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Abstract

Minimally rigid graphs can be recognized and embedded in the plane efficiently, i.e. in

polynomial time. There is also an efficient randomized parallel algorithm, i.e. in RNC. We

present NC-algorithms to recognize whether one-crossing-minor-free graphs are minimally rigid.

In the special case of K3,3-free graphs, we also compute an infinitesimally rigid embedding in NC.

1 Introduction

Graph rigidity is the combinatorial study of rigidity or flexibility of bar-and-joint frameworks, set

of solid bars connected via hinge joints. Historically, the problem goes back to Euler in 1776, who

asked about the rigidity of polyhedrons in 3D. Rigidity of bar-and-joint frameworks, particularly

in 2D, has been studied extensively for applications in mechanical engineering. A bar-and-joint

framework is said to be flexible, if there is a non-trivial continuous motion of the framework,

without bending the bars or breaking the joints, otherwise the framework is rigid. A bar-and-

joint framework can be seen as a graph G, where vertices are the joints and edges are the bars,

together with an embedding p : V → R

2 , for the case of 2D. A graph G is rigid if there exists

an embedding p such that framework (G,p) is rigid, otherwise G is flexible. A natural question is

whether rigidity/flexibility is just the property of the underlying graph G or whether it also depends

on the specific embedding p. That is, whether rigidity is just determined by the combinatorial

structure of the bars, i.e. which tuples of bars are connected at one joint, and does not depend on

the specific lengths of the bars. Interestingly, it turns out that the answer is (almost) yes.

It is known that for any graph, either almost all of its embeddings (associated bar-and-joint

frameworks) are rigid or almost all of them are flexible.

Characterizations of minimal rigidity. A graph is minimally rigid if the removal of any

edge makes it flexible. Minimally rigid graphs have a combinatorial characterization that is often

attributed to Laman, but was already known to Geiringer. A graph G = (V, E) is called a Laman
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graph if it has m = 2n − 3 edges and for all S � V with |S| � 2, the subgraph of G induced by S

has at most 2|S| − 3 edges,

|E(S)| � 2|S| − 3. (1)

Theorem 1.1 ([Pol27], [Lam70]) A graph is minimally rigid iff it is a Laman graph.

When we skip the equation m = 2n−3 on the total number of edges and just work with (1), we

get a characterization of non-redundant set of edges (with respect to rigidity). In particular, any

graph with 2|V | − 3 edges, none of which is redundant, is a minimally rigid graph. Interestingly,

non-redundancy with respect to rigidity defines a matroid. The rigidity matroid for a graph G,

has the edge set E as the ground set and any set of non-redundant edges forms an independent

set. The base sets of this matroid are the minimally rigid subgraphs of G (on the same number of

vertices).

There is another very interesting relationship. Let G = (V, E) be a graph with m = 2n − 2

edges. Nash-Williams [NW61] and Tutte [Tut61] independently showed that G is the disjoint

union of two spanning trees iff for all S � V with |S| � 2, we have |E(S)| � 2|S|− 2, see also Lovász

and Yemini [LY82]. Note again the similarity with Laman’s condition (1). This yields again a

combinatorial characterization.

Theorem 1.2 ([LY82]) A graph is minimally rigid iff 8e 2 E multigraph G + e is the union

of two edge-disjoint spanning trees.

There is also an iterative way to construct Laman graphs, known as the Henneberg construc-

tion [Hen11], where we start with an edge, and then add a node to the graph constructed so far in

one of two ways (Theorem 2.10). This is explained in more detail in Section 2.4.

Complexity. In 2D, rigidity can be solved in polynomial time, namely in time O(n2) [Hen92,

GW92]. For minimal rigidity, this follows from Theorem 1.2, because whether a graph is the disjoint

union of two spanning trees can be decided in polynomial time [RT85]. There is a O(n
p

n log n+m)

algorithm for minimal rigidity [GW92]. We are interested in the parallel complexity of minimal

rigidity.

Note that the characterization from Theorem 1.2 yields a reduction from minimal rigidity to the

problem of deciding whether a graph consists of two edge-disjoint spanning trees. Moreover, the

characterization of minimal rigidity in Theorem 1.1 is similar in nature to Hall’s Theorem [Hal35]

that characterizes the existence of perfect matchings in bipartite graphs. This can actually be

formalized to a reduction from the minimal rigidity problem to the bipartite perfect matching

problem [Hen92]. Since the reductions to the two edge-disjoint spanning trees problem and bi-

partite perfect matching are efficient even in parallel, i.e. in NC, the parallel complexity of these

two problems carries over to minimal rigidity. Note that the problems are in randomized NC,

RNC [MVV87, NSV94]. The derandomization question, whether one can avoid the randomness

without much loss in efficiency, is of major interest in complexity theory. A few years back, the

randomized algorithm has been derandomized to a quasi-NC bound for bipartite perfect match-

ing [FGT16]. Later, the two edge-disjoint spanning tree problem was also shown to be in quasi-NC

via Linear Matroid Intersection [GT20]. These results imply two different quasi-NC algorithms

for minimal rigidity.
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• One of the major motivations for us to study minimal graph rigidity is that we might have

better chances to show that it is in NC than for bipartite perfect matching. In that sense,

minimal rigidity is the litmus test for bipartite perfect matching.

Note that a reduction in the other direction is not known. Hence, minimal rigidity might be

easier than bipartite perfect matching.

Interestingly, also the complexity questions around general rigidity (i.e., not necessarily min-

imal), have a status quite similar to those around the bipartite matching problem. Using the

matroid property, one can get a polynomial-time algorithm to test if a graph is rigid: Start from

the empty set, and keep adding edges from the graph while maintaining non-redundancy. If this

algorithm ends with 2|V |− 3 edges, then the graph is indeed rigid [Hen92].

Both problems, matching and rigidity, reduce to the polynomial identity testing (PIT) prob-

lem [MVV87, RW19], and thus they have RNC algorithms. For any given embedding of the graph,

one can form the rigidity matrix of the graph, a |E| � 2|V | matrix, where the entries are func-

tions of the vertex coordinates. We define the matrix in Section 2.1. The rank of the rigidity

matrix tells us about the rigidity of the particular embedding. For a rigid graph, a random em-

bedding would be rigid and the corresponding rigidity matrix would have rank 2|V |− 3, with high

probability [AR78]. Thus, to decide the rigidity of a graph one simply has to take a random em-

bedding and find the rank of the rigidity matrix. Note that computing the rank of a matrix is

highly parallelizable [Mul87] and so is the above algorithm, which puts the rigidity problem in the

complexity class RNC. Its connection with matching and polynomial identity testing (PIT) makes

graph rigidity a very interesting candidate for studying derandomization.

Our results. For certain graph classes we are able to derandomize and give an NC-algorithm for

minimal rigidity. Streinu and Haas et al. [Str00, HOR+05] developed a geometric characterization

of planar Laman graphs that yields a more efficient algorithm than for general graphs. This was

improved further by Rollin, Schlipf, Schulz [RSS19]. Our first observation is that by combining

the subroutines in [Str00, HOR+05, RSS19] appropriately, we obtain a parallel algorithm and get

planar minimal rigidity in NC2. We can even compute a rigid embedding of a planar Laman graph

in NC2.

Then we extend these parallel complexity results to some minor-free graph classes. Our first

main result is that for K3,3-free graphs, we can recognize and embed Laman graphs in NC2 (Theo-

rem 4.4). Also K5-free Laman graphs can be recognized in NC3. Actually, our technique works for

the more general class of one-crossing-minor-free graphs. For this class, we can recognize Laman

graphs in NC3 (Theorem 5.4). However, an NC-algorithm for computing a rigid embedding remains

an open problem.

Our technique is to decompose the given one-crossing-minor-free graph into planar components

or components of bounded treewidth. We observe that there are parallel algorithms to decide

rigidity of graphs of bounded treewidth, see Section 2.2. Hence, for planar and bounded treewidth

components we can check whether they are Laman. Then we develop tools to tell whether also the

given one-crossing-minor-free graph is Laman.

Note that obtaining a parallel algorithm for minimal rigidity does not give the same for rigidity,

as there is no parallel reduction known. In fact, finding an NC (or quasi-NC) algorithm for rigidity

is open, even for planar graphs.
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Organization of the paper. In the preliminaries, we give a self-contained derivation of the

rigidity matrix in Section 2.1. We show that for graphs of bounded treewidth, rigidity can be

decided efficiently in parallel in Section 2.2. In Section 2.4, we describe the characterization of

Laman graphs via Henneberg extensions.

In Section 3, we explain our basic observation that the sequential algorithms to recognize

planar Laman graphs and compute infinitesimally rigid embeddings [Str05, HOR+05, RSS19] can

be efficiently parallelized, it is in NC. The reader can safely skip this section in first reading, since

we use the planar case only as a blackbox subroutine in the rest of the paper.

Our main results about K3,3-free and one-crossing-minor-free Laman graphs are in Section 4

and 5, respectively.

2 Preliminaries

For n 2 N, we denote [n] = {1, 2, . . . , n}. We use standard complexity classes, in particular,

the classes NCk that consist of uniform boolean circuit families with bounded fan-in, polynomial

size, and depth O(logk n). The corresponding randomized classes are denoted by RNCk. A slight

extension is quasi-NCk that is defined similarly to NCk, but with circuits of quasi-polynomial

size 2log
O(1) n. Many problems from Linear Algebra are in known to be efficiently solvable in

parallel. For example the determinant and the rank of matrices can be computed in NC2, as well

as the solution of linear systems of equations [Mul87].

For a graph G = (V, E), we denote n = |V | and m = |E| throughout the paper. For a set S � V ,

the edges of G that are within S are denoted by E(S). A graph G is planar if it can be drawn in

the Euclidean plane such that the edges intersect only at the endpoints. Such a drawing is called a

planar (topological) embedding of the graph. The faces of a planar embedding are the regions

of the embedding. The outer face of a planar embedding is the unbounded face. It is known

that every planar embedding can be turned into a planar embedding with the same face structure

such that every edge is a straight line [Fá48, Wag36]. A planar embedding can be turned into

a combinatorial embedding, a cyclic order of the edges around each vertex in counter clockwise

order of the planar embedding. One can check if a graph is planar and compute topological and

combinatorial planar embeddings in NC2 [RR94].

The crossing number of a graph G is the minimum number c such that G has an embedding in

the plane with c edge crossings. For example planar graphs have crossing number 0 and K3,3 and K5

have crossing number 1. Planar graphs are minor-closed. However, this does not hold in general

for graphs with crossing number � 1: There are examples of graphs G with crossing number 1

that have minors H with crossing number 2. To capture such graphs H as well, Robertson and

Seymour [RS93] defined a graph H to be single-crossing or one-crossing, if H is the minor of

a graph G with crossing number � 1. With this definition, one-crossing graphs are closed under

minors. However, in the literature, often the simpler definition is used that one-crossing graphs are

those with crossing number � 1. Note that this is a subset of the one-crossing graphs as defined

by Robertson and Seymour. Hence, our results hold for the simplified definition as well.

For graphs G,H, we say that G is H-free, if H is not a minor of G. When H is one-crossing, we

call G one-crossing-minor-free. Hence, planar, K3,3-free, and K5-free graphs are all one-crossing-
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minor-free.

We also need to solve a flow problem on planar graphs. Given a planar flow graph with

multiple sources and sinks, capacities and fixed demands at every source and sink, the objective

is to compute a feasible flow function. Miller and Naor [MN95] showed that the problem can be

solved in NC2.

2.1 Infinitesimal rigidity of frameworks

In a bar-and-joint framework we are given a graph G = (V, E) and an embedding p : V → R

2 in

the plane. The edges of the graph are considered as bars and the vertices as joints that are free to

move continuously. However, the length of the bars does not change. The framework is flexible,

if there is a continuous motion such that the distance of some vertices changes. Otherwise, the

framework is rigid. Figure 1 shows examples.

Figure 1: The triangle is rigid, whereas the rectangle is flexible with the motion indicated in blue.

The problem whether a given framework (G,p) is flexible is NP-hard [Abb08]. It is complete

for the existential theory of reals [ADD+16]. We consider a restricted version of the problem called

infinitesimal rigidity that can be solved efficiently.

Let G = (V, E) where V = [n] and |E| = m. Let p(i) = (xi, yi) 2 R

2 be the coordinates of

vertex i 2 V . For an edge e = (i, j) 2 E, the square of its length is

|e|2 = (xi − xj)
2 + (yi − yj)

2. (2)

Consider a smooth motion by treating the coordinates as functions xi(t) and yi(t) in time t, such

that (xi(0), yi(0)) = (xi, yi). The condition for the motion is that |e|2 does not change, i.e. is

constant. Hence, when we look at the derivative of (2) w.r.t. t, we get

2(xi − xj)(x
0

i − x 0j) + 2(yi − yj)(y
0

i − y 0

j) = 0. (3)

We get m such equations, one for every edge in G. We combine them in matrix-vector form. That

is, we define the rigidity matrix R = R(G,p) as a m� 2n matrix, with n columns for the x-part of

the nodes and n columns for the y-part. Let Re be the row for edge e = (i, j) 2 E in R. We define

the k-th entry Re,k as

Re,k =






xi − xj, for k = i,

xj − xi, for k = j,

yi − yj, for k = n+ i,

yj − yi, for k = n+ j,

0, otherwise.
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The derivatives we put in the velocity vector v,

v = (x 01, x
0

2, . . . , x
0

n, y 0

1, y
0

2, . . . , y
0

n)
T .

Then (3) becomes

Rv = 0. (4)

For example, consider the triangle graph on three nodes 1, 2, 3. Then R is a 3� 6 matrix,

R =

0

B

B

�

x1 − x2 x2 − x1 0 y1 − y2 y2 − y1 0

0 x2 − x3 x3 − x2 0 y2 − y3 y3 − y2

x1 − x3 0 x3 − x1 y1 − y3 0 y3 − y1

1

C

C

A

Any nonzero vector v that fulfills (4) corresponds to an infinitesimal motion. However, there

are three trivial motions that are always possible: a shift sx of all vertices in x-direction or sy in

y-direction, and a rotation r around the origin,

sx = (1, 1, . . . , 1, 0, 0, . . . , 0)T ,

sy = (0, 0, . . . , 0, 1, 1, . . . , 1)T ,

r = (−y1,−y2, � � � − yn, x1, x2 . . . , xn)
T .

Hence, the nullspace of R has dimension at least 3, and therefore, the rank of R can be at most 2n−3.

We define a framework (G,p) to be infinitesimally rigid if rank(R(G,p)) = 2n − 3. Clearly, this

rank can only be achieved when we have m � 2n−3 edges. The rank of a matrix can be computed

in NC2 [Mul87], thus, infinitesimal rigidity for a given embedding p can be tested in NC2. If p is

not given, the rigidity problem becomes a PIT-question. In 2D, it can be solved in polynomial

time.

2.2 Rigidity of graphs with bounded treewidth

A tree decomposition of a graph G = (V, E) is a tree T with a set of nodes B, the bags, where each

B 2 B is a subset of V , such that the following conditions hold.

1.
S

B2B B = V,

2. 8(u, v) 2 E 9B 2 B u, v 2 B,

3. 8v 2 V Bv = {B 2 B | v 2 B } forms a subtree of T .

The width of the tree decomposition is w = maxB2B |B| − 1. The treewidth of G is the minimum

width over all tree decompositions of G. A class of graphs G has bounded treewidth, if there is a

constant c, such that all graphs in G have treewidth bounded by c.

Courcelle [Cou90] showed that when a graph property is expressible in monadic second-order

logic (MSO-logic), then it can be decided in linear time when the input graph has bounded

treewidth. Elberfeld, Jakoby and Tantau [EJT10] showed a logspace-version of Courcelle’s Theo-

rem.
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Theorem 2.1 ([EJT10]) All graph properties expressible in MSO-logic can be solved in L on

graphs of bounded treewidth.

The characterization in Theorem 1.2 can be used to express rigidity in MSO-logic. For a simple

undirected graph G = (V, E), there is a MSO-predicate Tree(V, E) that is true iff G is a tree,

see [CE12, Section 1.3]. Then the following predicate minRigid(V, E) is true iff G is minimally rigid,

minRigid(V, E) = 8e 2 E 9T1, T2 � E ( Tree(V, T1) ∧ Tree(V, T2) ∧

e 2 T1 ∧ e 2 T2 ∧

8f 2 E− e ( f 2 T1 � f 2 T2 ) ).

Since a graph G = (V, E) is rigid iff it has a spanning minimally rigid subgraph, we get a

MSO-predicate for G being rigid,

Rigid(V, E) = 9F � E minRigid(V, F)

It follows that the recognition of Laman graphs and also general rigid graphs is in NC2 for

graphs with bounded treewidth.

Corollary 2.2 Rigidity of graphs with bounded treewidth can be decided in L and thus in NC2.

2.3 Structural Decompositions

Let G = (V, E) be a graph. A set S � V with |S| = k is called a k-separating set, if G − S is not

connected. Let G1, . . . , Gl be the connected components of G − S. The split graphs with respect

to S are the subgraphs of G induced by Gi [ S, where we add virtual edges between every pair of

vertices in S. A graph G is called k-connected if there is no (k− 1)-separating set in G.

A k-separating set is called articulation point for k = 1, separating pair for k = 2, and

separating triple for k = 3.

Laman graphs are clearly connected, actually even 2-connected.

Lemma 2.3 ([JJ05, Lemma 2.6]) Laman graphs are 2-connected.

In particular, every node of a Laman graph has degree at least two.

3-connected components. Let G = (V, E) a 2-connected graph. A separating pair {u, v} in G is

called 3-connected, if there are 3 vertex disjoint paths between u and v in G.

The triconnected components of G are the split graphs we obtain from G when we successively

split G along all 3-connected separating pairs, in any order. If a separating pair {u, v} is connected

by an edge in G, we also define a 3-bond for {u, v} as a triconnected component. This is the multi-

graph with two vertices u, v with 3 edges between them. The 3-bond components are there to be

able to reconstruct the original graph from the components.

It is known that the triconnected components of G are uniquely determined, i.e. independent

of the order of the separating pairs in which we do the splitting.
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Lemma 2.4 ([Mac37, HT72]) The triconnected components of a 2-connected graph are unique.

The decomposition leads to the triconnected component tree : There is a node for each tricon-

nected component and each 3-connected separating pair of G. There is an edge between tricon-

nected component node C and separating pair node {u, v}, if u, v 2 C.

4-connected components. We also need to further decompose 3-connected graphs along sepa-

rating triples into 4-connected components. The split components of two separating triples might

overlap and thus we cannot simply split along all separating triples. For example, in a K3,3-graph

both sides form separating triples and we cannot split along both. For an efficient splitting proce-

dure with respect to parallel computation see [TW14] or [EV21].

The decomposition again leads to a tree, the 4-connected component tree. In this tree we have

vertices for the separating triples and for the 4-connected components. In addition, there is a vertex

representing a 3-bond component for every edge (u, v) from G, where u, v are part of a separating

triple. Two vertices in the 4-connected component tree are adjacent if one of them corresponds

to a separating triple and the other one to a 4-connected component or a 3-bond sharing vertices

with the triple.

Complexity. Graph reachability problems can be solved in nondeterministic logspace, NL. In

undirected graphs, even in deterministic logspace, L [Rei08]. Problems in NL like directed s-t-

reachability can be reduced to matrix powering which yields efficient parallel algorithms. We have

NC1
� L � NL � NC2.

In the following lemma, we list some known results along these lines that we will need later on.

Lemma 2.5 (Complexity summary for connectivity) Let G be an undirected graph. The

following problems can all be solved in NC2.

1. Compute the articulation points and the connected components of G.

2. When G is 2-connected, compute the 3-connected separating pairs, the triconnected

components, and the triconnected component tree of G.

3. When G is 3-connected, compute the separating triples, the fourconnected components,

and the four connected component tree of G [TW14].

The component trees can have large depth. As we want to process them in a bottom-up fashion

in logarithmic time, we need to identify long paths and treat them separately. Let T be a rooted

tree and let v be a vertex in T . Then T(v) is the subtree of T rooted at v. A child u of v is a large

child if |T(u)| > |T(v)|/2. A large child path in T is a maximal path such that every vertex along

the path is a large child of its parent.

Lemma 2.6 ([STW16]) Let T be a tree with n nodes and p be a simple path in T . Then

• the number of large child paths on p is � logn,
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• the number of nodes on p that are not large children is � logn,

• all large child paths in T can be computed in NC2.

By the first two items in Lemma 2.6, the number of large child paths in T is polynomially

bounded in n. Then the last item follows because we can compute the number of nodes in subtrees

of T in L and hence, also in NC2.

Structure theorems. The reason why we are considering the above decompositions is that for

K3,3-free, K5-free, and one-crossing-minor-free graphs, we end up in components that are planar

or of bounded treewidth. In more detail, for K3,3-free graphs, the decomposition leads to planar

components or K5-components.

Theorem 2.7 ([Asa85]) Every 3-connected K3,3-free graph is either planar or K5.

For K5-free Laman graphs, we end up in planar components or a special constant size graph.

Theorem 2.8 ([Wag37]) Every 4-connected component of a K5-free graph is either planar

or the Möbius ladder on 8 vertices, also known as Wagner graph.

For one-crossing-minor-free graphs, we get planar or bounded treewidth components.

Theorem 2.9 ([RS93]) Every 4-connected component of a one-crossing-minor-free graph is

either planar or of bounded treewidth.

2.4 Henneberg sequences

Laman graphs can be constructed iteratively via Henneberg extensions [Hen11]. The starting

point in a sequence of Henneberg extensions is a graph with two nodes connected by an edge.

Let G be the graph constructed so far. There are two ways to add a new node v to G:

• A Henneberg extension of type 1 connects v with two arbitrary vertices of G.

• A Henneberg extension of type 2 takes an existing edge (u,w) in G and replaces it with

edges (u, v) and (v,w) instead. Additionally v is connected to an arbitrary third vertex in G.

Theorem 2.10 ([TW85]) A graph G = (V, E) is Laman iff it can be constructed by a sequence

of Henneberg extensions that starts with an arbitrary edge e 2 E.

Henneberg sequences can also be reversed in the following way.

Lemma 2.11 ([JJ05, Lemma 2.8]) Let G = (V, E) be a Laman graph with |V | � 3 and v 2 V.

1. If deg(v) = 2, then G− v is Laman.

2. If deg(v) = 3, then G− v + (u,w) is Laman for some pair u,w of neighbors of v.
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Using reversed Henneberg operations one can generalize Theorem 2.10: One can start the

Henneberg sequence for a Laman graph with any two nodes u and v and edge (u, v), even if (u, v)

is not present in G.

Lemma 2.12 ([HOR+05, Lemma 2]) A Laman graph G = (V, E) has a Henneberg construc-

tion that starts from edge (u, v), for any two nodes u, v 2 V.

The proof for Lemma 2.12 roughly works by applying reversed Henneberg steps to the graph

until we end up with the edge (u, v). We further generalize Lemma 2.12 by showing the existence

of a Henneberg sequence that starts with a triangle on any three vertices T = {u, v,w} that contain

at least one edge in G. To do so, we first make a technical observation for the case that all vertices

not in T have large degree.

Lemma 2.13 Let G = (V, E) be a Laman graph, |V | � 4, and T = {u, v,w} � V such that every

x 2 V 0 = V − T has deg(x) � 4. Then we have

• deg(u) = deg(v) = deg(w) = 2,

• |E(T)| = 0,

• G− T is a connected graph.

Proof. The sum of all node degrees of G is at least deg(u) + deg(v) + deg(w) + 4(n − 3). By the

degree sum formula, we therefore have

deg(u) + deg(v) + deg(w) + 4(n − 3) � 2m.

Since m = 2n − 3, we conclude that

deg(u) + deg(v) + deg(w) � 6.

Since G is Laman, we also have deg(u),deg(v),deg(w) � 2. This implies the first item.

To show the second item, let n 0 = |V 0| and m 0 = |E(V 0)|. Let E(V 0, T) be the edges between V 0

and T . Since the nodes in T have degree 2, we have |E(V 0, T)| � 6. We argue that |E(V 0, T)| = 6,

and hence |E(T)| = 0.

The sum of all node degrees in V 0 is at least 4n 0 − |E(V 0, T)|. By the degree sum formula, we

therefore have

4n 0 − |E(V 0, T)| � 2m 0.

Since G is Laman, we also have m 0

� 2n 0 − 3, and therefore

|E(V 0, T)| � 6.

To argue that G − T is connected, assume that there are two components in G − T , say on

nodes V1 and V2, respectively. For each component we can make the same estimates as for V 0

above to show the second item. Hence, we would get that |E(V1, T)|, |E(V2, T)| � 6. But this

contradicts the first item. �

We use Lemma 2.13 to show that a Henneberg sequence for a Laman graph G can start with

a triangle on any three nodes, as long as there is at least one edge between the nodes in G. This

generalizes a result by Haas et al. [HOR+05, Lemma 3].
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Lemma 2.14 Let G = (V, E) be a Laman graph and T = {u, v,w} � V such that |E(T)| � 1.

Then there is a Henneberg sequence for G that starts with triangle (u, v,w).

Proof. We prove the claim by induction on n = |V |. For n = 3 the claim is trivially true since the

only possibility for G is to be exactly triangle (u, v,w). Let n � 4. Let vertex x 2 V 0 = V − T such

that deg(x) � 3. Note that x must exist because otherwise, when deg(x) � 4, for all x 2 V 0, then

|E(T)| = 0 by Lemma 2.13, but we have |E(T)| � 1.

We remove x by a reversed Henneberg step from Lemma 2.11. Let H = G − x. The removal

operation can only increase the number of edges within T in H. Thus, by the induction hypothesis,

there is a Henneberg sequence for H that starts with triangle (u, v,w). We extend the sequence by

adding x back to H. Then the sequence produces G. �

The assumption in Lemma 2.14 is necessary: There are examples for a graph G where |E(T)| = 0

and it is not possible to construct G from triangle (u, v,w). In Section 5, we will consider the case

where G is 3-connected and T is a separating triple. Then we can still get a useful statement about

the starting point of a Henneberg sequence from Lemma 2.13 and 2.14.

Corollary 2.15 Let G = (V, E) be a 3-connected Laman graph with a separating triple T =

{u, v,w} and corresponding split graphs G1, G2, . . . , Gℓ, where we have removed all virtual edges

from the split graphs. Then there is a Henneberg sequence for G that starts

• either with triangle (u, v,w),

• or there is a split component, say G1 = (V1, E1), that is Laman and |E1(T)| = 0, and the

sequence initially constructs G1.

Proof. The claim follows from Lemma 2.14 when |E(T)| � 1. So assume that |E(T)| = 0. Like in the

proof of Lemma 2.14, we remove vertices x 2 V 0 = V − T with deg(x) � 3 by reversed Henneberg

steps, as long as there are such vertices. In case this process introduces an edge within T at

some point, then it will stop with triangle (u, v,w) as in the proof of Lemma 2.14. Otherwise, it

will stop with a Laman graph H = (VH, EH) with |EH(T)| = 0. By Lemma 2.13, graph H − T is

connected. Hence, H can be obtained by reverse Henneberg steps from one of the split components

G1, G2, . . . , Gℓ, say G1. Now a Henneberg sequence for H can be extended to a sequence for G1

by adding the vertices of G1 back that we removed above. Note that T � VH. Hence, adding the

remaining vertices of G1 will not introduce an edge within T . Now we can add the rest of the

vertices back that we removed above. This gives the desired Henneberg sequence for G. �

3 Rigid embeddings for planar graphs in NC
2

Streinu [Str00] and Haas et al. [HOR+05] showed that planar Laman graphs can be characterized

by planar embeddings in the plane with certain geometric properties. We observe that this char-

acterization can be verified efficiently in parallel. Moreover, the geometric properties can be used

to compute an infinitesimally rigid embedding in NC2.

Consider a straight-line embedding of a planar graph G = (V, E). For an angle between two

adjacent edges, we call the angle convex, if it is strictly less than 180Æ, and reflex, if it is strictly
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larger than 180Æ. We say that vertex v 2 V in the embedding of G is pointed, if some consecutive

pair of edges in the circular order of edges around v span a reflex angle. We call the embedding

of G pointed, if every v 2 V is pointed.

The faces of a straight-line embedding of G are simple polygons. A vertex of a polygon is

convex, if the interior angle between its two adjacent edges is convex. The vertex is reflex, if the

interior angle is reflex. A polygon is a pseudo-triangle, if it has exactly three convex vertices, and

all other vertices being reflex. Note that a triangle is also a pseudo-triangle.

We say that a planar graph admits a pointed pseudo-triangulation (PPT), if it can be embed-

ded in the plane such that every vertex is pointed, every interior face is a pseudo-triangle, and the

outer face is the complement of the convex hull of all vertices. Streinu [Str00] first showed that the

underlying graph of a pointed pseudo-triangulation is always Laman. Then Haas et al. [HOR+05]

showed the reverse direction.

Theorem 3.1 ([Str00, HOR+05]) A planar graph G is Laman iff G admits a pointed pseudo-

triangulation.

Furthermore, a pointed pseudo-triangulation embedding of a Laman graph simultaneously pro-

vides an infinitesimally rigid embedding.

Theorem 3.2 ([Str00, Str05]) Any pointed pseudo-triangulation embedding of a planar Laman

graph is an infinitesimally rigid embedding.

The difficulty in finding a PPT embedding of a graph are the conflicting conditions that around

each vertex all angles except one should be convex, but every face must have exactly three convex

angles. For a planar embedding of a graph, Haas et al. [HOR+05] defined a combinatorial pointed

pseudo-triangulation (CPPT) that just assigns label C (for convex ) or R (for reflex ) to every

angle such that the assignment combinatorially corresponds to a PPT embedding. That is:

1. Every vertex has exactly one angle labeled R,

2. every interior face has exactly three angles labeled C,

3. every angle incident to the outer face is labeled R.

Clearly, the angles of a PPT embedding of a graph G yield a CPPT, and hence, a CPPT is a

necessary condition for a PPT. However, the converse might not be true. Nevertheless, by Euler’s

formula for planar graphs, one can show that a graph with a CPPT has exactly m = 2n − 3

edges [HOR+05, Lemma 5].

Finding a CPPT for a planar graph G is the first step to find a PPT embedding. Haas et

al. [HOR+05] reduce the CPPT problem to a perfect matching problem on a bipartite graph H.

However, H is no longer planar in general, and NC-algorithms for perfect matching are only known

for planar bipartite graphs. Instead, Rollin, Schlipf, and Schultz [RSS19] reduce the CPPT problem

to a maximum flow problem with multiple sources and sinks on a bipartite graph H 0 that is very

similar to H, but is planar. Below we describe H 0 so that one can see that it can be constructed

efficiently in parallel. Then the flow algorithm by Miller and Naor [MN95] can be used to compute

a CPPT assignment efficiently in parallel.
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Lemma 3.3 ([RSS19, Lemma 9]) For a planar graph G, finding a CPPT can be reduced to

the problem of finding a flow in a planar graph with multiple sources and sinks with given

demands.

Proof. Let G = (V, E) have m = 2n − 3 edges and let F be the set of faces in a planar embedding.

We want to determine which angles in a face should be assigned to be reflex, and the one reflex

angle of every node.

For each face f 2 F, let df be the number of nodes around f. Recall that df − 3 nodes should

be reflex nodes in f, for the interior faces, and df when f is the outer face. Correspondingly, we

set up the flow network H 0 such that for every face f 2 F there are two nodes f1, f2 connected by a

directed edge (f1, f2) with capacity df − 3, for every inner face, and capacity df, for the outer face,

where nodes f1 are source nodes.

Then we connect the f2-nodes with the vertices of G. That is, for every v 2 V there are two

nodes v1, v2 in H 0 connected by a directed edge (v1, v2) with capacity 1, where the nodes v2 are sink

nodes. For the connection between faces and nodes, we put a directed edge (f2, v1) with capacity 1,

whenever node v belongs to face f. Note that H 0 is planar.

Clearly, the sum of the sink-capacities is n. It follows from Euler’s formula that also the sum of

the source-capacities is n. Moreover, an integer flow of value n corresponds to a CPPT-assignment

for G: the edges (f2, v1) with flow 1 indicate where the reflex angle of node v is. All other angles

are set to convex. �

Since the network H 0 in the proof of Lemma 3.3 can be constructed efficiently in parallel from G,

we can combine it with the flow algorithm from Miller and Naor [MN95].

Corollary 3.4 For a planar graph G, we can find a CPPT in NC2, if one exists.

We say that a CPPT of a graph G is stretchable if G admits a compatible PPT, i.e. a PPT

embedding, where angles labeled C are convex and angles labeled R are reflex. Observe that the

above flow network H 0 might have many maximum flows, and correspondingly, there can be many

CPPT assignments for G. For Laman graphs, all these assignments are stretchable.

Theorem 3.5 ([HOR+05, Theorem 9]) For a planar Laman graph, every CPPT assign-

ment is stretchable.

Haas et al. [HOR+05] gave a characterization of when a CPPT assignment of graph G is stretch-

able via an associated planar graph G�. Graph G� contains G, but some of the edges are turned

into directed edges. There are also additional directed edges such that the inner faces of G become

triangulated, but still are planar. Further conditions are

1. the boundary vertices of G have no outgoing edges in G�,

2. every interior vertex v in G has 3 outgoing edges in G�, where two of them are incident to

the reflex angle of v and the third edge lies in the face containing the reflex angle.
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The above conditions do not specify G� uniquely. However, any graph with the above properties

is fine for our purpose. Haas et al. [HOR+05] describe a recursive algorithm to construct G�. Rollin,

Schlipf, and Schulz [RSS19] gave a construction that works in linear time. Their construction can

also be accomplished efficiently in parallel.

Lemma 3.6 ([HOR+05, RSS19]) Given a CPPT assignment of a planar graph G, the graph G�

can be constructed in NC1.

Proof. First, for each inner vertex v, the two edges incident to the reflex angle of v are oriented

away from v. Then we triangulate all inner faces that are not already triangles. Consider such a

face and let a, b, c 2 V be the three nodes marked as convex. Let Va,b, Va,c, Vb,c be the vertices

between a, b, respectively a, c and b, c. At least one of the sets is non-empty, say Va,b 6= ;. For

every v 2 Va,b, we put a directed edge (v, c). Let x 2 Va,b be the neighbor of a and y 2 Va,b be

the neighbor of b. Then we add directed edges (v, x), for all v 2 Va,c, and (w,y), for all w 2 Vb,c.

Both steps can be done in parallel for every inner vertex and every inner face. �

Whether a CPPT assignment for G is stretchable can now be characterized by a connectivity

property of G�. In a directed graph, a set of vertices S is 3-connected to a disjoint set of vertices T ,

if for every v 2 S there are 3 vertex disjoint paths to 3 distinct vertices in T .

Theorem 3.7 ([HOR+05]) Let G be a planar graph with a CPPT assignment and G� be the

graph associated with G. Then the CPPT G is stretchable if and only if the set of interior

vertices is 3-connected to the set of boundary vertices in G�.

It follows that checking stretchability can be done efficiently in parallel.

Corollary 3.8 Given a planar graph G with a CPPT assignment, we can check if G is

stretchable in NC2.

Proof. Let G = (V, E). First, we construct graph G� by Lemma 3.6. Let S be the interior nodes

of G� and T be the nodes on the boundary. We add a new vertex t in the outer face of G� and

connect all nodes v 2 T with t with a directed edge (v, t). By Menger’s Theorem S is 3-connected

to T if and only if for every s 2 S and for every u, v 2 V − {s, t} there is a path from s to t

in G� − {u, v}. The latter condition can be checked in NC2 as explained in Section 2.3. Now the

claim follows from Theorem 3.7. �

In summary, we can decide whether a planar graph is minimally rigid efficiently in parallel.

Theorem 3.9 Recognizing planar Laman graphs is in NC2.

Proof. Let G be planar. We first compute a planar combinatorial embedding for G, and then a

CPPT assignment for the embedding. Finally, we check if the CPPT is stretchable.

By Lemma 3.4 and Corollary 3.8 we know that G is Laman if and only if all subroutines work

out positively. Moreover, all subroutines are in NC2, and hence the overall algorithm as well. �

Haas et al. [HOR+05] also show that one can compute a PPT embedding for planar Laman

graphs. By Theorem 3.2, this provides an embedding, where the rigidity matrix has full rank.

Hence, this gives a derandomization of the rank problem for the rigidity matrix for planar graphs.
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Theorem 3.10 ([HOR+05]) Given a planar Laman graph G with n nodes, one can compute

a PPT embedding for G in time O(n3/2).

The algorithm to compute the PPT embedding is based on Tutte’s Theorem on barycentric

embeddings of graphs. Essentially, we fix the coordinates of the outer face vertices v1, . . . , vk to be

the vertices of a convex k-gon. The coordinates of the remaining vertices are computed by solving

a system of linear equations which can be done in NC2 [Mul87].

Corollary 3.11 Given a planar Laman graph G, computing a PPT embedding for G is in NC2.

4 Rigid embeddings for K3,3-free graphs in NC
2

Let G be a K3,3-free graph. We want to check whether G is Laman efficiently in parallel. By

Lemma 2.3, we may assume that G is 2-connected. By Theorem 2.7, when we decompose G into

3-connected components, these components are either planar or K5. For planar components we can

check if they are Laman by Theorem 3.9. Hence, what we need is a connection between the Laman

properties of G and its 3-connected components. This is established by the following lemma.

Lemma 4.1 Let G = (V, E) be a 2-connected graph with a separating pair {u, v} and corre-

sponding split graphs G1, G2, . . . , Gℓ, where we have removed all virtual edges from the split

graphs.

1. If (u, v) 2 E, then G is Laman iff G1, . . . , Gℓ are Laman.

2. If (u, v) 62 E, then G is Laman iff there exists one component, say G1, that is Laman,

and G2 + (u, v), . . . , Gℓ + (u, v) are Laman.

Proof. Let G be Laman. By Lemma 2.12, there is a Henneberg construction for G that starts

with edge (u, v). Recall that this is independent of whether (u, v) is an edge in G. When a new

vertex is added in the Henneberg sequence, it belongs to exactly one of the split graphs Gi and the

extension cannot interfere with some vertex from another split graph. Otherwise, the separating

pair would not separate the split graphs from each other in G.

1. If (u, v) 2 E, this gives us Henneberg sequences for all split graphs by subdividing the sequence

for G in its parts for G1, . . . , Gℓ, respectively. Hence, they are all Laman.

2. If (u, v) 62 E, it has been replaced by a type 2 extension adding a vertex in exactly one split

graph, say G1. Again we subdivide the Henneberg sequence for G, and get sequences for G1

and for G2 + (u, v), . . . , Gℓ + (u, v). Therefore, they are all Laman.

For the backward direction, in the first case, we consider Henneberg constructions forG1, G2, . . . , Gl

that start with edge (u, v). Since the edge is present in all the components, it is never used in any

of the Henneberg sequences. Hence, we can combine all the Henneberg sequences to a sequence

for G. Hence, G is Laman.
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The second case is similar. Since (u, v) is not present in G1, the edge is used in the sequence

for G1, but not in any of the sequences for G2+(u, v), . . . , Gℓ+(u, v). Hence, we can again combine

all the Henneberg sequences to a sequence for G. Hence, G is Laman. �

The above lemma motivates us to define an operation on 2-connected graphs, which we call

Laman-split.

Definition 4.2 (Laman-split) For a 2-connected graph G = (V, E) with a separating pair

{u, v}, let G1, G2, . . . , Gℓ be the split graphs obtained after splitting G along {u, v}, where we

have removed all virtual edges. The Laman-split of G along {u, v} are the graphs G 0

1, G
0

2, . . . , G
0

ℓ,

where for each i 2 [ℓ],

G 0

i =

{
Gi + (u, v), if m(Gi) = 2n(Gi) − 4,

Gi, otherwise.

For a Laman graph, all split graphs Gi in Definition 4.2 have either 2n(Gi)− 4 or 2n(Gi)− 3 edges

by Lemma 4.1. Note that we define Laman-split also for graphs that are not Laman. In this case,

the split graphs can also have other numbers of edges. In such a case, Gi, and hence G, are trivially

detected as not being Laman.

Recall that by Lemma 2.4, the standard splitting of 2-connected graphs in triconnected com-

ponents is unique, i.e. independent of the order of the separating pairs we do the splitting. The

following lemma shows when we apply Laman-splits to the components on the way, the resulting

Laman components are unique as well.

Lemma 4.3 Let G = (V, E) be a 2-connected graph. Then G is Laman iff there is a way to

put the separating pair edges (u, v) 62 E into the triconnected components of G such that (u, v)

is in all but one of the components that contain u, v and that the resulting components are

all Laman.

Moreover, in case G is Laman, this Laman decomposition is unique and can be computed

in NC2.

Proof. Consider the standard recursive splitting procedure to compute the triconnected component

tree of G. When we have split along a separating pair {u, v}, we can also compute the Laman-split

that says in which split components edge (u, v) should be put. Note that the recursive splitting

is always done on the components computed by the standard splitting procedure. The Laman-

split is a post-computation on these components that does not affect the recursive splitting. By

the characterization given in Lemma 4.1, we conclude that G is Laman iff all the components

computed by Laman-splits are Laman.

It remains to argue about the uniqueness of the Laman decomposition. This property is crucial

for our parallel algorithm to compute the decomposition. So assume that G is a Laman graph.

By Lemma 2.4, the triconnected components are unique. We argue that also the corresponding

components we get from Laman-splits are uniquely determined. That is, whether a separating pair

edge is present or not in a component is irrespective of the order of the decomposition.

This is trivial in case a separating pair {u, v} is connected by an edge (u, v) in G. Then all

components will have the edge (u, v) as well by Lemma 4.1. We only have to argue for the case
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that {u, v} is not connected by an edge in G. In this case, the edge (u, v) will be present in all

but one of the components by Lemma 4.1. We argue that the component without edge (u, v) is

uniquely determined.

Consider the triconnected component tree T . We argue via induction on the number of com-

ponent nodes in T . If T has just one component node, then there is no separating pair and the

claim is trivial.

In the inductive step, let T have more than one component node. Let C be a component node

with a separating pair {u, v} such that all other split components at {u, v} are leafs in T . In the leaf

components {u, v} is the only separating pair. Hence, it is uniquely defined whether the separating

pair edge should be present in a leaf component or not, so that it has the right number of edges to

be Laman. Therefore the same holds for the parent component C by Lemma 4.1. Note also that

the presence or absence of a separating pair edge (u, v) in C is not affected when C is further split

along a different separating pair.

Now we can prune the leaf components considered above from T and get a tree with a smaller

number of component nodes where we can apply the induction hypothesis.

For the complexity bound, we describe a parallel procedure to obtain the Laman components.

First we compute all triconnected components in NC2 (Lemma 2.5). To determine where to put the

separating pair edges, we do a Laman-split of G, for every separating pair {u, v} in parallel. That

is, we treat each separating pair as the starting point of a Laman decomposition of G. Thereby

we will put the edges correctly in the respective components by the uniqueness property: For any

triconnected component H that contains {u, v}, we add the separating pair edge (u, v) to H, if after

Laman-split in G the component H 0 that contains H has edge (u, v). �

Now we have all the tools to decide efficiently in parallel whether a given K3,3-free graph is

Laman.

Theorem 4.4 Given a K3,3-free graph G, we can decide whether G is Laman in NC2.

Proof. Given a 2-connected K3,3-free graph G, we apply the algorithm from Lemma 4.3 to compute

its Laman components. Here we might already detect that G is not Laman when the Laman-

split yields some component where the number of edges does not match the number according to

Lemma 4.1. Otherwise, we have that G is Laman iff all the components are Laman. Note that the

components are planar graphs or subgraphs of K5 by Theorem 2.7, because separating pair edges

only replace virtual edges, and hence do not affect planarity. Thus, we can apply Theorem 3.9 for

all components in parallel to check if they are all Laman. All the subroutines used are in NC2.

�

The decision algorithm splits the graph G along separating pairs until all components are planar

and then checks that these components are Laman. We observed in Section 3 that we can also

compute rigid embeddings for the planar components. To find a rigid embedding of G, we now

want to reassemble the embeddings of the components appropriately.

In Lemma 4.5, we make the assumption that the two nodes of a separating pair are mapped to

the same pair of points in all the components, respectively. We show that then we directly have a

rigid embedding for the whole graph G.
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Lemma 4.5 Let G = (V, E) be a Laman graph with a separating pair {u, v}. Let G1, G2, . . . , Gℓ

be the Laman components obtained after a Laman-split of G along {u, v}. Let p1, p2, . . . , pℓ be

infinitesimal rigid embeddings of the components such that

p1(u) = p2(u) = � � � = pℓ(u),

p1(v) = p2(v) = � � � = pℓ(v),

p1(u) 6= p1(v),

so that the common embedding p = [

ℓ
i=1pi is well defined. Then p is an infinitesimally rigid

embedding of G.

Proof. By Lemma 4.1, edge (u, v) is not contained in at most one of the components. Hence, we

may assume that (u, v) is contained in G2. We prove the claim for ℓ = 2. For larger ℓ, we can

iterate the argument, combining two graphs in every round.

When we combine the rigidity matrices R1 = R(G1, p1) and R2 = R(G2, p2) as shown in Figure 2,

we essentially get the rigidity matrix R = R(G,p).

R1

R20

0

� �R =

u

�

�

�

v

�

�

�

(u, v) 0 0 � � � 0 0 0 � � � 0

� �0 0 � � � 0 0 0 � � � 0a =

Figure 2: The rigidity matrix R = R(G,p) in case (u, v) 2 E, up to a permutation of the columns. If

(u, v) 62 E, we have to remove row (u, v). The �-entries represent possible non-zero entries. Each �

stands for two values, an x- and a y-value.

Vector a is in the row-span of each, the upper part from R1 and the lower part from R 0

2 = R2 − (u, v).

Therefore the only non-zero entries of a can be at positions u and v.

By our assumption, edge (u, v) is in G2 and hence, there is a row (u, v) in R2. Since R2 has full

rank, row (u, v) is linearly independent from the other rows of R2.

• If (u, v) 2 E, then also R1 and R have a row (u, v), and the row is linearly independent of the

other rows of R1 as well.

• If (u, v) 62 E, then row (u, v) is present only in R2, but not in R1 and R. Now, row (u, v)

might be linearly dependent on the rows of R1.
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We have to show that the rows of matrix R are linearly independent. Let R 0

2 denote the matrix

consisting of all rows of R2 except row (u, v). Recall that if row (u, v) belongs to R then it also

belongs to R1. Hence, the rows of R can be partitioned into R1 and R 0

2. Since R1 and R 0

2 have full

rank, the only way we can have a dependency in R is that there is a non-zero vector a that is in

the row-span of R1 and of R 0

2 as illustrated in Figure 2. Then a − a = 0 would give a non-trivial

linear combination of the the rows of R that produces the zero vector.

By the structure of R as shown in Figure 2, the only non-zero entries of a can be at positions u

and v. We restrict our attention to these positions. Let au,v and bu,v be the the part of a and

row (u, v) at positions u and v, respectively,

au,v = (aux , avx , auy, avy),

bu,v = (xu − xv, xv − xu, yu − yv, yv − yu).

By assumption, we have bu,v 6= 0. Let M be the matrix consisting of the vectors for the three

trivial motions, M = (vx, vy, vr), on these four positions. That is

M =

0

B

B

B

B

B

�

1 0 −yu

1 0 −yv

0 1 xu

0 1 xv

1

C

C

C

C

C

A

.

Because a, and hence au,v are a linear combination of the rows of the rigidity matrix, we have

au,vM = bu,vM = 0.

Note that M is 4� 3 matrix and rank(M) = 3 since we assume that (xu, yu) 6= (xv, yv). Hence,

the codimension of M is 1, or, in other words, the kernel of MT has dimension 1. It follows that au,v

must be a multiple of bu,v. Hence, vector a is a multiple of the row-vector (u, v) of R. But recall

that a is in the row-span of R 0

2 and row-vector (u, v) is linearly independent of R 0

2. Hence, we must

have a = 0. Therefore, the rigidity matrix R has full rank. �

To get a rigid embedding of a K3,3-free Laman graph, it now remains to show how to achieve

the assumption of Lemma 4.5.

Theorem 4.6 Given a K3,3-free Laman graph G, we can compute an infinitesimally rigid

embedding in NC2.

Proof. We follow the algorithm from Theorem 4.4 and apply Lemma 4.3 to decompose G into

planar Laman components C1, C2, . . . , Ck. Then we compute infinitesimally rigid embeddings

p1, p2, . . . , pk for the components in parallel by Corollary 3.11.

The vertices that belong to some separating pair occur in several components. We will construct

new rigid embeddings q1, q2, . . . , qk that will map different copies of any such vertex to the same

point, and leave all other vertices unchanged. Then q1, q2, . . . , qk will fulfill the assumption of

Lemma 4.5, and q =
Sk

i=1 qi will be a rigid embedding for G.
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For v 2 V , let

Sv = { i 2 [k] | v 2 V(Ci) }.

For every v 2 V where |Sv| > 1, we construct a pair of univariate polynomials (av(t), bv(t)) that

interpolates the points {pi(v) | i 2 Sv }. That is, we compute the interpolation polynomials such

that (av(i), bv(i)) = pi(v), for every i 2 Sv. Then we replace the coordinates of such a vertex v

by (av(t), bv(t)) in each component. That is, we define embeddings pi,t(v), for i 2 [k] and v 2 V(Ci),

pi,t(v) =

{
(av(t), bv(t)), if |Sv| > 1,

pi(v), otherwise.

Note that a component Ci can have several separating pair nodes and we replace their coordinates

by different polynomials, respectively, but all in the same variable t. The interpolation guarantees

that pi,t(v) agrees with pi(v) for t = i, for every v 2 V(Ci),

pi,i(v) = pi(v). (5)

Consider the rigidity matrices R(Ci, pi,t), where some of the entries are polynomials in t. Our goal

is to find a value for t such that all matrices R(Ci, pi,t) have full rank. Let Ri be a non-singular

(2ni−3)-square submatrix of R(Ci, pi) and define Ri,t as the corresponding submatrix of R(Ci, pi,t).

Since det(Ri) 6= 0 and Ri = Ri,i by (5), we have that det(Ri,t) is a non-zero polynomial. Hence, the

product

A(t) = det(R1,t) det(R2,t) � � � det(Rk,t)

is a non-zero polynomial too. For the degree of A(t) note that deg(av),deg(bv) = |Sv| − 1 � n.

Therefore

deg(det(Ri,t)) � n(2ni − 3) < 2n2.

Hence, for A(t) we get

deg(A(t)) < k2n2
� 2n3.

It follows that we can find a t0 2 [2n3 + 1] such that A(t0) 6= 0. Now we define qi = pi,t0 ,

for all i 2 [k]. By construction, qi is still a rigid embedding of Ci. Then q =
Sk

i=1 qi is a rigid

embedding for G by Lemma 4.5.

For the complexity, note that polynomial interpolation and evaluation is in NC2 [EGK90].

�

5 Deciding Lamanness of one-crossing-minor-free graphs in NC
3

In this section, we give an NC3 algorithm for deciding whether a K5-free graph is Laman, or even

more general, whether a one-crossing-minor-free graph is Laman. We use Theorem 2.8, respectively

Theorem 2.9, and further decompose the graph at separating triples into 4-connected components.

We first show how the Laman property is preserved in the components. This can be seen as a

generalization of Lemma 4.1 for separating pairs to separating triples.
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Lemma 5.1 Let G = (V, E) be a 3-connected graph with a separating triple T = {u, v,w} and

corresponding split graphs G1, G2, . . . , Gℓ, where we have removed all virtual edges from the

split graphs. Let ∆T = {(u, v), (u,w), (v,w)} be the triangle edges and E(T) the actual edges

of G in T .

Then G is Laman iff there is a way to put each e 2 ∆T−E(T) in all but one of G1, G2, . . . , Gℓ,

such that the resulting components are all Laman.

Proof. The argument goes along the lines of the proof of Lemma 4.1, extended to triples.

Let G be Laman. By Corollary 2.15, there is a Henneberg construction for G that starts either

with triangle (u, v,w), or with one component, say G1 = (V1, E1), where |E1(T)| = 0.

• If the sequence starts with triangle (u, v,w), each triangle edge e 2 ∆T − E(T) will be sub-

divided by a type 2 step, adding a vertex in one split component, say Gi. Hence, to get a

Henneberg sequence for all the components, we have to add e to all of them except Gi.

• If the sequence starts by constructing G1, the rest of the sequence constructs G2, . . . , Gℓ by

extending from T , but without using any triangle edges, because |E1(T)| = 0. Hence, we get

Henneberg sequences for G2 + ∆T , . . . , Gℓ + ∆T .

For the reverse direction, we have Henneberg sequences for all the components, where we have

added the edges from ∆T−E(T) to G1, G2, . . . , Gℓ, as described in the lemma. If all components have

a Henneberg sequence that starts with triangle (u, v,w), then we can combine them to one sequence

for G. If there is component, say G1 = (V1, E1) with |E1(T)| = 0, that cannot be constructed

from triangle (u, v,w), we start with the sequence for G1. By definition, the other components

are G2 + ∆T , . . . , Gℓ + ∆T , that have Henneberg sequences starting with triangle (u, v,w). These

sequences will not use any triangle edge, and hence, we can attach them to the sequence for G1.

This yields a sequence for G. �

While using Lemma 5.1, we will be considering different choices of triangle edges which can be

added to make a component Laman. The following lemma states that when two of the choices of

a pair of triangle edges work, then so does the third one.

Lemma 5.2 Let G = (V, E) be a graph and u, v,w 2 V be three nodes in G with no edge

between them. If G+ {(u, v), (u,w)} and G+ {(u, v), (v,w)} are Laman then G+ {(u,w), (v,w)}

is also Laman.

Proof. Assume that G + {(u,w), (v,w)} is not Laman. Then there must be a subset S of vertices

including at least two triple vertices such that

|E[S]| > 2|S| − 3. (6)

Then S will also satisfy (6) in G+ {(u, v), (u,w)} or G+ {(u, v), (v,w)}, a contradiction. �

Consider the 4-connected component tree of a 3-connected graph. Let components H1, . . . , Hℓ

be leaf nodes in the tree that are attached via a common separating triple to parent component H0.

The following lemma shows how to prune the leafs in the tree and replace them by a constant size

gadget in H0 such that the Laman property is maintained.
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Lemma 5.3 Let H = (V, E) be a graph with a separating triple T = {u, v,w} and corresponding

split graphs H0, H1, . . . , Hℓ, where we have removed all virtual edges, such that H1, . . . , Hℓ are

planar or of bounded treewidth (even with the virtual edges). Then there is an NC2-algorithm

that

• either computes a constant-size gadget graph Γ on T such that

H is Laman ⇐⇒ H0 [ Γ is Laman

• or determines directly that H is not Laman.

Moreover, let H 0

0 be graph H0 plus the edges missing from triangle T . If H 0

0 is planar or of

bounded treewidth, then H0 [ Γ is planar or of bounded treewidth, respectively.

Also, the choice of the gadget in the first item depends only on E(T) and H1, . . . , Hℓ, and

not on H0.

Proof. Let ∆T = {(u, v), (v,w), (u,w)} be the triangle edges on T . Lemma 5.1 describes how to

put triangle edges in split components for graph H to be Laman. However, this does not uniquely

determine the placement of the edges. Therefore we consider all distribution of the edges that are

consistent with Lemma 5.1.

Let F0 be the family of those sets F0 � ∆T − E(T) for which there exists sets F1, F2, . . . , Fℓ �

∆T − E(T) such that

1. each edge in ∆T − E(T) appears in all but one of F0, F1, . . . , Fℓ and

2. H1 + F1, H2 + F2, . . . , Hℓ + Fℓ are all Laman.

From Lemma 5.1, we have

H is Laman ⇐⇒ 9 F0 2 F0 H0 + F0 is Laman. (7)

We claim that the family F0 can be computed in NC2. To see this observe that the number of

possible tuples (F0, F1, . . . , Fℓ) which satisfy item 1 above is (ℓ + 1)|∆T−E(T)|
� (ℓ + 1)3. For all such

tuples, we can check the Lamanness of Hj+ Fj for all j 2 [ℓ] in parallel. Since H1, . . . , Hℓ are planar

or of bounded treewidth (with virtual edges), we can invoke the NC2-algorithm from Theorem 3.9

or Theorem 2.1 to check whether Hj + Fj is Laman.

If F0 = ;, then we can say that H cannot be Laman. When F0 6= ;, we construct an appropriate

gadget. By (7), it suffices to construct a gadget Γ such that

9 F0 2 F0 H0 + F0 is Laman ⇐⇒ H0 + Γ is Laman.

Recall that we need the construction of Γ to depend only on E(T), but to be independent of H0.

For each family F0 and E(T), we construct a gadget graph Γ such that for any F0 � ∆T − E(T), we

have

F0 2 F0 ⇐⇒ Γ can be obtained from (T, F0) via a sequence of Henneberg steps. (8)
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If F0 has a unique set F0 = {F0}, then we take Γ = (T, F0). Note that by construction, each

F0 2 F0 has the same cardinality. Thus, F0 is always unique when |E(T)| = 3 or |E(T)| = 2. But

also when |E(T)| = 1 or |E(T)| = 0, F0 can have a unique set. In the following, we consider all cases

where F0 contains at least two sets. For these, we construct gadgets Γ shown in Table 1 that we

put into H0. We use the notation e1 = (u, v), e2 = (u,w), e3 = (v,w). Clearly, the definition of the

gadgets is up to vertex relabeling.

Below we explain why property (8) holds for each of the gadgets given in the table. The

implication from left-to-right in (8) is given in the description of the gadgets in Figure 3. We

argue for the reverse direction. Note that in both types of Henneberg steps, the quantity 2|V |− |E|

remains constant. Hence, all graphs (T, F0) which lead the same gadget via Henneberg steps must

have the same number of edges.

Case E(T) F0 Γ

1 {e1} { {e2}, {e3} } Figure 3a

2 ; { {e1, e2}, {e1, e3} } Figure 3b

3 ; { {e1, e2}, {e1, e3}, {e2, e3} } Figure 3c

4 ; { {e1}, {e2}, {e3} } Figure 3a

5 ; { {e1}, {e2} } Not a valid possibility

Table 1: Gadgets for all possibilities of F0 and E(T) where |F0| � 2.

Case 1. The only possible reverse Henneberg steps from the gadget in Figure 3a is to remove the

degree 3 node x and add a triangle edge. Since F0 is restricted to be a subset of ∆T − E(T) =

{e2, e3}, the only possibility for the resulting graph is either (T, {e2}) or (T, {e3}).

Case 2. Starting from the gadget in Figure 3b, the first reverse Henneberg step has to remove x

because it has degree 3. Then the edge we have to add can only be e1 = (u, v). Then the

second reverse Henneberg step can only be to remove y. The edge we can add has to be

either e2 or e3. Thus, the resulting graph can only be either (T, {e1, e2}) or (T, {e1, e3}).

Case 3. From any two triangle edges we can construct the gadget in Figure 3c as explained in the

caption. Hence, starting from the gadget, we can reverse these steps and and end up in any

two triangle edges.

Case 4. The only possible reverse Henneberg steps from the gadget in Figure 3a is to remove the

degree 3 node x and add one of the triangle edges.

Case 5. We show that F0 = { {e1}, {e2} } is not a valid possibility. From the definition of F0, recall that

we can have F0 = {e1} only when, say, F1 = {e2, e3} and Fj = {e1, e2, e3} for j � 2. Similarly,

we can have F0 = {e2} only when F1 = {e1, e3}. Then from Lemma 5.2, F1 = {e1, e2} is also a

valid choice for H1 to be Laman. Hence, F0 = {e3} should also be present in F0.
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Figure 3: Gadgets from Lemma 5.3. (a) The or-gadget that can be obtained from any one of the triangle

edges via a Henneberg type 2 step. (b) The uv-or-gadget that can be obtained from edge (u, v) plus

any one of the other two triangle edges via two Henneberg type 2 steps. (c) The 2-or-gadget that can

be obtained from any two triangle edges via a Henneberg type 1 step and two type 2 steps.

Finally, we argue the last part of the lemma about planarity and bounded treewidth. If com-

ponent H 0

0 is planar, it can be embedded such that the triangle is one face of the embedding. Then

we can put any of the gadgets from Figure 3 inside the triangle so that H0 + Γ is planar.

If the component H 0

0 has bounded treewidth w, consider a tree decomposition (T ,B) of width w.

In a tree decomposition, every clique must be contained in a common bag [Bod89, Lemma 2.1].

Thus, there must exist a bag B 2 B that contains the triangle nodes, i.e., T � B.

To get a tree decomposition of H 0

0+Γ , we put an additional bag B 0 = V(Γ) in T that is adjacent

to B. Note that |B 0| � 6. Hence, the treewidth of H 0

0 + Γ is bounded by max{w, 5}. The same holds

for H0 + Γ because treewidth does not increase when edges are removed. �

Now we can prove our main Theorem.

Theorem 5.4 Given a one-crossing-minor-free graph G, we can decide whether G is Laman

in NC3.

Proof. We first decompose the input graph G into triconnected components in NC2 by Lemma 2.5.

Then, in parallel we further decompose each triconnected component into 4-connected components

in NC2 by Lemma 2.5 and we identify the large child paths in the 4-connected component trees by

Lemma 2.6. As G is one-crossing-minor-free, the 4-connected components are planar or of bounded

treewidth by Theorem 2.9.

By Lemma 4.3, we can decompose G into components resulting from the triconnected compo-

nents, such that G is Laman iff all these components are Laman. Then for every such component C,

in parallel, we decide whether it is Laman as follows. We apply Lemma 5.1 in a bottom up fashion

along the 4-connected component tree of C. The leaf components in a 4-connected component tree

contain a single separating triple and we can decide for what choices of triple edges the component

is Laman by Theorem 3.9 or by Theorem 2.1. Then we put gadgets into the parent components

according to Lemma 5.3. The gadgets we put into each separating triple in a parent component

are only defined by the children components that are attached to the triple. In particular, we can

put the gadgets into the parent components by working in parallel for every triple. Note that in

case of overlapping separating triples, multi-edges could emerge in a parent component after we
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have added the gadgets. In this case, we just recognize that a parent component is not Laman. We

continue this in a bottom-up fashion until we reach the root. Note that if we run this procedure as

it is, the parallel complexity would be proportional to the depth of 4-connected component tree,

which could be large.

Instead, when we reach a large child path along the way in component C, we deviate from

the bottom-up evaluation. Let the large child path consists of components P1, P2, . . . , Pk, where Pi
is the parent component of Pi+1 in the 4-connected component tree. Let Ti be the separating

triple between components Pi and Pi+1, for i = 1, 2, . . . , k− 1, and T0 be separating triple between

component P1 and its parent in the tree.

If the above procedure reaches some component of the large child path at a separating triple T 6=

Ti, for all i = 0, 1, . . . , k−1, then we put a gadget as described above. Then each path component Pi
is planar or of bounded treewidth and has at most two triples that have not been replaced by a

gadget. Therefore, for each path component in parallel we can apply Theorem 3.9 or Theorem 2.1

to check for what choices of edges in the two triples the component is Laman in NC2. We describe

how to merge the components P1, P2, . . . , Pk into one component.

Merging two components: Let H be a graph with a separating triple T . Let A,B,C1, C2, . . . , Ch

be the components obtained when we split H at T . Let TA and TB be two other triples that are

present in A and B, respectively. Suppose for each component Ci, we have already computed for

which choices of edges in triple T it is Laman. Similarly, suppose we have computed for which

choices of edges in triples TA and T , component A is Laman, and analogously for the edges in

triples T and TB, w.r.t. component B. Then using the conditions in Lemma 5.1, we can find out

for what edge choices in triples TA and TB, graph H is Laman. This can be done in NC1 because

there is only a polynomial number of possibilities of putting the edges of triple T in components

A,B,C1, . . . , Ch by the condition in Lemma 5.1, which can be checked in parallel. Moreover, the

number of edge choices in TA and TB is constant.

Merging a path: We apply the process of merging two components recursively in a binary tree

fashion on P1, P2, . . . , Pk. At the bottom layer, we start with applying the above merge procedure

on pairs of neighboring path components at their common separating triple Ti, in parallel. After

merging two path components, we get a new component that again has two triples at each end and

we have computed the edge choices in these two triples that make the component Laman.

When we have merged all path components into a single component, we find the choices of

edges in the triple T0 for which the split graph in C− T0 that contains P1 is Laman. Then we put

the corresponding gadget in T0 and carry on with the bottom up evaluation. Clearly, the above

procedure for a large child path is in NC2, as the merge step is in NC1.

If it happens during the bottom up evaluation that a component or a large child path is not

Laman for any choice of edges we can conclude that the graph is not Laman and stop the bottom-up

evaluation.

Regarding the complexity, note that the NC2-algorithms that we run as subroutines in the

bottom up evaluation are the ones from Theorem 3.9 and 2.1. By Lemma 2.6, there are at most logn

many large child paths on a path from a leaf node to the root in the 4-connected component tree
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Thus, the algorithm sequentially runs at most logn many NC2 algorithms as subroutines and

therefore we end up in NC3. �

6 Open problems

For K3,3-free Laman graphs we can even compute an infinitesimally rigid embedding efficiently

in parallel. This is open for the case of one-crossing-minor-free graphs. In fact, it is open even

for graphs of bounded treewidth. It is also open for K5-free Laman graphs, even though the

4-connected components are all planar. A problem there is that we do not have the analog of

Lemma 4.5 for separating triples. For example, an embedding of a K3,3 on a conic section as in

Figure 4 is infinitesimally flexible [Whi84]. However, the split graphs G1, G2, G3 corresponding to

the separating triple {u, v,w} are infinitesimally rigid in the same embedding, where one has to

add two edges to each component to make it Laman.

u
v

w
G1

G2

G3

Figure 4: K3,3 on an ellipsoid

We started this research with the goal to show rigidity or minimal rigidity in 2D for arbitrary

graphs in NC. However, this remains open for now. Even for planar graphs, rigidity is not known

to be in NC.

A seemingly even more challenging open problem is to consider infinitesimal rigidity in higher

dimensions. The rigidity matrix R = R2 in 2D can easily be extended to Rd, for dimensions d � 3.

The PIT problem for R2 is in polynomial time because of the various characterizations we have for

rigidity, like Theorems 1.1, 1.2, and 2.10. However, we do not have such characterizations even for

d = 3. A derandomization in polynomial time of the PIT for R3 is an open problem for decades.

See also the exposition of Raz and Wigderson [RW19] on this topic.
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