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Abstract. It is a well-known fact that the permanent polynomial is complete

for the complexity class VNP, and it is largely suspected that the determinant
does not share this property, despite its similar expression. We study the

question of why the VNP-completeness proof of the permanent fails for the

determinant. We isolate three fundamental properties that are sufficient to
prove a polynomial sequence is VNP-hard, of which two are shared by both

the permanent and the determinant. We proceed to show that the perma-

nent satisfies the third property, which we refer to as the “cost of a boolean
sum,” while the determinant does not, showcasing the fundamental difference

between the polynomial families. We further note that this differentiation also
applies in the border complexity setting and that our results apply for counting

complexity.

1. Introduction

In an attempt to introduce an algebraic approach to solving the classical P versus
NP problem, [15] introduces algebraic circuits and the complexity classes VP and
VNP. Central to this approach were two fundamental objects: the determinant and
the permanent. The determinant belongs to the class VP (it is, in fact, complete
for a restriction of this class, VBP, or even VP if we consider quasi-polynomial
projections), and the permanent is complete for the class VNP, as proven in [15].
We suspect that the determinant is not VNP-complete, meaning that Valiant’s
proof of the VNP-hardness of the permanent should fail when the determinant is
used in its place. It has been unclear exactly why this is the case, although one
would expect it to be related to the construction of a particular graph-theoretical
gadget, known as the iff-coupling gadget, being impossible in the model of the
determinant. However, this is a somewhat narrow and technical reason.

This paper seeks to develop a more general understanding of the reasons this
VNP-hardness proof fails when applied to the determinant. In exploring this ques-
tion, we simplify the proof for the VNP-completeness of the permanent and isolate
the exact property that the determinant lacks which causes this VNP-hardness
proof to fail (assuming all other properties are the same).

Recall that the VNP-completeness proof of the permanent begins by taking a
formula and summing it over all 0-1 substitutions of some of its variables (represent-
ing an element of a VNP polynomial sequence). This formula is then transformed
into a similarly-sized permanent. We then iteratively remove each 0-1 substitution
of a particular variable by modifying the matrix we take the permanent of, only
increasing its size by a small amount. This iterative removal is the key piece of the
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proof that makes it work in the case of the permanent, but, to the authors’ knowl-
edge, there does not exist a proof that this step breaks down for the determinant.
Studying this step in its full generality is difficult, as the given matrix could have
a complex structure. In this paper, we simplify the VNP-completeness proof by
showing that we can, without loss of generality, assume that the matrix has exactly
two instances of the variable that we seek to remove. Using a small (standard)
gadget construction, a boolean sum over two variables can be simulated by a per-
manent of a matrix that is bigger only by an additive constant, which shows that
the permanent is VNP-complete. We can then show that the proof fails for the de-
terminant by proving that the last step of this process must incur a super-constant
(in fact, a constant multiplicative factor) increase in the size of the matrix.

We generalize this concept of “iterated substitutions” to arbitrary polynomials
through the boolean sum. Given a polynomial f ∈ F[X ] and a subset of its variables
S ⊆ X , we can represent the boolean sum, which we denote by ΣSf , as the sum of
taking f with each variable in S set to 0 and the same with respect to 1. We can now
rephrase this step of the proof as converting a boolean sum over an arbitrary-sized
set of variables to multiple boolean sums over two variables.

In this paper, we have isolated the following properties as sufficient for proving
the VNP-hardness of a polynomial:

(1) The polynomial sequence is VF-hard, i.e., a polynomial computed by a for-
mula can be represented as a projection of a polynomial in the sequence (we
can replace arguments by variables or constants), indexed by a polynomial
in the size of the formula,

(2) A boolean sum over many variables can be rewritten as a sequence of
boolean sums, each over two variables, and

(3) A boolean sum of a polynomial over two variables can be rewritten as a
simple projection of itself, whose index is only increased by a fixed constant.

With these properties in mind, the main results of our paper can be summarized
as follows:

• A polynomial sequence satisfying properties (1), (2), and (3) is VNP-hard.
• Both the determinant and the permanent satisfy properties (1) and (2).
• The permanent satisfies property (3), but the determinant does not.

In short, we have isolated the simple property that differentiates the determinant
from the permanent in our ability to prove VNP-completeness.

1.1. Related Work. The focus of this paper is on studying the noteworthy differ-
ences in properties between the permanent and the determinant polynomials, which
is an important research direction, as it seems that the separation between VP and
VNP is encoded in the differences between these polynomials. It is therefore that
the differences in these polynomials have been well-studied.

One significant line of study were those seeking to find lower bounds on the
size of a determinant that simulates the permanent (determinantal complexity). In
a result of von zur Gathen [17], a lower bound was determined by studying the
algebraic-geometric properties of the determinant and the permanent. Specifically,
there was a difference between the dimension of the spaces of singular points of the
determinant and permanent (points where a polynomial and all of its first-order
partial derivatives vanish). Then, in a result of Mignon and Ressayre [11] (see
also [3]), the bound was strengthened by studying the rank of the Hessian of these
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polynomials at vanishing points. It was shown that all zeros of the determinant
have a very small Hessian rank, whereas the permanent has zero points with very
large Hessian rank.

The work of Landsberg and Ressayre [8] gives an exponential lower bound on the
determinantal complexity of the permanent in a restricted setting. They showed
that any reductions from the permanent to the determinant that preserve the un-
derlying symmetries must have exponential cost.

Recent work of Hruběs and Joglekar [6] points to a distinction in reductions to
read-once determinants and permanents, which forces each variable to appear in
the corresponding matrix at most once. Here, they show that every multilinear
polynomial can be represented as a read-once permanent, whereas representations
using the determinant could require a variable to appear at least ω(

√
n/ lg n) times.

1.2. Our Results. We have isolated three properties that are fundamental to un-
derstanding our VNP-completeness results for the permanent. We will begin by
formally stating these properties.

Definition. We say that a polynomial sequence f = (fi)i∈N ∈ F[X ] simulates
formulas if, for every polynomial g ∈ F[X ] that can be computed by a formula of
size s, g is a projection of some fi, where i is polynomial in s. In other words, f
is VF-hard.

We further say that k ∈ N variable instances are sufficient for boolean sums of
f if, for every boolean sum ΣS1 . . .ΣSℓ

fi [see (2.1)], there is an ℓ′ and m that are
polynomial in i and ℓ such that this sum can be rewritten as ΣT1 . . .ΣTℓ′ fm, where
the size of each Ti is k.

Finally, we define the algebraic additive cost of boolean summation over f via
the map αf : N → N ∪ {∞}, defined as follows: for each s ∈ N, let αf (s) be the
minimum integer1 k so that, for every n and S ⊆ Xn of size |S| ≤ s, the polynomial
ΣSfn is a simple projection of fn+k. In other words, αf (s) is the additive f -cost
of performing a boolean sum over s variables.

We can further naturally move the definition of αf into the border complexity
setting, which we denote by αf . Formally, we let αf (s) be the minimum integer k

so that there is a border sequence F = (Fi)i∈N over F(ϵ)[X ] such that, for every
i ∈ N, there exist polynomials gi ∈ F[X ∪ {ϵ}] and Qi ∈ F[ϵ] and M ∈ Z such that

Fi =
ϵM · fi + ϵM+1 · gi

1 + ϵQi(ϵ)
,

and furthermore, αF (s) = k. The algebraic expression captures our intuition that
limϵ→0 Fi = fi.

We can now introduce our main results that use these properties. We first have
that these properties are sufficient for VNP-hardness.

Theorem 1. If, for a fixed k ∈ N, f = (fi)i∈N ∈ F[X ] is such that

(1) f simulates formulas,
(2) k variables instances are sufficient for boolean sums over f , and
(3) αf (k) < ∞,

1If there is no such integer, then it is infinite.
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then f is VNP-hard.
Further, if the projections and reductions associated with these three properties

can be completed in polynomial time, then f is #P-hard.

We use perm and det to denote the permanent and determinant polynomials
respectively. It is a well-known fact that perm and det can simulate formulas.

Lemma 2 ([15]). The perm and det polynomial sequences can simulate formulas.

Our main deviation from the well-known VNP-hardness proof is through the
decrease of the number of instances of the variables we sum over to two. This idea
is stated in the following lemma.

Lemma 3. Two variables instances are sufficient for boolean sums over the perm
and det polynomials.

Finally, the main result of this paper is through differentiating the determinant
from the permanent, which is stated in the following theorem.

Theorem 4. We have that αperm(2) ≤ 3, but αdet(2) = ∞. We further observe
that αdet(2) = ∞.

1.3. Structure of Paper. First, in Section 2, we will introduce our notation and
definitions. Then, in Section 3, we will prove Theorem 4, which will differentiate
the permanent from the determinant. We will do this using a well-known result of
Mignon and Ressayre[11] and through a careful selection of matrices. In Section 4,
we will prove Lemma 3, showing that we can transform arbitrarily-sized boolean
sums to those of size two. In Section 5, we provide the proof of Theorem 1, which is
(in our opinion) a slightly simpler and more modular proof of the VNP-completeness
of the permanent.

2. Preliminaries

Let F be a field of characteristic not two. Let X be an infinite set of indeter-
minants and F[X ] be the polynomial ring containing polynomials that use a finite
number of indeterminants in X . We will write (fi)i∈N ∈ F[X ] to denote a sequence
a polynomials (we will somtimes simply write it as (fi)), and it is assumed that
fi ∈ F[Xi], where Xi ⊆ X has size polynomial in i. Given a set S, we may use SXi

to denote an assignment of the variables in Xi to elements of S, so that we can then
see fi(a) to represent evaluating fi at the point a ∈ SXi .

We will use the typical definitions for circuits, formulas, the complexity classes
VF, VP, and VNP, and hardness within these classes. For more information,
see [15].

A fundamental tool in computational complexity theory is reduction between
problems [7]. Reductions allow us to compare the complexities of different problems.
In the algebraic setting, reductions are projections. The polynomial f ∈ F[X ] is a
projection of g ∈ F[Y] if there is a map ϕ : Y → X ∪ F so that f = λ(g ◦ ϕ), where
λ ∈ F \ {0}. The projection is called simple if for each x ∈ X the cardinality of
ϕ−1(x) is at most one.

For boolean summation, we use the following notation. For S ⊆ X , denote by fS
the polynomial in the variables X ∪{y}, where y is a new variable, that is obtained
from f by the substitution x = y for all x ∈ S. For example, (x1+x2

2+x3){x1,x2} =
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y + y2 + x3. Denote by ΣSf the polynomial

(2.1) ΣSf = fS |y=0 + fS |y=1.

For example, Σ{x1,x2}(x1 + x2
2 + x3) = 2 + 2x3. The variables in S do not appear

in fS and ΣSf .
For two polynomial sequences g = (gi)i∈N and f = (fi)i∈N, we say that g is an

iterated boolean sum of f if, for every i ∈ N, there are disjoint sets S1, . . . , Sℓ ⊆ X
such that gi = ΣS1 . . .ΣSℓ

fj , where ℓ and j are polynomial in i. Observe that a
polynomial sequence being in VNP is equivalent to there being a sequence in VF
each element in the VNP sequence is an iterated boolean sum of a (polynomially-
indexed) element in the VF sequence.

The two central polynomial families in algebraic complexity are the permanent
and the determinant, defined by,

perm(X) = permn(X) =
∑
π

∏
i

xi,π(i)

and

det(X) = detn(X) =
∑
π

(−1)sign(π)
∏
i

xi,π(i),

where X = (xi,j) is an n × n matrix of variables, the sum is over permutations
π of [n], and the product is over i ∈ [n]. The permanent and determinant can
be equivalently defined as the sum of the (signed) weights of cycle covers over a
graph, whose adjacency matrix is given; see [9]. The permanent is VNP-complete,
so that VP ̸= VNP if and only if perm is not in VP [15]. It also appears in many
places in computer science because it encapsulates many counting problems (see
e.g. [16, 14, 1] and references within); by definition, it counts the number of perfect
matchings in a bipartite graph. The VP versus VNP problem is (essentially) about
the relationship between the permanent and the determinant (see [15, 12, 10] and
references within).

The determinant defines a complexity measure; the determinantal complexity
dc(f) of a polynomial f is the minimum k so that f is a projection of detk. It is
known that dc(f) < ∞ for all f . The VP versus VNP problem is roughly captured
by what is dc(permn)? Proving that dc(permn) is super-polynomial in n is one of
the major open problems in computer science. The best lower bound we know is

dc(permn) ≥ n2

2 ; see [11, 3].
Given a complexity measure L : F[X ] → N, we can define its corresponding

“border” measure, denoted L, to be the polynomial with the smallest L measure
that approximates the original polynomial. More formally, given an f ∈ F[X ], we
define L(f) to be the smallest k such that there exist F ∈ F(ϵ)[X ], g ∈ F[X ∪ {ϵ}],
Q ∈ F[ϵ], and M ∈ Z such that

F =
ϵMf + ϵM+1g

1 + ϵQ(ϵ)
,

and furthermore, L(F ) = k.
In the field of counting complexity, we study the complexity of functions that

“count” some quantity, mapping φ : {0, 1}∗ → N. Recall that we define the class
NP as the set of decision problems, denoted by φ : {0, 1}∗ → {0, 1}, such that
there is a Turing Machine taking in the input and a special ”witness” string such
that the Turing Machine runs in polynomial time and a string is in the language
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if and only if there is at least one ”witness” string for which the Turing Machine
accepts it. We then define the complexity class ♯P similarly, but instead we require
the related Turing Machine to have the number of accepting witness strings to a
given input to be the same as that defined by φ. The quintessential ♯P-complete
problem is ♯3-SAT, which, given a 3-CNF formula, counts the number of satisfying
assignments.

3. Cost of Boolean Summation

This section will focus on proving Theorem 4. We will separate the proof of this
theorem into two sub-claims. The first is used to show that αdet(2) = ∞.

Claim 5. For any n ∈ N, we have that

dc(Σ{x1,1,x2,2}detn) ≥ 2(n− 2).

Next, we will prove that αperm(2) ≤ 3 through another claim.

Claim 6. There exists a matrix E ∈ (X ∪ F)(n+3)×(n+3) such that

Σ{x1,1,x1,2}perm = perm(E).

Observe that, do to row and column swaps (and the fact that, if the two indeter-
minants were on the same row or column, the claim would be trivially true), these
claims imply what we want.

3.1. Lower Bound on Determinantal Boolean Sums. We now prove that
αdet(2) = ∞ by proving Claim 5. The proof relies on a mechanism developed by
Mignon and Ressayre to lower bound the determinantal complexity [11]. For a
polynomial f ∈ F[X ], denote by Hf the |X | × |X | Hessian matrix of f defined by

(Hf )x,x′ =
∂2

∂x∂x′ f.

Lemma 7 ([11]; see also Lemma 13.3 in [4]). Let f be a polynomial in the variables
x = (x1, . . . , xn) and let a ∈ Fn be so that f(a) = 0 then

dc(f) ≥ rank(Hf |x=a)

2
.

The theorem follows by considering the polynomial

f = Σ{x1,1,x2,2}detn

and the n× n matrix

A =

 1
2

1
I

 ,

where I is the (n − 2) × (n − 2) identity matrix. In the two claims below (which
complete the proof), let H = Hf .

Claim 8. f(A) = 0.

Proof of Claim 8.

f(A) = det

 1
2

1
I

+ det

 1 1
2

1 1
I


= −1

2
+ 1− 1

2
= 0. □
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Claim 9. rank(H|X=A) ≥ 4(n− 2).

Proof of Claim 9. Focus on the 4(n− 2) variables Vi = {x1,i, x2,i, xi,1, xi,2} for i >
2. Furthermore, we consider G to be the 4(n−2)×4(n−2) sub-matrix of H whose
rows and columns are labeled by variables in

⋃
i>2 Vi. Let f0 = detn|x1,1=x2,2=0

and f1 = detn|x1,1=x2,2=1, so that f = f0 + f1.
An entry in the Hessian of det is plus/minus the determinant of the (n−2)-minor

obtained by deleting the corresponding rows and columns from X (or zero if the
two variables share a row or a column).

For convenience, denote by Hkℓmp the (xk,ℓ, xm,p)-entry in H (and in G).
We first claim that after substituting A, the sub-matrix G of H has n−2 blocks,

each of size 4× 4: 
G3

G4

. . .

Gn


where for i > 2

Gi =


H1i1i H1i2i H1ii1 H1ii2

H2i1i H2i2i H2ii1 H2ii2

Hi11i Hi12i Hi1i1 Hi1i2

Hi21i Hi22i Hi2i1 Hi2i2

 .

Indeed, for i ̸= j, the matrix obtained from A by deleting row i and column j has
a zero row so its determinant is zero. It follows for k, ℓ ∈ {1, 2} that

(Hf )ikℓj |X=A = (Hf0)ikℓj |X=A + (Hf1)ikℓj |X=A = 0 + 0 = 0.

A similar argument holds for the other entries Hikjℓ, Hkiℓj , and Hkijℓ.
Now fix i and focus on Gi. Entries of the form 1i1i and 1i2i are also zero. So,

we are left with

Gi =


H1ii1 H1ii2

H2ii1 H2ii2

Hi11i Hi12i

Hi21i Hi22i

 .

The matrix Gi is symmetric so it is enough to understand[
H1ii1 H1ii2

H2ii1 H2ii2

]
.

This matrix is a sum of two matrices (one from f0 and one from f1). For f0, this
matrix is [

1
1
2

]
.

For f1, this matrix is [
−1 1
1
2 −1

]
.

The sum of the two matrices is [
−1 2
1 −1

]
,
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which always has rank two. Rolling back

rank




G3

G4

. . .

Gn


 = 4(n− 2). □

Observation 10. We note that this result also applies in the border complexity
setting. Specifically, it also follows that dc(Σ{x1,1,x2,2}detn) ≥ 2(n − 2). This fact
follows from [5], where it is shown that the lower bound from [11] of the determi-
nantal complexity of the permanent also applies in the border complexity setting.
Although the proof presented there is specifically for the permanent polynomial, it
is easy to see that it also works if you use any arbitrary homogeneous polynomial.
We should observe that Σ{x1,1,x2,2}detn is not homogeneous, but one can easily see
that we can apply the result to the natural homogenization of the polynomial and
get the desired result.

3.2. Upper Bound on Permanental Boolean Sum. In this section, we will
prove that αperm(2) ≤ 3 by proving Claim 6. Specifically, we will select the matrix
E to be

E =



1 1 1
1 0 −1 1
− 1

2
1
2

3
2 1

1 0 x1,2 x1,3 · · ·
1 x2,1 0 x2,3

x3,1 x3,2 x3,3

...
. . .


.

Proof of Claim 6. To see this, denote by X[b] the matrix X after the substitution
x1,1 = x2,2 = b for b ∈ {0, 1}. For S ⊆ {1, 2}, denote by X[b]−S the matrix X[b]
after deleting the rows and columns in S. We have

perm(X[1]) = perm




1 x1,2 x1,3

x2,1 1 x2,3

x3,1 x3,2 x3,3

. . .




= perm(X[0]) + perm(X[0]−{1}) + perm(X[0]−{2}) + perm(X[0]−{1,2}).

Now, consider a permutation π such that the associated value of the permutation
on E is nonzero. We can then notice that such a permutation falls into one of four
categories:

• π({1, 2, 3}) = {1, 2, 3},
• π(2) = 4 and π({1, 3}) = {1, 3},
• π(3) = 5 and π({1, 2}) = {1, 2}, or
• π(2) = 4, π(3) = 5, and π(1) = 1.

Let U be the 3× 3 upper-left block

U =

 1 1 1
1 0 −1
− 1

2
1
2

3
2

 .
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For S, T ⊆ {1, 2, 3} with |S| = |T |, we denote by UT
S the sub-matrix of U obtained

by keeping the rows of S and the columns of T . The matrix U is chosen such that

perm(U
{1,3}
{1,2} ) = perm(U

{1,2}
{1,3} ) = 0,

perm(U
{1}
{1} ) = perm(U

{1,2}
{1,2} ) = perm(U

{1,3}
{1,3} ) = 1,

perm(U) = 2.

In the first of the above 4 cases, it must be that π({4, 5, . . . ,m}) = {4, 5, . . . ,m}.
Therefore, the sum of the weights of these permutations corresponds to

perm

([
U

X[0]

])
= 2perm(X[0]).

In the second case, it must be that π(4) = 2 and π({5, 6, . . . ,m}) = {5, 6, . . . ,m}.
Thus, this case corresponds to

perm

([
U

{1,3}
{1,3}

X[0]−{1}

])
= perm(X[0]−{1}).

In the third case, we have that π(5) = 3 and π({4, 6, 7, . . . ,m}) = {4, 6, 7, . . . ,m}.
Thus, this case corresponds to

perm

([
U

{1,2}
{1,2}

X[0]−{2}

])
= perm(X[0]−{2}).

Finally, in the fourth case, it must be that π(4), π(5) ∈ {2, 3} and π({6, 7, . . . ,m}) =
{6, 7, . . . ,m}. This case then corresponds to

perm

([
U

{1}
{1}

X[0]−{1,2}

])
= perm(X[0]−{1,2}).

Summing it together,

perm(E) = perm(X[0]) + perm(X[1]). □

3.3. Boolean Sum over a Single Variable. Interestingly, considering boolean
sums of two variables is necessary to separate perm from det. This is becaues the
boolean cost of removing one variable is the same for both polynomial sequences.

Claim 11. We have that αdet(1) = αperm(1) = 0.
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Proof.

Σ{x1,1}det(X)

= det


0 x1,2 x1,3 . . . x1,n

x2,1 x2,2 x2,3 . . . x2,n

x3,1 x3,2 x3,3 . . . x3,n

...
...

...
. . .

...
xn,1 xn,2 xn,3 . . . xn,n

+ det


1 x1,2 x1,3 . . . x1,n

x2,1 x2,2 x2,3 . . . x2,n

x3,1 x3,2 x3,3 . . . x3,n

...
...

...
. . .

...
xn,1 xn,2 xn,3 . . . xn,n



= 2det


1/2 x1,2 x1,3 . . . x1,n

x2,1 x2,2 x2,3 . . . x2,n

x3,1 x3,2 x3,3 . . . x3,n

...
...

...
. . .

...
xn,1 xn,2 xn,3 . . . xn,n

 .

A similar calculation holds for the permanent. □

4. Two variables suffice for VNP-hardness

The aim of this section is to prove Lemma 3 that shows that summation over
two variables suffices for VNP-hardness. We prove it for the determinant (the proof
for the permanent is similar). The following construction shows how to replace a
boolean summation over m variables by m boolean summations over two variables.

Observation 12. Let f ∈ F[X ] and S = {x1, . . . , xm} ⊆ X . Let y1, . . . , ym be m
new variables, and define

g(y) =
( ∏

i∈[m]

yi

)
+
( ∏

i∈[m]

(1− yi)
)
.

Then

Σ{x1,y1}Σ{x2,y2} . . .Σ{xm,ym}gf = ΣSf.

Indeed, on the l.h.s. there is a sum over 2m terms, but g picks exactly two of them
that perfectly agree with the r.h.s.

The observation allows to replace a boolean sum over many variables by several
sums, each over just two.

Observation 13. Let g be the polynomial defined above. Then, there is a 2m×2m
matrix A with entries in {y1, . . . , ym, 0, 1,−1} so that each yi appears once in A
and

g = det(A).

The matrix A is the m-variate version of the following matrix:

A =



−1 1 −1
−1 y1

−1 1 −1
−1 y2

−1 1 −1
−1 y3

1 −1 1
−1 y4


.
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−1

1

−1

−1

y1

−1

1

−1

−1

y2

−1

1

−1

−1
y3

1

1

−1

−1

y4

Figure 1. The graph GA

To see that det(A) is the polynomial g, it is easier to see the determinant as
a signed sum of the weights of the cycles covers of the graph GA whose A is the
adjacency matrix (see Figure 1)

det(A) =
∑

C cycles cover

 ∏
σ cycle of C

(−1)1+length of Cweight(C)

 .

The reader could find more details about this characterization by cycles covers in [9].
The only cycle which contains a dashed edge is exactly the union of the dashed
edges. So the only cover that contains this cycle also contains the m yi-loops. It
corresponds to one cover of signed weight

(
(−1)m+1(−1)m−1

)∏m
i=1 yi =

∏m
i=1 yi.

Otherwise, the covers contain no dashed edges and are given by m disjoint graphs.
The signed weight is the product of them:

∏
i((−1)(−1) + (1)(−yi)) =

∏
i(1− yi).

The sum of the covers gives exactly the polynomial g.

Remark. For the permanent, every −1 above the diagonal of the matrix A should

be changed into a 1, and the 2× 2 blocks into

[
−1 1
1 y1

]
.

Proof of Lemma 3. Let B ∈ (X ∪F)n×n and S1, . . . , Sℓ ⊆ X be such that S1, . . . , Sℓ

are disjoint. Then, by previous

ΣSℓ
det(B) = Σ{x1,y1} . . .Σ{xm,ym}gdet(B) = Σ{x1,y1} . . .Σ{xm,ym}det

(
B 0
0 A

)
Notice here that m ≤ |Sℓ| and the size of the block matrix is at most n + 2m ≤
n+2|Sℓ|. We can then use induction on S1, . . . , Sℓ−1 to conclude that we can write

ΣS1 . . .ΣSℓ
det(A) = ΣT1 . . .ΣTℓ′det(C),

where ℓ′ ≤
∑ℓ

i=1 |Sℓ| ≤ n2 and the size of C is at most n+2
∑ℓ

i=1 |Sℓ| ≤ n+2n2. □

5. The permanent is VNP-complete

This section will finally provide the proof of Theorem 1, showing that the three
properties we have isolated are sufficient for VNP-hardness. The proof proceeds
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similarly to Valiant’s VNP-completeness proof of the permanent with a few vari-
ations. This section thus also provides a (arguably) more modular proof of the
VNP-completeness of the permanent.

Proof of Theorem 1. Because f simulates formulas, we can write every n-variate
g ∈ F[Y] in VNP (see [2, 13]) as

g = (ΣS1
. . .ΣSℓ

fd)(a)

where a ∈ (F ∪ Y)Xd is a variable assignment such that d is polynomial in n,
each entry in a is a variable or a field element, and S1, . . . , Sℓ are pairwise disjoint
(implying ℓ is polynomial in d).

Because k variables are sufficient for boolean sums over f , we can assume without
loss of generality that |S1| = · · · = |Sℓ| = k. Further, as αf (k) < ∞, we know that
we can write

ΣSℓ
fd = fd+αf (k)(b),

for some simple variable assignment b ∈ (F∪Y)
Xi+αf (k) . Observe that, because this

is a simple projection, we can easily (after modifying our sets S1, . . . , Sℓ−1) bring
out b and write (ΣS1

. . .ΣSℓ−1
fd+αf (k))(b

′) = g, for some assignment b′. Thus, after
repeating this process ℓ times, we can write

(ΣS1 . . .ΣSℓ
fd)(a) = fd+ℓαf (k)(c),

where c ∈ (F∪Y)
Xd+ℓαf (k) is a variable assignment. Because ℓ and d are polynomial

in n, we can conclude that f is VNP-hard. □

Observation 14. We will then conclude with the observation that this proof also
works for proving ♯P-hardness if each of the steps that we took in this proof can be
done in polynomial time. Consider ♯3-SAT, a complete problem for ♯P, where we
are given a 3-CNF and must return the number of satisfying assignments it has.
Consider some 3-CNF φ in n variables, and observe that the number of possible
clauses is polynomial in n, so we can easily encode it using one bit for each possible
clause. We will write this number as mn, and one can easily see that there is a
polynomial fn ∈ F[y1, . . . , ymn

, x1, . . . , xn] such that, if we provide the yi variables
with the 0/1 encoding of φ and the xi variables with a variable assignment, it will
output 0/1 depending on whether this assignment is a satisfying assignment of φ.
One can easily see that fn can be computed by a formula that is polynomial in
n. Finally, we observe that the polynomial gn = Σ{x1} . . .Σ{xn}fn provides the
exact answer for ♯3SAT when given the binary encoding of a 3-CNF. Hence, we
can carry out our previous proof from the sequence g = (gn)n∈N to reduce it to a
polynomial with the three properties (ensuring that the steps along the way can be
done in polynomial time). At the end, we conclude that we can reduce ♯3-SAT to
our polynomial sequence.
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