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Abstract

We show that the perfect matching function on n-vertex graphs requires monotone circuits of
size 2n

Ω(1)

. This improves on the nΩ(logn) lower bound of Razborov (1985). Our proof uses the
standard approximation method together with a new sunflower lemma for matchings.

1 Introduction

A sobering lesson learned already in the 1980s [Raz85a, Tar88] is that general boolean circuits (using
gates ∧, ∨, ¬) can be much more powerful than monotone circuits (using gates ∧, ∨). The earliest
demonstration is due to Razborov [Raz85a]. He considered the bipartite perfect matching function
Match : {0, 1}n2 → {0, 1} that takes as input a bipartite graph, represented by its adjacency
matrix x ∈ {0, 1}n×n, and outputs Match(x) = 1 iff the graph contains a perfect matching. While
bipartite matching famously admits polynomial-size circuits, Razborov showed that it requires
monotone circuits of size nΩ(logn). Since then, a long-standing challenge has been to determine
whether Razborov’s quasi-polynomial bound is tight (e.g., see textbooks [Weg87, Juk12, Wig19]).
Our main result is to improve the lower bound to an exponential one.

Theorem 1. Match requires monotone circuits of size at least 2n
1/3−o(1)

.

That is, for bipartite matching, the gap between the general and monotone circuit complexities
is exponential. In fact, such an exponential gap was already known for a different monotone
function in class P due to Tardos [Tar88]. Her function is relatively complex, however, as it is
computed by solving a semidefinite program. Meanwhile, bipartite matching admits an efficient
parallel algorithm (class RNC) [Lov79, Mul87], which is not known for Tardos’s function.

Another serious contender for exhibiting the strongest general-vs-monotone separation is Z2-
satisfiability [GKRS19]. This is a monotone function encoding the problem “Given a system of linear
equations over Z2, is it satisfiable?” It is complete for the class ⊕L of problems computed by uniform
polynomial-size parity branching programs [Dam90]. Yet, Z2-satisfiability was shown to require
exponential-size monotone circuits by [GGKS20, GKRS19]. Bipartite matching is not known to be
comparable to Z2-satisfiability under deterministic reductions. However, non-uniformly, bipartite
matching lies in a subclass SPL ⊆ ⊕L [ARZ99] and hence is arguably simpler than Z2-satisfiability.
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Function Class Monotone complexity Reference

Bipartite matching RNC exp(Ω(log2 n)) [Raz85a]

Tardos’s function P exp(nΩ(1)) [AB87, Tar88]
Odd factor L exp(Ω(log2 n)) [BGW99]

Z2-satisfiability ⊕L exp(nΩ(1)) [GGKS20, GKRS19]

Z2-satisfiability, padded AC0[⊕] exp(Ω(logk n)) [CO23]

Bipartite matching RNC exp(nΩ(1)) This work (Theorem 1)

Odd factor L exp(nΩ(1)) This work (Theorem 2)

Odd factor, padded AC0 exp(Ω(logk n)) This work (Theorem 3)

Table 1: Timeline of separations between general and monotone complexities. The parameter k
can be taken to be any large constant at the cost of increasing the depth of the AC0 circuit.

In fact, our proof of Theorem 1 can be extended further to prove a lower bound for a func-
tion even simpler than bipartite matching, called odd factor [BGW99]. This function is defined
by Odd(x) = 1 iff the graph x ∈ {0, 1}n×n contains a spanning subgraph whose degrees are all odd.
Equivalently, Odd(x) = 1 iff every connected component of x has even size. This function can be
computed in logarithmic space (class L) using Reingold’s algorithm [Rei08]. We show monotone
lower bounds for Odd as well as “padded” versions of it that can be computed by one of the
simplest of all circuit models: constant-depth circuits (class AC0).

Theorem 2. There is a monotone Odd ∈ L with monotone circuit complexity 2n
Ω(1)

.

Theorem 3. For any k there is a monotone fk ∈ AC0 with monotone circuit complexity nΩ(logk n).

In particular, Theorem 3 resolves an open problem of Grigni and Sipser [GS92], who asked if
every monotone function in AC0 can be computed by a polynomial-size monotone circuit. Theorem 3
also rules out a particular approach to obtaining general circuit lower bounds: the papers [CHO+22,
CO23] observed that if Theorem 3 had turned out to be false, then NC2 ̸⊆ NC1.

1.1 Technique: Matching sunflowers

We follow the classic approximation method introduced by Razborov [Raz85a, Raz85b]. By now,
this standard method is featured in several textbooks [Weg87, AB09, Juk12, Wat25]. To prove a
lower bound for an n-bit boolean function f , the method starts by defining a distribution D over
the input domain {0, 1}n. The goal is to show that (i) if f is computed by a small monotone circuit,
then f can be approximately computed (relative to D) by a small monotone DNF; and (ii) no small
DNF correlates well with f .

The technical crux of the proof is to identify situations when a monotone DNF
∨

S∈S tS (where

tS :=
∧

i∈S xi and S ⊆ 2[n]) can be safely replaced with the single term tK where K :=
⋂
S is the

core, and doing so does not incur much error (relative to D). This replacement procedure, often
called “plucking”, simplifies the DNF in case |S| ≥ 2. Previous works [Ros14, CKR20, BM25] have
employed the notion of “robust sunflowers” to find such DNFs for plucking. A family S ⊆ 2[n],
|S| ≥ 2, is an ε-robust sunflower if the core K =

⋂
S satisfies

Pr
x∼{0,1}n

[ ∃S ∈ S : tS\K(x) = 1 ] ≥ 1− ε. (1)
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This says that, for a uniform random x, whenever tK accepts x, it is highly likely that
∨

S∈S tS
accepts it too. That is, the approximation error is small. Recent works [ALWZ21, Rao20] have
proved optimal bounds on the size of families S that are guaranteed to contain a subfamily S ′ ⊆ S
that is a robust sunflower.

Lemma 1 (Robust Sunflower Lemma [Rao20]). There exists a universal constant c > 0 such that
every family S of ℓ-sets of size |S| ≥ (c log(ℓ/ε))ℓ contains an ε-robust sunflower.

For our purposes, we need instead a sunflower lemma tailored to the bipartite matching problem.
The first difference is that, instead of a uniform distribution, we will pluck relative to the following
odd cut distribution D0 over Match−1(0) (which Razborov [Raz85a] also used).

Definition 1 (Odd cut distribution D0). To sample x ∼ D0, first sample a uniform random
colouring c ∈ {0, 1}2n of the vertices of Kn,n with an odd number of 1s. To build the bipartite
graph x, connect any two vertices (on opposite sides) that have the same colour under c. The
resulting graph is a union of two odd-sized bicliques:

Suppose M is a family of ℓ-matchings (each matching has ℓ edges) in Kn,n. We say that the
family M, |M| ≥ 2, is an ε-matching sunflower if the core K =

⋂
M satisfies

Pr[∃M ∈M,∀e ∈M \K : e is monochromatic under c ] ≥ 1− ε. (2)

This says that, for an input x ∼ D0, whenever tK accepts x, it is highly likely that
∨

M∈M tM
accepts it too. That is, the approximation error is small. We prove the following in Section 2.

Lemma 2 (Matching Sunflower Lemma). There exists a universal constant c > 0 such that every
familyM of ℓ-matchings of size |M| ≥ (cℓ log2(ℓ/ε))ℓ contains an ε-matching sunflower.

Our proof is surprisingly simple: it is by a reduction to the robust sunflower lemma. Implicit
in the original proof of Razborov [Raz85a] is that one can take |M| ≥ 4ℓ

2
(cℓ log(1/ε))2ℓ in the

above lemma. This is exponentially worse in terms of ℓ. Our improvement above is what directly
translates into an exponential monotone circuit lower bound. We discuss in Section 3 how Lemma 2
plugs into the standard approximation method to prove Theorems 1–3.

1.2 Other related work

The analogue of Theorem 1 for monotone formulas has been known for a long time. Raz and
Wigderson [RW92] proved that bipartite matching requires monotone formulas of size 2Ω(n) and
this is tight. The same lower bound holds for odd factor [BGW99] and this was shown to imply
quasi-polynomial lower bounds for the AC0-computable padded odd factor in [CO23].

Previous works have also studied general-vs-monotone separations in the setting of constant-
depth circuits. Okol’nishnikova [Oko82] and Ajtai and Gurevich [AG87] exhibited a monotone func-
tion in AC0 that requires monotone constant-depth circuits of size nω(1). This was quantitatively
improved by Chen, Oliveira, and Servedio [COS17] showing a lower bound of 2n

Ω(1)
. Our Theorem 3

thus improves qualitatively on [Oko82, AG87, CO23] but is incomparable to [COS17]. It remains
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open whether there exists a monotone function in AC0 with exponential monotone circuit complex-
ity. This would be an ultimate general-vs-monotone separation, generalising all the aforementioned
results. The analogous question for arithmetic circuits was only recently settled [CDM21].

Besides general-vs-monotone separations, another foremost goal in monotone complexity is to
find explicit functions with maximal monotone circuit complexities. The clique function has been
studied the most [Raz85a, AB87, Juk99, Ros14, CKR20, LMM+22, BM25, dRV25]. Currently,
the largest explicit lower bound is 2n

1/2−o(1)
[CKR20] with previous records being held by [And87,

HR00]. The question of proving “truly” exponential lower bounds of the form 2Ω(n) remains open.
It has been solved for monotone formulas by Pitassi and Robere [PR17].

2 Matching Sunflower Lemma (Lemma 2)

In this section, we prove Lemma 2. SupposeM is a family of ℓ-matchings with |M| ≥ (cℓ log2(ℓ/ε))ℓ,
where c is a large enough constant (to be determined). Our goal is to show that M contains an
ε-matching sunflower. We start by simplifying the family M by making it “blocky”.

Reduction to blocky families. Consider partitioning the vertices of Kn,n into ℓ blocks according
to a random labelling b ∼ [ℓ]2n. We say that a matching M is consistent with b if every edge
uv ∈ M is monochromatic under b (that is, bu = bv) and all edges receive distinct labels. Here is
an illustration (with blocks of the same size, for simplicity):

For a fixed ℓ-matching M ∈ M, there are ℓ2ℓ ways of labelling its endpoints, and ℓ! of these
yield a consistent labelling. Thus Pr[M is consistent with b ] = ℓ!/ℓ2ℓ ≥ ℓ−ℓ2−O(ℓ). By averaging,
there exists a fixed labelling b that is consistent with at least |M|ℓ−ℓ2−O(ℓ) matchings inM. Let us
delete all matchings inconsistent with b, and continue to denote the resulting set byM for simplicity.
For large enough c, the number of remaining matchings is |M| ≥ (c′ log(4ℓ/ε))2ℓ, where c′ is the
universal constant from the robust sunflower lemma (Lemma 1).

Finding a “vertex” sunflower. Define V := {V (M) : M ∈ M}, V (M) :=
⋃
M , as the family

of endpoints of matchings in M. Since M is blocky, V and M are in 1-to-1 correspondence:
for every V ∈ V there is a unique matching M ∈ M with V = V (M). Thus V is a family of
2ℓ-sets of size |V| = |M| ≥ (c′ log(4ℓ/ε))2ℓ. We can now apply Lemma 1 to find an ε/2-robust
sunflower V ′ ⊆ V (“vertex” sunflower) with core K :=

⋂
V ′. Note that every block contains 0, 1,

or 2 vertices from K. Let K1 be the vertices in K that are unique in their block, and K2 be the
vertices that share a block with another vertex, so K = K1 ⊔K2.

Finding a matching sunflower. LetM′ ⊆M be the matchings corresponding to vertex sets V ′
according to the 1-to-1 correspondence. Let D be the matching that connects pairs of vertices in K2

that share a block. The following claim completes the proof.
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a

b c d

e f

Figure 1: Matching sunflower M′ ⊆ M with core D = {ab, de} constructed out of a vertex
sunflower V ′ ⊆ V with core K =

⋂
V ′ = K1 ⊔ K2 where K1 = {c, f} and K2 = {a, b, d, e}. The

shaded regions indicate where non-core edges of matchings in M′ can occur.

Claim 1. M′ is an ε-matching sunflower (with core D =
⋂
M′).

Proof. First note that |M′| = |V ′| ≥ 2. Let us then check that D =
⋂
M′. We have D ⊆

⋂
M′

since, for every edge uv ∈ D and M ∈ M′, the endpoints u, v belong to V (M) and share a block,
hence uv ∈M . Conversely, suppose for contradiction there is an edge e ∈ (

⋂
M′) \D. Then every

V ∈ V ′ contains e as a subset. Since e /∈ D, at least one endpoint is outside K, say u ∈ e\K. Then

Pr
x∼{0,1}2n

[∃V ∈ V ′ : tV \K(x) = 1] ≤ Pr
x∼{0,1}2n

[xu = 1] = 1/2.

This contradicts (1) for V ′ (where we can assume ε < 1/2 wlog). We conclude that D =
⋂
M′.

Let x ∼ {0, 1}2n be a uniform colouring. Our goal will be to show

Pr[∃M ∈M′,∀uv ∈M \D : xu = xv] ≥ 1− ε/2. (3)

This would conclude the proof, as conditioning on the event “x has odd many 1s” (which is what
we really care about) can only double the error parameter. To prove (3), we show it holds under
conditioning on any event “xK1 = α” where α ∈ {0, 1}K1 (which partitions the probability space).

Consider first the simplest case x′ := (x | xK1 = 1K1), where we condition all the colours in K1

to be 1. Note that x and x′ have the same (uniform) marginal distribution outside K. This means
we can invoke the robust sunflower property of V ′ for x′: with probability 1 − ε/2 over x′ = x′

there exists V = V (M) ∈ V ′ such that tV \K(x′) = 1. We claim that all edges uv ∈ M \ D are
coloured 1 under x′. Indeed, if uv ∩K = ∅, then both endpoints are coloured x′u = x′v = 1 by the
sunflower property. Otherwise, say, uv ∩K = {v}. Here one endpoint is coloured x′u = 1 by the
sunflower property, and the other endpoint has x′v = 1 because of our conditioning.

More generally, we can apply the same logic for x′ := (x | xK1 = α) for any α ∈ {0, 1}K1 . All we
need to do is flip the colours in all blocks that contain v ∈ K1 with αv = 0. Let xα ∈ {0, 1}2n be the
fixed colouring that assigns colour 1 to all blocks that contain v ∈ K1 with αv = 0. Formally, xαv = 1
iff b(v) ∈ b({u ∈ K1 : αu = 0}), so in particular xαK1

⊕ 1K1 = α. Note that x′ ⊕ xα has a uniform
marginal distribution outside K. This means we can invoke the robust sunflower property of V ′
for x′ ⊕ xα: with probability 1 − ε/2 over x′ ⊕ xα = x′ ⊕ xα there exists V = V (M) ∈ V ′ such
that tV \K(x′ ⊕ xα) = 1. We claim that all edges uv ∈ M \ D are monochromatic under x′. The
case uv ∩ K = ∅ is the same as above. For uv ∩ K = {v}, we have from the sunflower property
that x′u ⊕ xαu = 1. This implies x′u = xαu ⊕ 1 = xαv ⊕ 1 = αv = x′v, as desired.
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3 Approximation method (Theorems 1–3)

Consider the input distribution D := (D0 +D1)/2 where Di is supported on Match−1(i) so that

− D1 is the uniform distribution over perfect matchings in Kn,n;
− D0 is the odd cut distribution from Definition 1.

To prove Theorem 1, we start with a small monotone circuit computing Match and aim for a
contradiction. Our goal is to approximate the circuit (relative to D) with a small monotone DNF

FM :=
∨

M∈M
tM where tM :=

∧
e∈M

xe,

and where M is a set of (partial) matchings in Kn,n. We say that F = FM is r-small if, for
every ℓ,M contains at most rℓ matchings of size ℓ, that is, |M∩Pℓ| ≤ rℓ where Pℓ is the set of all
ℓ-matchings. The approximation method proceeds in two steps:

Lemma 3. Suppose a monotone circuit of size 2w computes Match. Then there is an O(w3 log2 n)-
small monotone DNF F such that Prx∼D[F (x) = Match(x)] ≥ 1− o(1).

Lemma 4. If a monotone DNF F is o(n)-small, then Prx∼D[F (x) = Match(x)] ≤ 1/2 + o(1).

These lemmas imply that any monotone circuit of size S for Match has log3 S log2 n ≥ Ω(n).
Thus S ≥ exp(n1/3−o(1)) which proves Theorem 1. It remains to prove these two lemmas, which
we do in Sections 3.1–3.2. Finally, we discuss how to derive Theorems 2–3 in Section 3.3.

3.1 Proof of Lemma 4

The lemma is trivially true if F = FM contains the empty term (so that F ≡ 1). Otherwise,

Pr
x∼D

[F (x) = Match(x)] = 1
2 Pr
x∼D0

[F (x) = 0] + 1
2 Pr
x∼D1

[F (x) = 1]

≤ 1
2 +

∑
ℓ∈[n]

∑
M∈M∩Pℓ

Pr
x∼D1

[tM (x) = 1]

≤ 1
2 +

∑
ℓ∈[n]

o(n)ℓ(e/n)ℓ (o(n)-smallness and Claim 2 below)

≤ 1
2 +

∑
ℓ∈N\{0}

o(1)ℓ

≤ 1
2 + o(1).

Claim 2. Prx∼D1 [tM (x) = 1] ≤ (e/n)ℓ for every M ∈ Pℓ.

Proof. The probability corresponds to the fraction of perfect matchings of Kn,n that contain M .
This is equal to (n− ℓ)!/n! and we verify by induction on ℓ and n that (n− ℓ)!/n! ≤ (e/n)ℓ. Note
that this holds for ℓ = 1 and all n ∈ N. When n ≥ ℓ ≥ 2 we obtain

(n− ℓ)!

n!
=

1

n

(n− ℓ)!

(n− 1)!
≤ 1

n

(
e

n− 1

)ℓ−1

=
( e

n

)ℓ 1

e

(
1 +

1

n− 1

)ℓ−1

≤
( e

n

)ℓ
.
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3.2 Proof of Lemma 3

Notation. Let C be a circuit with size(C) ≤ 2w computing Match. We say that FM has width k
if every matching inM has at most k edges, and we say that FM is a (k, r)-DNF if FM is r-small
and has width k. We set ε := n−3w. Let r(ℓ, ε) be such that any set M of ℓ-matchings of size
at least r(ℓ, ε)ℓ contains an ε-matching sunflower. Let r := maxℓ∈[2w] r(ℓ, ε). From Lemma 2, we
obtain that r ≤ O(w log2(w/ε)) ≤ O(w3 log2 n). We may assume here that w3 log2 n ≤ o(n) (so
that r ≤ o(n)) as otherwise the result is trivial.

Proof overview (via plucking). We will construct a (w, r)-DNF for C gate-by-gate, induc-
tively, starting at the input gates until we reach the output gate. Every input variable is already
a (w, r)-DNF. Consider then an ∨ gate. The challenge is that if we were to naively combine our
inductively constructed (w, r)-DNFs by ∨, the number of terms might increase, potentially vio-
lating r-smallness. For an ∧ gate, a naive combination would also increase the width from w up
to 2w. In order to maintain smallness of our DNF, we approximate the naive combination by
running Algorithm 1. The following claim summarises the properties of the resulting DNF.

Algorithm 1 Plucking procedure pluck(M)

1: while ∃ℓ ∈ [2w] : |M ∩ Pℓ| > rℓ do
2: Let M′ ⊆M∩Pℓ be an ε-matching sunflower with core K
3: Let M← (M\M′) ∪ {K}
4: end while

Claim 3. If FM has width 2w, then Fpluck(M) is a (2w, r)-DNF with Fpluck(M) ≥ FM and

Pr
x∼D0

[Fpluck(M)(x) > FM(x)] ≤ n−w. (4)

Proof. First note that Line 2 of the algorithm is always possible as r ≥ r(ℓ, ε) for all ℓ ∈ [2w].
Also note that in Line 3, the size of the family M decreases by at least one. This means that the
algorithm will terminate in at most |M| ≤ n2w iterations. Let us then verify (4) by calculating the
errors incurred in Line 3. An error occurs for input x only if tK(x) = 1 but tM (x) = 0 for all M ∈M′

(see Figure 2). This can occur only if tM\K(x) = 0 for all M ∈M′. But the ε-matching sunflower
property (2) for M′ implies that this happens only with probability at most ε over x ∼ D0. A
union bound over all iterations shows that (4) is at most n2wε = n2wn−3w = n−w.

a

b c d

e fc′

Figure 2: Example of an input x ∈ supp(D0) (given by the black/white vertex colouring) that
causes an error when plucking a sunflower M′ (from Figure 1). Edges ab and de in the core
K =

⋂
M′ are monochromatic, which means tK(x) = 1. However, the dashed edges represent a

petal M \K, M ∈M′, that contains a bichromatic edge cc′, which means tM (x) = 0.
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Approximation. Suppose that we have inductively constructed (w, r)-DNFs FM, FM′ for two
gates that feed into a gate g that computes a binary operation ◦ ∈ {∨,∧}. Our goal is to find
a (w, r)-DNF FG that approximates FM ◦ FM′ with tiny error:

Prx∼D0 [FG(x) > (FM ◦ FM′)(x)] ≤ 2−ω(w), (5)

Prx∼D1 [FG(x) < (FM ◦ FM′)(x)] ≤ 2−ω(w). (6)

If ◦ = ∨, we set G := pluck(M∪M′). To analyse this, we note that plucking incurs n−w errors
on D0 by Claim 3, which verifies (5). On the other hand, plucking introduces no errors on D1,
verifying (6). If ◦ = ∧, we first approximate

G′ := pluck
(
{M ∪M ′ : M ∈M, M ′ ∈M′, M ∪M ′ is a matching}

)
,

and then delete all matchings of size larger than w from G′; call the resulting family G. To analyse
this, we note that plucking incurs n−w errors on D0 and no errors on D1 (we only omitted terms
that were not matchings). Moreover, deleting wide terms incurs no error on D0, and the errors
on D1 can be bounded as follows:

Pr
x∼D1

[FG(x) < FG′(x)] ≤
2w∑
ℓ=w

∑
M∈G′∩Pℓ

Pr
x∼D1

[tM (x) = 1]
(Claim 2)

≤
2w∑
ℓ=w

rℓ (e/n)ℓ ≤
∞∑
ℓ=w

o(1)ℓ ≤ 2−ω(w).

This verifies (5)–(6). We now conclude the proof by observing that the DNF F for the output gate
has tiny overall error, by summing up all the individual contributions in Equations (5)–(6):

Pr
x∼D

[F (x) ̸= Match(x)] = 1
2 Pr
x∼D1

[F (x) < C(x)] + 1
2 Pr
x∼D0

[F (x) > C(x)] ≤ size(C) · 2−ω(w) ≤ o(1).

3.3 Proofs of Theorems 2–3

To prove Theorem 2 we note that the above proof only ever assumed that the circuit C computes
Match correctly on the support of D. But Match(x) = Odd(x) for all x ∈ supp(D), and hence
the lower bound also applies to Odd.

To prove Theorem 3 we apply a standard padding argument and a folklore depth-reduction
result. Indeed, it is known that any function in L can be computed by an AC0-circuit of size 2n

ε
,

where we can take ε > 0 as any fixed constant [AHM+08, Lemma 8.1]. Let ε := 1/(4(k + 1))
and define the padded function fk : {0, 1}N → {0, 1} by fk(x, y) := Oddn(x), where N := 2n

ε

and Oddn is odd factor on n-vertex graphs. It follows that fk can be computed by an AC0 circuit
of size 2n

ε
= N , and its monotone complexity is at least exp(n1/3−o(1)) ≥ NΩ(logk N).

4 Discussion

Let us make some final comments about our proof. First, quantitatively improved lower bounds
for bipartite matching follow immediately from improved bounds on matching sunflowers. Indeed,
our proof in Section 3 shows more generally that monotone circuits of size O(n/rw)w can be
approximated by O(rw)-small DNFs where rw := maxℓ∈[2w] r(ℓ, n−3w). This implies the following
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closed-form expression for the lower bound on the monotone complexity of bipartite matching (also
derivable from the “abstract sunflowers” of [Cav20]):

max
w∈[n]

Ω(n/rw)w.

For example, plugging in Razborov’s [Raz85a] bound r(ℓ, ε) ≤ (2ℓℓ log(1/ε))2ℓ would recover
his nΩ(logn) lower bound. For another example, instead of using the optimised bounds for robust
sunflowers [ALWZ21, Rao20] in our Lemma 2, we could plug in an earlier bound of Rossman [Ros14].
Using Rossman’s bound would already yield an exponential lower bound for bipartite matching,
albeit with a constant smaller than 1/3 in the exponent.

We also note that our proof extends to other distributions (and functions) than the odd cut
distribution D0 in Definition 1. For example, we could generate a bipartite graph out of a random
vertex colouring c whose number of 1s on opposite sides of the graph differ by 1. As remarked
in [FV98], these are rejecting inputs for the Zq-satisfiability problem (satifiability of systems of
linear equations modulo q). This recovers the exponential monotone circuit lower bound for Zq-
satisfiability first proved in [GGKS20, GKRS19].

Finally, we can ensure in Theorem 3 that the AC0 functions are graph properties (functions
that output the same value on isomorphic graphs) by applying a more sophisticated padding ar-
gument from [CO23, Lemma 3.6]. This contrasts with results of [Ros08, Ros17], stating that
homomorphism-preserved graph properties in AC0 can also be computed by small monotone DNFs.
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