that is, if S = {i1, . . . , ik} where i1 < · · · < ik, then f(S)
def
=

(f(i1), . . . , f(ik)). Note that this notation differs from its common use to represent the image set

{f(i) : i ∈ S}. Consequently, we denote the image of S under f by Img(f, S)
def
= {f(i) : i ∈ S}. For

14

a sequence S = (i1, . . . , ik) of elements in [n], we denote by f(S) the sequence (f(i1), . . . , f(ik)).
For any l ∈ [k], we denote by S[l] the prefix (i1, ..., il).

4.2 A partially random function is far from PERM w.h.p.

In [8, Claim 4.5] it was shown that a random function is ǫ-far from PERM with high probability (for
sufficiently small ǫ > 0). Here, we generalize this claim to show that also a function that agrees
with a random function on half of its inputs is far from PERM with high probability.

Claim 4.1. Let F be a random function from [n] to [n], and let S ⊆ [n] be a set of size at least n
2 .

Let G be a function from [n] to [n] that agrees with F on S and is fixed to arbitrary values on the
remaining locations [n] \ S. Then, for all sufficiently small ǫ > 0, the probability that G is ǫ-close
to PERM is at most exp(−Ω(n)).

Proof: We follow closely the proof of [8, Claim 4.5]. Notice that if G is ǫ-close to PERM then it
must hold that | Img(F, S)| ≥ |S| − ǫ · n. Thus, we will show that for all sufficiently small ǫ > 0, it
holds that

Pr
[

∣

∣ Img(F, S)
∣

∣ ≥ |S| − ǫ · n
]

≤ exp(−Ω(n))

Consider an arbitrary subset T ⊆ S of size n
4 + ǫ · n, and note that |S \ T | ≥ n

2 − (n4 + ǫ · n) ≥ n
8

for sufficiently small ǫ. Note that the values of F at distinct locations are independent, and in
particular, Img(F, T) and Img(F, S \ T) are independent. Observe that if | Img(F, S)| ≥ |S| − ǫ · n,
then both the following must hold:

1. | Img(F, T)| ≥ n/4, since | Img(F, S)| ≤ | Img(F, T)|+ (|S| − |T |).

2. | Img(F, S \ T) ∩ Img(F, T)| ≤ ǫ · n, since there cannot be more than ǫ · n collisions between
the values of F on T and on S \ T .

To bound the probability that both conditions are satisfied, we first fix Img(F, T) such that it

satisfies item (1). Now, the expected number of collisions in Img(F, S \T)∩ Img(F, T) is | Img(F,T)|
n ·

|S \ T | ≥ 1
4 · n

8 = n
32 , since each element in S \ T is mapped by F into Img(F, T) with probability

| Img(F,T)|
n ≥ 1

4 . Therefore, by Chernoff Bound, for every ǫ < 1
32 the probability of having at most

ǫ · n collisions (as required by item (2)) is at most exp(−Ω(n)). �

5 A lower bound on the isolated model for PERM

In this section we establish the second part of Theorem 1.1, by showing the following lower bound
on isolated cs-IPPs for PERM.

Theorem 5.1. If PERM can be verified by a computationally-sound IPP in the isolated model that
has query complexity q > 0 and communication complexity c > 0, then q5 · c = Ω(n/ log(n)).

5.1 Proof of Theorem 5.1

Consider an arbitrary computationally sound isolated IPP that has communication complexity
c > 0 and uses q > 0 (possibly adaptive) queries. Without loss of generality, we assume that the
querying module does not make the same query more than once.

Let RQ and RI denote the randomness of the querying and interacting modules, respectively.
For every r, for every k ∈ [q] and every a ∈ [n]k−1, let Qk(a, r) denote the kth query made by the

15

querying module with randomness r after obtaining a as the answers to the first k− 1 queries. Let

Q[k](a, r)
def
= (Q1(r), Q2(a1, r), . . . , Qk(a[k−1], r)) be the sequence of the first k queries given answers

a and randomness r. For any function f , we define Qf
k(r)

def
= Qk(a, r) where a = (a1, . . . , ak−1) such

that ai = f(Qi(a[i−1], r)) for each i ∈ [k − 1]. Accordingly, we define Qf
[k](r)

def
= (Qf

1(r), . . . , Q
f
k(r)),

and denote the complete sequence by Qf (r)
def
= Qf

[q](r). We remove the overline and write Q[k](a, r)

(resp., Qπ
[k](r)) when we refer to the set of the queries in Q[k](a, r) (resp., Q

π
[k](r)) rather than the

sequence.
Note that Qf

[k](r) does not depend on all of f , but rather only on the value of f on the prefix

Qf
[k−1](r). In particular, we will use the fact that if two functions f and g satisfy that f(Qf

[k](r)) =

g(Qg
[k](r)), it implies that Qf

[k](r) = Qg
[k](r) (in addition to Qf

k+1(r) = Qg
k+1(r)).

Next, we turn to define heavy locations as locations that are queried with high probability by
the querying module. Since queries are adaptive, these locations depend on the answers to previous
queries. Hence, we define the heavy locations recursively, query by query, each time fixing values
for the previous heavy locations only. Let α > 0 be a threshold parameter to be determined later
(specifically, we will set α = O(q2/n)). Since the first query is independent of the input, the heavy
locations of the first query are simply those that are queried with high probability in the first query:

H1
def
=

{

i ∈ [n] : Pr
RQ

[Q1(RQ) = i] ≥ α

}

Next, we consider all possible assignments of values to the first heavy set. For each assignment
a1 ∈ [n]|H1|, we defineH2(a1) to be the locations that are queried with high probability in the second
query when querying a random permutation Π, conditioned on Π agreeing with the assignment a1
on H1:

H2(a1)
def
=

{

i ∈ [n] : Pr
Π,RQ

[

QΠ
2 (RQ) = i

∣

∣ Π(H1) = a1
]

≥ α

}

We continue recursively. For the kth query, we consider all assignments a[k−1] = (a1, . . . , ak−1) to

the heavy locations of the first k − 1 queries, such that ai ∈ [n]|Hi(a[i−1])| for each i ∈ [k − 1].11

We denote the sequence of heavy locations for the first k − 1 queries corresponding to a[k−2] by

H[k−1](a[k−2])
def
= (H1,H2(a1) . . . ,Hk−1(a[k−2])). We define Hk(a[k−1]) to be the locations that are

queried with high probability in the kth query when querying a random permutation Π, conditioned
on Π agreeing with all assignment in a[k−1] on the corresponding sets in H[k−1](a[k−2]):

Hk(a[k−1])
def
=

{

i ∈ [n] : Pr
Π,RQ

[

QΠ
k (RQ) = i

∣

∣ Π(H[k−1](a[k−2])) = a[k−1]

]

≥ α

}

where Π(H[k−1](a[k−2])) denotes the application of Π to each element in H[k−1](a[k−2]) in order;

that is, Π(H[k−1](a[k−2])) = (Π(H1),Π(H2(a1)), . . . ,Π(Hk−1(a[k−2]))).

For every permutation π, we define Hπ
k

def
= Hk(a[k−1]) where a[k−1] = (a1, . . . , ak−1) such that

ai = π(Hi(a[i−1])) for each i ∈ [k− 1]. Accordingly, we define Hπ
[k]

def
= (Hπ

1 , . . . ,Hπ
k), and denote the

11We will actually only care about assignments that are consistent with some permutation; that is, assignments
a[k−1] = (a1, . . . , ak−1) for which there exists some permutation π such that, for all i ∈ [k − 1], it holds that
ai = π(Hi(a[i−1])).

16

complete sequence by Hπ def
= Hπ

[q]. We remove the overline and write H[k](a[k−1]) (resp., Hπ
[k]) to

denote the union of H[k](a[k−1]) (resp., Hπ
[k]); that is, H[k](a[k−1])

def
=
⋃

i∈[k]Hi(a[i−1]), and similarly

Hπ
[k]

def
=
⋃

i∈[k]Hπ
i . We also denote the complementary sets of light locations: Lk(a[k−1])

def
= [n] \

Hk(a[k−1]) and L[k](a[k−1])
def
= [n] \ H[k](a[k−1]), and similarly Lπ

k
def
= [n] \ Hπ

k , Lπ
[k]

def
= [n] \ Hπ

[k] and

Lπ def
= Lπ

[q].

Note that, similarly to Qπ
[k](r), also Hπ

[k] does not depend on all of π, but rather only on its

values on the prefix Hπ
[k−1]. This property will be important for us later.

Note that each Hπ
k satisfies that |Hπ

k | ≤ 1/α, thus |Hπ| ≤ q/α. Denote h
def
= q/α, the bound

on the size of the heavy locations. We will later set α such that h ≤ n/2, which ensures that the
function G we will define next is far from PERM with high probability.

For each permutation π over [n] and each function f from [n] to [n], let G(π, f) : [n] → [n] be
the function that agrees with π on Hπ, and agrees with f on Lπ (i.e., denoting g = G(π, f), it holds
that g(i) = π(i) for every i ∈ Hπ, and g(i) = f(i) for every i ∈ Lπ). Let Π be a random permutation
over [n] and let F be a random function from [n] to [n] such that Π and F are independent. Let
G = G(Π, F), and let ǫ > 0 be a sufficiently small proximity parameter. For each fixed permutation
π, since |Lπ| ≥ n/2, Claim 4.1 implies that the probability that G(π, F) is ǫ-close to PERM is at
most exp(−Ω(n)). Hence, the probability that G is ǫ-close to PERM is at most exp(−Ω(n)).

For each permutation π and each randomness r of the interacting module, let T (π, r) denote
the transcript of the interaction with the honest prover on input π, when the interacting module
uses randomness r. Consider the verifier’s view when interacting with the honest prover on input
Π:

X
def
= (T (Π, RI), RI ,Π(Q

Π(RQ)), RQ)

For each fixed permutation π, define the cheating prover Pπ that has π hard-wired and emulates
the honest prover with input π. Consider the verifier’s view when interacting with PΠ on input
G = G(Π, F). Note that the same permutation Π is used both in G and in the prover; in other
words, we sample π ∼ Π and f ∼ F , and consider the verifier’s view when interacting with Pπ on
G(π, f). The view is:

X ′ def= (T (Π, RI), RI , G(Q
G(RQ)), RQ)

We claim that the verifier must distinguish between the views X and X ′.

Claim 5.2. Let D denote the deciding module of the verifier. Then,

Pr[D(X) = 1]− Pr[D(X ′) = 1] = Ω(1)

Proof: We show that for all sufficiently large n’s it must hold that

Pr[D(X) = 1]− Pr[D(X ′) = 1] ≥ 1

3
− Pr[G is ǫ-close to PERM] (1)

Since Pr[G is ǫ-close to PERM] = o(1), this will establish the claim.
For each fixed permutation π and function f , let Xπ denote the view X when Π is fixed to π,

and let X ′
π,f denote the view X ′ when Π is fixed to π and F is fixed to f . That is, Xπ is the view of

the verifier when interacting with the honest prover on input π, and X ′
π,f is the view of the verifier

when interacting with Pπ on input G(π, f). The completeness condition implies that for each fixed
permutation π it holds that Pr[D(Xπ) = 1] ≥ 2/3. Therefore,

Pr[D(X) = 1] ≥ 2

3
(2)

17

For starters, suppose that the verifier is statistically sound (whereas we are only guaranteed that
it is computationally sound). In this case, for each fixed permutation π and function f such that
G(π, f) is ǫ-far from PERM, it holds that Pr[D(X ′

π,f) = 1] ≤ 1/3. Therefore,

Pr[D(X ′) = 1] =
∑

π,f

Pr[Π = π, F = f] · Pr[D(X ′
π,f) = 1]

≤ 1

3
+ Pr

Π,F
[G(Π, F) is ǫ-close to PERM]

(3)

Combining Eq. (3) with Eq. (2) it follows that Eq. (1) holds for every n.
We turn to the (real) case where the verifier is only computationally sound. We show that for

all sufficiently large n’s, for every fixed permutation π over [n] and function f from [n] to [n] such
that G(π, f) is ǫ-far from PERM, it holds that Pr[D(X ′

π,f) = 1] ≤ 1/3. This implies Eq. (3) holds
for all sufficiently large n’s, which together with Eq. (2) proves the claim.

Assume toward contradiction that for infinitely many n’s there exist corresponding πn and fn
such that G(πn, fn) is ǫ-far from PERM and yet Pr[D(X ′

πn,fn
) = 1] > 1/3. Consider a cheating

prover that for each such n implements Pπn . A polynomial-size family of circuits can implement
this cheating prover, because it may have πn hard-wired and emulate the polynomial-time honest
prover. However, this cheating prover makes the verifier falsely accept G(πn, fn) with probability
greater than 1/3 for infinity many n’s, contradicting the computational soundness of the verifier. �

In contrast to Claim 5.2 we will show that the views X and X ′ are indistinguishable unless
q5 · c = Ω(n/ log(n)). We will show the indistinguishability claim even for each fixed value of RI .
Furthermore, we will show that the views are indistinguishable even when they are extended to
include the value of Π on all the heavy locations.12

Lemma 5.3. Let rI be an arbitrary randomness string of the interacting module, and let T (Π)
def
=

T (Π, rI). Let

Y
def
=
(

T (Π),Π(HΠ),Π
(

QΠ(RQ) ∩ LΠ
)

, RQ

)

Y ′ def=
(

T (Π),Π(HΠ), F
(

QG(RQ) ∩ LΠ
)

, RQ

)

Let γ > 0 be a sufficiently small constant (γ ≤ 1/64 will suffice). If q5 · c ≤ γ · n
log(n) , then

∆(Y, Y ′) = O
((q5·c

n/ log(n)

)1/6)
.

Note that we can indeed reconstruct the complete sequence of answers Π(QΠ(RQ)) from the pair
(Π(HΠ),Π(QΠ(RQ) ∩ LΠ)) (which is necessary for the indistinguishability of Y and Y ′ to imply
that of X and X ′). Specifically, we rely on the fact that from Π(HΠ) we can recursively recover
HΠ, which allows us to determine for each query whether it belongs to HΠ or LΠ, and if it is heavy,
its position within HΠ.

Lemma 5.3 implies that Y and Y ′ (and hence X and X ′) are indistinguishable unless q5 · c =
Ω(n/ log(n)). To see this: Let γ > 0 be the constant in Lemma 5.3. Assume q5 · c 6= Ω(n/ log(n)),
meaning that for any δ > 0, for infinitely many n’s, it holds that q5 · c ≤ δ · n/ log(n). This
implies that, for any δ < γ, for infinitely many n’s the lemma’s condition that q5 · c ≤ γ · n/ log(n)
holds. Hence, by the lemma, for all those n’s it holds that ∆(Y, Y ′) = O

((q5·c
n/ log(n)

)1/6)
= O(δ1/6),

meaning that Y and Y ′ are indistinguishable.

12Recall that for any random variables X and X ′, and any function f , it holds that ∆(f(X), f(X ′)) ≤ ∆(X,X ′).

18

Before proceeding to the proof of Lemma 5.3, we state a central lemma that will be needed
for the proof. This lemma bounds the probability that the same light location is queried in two
independent executions of the querying module, when querying a random permutation.

Lemma 5.4. Let R1, R2 be two independent random variables, each distributed identically to RQ. If
q = O(

√
n), then:

Pr
R1,R2,Π

[

QΠ(R1) ∩QΠ(R2) ∩ LΠ 6= ∅
]

= O(q2 · α).

Intuitively, this lemma holds due to the bound on the probability of querying light locations.
However, the two executions query the same random permutation Π, introducing a dependency
that necessitates a more delicate argument. We first prove Lemma 5.3 assuming Lemma 5.4, and
then prove Lemma 5.4 in Section 5.1.1.

Proof of Lemma 5.3. By Pinsker’s inequality it holds that ∆(Y, Y ′) ≤
√

1
2 D(Y ||Y ′), where D is the

KL divergence. Therefore, we focus on upper bounding D(Y ||Y ′). Let Yr and Y ′
r denote the views

Y and Y ′ when fixing RQ to r, and note that D(Y ||Y ′) = Er∼RQ

[

D(Yr ||Y ′
r)
]

. As for D(Yr ||Y ′
r),

we have

D(Yr ||Y ′
r) = D

(

T (Π),Π(HΠ),Π(QΠ(r) ∩ LΠ)
∣

∣

∣

∣T (Π),Π(HΠ), F (QG(r) ∩ LΠ)
)

= D
(

Π(QΠ(r) ∩ LΠ)
∣

∣Π(HΠ), T (Π)
∣

∣

∣

∣F (QG(r) ∩ LΠ)
∣

∣Π(HΠ), T (Π)
)

= Eb∼Π(QΠ(r)∩LΠ)

a∼Π(HΠ)
τ∼T (Π)

[

log

(

1

PrΠ,F

[

F (QG(r) ∩ LΠ) = b
∣

∣Π(HΠ) = a, T (Π) = τ
)]

)]

(4)

−H
(

Π(QΠ(r) ∩ LΠ)
∣

∣Π(HΠ), T (Π)
)

where the second equality uses the KL divergence chain rule (see also Claim 2.5), and the third
equality is by the definition of conditional KL divergence. We can express the expectation in Eq. (4)
as expectation over Π itself:

Eπ∼Π

[

log

(

1

PrΠ,F

[

F (QG(r) ∩ LΠ) = π(Qπ(r) ∩ Lπ)
∣

∣Π(HΠ) = π(Hπ), T (Π) = T (π)
]

)]

Consider the probability term in the denominator. Recall that the heavy locations of each permuta-
tion are determined only by the value of the permutation on previous heavy locations. This implies
that the condition Π(HΠ) = π(Hπ) is equivalent to Π(Hπ) = π(Hπ). Note that this condition also
means that LΠ = Lπ. Similarly, the queries to each function are determined only by the function’s
value on previous queries. The fact that Π agrees with π on the heavy locations and F agrees with
π on the light queries means that G agrees with π on all queries, which in turn means that we can
replace QG(r) with Qπ(r). Thus, the probability term becomes:

Pr
Π,F

[

F (QG(r) ∩ Lπ) = π(Qπ(r) ∩ Lπ)
∣

∣Π(Hπ) = π(Hπ), T (Π) = T (π)
]

= Pr
Π,F

[

F (Qπ(r) ∩ Lπ) = π(Qπ(r) ∩ Lπ)
∣

∣Π(Hπ) = π(Hπ), T (Π) = T (π)
]

= Pr
F
[F (Qπ(r) ∩ Lπ) = π(Qπ(r) ∩ Lπ)]

=
1

n|Qπ(r)∩Lπ |

19

where the second equality is since F and Π are independent. Denoting Qπ
L(r)

def
= Qπ(r) ∩ Lπ, and

accordingly the set Qπ
L(r)

def
= Qπ(r) ∩ Lπ, and combining all the above, we get

D(Yr ||Y ′
r) = Eπ∼Π

[

|Qπ
L(r)|

]

· log(n)−H
(

Π(QΠ
L(r))

∣

∣Π(HΠ), T (Π)
)

Taking expectation over r ∼ RQ, we have

D(Y ||Y ′) = Er∼RQ

π∼Π

[

|Qπ
L(r)|

]

· log(n)− Er∼RQ

[

H
(

Π(QΠ
L(r))

∣

∣Π(HΠ), T (Π)
)]

(5)

We next focus on lower bounding the second term of Eq. (5). Recall that we expect this term
to be large since the light queries are dispersed across many locations, while the short transcript
can only have significant information on a small number of them. To argue this formally, we
consider multiple independent executions of the querying module. We show that we expect to see
many different light locations across the executions, making their total entropy large, while the
transcript can reduce this total entropy by at most c bits. Let R1, . . . , Rt be t independent random
variables, each distributed identically to RQ, where t ∈ N is a parameter to be set later. Denote
R = (R1, . . . , Rt) and r = (r1, . . . , rt). Then,

t · Er∼RQ

[

H
(

Π(QΠ
L(r))

∣

∣Π(HΠ), T (Π)
)

]

=
∑

i∈[t]

Eri∼Ri

[

H
(

Π(QΠ
L(ri))

∣

∣Π(HΠ), T (Π)
)

]

= Er∼R

[

∑

i∈[t]

H
(

Π(QΠ
L(ri))

∣

∣Π(HΠ), T (Π)
)

]

≥ Er∼R

[

H

(

(

Π(QΠ
L(ri))

)

i∈[t]

∣

∣

∣

∣

Π(HΠ), T (Π)

)]

≥ Er∼R

[

H

(

(

Π(QΠ
L(ri))

)

i∈[t]

∣

∣

∣

∣

Π(HΠ)

)]

− c

(6)

where the last inequality uses the fact that, for any random variables X,Y, Z, it holds that
H(X |Y, Z) ≥ H(X |Y)− H(Z) (see Claim 2.4), and that H

(

T (Π)
)

≤ c since |T (Π)| ≤ c. Now, for
each r it holds that

H

(

(

Π(QΠ
L(ri))

)

i∈[t]

∣

∣

∣

∣

Π(HΠ)

)

= Eπ∼Π



log





1

PrΠ

[

Π
(

⋃

i∈[t]Q
π
L(ri)

)

= π
(

⋃

i∈[t]Q
π
L(ri)

) ∣

∣

∣
Π(Hπ) = π(Hπ)

]







 (7)

We next lower bound the logarithm term in Eq. (7). Recall that h = q/α bounds the size of Hπ

for every π. The logarithm term is lower bounded by

log







∏

i∈[|
⋃

i∈[t] Q
π
L
(ri)|]

(n− h+ 1− i)







≥ log
(

(n− h− t · q)|
⋃

i∈[t] Q
π
L(ri)|

)

≥
∣

∣

∣

⋃

i∈[t]

Qπ
L(ri)

∣

∣

∣ · log (n− 2h)

≥
∣

∣

∣

⋃

i∈[t]

Qπ
L(ri)

∣

∣

∣
·
(

log(n)−O

(

h

n

))

(8)

20

where the first inequality uses that |Qπ
L(ri)| ≤ q, the second inequality assumes that h ≥ t ·q (which

will be verified once we set t and h), and the last inequality uses log (n− 2h) = log (n)+log
(

1− 2h
n

)

and − log
(

1− 2h
n

)

= O
(

h
n

)

which assumes that 2h
n < 1

2 (also to be verified later). Combining Eq. (8)
with Eq. (7), we get

H

(

(

Π(QΠ
L(ri))

)

i∈[t]

∣

∣

∣

∣

Π(HΠ)

)

≥ Eπ∼Π





∣

∣

∣

⋃

i∈[t]

Qπ
L(ri)

∣

∣

∣



 ·
(

log(n)−O

(

h

n

))

(9)

Using
∣

∣

⋃

i∈[t]Q
π
L(ri)

∣

∣ ≥∑i∈[t] |Qπ
L(ri)| −

∑

i,j∈(t2)
|Qπ

L(ri) ∩Qπ
L(rj)|, we have

Er∼R
π∼Π





∣

∣

∣

⋃

i∈[t]

Qπ
L(ri)

∣

∣

∣



 ≥ t · Er∼RQ

π∼Π

[

|Qπ
L(r)|

]

− t2 · Er1∼R1
r2∼R2
π∼Π

[

|Qπ
L(r1) ∩Qπ

L(r2)|
]

(10)

Combining Eq. (6), (9) and (10) and dividing by t, we have

Er∼RQ

[

H
(

Π(QΠ
L(r))

∣

∣Π(HΠ), T (Π)
)

]

≥



Er∼RQ

π∼Π

[

|Qπ
L(r)|

]

− t · Er1∼R1
r2∼R2
π∼Π

[

|Qπ
L(r1) ∩Qπ

L(r2)|
]



 ·
(

log(n)−O

(

h

n

))

− c

t

≥ Er∼RQ

π∼Π

[

|Qπ
L(r)|

]

· log(n)− t · Er1∼R1
r2∼R2
π∼Π

[

|Qπ
L(r1) ∩Qπ

L(r2)|
]

· log(n)−O

(

q · h
n

)

− c

t

where in the last inequality we have used E
[

|Qπ
L(r)|

]

≤ q. Combining this with Eq. (5), we have

D(Y ||Y ′) ≤ t · Er1∼R1
r2∼R2
π∼Π

[

|Qπ
L(r1) ∩Qπ

L(r2)|
]

· log(n) +O

(

q · h
n

)

+
c

t
(11)

Note that

Er1∼R1
r2∼R2
π∼Π

[

|Qπ
L(r1) ∩Qπ

L(r2)|
]

≤ Pr
R1,R2,Π

[

QΠ
L(R1) ∩QΠ

L(R2) 6= ∅
]

· q (12)

By Lemma 5.4, it holds that

Pr
R1,R2,Π

[

QΠ
L(R1) ∩QΠ

L(R2) 6= ∅
]

= O(q2 · α) (13)

where we rely on our hypothesis that q5 · c ≤ γ · n
log(n) , which ensures the hypothesis of Lemma 5.4

(i.e., q = O(
√
n)). Combining Eq. (11), (12), and (13), we get

D(Y ||Y ′) = O

(

t · q3 · α · log(n) + q · h
n

+
c

t

)

Recall that h = q/α. Setting h = c·n
t·q and t =

(

c2·n
q5 log(n)

)1/3
, we get

D(Y ||Y ′) = O

(

t · q4
h

· log(n) + q · h
n

+
c

t

)

= O
((q5 · c

n/ log(n)

)1/3)

21

Since ∆(Y, Y ′) ≤
√

1
2 D(Y ||Y ′), we have that ∆(Y, Y ′) = O

((

q5·c
n/ log(n)

)1/6)

, as claimed.

We are left to verify the assumptions we had in Eq. (8), that h ≤ n/4 and h ≥ t ·q. (We also had
the assumption that h ≤ n/2 to ensure that G is ǫ-far from PERM w.h.p., but this is already implied
by h ≤ n/4.) Recall our hypothesis that q5 · c ≤ γ · n/ log(n) for a sufficiently small γ > 0. This
hypothesis implies that h = (c ·n2 · q2 · log(n))1/3 ≤ γ1/3 ·n/q, which is less than n/4 for sufficiently
small γ. Turning to verify the assumption h ≥ t · q, we have h/tq = (q4 · n · log2(n)/c)1/3 ≥
γ−1/3q3 log(n) ≥ 1, as desired. �

Completing the proof of Theorem 5.1. Lemma 5.3 implies that unless q5 ·c = Ω(n/ log(n)) it
holds that X and X ′ are indistinguishable (even for any fixed value of RI , and even when X and X ′

are extended to include the value of Π on all the heavy locations). On the other hand, by Claim 5.2,
the verifier must distinguish between X and X ′. Thus, we conclude that q5 · c = Ω(n/ log(n)) must
hold, completing the proof.

5.1.1 Proof of Lemma 5.4.

Recall that in Lemma 5.4 we want to bound the probability of a collision between the light queries
of two independent executions querying a random permutation. Specifically, we want to show that:

p
def
= Pr

[

QΠ
[q](R1) ∩QΠ

[q](R2) ∩ LΠ
[q] 6= ∅

]

= O(q2 · α)

For intuition, consider first the simplified case where all locations are light across all queries; that
is, for each query k ∈ [q] and location i ∈ [n], we have PrΠ,RQ

[QΠ
k (RQ) = i] < α. We aim to show

that for any k, l ∈ [q], the probability that QΠ
k (R1) = QΠ

l (R2) is O(α). What prevents us from
deducing this immediately from the condition on light locations is the dependence between QΠ

k (R1)
and QΠ

l (R2) through Π. However, QΠ
k (R1) and QΠ

l (R2) depend on Π only through its value on
the previous queries, Π(QΠ

[k−1](R1)) and Π(QΠ
[l−1](R2)), respectively. If we assume inductively that

there are no collisions between QΠ
[k−1](R1) and QΠ

[l−1](R2), then Π(QΠ
[k−1](R1)) and Π(QΠ

[l−1](R2))
are “almost independent”, since a permutation restricted to a small set of locations is close to a
random function. We will show that this near-independence is sufficient.

Proceeding to the proof, we begin by decomposing the probability of a collision in the first q
light queries based on whether there is a collision in the previous q − 1 light queries, and continue
recursively:

p = Pr
[

QΠ
[q](R1) ∩QΠ

[q](R2) ∩ LΠ
[q] 6= ∅

]

≤ Pr

[

QΠ
[q](R1) ∩QΠ

[q](R2) ∩ LΠ
[q] 6= ∅

∧ QΠ
[q−1](R1) ∩QΠ

[q−1](R2) ∩ LΠ
[q−1] = ∅

]

+ Pr
[

QΠ
[q−1](R1) ∩QΠ

[q−1](R2) ∩ LΠ
[q−1] 6= ∅

]

...

≤
∑

k∈[q]

Pr

[

QΠ
[k](R1) ∩QΠ

[k](R2) ∩ LΠ
[k] 6= ∅

∧ QΠ
[k−1](R1) ∩QΠ

[k−1](R2) ∩ LΠ
[k−1] = ∅

]

We next take a union bound over the possible collisions. If there are no collisions between the first
k − 1 light queries, then for a collision to exist between the first k light queries, it must involve
QΠ

k (R1) or QΠ
k (R2). Specifically, there must exist some l ∈ [k] such that QΠ

k (R1) = QΠ
l (R2) and

QΠ
l (R2) ∈ LΠ

[k], or the same with R1 and R2 reversed (which give us a factor 2). Furthermore, we

22

can replace the condition QΠ
l (R2) ∈ LΠ

[k] with the weaker condition QΠ
l (R2) ∈ LΠ

k (since LΠ
[k], the

set of locations that are light in all the first k queries, is a subset of LΠ
k , the set of locations that are

light in the kth query). Similarly, we can replace the condition QΠ
[k−1](R1)∩QΠ

[k−1](R2)∩LΠ
[k−1] = ∅

with the weaker condition QΠ
[k−1](R1) ∩ QΠ

[l−1](R2) ∩ LΠ
[k−1] = ∅ (since QΠ

[l−1](R2) is a subset of

QΠ
[k−1](R2)). We get:

p ≤ 2 ·
∑

k∈[q]

∑

l∈[k]

Pr

[

QΠ
k (R1) = QΠ

l (R2) ∧ QΠ
l (R2) ∈ LΠ

k

∧ QΠ
[k−1](R1) ∩QΠ

[l−1](R2) ∩ LΠ
[k−1] = ∅

]

(14)

We next show that each term in the summation is bounded by O(α). Consider any k ∈ [q] and
l ∈ [k]. We will show the bound by showing it holds even when conditioning on any value of Π on
HΠ

[k−1] and Q
Π
[l−1](R2) ∩ LΠ

[k−1], and on any value of R2. We begin by conditioning on the value of

Π on HΠ
[k−1]. Specifically, we condition on Π(H[k−1](a[k−2])) = a[k−1], where each ai is an arbitrary

assignment to the elements in Hi(a[i−1]). Note that this conditioning fixes LΠ
[k−1] to L[k−1](a[k−2])

and LΠ
k to Lk(a[k−1]). We get:

Pr

[

QΠ
k (R1) = QΠ

l (R2) ∧ QΠ
l (R2) ∈ Lk(a[k−1])

∧ QΠ
[k−1](R1) ∩QΠ

[l−1](R2) ∩ L[k−1](a[k−2]) = ∅

∣

∣

∣

∣

∣

Π(H[k−1](a[k−2])) = a[k−1]

]

Notice that if QΠ
k (R1) was independent of QΠ

l (R2) conditioned on Π(H[k−1](a[k−2])) = a[k−1],

then we would be done, since by definition of Hk(a[k−1]), the probability of QΠ
k (R1) equaling a

location in Lk(a[k−1]) given that Π(H[k−1](a[k−2])) = a[k−1] is less than α. However, QΠ
k (R1) and

QΠ
l (R2) are dependent through Π. Recall that QΠ

k (R1) and QΠ
l (R2) depend on Π only through

its values on the previous queries QΠ
[k−1](R1) and QΠ

[l−1](R2) respectively. Furthermore, we have

that the light locations within QΠ
[k−1](R1) and Q

Π
[l−1](R2) are disjoint, and the heavy locations are

fixed. Per the discussion at the beginning of the proof, we use the fact that the light queries are
disjoint, and their number is small (at most q = O(

√
n)), to argue that the value of Π on them are

“almost independent” (even conditioned on Π(H[k−1](a[k−2])) = a[k−1]). Specifically, we condition

on an arbitrary value of Π on the light queries from the second execution (i.e., Π(QΠ
[l−1](R2) ∩

L[k−1](a[k−2]))), and show that the conditional probability is at most an O(1) factor larger than
the same probability without this condition.

First, we fix R2 to an arbitrary value r2. Now, let b[l−1] be an arbitrary sequence, such that

for each i ∈ [l − 1], if Qi(b[i−1], r2) is heavy (i.e., Qi(b[i−1], r2) ∈ H[k−1](a[k−2])), then bi equals to

a[k−1] at the location corresponding to Qi(b[i−1], r2). We also require that b[l−1] leads to a light lth

query; that is, Ql(b[l−1], r2) ∈ Lk(a[k−1]). Let bL denote the subsequence of b[l−1] at indices i for

which Qi(b[i−1], r2) ∈ L[k−1](a[k−2]). We condition on Π(Q[l−1](b[l−2], r2) ∩ L[k−1](a[k−2])) = bL. To

simplify the expressions that follow, we write H[k−1] = H[k−1](a[k−2]), and L[k−1] = L[k−1](a[k−2]).
We have:

Pr

[

QΠ
k (R1) = Ql(b[l−1], r2)

∧ QΠ
[k−1](R1) ∩Q[l−1](b[l−2], r2) ∩ L[k−1] = ∅

∣

∣

∣

∣

∣

Π(H[k−1]) = a[k−1],

Π(Q[l−1](b[l−2], r2) ∩ L[k−1]) = bL

]

(15)

In order to upper bound Eq. (15), we first establish a general claim:

Claim: Let Π be a uniform permutation over [n]. Let S1, S2, S3 be three disjoint sequences of distinct
elements in [n]. Let a, b, c be disjoint sequences of distinct elements in [n] such that |a| = |S1|,

23

|b| = |S2| and |c| = |S3|. Then:

Pr[Π(S3) = c | Π(S1) = a,Π(S2) = b] ≤
(

n− |a|
n− |a| − |b| − |c|

)|c|

· Pr[Π(S3) = c | Π(S1) = a]

Proof: We have:

Pr[Π(S3) = c | Π(S1) = a,Π(S2) = b]

Pr[Π(S3) = c | Π(S1) = a]
=

∏

i∈[|c|](n− |a|+ 1− i)
∏

i∈[|c|](n− |a| − |b|+ 1− i)
≤ (n− |a|)|c|

(n− |a| − |b| − |c|)|c|

�

Using the claim, we show that Eq. (15) is upper bounded by:

(

n− h

n− h− l − k

)k

· Pr
[

QΠ
k (R1) = Ql(b[l−1], r2)

∧ QΠ
[k−1](R1) ∩Q[l−1](b[l−2], r2) ∩ L[k−1] = ∅

∣

∣

∣

∣

∣

Π(H[k−1]) = a[k−1]

]

(16)

To do so we decompose Eq. (15) in terms of all possible values of R1 = r1 and all possible values
c[k−1] for fixing Π(QΠ

[k−1](r1) ∩ L[k−1]), defined analogously to the values b[l−1] we used for fixing

Π(QΠ
[l−1](r2) ∩ L[k−1]). We sum only over those c[k−1] that satisfy the condition Qk(c[k−1], r1) =

Ql(b[l−1], r2) and the disjointness condition Q[k−1](c[k−2], r1) ∩ Q[l−1](b[l−2], r2) ∩ L[k−1] = ∅. Each
term in the decomposition has the form

Pr

[

Π(Q[k−1](c[k−2], r1) ∩ L[k−1]) = cL

∣

∣

∣

∣

∣

Π(H[k−1]) = a[k−1],

Π(Q[l−1](b[l−2], r2) ∩ L[k−1]) = bL

]

We can apply the claim to each such term since the three sequences involved are disjoint (by
the disjointness condition above, and the fact that the heavy and light locations are disjoint).
Applying the claim to each term, while using the size bounds |cL| ≤ |c[k−1]| < k, |bL| ≤ |b[l−1]| < l,
and |a[k−1]| ≤ h, gives us Eq. (16).

We turn to upper bound the term
(

n−h
n−h−l−k

)k
in Eq. (16). For this, we will use the Lemma’s

hypothesis that q = O(
√
n). We have that

(

n− h

n− h− l − k

)k

≤
(

n− h

n− h− 2q

)q

=

(

1 +
2q

n− h− 2q

)q

=
(

1 +O
(q

n

))q
≤ eO(q

2

n
) = O(1)

where the first inequality uses k, l ≤ q, the second equality uses h ≤ n/2 and q = O(
√
n), and the

last equality also uses q = O(
√
n). As for the probability term in Eq. (16), it is upper bounded by

Pr
[

QΠ
k (R1) = Ql(b[l−1], r2)

∣

∣ Π(H[k−1]) = a[k−1]

]

< α (17)

where the inequality is by definition of Hk(a[k−1]), since Ql(b[l−1], r2) ∈ Lk(a[k−1]). Thus, Eq. (16),

and hence Eq. (15), is bounded by O(α). Since this is true for all a[k−1], b[l−1] and r2, we have that
each term in the summation in Eq. (14) is bounded by O(α). Hence, we get that p = O(q2 · α), as
claimed. �

24

An inessential comment about the proofs of Lemma 5.3 and Lemma 5.4. Note that
in the analysis of Lemma 5.3 and Lemma 5.4 we have mainly considered the distribution of Π
when its value on the heavy locations is fixed arbitrarily. We could have conditioned a priori on an
arbitrary fixed value for Π(HΠ), rather than making the argument for a random value of Π(HΠ)
(and considering the expectation over all possible fixed values for it). This would have complicated
the analysis of Lemma 5.4, since there we conditioned only on the value of Π on a prefix of the
heavy locations HΠ

[k−1] for each k ∈ [q], rather than on all heavy locations (which is needed in order

to invoke the definition of the kth heavy set in Eq. (17)). Nevertheless, we could have fixed the
value of Π on all heavy locations a priori and removed the extra conditioning on the heavy locations
of the last q − k − 1 queries, similar to how we removed the conditioning on the light queries in
Eq. (16). To ensure that this does not have a significant effect on the probabilities, we would have
needed to ensure that the number of heavy locations is sufficiently small (specifically, we would
have needed to ensure that h = O(n/q), which holds under our current parameter setting).

6 A lower bound on the isolated model with non-adaptive queries

for PERM

In this section we present a lower bound on isolated cs-IPPs for PERM in the special case where the
verifier uses non-adaptive queries.

Theorem 6.1. If PERM can be verified by a computationally-sound isolated IPP that uses non-
adaptive queries and has query complexity q > 0 and communication complexity c > 0, then q3 · c =
Ω(n).

Before proceeding to the proof, we establish a lemma that bounds the total information that
any c-bit transcript T (Π) can have on individual locations in a random permutation Π, when it is
combined with the value of Π at any q − 1 other locations.

Lemma 6.2. Let n ∈ N, and let q, c ∈ N\{0} such that q·c = O(n). Let Π be a random permutation
over [n]. Let T (Π) be any random variable over {0, 1}c that may depend on Π. For each i ∈ [n],
let Si be any subset of [n] \ {i} such that |Si| < q. Then,

∑

i∈[n]

I
(

Π(i); Π(Si), T (Π)
)

= O (
√
q · c · n) .

Proof: First, it holds that
∑

i∈[n]

I
(

Π(i); Π(Si), T (Π)
)

=
∑

i∈[n]

H
(

Π(i)
)

−
∑

i∈[n]

H
(

Π(i)
∣

∣Π(Si), T (Π)
)

(18)

For the first term of Eq. (18), since each Π(i) is uniform over [n] we have that

∑

i∈[n]

H
(

Π(i)
)

= n · log(n) (19)

To lower bound the second term of Eq. (18), we first establish the following:

Claim: There exists a partition P of [n] into O(q) parts such that for each part B ∈ P and each
i ∈ B it holds that Si does not intersect B.

Proof: Consider a directed graph with vertex set [n], where each vertex i has outgoing edges to
all vertices in Si. Notice that the desired partition is equivalent to a O(q)-coloring of this graph

25

(i.e., a coloring of the vertices with O(q) colors, such that every two nodes that are connected by
a directed edge are assigned different colors). Such a coloring exists since the out-degree of each
node in the graph is upper bounded by q (see Appendix A). �

Let k ∈ N \ {0} be a parameter we will set later, satisfying k ≤ n/2q. Consider a partition P of
[n] obtained by taking the O(q)-way partition from the previous claim and splitting each part into
subparts of size k (except possibly one smaller subpart per original part). The resulting partition
has at most n/k + O(q) = O(n/k) parts. For each part B ∈ P , define SB =

⋃

i∈B Si. Note that
|SB| ≤ |B| ·maxi∈B {|Si|} ≤ k · (q − 1), and that B and SB do not intersect. Then,

∑

i∈[n]

H
(

Π(i)
∣

∣Π(Si), T (Π)
)

=
∑

B∈P

∑

i∈B

H
(

Π(i)
∣

∣Π(Si), T (Π)
)

≥
∑

B∈P

∑

i∈B

H
(

Π(i)
∣

∣Π(SB), T (Π)
)

≥
∑

B∈P

H
(

Π(B)
∣

∣Π(SB), T (Π)
)

(20)

Recall that for any random variables X,Y, Z, it holds that H(X |Y, Z) ≥ H(X |Y) − H(Z) (see
Claim 2.4). Therefore, for each B ∈ P it holds that

H
(

Π(B)
∣

∣Π(SB), T (Π)
)

≥ H
(

Π(B)
∣

∣Π(SB)
)

−H
(

T (Π)
)

≥ H
(

Π(B)
∣

∣Π(SB)
)

− c
(21)

since |T (Π)| ≤ c. To lower bound H
(

Π(B)
∣

∣Π(SB)
)

, we use the fact that B and SB do not intersect:

H
(

Π(B)
∣

∣Π(SB)
)

= log





∏

i∈[|B|]

(n− |SB|+ 1− i)





> log
(

(n− |SB| − |B|)|B|
)

≥ |B| · log (n− k · q)

= |B| ·
(

log (n)−O

(

k · q
n

))

(22)

where the last inequality uses log (n− k · q) = log (n)+log
(

1− k·q
n

)

, and − log
(

1− k·q
n

)

= O
(

k·q
n

)

which relies on k·q
n < 1

2 . Combining Eq. (20), (21) and (22), we get

∑

i∈[n]

H
(

Π(i)
∣

∣Π(Si), T (Π)
)

≥
∑

B∈P

|B| ·
(

log (n)−O

(

k · q
n

))

− |P | · c

= n ·
(

log (n)−O

(

k · q
n

))

−O
(n

k

)

· c

since |P | = O(n/k). Combining this with Eq. (19) and Eq. (18), we get that
∑

i∈[n]

I
(

Π(i); Π(Si), T (Π)
)

= O
(

k · q + n · c
k

)

Setting k = Θ
(
√

c·n
q

)

, we get that

∑

i∈[n]

I
(

Π(i); Π(Si), T (Π)
)

= O (
√
q · c · n)

26

as desired. Due to the lemma’s hypothesis that q · c = O(n), by setting k = γ ·
√

c·n
q with a

sufficiently small constant γ > 0, we can ensure that k satisfies our requirement that k ≤ n/2q. �

6.1 Proof of Theorem 6.1

Consider an arbitrary computationally sound isolated IPP that has communication complexity
c > 0 and uses q > 0 non-adaptive queries. Without loss of generality, we assume that the querying
module does not make the same query more than once.

Let RQ and RI denote the randomness of the querying and interacting modules, respectively.
For each randomness string r of the querying module, let Q(r) be the set of q (non-adaptive) queries
made by the querying module with randomness r. Consider the following set of heavy locations,
denoted

H def
=
{

i ∈ [n] : Pr
RQ

[i ∈ Q(RQ)] ≥ 2q/n
}

Additionally, denote the complementary set of light locations by L def
= [n] \H. Note that |H| ≤ n/2

since
∑

i∈[n] PrRQ
[i ∈ Q(RQ)] = q.

Let Π be a random permutation over [n] and let F be a random function from [n] to [n] such
that Π and F are independent. Let G = G(Π, F) be the function that agrees with Π on H, and
agrees with F on L; that is, G(i) = Π(i) for every i ∈ H, and G(i) = F (i) for every i ∈ L. Since
|L| ≥ n

2 , Claim 4.1 implies that for all sufficiently small ǫ > 0 it holds that G is ǫ-far from PERM

with high probability.

Let QH(r)
def
= Q(r)∩H and QL(r)

def
= Q(r)∩L denote the heavy and light queries, respectively,

when the querying module uses randomness r. For each permutation π and each randomness string
r of the interacting module, let T (π, r) denote the transcript of the interaction between the honest
prover and the interacting module with randomness r on input π. Consider the verifier’s view when
interacting with the honest prover on input Π:

X
def
= (T (Π, RI), RI ,Π(Q(RQ)), RQ)

≡ (T (Π, RI), RI ,Π(QH(RQ)),Π(QL(RQ)), RQ)
(23)

For each fixed permutation π, define the cheating prover Pπ that has π hard-wired and emulates
the honest prover with input π. Consider the verifier’s view when interacting with PΠ on input
G = G(Π, F). Note that the same permutation Π is used both in G and in the prover; in other
words, we sample π ∼ Π and f ∼ F , and consider the verifier’s view when interacting with Pπ on
G(π, f). The view is:

X ′ def= (T (Π, RI), RI , G(Q(RQ)), RQ)

≡ (T (Π, RI), RI ,Π(QH(RQ)), F (QL(RQ)), RQ)
(24)

Since G is ǫ-far from PERM with high probability, the completeness and computational soundness
conditions imply that the verifier must distinguish between X and X ′; see Claim 5.2 for an identical
argument. In contrast, we will show that the views X and X ′ are indistinguishable unless q3 · c =
Ω(n). We will establish the indistinguishability claim even for any fixed value of RI .

Claim 6.3. Let rI be an arbitrary randomness string of the interacting module, and let T (Π)
def
=

27

T (Π, rI).
13 Let Y and Y ′ denote the views X and X ′ when fixing RI to rI :

Y
def
= (T (Π),Π(QH(RQ)),Π(QL(RQ)), RQ)

Y ′ def= (T (Π),Π(QH(RQ)), F (QL(RQ)), RQ)

If q · c = O(n), then ∆(Y, Y ′) = O
((q3·c

n

)1/4)
.

This claim implies that Y and Y ′ (and hence X and X ′) are indistinguishable unless q3 · c = Ω(n).
To see this: Fix an arbitrary constant γ > 0. The claim implies that there exists some constant

γ′ > 0 such that for any sufficiently large n, if q · c ≤ γ · n, then ∆(Y, Y ′) ≤ γ′ ·
(q3·c

n

)1/4
. Thus,

for any (arbitrarily small) constant δ > 0, if for infinitely many n’s it holds that q3 · c ≤ δ · n,
then (since q · c ≤ q3 · c ≤ δ · n ≤ γ · n for sufficiently small δ) for infinitely many n’s it holds that

∆(Y, Y ′) ≤ γ′ ·
(q3·c

n

)1/4 ≤ γ′ · δ, meaning that Y and Y ′ are indistinguishable.

Proof: By Pinsker’s inequality it holds that ∆(Y, Y ′) ≤
√

1
2 D(Y ||Y ′), where D is the KL diver-

gence. Therefore, we focus on upper bounding D(Y ||Y ′). Let Yr and Y ′
r denote the views Y and

Y ′ when fixing RQ to r; that is, Yr = (T (Π),Π(QH(r)),Π(QL(r))) and similarly for Y ′
r . Note that

D(Y ||Y ′) = Er∼RQ

[

D(Yr ||Y ′
r)
]

.

It holds that

D(Yr ||Y ′
r) = D

(

T (Π),Π(QH(r)),Π(QL(r))
∣

∣

∣

∣T (Π),Π(QH(r)), F (QL(r))
)

= D
(

Π(QL(r))
∣

∣Π(QH(r)), T (Π)
∣

∣

∣

∣F (QL(r))
∣

∣Π(QH(r)), T (Π)
)

= |QL(r)| · log(n)−H
(

Π(QL(r))
∣

∣Π(QH(r)), T (Π)
)

(25)

where the second equality uses the KL divergence chain rule (see also Claim 2.5), and the third
equality follows since for the uniform distribution U over a set of size N and any random variable X
it holds that D(X ||U) = log(N)−H(X), and F (QL(r)) is uniform over [n]|QL(r)| and independent
of (Π(QH(r)), T (Π)). To lower bound the second term in Eq. (25), observe that from the chain
rule and the fact that conditioning reduces entropy, it holds that

H
(

Π(QL(r))
∣

∣Π(QH(r)), T (Π)
)

=
∑

i∈QL(r)

H
(

Π(i)
∣

∣Π(QH(r) ∪Q<i
L (r)), T (Π)

)

≥
∑

i∈QL(r)

H
(

Π(i)
∣

∣Π(Q(r)\{i}), T (Π)
)

where Q<i
L (r) denotes the set of elements in QL(r) that are smaller than i. Turning to the first term

of Eq. (25), notice that |QL(r)| · log(n) =
∑

i∈QL(r)
H
(

Π(i)
)

since for every i ∈ [n] the marginal
distribution of Π(i) is uniform over [n]. Thus,

D(Yr ||Y ′
r) ≤

∑

i∈QL(r)

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Q(r)\{i}), T (Π)
)

)

=
∑

i∈QL(r)

I
(

Π(i); Π(Q(r)\{i}), T (Π)
)

(26)

13Note that here T (Π) is a deterministic function of Π, whereas in Lemma 6.2 the notation T (Π) refers to any
random variable that may depend on Π.

28

For each i ∈ L, define

Si
def
= arg max

S⊆[n]\{i},|S|<q

{

I
(

Π(i); Π(S), T (Π)
)}

(27)

Then,

D(Yr ||Y ′
r) ≤

∑

i∈QL(r)

I
(

Π(i); Π(Si), T (Π)
)

(28)

Note that each term in the summation in Eq. (28) is independent of r. Taking expectation over r,
we get

D(Y ||Y ′) = Er∼RQ

[

D(Yr ||Y ′
r)
]

≤ Er∼RQ





∑

i∈QL(r)

I
(

Π(i); Π(Si), T (Π)
)





=
∑

i∈L

Pr
RQ

[i ∈ Q(RQ)] · I
(

Π(i); Π(Si), T (Π)
)

(29)

By definition of the light locations, for every i ∈ L we have that PrRQ
[i ∈ Q(RQ)] <

2q
n . Therefore,

D(Y ||Y ′) <
2q

n
·
∑

i∈L

I
(

Π(i); Π(Si), T (Π)
)

(30)

Note that the sets {Si}i∈L satisfy the hypothesis of Lemma 6.2. Therefore, assuming q · c = O(n),
we can apply Lemma 6.2 to obtain

∑

i∈L

I
(

Π(i); Π(Si), T (Π)
)

= O(
√
q · c · n).

Combining this with Eq. (30), we get that D(Y ||Y ′) = O
(

√

q3·c
n

)

. Recalling that by Pinsker’s

inequality ∆(Y, Y ′) ≤
√

1
2 D(Y ||Y ′), it follows that ∆(Y, Y ′) = O

((q3·c
n

)1/4)
, as claimed. �

Claim 6.3 implies that unless q3 · c = Ω(n), it holds that X and X ′ are indistinguishable (even for
any fixed value of RI). Since the verifier must distinguish between X and X ′, we conclude that
q3 · c = Ω(n), completing the proof.

6.2 Alternative proof, achieving a slightly weaker lower bound

This proof follows a similar structure to the previous one, with the main difference being an
alternative definition of the heavy locations. Additionally, in this approach, we will not fix the
randomness of the interacting module RI but rather fix the randomness of the querying module
RQ.

We make the assumption that the interacting module sends its entire randomness at the end of
the interaction, thereby RI is included in the interaction transcript. The length of the randomness
RI can be assumed to be at most O(c+log(n)) (see Appendix B), hence modifying a general system
to satisfy this assumption increases its communication complexity (from c) to at most O(c+log (n)).
We will prove that under this assumption q3 ·c = Ω(n), which will establish a slightly weaker bound
of q3 · (c + log(n)) = Ω(n). We note that in the case of statistical soundness (which we cannot

29

assume here), one may assume without loss of generality that the isolated IPP is public-coin, since
any (statistically sound) isolated IPP can be emulated by a public-coin isolated IPP with the same
asymptotic query, communication and round complexities (see Appendix C). This means the entire
randomness of the interaction is automatically included in the transcript, and thus the additive
log(n) term can be avoided.

Similarly to Eq. (27), for each i ∈ [n], denote Si = argmaxS⊆[n]\{i},|S|<q

{

I
(

Π(i); Π(S), T (Π, RI)
)}

.
That is, Si is the set of q − 1 locations of Π (excluding i) that together with T (Π, RI), provide
maximal information about Π(i). We change the definition of heavy locations to:

H def
=
{

i ∈ [n] : I
(

Π(i); Π(Si), T (Π, RI)
)

≥ α
}

where α is chosen so as to ensure that there are at most n/2 heavy locations; that is

α
def
=

2

n
·
∑

i∈[n]

I
(

Π(i); Π(Si), T (Π, RI)
)

Note that by Lemma 6.2, if q · c = O(n), then we have that
∑

i∈[n] I
(

Π(i); Π(Si), T (Π, RI)
)

=

O(
√
q · c · n). Therefore, if q · c = O(n), then α = O

(√

q·c
n

)

.

We define G = G(Π, F) as in the previous proof, only now with the new definition of the heavy
locations. Note that, since we still have at most n/2 heavy locations, G remains far from PERM

with high probability. Consider again the honest and cheating views from Eq. (23) and (24), but
now under the new definition of the heavy locations. Note that since RI is part of the interaction
transcript, we can simplify the pair (T (Π, RI), RI) to T (Π, RI). Hence, we have

X
def
= (T (Π, RI),Π(Q(RQ)), RQ) ≡ (T (Π, RI),Π(QH(RQ)),Π(QL(RQ)), RQ)

X ′ def= (T (Π, RI), G(Q(RQ)), RQ) ≡ (T (Π, RI),Π(QH(RQ)), F (QL(RQ)), RQ)

Since G remains far from PERM with high probability, the verifier still must distinguish between
the views X and X ′. On the other hand, we will show that the views X and X ′ are indistinguishable
unless q3 · c = Ω(n). We will establish the indistinguishability claim even for any fixed value of
RQ. The following claim is analogous to Claim 6.3, with the only difference being the underlying
definition of the heavy locations and the fact that we consider the views when fixing RQ rather
than when fixing RI .

Claim 6.4. Let r be an arbitrary randomness string of the querying module. Let Z and Z ′ denote
the views X and X ′ when fixing RQ to r:

Z
def
= (T (Π, RI),Π(QH(r)),Π(QL(r)))

Z ′ def= (T (Π, RI),Π(QH(r)), F (QL(r)))

If q · c = O(n), then ∆(Z,Z ′) = O
((q3·c

n

)1/4)
.

Proof: We can bound D(Z ||Z ′) using the same analysis used to bound D(Yr ||Y ′
r) in Claim 6.3

from Eq. (25) to Eq. (28), only replacing T (Π) with T (Π, RI). Analogously to Eq. (28), we obtain:

D(Z ||Z ′) ≤
∑

i∈QL(r)

I
(

Π(i); Π(Si), T (Π, RI)
)

(31)

30

By our new definition of the heavy locations, each term in the summation in Eq. (31) is smaller

than α, since we sum over light locations only. If q · c = O(n) we have that α = O
(√

q·c
n

)

. Thus,

we have

D(Z ||Z ′) < q · α = O

(
√

q3 · c
n

)

Since ∆(Z,Z ′) ≤
√

1
2 D(Z ||Z ′), the claim follows. �

Claim 6.4 implies that X and X ′ are indistinguishable unless q3 · c = Ω(n), completing the proof.

Acknowledgments

I am deeply grateful to my advisor, Oded Goldreich. First, for his guidance throughout this entire
research project, and, in particular, for his invaluable feedback during the writing stages. Second,
I am grateful to Oded for key insights that significantly contributed to the actual results in this
paper.

References

[1] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. “Randomness in interactive proofs”.
In: computational complexity 3 (1993), pp. 319–354.

[2] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, 2006.

[3] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. “Fast approximate probabilistically check-
able proofs”. In: Information and Computation 189.2 (2004), pp. 135–159.

[4] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Vol. 17.
Algorithms and Combinatorics. Springer, 1998.

[5] Oded Goldreich, Shafi Goldwasser, and Dana Ron. “Property testing and its connection to
learning and approximation”. In: J. ACM 45.4 (1998), pp. 653–750.

[6] Oded Goldreich, Guy N. Rothblum, and Tal Skverer. “On Interactive Proofs of Proximity with
Proof-Oblivious Queries”. In: 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023). Vol. 251. 2023, 59:1–59:16.

[7] Oded Goldreich and Or Sheffet. “On the randomness complexity of property testing”. In:
Computational Complexity 19 (2010), pp. 99–133.

[8] Tom Gur, Yang P. Liu, and Ron D. Rothblum. “An Exponential Separation Between MA
and AM Proofs of Proximity”. In: Comp. Complexity 30.2 (2021), p. 12.

[9] Tom Gur and Ron Rothblum. “Non-interactive proofs of proximity”. In: Computational Com-
plexity 27.1 (2018), pp. 99–207. Preliminary version in ECCC, TR13-078, 2013.

[10] Donald E. Knuth and Andrew C. Yao. “The Complexity of Nonuniform Random Number
Generation”. In: Algorithms and Complexity: New Directions and Recent Results. Academic
Press, 1976, pp. 357–428.

31

[11] Guy N. Rothblum, Salil Vadhan, and Avi Wigderson. “Interactive proofs of proximity: dele-
gating computation in sublinear time”. In: Proceedings of the Forty-Fifth Annual ACM Sym-
posium on Theory of Computing. STOC ’13. Association for Computing Machinery, 2013,
pp. 793–802.

[12] Ronitt Rubinfeld and Madhu Sudan. “Robust Characterizations of Polynomials with Appli-
cations to Program Testing”. In: SIAM Journal on Computing 25.2 (1996), pp. 252–271.

[13] Hadar Strauss. “Emulating Computationally Sound Public-Coin IPPs in the Pre-Coordinated
Model”. In: Electronic Colloquium on Computational Complexity (ECCC) TR24-131 (2024).

32

Appendices

A Coloring a directed graph with bounded out-degree

Claim A.1. Let k ∈ N. If G is a directed graph where each node has out-degree at most k, then G
is (2k + 1)-colorable.

Proof: Let n be the number of nodes in G. Since each node has at most k outgoing edges, the
total number of edges in G is at most n · k. Therefore, there must be some node v that has at
most k incoming edges. Hence, v shares an edge with at most 2k nodes. By induction, the graph
obtained by removing v from G is (2k + 1)-colorable. The nodes that share an edge with v use at
most 2k colors, so there is a free color available for v among the 2k + 1 colors. �

Note that the 2k+1 bound in Claim A.1 is tight: Consider a clique of 2k+1 nodes, where the
nodes are ordered in a cycle such that each node has outgoing edges to the k nodes following it
clockwise, and incoming edges from the k nodes preceding it anticlockwise.

B Reducing the amount of randomness in the isolated model

Claim B.1 (on the randomness complexity of cs-IPPs in the isolated model). Let Π = ∪n∈NΠn

be a property such that Πn is a set of functions from [n] to Σ, where |Σ| = poly(n). If Π has
a computationally-sound IPP in the isolated model with communication complexity c(n), then it
has a computationally-sound IPP in the isolated model with the same order of communication,
query, and round complexities, in which the randomness complexity of the interacting module is
O(c(n) + log(n)). Furthermore, if the original IPP uses non-adaptive queries, then so does the
resulting IPP. Additionally, perfect completeness is preserved.

Proof: The proof follows the standard argument for randomness reduction (see, for example, [7,
Thm. 3], [8, Apdx. A], and [11, Lem. 4.8]). We detail only the modifications needed for the current
setting (i.e., computationally-sound isolated IPPs).

Consider a matrix in which each column corresponds to a possible pair of prover strategy
and input function, and each row corresponds to a possible randomness string of the interacting
module. Each entry contains the probability (over the randomness of the querying module) that
the verifier accepts, given the corresponding prover strategy, input function, and interacting module
randomness. There are at most 22

c(n)
prover strategies, and poly(n)n input functions, therefore the

matrix has at most 22
c(n) · poly(n)n columns. Proceeding in the standard argument of randomness

reduction, there exists a multi-set of size Θ(log(22
c(n) ·poly(n)n)) of the matrix’s rows that preserves

the average of all columns up to an additive deviation of 1/7. This implies an isolated IPP for which

the randomness complexity of the interacting module is O(log(log(22
c(n) · poly(n)n))) = O(c(n) +

log(n)), and the computational-soundness and completeness errors are 1/3 + 1/7. We reduce the
error via O(1) sequential repetitions of the entire system, which increases the communication, query,
and round complexities by a constant factor. �

Note that the resulting interacting module explicitly stores a multi-set of size Ω(2c(n)) for each
input size n. Therefore, the resulting interacting module is non-uniform, and if c(n) is super-
logarithmic it requires a super-polynomial circuit size.

33

C Emulation of the isolated model with public coins

In this section we show that any IPP in the isolated model can be emulated by a public-coin IPP
in the isolated model with the same query, communication, and round complexities (up to constant
factors). We stress that this only applies to statistically sound IPPs, since the emulation does not
preserve the computational complexity of the honest prover.

Theorem C.1. Suppose that a property Π has an r-round IPP in the isolated model with com-
munication complexity c and query complexity q. Then, Π has an r-round public-coin IPP in the
isolated model with communication complexity O(c) and query complexity O(q). Furthermore, if
the original IPP uses non-adaptive queries, then so does the resulting IPP. In addition, perfect
completeness is preserved.

The basic idea of the emulation. In each interaction round, we consider the distribution of
the next message of the original verifier given the interaction transcript up to that round. Instead
of directly sending a message according to this distribution, we send coins that are used to sample
from this distribution (according to a predetermined sampling process).

Note that this emulation requires both the verifier and the honest prover of the resulting system
to know the distributions of the original verifier’s messages, and hence, in general, both will be
inefficient. Furthermore, in a general IPP, these distributions may depend on the full input, since
the verifier’s messages can depend on the query answers. Hence, we rely on the fact that the
original IPP is in the isolated model, where the verifier messages are oblivious of the input, to
ensure that the new verifier can know these distributions without explicit access to the input. A
similar approach can be used to transform any IPP in which the communication with the prover is
oblivious of the input to a public-coin IPP, see Remark C.3. We note that this emulation strategy
is folklore in the case of IPs, where there is free access to the input.

C.1 Preliminaries

Sampling from an arbitrary distribution. We will need the following well-known fact, which
bounds the number of coins needed in order to sample from an arbitrary distribution.

Lemma C.2 (sampling from an arbitrary distribution using only fair coins [10]). For any discrete
random variable X, there exist an (unbounded time) algorithm that samples from X (i.e., for every
x in the range of X the algorithm outputs x with probability Pr[X = x]), such that the expected
number of fair coin tosses required by the algorithm is at most H(X) + 2.

We note that the reason that we are using the sampler of Lemma C.2, rather than a more
straightforward approximate sampler that has a worst-case guarantee on the number of coins used,
is that it is needed in order to preserve the communication complexity up to constant factors.14

Game tree and value. The proof of Theorem C.1 uses the formulation of game trees for inter-
active proof systems (cf. [1, Sec. 4] and [4, Apdx. C.1]). For a fixed input f , the game tree captures
all possible executions of the interactive protocol. Each path from the root to a leaf represents a
possible interaction transcript. The root corresponds to the empty transcript, and each subsequent

14Specifically, the issue with using an approximate sampler is that in order to maintain an overall constant error,
we will need the sampling error at each interaction round to be inversely proportional to the number of rounds r.
On the other hand, the straightforward approximator of a distribution over N values, uses log2(N/ǫ) coins in order
to get a distribution that is ǫ-close to the original one.

34

level alternates between prover and verifier messages. Each internal node represents a partial tran-
script and branches according to the possible next messages: If the transcript ends with a prover
message, then the node’s children represent all the possibilities for the verifier’s next message, and
if it ends with a verifier message, the node’s children represent all the possibilities for the prover’s
next message.

We associate each node in the game tree with a value. The value of an internal node correspond-
ing to partial transcript τ ′ is the maximum probability over all prover strategies that the verifier
accepts f , conditioned on the corresponding sequence of messages sent during the execution equal-
ing τ ′. The value can be computed recursively: If the node is associated with the verifier, then its
value is the expected value of its children, where the expectation is according to the distribution
of the next verifier message, conditioned on the previous sequence of messages equaling τ ′. If the
node is associated with the prover, then its value is the maximal value among its children. Note
that the value of the root of the game tree (corresponding to the empty transcript λ) represents
the maximum probability over all prover strategies that the verifier accepts f . This value should
be at least 2/3 if f is a YES-instance, and at most 1/3 otherwise.

Value in the isolated model. We next present in more detail the recursive computation of the
value, focusing on the isolated model. Fix an arbitrary isolated IPP and an arbitrary input f . Let
Q, I and D denote the querying, interacting, and deciding modules of the IPP, respectively, and
let RI and RQ denote the randomness of the interacting and querying modules, respectively. For
any partial transcript τ ′, let I(r, τ ′) denote the next message sent by the interacting module on
partial transcript τ ′ when using randomness r. Let Rτ ′

I be a random variable that is uniform over
all randomness strings of the interacting module that are consistent with the partial transcript τ ′.15

As was observed by [6], in the isolated model the value of a leaf corresponding to a (full) transcript
τ equals:

pfτ
def
= Pr

[

D(τ, Rτ
I ,Qf (RQ)) = 1

]

The value of a node that corresponds to partial transcript τ ′ ending with a prover message equals:

pfτ ′
def
= E

α∼I(Rτ ′

I
,τ ′)

[

pfτ ′,α

]

The value of a node that corresponds to partial transcript τ ′ ending with a verifier message equals:

pfτ ′
def
= max

β

{

pfτ ′,β

}

Communication value (in the isolated model). For the purpose of our proof, we will define
for each node in the game tree an additional value, which we will call the communication value. The
communication value of a node corresponding to partial transcript τ ′ is the expected communication
complexity of the remaining interaction from that point, assuming the prover uses the strategy that
maximizes expected communication complexity. The expectation is over the distribution of the
subsequent messages conditioned on the previous sequence of messages equaling τ ′. For the root
of the game tree, this represents the overall expected communication complexity when interacting
with the worst-case prover strategy. Note that, since we are in the isolated model, where the
verifier’s messages are independent of the input f , the communication value is the same for all f .

15More explicitly, r is consistent with a partial transcript τ ′ if for every prefix of τ ′ of the form (τ ′′, α), where α
represents a verifier message, it holds that I(r, τ ′′) = α.

35

The communication value can be computed recursively: The communication value of a leaf is 0.
For a partial transcript τ ′ that ends with a prover message, the communication value equals:

Cτ ′
def
= E

α∼I(Rτ ′

I
,τ ′)

[

|α|+ Cτ ′,α

]

For a partial transcript τ ′ that ends with a verifier message, the communication value equals:

Cτ ′
def
= max

β

{

|β|+ Cτ ′,β

}

where the maximum is taken over all the possible prover messages β ∈ {0, 1}l such that l is the
maximum number of bits that the verifier will read from the message that follows the partial
transcript τ ′.

C.2 Proof of Theorem C.1

The emulation. Given a general isolated IPP for a property Π, our aim is to construct a public-
coin isolated IPP for Π that preserves the complexities of the original IPP up to constant factors.
The IPP that we will construct will not preserve the worst-case communication complexity c of
the original IPP, but its communication value (i.e., its expected communication when interacting
with the worst-case prover) will be bounded by O(c). This IPP can easily be modified to have
O(c) worst-case communication complexity. Specifically, we can modify the IPP to halt and accept
if the communication exceeds 10 times its expectation, which by Markov’s inequality occurs with
probability at most 0.1. This will increase the soundness error by at most 0.1, which can be reduced
back down via O(1) parallel repetitions.

We begin by establishing notation for the original IPP (which will be identical to the notation
used in the preliminaries). Let Q, I and D denote the querying, interacting, and deciding modules
of the original IPP, and let RI and RQ denote the randomness of the interacting and querying
modules, respectively. Let I(r, τ ′) denote the next message sent by the interacting module on
partial transcript τ ′ when using randomness r, and let Rτ ′

I denote the random variable that is
uniform over all randomness strings of the interacting module that are consistent with the partial
transcript τ ′.

Additionally, for any partial transcript τ ′, let Sτ ′ be the procedure guaranteed by Lemma C.2
that samples from the distribution of I(Rτ ′

I , τ
′). Let Wτ ′ be the random variable representing the

coins used by Sτ ′ . Note that by Lemma C.2 the expected length ofWτ ′ is at most H(I(Rτ ′

I , τ
′))+2.

We construct new interacting and deciding modules, denoted Ĩ and D̃, respectively, that to-
gether with Q will constitute the claimed public-coin IPP. At a high level, the new interacting
module Ĩ simulates the original interaction, such that at each round, if the original verifier would
have sent a message α distributed according to I(Rτ ′

I , τ
′), the new interacting module will send

coins w distributed according to Wτ ′ , such that the message w will correspond to the original
message α = Sτ ′(w). Note that the corresponding message α has the original distribution since
Sτ ′(Wτ ′) ∼ I(Rτ ′

I , τ
′) by definition of Sτ ′ .

More concretely, for any partial transcript of the new system τ̃ ′ = (w1, β1, . . . , wi, βi), we define
the corresponding original transcript τ ′ = (α1, β1, . . . , αi, βi), where, for each j ∈ [i], it holds
that αj = Sα1,β1,...,αj−1,βj−1(wj). At each interaction round, given partial transcript τ̃ ′, the new

interacting module Ĩ samples w ∼ Wτ ′ , and sends w to the prover. The new deciding module
D̃ receives the full interaction transcript τ̃ from the interacting module, and translates it to the
corresponding view of the original interacting module: (τ, r), where it samples r ∼ Rτ

I . It then
emulates the original deciding module D on the view (τ, r) along with the view from the querying
module Q.

36

Correctness. To show that the resulting system is complete and sound, we show that for every
input f , the value of the game tree of the new system equals to that of the original system.

Let f be an arbitrary input. Let pfτ ′ denote the value of the game tree of the original system at

the node corresponding to partial transcript τ ′. Similarly, let p̃fτ̃ ′ denote the value of the game tree
of the new system at the node corresponding to partial transcript τ̃ ′. We show by reverse induction
on the round number that for any partial transcript τ̃ ′ it holds that p̃fτ̃ ′ = pfτ ′ . The base case, where
we have a full transcript τ̃ , follows immediately from the construction of the new deciding module:

p̃fτ̃ = Pr
[

D̃(τ̃ ,Qf (RQ)) = 1
]

= Pr
[

D(τ, Rτ
I ,Qf (RQ)) = 1

]

= pfτ

For the inductive step, we first consider a partial transcript τ̃ ′ that ends with a verifier message.
We have:

p̃fτ̃ ′ = max
β

{

p̃fτ̃ ′,β

}

= max
β

{

pfτ ′,β

}

= pfτ ′

where the second equality is by the induction hypothesis. Now, for an interaction transcript τ̃ ′ that
ends with a prover message, we have:

p̃fτ̃ ′ = Ew∼Wτ ′

[

p̃fτ̃ ′,w

]

= Ew∼Wτ ′

[

pfτ ′,Sτ ′ (w)

]

= E
α∼I(Rτ ′

I
,τ ′)

[

pfτ ′,α

]

= pfτ ′

where the second equality follows from the preceding inductive case (for transcripts ending with a
verifier message), and the third equality follows because Sτ ′(Wτ ′) ∼ I(Rτ ′

I , τ
′) by definition of Sτ ′ .

This completes the inductive claim. We conclude that p̃fλ = pfλ, establishing the completeness and
soundness of the resulting system.

Complexities. Clearly, the emulation preserves the round and query complexities. We are left to
verify the communication complexity. Let c denote the communication complexity of the original
system. Recall that we only need to show that the communication value of the resulting system is
bounded by O(c). Let C̃τ̃ ′ denote the communication value of the game tree of the resulting system
at the node corresponding to partial transcript τ̃ ′, and similarly, let Cτ ′ denote the communication
value of the game tree of the original system at the node corresponding to partial transcript τ ′.
Let m be the number of messages the verifier sends in the original protocol (and hence also in the
resulting protocol). We will show that:

C̃λ ≤ Cλ + 2m (32)

Note that Cλ ≤ c (because c is the worst case communication complexity, whereas Cλ is the expected
communication complexity (when interacting with the worst-case prover)) and that m ≤ c (because
in each message at least 1 bit is exchanged). Hence, this will establish that C̃λ = O(c), as claimed.
We establish Eq. (32) by showing that for any partial transcript τ̃ ′ it holds that

C̃τ̃ ′ ≤ Cτ ′ + 2 · (m− i)

where i is the number of verifier messages in τ̃ ′. We show this by reverse induction on the round
number. For the base case, where we have a full transcript τ̃ , we simply have C̃τ̃ = 0 = Cτ . Now,
for a partial transcript τ̃ ′ that ends with a verifier message, we have

C̃τ̃ ′ = max
β

{

|β|+ C̃τ̃ ′,β

}

≤ max
β

{

|β|+ Cτ ′,β

}

+ 2 · (m− i) = Cτ ′ + 2 · (m− i)

37

where the inequality is since, by the induction hypothesis, C̃τ̃ ′,β ≤ Cτ ′,β + 2 · (m − i). We turn to
the case where the partial transcript τ̃ ′ ends with a prover message. By the definition of C̃τ̃ ′ , we
have that

C̃τ̃ ′ = Ew∼Wτ ′
[|w|] + Ew∼Wτ ′

[

C̃τ̃ ′,w

]

(33)

For the first term of Eq. (33), we have:

Ew∼Wτ ′
[|w|] ≤ H(I(Rτ ′

I , τ
′)) + 2 ≤ E

α∼I(Rτ ′

I
,τ ′)

[|α|] + 2 (34)

where the first inequality is by the guarantee of Lemma C.2, and second inequality is since for
any random variable X over {0, 1}∗ it holds that H(X) ≤ E[|X|]. We turn to the second term of
Eq. (33). By the preceding inductive case (for transcripts ending with a verifier message), we have
that

C̃τ̃ ′,w ≤ Cτ ′,Sτ ′ (w) + 2 · (m− (i+ 1))

Hence,

Ew∼Wτ ′

[

C̃τ̃ ′,w

]

≤ Ew∼Wτ ′

[

Cτ ′,Sτ ′ (w)

]

+ 2 · (m− (i+ 1))

= E
α∼I(Rτ ′

I
,τ ′)

[

Cτ ′,α

]

+ 2 · (m− (i+ 1))
(35)

where the equality is since Sτ ′(Wτ ′) ∼ I(Rτ ′

I , τ
′) by definition of Sτ ′ . Combining Eq. (34) and (35)

with Eq. (33), we get that

C̃τ̃ ′ ≤ E
α∼I(Rτ ′

I
,τ ′)

[|α|] + 2 + E
α∼I(Rτ ′

I
,τ ′)

[

Cτ ′,α

]

+ 2 · (m− (i+ 1))

= Cτ ′ + 2 · (m− i)

where the equality follows since Cτ ′ = E
α∼I(Rτ ′

I
,τ ′)

[|α|] + E
α∼I(Rτ ′

I
,τ ′)

[

Cτ ′,α

]

by definition. This

completes the inductive claim, establishing that C̃λ ≤ Cλ + 2m, as desired. �

Remark C.3 (public-coin emulation of IPPs in which the interaction is oblivious of the input).
Consider IPPs where there is no information flow from the querying module to the interacting
module, i.e., where the decision can be written as D(Qf (〈P (f), I(RI)〉)). Any such IPP can be
transformed to a public-coin IPP by a similar emulation to that of Theorem C.1. The only mod-
ification needed is that, at the end of the interaction, the new interacting module Ĩ passes the
interaction transcript τ̃ to a new querying module Q̃, which emulates the original querying module
Q on (τ, r) where r ∼ Rτ

I . The deciding module remains identical to the original system. The
analysis is the same as that of Theorem C.1, with the only difference being that the value of a leaf
is replaced with: pfτ = Pr

[

D(Qf (τ, Rτ
I)) = 1

]

.

D MAPs and the hybrid model

The purpose of this appendix is to shed some light on why the lower bound technique of [6,
Apdx. A.4], which was used in the setting of MAPs, could be adapted to our isolated model setting.
We start by showing that our technique for proving the non-adaptive lower bound for isolated IPPs
for PERM (Theorem 6.1) can be adapted to obtain an analogous lower bound on MAPs for PERM.
We complement this by showing a corresponding upper bound on MAPs for PERM, exemplifying
a general tradeoff between the query complexity and the proof length, analogous to the tradeoff

38

between the query and communication complexities we showed for isolated IPPs in Theorem 3.1.
Then, in Section D.3 we show that the lower bounds on non-adaptive MAPs and isolated IPPs for
PERM can be extended to a hybrid model that extends both MAPs and isolated IPPs. Finally, in
Section D.4 we establish a more general connection between the two settings (beyond just PERM),
by showing that, similarly to the emulation of the isolated model by testers shown in [6, Thm. 1.2],
our hybrid model can be efficiently emulated by MAPs.

We begin with the upper bound for MAPs.

D.1 An upper bound on MAPs for PERM

In this section we present a MAP for PERM that demonstrates a general tradeoff between the query
complexity and proof length, analogous to the tradeoff between the query and communication
complexities we showed for isolated IPPs in Theorem 3.1.

Theorem D.1. For every q > 0, there exists a MAP for PERM with query complexity q, proof length

O
(

n
q · log(n)

)

, soundness Ω(ǫ), and perfect completeness.

Proof idea. Note that a permutation can be viewed as a collection of directed cycles. Hence, if
we aim to find a pre-image of some point i ∈ [n] in a permutation π, one approach is to start by
querying the permutation at position i, obtaining its value v := π(i), then querying position v, and
so on, each step querying the answer from the last step, until completing the cycle by reaching the
value i. This approach is only effective if the cycle that i resides on is small. Thus, we use the
MAP-proof to specify O(n/q) cutting points across the cycles that break each cycle into segments
of length at most q. With these cutting points, we can avoid traversing the entire cycle and instead
traverse only the segment containing i: when we reach the cutting point at the end of the segment,
we jump to the previous cutting point (i.e., the cutting point at the start of the segment).

Proof: The honest prover partitions each cycle of the permutation into segments of length at most
q by selecting cutting points among the nodes such that in total there are at most 2n/q cutting
points. The MAP-proof consists of a list of cutting points for each cycle, ordered as they appear
when traversing the cycle.

The verifier samples a random point i ∈ [n] and makes at most q steps, starting at position i.
At each step, it queries the input function at the position equal to its previous answer (or i for the
first step), unless that position is a cutting point that appears in the proof - in which case it jumps
to (i.e., queries) the previous cutting point in that cycle’s list, and continues the process from that
new position. (Note that if the sampled point is a cutting point, the verifier will immediately jump
to the previous cutting point.) The verifier continues this process until either it finds a pre-image
of i (i.e., one of its queries returns the value i) and accepts, or it reaches q queries without finding
such a pre-image and rejects.

Completeness follows from the fact that the verifier traverses a segment of length at most q
that contains i. For soundness, if f is ǫ-far from PERM, then at least ǫ · n points in [n] have no pre-
image under f . The verifier will sample such a point with probability at least ǫ and will certainly
reject. �

D.2 A lower bound on MAPs with non-adaptive queries for PERM

In this section we show that our technique for proving the non-adaptive lower bound for isolated
IPPs for PERM (Theorem 6.1) can be adapted to obtain an analogous lower bound on MAPs for PERM.

39

Unlike the lower bound we showed for the isolated model, we now consider statistical soundness
rather than computational soundness. The reason is that in the context of MAPs, there is no
distinction between statistical and computational soundness when considering non-uniform cheating
provers. This is since the optimal strategy in a MAP is simply to produce the best possible proof
string, which a non-uniform polynomial-size cheating prover can always explicitly store.

Theorem D.2. If PERM can be verified by a MAP that uses non-adaptive queries and has query
complexity q and proof length c, then q3 · c = Ω(n).

We note that in [8, Lem. 4.3] it was shown that any (possibly adaptive) MAP for PERM with
query complexity q > 0 and proof length c > 0 must satisfy q · c = Ω(

√
n). Theorem D.2 provides

a tighter bound on c when q = o(n1/4), when restricting to non-adaptive queries.

Notation. For random variables X, X ′, Y and Z, and an element z in the range of Z, we denote:

H(X |Y, Z = z)
def
= Ey∼(Y |Z=z) [H(X |Y = y, Z = z)]

D(X |Y, Z = z ||X ′ |Y, Z = z)
def
= Ey∼(Y |Z=z) [D(X |Y = y, Z = z ||X ′ |Y = y, Z = z)]

Proof overview. We follow an approach similar to the isolated model lower bound. We show
indistinguishability between the verifier’s view when querying a random permutation (with an
honest proof) and its view when querying a random function that behaves like a permutation on
a small set of “heavy” locations while receiving an honest proof of the same permutation. More
specifically, we consider a random permutation Π and a random function F . We sample π ∼ Π and
f ∼ F , and construct the function G = G(π, f) that equals π on selected “heavy” locations and
equals f on the remaining locations. We then consider the verifier’s view when queryingG = G(π, f)
while receiving an honest proof for π, denoted W(π). The key difference from the isolated model is
that here the verifier can choose its queries based on the proof it receives. However, we can also be
adaptive in where we place π, choosing different heavy locations according to its proof W(π). This
is possible because the proof depends only on π, unlike a general interaction transcript which also
depends on the verifier’s randomness. Thus, rather than having a single set of heavy locations, we
will define for each possible proof string ω a corresponding set of ω-heavy locations.

For each possible proof ω, we think of each location i ∈ [n] as having an associated “ω-
information-weight”. Recall that in the isolated model, the information-weight of i was:

max
S⊆[n]\{i},|S|<q

{

I
(

Π(i); Π(S), T (Π)
)}

or equivalently,
max

S⊆[n]\{i},|S|<q

{

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(S), T (Π)
)}

In the current case, the ω-information-weight of i is:

max
S⊆[n]\{i},|S|<q

{

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(S),W(Π) = ω
)}

.

Unlike the expression for information-wight we had in the isolated model, the expression H
(

Π(i)
)

−
H
(

Π(i)
∣

∣Π(S),W(Π) = ω
)

does not directly correspond to the standard definition of mutual in-
formation. However, when taking the expectation of this expression over ω ∼ W(Π) we get the
mutual information between Π(i) and (Π(S),W(Π)); that is,

Eω∼W(Π)

[

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(S),W(Π) = ω
)

]

= I
(

Π(i); Π(S),W(Π)
)

.

40

We show that in expectation over ω ∼ W(Π), we can bound the total ω-information weight of
all locations (see Lemma D.3). This in turn bounds the number of information-heavy locations of
a typical proof ω ∼ W(Π).

Similarly to the isolated model case, we can effectively think of the verifier as getting a proof ω
and aiming to maximize the expected total ω-information-weight of the locations it queries. On the
other hand, we can view designating locations as ω-heavy as preventing the verifier from gaining
the weight of these locations. Our aim is to choose these locations such that in expectation over
the proof ω ∼ W(Π), the verifier cannot gain much ω-information-weight (in expectation over its
randomness).

Since a typical proof has only a small number of information-heavy locations, we can use our
strategies from the isolated model per each proof. In the first approach, we define the ω-heavy
locations to be the locations that the verifier queries with high probability when receiving the
proof ω, and in the second approach, we define the ω-heavy locations to be the information-heavy
locations of ω. Note that in the second approach, the number of ω-heavy locations is bounded only
in expectation (over ω ∼ W(Π)). We show that this is sufficient to ensure that the constructed
input is far from PERM with high probability. A proof of Theorem D.2 following the first approach
is presented in Section D.2.2, and an alternative proof following the second approach is presented
in Section D.2.3.

D.2.1 Preliminaries

Before proceeding to the proof of Theorem D.2, we state a generalization of Lemma 6.2 that allows
the sets Si (representing the verifier’s possible queries) to depend on the given proof.

Lemma D.3. Let n ∈ N, and let q, c ∈ N \ {0} such that q · c = O(n). Let Π be a random
permutation over [n]. Let W(Π) be any random variable over {0, 1}c that may depend on Π. For
each ω ∈ {0, 1}c, for each i ∈ [n], let Sω

i be any subset of [n] \ {i} such that |Sω
i | < q. Then,

∑

i∈[n]

I
(

Π(i); Π(S
W(Π)
i),W(Π)

)

= O (
√
q · c · n)

This lemma differs from Lemma 6.2 in two ways. First, W(Π) appears instead of T (Π), but
this difference is immaterial as both are treated as general random variables. Second, and more
importantly, the sets Si now depend on W(Π). This dependency makes the concrete steps of the
proof more complex, but the overall proof follows similar lines to that of Lemma 6.2. The proof is
therefore deferred to Appendix E.

Note that while in the current setting W(Π) is a deterministic function of Π (representing
Π’s proof), Lemma D.3 allows W(Π) to be any random variable. We will use the more general
statement later in the proof of Theorem D.8.

D.2.2 Proof of Theorem D.2

The proof closely resembles that of Theorem 6.1, presented in Section 6.1. The main difference is
that here the queries depend on the proof string, which requires more careful handling.

Consider an arbitrary MAP that has proof length c > 0 and uses q > 0 non-adaptive queries.
Without loss of generality, we assume the verifier does not make the same query more than once.

Let R denote the randomness of the verifier. For each proof string ω ∈ {0, 1}c and each
randomness string r, let Q(ω, r) be the set of q (non-adaptive) queries made by the verifier given

41

proof ω and randomness r. For each proof string ω ∈ {0, 1}c, consider the following set of ω-heavy
locations, denoted

Hω
def
=
{

i ∈ [n] : Pr
R
[i ∈ Q(ω,R)] ≥ 2q/n

}

Additionally, denote the complementary set of ω-light locations by Lω
def
= [n] \ Hω. Note that for

every ω we have that |Hω| ≤ n/2 since
∑

i∈[n] PrR[i ∈ Q(ω,R)] = q.
For each permutation π, let W(π) be an honest proof for π. Let Π be a random permutation

over [n] and let F be a random function from [n] to [n] such that Π and F are independent. Let
G = G(Π, F) be the function that agrees with Π on HW(Π), and agrees with F on LW(Π); that is,
G(i) = Π(i) for every i ∈ HW(Π), and G(i) = F (i) for every i ∈ LW(Π). Let ǫ > 0 be a sufficiently
small proximity parameter. For each fixed permutation π, since |LW(π)| ≥ n/2, Claim 4.1 implies
that G(π, F) is ǫ-far from PERM with high probability. Hence, G is ǫ-far from PERM with high
probability.

Let QH(ω, r)
def
= Q(ω, r) ∩Hω and QL(ω, r)

def
= Q(ω, r) ∩ Lω denote the heavy and light queries

given proof ω and randomness r, respectively. Consider the verifier’s view given input Π and the
honest proof W(Π):

X
def
=
(

W(Π),Π
(

Q(W(Π), R)
)

, R
)

≡
(

W(Π),Π
(

QH(W(Π), R)
)

,Π
(

QL(W(Π), R)
)

, R
)

(36)

Similarly, consider the verifier’s view given input G = G(Π, F) and proof W(Π):

X ′ def=
(

W(Π), G
(

Q(W(Π), R)
)

, R
)

≡
(

W(Π),Π
(

QH(W(Π), R)
)

, F
(

QL(W(Π), R)
)

, R
)

(37)

Since G is ǫ-far from PERM with high probability, the completeness and soundness conditions imply
that the verifier must distinguish between X and X ′ (cf. Claim 5.2). However, we will show that
these views are indistinguishable unless q3 · c = Ω(n).

Claim D.4. If q · c = O(n), then ∆(X,X ′) = O
((q3·c

n

)1/4)
.

Proof: As in Claim 6.3 we focus on bounding D(X ||X ′). For every ω ∈ {0, 1}c, let Xω and
X ′

ω denote the views X and X ′ conditioned on W(Π) equaling ω; that is, Xω = (Π(QH(ω,R)),
Π(QL(ω,R)), R |W(Π) = ω) and similarly for X ′

ω. Note that

D(X ||X ′) = Eω∼W(Π)

[

D(Xω ||X ′
ω)
]

Consider an arbitrary proof string ω. We can bound D(Xω ||X ′
ω) analogously to the way we have

bounded D(Y ||Y ′) in Claim 6.3 up to Eq. (30). The only difference is that: (1) instead of a
“general” condition on T (Π) (i.e., an expectation over all possible fixed values for T (Π)), we have
a specific condition on W(Π) = ω, and (2) the queries and the light locations now depend on this
fixed ω. In more detail, letting Xω,r and X ′

ω,r denote the views Xω and X ′
ω when fixing R to r and

following analogously to the analysis in Eq. (25) through (26), we get

D(Xω,r ||X ′
ω,r) ≤

∑

i∈QL(ω,r)

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Q(ω, r)\{i}),W(Π) = ω
)

)

(38)

For each i ∈ [n], we define

Sω
i

def
= arg max

S⊆[n]\{i},|S|<q

{

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(S),W(Π) = ω
)}

(39)

42

and get

D(Xω,r ||X ′
ω,r) ≤

∑

i∈QL(ω,r)

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

)

(40)

Analogously to Eq. (29), we have

D(Xω ||X ′
ω) = Er∼R

[

D(Xω,r ||X ′
ω,r)
]

≤
∑

i∈Lω

Pr
R
[i ∈ Q(ω,R)] ·

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

)

By the definition of Lω, for each i ∈ Lω we have that PrR[i ∈ Q(ω,R)] < 2q
n . Therefore, analogously

to Eq. (30), we have:16

D(Xω ||X ′
ω) <

2q

n
·
∑

i∈[n]

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

)

At this point, we take expectation over ω ∼ W(Π):

D(X ||X ′) = Eω∼W(Π)

[

D(Xω ||X ′
ω)
]

<
2q

n
· Eω∼W(Π)

[

∑

i∈[n]

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

)]

=
2q

n
·
∑

i∈[n]

I
(

Π(i); Π(S
W(Π)
i),W(Π)

)

(41)

Assuming that q · c = O(n), we can apply the generalized Lemma 6.2 to obtain

∑

i∈[n]

I
(

Π(i); Π(S
W(Π)
i),W(Π)

)

= O(
√
q · c · n).

Combining this with Eq. (41) we get that D(X ||X ′) = O
(

√

q3·c
n

)

. Recalling that ∆(X,X ′) ≤
√

1
2 D(X ||X ′), it follows that ∆(X,X ′) = O

((q3·c
n

)1/4)
, as claimed. �

D.2.3 Alternative proof

We present an alternative proof of Theorem D.2 that follows a similar approach to the alternative
proof of Theorem 6.1 (which was presented in Section 6.2). Similarly to Eq. (39), for each ω ∈
{0, 1}c, for each i ∈ [n], define

Sω
i = arg max

S⊆[n]\{i},|S|<q

{

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(S),W(Π) = ω
)}

.

Let α > 0 be a parameter we will set shortly. We change the definition of ω-heavy locations to:

Hω
def
=
{

i ∈ [n] : H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Si),W(Π) = ω
)

≥ α
}

16Note that we also rely on the fact that for each i ∈ [n] the term H
(

Π(i)
)

− H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

is non-
negative, since H

(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

can be at most the entropy of the uniform random variable over support
of size n, i.e., log(n) = H

(

Π(i)
)

.

43

We set α so as to ensure that Eω∼W(Π)[|Hω|] ≤ n/ℓ, where ℓ > 0 is a sufficiently large constant (the
reason for not taking l = 2 will become clear in the proof of Claim D.6):

α
def
=

ℓ

n
· Eω∼W(Π)

[

∑

i∈[n]

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Si),W(Π) = ω
)

)]

=
ℓ

n
·
∑

i∈[n]

I
(

Π(i); Π(S
W(Π)
i),W(Π)

)

Note that by Lemma D.3, if q · c = O(n), then we have that
∑

i∈[n] I
(

Π(i); Π(S
W(Π)
i),W(Π)

)

=

O(
√
q · c · n). Therefore, if q · c = O(n), then α = O

(√

q·c
n

)

.

Claim D.5. Eω∼W(Π)[|Hω|] ≤ n/ℓ.

Proof: For each ω ∈ {0, 1}c, it holds that

|Hω| · α ≤
∑

i∈Hω

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

)

≤
∑

i∈[n]

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

)

Therefore,

Eω∼W(Π) [|Hω|] · α ≤ Eω∼W(Π)

[

∑

i∈[n]

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Si),W(Π) = ω
)

)]

=
n

ℓ
· α

by definition of α. The claim follows. �

We define G = G(Π, F) as in the previous proof, only now with the new definition of the heavy
locations. We claim that G is still far from PERM with high probability (assuming ℓ is sufficiently
large).

Claim D.6. For all sufficiently small ǫ, the probability that G is ǫ-close to PERM is at most 2/ℓ +
exp(−Ω(n)).

Proof: By Claim D.5 and Markov’s inequality, the probability that |HW(Π)| > n/2 is at most 2/ℓ.
On the other hand, by Claim 4.1, for every fixed permutation π for which |LW(π)| ≥ n/2 (i.e.,
|HW(π)| ≤ n/2), the probability that G(π, F) is ǫ-close to PERM is at most exp(−Ω(n)). Combining
both cases, the claim follows. �

Consider again the honest and cheating views X and X ′ from Equations (36) and (37), but now
under the new definition of the heavy locations. As before, let Xω,r and X ′

ω,r denote the views X
and X ′ when fixing W(Π) to ω and R to r. Since G remains far from PERM with high probability,
we still have that the verifier must distinguish between X and X ′. On the other hand, we will
show that the views X and X ′ are indistinguishable unless q3 · c = Ω(n). We will establish the
indistinguishability claim even for Xω,r and X ′

ω,r for any ω and r.

Claim D.7. Let ω be an arbitrary proof string, and let r be an arbitrary randomness string. If

q · c = O(n), then ∆(Xω,r, X
′
ω,r) = O

((q3·c
n

)1/4)
.

44

Proof: Notice that the analysis in Claim D.4 leading to Eq. (40) is independent of the definition of
the heavy locations, hence Eq. (40) still holds:

D(Xω,r ||X ′
ω,r) ≤

∑

i∈QL(ω,r)

(

H
(

Π(i)
)

−H
(

Π(i)
∣

∣Π(Si),W(Π) = ω
)

)

(42)

By our new definition of the heavy locations, each term in the summation in Eq. (42) is smaller

than α, since we sum over light locations only. If q · c = O(n) we have that α = O
(√

q·c
n

)

. Thus,

we have

D(Xω,r ||X ′
ω,r) < q · α = O

(
√

q3 · c
n

)

Since ∆(Xω,r, X
′
ω,r) ≤

√

1
2 D(Xω,r ||X ′

ω,r), the claim follows. �

D.3 A lower bound for a hybrid model

We can extend the non-adaptive lower bounds presented for isolated IPPs and MAPs to a model of
IPPs that extends both MAPs and isolated IPPs under a single model. This model is identical to
the isolated model, except that we assume the prover sends the first message and that the querying
module gets access to this first message. (Except for this message, there is no information flow
between the querying and interacting modules.) We refer to this model as the hybrid model.

Theorem D.8. If PERM can be verified by a computationally-sound IPP in the hybrid model that
uses non-adaptive queries and has query complexity q > 0 and communication complexity c > 0,
then q3 · c = Ω(n).

Proof: Given the separate proofs for the isolated model and for MAPs (i.e., Theorem 6.1 and
Theorem D.2), the proof for the hybrid model follows naturally. We briefly describe how to combine
the previous proofs to get the proof for the hybrid model.

Let RQ and RI denote the randomness of the querying and the interacting modules, respectively.
Using the notation T (Π, RI) from the proof of Theorem 6.1, we decompose it to T (Π, RI) =
(W(Π), T ′(Π, RI)), where W(Π) is the first prover message and T ′(Π, RI) is the transcript of the
rest of the interaction. We define the ω-heavy locations and the function G in the same way as in
the proof of Theorem D.2, except that R is replaced by RQ. We consider the same cheating provers
{Pπ}π as in the proof of Theorem 6.1, and analyze the verifier’s view when interacting with the
honest prover on a random permutation Π and its view when interacting with PΠ on G.

We fix RI to an arbitrary randomness string, and denote the transcript T ′(Π, RI) with this fixed
randomness by T ′(Π). We then apply the analysis from the proof of Theorem D.2 as is, except
that we add conditioning on T ′(Π) in every place where there is a condition on W(Π) = ω (i.e., we

condition on (T ′(Π),W(Π) = ω)). Consequently, in Eq. (41) the term I
(

Π(i); Π(S
W(Π)
i),W(Π)

)

is

replaced with I
(

Π(i); Π(S
W(Π)
i), T ′(Π),W(Π)

)

, and the proof follows by applying Lemma D.3 on

∑

i∈[n]

I
(

Π(i); Π(S
W(Π)
i), T ′(Π),W(Π)

)

where the pair (T ′(Π),W(Π)) take the place of the term W(Π) appearing in the lemma. �

45

We remark that the alternative proof of Theorem D.2 can similarly be adapted to the hybrid
model by adding conditioning on T ′(Π, RI) in every place where there is a condition onW(Π) = ω.17

(As in the alternative proof of Theorem 6.1, we need to make the assumption that RI is included
in T ′(Π, RI).)

D.4 Emulation of the hybrid model by MAPs

In [6, Thm. 1.2] it was shown that statistically sound IPPs in the isolated model can be efficiently
emulated by testers. In this section we show that the same emulation technique implies that
statistically sound IPPs in the hybrid model can be efficiently emulated by MAPs.

We define an isolated protocol to be a protocol as in an isolated IPP, but lacking the completeness
and soundness conditions (i.e., with no conditions on the acceptance probability of any input). The
value of such a protocol on input f is defined to be the probability that the verifier accepts f when
interacting with the optimal prover (i.e., the one that maximizes the acceptance probability of f).
The following theorem follows immediately from the proof of [6, Thm. 1.2].

Theorem D.9 (implicit in the proof of [6, Thm. 1.2]). There exists a constant α > 0 such that
the value of any isolated protocol that uses q queries and c bits of communication on input f can
be approximated to within an additive deviation of 1/6 with probability of at least 2/3, using only
α · q · c queries to f .

As shown in [6, Thm. 1.2], the above theorem leads to an efficient emulation of the isolated model
by testers: For any function f , the value of the isolated IPP protocol on f is at least 2/3 if f is in
the property and at most 1/3 if f is far from the property. An approximation of the value to within
an additive deviation of 1/6 allows for distinguishing these two cases. We use a similar approach
to derive the emulation of the hybrid model by MAPs.

Theorem D.10 (efficient emulation of the hybrid model by MAPs). Suppose that Π is a property
that can be verified in the hybrid model with query complexity q, a first message of length cP > 0
and subsequent messages of total length cI > 0. Then, Π has a MAP with query complexity O(q ·cI)
and proof length cP .

Proof: We construct the MAP as follows: The honest MAP-proof is the first message that the
honest prover sends in the hybrid IPP. Given input f and proof ω, the MAP-verifier approximates
the value of the isolated protocol on f that occurs in the hybrid IPP after fixing the first prover
message to ω.18 Specifically, the verifier will follow the approximation procedure guaranteed by
Theorem D.9, where the approximation is within additive deviation of 1/6 with probability of at
least 2/3, and uses α · q · cI queries to f (where α is the constant guaranteed by Theorem D.9).
The verifier accepts if and only if the resulting approximated value is greater than 1/2.

If f is in Π, then the honest proof leads to an isolated protocol on f with a value of at least 2/3.
On the other hand, if f is ǫ-far from Π, then any first prover message leads to an isolated protocol
on f with a value of at most 1/3. Thus, a successful approximation to within additive deviation of
1/6 will correctly determine whether f ∈ Π or f is ǫ-far from Π. �

17Here we use Lemma D.3 with (T ′(Π, RI),W(Π)) taking the place of the term W(Π) in the lemma. Note that this
relies on the fact that in the lemma the term W(Π) is allowed to be any random variable (not only a deterministic
function of Π).

18Note that unlike in an isolated IPP (i.e., an isolated protocol with soundness and completeness guarantees), in
this isolated protocol there could be inputs in Π for which the value is less than 2/3 (including values between 1/3
and 2/3). While every input in Π must have at least one first prover message that leads to an isolated protocol with
a value of at least 2/3, there could be other messages that lead to an isolated protocol with an arbitrary value.

46

Theorem D.10 implies that, in the case of statistical soundness, we can get a lower bound on
the hybrid model for PERM by first applying the MAP emulation and then applying a known lower
bound on MAPs for PERM. Specifically, by using the lower bound of [8, Lem. 4.3], which states that
any (possibly adaptive) MAP for PERM with query complexity q > 0 and proof length c > 0 must
satisfy q · c = Ω(

√
n), we get the following corollary:

Corollary D.11. If PERM can be verified by an IPP in the hybrid model that has query complexity
q > 0, a first message of length cP > 0 and subsequent messages of total length cI > 0, then
q · cI · cP = Ω(

√
n).

Note that, as opposed to the lower bound established in Theorem D.8, this lower bound holds
also for adaptive queries.

E Proof of Lemma D.3

In this section we prove Lemma D.3. The proof closely follows that of Lemma 6.2, which handles
a special case in which the sets Si are not dependent on the proof/transcript.

We begin with a technical claim that we will need in the proof. This claim generalizes the
property that conditioning reduces entropy.

Claim E.1 (generalized conditioning reduces entropy). For any random variable X and any col-
lection of random variables {Yx}x, it holds that

∑

x,y

Pr[X = x, Yx = y] · log
(

1

Pr[X = x|Yx = y]

)

≤ H(X)

Proof: Rearranging, we have

H(X)−
∑

x,y

Pr[X = x, Yx = y] · log
(

1

Pr[X = x|Yx = y]

)

=
∑

x,y

Pr[X = x, YX = y] · log
(

Pr[X = x, YX = y]

Pr[X = x] · Pr[Yx = y]

)

≥
(

∑

x,y

Pr[X = x, YX = y]

)

· log





(

∑

x,y Pr[X = x, YX = y]
)

(

∑

x,y Pr[X = x] · Pr[Yx = y]
)





= 1 · log
(

1

1

)

= 0

where the first inequality is by the log sum inequality, and in the last equality we use that
∑

x,y Pr[X = x] · Pr[Yx = y] =
∑

x

(

Pr[X = x] ·∑y Pr[Yx = y]
)

=
∑

x Pr[X = x] = 1. �

Proof of Lemma D.3: First, it holds that

∑

i∈[n]

I
(

Π(i); Π(S
W(Π)
i),W(Π)

)

=
∑

i∈[n]

H
(

Π(i)
)

−
∑

i∈[n]

H
(

Π(i)
∣

∣Π(S
W(Π)
i),W(Π)

)

= n · log(n)− Eω∼W(Π)

[

∑

i∈[n]

H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

] (43)

47

Consider any ω ∈ {0, 1}c. Let k be a parameter as in the proof of Lemma 6.2. Let Pω be a partition
of [n] define analogously to the partition P in the proof of Lemma 6.2, such that (1) Pω has at
most n/k + O(q) = O(n/k) parts each of size at most k, and (2) for each part B ∈ Pω and each
i ∈ B it holds that Sω

i does not intersect B. For each B ∈ Pω, define S
ω
B =

⋃

i∈B S
ω
i . Note that

|Sω
B| ≤ |B| · maxi∈B {|Sω

i |} ≤ k · (q − 1), and that B and Sω
B do not intersect. Analogously to

Eq. (20) in Lemma 6.2, we have

∑

i∈[n]

H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

≥
∑

B∈Pω

H
(

Π(B)
∣

∣Π(Sω
B),W(Π) = ω

)

(44)

The next steps are analogous to Eq. (21) in Lemma 6.2, but are more complex due to the fact that
we condition on a specific proof string W(Π) = ω. For each part B ∈ Pω, it holds that

H
(

Π(B)
∣

∣Π(Sω
B),W(Π) = ω

)

=
∑

a,b

Pr[Π(B) = a,Π(Sω
B) = b|W(Π) = ω] · log

(

1

Pr[Π(B) = a|Π(Sω
B) = b,W(Π) = ω]

)

≥
∑

a,b

Pr[Π(B) = a,Π(Sω
B) = b|W(Π) = ω] · log

(

Pr[W(Π) = ω|Π(Sω
B) = b]

Pr[Π(B) = a|Π(Sω
B) = b]

)

=
∑

a,b

Pr[Π(B) = a,Π(Sω
B) = b|W(Π) = ω] · log

(

1

Pr[Π(B) = a|Π(Sω
B) = b]

)

−

∑

b

Pr[Π(Sω
B) = b|W(Π) = ω] · log

(

1

Pr[W(Π) = ω|Π(Sω
B) = b]

) (45)

where the inequality uses that Pr[Π(B) = a|Π(Sω
B) = b,W(Π) = ω] =

Pr[Π(B)=a,W(Π)=ω|Π(Sω
B)=b]

Pr[W(Π)=ω|Π(Sω
B
)=b] ≤

Pr[Π(B)=a|Π(Sω
B)=b]

Pr[W(Π)=ω|Π(Sω
B
)=b] . Consider the first term of Eq. (45). Analogously to Eq. (22) in Lemma 6.2, for

each a and b we have:

log

(

1

Pr[Π(B) = a|Π(Sω
B) = b]

)

= log





∏

i∈[|B|]

(n− |Sω
B|+ 1− i)





≥ |B| ·
(

log (n)−O

(

k · q
n

))

(46)

Denoting the second term of Eq. (45) by ψω, and combining Equations (44), (45) and (46), we get:

∑

i∈[n]

H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

≥
∑

B∈Pω

|B| ·
(

log (n)−O

(

k · q
n

))

− |Pω| · ψω

= n ·
(

log (n)−O

(

k · q
n

))

+O
(n

k

)

· ψω

since |Pω| = O(n/k). Now, notice that Eω∼W(Π) [ψω] resembles a conditional entropy of W(Π). By
Claim E.1, similarly to conditional entropy we have that

Eω∼W(Π) [ψω] ≤ H(W(Π)) ≤ c

48

Hence, we get that

Eω∼W(Π)

[

∑

i∈[n]

H
(

Π(i)
∣

∣Π(Sω
i),W(Π) = ω

)

]

≥ n ·
(

log (n)−O

(

k · q
n

))

−O
(n

k

)

· Eω∼W(Π) [ψω]

≥ n ·
(

log (n)−O

(

k · q
n

))

−O
(n

k

)

· c

Combining this with Eq. (43), we get

∑

i∈[n]

I
(

Π(i); Π(S
W(Π)
i),W(Π)

)

= O
(

k · q + n · c
k

)

.

Setting k = Θ
(
√

c·n
q

)

, the lemma follows. �

49
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

