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Abstract

We exhibit an n-bit communication problem with a constant-cost randomized protocol but
which requires nΩ(1) deterministic (or even non-deterministic) queries to an Equality oracle.
Therefore, even constant-cost randomized protocols cannot be efficiently “derandomized” using
Equality oracles. This improves on several recent results and answers a question from the
survey of Hatami and Hatami (SIGACT News 2024). It also gives a significantly simpler and
quantitatively superior proof of the main result of Fang, Göös, Harms, and Hatami (STOC 2025),
that constant-cost communication does not reduce to the k-Hamming Distance hierarchy.

1 Introduction

In this paper we prove strong limits on the power of “simple hashing” for the purpose of com-
munication. In communication complexity, simple hashing, i.e. the Equality communication
problem, is the most dramatic example of the power of randomness. Alice and Bob each have
binary strings x, y ∈ {0, 1}n and their goal is to decide whether x = y. With public randomness,
they can generate a random 2-bit hash h(z) for every z and check if h(x) = h(y). This succeeds
with probability at least 3/4 and requires only 2 bits of communication regardless of the size of the
input n [KN96, RY20].

Randomized communication can often be “derandomized” by allowing Alice and Bob access
to an oracle which (deterministically) computes Equality. Write DEq(F ) for the minimum cost
of a deterministic protocol computing F with access to this oracle, and R(F ) for the public-coin
randomized communication cost (with error probability 1/3). Here are three examples covering a
range of complexities:

Example 1 (Greater Than). Alice and Bob are given n-bit integers x, y and their goal is to decide
whether x > y. They can perform binary search to find the highest-order bit where x and y
differ, by querying the Equality oracle (check if the first half of their bits are equal, etc.), so
DEq(GTn) = O(log n), where GTn denotes the Greater-Than problem on n bits. Randomized
communication satisfies R(F ) = O(DEq(F )) [Nis93, HR24], which in this case gives the optimal
randomized protocol: R(GTn) = Θ(log n) [Nis93, BW16, Vio15, SY23].

Example 2 (Planar Adjacency [Har20, HWZ22]). Alice and Bob are given vertices x, y in a (shared)
planar graph P and wish to decide if they are adjacent. A planar graph is the edge union of 3
forests, so they can check adjacency in P by checking adjacency in each forest: x is equal to the
parent of y or vice versa. So DEq ≤ 6 for this problem and therefore its randomized cost is constant
(independent of the input size), which is clearly optimal.
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Example 3 (1-Hamming Distance). Alice and Bob are given x, y ∈ {0, 1}n and their goal is to
decide if x, y differ on at most 1 bit. Using binary search with the Equality oracle, we get
DEq(HDn

1 ) = O(log n), where HDn
1 denotes the 1-Hamming Distance problem on n bits. This

protocol is not optimal, since R(HDn
1 ) = O(1), but it is still efficient, i.e. DEq(HDn

1 ) = poly log n.

Can every efficient randomized protocol be replaced with an Equality oracle protocol? This
is especially interesting for problems like Planar Adjacency and 1-Hamming Distance that
have constant randomized cost, because one may reasonably expect the answer to be yes, i.e.
any constant-cost randomized protocol can be replaced with poly log n Equality queries, as in
Example 3. On the contrary, we show:

Theorem 1. There exists a communication problem F : {0, 1}n × {0, 1}n → {0, 1} with

R(F ) = O(1) and DEq(F ) = Θ(
√
n).

In terms of complexity classes, this implies BPP0 ̸⊆ PEq, where BPP0 is the class of randomized
constant-cost problems and PEq is the class of problems with Equality oracle cost poly log n.

Communication oracles including Equality, HD1, and others, are well studied [CLV19, HHH23,
HWZ22, EHK22, PSS23, CHHS23, CHZZ24, HZ24, FHHH24, FGHH25, CHH+25]. Theorem 1 im-
proves on results from several of these works and our proof answers a number of open questions.

Separation of R(F ) and DEq(F ). Whether Equality oracles can efficiently derandomize com-
munication was first asked in [CLV19], who showed that there exists a problem F with

R(F ) = O(log n) and DEq(F ) = Θ(n).

This established that BPP ̸⊆ PEq, where BPP is the class of n-bit communication problems with
randomized communication cost poly log n. This separation was improved in [CHH+25] to hold for
XOR functions (see also [CHHS23, PSS23, Tom25]).

Recently, there has been significant effort to understand the most extreme examples of the power
of randomness in communication, i.e. the problems with constant cost. The question of how well
Equality oracles can derandomize constant cost communication was posed in [HHH23, HWZ22],
who showed that Equality is not “complete” for the class of constant-cost problems, i.e. BPP0 ̸⊆
PEq
0 , where PEq

0 is the class of problems F with DEq(F ) = O(1). But the best known lower bound
on DEq for a constant-cost problem is from [HHH23] (see also [HR24]), who proved a DEq lower
bound matching Example 3:

R(HD1) = O(1) and DEq(HD1) = Θ(log n).

This leads to the question, implicit in [CHHS23] and explicit in the survey [HH24], of whether
constant-cost protocols can be replaced with poly log nEquality queries. We answer no, improving
the separation BPP ̸⊆ PEq to BPP0 ̸⊆ PEq. Our example F is an XOR function, so we also improve
on the separation of [CHH+25].

Separation of BPP0 and k-Hamming Distance. Following the result that Equality is not
complete for BPP0, [FGHH25] showed that the infinite hierarchy of k-Hamming Distance prob-
lems HDk (decide if x, y differ on at most k bits) is also not complete: there exists F with
R(F ) = O(1) and yet DHDk(F ) = ω(1) for every constant k, where DHDk(F ) is the minimum
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number of queries to an HDk oracle required to compute F . We give a significantly simpler and
quantitatively superior proof (for a different F ), with a lower bound of Ω̃(

√
n) instead of ω(1):

Corollary 2. There exists an n-bit function F such that for any constant k,

R(F ) = O(1) and DHDk(F ) ≥ Ω̃(
√
n).

Two Proofs with Five Corollaries

We give two incomparable proofs of Theorem 1: one analytic, one combinatorial, each with different
consequences beyond the ones above, which we elaborate in Section 5.

Analytic proof: γ2-norm and decision trees. We show in Theorem 6 that the γ2-norm of
our problem F (equivalently, the spectral norm of f , see Section 5.2) is 2Ω(

√
n). As a consequence:

• Our function F is an XOR function, meaning F (x, y) = f(x⊕ y) for some function f . Since
XOR functions F (x, y) = f(x⊕ y) satisfy the property that the γ2-norm of F is equal to the
Fourier spectral norm of f [HHH23], we exhibit a function f with approximate spectral norm
O(1) yet exact spectral norm 2Ω(

√
n) (Corollary 15).

• We answer [CHH+25, Question 8], asking whether there exists a function f : {0, 1}n → {0, 1}
with randomized parity decision tree size O(1) but deterministic parity decision tree size
nω(1). Our f has deterministic parity decision tree size 2Ω(

√
n) (Corollary 16).

• We make progress on [CHHS23, Question 5], asking whether any n-bit function with R(F ) =
O(1) has γ2-norm 2Ω(n). Our function does not achieve this maximal value but it improves
exponentially on the best known value of Θ(

√
n), for the HD1 function [HHH23].

Combinatorial proof: non-deterministic Equality protocols. Using the blocky cover num-
ber of [PSS23], we show that F has Equality oracle cost Ω(

√
n) even for a non-deterministic

protocol. As a consequence of our proof:

• We improve the complexity class separation in Theorem 1, from BPP0 ̸⊆ PEq to BPP0 ̸⊆
NPEq. This improves on a result of [PSS23] who showed BPP ̸⊆ NPEq.

• We tighten the theorem of [PSS23] relating the blocky cover number and the non-deterministic
Equality oracle cost NDEq(·). This improves the lower bounds on NDEq(·) given in [PSS23,
CHH+25] and answers the question posed after [CHH+25, Theorem 5], asking if NDEq(IIPn

3 ) =
Ω(n), where IIPn

3 is the Integer Inner Product function defined in [CLV19].

2 The Problem

The problem is a special case of those studied recently by Sherstov & Storozhenko [SS24]. Alice
and Bob are given matrices A,B ∈ Fn×n

2 and their goal is to decide if the F2-rank of A + B is at
most 1; i.e. RankOnen : {0, 1}n×n × {0, 1}n×n → {0, 1} is defined by

RankOnen(A,B) ..=

{
1 if A⊕B has rank ≤ 1

0 otherwise.
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Note that a matrix C ∈ {0, 1}n×n has rank ≤ 1 if and only if its 1-entries form a combinatorial
rectangle, i.e. there are sets X,Y ⊆ [n] such that C(x, y) = 1 iff (x, y) ∈ X×Y . This problem is an
XOR problem, i.e. RankOnen(A,B) = f(A ⊕ B) for the boolean function f : {0, 1}n×n → {0, 1}
defined as f(M) = 1 if and only if M has rank at most 1.

Sherstov & Storozhenko [SS24] prove tight bounds for the randomized communication complex-
ity of computing rank r over any finite field. For the sake of completeness, we include a simple
proof that R(RankOnen) = O(1). More specifically, we prove that the randomized parity decision
tree depth of f is O(1) (which immediately implies the same for randomized communication).

A function g : {0, 1}n → {0, 1} is computed by a depth-d parity decision tree if, for any x ∈
{0, 1}n, g(x) can be computed with at most d adaptive queries of the form ⊕i∈Sxi for chosen S ⊆ [n].
A function g is computed by a randomized parity decision tree if there exists a distribution µ over
parity decision trees such that for every input x ∈ {0, 1}n, PrT∼µ[T (x) = g(x)] ≥ 2/3.

Theorem 3. Let f : {0, 1}n×n → {0, 1} be as above: f(M) = 1 iff rkF2(M) ≤ 1. Then it is
computed by a randomized parity decision tree of constant depth (i.e. independent of n).

Proof. Given input M , the tree chooses sets A1,A2,B1,B2 ⊆ [n] uniformly at random. For each
α, β ∈ [2], the tree queries Cα,β

..=
⊕

(i,j)∈Aα×Bβ
Mij , to form the 2×2 matrix C. The tree outputs

1 iff rk(C) ≤ 1.
The transformation from M to C can be seen as a two-step process: first, we generate a n× 2

matrix C ′ where column i ∈ [2] is the sum of columns j ∈ Bi of M . Then we generate the 2 × 2
matrix C where row j is the sum of rows i ∈ Aj of C ′. Neither step may increase the rank of the
matrix, so if rk(M) ≤ 1, then Pr[rk(C) ≤ 1] = 1.

Now suppose rk(M) ≥ 2. Each column of C ′ is chosen uniformly from the column space of M .
The size of the column space is at least 4, so the probability that both columns of C ′ are nonzero
and distinct is at least 3

4 ·
1
2 = 3

8 . Conditional on this event, by the same argument, the probability
that both rows of C are nonzero and distinct is at least 3

8 . Therefore, the tree will output 0 with
probability at least 9/64. We can boost this to 2/3 by repetition. ■

To clarify notation, observe that the inputs to this function are naturally expressed with n2

variables, whereas Theorem 1 is stated for a function on n variables. So to prove Theorem 1 we
must show

DEq(RankOnen) = Θ(n). (1)

The upper bound is simple:

Proposition 4. DEq(RankOnen) = O(n).

Proof. Suppose Alice receives a matrix A with rows a1, . . . , an ∈ {0, 1}n, and Bob receives a ma-
trix B with rows b1, . . . , bn ∈ {0, 1}n. Then rk(A ⊕ B) ≤ 1 if and only if each pair i, j ∈ [n] with
ai ̸= bi and aj ̸= bj satisfy ai ⊕ bi = aj ⊕ bj . Using n queries Eq(a1, b1),Eq(a2, b2), . . . ,Eq(an, bn),
Alice and Bob can find i such that ai ̸= bi if such an i exists (otherwise rk(A⊕B) = 0). Then for ev-
ery j ∈ [n] such that aj ̸= bj they check that aj⊕bj = ai⊕bi by making the query Eq(aj⊕ai, bj⊕bi).
If any Equality-query comes out negative, Alice and Bob output 0, otherwise they output 1. ■

3 Analytic Proof

We analyze the γ2-norm of RankOnen. The γ2-norm of a matrix M ∈ RN×N is defined as

γ2(M) ..= min
M=UV

∥U∥row∥V ∥col,
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where the minimum is over matrices U, V ∈ Rd (in any dimension d) satisfying M = UV , ∥U∥row is
the maximum ℓ2-norm of any row of U , and ∥V ∥col is the maximum ℓ2-norm of any column of V .
The γ2-norm is related to the Equality oracle cost by

∀M ∈ {0, 1}N×N :
1

2
log γ2(M) ≤ DEq(M) ([HHH23]). (2)

To give a lower bound on γ2, we use the Hölder’s inequality framework introduced in [CHH+25].
Write ∥M∥F ..= (

∑
i,j∈[N ]M

2
i,j)

1/2 for the Frobenius norm of a matrix M ∈ RN×N . Then:

Lemma 5 (Corollary of Hölder’s inequality, [CHH+25]). For any matrix M ∈ RN×N ,

γ2(M) ≥ 1

N
·

∥M∥3F√
tr((MTM)2)

.

In the next theorem, note that the number of bits in the input of RankOnen is n2, not n; by
renaming the number of bits and applying Equation (2), we get the bound in Theorem 1.

Theorem 6. γ2(RankOnen) = 2Θ(n). As a consequence, DEq(RankOnen) = Ω(n).

Proof. The upper bound follows from Proposition 4 and Equation (2). For the lower bound,
we shall apply Lemma 5 to the matrix RankOnen ∈ {0, 1}N×N where N = 2n

2
. For conve-

nience we write M ..= RankOnen. Since this matrix is boolean, the Frobenius norm is ∥M∥F =
(
∑

i,j∈[N ]M
2
i,j)

1/2 = (
∑

i,j∈[N ]Mi,j)
1/2, so it suffices to count the number of 1-valued entries. Rows

of M are identified with matrices A ∈ {0, 1}n×n. There are 22n rectangles R ⊆ [n] × [n] and they
are in 1-to-1 correspondence with rank-1 matrices Z ∈ {0, 1}n×n; here and in what follows, let us
abuse language and consider the all-0 matrix (corresponding to the empty rectangle) to also be
“rank-1”. For fixed row A, each rank-1 matrix Z has a unique B ∈ {0, 1}n×n such that A⊕B = Z.
Therefore the number of 1-valued entries in each row A is 22n. So

∥M∥F =
√
N · 22n = 2n ·

√
N. (3)

Now we bound the denominator in Lemma 5,

tr((MTM)2) =
∑

x,y,z,w∈[N ]

Mx,zMx,wMy,zMy,w.

Rows and columns x, y, z, w ∈ [N ] are identified with matrices X,Y, Z,W ∈ {0, 1}n×n. The product
Mx,zMx,tMy,zMy,w equals 1 iff R1

..= X ⊕ Z, R2
..= X ⊕ W , R3

..= Y ⊕ Z, and R4
..= Y ⊕ W

are all rank-1 matrices in {0, 1}n×n. Then the quadruple (X,Y, Z,W ) is uniquely determined by
(X,R1, . . . , R4) which in turn is determined by (X,R1, R2, R3) since R4 = R1 ⊕R2 ⊕R3. So:∑
x,y,z,w

Mx,zMx,tMy,zMy,w = N ·
∣∣{(R1, R2, R3) ∈ ({0, 1}n×n)3 | rk(Ri) ≤ 1; rk(R1 ⊕R2 ⊕R3) ≤ 1}

∣∣.
Now it remains to bound the number of triples (R1, R2, R3) of rank-1 matrices that sum to a rank-
1 matrix. Recall that rank-1 matrices over F2 are precisely the matrices whose 1-entries form a
combinatorial rectangle, let Ai ×Bi ⊆ [n]2 be this rectangle for Ri for i ∈ [3].

We say that two sets A,B are in general position if they are not disjoint and neither set is a
subset of another. In other words A ∖ B, A ∩ B, and B ∖ A are all non-empty. We first show
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that there are at most 6 · 3n · 24n triples (R1, R2, R3) where the sides of R1, R2 are not in general
position. Then we show that, if the sides of the first two rectangles R1, R2 are in general position,
there is only a constant number of choices for R3, meaning that there are at most 9 · 24n of these
triples. Therefore

tr((MTM)2) =
∑

x,y,z,w

Mx,zMx,tMy,zMy,w ≤ N
(
6 · 3n · 24n + 9 · 24n

)
≤ 15 ·N · 3n · 24n.

Then Lemma 5 implies

γ2(RankOnen) ≥
1

N
· N3/223n√

15 ·
√
N · (3 · 24)n/2

=
1√
15

·
(

8√
3 · 4

)n

= 2Ω(n),

which concludes the proof, once we establish the claimed bounds on the number of triples.

Structured pairs. We count the number of triples (R1, R2, R3) where R1 = A1 × B1 and R2 =
A2 ×B2 have either A1, A2 or B1, B2 not in general position. First we count the number of choices
for A1, A2 where A1 ⊆ A2. This is at most 3n because each i ∈ [n] can be included in A2 ∖ A1,
A1, or neither. Therefore the number of triples (R1, R2, R3) where A1 ⊆ A2 is at most 3n · (2n)4,
accounting for the choices of A3, B1, B2, B3. Similar arguments hold for the other cases of non-
general position of A1, A2 or B1, B2. There are 6 cases in total, so the number of triples (R1, R2, R3)
is at most 6 · 3n · 24n.

General position. We count the number of triples (R1, R2, R3) which sum to a rank-1 matrix,
and where A1, A2 and B1, B2 are both in general position. We claim that there is only a constant
number options for R3 = A3 × B3 such that rk(R1 ⊕ R2 ⊕ R3) = 1. Let us first rule out the case
where A3 ⊇ A1 ∪ A2 or B3 ⊇ B1 ∪ B2. Let us take representatives i, j, k from A1 ∖ A2, A1 ∩ A2,
A2 ∖A1 respectively, and i′, j′, k′ from B1 ∖B2, B1 ∩B2, B2 ∖B1 respectively. The submatrix of
R1 ⊕R2 on rows {i, j, k} and columns {i′, j′, k′} is

P ..= (R1 ⊕R2)|{i,j,k}×{i′,j′,k′} = J3 ⊕ I3,

where J3 is 3 × 3 all-1 matrix and I3 is the 3 × 3 identity matrix. Then if A3 ⊇ {i, j, k} then
P ⊕R3|{i,j,k}×{i′,j′,k′} has either two distinct columns from J3⊕ I3 or two distinct columns from I3,
in both cases rk(R1 ⊕R2 ⊕R3) ≥ 2. The same argument shows that B3 ̸⊇ {i′, j′, k′}.

Then there are a row and a column that are nonzero in R1 ⊕R2 and zero in R3. Suppose that
their values in R1 ⊕ R2 are a ∈ {0, 1}n and b ∈ {0, 1}n, respectively. Since rk(R1 ⊕ R2 ⊕ R3) = 1,
any two nonzero rows of R1 ⊕R2 ⊕R3 must be equal, and any two nonzero columns must also be
equal. Since a, b are nonzero, this requires R1 ⊕R2 ⊕R3 = a · bT . For fixed R1, R2, there are only
three possible values of a and b, so there are at most 9 options for the value of R3. Therefore there
are at most 9 · (4n)2 triples (R1, R2, R3) in this case. ■

4 Combinatorial Proof

We prove a lower bound on the non-deterministic Equality oracle cost of RankOnen. The non-
deterministic Equality oracle cost of any matrix M ∈ {0, 1}N×N is denoted NDEq(M). It is
defined as the minimum value t such that there are numbers m, d with m+d = t, where there exist
matrices M1, . . . ,M2m ∈ {0, 1}N×N satisfying:

1. DEq(Mi) ≤ d for all i ∈ [2m];

6



2. If M(x, y) = 1 then ∃i ∈ [2m], Mi(x, y) = 1; and
3. If M(x, y) = 0 then ∀i ∈ [2m], Mi(x, y) = 0.

By definition, NDEq(M) ≤ DEq(M). To prove a lower bound on NDEq, we require the blocky cover
number defined in [PSS23].

Definition 7 (Blocky Cover). A matrix B ∈ {0, 1}N×N is called blocky if it is obtained from an
identity matrix Im,m with m ≤ N by duplicating rows or columns, permuting rows or columns, or
adding all-0 rows or columns. Let M ∈ {0, 1}N×N be a boolean matrix. The blocky cover number
bc(M) is the minimum number r such that there exist r blocky matrices B1, . . . , Br ∈ {0, 1}N×N

with M =
∨r

i=1Bi, where
∨

denotes entrywise OR.

Blocky covers are related to non-deterministic Equality oracle cost by the following inequality
from [PSS23]. For all A ∈ {0, 1}N×N ,

NDEq(A) ≤ log bc(A) ≤ O(NDEq(A) · log logN). (4)

In Appendix A, we improve the upper bound in this inequality:

Lemma 8. For any A ∈ {0, 1}N×N ,

NDEq(A) ≤ log bc(A) ≤ NDEq(A) +O(log logN).

We may now improve Theorem 1 to NDEq(RankOnen) = Ω(n) with the following bound on
blocky cover number.

Theorem 9. bc(RankOnen) = 2Ω(n). As a consequence, NDEq(RankOnen) = Ω(n).

Proof. In this proof, write M−1(1) for the set of 1-valued entries in a boolean matrix M , and write
|M | = |M−1(1)| for the number of 1-valued entries. We use standard notation H(Z) for the binary
entropy of a random variable Z, so H(Z) ..= −

∑
z∈Z Pr[Z = z] log Pr[Z = z].

Recall from Equation (3) that |RankOnen| = 2n
2 ·22n. A rectangle R = U×V is 1-chromatic if,

for all (u, v) ∈ U×V , RankOnen(u, v) = 1. Let bc(RankOnen) = K, so RankOnen =
∨

i∈[K]Bi,
where the Bi are blocky matrices, which can be written as a disjoint union of 1-chromatic rectangles
Bi =

∨
j∈[bj ]Ri,j where Ri,j = Ui,j × Vi,j is a 1-chromatic rectangle in Bi.

Claim 10. There exists a 1-chromatic rectangle R = U × V with |U |, |V | ≥ 22n/(2K).

Proof of claim. For the sake of contradiction, assume each 1-chromatic rectangle R = U × V has
|U | < 22n/(2K), in which case we call the rectangle short, or |V | < 22n/(2K), in which case we call
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RankOne−1(1)

Figure 1: Illustration of Claim 10. The rectangles represent the 1-entries of a blocky

matrix B with B−1(1) ⊆ RankOne−1(1). Short rectangles are filled with horizontal lines

and narrow ones are filled with the vertical lines. We then can conclude that the total

area of each type of the rectangles is small.

it narrow. Then by definition of K, we obtain a contradiction as follows:

2n
2 · 22n = |RankOnen| ≤

K∑
i=1

|Bi| =
K∑
i=1

bi∑
j=1

|Ui,j | · |Vi,j |

<

K∑
i=1

 ∑
j∈[bi],Ri,j short

|Vi,j | · 22n/(2K) +
∑

j∈[bi],Ri,j narrow

|Ui,j | · 22n/(2K)


≤ 1

22
2n max

i∈[K]

∑
j∈[bi]

|Vi,j |+
∑
j∈[bi]

|Ui,j |


≤ 1

22
2n max

i∈[K]

(
2n

2
+ 2n

2
)
= 22n · 2n2

. ■

Suppose that K < 2n/1000. Then Claim 10 implies that there exists a 1-chromatic rectangle
R = U × V with |U |, |V | ≥ 2n(2−1/100). This contradicts the next claim:

Claim 11. Let R = U ×V be a 1-chromatic rectangle. Then min(|U |, |V |) < 2αn for α = 2−10−2.

Proof of claim. Suppose for the sake of contradiction that |U |, |V | ≥ 2αn. Let u ∈ U and v ∈ V
be arbitrary, and let A ∼ U , B ∼ V be uniformly random, so that A,B ∈ {0, 1}n×n. Since R is
1-chromatic, A⊕v and B⊕u are always rank-1 matrices, so we may write A⊕v as an outer product
ℓA·(rA)T where ℓA, rA ∈ {0, 1}n, and similarlyB⊕u ..= ℓB(rB)T . Then H(ℓA, rA),H(ℓB, rB) ≥ αn.
By the chain rule for entropy,

∑
i oddH(ℓ

A
i , r

A
i , ℓ

A
i+1, r

A
i+1) ≥ n(2− 10−2), therefore for at least 2/3-

fraction of odd i ∈ [n], H(ℓAi , r
A
i , ℓ

A
i+1, r

A
i+1) ≥ 2 − 3 · 10−2. Similarly, for at least 2/3-fraction of

odd i ∈ [n], H(ℓBi , r
B
i , ℓ

B
i+1, r

B
i+1) ≥ 2 − 3 · 10−2. Then for 1/3-fraction of odd coordinates i, both

inequalities are satisfied. Suppose without loss of generality that this is the case for i = 1.
Then H(ℓA1 , r

A
1 , ℓ

A
2 , r

A
2 ) ≥ 2(2−10−2) > log 15, hence | supp(ℓA1 , rA1 , ℓA2 , rA2 )| = 16, and similarly

| supp(ℓB1 , rB1 , ℓB2 , rB2 )| = 16. Thus (A⊕v)|[2]×[2] and (u⊕B)|[2]×[2] can be arbitrary rank-1 matrices,
so in particular there exists (a, b) ∈ supp(A)×supp(B) such that (a⊕b)|[2]×[2] is the identity matrix:
take a and b such that (a⊕ v)|[2]×[2] and (u⊕ b)|[2]×[2] form the decomposition of (v⊕ u)|[2]×[2] ⊕ I2
as a sum of rank-1 matrices. Hence rk(a⊕ b) ≥ 2, a contradiction. ■
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This concludes the proof of the theorem. ■

5 Consequences

We conclude the paper with some corollaries of our proofs, as mentioned in the introduction.

5.1 Constant-Cost Communication vs. k-Hamming Distance

We will prove Corollary 2, which shows that constant-cost randomized communication does not
reduce to k-Hamming Distance.

Remark 12. We must clarify a subtlety in the definition of DQ(P ), the cost of a deterministic
communication protocol with access to an oracle for problem Q. For the purpose of studying the
class BPP0, the natural definition of DQ is as follows (see e.g. [HWZ22, FHHH24, FGHH25]). Q
is a family of boolean matrices, i.e. a communication problem, containing matrices Q ∈ {0, 1}N×N

for a variety of input sizes N . DQ(P ) is the minimum cost of a deterministic protocol computing
P ∈ {0, 1}N×N , where on input x, y, the two parties Alice and Bob in each round may construct
inputs a(x) and b(y) of arbitrary size, and query the oracle on Q(a(x), b(y)), where Q ∈ Q is any
instance of problem Q. The difference between this definition and the standard definition of oracle
protocols is that the query inputs a(x), b(y) do not have bounded size. This is natural because for
Q ∈ BPP0, the randomized communication cost is independent of input size.

Recent work [FHHH24] showed that there is no complete problem for BPP0: there is no problem
Q ∈ BPP0 such that DQ(P ) = O(1) for all problems P ∈ BPP0. The reason is that, for every
Q ∈ BPP0, there exists a constant k such that DQ(HDn

k) = ω(1). This raised the question of
whether the infinite hierarchy of k-Hamming Distance problems HD1,HD2, · · · is complete,
meaning that for every problem P ∈ BPP0 there exists a constant k such that DHDk(PN ) = O(1).
The question was answered in [FGHH25], whose main result was:

Theorem 13 ([FGHH25]). There exists a communication problem Fn : {0, 1}n × {0, 1}n → {0, 1}
such that R(Fn) = O(1), yet for every constant k, DHDk(Fn) = ω(1).

The ω(1) function is not given explicitly and is the result of a lengthy Ramsey-theoretic proof.
We give a simpler proof (using a different function F ) with a quantitative bound.

Proof of Corollary 2. We prove that, for every constant k, DHDk(RankOnen) = Ω(n/ log n). Given
a deterministic protocol computing RankOnen using HDk queries, we may replace each query Q
with a protocol computing Q using Equality queries. Then

DEq(RankOnen) ≤ DHDk(RankOnen) ·max
Q

DEq(Q),

where the maximum is over all 2n
2×2n

2
matrices Q which represent oracle queries to HDk; formally,

these matrices Q are the ones which are obtained by taking any submatrix of HDn′
k for arbitrarily

large n′ (due to Remark 12), and then duplicating rows or columns to ensure the matrix is the
same size as RankOnen. We now require a bound on DEq(Q) for arbitrary 2n

2 × 2n
2
submatrices

of HDn′
k where n′ can be arbitrarily large. This was proved in [FHHH24]:

Theorem 14 ([FHHH24, Proposition 4.1]). For any k and any n,N ∈ N satisfying N ≤ 2n, let M
be an N ×N submatrix of HDn

k ∈ {0, 1}2n×2n. Then DEq(M) ≤ O(k log logN).

9



So, by Theorem 14,

DEq(RankOnen) ≤ O
(
DHDk(RankOnen) · k log log(2n

2
)
)
.

By Theorem 1, we conclude that DHDk(RankOnen) = Ω
(

n
k logn

)
. ■

5.2 Parity Decision Trees and Exact vs. Approximate Spectral Norm

We state some consequences for parity decision trees and exact vs. approximate spectral norms.
The Fourier coefficients of a function f : {0, 1}n → R are defined on subsets S ⊆ [n] by

f̂(S) ..= Ex∼{0,1}n [f(x)(−1)
∑

i∈S xi ].

The Fourier norm is ∥f̂∥1 ..=
∑

S⊆[n] |f̂(S)|. For an XOR problem F (x, y) = f(x⊕y), it is equivalent
to the γ2-norm:

γ2(F ) = ∥f̂∥1 ([HHH23, Corollary 3.9])

For ϵ ∈ (0, 1), the approximate spectral norm is defined as

∥f̂∥1,ϵ ..= inf
g
∥ĝ∥1

where the infimum is over functions g : {0, 1}n → R which satisfy ∥f − g∥∞ < ϵ.
We can now state the corollaries. The first is an exponential improvement over the separation

given by [CHZZ24, Lemma 3].

Corollary 15. There exists a function f : {0, 1}n×n → {0, 1} with approximate spectral norm
∥f̂∥1,1/3 = O(1) but exact spectral norm ∥f̂∥1 = 2Ω(n).

We remark that for some constants ϵ and ℓ the bound ∥f̂∥1,ϵ ≤ ℓ [San19, Theorem 2.5] (known

as quantitative Cohen idempotence theorem) implies that ∥f̂∥1 = O(1), so this corollary (as well as
[CHZZ24, Lemma 3]) gives a barrier for improving the dependency between ℓ and ϵ in this result.

The second corollary answers [CHH+25, Question 8].

Corollary 16. There exists a function f : {0, 1}n×n → {0, 1} with randomized parity decision
tree size O(1) and deterministic parity decision tree size 2Ω(n).

The separating function f : {0, 1}n×n → {0, 1} in both cases is defined by f(A) = 1 iff A ∈
{0, 1}n×n has rk(A) ≤ 1, so RankOnen(x, y) = f(x⊕ y).

Proof of Corollary 15. By [HHH23, Proposition 4.3] we get that ∥f̂∥1,1/3 = O(1) since 1/3-error
randomized communication cost of RankOne is O(1) by Theorem 3. On the other hand, by
[HHH23, Corollary 3.9] combined with Theorem 6 we get ∥f̂∥1 = 2Ω(n) as required. ■

Proof of Corollary 16. The upper bound on randomized parity decision tree size of f was proved
in Theorem 3. If f has a parity decision tree (PDT) of size s, then f(x) =

∑
i∈[s]Ai(x) where Ai

are characteristic functions of the affine spaces corresponding to 1-labeled leaves of the PDT. It is
well known that ∥Âi∥1 ≤ 1. Then ∥f̂∥1 ≤

∑
i∈[s] ∥Âi∥1 ≤ s. By Theorem 6,

2Ω(n) ≤ γ2(RankOnen) = ∥f̂∥1 ≤ s. ■
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5.3 Non-Deterministic Lower Bounds

The paper [CLV19] showed that BPP ̸⊆ PEq using the Integer Inner Product function, defined
as IIPn

3 : [−2n, 2n]3 × [−2n, 2n]3 → {0, 1}, where IIPn
3 (x, y) = 1 iff

∑
i∈[3] xiyi = 0. Later, [PSS23,

CHH+25] improved this separation to BPP ̸⊆ NPEq using IIP3 in the latter work (and the higher-
dimensional IIP6 in the prior work). [CHH+25] prove a lower bound of NDEq(IIPn

3 ) = Ω(n/ log n)
using Equation (5) and asking whether the log n factor could be removed. With our improved
Lemma 8 we can remove this log factor.

We need the notion of maxrect(·) from [PSS23]. For a matrix A ∈ {0, 1}N×N let α(A) be the
number of 1-entries in A and let β(A) be the area of the largest 1-chromatic rectangle in A. Then

maxrect(A) ..=
α(A)

N
√

β(A)
.

The following two theorems, together with the fact that bc(·) does not increase when taking sub-
matrices, imply bc(IIPn

3 ) = 2Ω(n):

Theorem 17 (Theorem 5 in [CHH+25]). IIPn
3 has a submatrix A such that maxrect(A) = 2Ω(n).

Theorem 18 (Theorem 29 in [PSS23]). For every A ∈ {0, 1}N×N we have bc(A) ≥ Ω(maxrect(A)).

Then, by Lemma 8 (and the trivial bound DEq(IIPn
3 ) = O(n)):

Corollary 19. NDEq(IIPn
3 ) = Θ(n).

A Appendix: Proof of Lemma 8

Let us now prove Lemma 8. Let A ∈ {0, 1}N×N . Our goal is to show that

log bc(A) ≤ NDEq(A) +O(log logN).

To prove this, we will use the fractional blocky cover instead of the blocky cover:

Definition 20 (Fractional Blocky Cover). For any A ∈ {0, 1}N×N , a fractional blocky cover of A
is a choice of values m ∈ N, λ1, . . . , λm ≥ 0, and blocky matrices B1, . . . , Bm such that

A(x, y) = 0 =⇒
m∑
i=1

λiBi(x, y) = 0 A(x, y) = 1 =⇒
m∑
i=1

λiBi(x, y) ≥ 1.

We write fbc(A) for the minimum value of
∑

i λi over all fractional blocky covers of A.

We require the following properties of the fractional blocky cover:

Proposition 21 (Properties of FBC). Let P,Q ∈ {0, 1}N×N be any boolean matrices and let J be
the all-1s matrix. Then

1. For any blocky matrix B, fbc(J −B) ≤ 4.
2. fbc(P ∧Q) ≤ fbc(P ) · fbc(Q).
3. fbc(P ∨Q) ≤ fbc(P ) + fbc(Q).
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4. bc(P ) ≤ O(fbc(P ) · logN).

We prove these properties below. First let us complete the proof of Lemma 8.

Proof of Lemma 8. Let A ∈ {0, 1}N×N . Due to property (4) of Proposition 21, it suffices to show
log fbc(A) = O(NDEq(A)). Let d,m ∈ N be such that d + m = NDEq(A) and there exist 2m

deterministic Equality-oracle protocols Ti of depth at most d such that

∀x, y ∈ [N ] : A(x, y) =
2m∨
i=1

Ti(x, y).

By property (3) of Proposition 21, fbc(A) ≤
∑2m

i=1 fbc(Mi) where Mi ∈ {0, 1}N×N is the matrix
computed by protocol Ti. It now suffices to show that fbc(Mi) ≤ 5d for every i, so that log fbc(A) ≤
log(2m5d) < 3 · NDEq(A).

Fix any T = Ti, which is a decision tree with each inner node v associated with a blocky matrix
Bv. Without loss of generality we may assume the depth is exactly d and that the tree is full.
For each node v, let Mv ∈ {0, 1}N×N be the matrix computed by the subtree rooted at v, and
write depth(v) for the depth of this subtree. We prove by induction that fbc(Mv) ≤ 5depth(v). If
depth(v) = 1, then Mv is either a blocky matrix B or its complement J −B, so by property (1) of
Proposition 21, fbc(Mv) ≤ 4. For depth d′ > 1, let ℓ, r be the left and right child of v. Then

Mv = (Bv ∧Mℓ) ∨ ((J −Bv) ∧Mr),

so by properties (1), (2), and (3) of Proposition 21,

fbc(Mv) ≤ fbc(Bv)fbc(Mℓ) + fbc(J −Bv)fbc(Mr) ≤ fbc(Mℓ) + 4fbc(Mr)

≤ 5d
′−1 + 4 · 5d′−1 = 5d

′
,

with the last inequality by induction. This completes the proof of the lemma. ■

Finally, we establish the properties of fractional blocky covers that we have used above.

Proof of Proposition 21.

Claim 22. Let J be the all-1s matrix and let B be any blocky matrix. Then fbc(J −B) ≤ 4.

Proof. It suffices to prove the claim for the identity matrix B = IN×N , since duplicating rows and
columns does not change the value of fbc. The claim follows from the fact that the Equality
communication problem has a constant-cost one-sided error randomized protocol. That is, define
the following probability distribution over rectangles R ⊆ [N ]×[N ]. We choose R by including each
x ∈ [N ] in a set X ⊆ [N ] independently with probability 1/2, and then take R = X × ([N ]∖X).
If x = y, then Pr[(x, y) ∈ R] = 0. If x ̸= y then Pr[(x, y) ∈ R] = 1/4. For each rectangle R, set
λR

..= 4 · Pr[R = R]. It follows that

fbc(J − IN×N ) ≤
∑
R

λR = 4. ■

Claim 23. Let P,Q ∈ {0, 1}N×N . Then fbc(P ∧Q) ≤ fbc(P ) · fbc(Q).
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Proof of claim. Let α1, . . . , αp and B1, . . . , Bp be a fractional blocky cover of P , and let β1, . . . , βq
and B′

1, . . . , B
′
q be a fractional blocky cover of Q. For any x, y ∈ [N ], consider

∑
i,j

αiβj(Bi ∧B′
j)(x, y) =

(∑
i

αiBi(x, y)

)
·

∑
j

βjB
′
j(x, y)

 (5)

Note that Bi ∧ B′
j is itself a blocky matrix. If P ∧Q(x, y) = 0 then P (x, y) = 0 or Q(x, y) = 0 so

Equation (5) is 0. If P ∧Q(x, y) = 1 then P (x, y) = Q(x, y) = 1 so Equation (5) is at least 1. So

fbc(P ∧Q) ≤
∑
i,j

αiβj = fbc(P ) · fbc(Q). ■

Claim 24. Let P,Q ∈ {0, 1}N×N . Then fbc(P ∨Q) ≤ fbc(P ) + fbc(Q).

Proof of claim. Let α1, . . . , αp and B1, . . . , Bp be a fractional blocky cover of P , and let β1, . . . , βq
and B′

1, . . . , B
′
q be a fractional blocky cover of Q. It is straightforward to check that the union of

these fractional blocky covers is itself a fractional blocky cover for P ∨ Q, so that fbc(P ∨ Q) ≤∑
i αi +

∑
j βj . ■

Claim 25. Let P ∈ {0, 1}N×N . Then bc(P ) ≤ O(fbc(P ) · logN).

Proof of claim. This is by standard randomized rounding. Let λ1, . . . , λm ≥ 0 and B1, . . . , Bm be
a fractional blocky cover of P with

∑
ℓ λℓ = fbc(P ). Let M1, . . . ,Mt be random blocky matrices

chosen independently from the distribution Pr[Mi = Bj ] =
λj

fbc(P ) . Fix any x, y ∈ [N ] and note
that

P (x, y) = 0 =⇒ Pr[∃i : Mi(x, y) = 1] = 0

since Bℓ(x, y) = 0 for all ℓ ∈ [m]. Now suppose P (x, y) = 1. Then
∑

ℓ λℓBℓ(x, y) ≥ 1, so, by
independence of each Mi,

Pr[∀i : Mi(x, y) = 0] = Pr[M1(x, y) = 0]t =

(
1− 1

fbc(P )

)t

≤ e
− t

fbc(P ) .

Setting t = O(fbc(P ) logN) and using the union bound over at most N2 pairs x, y ∈ [N ] with
P (x, y) = 1, we conclude that there exists a choice of t = O(fbc(P ) logN) blocky matrices which
cover the 1-valued entries of P . ■

This completes the proof of all of the properties from Proposition 21. ■
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