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Abstract

We give new lower bounds for the fragments of the Ideal Proof System (IPS) introduced by
Grochow and Pitassi [GP18]. The Ideal Proof System is a central topic in algebraic proof com-
plexity developed in the context of Nullstellensatz refutation [BIK+94] and simulates Extended
Frege efficiently. Our main results are as follows.

• mult-IPSLin′ : We prove nearly quadratic-size formula lower bound for multilinear refu-
tation (over the Boolean hypercube) of a variant of the subset-sum axiom polynomial.
Extending this, we obtain a nearly matching qualitative statement for a constant degree
target polynomial.

• IPSLin′ : Over the fields of characteristic zero, we prove exponential-size sum-of-ROABPs
lower bound for the refutation of a variant of the subset-sum axiom polynomial. The
result also extends over the fields of positive characteristics when the target polynomial
is suitably modified. The modification is inspired by the recent results [HLT24, BLRS25].

The mult-IPSLin′ lower bound result is obtained by combining the quadratic-size formula
lower bound technique of Kalorkoti [Kal85] with some additional ideas. The proof technique
of IPSLin′ lower bound result is inspired by the recent lower bound result of Chatterjee, Kush,
Saraf and Shpilka [CKSS24].
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1 Introduction

The main goal in propositional proof complexity is to prove lower bounds for computational re-
sources required to prove propositional tautologies. This task in its full generality is strongly
related to the separation problem of NP and coNP as shown by Cook and Reckhow [CR79].
Among the propositional proof systems, the Frege proof system is very well studied since the
early work by Reckhow [Rec76]. In Frege proofs, the propositions are computable by formulas
and lower bounds for the Frege system remain notoriously open. In the restricted setting, strong
lower bounds for AC0-Frege proof systems are known [Ajt88, BPI92, KPW95]. In an attempt to
address the Frege lower bounds via algebraic methods, Beame, Cook, and Hoover [BCH94], and
Pitassi and Impagliazzo [PI94], introduced the Nullstellensatz proof system. The weak version of
Hilbert’s Nullstellensatz says that a set of polynomials (usually called axioms) f1(x̄), . . . , fm(x̄) ∈
F[x1, . . . , xn] is unsatisfiable (over the algebraic closure of F) if and only if there are polynomials
g1(x̄), . . . , gm(x̄) ∈ F[x1, . . . , xn] such that ∑m

j=1 gj(x̄) f j(x̄) = 1. The coefficients g1, . . . , gm are the
Nullstellensatz refutations of the axioms. The degree and the sparsity are two important notions of
the size measure for the refutations, and the lower bounds for them are known [BIK+94]. How-
ever, the hard examples used in all such lower bound results admit polynomial-size Frege proofs.
To overcome this, stronger algebraic proof systems were introduced that measure the size by the
minimal size of the circuits computing the refutation polynomials gi(x̄). More precisely, this led
to the Ideal Proof System (IPS) formulated by Grochow and Pitassi [GP18], where the refutation
of f1(x̄), . . . , fm(x̄) over the Boolean hypercube satisfies the equation

∑
i

gi(x̄) fi(x̄) + ∑
j

hj(x̄)(x2
j − xj) = 1,

and gi(x̄), hj(x̄) are represented by algebraic circuits. The size of an IPS refutation is the total size
of the circuits computing the polynomials gi and hi. Further formal description is given in Def-
inition 2.5. The work of Grochow and Pitassi [GP18, Pit96] shows that IPS is powerful enough
to polynomially simulate the Frege and the Extended Frege systems, making IPS lower bounds
an important avenue of further research. The work of Forbes, Sphilka, Tzameret, and Wigder-
son [FSTW21] addresses fragments of linear IPS in models like ROABPs, multilinear formulas
(both unrestricted and constant depth), and for some class of constant depth formulas. In an-
other interesting line of work, Lee, Tzameret, and Wang [LTW18] connect the Frege lower bounds
with noncommutative IPS lower bounds. More recently, the breakthrough result for the constant-
depth circuit lower bounds by Limaye, Srinivasan, and Tavenas [LST21] led to a flurry of activities
in this area [AF22, GHT22, HLT24]. Even over the fields of positive characteristic, new IPS lower
bounds are shown [BLRS25, EGLT25]. These results are inspired by the result of Forbes [For24] on
constant-depth circuit lower bounds in positive characteristic.

In this paper, we address the IPS lower bound problem in the setting of general algebraic
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formulas. Note that the current best-known (general) formula size lower bound for an explicit
polynomial is given by techniques due to Kalorkoti [Kal85]1. We lift this result to the IPS setting
by giving nearly similar quality lower bounds for general formulas, and the axiom polynomial is
a variant of the subset-sum polynomial. More precisely, we prove the lower bound for mult-IPSLin′

as detailed in Section 1.1. In fact, we are able to show such a lower bound (slightly weaker) even
for a subset-sum axiom polynomial of constant degree. In recent times, proving polynomial-quality
lower bounds for constant-degree polynomials has received considerable attention since this is
generally considered to be an avenue to improve the state-of-the-art polynomial-quality lower
bounds for various algebraic models [HY09, CKV24].

Next, we consider the IPS lower bound question for the sum-of-ROABPs model. Besides be-
ing a natural extension to the works that study the same question for ROABPs [FSTW21, HLT24,
BLRS25, EGLT25], this model has an additional motivation in the context of VBP vs VNP conjec-
ture. In particular, inspired by the connection that Bhargav, Dwivedi, and Saxena observe in the
context of Valiant’s VBP vs VNP conjecture [BDS25], the work of Chatterjee, Kush, Saraf, and Sh-
pilka [CKSS24] shows exponential-size lower bounds for sum-of-ROABPs model. Our result can
be seen as a lift of those in [CKSS24] to the IPS setting.

Both the results use the functional lower bound technique from [FSTW21, Lemma 5.1]. In
particular, it shows that proving any refutation of the unsatisfiable system

{
f = 0, x̄2 − x̄ = 0

}
is not in a circuit class C is equivalent to proving that each g(x̄) which agrees with 1

f (x̄) over the
Boolean hypercube, is not in C.

For our first result, to show that any multilinear-IPSLin′ refutation of the system { f = 0, x̄2 −
x̄ = 0} requires a quadratic-size formula lower bound, note that it suffices to show that the unique
multilinear polynomial g(x̄) which agrees with 1

f (x̄) over the Boolean hypercube also requires a
quadratic-size formula lower bound. This follows from the properties of the multilinear-IPSLin′

model as explained in Definition 2.5, Definition 2.6. This was first formulated in the work of
Govindasamy, Hakoniemi and Tzameret [GHT22].

For our second result, observe that the sum of ROABPs can be multilinearized, just like ROABPs
(Proposition 4.4). Hence, to show IPSLin′ lower bound in the sum of ROABPs model for any refu-
tation of the unsatisfiable system

{
f = 0, x̄2 − x̄ = 0

}
, it is sufficient to a lower bound on the size

of any sum of ROABPs computing the unique multilinear polynomial g(x̄) which agrees with 1
f (x̄)

over the Boolean hypercube.

1.1 Our Results

We now state our main results.
1Also see [CKSV22], [SY10, Section 3.2].
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Formula Lower Bounds

We first define the target polynomial f for the unsatisfiable system.

Let X = {x1, x2, . . . , xn} and Y = {y0, . . . , yn−1} be two sets of variables. We partition
X into N = n

log n parts {X1, . . . , XN} where Xi = {x(i−1) log n+1, . . . , xi log n} for each
i ∈ N. Clearly, the size of each Xi is log n.

Fix any i ∈ [N]. For each subset S ⊆ Xi, let ΠS ∈ {0, 1}log n be its characteristic vector,
and define t(S) = ∑

log n
j=1 ΠS[j] · 2j−1. Clearly, for any s ∈ [0, . . . , n − 1] there is a unique

S such that s = t(S). We define the polynomials,

Equation 1.1.

f ′(x̄, ȳ) =
N

∑
i=1

∑
S⊆Xi

(
∏
j∈S

xj · yt(S)

)
. (1.1)

Equation 1.2.

f (x̄, ȳ) =


f ′ + 1 if the characteristic of F = 0

f ′ + β if the characteristic of F = p > 0, k > 0 ∈ Z,

β ∈ Fpk+1 \ Fpk and f ′ ∈ Fpk [X, Y]

(1.2)

Clearly, f is unsatisfiable over the Boolean hypercube.
Using this unsatisfiable system

{
f = 0, X2 − X = 0, Y2 − Y = 0

}
, we show our first lower bound

result. Note that the degree of f is log n + 1 and sparsity is O
(

n2

log n

)
.

Theorem 1.3. Consider the polynomial f is defined in Equation 1.2. Then the following statements are
true :

• Over the fields of characteristic 0, any formula computing a mult-IPSLin′ refutation of the unsatisfiable
system

{
f = 0, X2 − X = 0, Y2 − Y = 0

}
must have size at least Ω

(
n2

log n

)
.

• Over the fields of characteristic p, any formula computing the mult-IPSLin′ refutation of the unsatis-
fiable system of equations

{
f = 0, X2 − X = 0, Y2 − Y = 0

}
must have size at least Ω

(
n2

log n

)
.

Next, we describe a constant degree set-multilinear polynomial which is unsatisfiable over
the Boolean hypercube such that any multilinear proof of unsatisfiability requires near quadratic
formula size. We first state a fact about the set-multilinear polynomials.

Fact 1.4. Let X =
⊔n

i=1 Xi be a set of variables such that |Xi| = ℓ and Xi =
{

xi,j : j ∈ [ℓ]
}

. Then the
number of set-multilinear monomials respecting the partition X1, . . . , Xn is ℓn. Another way to see it is
that any set-multilinear monomial m = ∏n

i=1 xi,ji defines uniquely a map τm : [n] → [ℓ], with τm(i) = ji.
The number of such possible distinct maps is ℓn.
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We now define the constant-degree polynomial.

Let c > 3. Further, let X =
{

xi,j : i ∈ [c], j ∈ [n2/c]
}

and Y =
{

yi,j : i, j ∈ [n]
}

be sets
of variables. The polynomial we will be defining, say f ∈ F[X, Y], is set-multilinear
with respect to the partition {X1, . . . , Xc, Y} where Xi =

{
xi,j : j ∈ [n2/c]

}
.

We further partition Xi into n2(1−1/c)/c parts, each of size n2/c, and denote it by Xi,k for
k ∈ [n2(1−1/c)/c]. So now, for any i ∈ [c] and k ∈ [n2(1−1/c)/c],

Xi,k =
{

xi,j : j ∈
{
(k − 1)(n2/c) + 1, . . . , k(n2/c)

}}
By Fact 1.4, it is easy to see that the number of set-multilinear monomials over the
variable set X(k) = X1,k ⊔ · · · ⊔ Xc,k is (n2/c)c = n2.

Note that |Y| = n2. Thus, for any k ∈ [n2(1−1/c)/c], we can define a bijection, say
πk : Msm[X(k)] → Y, which maps each set-multilinear monomial to a unique variable
in Y. For any such k, we define the set-multilinear polynomial hk of degree c + 1, over
the variable set X1,k ⊔ · · · ⊔ Xc,k ⊔ Y, as hk = ∑m∈Msm[X(k)⊔Y] m · πi(m). We then define
the polynomial,

Equation 1.3.

h′(X, Y) =
n2(1−1/c)/c

∑
k=1

hk. (1.5)

Equation 1.4.

h(X, Y) =


h′ + 1 if the characteristic of F = 0

h′ + β if the characteristic is p > 0, k > 0 ∈ Z,

β ∈ Fpk+1 \ Fpk and h′ ∈ Fpk [X, Y]

(1.6)

Note that the system of equations
{

h = 0, X2 − X = 0, Y2 − Y = 0
}

is clearly unsatisfiable.
Further h is a polynomial over n2 variables of sparsity n4−2/c/c and degree c + 1. Using this
system, we show our second lower bound result.

Theorem 1.7. Consider the polynomial h in Equation 1.6. Then the following statements are true.

• Over the fields of characteristic 0, any formula computing a mult-IPSLin′ refutation of the unsatisfiable
system

{
h = 0, X2 − X = 0, Y2 − Y = 0

}
must have size at least Ω(n4−2/c).

• Over the fields of characteristic p, any formula computing a mult-IPSLin′ refutation of the unsatisfiable
system

{
h = 0, X2 − X = 0, Y2 − Y = 0

}
must have size at-least Ω

(
n4−2/c).
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Remark 1.8. Since f and h are sparse polynomials, they can be obtained by substitutions of monomials in
the usual subset-sum axiom polynomial of the form ∑i zi − γ. See Appendix A for further details. ♢

Remark 1.9. We also note that the unsatisfiable systems given by f and h have non-multilinear refutations
of polynomial size constant depth formulas. This follows easily from the known results [FSTW21, BLRS25].
A proof sketch is given in Appendix A for completeness. ♢

Sum of ROABPs Lower Bounds

Over the fields of characteristic 0, we use a variant of the subset-sum polynomial to show exponential-
size lower bound for the IPSLin′ refutations in the sum of ROABPs model. The same polynomial
has been used earlier to prove exponential-size lower bound for IPSLin′ refutations in (any order)
ROABPs model [FSTW21]. More precisely, we prove the following.

Theorem 1.10. For X = {x0, . . . , x2n−1}, T =
{

ti,j : i, j ∈ [0, . . . , 2n − 1] with i < j
}

and β = 2(2n
2 ),

let f ∈ F[X, T] be the polynomial defined as

f =

(
∑

0≤i<j≤2n−1
ti,jxixj

)
− β

which is unsatisfiable over the Boolean hypercube. Then there exists γ > 0 such that the total width of any
sum of ROABP computing the linear proof of unsatisfiability (IPSLin′), for the system { f = 0, X2 − X =

0, T2 − T = 0}, is at-least exp(nγ).

Similar lower bounds can be achieved over the fields of positive characteristic as well. We refer
the readers to Section 4.3 for further details.

Remark 1.11. Further, we note that there is a non-multilinear refutation of the unsatisfiable system given
by f which is computable by poly(n) size ABP. More details can be found in Appendix A. ♢

1.2 Proof Sketches

Formula lower bounds The main ideas behind the mult-IPSLin′ lower bounds in the formula
model (Theorem 1.3, and Theorem 1.7) are based on the techniques from [Kal85] and the functional
lower bound method of [FSTW21]. The functional method shows that, the proof of a C-IPSLin′

lower bound for the unsatisfiable system
{

f = 0, x2
1 − x1 = 0, . . . , x2

n − xn = 0
}

, is equivalent to
the fact that every polynomial g(x̄) that agrees with 1

f (x̄) over the Boolean hypercube satisfies that
g /∈ C. Since our goal is to show a formula lower bound in the mult-IPSLin′ model, it suffices to
show that the unique multilinear polynomial g that agrees with 1

f over the Boolean hypercube
requires nearly quadratic size formulas.

Let X = {x1, . . . , xn} and f ∈ F[X]. For a subset S ⊆ X, one can express the polynomial
f = ∑m∈M[S] m · fm, where M[S] is the set of monomials defined on S and fm ∈ F[X \ S]. Let
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coeffS( f ) := { fm : m ∈ M[S], fm ̸= 0} and alg-rankS( f ) be the algebraic rank of coeffS( f ). The
main result of [Kal85] states that, if f is computable by a formula of size s, then for any partition
X1 ⊔ X2 ⊔ . . . ⊔ Xt, we have that s ≥ Ω

(
∑t

i=1 alg-rankXi
( f )
)
.

It is a well-known fact that for any set of polynomials, the algebraic rank is lower bounded
by the algebraic rank of their leading or trailing monomials. We would like to apply Kalorkoti’s
method on the unique multilinear polynomial g that agrees with 1

f over the Boolean hypercube.
To do that, we need to study the relationship between the support structure of f and g.

Note that our polynomials have the property that for any two monomials, the support of one
is not contained in the other. We show that for any polynomial f that satisfies this property,
supp( f ) ⊆ supp(g) (Proposition 3.1). Furthermore, if a monomial m cannot be written as a mul-
tilinearized product of monomials from supp( f ), then its coefficient in g is 0 (Lemma 3.3). Using
these, it can be observed that for any S ⊆ X, the trailing monomials (under graded-lex ordering)
of coeffS(g) are equal to the trailing monomials of coeffS( f ).

Under the partition X1 ⊔ · · · ⊔ XN considered in the definition of Equation 1.2, since coeffXi( f )
is a set of algebraically independent monomials, the trailing monomials in coeffXi(g) are also al-
gebraically independent. The result now follows from [Kal85].

Sum of ROABPs Lower Bounds The IPSLin′ lower bound for the sum of ROABPs model com-
bines techniques from the works of Forbes, Shpilka, Tzameret and Wigderson [FSTW21] and Chat-
terjee, Kush, Saraf, and Shpilka [CKSS24]. Similar to the formula setting, it is enough to show a
lower bound against all polynomials g that agree with 1/ f over the Boolean hypercube. Addi-
tionally, since sum of ROABPs can be efficiently multilinearized (Proposition 4.4), it is enough to
show a lower bound against the unique multilinear polynomial satisfying the above property.

The proof broadly consists of two parts. The first part is to establish a structural weakness
of the sum of ROABPs. Roughly speaking, under a random partition of the variables, the rank
of the partial derivative matrix of a polynomial computed efficiently by a sum of ROABPs is low
with high probability (Lemma 4.7). The proof is developed using the ideas implicit in [CKSS24].
On the other hand, for any balanced partition, the derivative matrix corresponding to the unique
multilinear polynomial g that agrees with 1/ f (where f is defined in Theorem 1.10) has high rank
([FSTW21]). The lower bound follows by combining these two statements.

Organization

In Section 2, we present the necessary definitions and preliminary concepts. Section 3 details the
proofs of our results on formula lower bounds. The results on the sums of ROABPs is presented
in Section 4. The conclusion raises a few questions for further study and the appendix provides
some additional observations.

7



2 Preliminaries

We begin by stating the Chernoff Bound.

Theorem 2.1 (Chernoff Bound). Let X1, . . . , Xn be a set of 0-1 independent random variables. Let X =

∑n
i=1 Xi and µ = E[X] is the expected value of X. Then for any δ ∈ (0, 1),

Pr[X ≤ (1 − δ)µ] ≤ exp
(
−δ2µ

2

)
.

2.1 Notations

For a set X, a partition is written as X = X1 ⊔ · · · ⊔ Xk. The set of natural numbers is N. For
n ∈ N, the set {1, . . . , n} is denoted by [n]. The symmetric group over {1, 2, . . . , n} is Sn. For
notational clarity, sometime x̄ or X is used for the set of variables {x1, . . . , xn}. The set of all
possible monomials over X is denoted by M(X). The set of equations

{
x2

i − xi = 0 : i ∈ [n]
}

is
sometime shorten as X2 − X. For {a1, . . . , an} ⊆ N, we denote by x̄ā, the monomial ∏i∈[n] xai

i .
Given a monomial x̄ā, define supp(x̄ā) to be the set {xi : ai ≥ 1}. Given a monomial x̄ā, we define
mult(x̄ā) to be the multilinear version of the monomial. That is, mult(x̄ā) = ∏n

i=1 xmin{ai ,1}
i . By

linearity, we extend this to define mult( f ) for any polynomial f ∈ F[X].
For a subset S ⊆ [n], we denote by 1S : [n] → {0, 1} the characteristic function for S. That is,

for any i ∈ [n], 1S(i) = 1 ⇐⇒ i ∈ S.

2.2 Definitions

Models of Computation

Definition 2.2 (Algebraic Formulas). An algebraic formula C is a directed tree with a unique output gate
(root) of out-degree 0, and input gates of in-degree 0 (leaves) labeled by variables x1, . . . , xn or constants from
F. The internal gates are labeled by + or ×. Each gate v computes a polynomial fv defined recursively: if v
is an input, then fv = label(v) ∈ {x1, . . . , xn} ∪ F; if v = u op w for op ∈ {+,×}, then fv = fu op fw.
The polynomial computed at the output gate is the polynomial computed by the formula. ♢

Definition 2.3 (ROABPs). A Read-once Oblivious ABP (ROABP) is a directed acyclic graph where the
vertex set is partitioned into layers 0, 1, . . . , n with directed edges only between adjacent layers (i to i + 1).
Layers 0 and n have a single vertex each (called the source s and terminal t respectively), whereas the other
layers can have any number of vertices.

The labels on the edges satisfy the property that for every i ∈ [n], there is a unique j ∈ [n] such
that every edge in between layer j − 1 and j is labelled by a univariate polynomial in xi. The polynomial
computed by any s-to-t path is the product of the edge labels on it and the polynomial computed by the
ROABP is the sum of all polynomials computed by such paths.
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An ROABP is said to have order σ ∈ Sn if for every j ∈ [n], the edges in between layers j − 1 and j
are labelled by univariates in xσ(j). An ROABP is said to be multilinear if each of the edge labels are linear
polynomials.

The size of an ROABP is the total number of vertices in it; the width of any layer in the ROABP is the
number of vertices in it and the width of an ROABP is the width of its widest layer. A sum of ROABPs is
defined as the sum of individual ROABPs, with total width equal to the sum of their widths. ♢

Definition 2.4 (Set-Multilinear Polynomial). Let (X1, . . . , Xd) be a partition of the variable set X, with
Xi = {xi,1, xi,2, . . . , xi,n}. A polynomial f ∈ F[X] is said to be set-multilinear with respect to the given
partition if each monomial in f is of the form (x1,j1 x2,j2 · · · xd,jd). ♢

It is sometimes useful to think of the variables as coming from a matrix Md×n where the ith

row is {xi,1, xi,2, . . . , xi,n} and a set-multilinear polynomial is one in which each monomial is con-
structed by picking exactly one variable from each row.

Ideal Proof System

We begin with the definition of the Ideal Proof System (IPS) and some of its restrictions.

Definition 2.5 (Ideal Proof System [FSTW21, GP18]). Let f1, . . . , fm ∈ F[X] be a set of polynomials
such that

{
f1, . . . , fm, x2

1 − x1, . . . , x2
n − xn

}
has no common solution over the Boolean hypercube2.

A proof of the unsatisfiability of this set of polynomial equations, in the Ideal Proof System (IPS), is
a polynomial P(X, y1, . . . , ym, z1, . . . , zn) ∈ F[X, Y, Z] such that the following holds:

• P(X, 0̄, 0̄) = 0;

• P(X, f1, . . . , fm, x2
1 − x1, . . . , x2

n − xn) = 1. ♢

Definition 2.6 (Restrictions of IPS [GHT22, HLT24]). Some restrictions of the Ideal Proof System that
we will be considering are as follows.

• IPSLin: A proof, P, in the Ideal Proof System is said to be in IPSLin if it additionally satisfies the
conditions ∀i ∈ [n], degyi

(P), degzi
(P) ≤ 1.

• IPSLin′ : A proof, P, in the Ideal Proof System is said to be in IPSLin′ if it only satisfies the conditions
∀i ∈ [n], degyi

(P) ≤ 1.

• mult-IPSLin′ : A proof, P, in IPSLin′ is said to be in mult-IPSLin′ if it additionally satisfies the condition
that P(X, Y, 0̄) is multilinear polynomial. Note that P(X, 0̄, Z) is not necessarily multilinear.

• C-IPSLin′ and C-mult-IPSLin′ : For any polynomial class C, a proof in IPSLin′ is said to be in C-IPSLin′
if it is additionally contained in C. C-mult-IPSLin′ is defined analogously. ♢

2That is, there does not exist x̄ ∈ {0, 1}n such that for every i ∈ [n], fi(x̄) = 0.
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Monomial Ordering

Definition 2.7 (Monomial Ordering). Given a set of variables X = {x1, . . . , xn}, let (xi1 , . . . , xin) be a
total ordering on it. We extend it to a total ordering ≻ on M(X) as follows.

For any two distinct monomials x̄ā, x̄b̄,

• if deg(x̄ā) > deg(x̄b̄) then x̄ā ≻ x̄b̄;

• if deg(x̄ā) = deg(x̄b̄), aij = bij for every j < j0 and aij0
> bij0

, then x̄ā ≻ x̄b̄.

For a polynomial f ∈ F[X] and a total order ≻ on M[X], we denote the leading monomial of f (largest
monomial under ≻ that present in f ) and trailing monomial of f (smallest monomial under ≻ that is
present in f ) by LM( f ) and TM( f ) respectively.

For a subset S ⊆ F[X], we define LM(S) := {LM( f ) : f ∈ S}. TM(S) is defined similarly. ♢

Algebraic Independence and Algebraic Rank

Definition 2.8. A set of polynomials { f1, . . . , fm} ⊆ F[X] is said to be algebraically dependent over F

if there exists a non-zero polynomial A(y1, . . . , ym) ∈ F[Y] such that A( f1, . . . , fm) = 0. If no such A
exists, then f1, . . . , fm are said to be algebraically independent.

Given any set of polynomials S ⊆ F[X], the algebraic rank of S is the size of largest algebraic indepen-
dent subset of S. ♢

Definition 2.9. Given a polynomial f ∈ F[X] and S ⊆ X, let M[S] be the set of all monomials that
can be defined over the variables in S. Furthermore, for each m ∈ M[S], let fm ∈ F[X \ S] be the
unique polynomial such that f = ∑m∈M[S] m · fm. We define alg-rankS( f ) as the algebraic rank of the set
coeffS( f ) := { fm : m ∈ M[S], fm ̸= 0}. ♢

Here is a standard theorem on algebraic independence, that we need.

Theorem 2.10 ([KR05]). Let f1, . . . , fk ∈ F[X] and ≻ be a total ordering over the monomials. If f1, . . . , fk

are algebraically dependent then both sets {LM( fi) | i ∈ [1, 2, . . . , k]} and {TM( fi) | i ∈ [1, 2, . . . , k]} are
algebraically dependent.

Partial Derivative Matrix

Definition 2.11 (Partial Derivative Matrix [SY10, Sap21]). Let f ∈ F[X] be a polynomial and (Y, Z)
be a partition of X (that is, X = Y ⊔ Z). The partial derivative matrix of f with respect to (Y, Z), say
MY,Z( f ), is defined as follows.

• The rows of MY,Z( f ) are indexed by monomials in the variables Y and the columns are indexed by
monomials in the variables Z.
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• Given monomials mY = ȳā and mZ = z̄b̄, the entry of MY,Z( f ) in the row labelled mY and column
labelled mz is the coefficient of mY · mZ in f (denoted by coeffmY ·mZ( f )). ♢

Given a partition (Y, Z) of X and f ∈ F[X], note that we can also consider f to be a polynomial
over the variables Z with coefficients being polynomials over in the variables Y variables. We
define coeffY,Z( f ) =

{
∑mY∈M(Y) mY · coeffmY ·z̄b̄( f ) : z̄b̄ ∈ M(Z)

}
.

Definition 2.12 (Evaluation Dimension[FSTW21]). Let f (X, Y) ∈ F[X, Y] be a polynomial and S ⊆ F.
We define evaluation dimension of f on partition (X, Y) in the following way,

Eval-dimX,Y,S[ f (x̄, ȳ)] = dimF

{
f (x̄, β̄) : β̄ ∈ S|Y|

}
♢

Lemma 2.13 ([FS15]). Let f ∈ F[X, Y] and S be any subset of F. Then

dimF (coeffX,Y( f )) ≥ Eval-dimX,Y,S( f ).

2.3 Functional Lower Bound Method for proving lower bounds for IPS proofs

We will be crucially using the following technique described in [FSTW21] for proving lower
bounds against IPSLin and IPSLin′ .

Theorem 2.14. ([FSTW21, Lemma 5.1]) Let f ∈ F[X] be a polynomial such that for some β > 0 the
system

{
f − β, X2 − X

}
has no common solutions over the Boolean hypercube. Further, let C ⊆ F[X] be

a class of polynomials that is closed under partial F-assignments3.
If there does not exist any g ∈ C that satisfies g(x̄) = 1

f (x̄)−β
for every x̄ ∈ {0, 1}n, then there is no

proof of unsatisfiability for the system
{

f − β, X2 − X
}

that is contained in C-IPSLin, C-IPSLin′ .

This is called the functional lower bound method, since one needs to prove a lower bound
against all polynomials which evaluate to the same value as 1

f−β over the entire Boolean hyper-
cube.

Proposition 2.15. Let f ∈ F[X] and
{

f = 0, X2 − X = 0
}

be a unsatisfiable system against which we
want to show C-mult-IPSLin′ lower bound. Let g(X) be the unique multilinear polynomial that agrees with

1
f (X)

over the Boolean hypercube. If g /∈ C then the system does not have C-mult-IPSLin′ refutation.

Proof. Let C(X, y, Z) be a C-mult-IPSLin′ refutation for the unsatisfiable system. Assume g(X) be
the unique multilinear polynomial such that g(X) = 1

f (X)
(mod X2 − X). Since, f is the only

non-Boolean axiom and C is linear in y, by Definition 2.6, C(X, y, Z) = g(X) · y + C′(X, Z, y)
and C(X, f , X2 − X) = g(X) · f (X) + ∑n

i=1 C′
i(X)(x2

i − xi) = 1. So, C(X, y, 0) = y · g(X) =⇒
C(X, 1, 0) = g(X). This implies g(X) ∈ C, but this contradicts the assumption : g /∈ C.

3If f ∈ F[X] with f ∈ C and Y ⊆ X, then f |Y=ā(X \ Y) ∈ C for any ā ∈ F|Y|.
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3 Lower Bound Against Formulas for mult-IPSLin′ Proofs

In this section, we prove Theorem 1.3 and Theorem 1.7.
Given an unsatisfiable system

{
f = 0, X2 − X = 0

}
, to prove the formula complexity lower

bound of the mult-IPSLin′ refutation for f , it suffices to consider the unique multilinear polynomial
g(X) such that,

g(X) =
1

f (X)
(mod X2 − X).

Towards that we first note a few structural properties of the polynomial g(X).

3.1 Some Structural Results

Proposition 3.1. Let F be any field and f ∈ F[X] be a multilinear polynomial such that the system of
equations { f = 0, X2 − X = 0} is unsatisfiable over {0, 1}n. Additionally, suppose f has the property
that for any two monomials mi, mj ∈ f , supp(mi) ⊈ supp(mj) and supp(mj) ⊈ supp(mi). Let g ∈ F[X]

be the unique multilinear polynomial such that g(X) = 1
f (X)

(mod X2 − X).
Then, for any monomial m whose coefficient in f is non-zero, its coefficient in g is also non-zero4.

Proof. Let f (X) = f ′(X) − β where f (0) = −β. Note that since f is unsatisfiable, β ̸= 0. The
unique multilinear polynomial g(X) = 1

f (X)
(mod X2 − X) is given by the following.

g(x̄) = ∑
T⊆[n]

g(1T)∏
i∈T

xi ∏
i/∈T

(1 − xi).

Let m be a monomial with non-zero coefficient α in f and S = supp(m). Setting the variables
xi /∈ S to 0, it is easy to see that the coefficient of m in g (denoted by cm), is given by the expression
cm = ∑A⊆S g(1A)(−1)|S\A|. Notice that, g(1S) =

1
f (1S)

= 1
α−β and g(1∅) =

(−1)|S|
−β . Moreover, from

the monomial support property, for any S′ ⊂ S, g(1S′) = − 1
β . Thus,

cm = ∑
A⊆S

g(1A)(−1)|S\A| =
1

α − β
− 1

β ∑
A⊂S

(−1)|S\A|

=
1

α − β
− 1

β

(
∑

A⊆S
(−1)|S\A| − 1

)
=

1
α − β

+
1
β

.
(3.2)

In the above Equation 3.2, we use the standard fact that

∑
A⊆S

(−1)|S\A| =
|S|

∑
i=0

(
|S|
i

)
(−1)|S|−i = 0.

4If f is not multilinear, then for any non-multilinear monomial m with non-zero coefficient in f , the coefficient of
mult(m) in g is non-zero.
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We record some further structural properties in the following lemma. The lemma shows that
any monomial m which is not expressible by the multilinearization of any product of monomials
from supp( f ), has coefficient 0 in g.

Lemma 3.3. Let F be any field and f ∈ F[X] be a multilinear polynomial such that { f = 0, X2 − X = 0}
is unsatisfiable. Let g ∈ F[X] be the unique multilinear polynomial such that g(X) = 1

f (X)
(mod X2 −X).

Consider a monomial m such that m ̸= mult(∏m∈S m) for any subset S ⊆ supp( f ). Then the coefficient of
m in g is 0.

Proof. Consider a monomial m such that m ̸= mult(∏m∈S m) for any subset S ⊆ supp( f ). The idea
is to decompose m as a product of monomials m1 and m2 with the following property : There is
a set S1 ⊆ supp( f ), such that m1 = mult(∏m′∈S1

m′) and S2 = supp(m2) /∈ supp( f ). Moreover for
any subset T1 ⊆ S1 and a nonempty subset T2 ⊆ S2, T1 ∪ T2 /∈ supp( f ). It is not hard to see that
such a decomposition can be constructed in a greedy manner.

Next, we make a few simple observations. Clearly, S1 ∩ S2 = ∅ due to multilinearity. More-
over, g(1S2) = 1/ f (0). Furthermore, for any subset T1 ⊆ S1 and T2 ⊆ S2,

g(1T1∪T2) =
1

f (1T1∪T2)
=

1
f (1T1)

.

Recall that,
g(x̄) = ∑

T⊆[n]
g(1T)∏

i∈T
xi ∏

i/∈T
(1 − xi).

Hence,

cm = ∑
A⊆S1∪S2

g(1A)(−1)|S1∪S2\A| = ∑
A1⊆S1

(−1)|S1\A1| ∑
A2⊆S2

g(1A1∪A2)(−1)|S2\A2|

= ∑
A1⊆S1

(−1)|S1\A1| ∑
A2⊆S2

g(1A1)(−1)|S2\A2|

= ∑
A1⊆S1

g(1A1)(−1)|S1\A1| ∑
A2⊆S2

(−1)|S2\A2| = 0.

Here we have used the fact that ∑A2⊆S2
(−1)|S2\A2| = 0 and g(1A1∪A2) = g(1A1).

3.2 The Lower Bound

In this section, we prove a near-quadratic mult-IPSLin′ size lower bound in the formula setting.
We use the structural results developed in Section 3.1 along with the lower bound technique of
[Kal85].

Theorem 3.4 (Kalorkoti, [Kal85]). Let f ∈ F[X] be a polynomial computed by a size s formula. Let
(X1, X2, . . . , Xt) be any partition of the variables set X. Then s is at-least Ω

(
∑t

i=1 alg-rankXi
( f )
)
.
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Next, we recall the axiom polynomial from Section 1.1, for which we show the lower bound
result for IPS′Lin refutations.

Let X = {x1, x2, . . . , xn} and Y = {y0, . . . , yn−1} be two sets of variables. We partition X into
N = n

log n parts, {X1, . . . , XN} where Xi = {x(i−1) log n+1, . . . , xi log n}. Clearly, the size of each Xi is
log n.

For a subset S ⊆ Xi, let ΠS ∈ {0, 1}log n be its characteristic vector, and define t(S) = ∑
log n
j=1 ΠS[j] ·

2j−1. Now we define the polynomial,

Equation 1.1.

f ′(x̄, ȳ) =
N

∑
i=1

∑
S⊆Xi

(
∏
j∈S

xj · yt(S)

)
. (1.1)

Equation 1.2.

f (x̄, ȳ) =


f ′ + 1 if the characteristic of F = 0

f ′ + β if the characteristic of F = p > 0, k > 0 ∈ Z,

β ∈ Fpk+1 \ Fpk and f ′ ∈ Fpk [X, Y]

(1.2)

We now prove the first lower bound of this section: a log n-degree unsatisfiable system whose
mult-IPSLin′ refutation by formulas requires near-quadratic size. We first recall the statement.

Theorem 1.3. Consider the polynomial f is defined in Equation 1.2. Then the following statements are
true :

• Over the fields of characteristic 0, any formula computing a mult-IPSLin′ refutation of the unsatisfiable
system

{
f = 0, X2 − X = 0, Y2 − Y = 0

}
must have size at least Ω

(
n2

log n

)
.

• Over the fields of characteristic p, any formula computing the mult-IPSLin′ refutation of the unsatis-
fiable system of equations

{
f = 0, X2 − X = 0, Y2 − Y = 0

}
must have size at least Ω

(
n2

log n

)
.

Proof. Let g(X, Y) be the unique multilinear polynomial such that g(X, Y) = 1
f (X,Y) (mod X2 −

X, Y2 − Y). For any two monomials m1, m2 ∈ supp( f ), supp(m1) ⊈ supp(m2) and supp(m2) ⊈
supp(m1). Hence Proposition 3.1 implies that, all monomials of f appear in g with non-zero co-
efficients. Moreover, Lemma 3.3 implies every other monomial in g with non-zero coefficient can
only be the multilinearized product of monomials from supp( f ). Consider the variable partition
X = X1 ⊔ X2 ⊔ · · · ⊔ XN as defined above, and fix any Xi. Order monomials with X ≻ Y, then ex-
tend as in Definition 2.7, using any order within X and Y. Under this ordering, TM(coeffXi(g)) =
{y0, . . . , yn−1}, which is algebraically independent. So using Theorem 2.10, the set coeffXi(g) is also
algebraically independent. Let g has a formula of size s. Then using Theorem 3.4, we conclude

s ≥ Ω

(
N

∑
i=1

alg-rankXi
(g) + alg-rankY(g)

)
= Ω

(
n2

log n

)
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Here we have used N = n
log n . Using Proposition 2.15, any mult-IPSLin′ refutation of the unsatisfi-

able system
{

f = 0, X2 − X = 0, Y2 − Y = 0
}

computed by a formula needs size at-least Ω
(

n2

log n

)
.

Note that both Lemma 3.3 and Proposition 3.1 are characteristic independent statement. So, under
the given partition X1 ⊔X2 ⊔ · · · ⊔XN , the set TM(coeffXi(g)) = {y0, . . . , yn−1} remains unchanged
for any Xi. The algebraic independence of this set is independent of the characteristic of the field.
So, the lower bound works over characteristic p as well.

Next we show an example of a constant degree unsatisfiable system of equations such that
any refutation in mult-IPSLin′ computed by formula needs near quadratic size. For that, first we
recall polynomial h′ from Equation 1.5. Let c > 3. Further, let X =

{
xi,j : i ∈ [c], j ∈ [n2/c]

}
and

Y =
{

yi,j : i, j ∈ [n]
}

be sets of variables. The polynomial h is set multilinear with respect to the

partition
⊔c

i=1

(⋃n2(1−1/c)/c
k=1 Xi,k

)⊔
Y where for any i ∈ [c] and k ∈ [n2(1−1/c)/c],

Xi,k =
{

xi,j : j ∈
{
(k − 1)(n2/c) + 1, . . . , k(n2/c)

}}

Equation 1.3.

h′(X, Y) =
n2(1−1/c)/c

∑
k=1

hk. (1.5)

Where each hk is set-multilinear over
⊔c

i=1 Xi,k
⊔

Y described in Equation 1.5. Let
⊔c

i=1 Xi,k =

X(k) and
(
⊔n2(1−1/c)/c

k=1 X(k)
)
⊔ Y be a partition of variables. We use this partition to prove the

mult-IPSLin′-lower bound against constant degree unsatisfiable systems. We first recall the polyno-
mial.

Equation 1.4.

h(X, Y) =


h′ + 1 if the characteristic of F = 0

h′ + β if the characteristic is p > 0, k > 0 ∈ Z,

β ∈ Fpk+1 \ Fpk and h′ ∈ Fpk [X, Y]

(1.6)

Next, we recall the theorem statement.

Theorem 1.7. Consider the polynomial h in Equation 1.6. Then the following statements are true.

• Over the fields of characteristic 0, any formula computing a mult-IPSLin′ refutation of the unsatisfiable
system

{
h = 0, X2 − X = 0, Y2 − Y = 0

}
must have size at least Ω(n4−2/c).

• Over the fields of characteristic p, any formula computing a mult-IPSLin′ refutation of the unsatisfiable
system

{
h = 0, X2 − X = 0, Y2 − Y = 0

}
must have size at-least Ω

(
n4−2/c).
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Proof. Let g(X, Y) be the multilinear polynomial such that g(X, Y) = 1
h(X,Y) (mod X2 − X, Y2 −Y).

For any two monomials m1, m2 ∈ supp(h), supp(m1) ⊈ supp(m2) and supp(m2) ⊈ supp(m1). Hence
Proposition 3.1 implies all monomials of h appear in g with a non-zero coefficient. Moreover,
Lemma 3.3 implies every other monomial in g with non-zero coefficient can only be the multilin-
earized product of monomials from supp(h).

Consider the partition of variables
(⊔n2(1−1/c)/c

k=1 X(k)
)⊔

Y. Consider the following monomial
ordering: Over the variables, X ≻ Y and extend it to monomials naturally (Definition 2.7). Within
variable set X (and similarly Y), choose any order. Under this ordering, TM(coeffX(k)(g)) ={

Yi,j : i, j ∈ [n]
}

for every X(k) where k ∈ [n2(1−1/c)/c]. All these variables are algebraically in-
dependent. So, using Theorem 2.10, alg-rankX(k)(g) ≥ n2. If g has a formula of size s, then using
Theorem 3.4,

s ≥ Ω

(
n2(1−1/c)/c

∑
i=1

alg-rankXi(g) + alg-rankY(g)

)
≥ Ω

(
n2 · n2(1−1/c)/c + 1

)
≥ Ω

(
n4−2/c

)
.

So, any formula computing g needs size at least Ω(n4−2/c). Hence, any mult-IPSLin′ refutation of{
h = 0, X2 − X = 0, Y2 − Y = 0

}
computed by a formula needs size at-least Ω(n4−2/c) by Propo-

sition 2.15. Since both Lemma 3.3 and Proposition 3.1 is a characteristic independent statement,
the set TM(coeffX(k)(g)) remains unchanged and algebraically independent. So, the proof follows
when characteristic of the field is positive.

4 Lower Bound Against Sum of ROABPs for IPSLin′ Proofs

We begin with an observation.

Observation 4.1. Let f ∈ F[x1, . . . , xn] be a multilinear polynomial computed by an ROABP of size s.
Then there is a multilinear ROABP of size at most s computing the same polynomial.

Proof. Consider the ROABP, say A, computing f . We get a multilinear ROABP computing f by
simply removing non-multilinear terms from the label of every edge in A. Since f is multilinear,
the contribution of the non-multilinear monomials in the edge labels anyway cancel out at the end
and therefore this does not affect the computation of f .

We next state a couple of theorems from the work of Forbes, Shpilka, Tzameret, and Wigderson
[FSTW21] that we will require.

Lemma 4.2. ([FSTW21, Lemma 3.7]) Let X = {x1, . . . , xn} and f ∈ F[X] be a polynomial computed by
an ROABP of width r. Then r ≥ maxi∈[n] {rank(MYi ,Zi( f ))} where Yi = {x1, . . . , xi} and Zi = X \ Yi.
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Lemma 4.3. ([FSTW21, Proposition 4.5]) Let f ∈ F[X] be a polynomial with individual degree of each
variable being at most d. Further, suppose that f is computable by an ROABP of width r in some order.
Then mult( f ) can be computed by an ROABP of size poly(r, n, d) and width r that has the same order.

Further there exist polynomials h1, · · · , hn ∈ F[X] such that

• for every i ∈ [n], hi has individual degree upper bounded by d;

• for every i ∈ [n], hi can be computed by an ROABP of size poly(r, n, d) and width r;

• f (x̄) = mult( f ) + ∑n
i=1 hi(x2

i − xi).

We now use Lemma 4.3 to show a similar statement for a sum of ROABPs as well.

Proposition 4.4 (Multilinearization of Sum of ROABPs). Let f ∈ F[X] be a polynomial with individual
degree at most d such that it is computable by a sum of t ROABPs, say A1, . . . , At, each with width at most
r and potentially a different variable ordering. Let σi be the variable ordering of Ai. Then,

• mult( f ) is computable by a sum of t multilinear ROABPs B1, . . . , Bt, where each Bi has width at
most r, size poly(r, n, d) and variable ordering σi. Further, if fi was the polynomial computed by Ai,
then the polynomial computed by Bi is mult( fi);

• there exist polynomials h1, . . . , hn, each of individual degree at most d and computable by a sum of t
ROABPs of size poly(r, n, d) and width at most r, such that

f (x̄) = mult( f ) +
n

∑
i=1

hi(x2
i − xi).

Proof. We use Lemma 4.3 to prove the statement. By the assumption of the lemma, f is computable
by ∑t

i=1 Ai where each Ai is an ROABP of width at most r and variable ordering σi. Let fi be the
polynomial computed by Ai. Note that the individual degree of fi is at most d.

Fix any i arbitrarily. Using Lemma 4.3, mult( fi) has an ROABP of width at most r, order σi

and size poly(r, n, d). Moreover, there exist polynomials hi,1, . . . , hi,n of individual degree at most
d such that fi = mult( fi) + ∑n

j=1 hi,j(x2
j − xj). Here, for each j ∈ [n], hi,j can be computed by an

ROABP of width at most r, order σi and size poly(r, n, d). Hence,

f =
t

∑
i=1

fi =
t

∑
i=1

mult( fi) +
t

∑
i=1

n

∑
j=1

hi,j(x2
j − xj)

=
t

∑
i=1

mult( fi) +
n

∑
j=1

(
t

∑
i=1

hi,j

)
(x2

j − xj).

Clearly ∑t
i=1 mult( fi) = mult( f ). Further, if we define hj = ∑t

i=1 hi,j, then each hj is computable by
a sum of t ROABPs that have the required properties.
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We additionally require the following lemma from the work of Forbes, Shpilka, Tzameret, and
Wigderson [FSTW21].

Lemma 4.5. ([FSTW21, Proposition 5.13]) Let F be a field of characteristic zero, X = {x0, . . . , x2n−1},
T =

{
ti,j : i, j ∈ [0, . . . , 2n − 1] with i < j

}
be two sets of variables and β > (2n

2 ) be any number. Further,
let g be the unique multilinear polynomial such that

g(X, T) ≡ 1
∑i<j ti,jxixj − β

(mod X2 − X, T2 − T).

Then for any balanced partition (Y, Z) of X, rankF(T)[MY,Z(g)] ≥ 2n.

Finally, before we can prove our main theorem, we require a weakness lemma for a sum of
multilinear ROABPs. The proof of this lemma is based on ideas which are implicitly present in
the work of Chatterjee, Kush, Saraf, and Shpilka [CKSS24] (in the context of sums of ordered
set-multilinear ABPs). However, we provide a detailed self-contained proof.

4.1 Weakness of a Sum of Multilinear ROABPs

Let A = ∑t
i=1 Ai be a sum of ROABPs where each Ai is multilinear and computing some multilin-

ear polynomial in F[x1, . . . , xn]. Without loss of generality, we can assume that each Ai has length
n and say the maximum width is s. Since the polynomial is multilinear, the partial derivative
matrix under any partition of variables (Y, Z) of X has dimension 2|Y| × 2|Z| 5.

Fact 4.6. Let (Y, Z) be some partition of the variable set X and MY,Z( f ) be the partial derivative matrix
with respect to this partition. Then,

rank[MY,Z( f )] ≤ min{2|Y|, 2|Z|} = 2min{|Y|,|Z|} ≤ 2
n−||Y|−|Z||

2 .

Next, we show that under any random balanced partition of the variables, the rank of any
small size sum of multilinear ROABP reduces significantly with high probability.

Lemma 4.7 (Weakness Lemma). Let q = r =
√

n. Further, let A = ∑t
i=1 Ai be a sum of multilinear

ROABPs computing a polynomial in F[x1, . . . , xn] and (Y, Z) be a partition of the variable set X chosen
independently and uniformly at random. Then, there exist constants ε′, ε′′ ∈ (0, 1) such that

Pr
(Y,Z)

[
rank[MY,Z(A)] < t · sq−1 · 2

n
2 −

ε′q
√

r
4 | (Y, Z) is balanced

]
≥ 1 − t · e−ε′′q.

Proof. Since (Y, Z) is a partition chosen independently and uniformly at random, each variable in
X is chosen to be a Y variable with probability 1/2 and a Z variable with probability 1/2. Let this

5The rows and columns are indexed by multilinear monomials over Y and Z variables respectively.
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distribution on the partitions be U . A partition (Y, Z) is balanced if |Y| = |Z|. It is a standard fact
[CKSS24] that Pr(Y,Z)∼U [(Y, Z) is balanced] =

( n
n/2)

2n = Θ
(

1√
n

)
.

The idea is to first divide the ROABPs {Ai}i∈[t] into q parts each of length r. Fix i ∈ [t] arbitrarily
and let u0, uq be the source and sink node of Ai. Observe that

Ai = ∑
u1,...,uq−1

q

∏
j=1

guj−1,uj ,

where the node uj is in layer j ∈ [q− 1]. Then the number of summands is upper bounded by sq−1.
This division of the ROABPs naturally partitions the variable set X = X1 ⊔ · · · ⊔ Xq with each Xi

containing r variables. (Y, Z) also gets further partitioned naturally into
{
(Yj, Zj)

}
j∈[q]. We want

to compute the rank of each product ∏
q
j=1 guj−1,uj under any random partition.

rank

[
MY,Z

(
q

∏
j=1

guj−1,uj

)]
=

q

∏
j=1

rank
[

MYj,Zj(guj−1,uj)
]
≤

q

∏
j=1

2
|Yj |+|Zj |

2 −
||Yj |−|Zj ||

2

≤ 2
n
2 −∑

q
j=1

||Yj |−|Zj ||
2 .

Hence if we can lower bound the term ∑
q
j=1

||Yj|−|Zj||
2 , we would be able to upper bound the rank.

Now, for any j ∈ [q],

Pr
(Yj,Zj)

[ ||Yj| − |Zj||
2

≤
√

r
4

]
= Pr

(Yj,Zj)

[
|Yj| ∈

[
r
2
−

√
r

4
,

r
2
+

√
r

4

]]
=

r
2+

√
r

4

∑
k= r

2−
√

r
4

(r
k)

2r < 1.

Let,

ε =

r
2+

√
r

4

∑
k= r

2−
√

r
4

(r
k)

2r and for any j ∈ [q], let Di =

1 if ||Yj|−|Zj||
2 ≤

√
r

4

0 otherwise.

Clearly, if D = ∑j Dj, then E[D] = ∑j E[Dj] = ε · q.
Fix δ ∈ (0, 1) arbitrarily. Then, using Chernoff bound (Theorem 2.1), we know that

Pr
(Y,Z)∼U

[D ≥ (1 + δ)εq] ≤ exp
(
− δ2εq

2 + δ

)
.
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Thus,

Pr
(Y,Z)∼U

[D ≥ (1 + δ)εq] | (Y, Z) is balanced] =
Pr(Y,Z)∼U [D ≥ (1 + δ)εq]

Pr(Y,Z)∼U [(Y, Z) is balanced]

≤ exp
(
− δ2εq

2 + δ

)
·
√

n

Choose ε′′ =
(

2δ2ε
2+δ

)
and ε̂ = ε(1 + δ). Then, we have that

Pr
(Y,Z)∼U

[D ≥ ε̂q] | (Y, Z) is balanced] ≤ exp
(
−ε′′q

)
=⇒ Pr

(Y,Z)∼U
[D < ε̂q | (Y, Z) is balanced] ≥ 1 − exp

(
−ε′′q

)
=⇒ Pr

(Y,Z)∼U

[
q

∑
j=1

||Yj| − |Zj||
2

>
(1 − ε̂)q

√
r

4
| (Y, Z) is balanced

]
≥ 1 − exp(−ε′′q)

=⇒ Pr
(Y,Z)∼U

[
rank

(
MY,Z

(
q

∏
j=1

guj−1,uj

))
< 2

n
2 −

(1−ε̂)q
√

r
4 | (Y, Z) is balanced

]
≥ 1 − exp(−ε′′q).

Recall that Ai = ∑u1,...,uq−1 ∏
q
j=1 guj−1,uj . Thus, for every i ∈ [t],

Pr
(Y,Z)∼U

[
rank (MY,Z (Ai)) < sq−1 · 2

n
2 −

(1−ε̂)q
√

r
4 | (Y, Z) is balanced

]
≥ 1 − exp(−ε′′q).

By union bound, this shows that

Pr
(Y,Z)∼U

[
∃i ∈ [t] s.t. rank (MY,Z (Ai)) ≥ sq−1 · 2

n
2 −

(1−ε̂)q
√

r
4 | (Y, Z) is balanced

]
≤ t · exp(−ε′′q)

=⇒ Pr
(Y,Z)∼U

[
∀i ∈ [t], rank (MY,Z (Ai)) < sq−1 · 2

n
2 −

(1−ε̂)q
√

r
4 | (Y, Z) is balanced

]
≥ 1 − t · exp(−ε′′q).

Finally, using the sub-additivity of rank, we get that

Pr
(Y,Z)∼U

[
rank (MY,Z (A)) < t · sq−1 · 2

n
2 −

(1−ε̂)q
√

r
4 | (Y, Z) is balanced

]
≥ 1 − t · exp(−ε′′q).

Choosing ε′ = 1 − ε̂ completes the proof.

We are now ready to prove an exponential lower bound against ∑ROABP-IPSLin′ proofs.

20



4.2 Lower Bound over Fields of Characteristic Zero

Theorem 1.10. For X = {x0, . . . , x2n−1}, T =
{

ti,j : i, j ∈ [0, . . . , 2n − 1] with i < j
}

and β = 2(2n
2 ),

let f ∈ F[X, T] be the polynomial defined as

f =

(
∑

0≤i<j≤2n−1
ti,jxixj

)
− β

which is unsatisfiable over the Boolean hypercube. Then there exists γ > 0 such that the total width of any
sum of ROABP computing the linear proof of unsatisfiability (IPSLin′), for the system { f = 0, X2 − X =

0, T2 − T = 0}, is at-least exp(nγ).

Proof. Let g be the unique multilinear polynomial that proves the unsatisfiability of f . Then, by
Lemma 4.5, for any balanced partition (Y, Z) of X, rankF(T)[MY,Z(g)] ≥ 2n. Thus,

Pr
(Y,Z)

[
rankF(T)[MY,Z(g)] < 2n| (Y, Z) is balanced

]
= 0.

Suppose g is computable by a sum of t multilinear ROABPs, say A1, . . . At, of width at most s.
Since the total number of variables is 2n, by Lemma 4.7, we have that for any partition (Y, Z) of X
chosen uniformly at random,

Pr
(Y,Z)

[
rankF(T)[MY,Z(g)] < t · sq−1 · 2n− ε′q

√
r

4 | (Y, Z) is balanced
]
≥ 1 − t · e−ε′′q.

for suitable constants ε′, ε′′ ∈ (0, 1) and q = r =
√

2n.
Note that if t > exp(ε′′q), then we already have an exp(Ω(

√
n)) lower bound. Otherwise, there

exists a balanced partition (Y, Z) such that rankF(T)[MY,Z(g)] ≤ t · sq−1 · 2n− ε′q
√

r
4 . However, we

know that rankF(T)[MY,Z(g)] ≥ 2n. Hence, it must be the case that t · sq−1 ≥ 2ε′q
√

r, which would
imply that s ≥ exp(n1/4). Either way, we get that the size of the sum of ROABPs computing g is
at least exp(nγ) for some γ > 0.

Let h ∈ IPSLin, be any proof of unsatisfiability for f . Then mult(h) = g. Assume, for sake of
contradiction, that h can be computed by a sum of ROABPs, say ∑ Ai, of size exp(o(nγ)).

h = ∑
i

Ai =⇒ mult(h) = mult

(
∑

i
Ai

)
= ∑

i
mult(Ai)

Each ROABP mult(Ai) is a multilinear ROABP and using Proposition 4.4, ∑i mult(Ai) is of size
exp(o(nγ′

)), but this contradicts the fact that any sum of multilinear ROABP computing mult(h) =
g needs size at least exp(Ω(nγ)). This completes the proof.
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4.3 Lower Bounds over Fields of Positive Characteristic of Large Size

Note that in Theorem 1.10, the characteristic of F is required to be zero even though the weakness
lemma (Lemma 4.7) for sum of multilinear-ROABPs is characteristic independent. This is because
we use Lemma 4.5. So, in order to prove a theorem analogous to Theorem 1.10 in the positive
characteristic setting, we need a statement analogous to Lemma 4.5 in this setting.

The main idea for such a rank lower bound was recently shown in a work of Behera, Limaye,
Ramanathan and Srinivasan [BLRS25]. We first state the main lemma from their work.

Lemma 4.8. ([BLRS25, Lemma 2.4]) Let F, F′ be two fields such that F ⊂ F′, n ∈ N and X be the
variable set. Fix β ∈ F′\F arbitrarily. Further, for any ᾱ ∈ Fn and a non-empty subset S′ ⊆ [n], let
gᾱ,S′(x̄) ∈ F[X] be the unique multilinear polynomial that agrees with 1

∑i∈S′ αi ·xi−β over Boolean hypercube.
For any S ⊆ F which is finite, if we choose ᾱ uniformly at random from Sn, then the following is true.

Pr
ᾱ∼Sn

[
∃ ∅ ̸= S′ ⊆ [n] : deg(gᾱ,S′(x̄)) < |S′|

]
<

22n

|S|

We will also need the following lemma from the work of Forbes, Shpilka, Tzameret, and Wigder-
son [FSTW21].

Lemma 4.9. ([FSTW21, Lemma 5.12]) Let f ∈ F[X, Y, Z] and fZ ∈ F(Z)[X, Y] be the polynomial that
symbolically equals f . That is, for any γ ∈ F|Z|, we have fγ(X, Y) = f (X, Y, γ) ∈ F[X, Y].

For any set of variables X, any field F and any f ∈ F[X], suppose coeffX( f ) is used to denote the
coefficient vector of f . Then, for any γ ∈ F|Z|, dimF(Z)[coeffX|Y[ fZ(X, Y)]] ≥ dimF[coeffX|Y[ fγ(X, Y)]].

Using Lemma 4.8 and Lemma 4.9, Behera, Limaye, Ramanathan and Srinivasan [BLRS25]
prove a rank bound analogous to Lemma 4.5 in positive characteristic.

Lemma 4.10. ([BLRS25, Lemma A.10]) Let n ∈ N and p ∈ N be any prime. Say F′ is a field of
characteristic p with size pk+1, where k is the smallest integer such that pk > (2n

n )2
2n and that F is a field

of size pk (so that F ⊂ F′). Fix β ∈ F′\F arbitrarily and finally, for any α ∈ F(2n
2 ), let gα(x̄, t̄) ∈ F′[X, T]

be the polynomial that agrees with 1
∑i<j αi,jti,jxixj−β on the Boolean hypercube.

Then there exists ᾱ such that for any balanced partition (U, V) of X, rankF′(T)[MU,V(gα)] ≥ 2n.

We are now ready to prove an exponential lower bound for sum of ROABPs in positive char-
acteristic.

Theorem 4.11. Let n ∈ N and p be any prime. Further let F′ be a field of characteristic p with size
pk+1, where k is the smallest integer such that pk > (2n

2 )2
2n and F ⊂ F′ be the subfield of size pk. Also,

arbitrarily fix β ∈ F′\F.
For X = {x0, . . . , x2n−1}, T =

{
ti,j : i, j ∈ {0, . . . , 2n − 1 with i < j}

}
and any ᾱ ∈ F(2n

2 ), define

f =

(
∑

0≤i<j≤2n−1
αi,jti,jxixj

)
− β
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which is unsatisfiable over the Boolean hypercube. Then there exists ᾱ and γ > 0, such that any sum of
ROABP computing the IPSLin′ refutation of the system { f = 0, X2 − X = 0, T2 − T = 0} must have total
width at-least exp(nγ).

Proof. We combine Lemma 4.10 with the weakness lemma (Lemma 4.7) to get the required lower
bound. The argument works in a similar manner given in the proof of Theorem 1.10.

4.4 Lower Bound over Fields of Characteristic At Least Five

In Theorem 4.11 the field size needs to be large since we are using Lemma 4.8 to prove the rank
lower bound. However, we can remove such a size requirement if we use the vector invariant
polynomial from the work of Hakoniemi, Limaye, and Tzameret [HLT24]. We first state the rank
lower bound from their work.

Lemma 4.12. ([HLT24, Lemma 43]) Let F be a field of characteristic at least and g(x̄, t̄) ∈ F[X, T] be the
polynomial defined in Theorem 4.13. Let ĝ(x̄, t̄) ∈ F[X, T] be any polynomial that satisfies

ĝ(x̄, t̄) =
1

g(x̄, t̄)
mod (X2 − X, T2 − T).

If ĝT(x̄) ∈ F(T)[X] is the polynomial that symbolically equals ĝ, then for any balanced partition (U, V) of
X, rankF(T)[MU,V(ĝT(X)] ≥ 2n.

We are now ready to prove an exponential lower bound against ∑ ROABPs for proofs in IPSLin′

model when the field size is not necessarily large.

Theorem 4.13. Let F be a field of characteristic at least 5. Further, let X = {x1, . . . , x4n} and T ={
ti,j,k,l : i, j, k, l ∈ [4n] with i < j < k < l

}
be two sets of variables.

Define g ∈ F[X, T] to be the polynomial

g =

(
∏

1≤i<j<k<l≤4n
1 − ti,j,k,l + ti,j,k,l(xixl − xjxk)

)
− β

which is unsatisfiable over Boolean hypercube as long as β ̸= {−1, 0, 1}. Then there exists γ > 0 such that
any sum of ROABP computing a IPSLin′ refutation of the system {g = 0, X2 − X = 0, T2 − T = 0} must
have total width at-least exp(nγ).

The proof follows exactly along the lines of the one for Theorem 4.11 except that we use
Lemma 4.7 combined with Lemma 4.12 instead of Lemma 4.10.
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Conclusion

The construction of the axiom polynomials from the subset-sum axiom polynomial is particularly
relevant in proof complexity although the subset-sum polynomial is not directly a translation of
CNFs. More details regarding this can be found in [GHT22, Section 1.3]. Also, see [Raz00]. If the
axiom polynomial is sparse, then it can be directly constructed from the subset-sum polynomial
by substituting monomials for the variables. In this paper, all the axiom polynomials except the
one used in Theorem 4.13 are sparse.

However, if one does not care about constructing sparse axiom polynomials, then the problem
of proving polynomial-size quality lower bounds for formulas, ABPs, and circuits can be solved
easily. This is noted in Observation A.5. As already mentioned above, it is more desirable if IPS
lower bound results are shown for sparse axioms. This is also reflected if one compares the work
of [AF22] with [GHT22].

Finally, we state a few open problems for further study.

1. Prove (nearly) quadratic-size IPSLin′ lower bounds for formulas for an axiom polynomial
which is sparse.

2. Prove super-linear size mult-IPSLin′ and IPSLin′ lower bounds for ABPs and circuits. Again,
the axiom polynomials should be sparse.

3. Can we (re)-prove Theorem 4.13 for a sparse axiom polynomial?
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A Some Related Observations

In this section, we first sketch the non-multilinear formula refutations upper bounds. We start by
defining the subset-sum polynomial.

Definition A.1. Let X = {x1, . . . , xn} be a set of variables and β be a constant from F. Then the subset-
sum polynomial f ∈ F[X] is the following,

Equation A.1.

f =
n

∑
i=1

xi − β ♢

When the characteristic of F is 0 and β > n, then the polynomial f is unsatisfiable over the
Boolean hypercube (that is ∀ x̄ ∈ {0, 1}n f (x̄) ̸= 0). The unsatisfiable system

{
f = 0, X2 − X = 0

}
is known to have a linear-IPS refutation computed by a O(n3) size constant depth formula (ABPs).
The following lemma from [FSTW21] gives the upper bound.

Lemma A.2. ([FSTW21, Proposition B1]) Let F be field of characteristic 0 and g ∈ F[X] be the unique
multilinear polynomial such that g · (∑n

i=1 xi − β) ≡ 1 (mod X2 − X). Then,

g =
n

∑
i=0

−i!

∏i
j=0(β − i) ∑

S⊆[n]:|S|=i
∏
i∈S

xi.
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For any n, d ∈ N with 1 ≤ d ≤ n, we denote the polynomial ∑S⊆[n]:|S|=d ∏i∈S xi by ESYMn,d,
which is the elementary symmetric polynomial. The lemma shows that the unique multilinear poly-
nomial g is a linear combination of elementary symmetric polynomials. It is well known from
the work of Ben-Or [BO83], that the polynomial ESYMn,d can be computed by a depth 3 formula
(∑ ∏ ∑) of size O(n2) (see for example [SW01]). Since we need to compute every elementary sym-
metric polynomial of degree i ∈ [n], the formula complexity of g is O(n3). This clearly shows the
IPSLin proof complexity of the subset-sum axiom is O(n3) over characteristic zero fields. Moreover,
it is well known that ESYMn,i can be computed by an ABP of size O(ni). Hence, g also has an ABP
of size O(n3). Using these, we give the following corollary.

Corollary A.3. Consider the polynomials f , h ∈ F[X, Y] as described in Equation 1.2 and Equation 1.6
respectively and the unsatisfiable system described in Theorem 1.10. Then the following holds.

• If the characteristic of F is 0, then there exists a non-multilinear IPS refutation for the unsatisfiable
systems { f = 0, X2 − X = 0, Y2 − Y = 0} and {h = 0, X2 − X = 0, Y2 − Y = 0}, which is
computable efficiently by constant depth formulas.

• Similarly, over field of characteristic p, there exists a non-multilinear IPS refutation for the unsatis-
fiable systems { f = 0, X2 − X = 0, Y2 − Y = 0} and {h = 0, X2 − X = 0, Y2 − Y = 0}, which is
computable by constant depth formulas of size poly(n, p).

• There is a non-multilinear IPS refutation for the unsatisfiable system given in Theorem 1.10 which
has a poly(n)-size ABP, when the characteristic of field is 0.

Proof. Since both the polynomials f (Equation 1.2) and h (Equation 1.6) are sparse polynomials, we
can express them as subset-sum axiom polynomials using a distinct new variable for each distinct
monomial. If the sparsity of the polynomial is s (for our case, it is O(n2)), then we will have a
subset sum axiom polynomial on s variables. In the case of characteristic 0 fields, we can use the
upper bound construction described above to get a O(s3) size constant depth linear IPS refutation
for the new system. Next, we substitute the variables by the monomials to get a non-multilinear
constant depth refutation of size O(n6). We prove this formally for f . A similar proof can be
shown for h.

Recall that f = f ′ + 1, where

Equation 1.1.

f ′(x̄, ȳ) =
N

∑
i=1

∑
S⊆Xi

(
∏
j∈S

xj · yt(S)

)
. (1.1)

Let sparsity of f ′ be s = O( n2

log n ). Further, let Z = {z1, . . . , zs} be a set of variables and define
f̃ (z̄) = ∑s

i=1 zi + 1, such that f̃ (m1, . . . , ms) = f (x̄) where mi ∈ supp( f ′). Clearly, f̃ (z̄) is unsatis-
fiable over the Boolean cube. Using Lemma A.2, there is a multilinear polynomial g̃(z̄) such that
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g̃(z̄) · f̃ (z̄) ≡ 1 (mod Z2 − Z). That is, there exists polynomials h1, . . . , hs ∈ F[z̄] such that the
following identity holds,

g̃(z̄) · f̃ (z̄) +
s

∑
i=1

hi(z2
i − zi) = 1.

Substituting back the monomials in place of z variables we get

g̃(m̄) f̃ (m̄) +
s

∑
i=1

hi(m̄)(m2
i − mi) = 1,

where m̃ denotes the monomials in supp( f ). Therefore, there exist {h′i}i∈[n] such that

g̃(m̄) · f (x̄) +
n

∑
i=1

h′(i)(x2
i − xi) = 1

The existences of such h′i follows from [BLRS25, Claim 3.4]. This equation clearly gives the require
upper bound of O(n6). Similar arguments work for the unsatisfiable system given in Theorem 1.10.
Here we get a non-multilinear IPS refutation computed by a poly(n)-size ABP.

In the case of positive characteristic, we can use the upper bound from the work of Behera,
Limaye, Ramanathan, Srinivasan [BLRS25, Theorem 1.8].

Now we sketch a few details which are noted in the conclusion. We start with the following
fact, which is given in [FSTW21, HLT24].

Fact A.4. Let n ≥ d ∈ N and f = ESYMn,d −β for some β ≥ (n
d) ∈ F. Let g(x̄) be the unique multilinear

polynomial that agrees with 1
f over the Boolean hypercube. Then there exists β′ ̸= 0 and non-zero field

elements αd, αd+1, . . . , αn such that g(x̄) = ∑n
i=d αi ESYMn,i +β′

Since the polynomial f (x̄) is symmetric and the multilinear polynomial g(x̄) agrees with 1
f (x̄)

over the Boolean hypercube, it must be the case that g(x̄) is a symmetric multilinear polynomial.
Hence, it can be expressed as a linear combination of elementary symmetric polynomials ESYMn,i.
The fact that the coefficients of ESYMn,i for i < d are 0 follows from Lemma 3.3. Moreover, to the
best of our knowledge, the best known formula upper bound for g(x̄) is O(dn2). This follows by
computing each ESYMn,i (for every i ∈ [d, n]) by a O(n2) size formula using Ben-Or’s construction
[BO83]. The circuit complexity of g(x̄) is O(n log2 n) [BCS13] and ABP complexity of g(x̄) is O(n2)

(using Ben-Or’s construction).

Observation A.5. Consider the polynomial g(x̄) defined in Fact A.4 with d = n
10 . Then the following

statements are true.

• Any formula computing a mult-IPSLin′ refutation of the system
{

g = 0, X2 − X = 0
}

must have
size at least Ω(n2).
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• Any ABP computing a mult-IPSLin′ refutation of the system
{

g = 0, X2 − X = 0
}

must have size
at least Ω(n2).

• Any circuit computing a mult-IPSLin′ refutation of the system
{

g = 0, X2 − X = 0
}

must have size
least Ω(n log n).

Proof. By Proposition 2.15, if we show a Ω(n2) formula (ABP) lower bound for the unique multi-
linear polynomial f (X̄) that agrees with 1

g(X̄)
over the Boolean hypercube, we get our mult-IPSLin′

refutation lower Bound. By the Fact A.4, here f (X̄) = ESYMn, n
10

which has a Ω(n2) formula (ABP)
lower bound from [CKSV22]. Note that, there is a crucial condition on characteristic of field F,
Char(F) ∤ n in order to hold the lower bound. We do not know yet how to remove this condition.
So, it is fair to assume Char(F) = 0. For circuit we refer to the work [BS83], which shows any
circuit computing ESYMn, n

10
needs size at least Ω(n log n). Here also the size of F need to be either

large enough or Char(F) = 0 for the lower bound.
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