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Abstract

A seminal result of Nisan and Szegedy (STOC, 1992) shows that for any total Boolean function,
the degree of the real polynomial that computes the function, and the minimal degree of a real poly-
nomial that point-wise approximates the function, are at most polynomially separated. Extending
this result from degree to other complexity measures like sparsity of the polynomial representation,
or total weight of the coefficients, remains poorly understood.

In this work, we consider this problem in the De Morgan basis, and prove an analogous result for
the sparsity of the polynomials at a logarithmic scale. Our result further implies that the exact ℓ1
norm and its approximate variant are also similarly related to each other at a log scale. This is in
contrast to the Fourier basis, where the analog of our results are known to be false.

Our proof is based on a novel random restriction method. Unlike most existing random restriction
methods used in complexity theory, our random restriction process is adaptive and is based on how
various complexity measures simplify during the restriction process.

1 Introduction

Polynomial representations of Boolean functions have been invaluable in theoretical computer science
and discrete mathematics. While the representation could use any field, in this work we consider only
polynomials over the reals. Two bases are particularly prominent.

The first arises naturally by viewing the domain of Boolean functions as t0, 1un, and hence, every
multilinear monomial just represents the Boolean And of a subset of variables. This is known as the De
Morgan basis. The other basis comes about by viewing the domain as t1,´1un which is a simple linear
transformation of t0, 1un that maps 0 ÞÑ 1 and 1 ÞÑ ´1. In this basis, called the Fourier basis, each
monomial represents the Boolean parity of a subset of variables.

Two natural complexity measures show up in either basis: the degree and sparsity of the representa-
tion. As every Boolean function has a unique representation in either basis, it is usually quite straightfor-
ward to determine the degree and sparsity of the unique representation for a function f , which we denote
by degpfq and sparpfq in the De Morgan basis, and by deg‘

pfq, and spar‘pfq in the Fourier basis. The
linear invertible mapping from one basis to the other ensures that for every f , degpfq “ deg‘

pfq. But
sparsity can be very sensitive to the basis chosen. For example, the n-bit AND function has sparsity 1
in the De Morgan basis and 2n in the Fourier basis; and the n-bit Parity function has sparsity 1 in the
Fourier basis and 2n in the De Morgan basis. We understand reasonably satisfactorily exact polynomial
representations of Boolean functions. However, when we turn to approximations, the picture becomes
subtler.

Classical approximation theory deals with polynomials that point-wise approximate functions. In
an influential work, Nisan and Szegedy [44] introduced this notion to the study of Boolean functions.
In particular, they defined the complexity measure of approximate degree of a Boolean function f ,

denoted by Ądegpfq, to be the smallest degree needed by a polynomial to point-wise approximate f to
within a constant distance that is, by default, taken to be 1{3. Observe that the same reasoning as
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applied above for exact degree implies that approximate degree of a function is also a measure that is
independent of the basis. The notion of approximate degree has had tremendous impact in computer
science as it is related to many other complexity measures including the randomized and quantum query
complexity of f [2, 5, 15–17] and the quantum and classical communication complexity of appropriately
lifted functions [6,14,19,42,46,48–50]. It has also found applications in learning theory [36,38], differential
privacy [18,51], secret sharing [10,11], and many other areas. Unlike exact degree, getting tight bounds on
approximate degree often turns out to be challenging. However, Nisan and Szegedy proved a remarkable
structural result that for every total Boolean function f , the approximate and exact degree of f are
polynomially related to each other. One of the striking applications of this result is the polynomial
equivalence of quantum and classical query models for total Boolean functions, first derived by Beals et
al. [5]. In a much more recent work, building upon Huang’s breakthrough proof [33] of the sensitivity
conjecture, Aaronson et al. [1] finally gave a tight relationship between the two measures by showing

that degpfq “ OpĄdegpfqq2. The tightness is witnessed by the Boolean And and Or functions.
Given Nisan and Szegedy’s result, one naturally wonders if approximation could reduce sparsity

needed for total functions. In the Fourier basis, it is known that approximation does reduce sparsity
exponentially. For instance, the Fourier sparsity of the n-bit And function is 2n. However, it can be
shown that its Fourier approximate-sparsity is Opn2q (implicit in Bruck and Smolesnky [12, appendix]
and explicit in [23, Lemma 2.8]). Surprisingly, the question if approximation helps significantly in the De
Morgan basis remained unaddressed. Very recently, Knop et al. [39] conjectured that in the De Morgan
basis, approximation should not significantly reduce sparsity for any total Boolean function. Our main
result, stated below, confirms this conjecture. We denote by Ąsparpfq, the approximate-sparsity of f in
the De Morgan basis.

Theorem 1.1 (Main Theorem). For every total Boolean function f : t0, 1un Ñ t0, 1u, we have

logpsparpfqq “ O
`

logpĄsparpfqq2 ¨ log n
˘

.

Before we continue, let us remark on the tightness of this result.

Remark 1.2. The n-bit Or function has sparsity 2n ´ 1 and approximate sparsity 2Op
?
n lognq, showing

that exponential gaps may exist between the two measures in the absolute scale. It is thus necessary
to consider the log scale as done in Theorem 1.1 for seeking polynomial relationship between the two
measures. The example of Or also demonstrates the tightness of our bound up to poly-logarithmic
factors. Finally, the appearance of the ambient dimension n in our result is unavoidable. Consider the
function Thrn

n´1 : t0, 1un Ñ t0, 1u defined by

Thrn
n´1pxq “ 1 if and only if |x| ě n ´ 1,

namely, the function evaluates to 1 if the input has at most one zero. It’s simple to verify that its exact
sparsity is n ` 1, and we show in section 3.3 that its approximate sparsity is Oplog nq, implying that an

additive Oplog nq or multiplicative O
´

logn
log logn

¯

factor is necessary in Theorem 1.1.

One of the motivations of Nisan and Szegedy to study approximate degree was to relate this measure
with decision tree complexity. Let Ddt

pfq and Rdt
pfq denote the deterministic and randomized bounded-

error decision tree complexities of f respectively. Their result, along with the recent improvement of [1]
yields the following relationship.

Theorem 1.3 (Nisan-Szegedy [44, Theorem 1.5] + Aaronson et al. [1]). For every total Boolean function
f , the following holds:

Ădegpfq ď Rdt
pfq ď Ddt

pfq ď OpĂdegpfq4q.

Just as Ądegpfq lower bounds Rdt
pfq, it is straightforward to verify that logp Ąsparpfqq, up to an additive

log n term, lower bounds the randomized And-decision tree (ADT) complexity of f . In an ADT, each
internal node queries the And of a subset of variables. ADT’s have connections to combinatorial group
testing algorithms and have also been the subject of several recent works [9, 20, 40, 43]. We denote the
deterministic and randomized ADT complexities of f by D^dt

pfq and R^dt
pfq respectively.

Combining our main result with the recent result of Knop et al. [40] yields the following ADT analog
of Theorem 1.3.
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Theorem 1.4. For every total Boolean function f : t0, 1un Ñ t0, 1u, the following holds:

ΩplogpĄsparpfqq ´ log nq
p1q
“ R^dt

pfq ď D^dt
pfq

p2q
“ O

`

plog Ąsparpfqq6 ¨ log n
˘

.

It is worth noting that one could go one step further in the chain of inequalities to show that D^dt
pfq

is upper bounded by OpR^dt
pfq6q upto polylog factors, thus concluding that randomization doesn’t

yield more than polynomial savings over the cost of deterministic ADT algorithms. Such a conclusion,
in fact with a better polynomial bound, was first derived recently by Chattopadhyay, Dahiya, Mande,
Radhakrishnan and Sanyal [20]. But our current technique is quite different and the previous result
could not give an upper bound on ADT complexity in terms of approximate sparsity as we do here.

Apart from degree and sparsity, there is a third complexity measure that has been well investigated
in the Fourier basis. This is the Fourier ℓ1 norm, also called the spectral norm of a Boolean function f .
Denoted by }f̂}1, it is defined as the sum of the magnitude of the Fourier coefficients of f . It appeared
in the context of additive combinatorics [28], communication complexity of Xor functions [21, 23, 24]
and analysis of Boolean functions [3, 12, 22]. One naturally defines its ε-approximate version, denoted

by }f̂}1,ε, to be the amount of Fourier ℓ1 mass needed by any real-valued function g to point-wise
approximate f within ε. Can approximation reduce significantly the needed ℓ1 mass? Very recently,
Cheung, Hatami, Hosseini, Nikolov, Pitassi and Shirley [24], constructed a Boolean function f such

that logp}f̂}1,1{3q is exponentially smaller than logp}f̂}1q, which implies that the Fourier basis yields
exponential advantage to approximation even with respect to the spectral norm.

In contrast, the proof method that we develop to establish Theorem 1.1 shows that approximation
does not significantly reduce even the ℓ1 mass of a total Boolean function in the De Morgan basis. More
precisely, let wtpfq and Ăwtεpfq represent the exact and ε-approximate ℓ1 norm of f in the De Morgan
basis (we write Ăwtpfq :“ Ăwt1{3pfq when ε “ 1{3).

Theorem 1.5. For every total Boolean function f : t0, 1un Ñ t0, 1u, we have

logwtpfq “ O
`

plog rwtpfqq2 ¨ log n
˘

.

General representations: A natural question emerges from our results. Let F be a family of ele-
mentary real-valued functions defined over the n-ary Boolean cube Bn, such that F spans the vector
space RBn of all real-valued functions. The sparsity (resp., weight) of a (Boolean) function f wrt F is
defined as the minimum integer (resp., non-negative real number) k ě 0 such that f can be written as
a linear combination of at most k functions from F (resp., with total absolute coefficient sum at most
k)1. Denote these complexity measures by sparF pfq and wtF pfq respectively. For example, when F is
the family of all And functions, these measures correspond to the De Morgan sparsity and ℓ1 norm of f ,
and when F corresponds to all parities, these correspond to the Fourier sparsity and the spectral norm
of f . Likewise, one defines the approximate sparsity and weight of f with respect to F , denoting them
by ĄsparF pfq and ĂwtF pfq respectively.

Question 1.6. What properties of F ensure that approximation doesn’t help reduce sparsity or the
weight of a Boolean function, i.e. do there exist constants α and β such that for all Boolean functions
f , logpsparF pfqq “ OpplogpĄsparF pfqqαq and/or logpwtF pfqq “ Opplogp rwtF pfqqβq?

This question is quite broad. For instance, if one views the input domain of the functions as the set of
mˆm Boolean matrices, and F be the set of all rank one matrices, then Question 1.6 specializes to asking
if log of the rank of a Boolean matrix is always at most a fixed polynomial of the log of its approximate-
rank. In general, this is false. For example, the identity matrix has rank m but its approximate rank is
plogmqOp1q. However, it is unknown for special classes of Boolean matrices like those that are the truth
table of And-functions (i.e., functions composed with 2-bit And gadgets). Understanding the power
of approximation for such special classes of matrices is of significant interest, given its connection to
quantum communication complexity. We talk more about this aspect in Section 1.2.

Summarizing what we have seen, if F is the set of all parities, i.e. the Fourier monomials, then
approximation can significantly help, and reduce sparsity exponentially. We showed that if F is the set
of all monotone Boolean And functions, i.e. the De Morgan basis, then approximations do not help, and

1Note that there may be more than one way of doing that.
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reduce sparsity by at most a polynomial factor on the log scale. In fact our main result gives us slightly
more: let rns be partitioned into two sets, the set of positive literals denoted by P and the set of negated
literals N . Each such partition defines a shifted De Morgan basis, where a shifted monomial is given by a
pair of sets P Ď P and N Ď N , and corresponds to the Boolean function MP,N :“

ś

iPP xi

ś

jPN p1´xjq.
Observe that while Or has full De Morgan sparsity, it has sparsity just 2 in the fully shifted De Morgan
basis, i.e., the basis that corresponds to P “ H ans N “ rns. There are 2n such shifted bases, and
it is straightforward to verify that our main results—Theorem 1.1 and Theorem 1.5—imply that, in
each shifted basis, the approximate sparsity and approximate ℓ1-norm are polynomially related to the
exact sparsity and exact ℓ1-norm. A natural generalization of the case when F is just a shifted De
Morgan basis, is the case when we populate the set F with all shifted monomials. More precisely,
consider F :“ tMP,N : P,N Ď rns, P X N “ Hu, where each MP,N :“

ś

iPP xi

ś

jPN p1 ´ xjq is called
a generalized monomial. Observe that any shifted De Morgan basis is a strict subset of F , the set of
generalized monomials, whose size is 3n. The following concrete question, which is a special case of
Question 1.6, remains intriguingly open!

Question 1.7. Does there exist a total Boolean function f for which the approximate generalized-
monomial sparsity (approximate generalized-monomial weight), denoted by Ćgsparpfq (Ągwtpfq), is super-
polynomially smaller in the log scale than its exact generalized-monomial sparsity (generalized-monomial
weight), denoted by gsparpfq (gwtpfq)?

As expected, generalized monomials can significantly reduce sparsity compared to any shifted De
Morgan basis. For instance, consider the following function that mixes two shifted OR’s by a monotone
addressing scheme: let fmixed : t0, 1u2 ˆ t0, 1un Ñ t0, 1u, where fmixedpx, yq outputs 0 if x “ 00, outputs
1 if x “ 11, computes the Boolean Or of y if x “ 10, and computes the Boolean And of y if x “ 01. It
is easy to verify that gsparpfmixedq “ Op1q, while the sparsity of fmixed in any shifted De Morgan basis
is 2Ωpnq. Observing that fmixed is a monotone function, it becomes interesting to answer Question 1.7
for monotone functions. We provide a negative answer below.

Theorem 1.8. For every monotone Boolean function f : t0, 1un Ñ t0, 1u, the following hold:

(a) log gsparpfq “ O
`

plog Ćgsparpfqq4 ¨ plog nq3
˘

,

(b) log gwtpfq “ O
´

plogĄgwtpfqq4 ¨ plog nq3
¯

.

The above result, in fact, yields the following more detailed picture about query complexity. Recall
that the size of a decision tree is the number of leaves in it. The deterministic (randomized) decision
tree size complexity of a function f , denoted by DSizedtpfq (RSizedtpfq), is the smallest size needed by
an ordinary deterministic (randomized) decision tree to compute f . We can use Theorem 1.8 and other
standard results to get the following.

Corollary 1.9. For every monotone Boolean function f : t0, 1un Ñ t0, 1u, the following hold:

(a) ΩplogpĆgsparpfqq ´ log nq
p1q
“ logRSizedtpfq ď logDSizedtpfq

p2q
“ O

`

plog Ćgsparpfqq4 ¨ plog nq3
˘

.

(b) ΩplogpĄgwtpfqqq
p1q
“ logRSizedtpfq ď logDSizedtpfq

p2q
“ O

´

plogĄgwtpfqq4 ¨ plog nq3
¯

.

Remark 1.10. In particular, this yields the fact that deterministic and randomized decision tree size
measure of a monotone function are, upto poly-logpnq factors, polynomially related in the log scale. Such
a relationship was recently proven to be true even for general functions in Chattopadhyay et. al. [20].
However, the tighter relationship that we prove here via approximate generalized sparsity and weight
for monotone functions, is known to be false for general functions as witnessed by the Sink function2.
The Sink function has

`

n
2

˘

input bits, corresponding to the edges of a complete graph on n vertices. Each
Boolean assignment orients the edges. Sink outputs 1 iff there exists a Sink vertex in the resulting directed
graph. Its generalized sparsity and weight is just n, whereas RSizedt

`

Sink
˘

is 2Ωpnq.

2Sink was used to construct a counter-example to the Log-Approximate-Rank Conjecture in [23]
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1.1 Our Method

Lower bounds on approximate sparsity were known for specific functions such as Orn and Parityn

(these are folklore results), typically established using random restrictions and approximate degree lower
bounds. However, these results apply only to specific functions or restricted classes of functions. The
general idea is to apply a random restriction ρ, which selects a random subset of variables and fixes each
to 0, with the goal of eliminating high-degree monomials from a candidate sparse polynomial P that
approximates f , such that f |ρ still has large approximate degree while P |ρ has degree that is too small,
yielding a contradiction. This is illustrated by considering the n-bit Or function. Let P be any sparse
polynomial approximating Orn. Consider a random restriction ρ that, independently for each of the n
variables, fixes it to 0 with probability 1{2 and leaves it free with probability 1{2. With high probability,
at least n{3 variables are left free. On the other hand, any monomial of degree larger than

?
n survives

(i.e., none of its variables are set to 0) with probability at most 2´
?
n. If the number of monomials in

P is s, then the probability that P |ρ contains a monomial of degree larger than
?
n is at most s ¨ 2´

?
n,

which is less than 1{2 if s ă 2
?
n{2. With high probability, pOrnq|ρ is an r-bit Or function with r ě n{3.

Since Orn|ρ is still approximated by P |ρ (for every ρ), and recalling that the approximate degree of Orr

is Ωp
?
rq, we conclude that s “ 2Ωp

?
nq.

While this works for Or function, there are functions which are very different from Or and yet have
large sparsity in De Morgan basis. An example of that is Andn ˝ Or2, where the bottom ORs are 2-bit
functions. It is simple to verify that this function has sparsity 2Ωpnq. But there is no way to induce a
large Or in this function. If one tried to apply a random restriction like the one that worked for Or, one
concludes easily that it won’t work as with high probability one of the bottom Or2 will have both its
input variables fixed to 0, thereby killing the entire function. One way to fix this is to consider a slightly
more careful restriction. For each of the bottom ORs, one selects one of its two input variables at random
and fixes it to 0, leaving the other variable free. It is not hard to show that in this case the restricted
function is always the And over the remaining n free variables, and if the approximating polynomial
for the Andn ˝ Or2 had sparsity 2op

?
nq, then with nonzero probability, the restricted polynomial would

give an op
?
nq-degree approximation to Andn, contradicting known lower bounds. The important thing

to note here is that our random restriction is no longer done independently for each variable, as the
restrictions on the two variables in each Or2 block are correlated.

Our approach generalizes this idea. We design a random restriction process that works for all functions
with large exact sparsity. It’s not a-priori clear what useful combinatorial structural information can
be extracted from just knowing that a function has large sparsity. This is precisely the main technical
contribution of our work. We devise a random restriction procedure for such functions with large sparsity
and it differs from the two simple cases that we considered above in the following two ways: (i) the
method is adaptive in the sense that the next bit that is fixed or left free depends on what happened in
the previous step3 (ii) variables are not exclusively fixed to 0, and some may get fixed to 1 as well.

As some of the variables may get fixed to 1, we can no longer argue that all high degree monomials
of the approximating polynomial are ‘zeroed’ out as was happening for the two cases discussed earlier.
Instead, we argue that if the unrestricted approximating polynomial was sparse to begin with, then with
high probability, the restricted polynomial will not have any monomial that has large degree in the free
variables. Note that a non-zeroed out monomial could either completely collapse to a constant value, in
which case it has degree zero with respect to the free variables, or otherwise it could be nonzero but low
degree on the free variables.

It is known, via a result generally attributed to Grolmusz [29], that lower bounds on approximate
sparsity yields lower bounds on approximate weight (ℓ1 norm) in any basis and even wrt any arbitrary
set F of basic functions. Hence, our lower bound on the sparsity of approximating polynomials when
their exact sparsity is large, in fact, yields a lower bound on the weight of an approximating polynomial
as well. To relate exact ℓ1 norm and approximate ℓ1 norm, we need to assume that the exact ℓ1 norm,
instead of exact sparsity, of f is large. This is indeed a weaker assumption as in the De Morgan basis, all
non-zero coefficients in the unique polynomial representation of f are integer-valued. This is precisely
what our random restriction procedure MaxDegreeRestriction, described in Section 3.1, does by
taking a bit more care.

We are able to adapt our restriction technique to deal with generalized polynomials as long as the

3The restriction that we used for Andn ˝Or2 is still non-adaptive as the fixing in each of the Or2 block is independent
of the other blocks and can therefore be done all at once.
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function has an additional property: it has what we call a separating set of inputs. A separating set of
inputs for f is a special fooling set with respect to subcubes. Given such a separating set, we’re able to
modify our random restriction technique to reduce the degree of generalized monomials with respect to
free variables while ensuring that the restricted function retains high degree. Finally, we observe that
monotone functions with large generalized sparsity have such large separating sets and this helps us
prove that generalized sparsity (generalized weight) and approximate generalized sparsity (approximate
generalized weight) are polynomially related in the log scale for monotone functions.

1.2 Other Related Work

Random restrictions have been used to obtain lower bounds for (approximate) sparsity before, say for
the Orn function (folklore) or for specific functions [4, 22]. Similarly, random restrictions have been
famously quite successful in other parts of complexity theory like circuit complexity [27, 30] and proof
complexity [7,41,45]. Designing new random restrictions in these two areas remains an active, technically
challenging theme of current research [31,32]. In these works, random restrictions are applied to a target
functions (in circuits) or CNF formulas (in proof complexity) that have explicit convenient combinatorial
properties. On the other hand, we design a generic random restriction scheme that can be applied on
any function that has the algebraic property of large sparsity in the De Morgan basis. Using this new
scheme we derive a general structural result applicable to all functions. Such an application of random
restriction seems rare to us. It vaguely reminds us of two results, both in proof complexity, where
deterministic greedy restrictions were used to obtain results that are applicable to all formulas: the first
is by Impagliazzo, Pudlak and Sgall [34] showing that degree lower bounds are enough to prove size (read
sparsity) lower bounds for proofs in polynomial calculus. The second is by Ben-Sasson and Wigderson [8]
who also used a greedy restriction method to show that width of resolution proofs always translate to
size of proofs.

Buhrman and de Wolf [14] were interested, among other things, in characterizing the bounded-error
quantum communication complexity of And functions, i.e 2-party communication functions of the form
fn ˝ And2, where fn is an arbitrary n-bit Boolean function. This problem has remained open. There
was a breakthrough made by Razborov [46] who showed that for symmetric fn, quantum protocols offer
no advantage over classical randomized protocols. Whether there exists some fn for which the quantum
and classical randomized communication complexities are widely separated for fn ˝ And2 remains open
despite several efforts [14, 37, 47, 50]. Our main result provides a conditional answer to that question as
discussed below.

Razborov proved his lower bound by showing a lower bound on the log of the approximate rank of the
communication matrix. Buhrman and de Wolf [14], observing that the exact sparsity of any function f
in the De Morgan basis is equal to the rank of the communication matrix of f ˝And2, raised informally
the following interesting question:

Question 1.11. Is it true that for every function f , (logarithm of) the approximate sparsity of f and
(logarithm of) the approximate rank of the communication matrix of f ˝ And2 are within a polynomial
of each other?

Remark 1.12. Buhrman and de Wolf didn’t quite phrase this question in the manner we do. Their
discussion didn’t put any quantitative bounds, nor do they talk about relating things in the log scale. Our
version, therefore, may be a significant weakening of what they had in mind.

Our result provides a fresh impetus to seek an answer to the above question for the following reason.
Assuming the answer is positive, Theorem 1.1, combined with the recent resolution (up to a log n factor)
of the log-rank conjecture for And-functions by Knop, Lovett, McGuire, and Yuan [40], implies that the
deterministic classical zero error communication complexity of every function f ˝And2 is at most a fixed
polynomial of its quantum bounded-error communication complexity, ignoring poly-logarithmic factors.

2 Preliminaries

In this section, we collect notation, definitions, and known results that will be used throughout the paper.
All functions considered are defined on the Boolean hypercube t0, 1un, and all polynomials are assumed
to be multilinear real polynomials.
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Definition 2.1 (Multilinear Polynomial Representation). A polynomial Q P Rrx1, x2, . . . , xns is called
multilinear if each variable appears with degree at most one in every monomial. Over the Boolean domain,
every function f : t0, 1un Ñ R admits a unique multilinear polynomial representation. That is, there
exists a unique multilinear polynomial Q P Rrx1, x2, . . . , xns such that Qpxq “ fpxq for all x P t0, 1un.

Definition 2.2 (Support, Degree, Sparsity, and Norm of a Polynomial). Let Q P Rrx1, . . . , xns be a
multilinear polynomial written as

Qpxq “
ÿ

SĎrns

aS
ź

iPS

xi.

• The support of Q, denoted VarspQq, is the set of variables that appear in some monomial with a
nonzero coefficient.

• The degree of Q, denoted degpQq, is maxt|S| | aS ‰ 0u.

• The sparsity of Q, denoted sparpQq, is the number of nonzero coefficients aS.

• The ℓ1-norm of Q, denoted wtpQq, is given by
ř

SĎrns |aS |.

Definition 2.3 (Complexity Measures for Functions via Polynomials). Let f : t0, 1un Ñ R be a function,
and let Ppfq denote its unique multilinear polynomial representation. We define the following complexity
measures:

degpfq :“ degpPpfqq, sparpfq :“ sparpPpfqq, wtpfq :“ wtpPpfqq.

Remark 2.4. For Boolean functions f : t0, 1un Ñ t0, 1u, the coefficients in Ppfq are integers (see for
example [35, Chapter 2]), and hence sparpfq ď wtpfq.

Definition 2.5 (Complexity Measures for Functions via Approximating Polynomials). Let f : t0, 1un Ñ

R and let ε ą 0. We define:

Ădegεpfq :“ mintdegpQq | Q satisfies |Qpxq ´ fpxq| ď ε for all x P t0, 1unu,

Ąsparεpfq :“ mintsparpQq | Q satisfies |Qpxq ´ fpxq| ď ε for all x P t0, 1unu,

rwtεpfq :“ mintwtpQq | Q satisfies |Qpxq ´ fpxq| ď ε for all x P t0, 1unu.

When ε “ 1{3, we write Ădegpfq :“ Ădeg1{3pfq, Ąsparpfq :“ Ąspar1{3pfq, and rwtpfq :“ rwt1{3pfq.

Theorem 2.6 ( [25, Claim 4.3]). Let f : t0, 1un Ñ t0, 1u be a Boolean function. Then for any 0 ă ε ă 1
2 ,

Ădegεpfq “ O
´

Ădeg1{3pfq ¨ logp1{εq

¯

.

Theorem 2.7 ( [1, Theorem 4]). For every Boolean function f : t0, 1un Ñ t0, 1u,

degpfq “ OpĂdegpfq2q.

Remark 2.8. The bound in Theorem 2.7 is tight; for example, the Orn function satisfies degpOrnq “ n

and ĂdegpOrnq “ Θp
?
nq.

Definition 2.9 (Restrictions). A restriction ρ on a set of variables V Ď tx1, . . . , xnu is a partial assign-
ment

ρ : V Ñ t0, 1, ˚u,

where for xi P V , ρpxiq P t0, 1u indicates that xi is fixed, and ρpxiq “ ˚ means xi is left free. We define:

SetVarspρq :“ txi P V | ρpxiq P t0, 1uu,

FreeVarspρq :“ txi P V | ρpxiq “ ˚u.

The size of ρ, denoted |ρ|˚, is the number of free variables:

|ρ|˚ :“ |FreeVarspρq|.

7



Let Q P Rrx1, . . . , xns be a polynomial and V Ď tx1, . . . , xnu. For a restriction ρ on V , we write Q|ρ for
the polynomial obtained by substituting xi “ ρpxiq for all xi P SetVarspρq.

For an input w P t0, 1uV and a subset T Ď V , we write w|T P t0, 1uT to denote the projection of w to
the coordinates in T . For singleton sets, we simply write wi for w|txiu.

Let F Ď t0, 1uV be a set of Boolean assignments and ρ a restriction on V . The restriction of F under ρ,
denoted F |ρ, is defined as

F |ρ :“
␣

w|FreeVarspρq

ˇ

ˇw P F, @xi P SetVarspρq, wi “ ρpxiq
(

.

3 Sparsity vs. Approximate Sparsity

In this section, we show that for Boolean functions f : t0, 1un Ñ t0, 1u, the exact and approximate
sparsity are polynomially related on the logarithmic scale. Rather than assuming large sparsity and
arguing for large approximate sparsity, we start with the weaker assumption of a large exact ℓ1-norm
(see Remark 2.4) and argue large approximate sparsity. This approach yields both Theorem 1.1 and
Theorem 1.5 in one go, showing that the logarithms of the exact and approximate sparsity, as well as of
the exact and approximate ℓ1-norm, are polynomially related up to a log n factor.

Proof Overview. Let f be a Boolean function with large exact ℓ1-norm. We aim to show that any
polynomial approximating f within error 1{3 must also has large sparsity. The argument proceeds via
a carefully constructed random restriction ρ, sampled using Algorithm 1, which satisfies the following
properties:

1. With high probability, ρ leaves ℓ “ Ωplog wtpfq{ log nq variables free.

2. The restricted function f |ρ has full degree on the variables left free.

3. For any monomial M and any t ě 1, the probability that degpM |ρq ě t is at most 2´t.

With the above properties of ρ, the reason why the approximate sparsity of f must be large becomes
evident. Let ℓ (roughly log wtpfq{ log n) denote the number of variables left free by ρ. Suppose there

exists a polynomial Q approximating f having sparsity less than 2
?

ℓ{c, for some constant c ą 0 (to be
chosen appropriately). Then, by property (3) above and using a probabilistic argument, there exists a
restriction ρ that eliminates all monomials of degree at least

a

ℓ{c in Q. Consequently, the restricted

polynomial Q|ρ has degree strictly less than
a

ℓ{c.
On the other hand, by property (2), the restricted function f |ρ has degree ℓ. Therefore, Q|ρ approxi-

mates f |ρ, a Boolean function of degree ℓ, using a polynomial of degree less than
a

ℓ{c. This contradicts
the known relationship between degree and approximate degree for Boolean functions—specifically, that

degpfq ď c ¨ Ądegpfq2 for some universal constant c [1].

We conclude that any polynomial approximating f must have sparsity at least 2Ωp
?
ℓq. Since ℓ “

Θplog wtpfq{ log nq, it follows that the logarithms of exact ℓ1-norm and approximate sparsity are related
quadratically (up to a log n factor).

The novelty of our proof lies in the method of sampling random restrictions that satisfy the key prop-
erties outlined above. In contrast to the non-adaptive restrictions commonly used in circuit complexity
and related areas, our sampling procedure is adaptive—it takes into account the effects of previous ran-
dom choices on the hardness measure (in our case, the sparsity of the restricted function). We believe
this adaptive approach to sampling restrictions may have applications beyond the present context.

We now abstract the above idea into a general notion of hardness:

Definition 3.1 (ℓ-Variable Max-Degree Distribution). Let f : t0, 1un Ñ t0, 1u, and let D be a distribu-
tion over restrictions ρ : tx1, . . . , xnu Ñ t0, 1, ˚u. We say that D is an ℓ-variable max-degree distribution
for f if:

1. With probability at least 0.9, ρ leaves at least ℓ variables free.

2. For every ρ in the support of D, we have degpf |ρq “ |ρ|˚.
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3. For any monomial M and any t P N, Prρ„D rdegpM |ρq ě ts ď 2´t.

We will show that a large exact ℓ1-norm implies the existence of such a distribution, which in turn
implies that any polynomial approximating f must have large sparsity—thereby connecting exact ℓ1-
norm and approximate sparsity.

Organization of this section. In Section 3.1, we show how to construct a max-degree distribution
when f has large exact ℓ1-norm. In Section 3.2, we use this to prove Theorems 1.1 and 1.5. In Section 3.3,
we discuss the tightness of our bounds. Finally, in Section 3.4, we explore implications for the And query
model.

3.1 The Restriction Process and Its Properties

Algorithm 1 MaxDegreeRestriction

1: Input: Non-zero multilinear polynomial Q P Rrx1, . . . , xns; set V Ď tx1, . . . , xnu with varspQq Ď V .
2: Output: A restriction ρ : V Ñ t0, 1, ˚u.
3: if |V | “ 0 then
4: return empty ρ
5: else
6: if there exists xi P V , u P t0, 1u such that wtpQ|xi“uq ě

`

1 ´ 1
n

˘

¨ wtpQq then
7: ρ1 Ð MaxDegreeRestrictionpQ|xi“u, V ztxiuq

8: Set ρpxiq Ð u, and for all xj P V ztxiu, set ρpxjq Ð ρ1pxjq

9: else
10: Choose xi P V arbitrarily
11: Express Q as Q “ R1 ¨ xi ` R0

12: With probability 1{2:
13: ρ0 Ð MaxDegreeRestrictionpR0, V ztxiuq

14: Set ρpxiq Ð 0, and for all xj P V ztxiu, set ρpxjq Ð ρ0pxjq

15: Otherwise:
16: ρ˚ Ð MaxDegreeRestrictionpR1, V ztxiuq

17: Set ρpxiq Ð ˚, and for all xj P V ztxiu, set ρpxjq Ð ρ˚pxjq

18: end if
19: return ρ
20: end if

Algorithm 1 describes a procedure for sampling random restrictions for a given input polynomial Q.
When applied to the unique multilinear polynomial Q that exactly represents a Boolean function f ,
we will show that the resulting distribution over restrictions is ℓ-variable max-degree for f , where ℓ “

Ω
´

log wtpfq

logn

¯

. In this subsection, we establish the properties of the distribution induced by this process.

We begin with some observations about Algorithm 1. First, we claim that if a call toMaxDegreeRestriction
on a polynomial Q reaches line 9, then Q is balanced with respect to each of its variables. That is, for
every xi P VarspQq, if we write Q “ R1xi`R0, then both wtpR0q and wtpR1q are at least a p1{2nq-fraction
of wtpQq. Formally:

Claim 3.2. Suppose Algorithm 1 reaches the else branch at line 9 on input polynomial Q. Then for
every xi P VarspQq, writing Q “ R1xi ` R0, we have

wtpR0q ě
1

2n
wtpQq and wtpR1q ě

1

2n
wtpQq.

Proof. If Algorithm 1 reaches the else branch at line 9 on input polynomial Q, then by the condition
of that line, we have:

@xi P VarspQq, @u P t0, 1u, wtpQ|xi“uq ă p1 ´ 1
n qwtpQq.

Fix a variable xi P VarspQq, and write Q “ R1xi ` R0. We claim that both wtpR0q ě 1
2nwtpQq and

wtpR1q ě 1
2nwtpQq. Suppose, for contradiction, that one of these inequalities fails.
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• Case 1: wtpR1q ă 1
2nwtpQq. Since Q|xi“0 “ R0, we get:

wtpQq “ wtpR0q ` wtpR1q “ wtpQ|xi“0q ` wtpR1q ă p1 ´ 1
n qwtpQq ` 1

2nwtpQq ă wtpQq,

which is a contradiction.

• Case 2: wtpR0q ă 1
2nwtpQq. SinceQ|xi“1 “ R1`R0, cancellations could occur between monomials

in R1 and R0, but even in the worst case we have: wtpQ|xi“1q ě wtpR1q ´ wtpR0q.

Therefore,

wtpQ|xi“1q ě wtpR1q ´ wtpR0q “ wtpQq ´ 2wtpR0q ą
`

1 ´ 1
n

˘

wtpQq,

which contradicts the assumption that wtpQ|xi“1q ă
`

1 ´ 1
n

˘

wtpQq.

Hence, both wtpR0q ě 1
2nwtpQq and wtpR1q ě 1

2nwtpQq must hold for every xi P VarspQq.

Observation 3.3. If the input polynomial Q is initially non-zero, then by Claim 3.2, all recursive
calls in Algorithm 1 continue to operate on non-zero polynomials. Furthermore, if at any point during
the recursion the sparsity of the input polynomial becomes 1—i.e., the polynomial consists of a single
monomial M—then, due to line 6, the algorithm deterministically sets all remaining variables in the
final restriction ρ according to the support of M . Specifically, for each xi P V , we set ρpxiq Ð 1 if
xi P varspMq, and ρpxiq Ð 0 otherwise.

We next observe how the range of the input polynomial over t0, 1uV evolves during recursion. Let Q
be the input at some stage. The following cases arise in the recursion:

1. If the recursion proceeds via line 7, the next polynomial is Q|xi“u for some xi P V , u P t0, 1u.

2. If via line 13, we recurse on R0 “ Q|xi“0, where xi is chosen in line 10.

3. If via line 16, we write Q “ R1 ¨ xi ` R0, where xi is chosen in line 10, and recurse on R1 “ Bxi
Q.

In cases (1) and (2), the recursive call uses a restriction of Q, so the range of values on Boolean inputs
does not increase. In case (3), the derivative R1 may have a larger range. However, as a discrete
derivative, its range is controlled—it lies within twice the range of Q.

Claim 3.4. Let Q P Rrx1, . . . , xns with VarspQq Ď V , and suppose Q “ R1 ¨ xi ` R0 for some xi P V ,
such that the range of Q over t0, 1uV is contained in ra, bs. Then the range of R1 over t0, 1uV ztxiu is
contained in r´pb ´ aq, b ´ as.

Proof. Fix any w P t0, 1uV ztxiu, and let w0, w1 P t0, 1uV be its extensions with xi “ 0 and xi “ 1,
respectively. Then R1pwq “ Qpw1q ´R0pwq “ Qpw1q ´Qpw0q. Since both Qpw0q and Qpw1q lie in ra, bs,
their difference lies in r´pb ´ aq, b ´ as, as claimed.

In particular, if we start with a polynomial Q representing a Boolean function and take k successive
derivatives, the range of the resulting polynomial is contained in r´2k´1, 2k´1s by repeated application
of the claim.

We now show that the restriction ρ returned by Algorithm 1 leaves a significant number of variables
free. The algorithm proceeds recursively and follows one of three possible execution paths:

• If |V | “ 0, the recursion terminates and the algorithm backtracks.

• If the condition on line 6 holds, the algorithm makes a single recursive call (line 7).

• Otherwise, the condition on line 9 holds, and the algorithm makes one of two recursive calls (lines 13,
16) depending on the outcome of a coin toss.
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The recursion continues while |V | ě 1, and halts when |V | “ 0, after which the final restriction is
assembled by backtracking.

We classify recursive calls into two types: a call is passive if the condition on line 6 is satisfied, and
active if the condition on line 9 is satisfied.

We argue that any execution of the algorithm must involve a substantial number of active recursive
calls. In each such call, a variable is left free with probability 1{2. Therefore, if the algorithm makes ℓ
active calls, the expected number of variables left free in the final restriction is ℓ{2.

Moreover, since the decision to leave a variable free (i.e., assign it the value ˚) in an active call is
independent of the choices made in previous calls, the number of free variables in the final restriction is
tightly concentrated around its expectation. By a standard Chernoff bound, with high probability, at
least a constant fraction of these ℓ active calls will indeed result in variables being left free.

This leads to the following formal statement:

Claim 3.5. Let Q be the multilinear polynomial representing a Boolean function with wtpQq ě 10p4nq40,
and let ρ “ MaxDegreeRestrictionpQ, tx1, . . . , xnuq be the restriction output by Algorithm 1. Then,

with probability at least 0.9, the restriction ρ leaves at least Ω
´

logwtpQq

logn

¯

variables free.

Proof. We begin by showing that any execution of the algorithm must involve a substantial number of
active recursive calls. Let the algorithm make t total recursive calls, of which ℓ are active. Since the size
of V decreases by 1 in each call and the recursion terminates when |V | “ 0, we have t ď n.

Now, observe how the ℓ1-norm and the range of the polynomial (when evaluated on inputs in t0, 1uV )
evolve during the recursion:

• In a passive call (i.e., when line 6 is satisfied), the polynomial in the next step is of the form Q|xi“u,
whose ℓ1-norm is at least p1 ´ 1{nq ¨ wtpQq, and which takes the same range of values on Boolean
inputs as Q.

• In an active call (i.e., when line 9 is satisfied), the ℓ1-norm of the next polynomial drops by at
most a factor 1{p2nq, by Claim 3.2. If recursion proceeds via line 13, the value set over Boolean
inputs does not increase. If via line 16, the next polynomial is the discrete derivative BxiQ, whose
range on Boolean inputs increases by at most a factor of 2 (Claim 3.4).

The recursion terminates with |V | “ 0 and a nonzero constant polynomial. Since each active call can
at most double the range of values on Boolean inputs, and the initial polynomial Q takes values in t0, 1u,
the final constant must lie in r´2ℓ, 2ℓs. Therefore, the total shrinkage in the ℓ1-norm over the course of
the recursion satisfies:

2ℓ ě p1 ´ 1{nqt´ℓ ¨ p1{2nqℓ ¨ wtpQq

ě p1 ´ 1{nqn ¨ p1{2nqℓ ¨ wtpQq (since t ´ ℓ ď n)

ě
1

10
¨

ˆ

1

2n

˙ℓ

¨ wtpQq (using p1 ´ 1{nqn ě 1{10 for n ě 2).

Taking logarithms and rearranging, we obtain:

ℓ ě
logpwtpQq{10q

logp4nq
.

Define ℓ˚ :“ logpwtpQq{10q

logp4nq
. Thus, every run of the algorithm contains at least ℓ˚ active recursive calls.

Let X1, X2, . . . , Xℓ˚ be indicator random variables, where Xi “ 1 if the variable chosen in the i-
th active call is left free (which occurs with probability 1{2), and 0 otherwise. These variables are

independent by construction, and E
”

řℓ˚

i“1 Xi

ı

“ ℓ˚

2 . By a standard Chernoff bound, we get:

Pr

¨

˝

ℓ˚
ÿ

i“1

Xi ď
ℓ˚

4

˛

‚ď e´ℓ˚
{16 ď 0.1,
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where the last inequality follows from the assumption wtpQq ě 10p4nq40.

Since the number of variables left free in the final restriction is at least
řℓ˚

i“1 Xi, we conclude that

with probability at least 0.9, the algorithm leaves at least ℓ˚{4 “ Ω
´

log wtpQq

logn

¯

variables free.

Finally, we show that for any input polynomial Q, the restriction ρ returned by Algorithm 1 has the
following properties: the restricted polynomial Q|ρ has full degree—that is, its degree equals the number
of variables left free by ρ; and for any monomial M , the degree of M |ρ exhibits exponential tail decay:
the probability that degpM |ρq ě t is at most 2´t.

Claim 3.6. Let Q P Rrx1, . . . , xns be a non-zero polynomial with VarspQq Ď V . Let ρ be the restriction
returned by MaxDegreeRestrictionpQ,V q, as described in Algorithm 1. Then:

(a) The restricted polynomial Q|ρ is non-zero and has full degree; that is, degpQ|ρq “ |ρ|˚.

(b) For any monomial M with VarspMq Ď V , and any t P N, the degree of the restricted monomial
satisfies:

Pr
ρ

pdegpM |ρq ě tq ď 2´t.

Proof. Claim (b) is trivial when t “ 0, so assume t ą 0. We prove both parts simultaneously by induction
on |V |.

Base Case (|V | “ 0): Here, Q must be a non-zero constant polynomial. The claim holds trivially.
Inductive Step (|V | ě 1): We consider the two possible branches of the algorithm, depending on

which condition is satisfied at runtime (line 6 or line 9):

1. Case where the “if” condition (line 6) is satisfied: Suppose the condition is satisfied for
some variable xi P V and some value u P t0, 1u. The algorithm then returns the restriction
ρ “ ρ1 Y txi Ð uu, where ρ1 is obtained from a recursive call with a strictly smaller support set.
By the induction hypothesis, the restricted polynomial pQ|xi“uq|ρ1 is non-zero and has full degree.
Hence,

degpQ|ρq “ deg ppQ|xi“uq|ρ1 q
p1q
“ |ρ1|˚

p2q
“ |ρ|˚,

where (1) follows from the induction hypothesis, and (2) holds because ρ and ρ1 leave the same
number of variables free. Therefore, Q|ρ is non-zero and has full degree.

Moreover, for any monomial M , we have:

Pr
ρ

pdegpM |ρq ě tq ď Pr
ρ1

pdegpM |ρ1 q ě tq ď 2´t,

where the final inequality follows by the induction hypothesis.

2. Case where the else clause at line 9 is executed: Let xi P V be the variable chosen in line 10.
Then with probability 1{2, the algorithm sets xi Ð 0, and returns ρ “ ρ0 Y txi Ð 0u; with the
remaining probability 1{2, it leaves xi free (denoted by ˚) and returns ρ “ ρ˚ Y txi Ð ˚u.

• (a) Degree of Q|ρ: If xi is set to 0 in ρ, then by induction

degpQ|ρq “ deg
`

pQ|xi“0q|ρ0

˘

“ |ρ0|˚ “ |ρ|˚.

If xi is left free, then Q|ρ “ xi ¨ pR1|ρ˚
q ` pR0|ρ˚

q, where Q “ xiR1 ` R0. Hence:

degpQ|ρq
p1q
“ max

`

1 ` degpR1|ρ˚
q,degpR0|ρ˚

q
˘

ě 1 ` degpR1|ρ˚
q

p2q
“ 1 ` |ρ˚|˚ “ |ρ|˚,

where (1) uses the fact that R1|ρ˚
is non-zero, and (2) applies the induction hypothesis to R1.

Since degpQ|ρq cannot exceed |ρ|˚, the inequality above must in fact be an equality. Moreover,
since both pQ|xi“0q|ρ0

and R1|ρ˚
are non-zero by the induction hypothesis, it follows that Q|ρ

is also non-zero.

• (b) Degree of any monomial under restriction: Let M be any monomial.
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– If xi R VarspMq, then:

Pr
ρ

pdegpM |ρq ě tq “
1

2
Pr
ρ0

pdegpM |ρ0
q ě tq `

1

2
Pr
ρ˚

pdegpM |ρ˚
q ě tq ď

2´t

2
`

2´t

2
“ 2´t,

by the inductive hypothesis applied to both ρ0 and ρ˚.

– If xi P VarspMq, then with probability 1{2, xi Ð 0, so M |ρ “ 0. With the remaining
probability 1{2, xi remains free, and M |ρ “ xi ¨ M 1|ρ˚

, where M 1 “ M{xi. Hence:

Pr
ρ

pdegpM |ρq ě tq “ 1
2 Prρ˚

pdegpM 1|ρ˚
q ě t ´ 1q ď 1

2 ¨ 2´pt´1q “ 2´t.

again using the inductive hypothesis.

This completes the proof.

Applying Algorithm 1 to the polynomial Q representing a Boolean function f , and combining
Claim 3.5 with Claim 3.6, we conclude that a large ℓ1-norm implies the existence of a max-degree
distribution.

Theorem 3.7. Let f : t0, 1un Ñ t0, 1u be a Boolean function with wtpfq ě 10p4nq40. Then there exists

an ℓ-variable max-degree distribution for f , where ℓ “ Ω
´

logwtpfq

logn

¯

.

Proof. LetQ be the unique multilinear real polynomial that exactly computes f , and let V “ tx1, . . . , xnu.
Consider the distribution over restrictions ρ „ MaxDegreeRestrictionpQ,V q generated by Algo-
rithm 1. By Claim 3.5 and Claim 3.6, this distribution satisfies all three conditions of an ℓ-variable

max-degree distribution for ℓ “ Ω
´

log wtpfq

logn

¯

.

3.2 Putting Everything Together

We begin by showing that the existence of a max-degree distribution for a Boolean function f implies
that any polynomial approximating f must have large sparsity and large ℓ1-norm. Combined with
Theorem 3.7, which guarantees such a distribution when wtpfq is large, this implies the following: on
a logarithmic scale, the exact sparsity and exact ℓ1-norm are at most quadratically larger than their
approximate counterparts, up to a log n factor—proving Theorem 1.1 and Theorem 1.5.

Claim 3.8. Let f : t0, 1un Ñ t0, 1u, and suppose there exists an ℓ-variable max-degree distribution D
for f . Then,

log Ąsparpfq “ Ωp
?
ℓq.

Proof. Let D be an ℓ-variable max-degree distribution for f . Suppose, for the sake of contradiction, that
the claim does not hold. Let k “

a

ℓ{c, where c ą 0 is a constant to be chosen later. Assume there
exists a real polynomial Q that 1{3-approximates f and has sparsity

sparpQq ď
1

10
¨ 2k.

We will argue that such a polynomial cannot exist, thereby proving the claim.
Sample a restriction ρ „ D, and consider the restricted polynomial Q|ρ. By property (3) of D, the

probability that any fixed monomial in Q has degree at least k under ρ is at most 2´k. Applying a union
bound over all monomials in Q, we have

Pr
ρ

pdegpQ|ρq ě kq ď sparpQq ¨ 2´k ď
1

10
.

By property (1) of D, with probability at least 0.9, ρ leaves at least ℓ variables free. Thus, with
probability at least 0.8, both of the following hold:

|ρ|˚ ě ℓ and degpQ|ρq ă k.
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Fix such a restriction ρ. Then Q|ρ is a polynomial of degree less than k that 1{3-approximates f |ρ.
By property (2) of D, we have:

degpf |ρq “ |ρ|˚ ě ℓ “ c ¨ k2 ą c ¨ pdegpQ|ρqq
2

ě c ¨ Ądegpf |ρq2.

This contradicts the known relationship between degree and approximate degree for Boolean functions,

namely that for all g, degpgq ď c ¨ Ądegpgq2 for some universal constant c (see Theorem 2.7).
Hence, our assumption was false, and the claim follows.

Claim 3.9. Let f : t0, 1un Ñ t0, 1u, and suppose there exists an ℓ-variable max-degree distribution D
for f . Then,

log rwtpfq “ Ωp
?
ℓq.

Proof. Let D be an ℓ-variable max-degree distribution for f . Suppose, for the sake of contradiction,
that the claim does not hold. Let k “ p1{c1q ¨

a

ℓ{c for appropriate positive constants c and c1 to be
determined later. Assume there exists a real polynomial Q “

ř

SĎrns qS
ś

iPS xi that 1{3-approximates
f and has ℓ1-norm

wtpQq ď
1

100
¨ 2k.

We will argue that such a polynomial cannot exist, thereby proving the claim.
Sample a restriction ρ from D, and consider the restricted polynomial Q|ρ. We analyze the expected

ℓ1-mass of high-degree monomials in Q|ρ. For any polynomial P “
ř

SĎrns aS
ś

iPS xi, define the degree-d
tail of its ℓ1-norm as

wtpP qěd :“
ÿ

SĎrns

|S|ěd

|aS |.

Using property (3) of the distribution D, we get:

Eρ

“

wtpQ|ρqěk
‰

ď
ÿ

SĎrns

|S|ěk

|qS | ¨ Pr
ρ

˜

deg

˜

ź

iPS

xi|ρ

¸

ě k

¸

ď wtpQq ¨ 2´k ď
1

100
.

By Markov’s inequality, with probability at least 0.9, we have wtpQ|ρqěk ă 0.1. Combining this with
property (1) of D, which ensures |ρ|˚ ě ℓ with probability at least 0.9, we conclude that with probability
at least 0.8, a random restriction ρ „ D satisfies both:

|ρ|˚ ě ℓ and wtpQ|ρqěk ă 0.1.

Fix such a restriction ρ. Let Q̄ be the polynomial obtained from Q|ρ by discarding all monomials of
degree at least k. Since Q|ρ 1{3-approximates f |ρ and the total weight of the discarded tail is at most
0.1, it follows that Q̄ 0.44-approximates f |ρ, with degpQ̄q ă k.

By standard error reduction (see Theorem 2.6), we can boost the success probability of Q̄ to obtain

a polynomial that 1{3-approximates f |ρ with degree at most c1k. Thus, Ądegpf |ρq ă c1k “
a

ℓ{c. On
the other hand, by property (2) of D, we have degpf |ρq “ |ρ|˚ ě ℓ. But this contradicts the known
relationship between degree and approximate degree for Boolean functions, which asserts that for any

Boolean function g, degpgq ď c ¨ Ądegpgq2 for some universal constant c (see Theorem 2.7).
Hence, our assumption was false, and the claim follows.

Theorem 3.10. For every total Boolean function f : t0, 1un Ñ t0, 1u, we have

logpwtpfqq “ O
`

logpĄsparpfqq2 ¨ log n
˘

.

Proof. Assume wtpfq ě 10p4nq40, as the claim is trivial otherwise. By Theorem 3.7, there exists an

ℓ-variable max-degree distribution D for f , where ℓ “ Ω
´

log wtpfq

logn

¯

. Applying Claim 3.8 to D, we obtain

log Ąsparpfq “ Ωp
?
ℓq “ Ω

˜

d

log wtpfq

log n

¸

.
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Since sparpfq ď wtpfq for any Boolean function f (see Remark 2.4), the above theorem implies that
for all total Boolean functions f ,

logpsparpfqq “ O
`

log2p Ąsparpfqq ¨ log n
˘

,

thereby proving Theorem 1.1.
Combining Theorem 3.7 with Claim 3.9, we also obtain:

Theorem 1.5 (Restated). For every total Boolean function f : t0, 1un Ñ t0, 1u, we have

logwtpfq “ O
`

plog rwtpfqq2 ¨ log n
˘

.

Proof. Assume wtpfq ě 10p4nq40, as the claim is trivial otherwise. By Theorem 3.7, there exists an

ℓ-variable max-degree distribution D for f , where ℓ “ Ω
´

log wtpfq

logn

¯

. Applying Claim 3.9 to D yields the

desired bound.

Remark 3.11. It is known that log Ąsparpfq “ Oplog rwtpfq ` log nq, a result referred to as Grolmusz’s
theorem [29, 52], which has its roots in a paper by Bruck and Smolensky [13]. The works [29, 52] show
this bound for the Fourier basis, but the underlying proof technique is more general and, in fact, provides
a method for converting a weighting measure to a counting measure. In particular, it applies to the De
Morgan basis as well. Therefore, by combining this relationship with Theorem 3.10, we could have directly
obtained a bound relating the exact and approximate ℓ1-norms, without relying on Claim 3.9. However,
this approach yields a slightly weaker result, incurring an additive plog nqOp1q loss. Specifically, we would
get logwtpfq “ O

`

plog rwtpfqq2 ¨ log n ` plog nq3
˘

.

Finally, combining Theorems 1.1, 1.5 and 3.10, we conclude that, on a logarithmic scale, the exact
sparsity, approximate sparsity, exact ℓ1-norm, and approximate ℓ1-norm of any Boolean function are all
polynomially related, up to polylogarithmic factors in n.

Remark 3.12. Although we state our result for Boolean functions, the proof relies on minimal properties
specific to Boolean-valuedness. In fact, the argument extends to any class of functions over the Boolean
domain that is closed under variable fixing and satisfies a universal relationship between degree and
approximate degree. In such settings, this relationship can be lifted to one between the logarithm of
sparsity and the logarithm of approximate sparsity. In particular, since Boolean functions are closed
under variable fixing and their degree and approximate degree are polynomially related, it follows that
their sparsity and approximate sparsity are polynomially related on a logarithmic scale.

3.3 Discussion on the Optimality of Our Results

Optimality of the bound in Theorem 1.1. Our result in Theorem 1.1 is optimal up to polynomial
factors in log n, as witnessed by the Orn function. The exact sparsity of Orn is 2n ´ 1, while its
approximate degree is Θp

?
nq [44], implying that its approximate sparsity is at most nOp

?
nq. Thus,

log sparpOrnq “ Θpnq and log ĄsparpOrnq “ Op
?
n log nq, showing that the upper bound in Theorem 1.1

is essentially tight up to polynomial factors in log n.
The dependence on n is also unavoidable. Consider the function Thrn

n´1 : t0, 1un Ñ t0, 1u, defined
as

Thrn
n´1pxq “ 1 iff |x| ě n ´ 1,

namely, the function evaluates to 1 if the input has at most one zero. Its exact sparsity is n ` 1, via

Thrn
n´1pxq “

ÿ

SĎrns

|S|“n´1

ź

iPS

xi ´ pn ´ 1q
ź

iPrns

xi,

while we show its approximate sparsity is only Oplog nq, implying that an additive Oplog nq or multi-

plicative O
´

logn
log logn

¯

factor is necessary in Theorem 1.1.

Claim 3.13. ĄsparpThrn
n´1q “ Oplog nq.

Proof. We begin by introducing a combinatorial structure that underlies our construction.
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Separating collections. Let ti, ju P
`

rns

2

˘

be an unordered pair of distinct indices. A set S Ď rns is

said to separate ti, ju if exactly one of i or j belongs to S. A pair pS1, S2q P 2rns ˆ2rns is said to separate
ti, ju if at least one of S1 or S2 separates it.

We say that a collection F Ď 2rns ˆ 2rns is δ-separating if, for every pair ti, ju P
`

rns

2

˘

, at least a
δ-fraction of the elements in F separate it. Formally,

@ti, ju P

ˆ

rns

2

˙

, |tpS1, S2q P F : pS1, S2q separates ti, juu| ě δ|F |.

We will show that there exists a 2{3-separating collection F of size Oplog nq. Assuming such a
collection exists, we describe a low-sparsity approximator for Thrn

n´1.

Approximator construction. Let F Ď 2rns ˆ2rns be a 2{3-separating collection of size Oplog nq. For
each pair pS1, S2q P F , define

fpS1,S2qpxq “

˜

1 ´ p1 ´
ź

iPS1

xiqp1 ´
ź

iRS1

xiq

¸

¨

˜

1 ´ p1 ´
ź

iPS2

xiqp1 ´
ź

iRS2

xiq

¸

.

Each function fpS1,S2q evaluates to 1 if the input x P t0, 1un contains at most one zero, and evaluates to
0 if, for some S P tS1, S2u, the input x contains zeros in both S and its complement. Define

gpxq :“
1

|F |

ÿ

pS1,S2qPF

fpS1,S2qpxq.

We claim that g is a 1{3-approximator for Thrn
n´1.

• If x is a 1-input, i.e., x has at most one zero, then for every S Ď rns, either
ś

iPS xi “ 1 or
ś

iRS xi “ 1. Thus, each term fpS1,S2qpxq “ 1, so gpxq “ 1.

• If x is a 0-input, i.e., it contains at least two zeros, let i, j P rns be distinct positions where
xi “ xj “ 0. For any pS1, S2q P F that separates ti, ju, one of S1 or S2 contains exactly one of i, j,
so one of the products in the corresponding fpS1,S2qpxq vanishes, and hence fpS1,S2qpxq “ 0. Since
F is 2{3-separating, at least 2{3 of the terms in the sum are 0, so gpxq ď 1{3.

Hence, g is a 1{3-approximator for Thrn
n´1. Each function fpS1,S2q has constant sparsity, and there

are Oplog nq such terms in the sum, so the total sparsity of g is Oplog nq.

Existence of separating collections. It remains to show that a 2{3-separating collection of size
Oplog nq exists. We do this via the probabilistic method.

Let t “ 216 lnpn2q “ Oplog nq, and sample F “ tpS
pkq

1 , S
pkq

2 qutk“1, where each set S
pkq
u Ď rns (for

u P t1, 2u) is formed by including each element independently with probability 1{2. We show that with
positive probability, F is 2{3-separating.

Fix a pair ti, ju P
`

rns

2

˘

, and let Xi be the indicator that pS
piq
1 , S

piq
2 q separates ti, ju. Each Xi has

expectation ErXis “ 3{4, so the sum
řt

i“1 Xi has expectation
3t
4 . By a Chernoff bound,

Pr

«

t
ÿ

i“1

Xi ď
2t

3

ff

ď e´t{216 ď
1

n2
.

Taking a union bound over all
`

n
2

˘

ă n2 pairs, the probability that F fails to be 2{3-separating for
some pair is less than 1{2. Hence, with positive probability, a 2{3-separating set F of size t “ Oplog nq

exists.
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Optimality of the bound in Theorem 1.5. The bound in Theorem 1.5 is also tight up to polynomial
factors in log n, again witnessed by Orn. Its exact ℓ1-norm is 2n ´ 1, while its approximate ℓ1-norm is
at most nOp

?
nq, as shown via a standard Chebyshev polynomial approximator.

Observation 3.14 (ĂwtpOrnq ď nOp
?
nq). Let Td denote the degree-d Chebyshev polynomial defined

recursively by T0pzq “ 1, T1pzq “ z, and Tdpzq “ 2zTd´1pzq ´ Td´2pzq for d ě 2. For d “ 2
?
n, define

ppzq “ 1 ´

Td

´

n´z
n´1

¯

Td

´

n
n´1

¯ , and qpx1, . . . , xnq “ p

˜

n
ÿ

i“1

xi

¸

.

Then q 1{3-approximates Orn (see [44, Example 2]). Furthermore, using the recursive definition, it is
easy to verify that the coefficients of Td are bounded in absolute value by 3d. Therefore, for d “ 2

?
n,

the ℓ1-norm of q is at most nOp
?
nq.

As with sparsity, the dependence on n in Theorem 1.5 cannot be avoided as well. For Thrn
n´1, the

exact ℓ1-norm is 2n ´ 1, while the approximator from Claim 3.13 has constant ℓ1-norm. Thus, a log n
factor—either additive or multiplicative—is necessary.

3.4 Implications for the And Query Model

The measure log sparpfq naturally connects to the And-query model—a variant of the standard decision
tree model where each query computes the And of an arbitrary subset of input bits. Just as polynomial
degree characterizes ordinary deterministic query complexity up to polynomial loss, Knop et al. [40]
showed that log sparpfq characterizes deterministic query complexity in the And-query model, up to
polynomial loss and polylogarithmic factors in n.

In the randomized setting, it is easy to see that log Ąsparpfq lower bounds randomized And-query
complexity. Let R^dt

pfq denote the randomized And-query complexity of f . The following is easy to
verify:

Claim 3.15 ( [39, Claim 3.20]). For every total Boolean function f : t0, 1un Ñ t0, 1u, we have

log Ąsparpfq “ OpR^dt
pfq ` log nq.

However, it was unknown whether it also characterizes the randomized query complexity up to
polynomial loss. Our results, combined with those of [40], establish that this is indeed the case.

Knop et al. showed that for any Boolean function f ,

D^dt
pfq “ O

`

plog sparpfqq5 ¨ log n
˘

,

which, when combined with Theorem 1.1, implies

R^dt
pfq ď D^dt

pfq “ O
`

plog Ąsparpfqq10 ¨ plog nq6
˘

.

A tighter bound can be obtained using a structural result of Knop et al., which relates deterministic
And-query complexity to sparsity and a combinatorial measure called monotone block sensitivity :

Definition 3.16 (Monotone Block Sensitivity). The monotone block sensitivity of a Boolean function
f : t0, 1un Ñ t0, 1u, denoted MBSpfq, is a variant of block sensitivity that only considers flipping 0’s
to 1’s. A subset B Ď rns is called a sensitive 0-block of f at input x if xi “ 0 for all i P B, and
fpxq ‰ fpx ‘ 1Bq, where x ‘ 1B denotes the input obtained by flipping all bits in B from 0 to 1. For an
input x P t0, 1un, let MBSpf, xq denote the maximum number of pairwise disjoint sensitive 0-blocks of f
at x. Then, MBSpfq “ maxxPt0,1un MBSpf, xq.

Claim 3.17 ( [40, Lemma 3.2, Claim 4.4, Lemma 4.6]). For any Boolean function f ,

D^dt
pfq “ O

`

plogMBSpfqq2 ¨ log sparpfq ¨ log n
˘

.
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Intuitively, a large value of MBSpfq indicates that a large-arity promise-Or function can be embed-
ded into f via suitable restrictions and identifications of variables.

To tighten our upper bound on R^dt
pfq, we now upper bound MBSpfq in terms of log Ąsparpfq. While

Knop et al. showed MBSpfq “ Opplog sparpfqq2q, the same proof idea gives a similar bound in terms of
approximate sparsity:

Claim 3.18. For any Boolean function f ,

MBSpfq “ O
`

plog Ąsparpfqq2
˘

.

Proof. Assume MBSpfq “ k ě 40; otherwise, the claim is trivial. Let this be witnessed by an input
z P t0, 1un and disjoint 0-blocks B1, . . . , Bk Ď rns, such that fpzq ‰ fpz ‘ 1Bi

q for all i P rks.
Define g : t0, 1uk Ñ t0, 1u by identifying variables within each Bi, fixing all others according to z, and

letting g be the resulting function. Then gp0kq “ fpzq and gpxq ‰ fpzq for all x with Hamming weight
1. Thus, g has sensitivity k at 0k. Since restrictions and identifications do not increase approximate
sparsity, we have Ąsparpgq ď Ąsparpfq, so it suffices to show Ąsparpgq is large.

Suppose, for contradiction, that g is 1{3-approximated by a polynomial Q of sparsity

sparpQq ď
1

10
¨ 2ℓ,

for ℓ “ c ¨
a

k{4, where c ą 0 is a constant to be fixed later. We will argue that such a polynomial cannot
exist, thereby proving the claim.

Define a distribution D over restrictions ρ : tx1, . . . , xku Ñ t0, 1, ˚u, where each variable is indepen-
dently set to 0 with probability 1{2 and left free with probability 1{2. This distribution satisfies the
following:

1. By a standard Chernoff bound,

Pr
ρ

r|ρ|˚ ď k{4s ď e´k{16 ď 0.1,

where the last inequality uses k ě 40. Thus, with probability at least 0.9, |ρ|˚ ě k{4.

2. For every ρ in the support of D, the restricted function g|ρ has sensitivity |ρ|˚ at the all-zero input.

Hence, by Theorem 4.19, Ądegpg|ρq ě c ¨
a

|ρ|˚.

3. For any monomial M over tx1, . . . , xku, we have PrρrdegpM |ρq ą 0s “ 2´ degpMq.

Now consider the restricted polynomial Q|ρ. By property (3) of D, the probability that any fixed
monomial in Q of degree at least ℓ survives is at most 2´ℓ, so by a union bound:

Pr
ρ

rdegpQ|ρq ě ℓs ď sparpQq ¨ 2´ℓ ď
1

10
.

By property (1) of D, with probability at least 0.9, ρ leaves at least k{4 variables free. Thus, with
probability at least 0.8, both of the following hold:

|ρ|˚ ě k{4 and degpQ|ρq ă ℓ.

Fix such a restriction ρ. Then Q|ρ is a polynomial of degree less than ℓ that 1{3-approximates f |ρ.

Hence, Ądegpf |ρq ă ℓ “ c ¨
a

k{4 ď c ¨
a

|ρ|˚, contradicting property (2) of D. Hence, our assumption was
false, and the claim follows.

Theorem 1.4 (Restated). For every total Boolean function f : t0, 1un Ñ t0, 1u, the following holds:

ΩplogpĄsparpfqq ´ log nq
p1q
“ R^dt

pfq ď D^dt
pfq

p2q
“ O

`

plog Ąsparpfqq6 ¨ log n
˘

.

Proof. The bound in (1) follows from Claim 3.15. For (2), combining Claim 3.17, Claim 3.18, and
Theorem 1.1, we get:

D^dt
pfq “ O

`

plogMBSpfqq2 ¨ log sparpfq ¨ log n
˘

“ O
`

plog Ąsparpfqq6 ¨ log n
˘

.
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This parallels the classical setting, where deterministic and randomized query complexity, degree,
and approximate degree are all polynomially related. In the And-query model, log sparpfq plays the role
of degree, while log Ąsparpfq plays the role of approximate degree. Combined with the results of [40], our
work shows that deterministic and randomizedAnd-query complexities, log sparsity, and log approximate
sparsity are all polynomially related—up to polylogarithmic loss factors.

4 Exact vs Approximate Generalized Representations

In this section, we present another application of our adaptive restriction technique. In the previous
section, we showed that approximate polynomial representations of Boolean functions do not offer sub-
stantially more succinct representations than exact ones. Here, we study an analogous question in the
setting of generalized polynomials:

Does allowing approximation lead to significantly sparser representations when using gener-
alized polynomials?

We show that formonotone functions, the answer is negative: their exact and approximate generalized
sparsity and ℓ1-norm are polynomially related on the logarithmic scale.

Unlike our result for standard polynomials, where we worked directly with polynomials exhibiting
large exact sparsity or ℓ1-norm, it is unclear how to apply similar reasoning to generalized polynomials. A
key obstacle is the non-uniqueness of generalized representations. For example, Ornpx1, . . . , xnq can be
expressed as

ř

H‰SĎrnsp´1q|S|
ś

iPS xi, which contains 2n ´ 1 generalized monomials, or equivalently as

1´
śn

i“1p1´xiq, which involves only 2 generalized monomials. This non-uniqueness makes it difficult to
reason directly via generalized complexity measures. Therefore, our approach here proceeds differently:
we identify a combinatorial structure that bridges the gap between exact and approximate generalized
measures. Our argument proceeds in two steps:

• First, we show that if a monotone function f has large exact generalized sparsity or ℓ1-norm, then
it must have either a large set of maxterms or a large set of minterms.

• Second, we show that the existence of such a large set—either maxterms or minterms—implies
large approximate generalized sparsity and large approximate generalized ℓ1-norm.

Together, these implications show that for monotone functions, the exact and approximate generalized
sparsity and ℓ1-norm cannot be too far apart.

The first implication is straightforward and follows from existing results. The second implication
is our main technical contribution and is where we apply our adaptive restriction technique. In fact,
we prove a more general result: we introduce a combinatorial notion called separating set—a structural
property of a set of inputs with respect to a function f—and show that any sufficiently large separating
set necessitates high approximate generalized sparsity and ℓ1-norm. The case of a large set of minterms
(or maxterms) is captured as a special instance of this framework.

Organization of this section. In Section 4.1, we present the necessary preliminaries: we define
generalized polynomials and their associated complexity measures, and recall some basic properties
of monotone functions. In Section 4.2, we define the notion of separating set. In Section 4.3, we
establish that the existence of a separating set implies large approximate generalized sparsity and ℓ1-
norm. In Section 4.4, we put things together to conclude that the exact and approximate generalized
measures are polynomially related on the logarithmic scale for monotone functions. Finally, in Section 4.5,
we discuss implications for the decision tree size in the ordinary query model.

4.1 Preliminaries

Generalized Polynomials. In standard polynomial representations, even simple functions likeOrn “

1 ´
śn

i“1p1 ´ xiq can have high sparsity: the standard expansion of Orn contains 2n ´ 1 monomials.
To address this and allow for more compact representations, we consider generalized polynomials, which
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extend standard polynomials by introducing formal complements x̄i for each variable xi. For example,
Orn can be written more succinctly as

Ornpx1, . . . , xnq “ 1 ´

n
ź

i“1

x̄i,

where each x̄i acts as a stand-in for 1 ´ xi. This representation uses only two monomials, offering
exponential savings in sparsity.

We now define generalized polynomials formally.

Definition 4.1 (Generalized Polynomial). A generalized polynomial is a polynomial over the ring

Rrx1, . . . , xn, x̄1, . . . , x̄ns{I,

where x̄i denotes the formal complement of xi, and I is the ideal generated by the relations:

x2
i ´ xi “ 0 and xi ` x̄i ´ 1 “ 0 for all i P rns.

Definition 4.2 (Generalized Representation of Boolean Functions). A generalized polynomial Q P

Rrx1, . . . , xn, x̄1, . . . , x̄ns{I represents a function f : t0, 1un Ñ R if Qpx, x̄q “ fpxq for all x P t0, 1un,
where x̄i “ 1 ´ xi.

Definition 4.3 (Generalized Complexity Measures). As in the standard case, one can define the degree,
sparsity, and ℓ1-norm of a generalized polynomial. For a function f : t0, 1un Ñ R, we define gdegpfq,
gsparpfq, and gwtpfq as the minimum degree, sparsity, and ℓ1-norm, respectively, over all generalized
polynomials that represent f exactly.

Analogously, the approximate measures Ągdegpfq, Ćgsparpfq, and Ągwtpfq denote the minimum degree,
sparsity, and ℓ1-norm among all generalized polynomials that approximate f pointwise within error 1{3.

Remark 4.4. Using generalized polynomials offers no advantage in terms of degree. Indeed, each dual
variable x̄i can be replaced by 1 ´ xi, yielding a standard polynomial of the same degree. Therefore,

degpfq “ gdegpfq and Ădegpfq “ Ągdegpfq. Since the degree measures coincide, we will simply write degpfq

and Ădegpfq and avoid using the generalized notation gdegpfq and Ągdegpfq.
On the other hand, generalized representations are not unique and can be exponentially more succinct.

As discussed above, Orn has a generalized representation with just two monomials, while its standard
representation requires 2n ´ 1.

Monotone Functions. For x, y P t0, 1un, we write x ď y if xi ď yi for all i P rns. A Boolean function
f : t0, 1un Ñ t0, 1u is monotone if x ď y implies fpxq ď fpyq.

Definition 4.5 (Maxterms, Minterms, and Critical Inputs). Let f be a monotone Boolean function.

• A maxterm of f is a minimal set S Ď rns such that setting all variables in S to 0 forces f to
output 0. The associated critical 0-input is the input xS P t0, 1un with xi “ 0 for i P S and xi “ 1
otherwise. Let M0pfq “ txS | S is a maxterm of fu denote the set of all such critical 0-inputs.

• A minterm of f is a minimal set S Ď rns such that setting all variables in S to 1 forces f to output
1. The associated critical 1-input is the input xS with xi “ 1 for i P S and xi “ 0 otherwise. Let
M1pfq “ txS | S is a minterm of fu denote the set of all such critical 1-inputs.

Observation 4.6. For any monotone function f , every x P M1pfq is sensitive on all 1-bits: flipping
any 1 to 0 changes fpxq from 1 to 0. Similarly, every x P M0pfq is sensitive on all 0-bits.

The following result of Ehrenfeucht and Haussler [26, Lemmas 1 and 6] implies that if a monotone
Boolean function has large exact generalized sparsity or ℓ1-norm, then the number of minterms (i.e.,
critical 1-inputs) or maxterms (i.e., critical 0-inputs) must be large.

Theorem 4.7 (Ehrenfeucht and Haussler [26]). For every monotone Boolean function f : t0, 1un Ñ

t0, 1u, the following hold:
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(a) log gsparpfq “ O
`

log2 Mpfq ¨ log n
˘

,

(b) log gwtpfq “ O
`

log2 Mpfq ¨ log n
˘

,

where Mpfq “ |M0pfq| ` |M1pfq|.

Remark 4.8. Ehrenfeucht and Haussler [26] proved a more general result: for any Boolean function f ,
they showed

logDSizedtpfq “ Oplog2 Coverpfq ¨ log nq,

where DSizedtpfq is the size (number of leaves) of the smallest ordinary decision tree computing f , and
Coverpfq is the minimum number of monochromatic subcubes under f that cover t0, 1un.

For monotone functions, the minimal subcube cover corresponds exactly to subcubes defined by max-
terms and minterms, so Coverpfq “ Mpfq. Hence, the above bound specializes to:

logDSizedtpfq “ Oplog2 Mpfq ¨ log nq.

Moreover, any decision tree of size s and depth d computing a function f can be converted into a
generalized polynomial of degree at most d, and sparsity and ℓ1-norm at most s, that also computes f .
Hence,

gsparpfq ď DSizedtpfq and gwtpfq ď DSizedtpfq.

and the bound in Theorem 4.7 follows.

4.2 Separating Sets of Inputs

For any B Ď rns, let 1B P t0, 1un denote the string with 1s in coordinates indexed by B and 0s elsewhere.
For x P t0, 1un and i P rns, we say that i is a sensitive coordinate of f at x if fpx ‘ 1tiuq ‰ fpxq.
Let Spf, xq Ď rns denote the set of all such coordinates. The sensitivity of f is defined as spfq “

maxxPt0,1un |Spf, xq|.
We now define the notion of a separating set of inputs for a Boolean function f . Informally, its a

collections of inputs that differ on their sensitive coordinates. Formally,

Definition 4.9 (Separating Set of Inputs). Let f : t0, 1un Ñ t0, 1u be a Boolean function. A set
F Ď t0, 1un is said to be separating (with respect to f) if for every distinct pair x, y P F , the projections
of x and y to the union of their sensitive coordinates differ; that is, letting B “ Spf, xq Y Spf, yq, we
require x|B ‰ y|B. We refer to this condition as the separation property.

We record some basic properties of separating sets that will be used later. First, the separation
property is preserved under restrictions.

Claim 4.10 (Closure under restriction). Let F Ď t0, 1un be a separating set with respect to f , and let ρ
be any restriction. Then the restricted set F |ρ is separating with respect to the restricted function f |ρ.

Proof. Suppose not. Then there exist x, y P F |ρ such that

x|B “ y|B for B :“ Spf |ρ, xq Y Spf |ρ, yq.

Let x1, y1 P F be extensions of x, y consistent with ρ. Then

x1|B1 “ y1|B1 for B1 :“ Spf, x1q Y Spf, y1q Ď B Y SetVarspρq,

contradicting the the separation property of F .

The separation property also ensures that a nontrivial fraction of inputs (« 1{n) in any separating
set share a common sensitive coordinate:

Claim 4.11. Let F Ď t0, 1un be a separating set for f with |F | ě 2. Then there exists an index i P rns

and a subset F 1 Ď F such that i P Spf, xq for every x P F 1, and |F 1| ě |F |{p2nq.
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Proof. If Spf, xq ‰ H for all x P F , then by averaging, some i P rns appears in Spf, xq for at least |F |{n
inputs; let F 1 :“ tx P F : i P Spf, xqu.

Otherwise, let x P F have Spf, xq “ H. Separation property then forces every y P F ztxu to satisfy
Spf, yq ‰ H. Averaging over F ztxu, some i P rns appears in Spf, yq for at least p|F | ´ 1q{n ě |F |{p2nq

inputs. Let F 1 :“ ty P F ztxu : i P Spf, yqu.

We next observe that set of critical 1-inputs M1pfq and the set of critical 0-inputs M0pfq arising from
monotone functions are separating:

Claim 4.12. Let f : t0, 1un Ñ t0, 1u be monotone. Then both the sets of critical 1-inputs M1pfq and
critical 0-inputs M0pfq are separating.

Proof. Consider distinct inputs x, y P M1pfq. By the definition of critical 1-inputs, we have Spf, xq “

ti P rns : xi “ 1u, and Spf, yq “ ti P rns : yi “ 1u. Since x ‰ y, their sets of 1s differ, so there exists
i P Spf, xqYSpf, yq such that xi ‰ yi. Hence, x|B ‰ y|B for B “ Spf, xqYSpf, yq, as required. A similar
argument shows that M0pfq is also separating.

Combining this with Theorem 4.7, we conclude that any monotone function with large exact gen-
eralized sparsity or exact ℓ1-norm must have a large separating set. Therefore, to relate the exact
and approximate generalized sparsity and ℓ1-norm of monotone functions, it suffices to show that large
separating sets lead to large approximate sparsity and ℓ1-norm. We establish this in the next section.

4.3 Large Separating Set of Inputs Implies Large Approximate Generalized
Sparsity and ℓ1-norm

In this subsection, we show that the existence of a large separating set for a function f implies that f
must have large approximate generalized sparsity and ℓ1-norm. We begin with an outline of the proof for
the sparsity case; a similar argument also yields a lower bound on the approximate generalized ℓ1-norm.

Proof Outline. The proof closely follows the template used earlier to relate sparsity and approximate
sparsity for ordinary polynomials, with a key variation. This may be viewed as a second application of
that general proof strategy.

Given a large separating set F with respect to a function f , we sample a carefully designed random
restriction ρ, as described in Algorithm 2, which satisfies the following key properties:

1. With high probability, ρ leaves a significant number of variables free—specifically, ℓ “ Ωplog |F |{ log nq.

2. The restricted function f |ρ has full sensitivity; that is, spf |ρq “ ℓ.

3. For any generalized monomial, the probability that its degree under the restriction ρ exceeds t is
at most 2´t.

These properties lead us to conclude that any generalized polynomial approximating f must have
large sparsity. Suppose, for contradiction, that there exists a polynomial Q that 1{3-approximates

f and has generalized sparsity at most 2c
?
ℓ, for some constant c. Then, using property (3) and a

standard probabilistic argument, we can find a restriction ρ such that all generalized monomials of
degree greater than c

?
ℓ are eliminated. Consequently, the restricted polynomial Q|ρ has degree at

most c
?
ℓ and approximate f |ρ. However, property (2) tells us that f |ρ has sensitivity ℓ, and by the

known relationship between sensitivity and approximate degree [44], this implies that any approximating
polynomial for f |ρ must have degree at least Ωp

?
ℓq. This contradicts the assumption that Q|ρ has degree

c
?
ℓ. Thus, any approximating generalized polynomial for f must have sparsity at least 2Ωp

?
ℓq, where

ℓ “ Ωplog |F |{ log nq.
Let us compare this restriction-based argument with the one from the previous section (Algorithm 1).

Property (1) remains the same in spirit—the number of free variables is again ℓ “ log |F |{ log n, as
opposed to log sparpfq{ log n in the earlier case. Property (2) differs: previously, the restricted function
had full degree, while here it has full sensitivity. However, since we used large degree previously only
to infer large approximate degree, we can make a similar inference here using the known connection
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between sensitivity and approximate degree. Hence, the role of property (2) in the argument remains
essentially unchanged.

Property (3), on the other hand, is stronger than before. In the earlier argument, we could only reduce
the degree of ordinary monomials, whereas here we are able to reduce the degree of even generalized
monomials. This strengthens the conclusion of the argument.

As is evident, the overall structure of the argument closely mirrors the earlier one, with suitable
adjustments to handle generalized monomials.

The following definition abstracts the essential properties of the random restriction process.

Definition 4.13 (ℓ-Variable Max-Sensitivity Distribution). Let f : t0, 1un Ñ t0, 1u, and let D be a
distribution over restrictions ρ : tx1, . . . , xnu Ñ t0, 1, ˚u. We say that D is an ℓ-variable max-sensitivity
distribution for f if:

1. With probability at least 0.9, ρ leaves at least ℓ variables free.

2. For every ρ in the support of D, we have spf |ρq “ |ρ|˚.

3. For any generalized monomial M and any t P N, Prρ„DrdegpM |ρq ě ts ď 2´t.

We will show that a large separating set F implies the existence of such a distribution, which in turn
implies that any generalized polynomial approximating f must have large sparsity and ℓ1-norm.

Algorithm 2 MaxSensitivityRestriction

1: Input: A set V Ď tx1, . . . , xnu; f : t0, 1uV Ñ t0, 1u; a nonempty set F Ď t0, 1uV separating w.r.t f
2: Output: A restriction ρ : V Ñ t0, 1, ˚u.
3: if |F | ď 2 then
4: Let w be an input in F
5: For each xi P V , set ρpxiq Ð wi

6: else
7: if there exists xi P V , u P t0, 1u such that |F |xi“u| ě

`

1 ´ 1
n

˘

¨ |F | then
8: ρ1 Ð MaxSensitivityRestrictionpV ztxiu, f |xi“u, F |xi“uq

9: Set ρpxiq Ð u, and for all xj P V ztxiu, set ρpxjq Ð ρ1pxjq

10: else
11: Choose xi P V and u P t0, 1u such that |tw P F | i P Spf, wq and wi “ uu| ě

|F |

4n
12: With probability 1{3:
13: ρ0 Ð MaxSensitivityRestrictionpV ztxiu, f |xi“0, F |xi“0q

14: Set ρpxiq Ð 0, and for all xj P V ztxiu, set ρpxjq Ð ρ0pxjq

15: With probability 1{3:
16: ρ1 Ð MaxSensitivityRestrictionpV ztxiu, f |xi“1, F |xi“1q

17: Set ρpxiq Ð 1, and for all xj P V ztxiu, set ρpxjq Ð ρ1pxjq

18: Otherwise:
19: F 1 Ð tw P F | i P Spf, wqu

20: ρ˚ Ð MaxSensitivityRestrictionpV ztxiu, f |xi“u, F
1|xi“uq

21: Set ρpxiq Ð ˚, and for all xj P V ztxiu, set ρpxjq Ð ρ˚pxjq

22: end if
23: end if
24: return ρ

Properties of the Restriction Process. Algorithm 2 describes how to sample random restrictions
for a given separating set F w.r.t f . We will show that the resulting distribution over restrictions is

ℓ-variable max-sesitivity for f , where ℓ “ Ω
´

log |F |

logn

¯

.

We begin with some observations concerning the validity of Algorithm 2. The step at line 11, which
selects an xi P V , is justified by the following observation.

Observation 4.14. By Claim 4.11, at line 11, Algorithm 2 is guaranteed to find xi P V such that

|tw P F | i P Spf, wqu| ě
|F |

2n
.

23



Moreover, choosing u P t0, 1u to be the more frequent value of the i-th coordinate among these inputs
ensures that

|tw P F | i P Spf, wq and wi “ uu| ě
|F |

4n
.

We next address the correctness of the recursive structure. Since the separation property is pre-
served under restrictions, the recursive calls made on lines 8, 13, 16, and 20 satisfy the preconditions of
Algorithm 2.

We now observe a key structural property of the restriction ρ returned by the algorithm, which shows
property (2) of the max-sensitivity distribution.

Claim 4.15. Let ρ be the final restriction returned by Algorithm 2 on input pV, f, F q. Then there exists
an input w P F such that:

@xi P SetVarspρq, ρpxiq “ wi, and @xi P FreeVarspρq, i P Spf, wq.

Proof. We prove the claim by induction on the size of the V set, which reduces with each recursive call.

Base case (|V | “ 1). In this case, the input set F must have size at most 2. The algorithm simply fixes
the lone variable in V to either 0 or 1 based on some w P F , and returns the corresponding restriction.
The claim then holds trivially for this choice of w.

Inductive step (|V | ą 1). We consider the possible return paths in the algorithm depending on the
branching conditions and the randomness involved (lines 3, 7, 12, 15, and 18):

1. Case |F | ď 2: This is similar to the base case. The algorithm returns a restriction that sets all
variables in V to match some w P F , and the claim follows directly.

2. Case: branch taken via line 7, 12, or 15. In these branches, the algorithm chooses some
xi P V and u P t0, 1u, and returns a restriction of the form ρ “ ρ1 Y txi Ð uu, where

ρ1 Ð MaxSensitivityRestrictionpV ztxiu, f |xi“u, F |xi“uq.

By the inductive hypothesis applied to ρ1, there exists w1 P F |xi“u such that

@xj P SetVarspρ1q, ρ1pxjq “ w1
j , and @xj P FreeVarspρ1q, j P Spf |xi“u, w

1q.

Let w P F be an extension of w1 with xi “ u. Then ρpxjq “ wj for all set variables xj , and for all
free variables xj , we have j P Spf, wq since j P Spf |xi“u, w

1q. Thus, the claim holds for this w.

3. Case: branch taken via line 18. In this case, for xi P V and u P t0, 1u selected in line 10, the
ρ returned is ρ˚ Y txi Ð ˚u where

ρ˚ Ð MaxSensitivityRestrictionpV ztxiu, f |xi“u, F
1|xi“uq.

for F 1 Ð tw P F | i P Spf, wqu. By the inductive hypothesis applied to ρ˚, there exists w
1 P F 1|xi“u

such that

@xj P SetVarspρ˚q, ρ˚pxjq “ w1
j , and @xj P FreeVarspρ˚q, j P Spf |xi“u, w

1q.

Let w P F 1 be an extension of w1 with xi “ u. Since i P Spf, wq, by definition of F 1, and since xi

is free in ρ, the required conditions are satisfied by w for the final restriction ρ “ ρ˚ Y txi Ð ˚u.

This completes the inductive proof.

As a consequence, for any restriction ρ in the support of the distribution induced by Algorithm 2, the
restricted function f |ρ has sensitivity exactly |ρ|˚, thereby satisfying property (2) of the max-sensitivity
distribution.

We next show that the restriction ρ produced by Algorithm 2 leaves a significant number of variables
free, establishing property (1) of the max-sensitivity distribution. The argument closely mirrors that of
the earlier restriction algorithm.

Algorithm 2 proceeds recursively and follows one of the following three branches:
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• If |F | ď 2, the algorithm terminates and returns ρ immediately (line 3).

• If the condition on line 7 is satisfied, the algorithm makes a single recursive call (line 8).

• Otherwise (line 10), the algorithm selects one of three recursive calls (lines 13, 16, 20) uniformly
at random, each with probability 1{3.

The recursion continues as long as |F | ą 2, and halts when |F | ď 2, at which point the algorithm
backtracks to construct the final restriction.

As in earlier analyses, we classify recursive calls as either active (when the condition on line 10 holds)
or passive (when the condition on line 7 holds). We argue that a substantial fraction of the calls must be
active, and in each such call, a variable is left free with probability 1{3. Moreover, these choices are made
independently across calls. Therefore, by standard concentration bounds, the number of free variables
in the final restriction is close to its expectation, which is 1/3 the number of active calls. This leads to
the following claim:

Claim 4.16. Let pV, f, F q satisfy the input requirements of Algorithm 2, and suppose that |F | ě 20p4nq60.
Then, with probability at least 0.9, the restriction ρ “ MaxSensitivityRestrictionpV, f, F q produced

by Algorithm 2 leaves at least Ω
´

log |F |

logn

¯

variables free.

Proof. We begin by showing that every execution of the algorithm encounters a substantial number of
active recursive calls. Suppose the algorithm makes t recursive calls in total, of which ℓ are active. Since
the size of V decreases by 1 with each recursive call, and the algorithm halts when |V | “ 1 (which
corresponds to |F | ď 2), we have t ď n.

We observe how the size of the separating set F evolves during recursion:

• In a passive call (i.e., when line 7 is satisfied), the size of F decreases by at most a factor of 1´ 1
n .

• In an active call (i.e., when line 10 is satisfied), the reduction in the size of F depends on the
specific recursive branch taken:

– For recursive calls on lines 13 and 16, the size of F decreases by at most a factor of 1{n, owing
to the balancedness condition enforced by line 10.

– For the recursive call on line 20, the size of F decreases by at most a factor of 1{p4nq, due to
the choice of index i in line 11 (see Observation 4.14).

Therefore, in any active call, the size of F decreases by at most a factor of 1{p4nq, regardless of
which of the three recursive branches is chosen.

Since the algorithm halts and backtracks when the |F | ď 2 , we obtain the following inequality:

2 ě p1 ´ 1{nqt´ℓ ¨ p1{4nqℓ ¨ |F |

ě p1 ´ 1{nqn ¨ p1{4nqℓ ¨ |F | (since t ´ ℓ ď n)

ě
1

10
¨

ˆ

1

4n

˙ℓ

¨ |F | (using p1 ´ 1{nqn ě 1{10 for n ě 2).

Taking logarithms and rearranging, we obtain:

ℓ ě
logp|F |{20q

logp4nq
.

Define ℓ˚ :“ logp|F |{20q

logp4nq
. Thus, every run of the algorithm contains at least ℓ˚ active recursive calls.

Let X1, X2, . . . , Xℓ˚ be indicator random variables, where Xi “ 1 if the variable chosen in the i-
th active call is left free (which occurs with probability 1{3), and 0 otherwise. These variables are

independent by construction, and E
”

řℓ˚

i“1 Xi

ı

“ ℓ˚

3 . By a standard Chernoff bound, we get:

Pr

¨

˝

ℓ˚
ÿ

i“1

Xi ď
ℓ˚

6

˛

‚ď e´ℓ˚
{24 ď 0.1,
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where the last inequality follows from the assumption |F | ě 20p4nq60.

Since the number of variables left free in the final restriction is at least
řℓ˚

i“1 Xi, we conclude that

with probability at least 0.9, the algorithm leaves at least ℓ˚{6 “ Ω
´

log |F |

logn

¯

variables free.

Finally, we establish property (3) of the max-sensitivity distribution, showing that for any generalized
monomial M , the degree of M |ρ under the sampled restriction ρ exhibits exponential tail decay.

Claim 4.17. Let ρ “ MaxSensitivityRestrictionpV, f, F q be the restriction returned by Algorithm 1.
Then, for any generalized monomial M with VarspMq Ď txi | xi P V u, and any t P N, we have:

Pr
ρ

pdegpM |ρq ě tq ď 2´t.

Proof. We prove the claim by induction on |V |.

Base case (|V | “ 1). Here, we must have |F | ď 2, the restriction ρ returned by the algorithm sets all
variables in V to either 0 or 1, based on some w P F . Thus, any monomial M becomes a constant under
ρ. The claim follows.

Inductive step (|V | ą 1). We consider the behavior of the algorithm based on the three possible
branches (lines 3, 7, and 10):

1. Case |F | ď 2: Similar to the base case, ρ returned by the algorithm sets all variables in V to
either 0 or 1, based on some w P F , and hence degpM |ρq “ 0.

2. Case where the “if” condition (line 7) is satisfied: Suppose the condition is satisfied for some
xi P V and some value u P t0, 1u. The algorithm then returns the restriction ρ “ ρ1 Y txi Ð uu,
where ρ1 is obtained from a recursive call with a strictly smaller support set. By the inductive
hypothesis applied to ρ1, for any generalized monomial M , we have:

Pr
ρ

pdegpM |ρq ě tq ď Pr
ρ1

pdegpM |ρ1 q ě tq ď 2´t.

3. Case: the else clause at line 9 is executed. Let xi P V be the variable selected in line 10, and
let ρ0, ρ1, ρ˚ be restrictions sampled from the recursive calls at lines 13, 16, and 20, respectively.
For a generalized monomial M , we consider two cases:

• M does not contain xi or x̄i: In this case, the monomial is unaffected by the assignment
to xi. By applying induction hypothesis, we have:

Pr
ρ

pdegpM |ρq ě tq “ 1
3 Prρ0

pdegpM |ρ0
q ě tq` 1

3 Prρ1

pdegpM |ρ1
q ě tq` 1

3 Prρ˚

pdegpM |ρ˚
q ě tq ď 2´t.

• M contains xi or x̄i: Without loss of generality, suppose xi P M (the case x̄i P M is
analogous). Let M 1 “ M{xi. Then:

Pr
ρ

pdegpM |ρq ě tq “
1

3
¨ 0 `

1

3
Pr
ρ1

pdegpM 1|ρ1
q ě tq `

1

3
Pr
ρ˚

pdegpM 1|ρ˚
q ě t ´ 1q,

where the first term is zero because setting xi Ð 0 kills the monomial. Using the inductive
hypothesis:

Pr
ρ

pdegpM |ρq ě tq ď
1

3
¨ 2´t `

1

3
¨ 2´pt´1q “ 2´t.

This completes the inductive proof.

Applying Algorithm 2 to a separating set F for f , and combining Claim 4.15, Claim 4.16, and
Claim 4.17, we conclude that the existence of a large separating set implies the existence of a max-
sensitivity distribution. This yields the following theorem.

Theorem 4.18. Let f : t0, 1un Ñ t0, 1u be a Boolean function, and let F Ď t0, 1un be a separating
set for f with |F | ě 20p4nq60. Then there exists an ℓ-variable max-sensitivity distribution for f , where

ℓ “ Ω
´

log |F |

logn

¯

.
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Putting Everything Together. We first show that the existence of a max-sensitivity distribution
forces any generalized polynomial approximating f to have large sparsity and ℓ1-norm. Combined with
Theorem 4.18, this implies that a large separating set yields large approximate generalized sparsity and
large approximate generalized ℓ1-norm.

We will use the following classical result of Nisan and Szegedy [44], which relates the approximate
degree of a Boolean function to its sensitivity.

Theorem 4.19 (Nisan and Szegedy [44]). Let f : t0, 1un Ñ t0, 1u be a Boolean function. Then,

Ădegpfq ě

c

spfq

6
.

Claim 4.20. Let f : t0, 1un Ñ t0, 1u, and suppose there exists an ℓ-variable max-sensitivity distribution
D for f . Then,

log Ćgsparpfq “ Ωp
?
ℓq.

Proof. Let D be an ℓ-variable max-sensitvity distribution for f . Suppose, for contradiction, that the
claimed bound does not hold. Let k “

a

ℓ{6 and assume there exists a real generalized polynomial Q
that 1{3-approximates f and has sparsity

sparpQq ď
1

10
¨ 2k.

We will argue that such a polynomial cannot exist, thereby proving the claim.
Sample a restriction ρ „ D, and consider the restricted polynomial Q|ρ. By property (3) of D, the

probability that any fixed generalized monomial in Q has degree at least k under ρ is at most 2´k.
Applying a union bound over all monomials in Q, we have

Pr
ρ

pdegpQ|ρq ě kq ď sparpQq ¨ 2´k ď
1

10
.

By property (1) of D, with probability at least 0.9, ρ leaves at least ℓ variables free. Thus, with
probability at least 0.8, both of the following hold:

|ρ|˚ ě ℓ and degpQ|ρq ă k.

Fix such a restriction ρ. Then Q|ρ is a polynomial of degree less than k that 1{3-approximates f |ρ. By
property (2) of D, we have:

spf |ρq “ |ρ|˚ ě ℓ “ 6 ¨ k2 ą 6 ¨ pdegpQ|ρqq
2

ě 6 ¨ Ądegpf |ρq2.

This contradicts the relationship between approximate degree and sensitivity Theorem 4.19. Hence, our
assumption was false, and the claim follows.

Combining the above with Grolmusz’s theorem [29,52] (see Remark 3.11), which gives

logČgsparpfq “ O
´

log Ągwtpfq ` log n
¯

,

we also obtain a lower bound on the approximate generalized ℓ1-norm from the existence of a max-
sensitivity distribution. While this approach incurs an extra additive log n loss compared to the bound
above, it can be avoided by directly arguing as in Claim 3.9. Since the proof involves no new ideas, we
omit the details for brevity and state the resulting optimal bound:

Claim 4.21. Let f : t0, 1un Ñ t0, 1u, and suppose there exists an ℓ-variable max-sensitivity distribution
D for f . Then,

logĄgwtpfq “ Ωp
?
ℓq.

Combining Theorem 4.18 with Claim 4.20 and Claim 4.21, we obtain the following consequences of
the existence of a large separating set:
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Theorem 4.22. Let f : t0, 1un Ñ t0, 1u be a Boolean function, and let F Ď t0, 1un be a separating set
with respect to f . Then,

log Ćgsparpfq “ Ω

˜

ˆ

log |F |

log n

˙1{2
¸

.

Theorem 4.23. Let f : t0, 1un Ñ t0, 1u be a Boolean function, and let F Ď t0, 1un be a separating set
with respect to f . Then,

logĄgwtpfq “ Ω

˜

ˆ

log |F |

log n

˙1{2
¸

.

4.4 Exact vs Approximate Generalized Measures for Monotone Functions

We now relate the generalized sparsity and generalized ℓ1-norm of a monotone function to their ap-
proximate counterparts. This is done by combining Theorem 4.7 with the results from the previous
section.

Theorem 1.8 (Restated). For every monotone Boolean function f : t0, 1un Ñ t0, 1u, the following hold:

(a) log gsparpfq “ O
`

plog Ćgsparpfqq4 ¨ plog nq3
˘

,

(b) log gwtpfq “ O
´

plogĄgwtpfqq4 ¨ plog nq3
¯

.

Proof. From Theorem 4.7, we have:

logMpfq “ Ω

˜

d

log gsparpfq

log n

¸

and logMpfq “ Ω

˜

d

log gwtpfq

log n

¸

.

This implies that either the number of critical 1-inputs or the number of critical 0-inputs is large. Without
loss of generality, assume |M1pfq| ě Mpfq{2.

Since both the sets of critical 1-inputs and critical 0-inputs are separating with respect to f , we can
apply Theorem 4.22 and Theorem 4.23 to the set M1pfq, yielding:

log gsparpfq “ O
`

log2 |M1pfq| ¨ log n
˘

“ O
`

plogČgsparpfqq4 ¨ plog nq3
˘

,

log gwtpfq “ O
`

log2 |M1pfq| ¨ log n
˘

“ O
´

plog Ągwtpfqq4 ¨ plog nq3
¯

,

as claimed.

4.5 Implications for Decision Tree Size in the Ordinary Query Model

The measures log gsparpfq and log gwtpfq are related to the decision tree size logDSizedtpfq in the
ordinary query model, as noted in Remark 4.8. Specifically, any decision tree of size s computing f can
be converted into a generalized polynomial for f with sparsity and ℓ1-norm at most s.

For monotone functions, applying our result Theorem 1.8 together with Remark 4.8, we obtain:

Corollary 1.9 (Restated). For every monotone Boolean function f : t0, 1un Ñ t0, 1u, the following
hold:

(a) ΩplogpĆgsparpfqq ´ log nq
p1q
“ logRSizedtpfq ď logDSizedtpfq

p2q
“ O

`

plog Ćgsparpfqq4 ¨ plog nq3
˘

.

(b) ΩplogpĄgwtpfqqq
p1q
“ logRSizedtpfq ď logDSizedtpfq

p2q
“ O

´

plogĄgwtpfqq4 ¨ plog nq3
¯

.

Proof. For (1) of both (a) and (b), assume RSizedtpfq “ s, i.e., there exists a distribution D over decision
trees, each of size at most s, such that for every input x P t0, 1un, sampling a decision tree T from D
and evaluating it on x yields:

Pr
T„D

rT pxq “ fpxqs ě 2{3.
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By a standard Chernoff bound argument, we can assume D is supported on Opnq trees, as such a
distribution always exists. Each decision tree in the support of D can be converted into a generalized
polynomial of sparsity and ℓ1-norm at most s that agrees with the tree. Taking a convex combination of
these polynomials (weighted by D) gives a generalized polynomial that 1{3-approximates f with sparsity
Opsnq and ℓ1-norm ď s, implying Čgsparpfq “ Opsnq and Ągwtpfq ď s. Taking logarithms gives the desired
bound (1) of (a) and (b).

For (2), we apply Theorem 1.8 together with Remark 4.8, obtaining:

logDSizedtpfq “ Oplog2 Mpfq ¨ log nq “ O
`

plogČgsparpfqq4 ¨ plog nq3
˘

,

logDSizedtpfq “ Oplog2 Mpfq ¨ log nq “ O
´

plog Ągwtpfqq4 ¨ plog nq3
¯

.

Thus, for monotone functions, the complexity measures gsparpfq,Čgsparpfq, gwtpfq, Ągwtpfq, DSizedtpfq,
and RSizedtpfq are all polynomially related on the logarithmic scale, up to polylogarithmic factors in n.
In contrast, such a relationship fails for general functions; see Remark 1.10. Specifically, there exists a
function f on n bits with gsparpfq “ Op

?
nq but RSizedtpfq “ 2Ωp

?
nq.
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