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Abstract

Minimally rigid graphs can be decided and embedded in the plane efficiently, i.e. in poly-
nomial time. There is also an efficient randomized parallel algorithm, i.e. in RNC. We present
an NC-algorithm to decide whether one-crossing-minor-free graphs are minimally rigid. In the
special case of K3 3-free graphs, we also compute an infinitesimally rigid embedding in NC.

1 Introduction

Graph rigidity is the combinatorial study of rigidity or flexibility of bar-and-joint frameworks, a set
of solid bars connected via hinge joints. Historically, the problem goes back to Euler in 1776, who
asked about the rigidity of polyhedrons in 3D. Rigidity of bar-and-joint frameworks, particularly
in 2D, has been studied extensively for applications in mechanical engineering like for collision-free
robot arm motion planning, or molecular conformations, or network topologies with distance and
angle constraints.

Graph rigidity is also a central problem in theoretical computer science. It yields a combinatorial
interpretation of certain polynomaial identity testing (PIT) problems that can be solved efficiently
for 2D-rigidity, but the complexity for larger dimensions is wide open, see for example the exposition
of Raz and Wigderson [RW19] or the book of Lovasz [Lov19, Chapter 15]. Other interesting aspects
are that rigidity defines a matroid and that minimal rigidity reduces to bipartite perfect matching.
The latter point motivates the question for the parallel complexity of rigidity.

Describing the problem. A bar-and-joint framework can be seen as a graph G, where vertices
are the joints and edges are the bars, together with an embedding p : V — R?, for the case of 2D.
The vertices of G are allowed to move continuously subject to the constraint that the distance
between adjacent vertices does not change, i.e., the length of the bars are fixed. A framework
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(G, p) is r2g2d if every such continuous motion of the framework preserves the distance of all pairs
of vertices, i.e., also of non-adjacent vertices. Otherwise the framework is flezible.

A natural question is whether rigidity/flexibility is just the property of the underlying graph G
or whether it also depends on the specific embedding p. That is, whether rigidity is just determined
by the combinatorial structure of the bars, i.e. which tuples of bars are connected at one joint, and
does not depend on the specific lengths of the bars. The first answer is that there are examples
that show that rigidity depends on the embedding p. However, for any graph, either almost all of
its embeddings are rigid or almost all of them are flexible [Glu75, AR79]. Therefore one defines a
graph G to be rigid if almost all embeddings p result in a rigid framework (G, p), otherwise G is
flexible. Graph rigidity can be equivalently defined based on the notion of infinitessmal rigidity,
see Section 2.1 and Definition 2.1.

Characterizations of minimal rigidity. A graph is minimally rigid if the removal of any
edge makes it flexible. Minimally rigid graphs have a combinatorial characterization that is often
attributed to Laman, but was already known to Geiringer.

Definition 1.1 (Laman graph) A graph G = (V,E) s a Laman graph ¢f it has m = 2n —3
edges and for all S CV with |S| > 2, the subgraph of G induced by S has at most 2|S|—3 edges,
i.€.

VS CV (S| >2) [E(S) < 21| 3. (1)

Theorem 1.2 ([Pol27], [Lam70]) A graph G is munimally rigid iff G is a Laman graph.

The Laman condition (1) gives rise to a matroid, the rigidity matroid for a graph G = (V, E).
The ground set is the set of edges E. A set E/ C E is independent, if graph (V,E’) fulfills (1). The
base sets of this matroid are the minimally rigid subgraphs of G (on V).

There is another very interesting relationship. Let G = (V,E) be a graph with m = 2n — 2
edges. Nash-Williams [NW61] and Tutte [Tut61] independently showed that G is the disjoint
union of two spanning trees iff for all S C V with [S| > 2, we have |E(S)| < 2|S|— 2, see also Lovasz
and Yemini [LY82]. Note again the similarity with Laman’s condition (1). This yields again a
combinatorial characterization.

Theorem 1.3 ([LY82]) A graph G = (V,E) is munimally rigid iff Ve € E multigraph G + e 1s
the unton of two edge-disjoint spanning trees.

There is also an iterative way to construct Laman graphs, known as the Henneberg construc-
tion [Henll|, where we start with an edge, and then add a node to the graph constructed so far in
one of two ways (Theorem 2.11). This is explained in more detail in Section 2.4.

Complexity and motivation. In 2D, rigidity can be solved in polynomial time, namely in time
O(n?) [Hen92, GW92]. For minimal rigidity, this follows from Theorem 1.3, because whether a
graph is the disjoint union of two spanning trees can be decided in polynomial time [RT85]. There
is a O(ny/nlogn + m) algorithm for minimal rigidity [GW92]. We are interested in the parallel
complexity of minimal rigidity.



Note that the characterization from Theorem 1.3 yields a reduction from minimal rigidity to the
problem of deciding whether a graph consists of two edge-disjoint spanning trees. Moreover, the
characterization of minimal rigidity in Theorem 1.2 is similar in nature to Hall’s Theorem [Hal35]
that characterizes the existence of perfect matchings in bipartite graphs. This can actually be
formalized to a reduction from the minimal rigidity problem to the bipartite perfect matching
problem [Hen92]. Since the reductions to the two edge-disjoint spanning trees problem and bi-
partite perfect matching are efficient even in parallel, i.e. in NC, the parallel complexity of these
two problems carries over to minimal rigidity. Note that the problems are in randomized NC,
RNC [MVV87, NSV94]. The derandomization question, whether one can avoid the randomness
without much loss in efficiency, is of major interest in complexity theory. A few years back, the
randomized algorithm has been derandomized to a quasi-NC bound for bipartite perfect match-
ing [FGT21]. Later, the two edge-disjoint spanning tree problem was also shown to be in quasi-NC
via Linear Matroid Intersection [GT20]. These results imply two different quasi-NC algorithms
for minimal rigidity.

e One of the major motivations for us to study minimal graph rigidity is that we might have
better chances to show that it is in NC than for bipartite perfect matching. In that sense,
minimal rigidity is the litmus test for bipartite perfect matching.

Note that a reduction in the other direction is not known. Hence, minimal rigidity might be
easier than bipartite perfect matching.

Interestingly, also the complexity questions around general rigidity (i.e., not necessarily min-
imal), have a status quite similar to those around the bipartite matching problem. Using the
matroid property, one can get a polynomial-time algorithm to test if a graph is rigid: Start from
the empty set, and keep adding edges from the graph while maintaining independence. If this
algorithm ends with 2|V| — 3 edges, then the graph is indeed rigid [Hen92].

Both problems, matching and rigidity, reduce to the polynomial identity testing (PIT) prob-
lem [MVV87, RW19], and thus they have RNC algorithms. For any given embedding of the graph,
one can form the rigidity matriz of the graph, a |E| x 2|V| matrix, where the entries are func-
tions of the vertex coordinates. We define the matrix in Section 2.1. The rank of the rigidity
matrix tells us about the rigidity of the particular embedding. For a rigid graph, a random em-
bedding would be rigid and the corresponding rigidity matrix would have rank 2|V|— 3, with high
probability [AR78]. Thus, to decide the rigidity of a graph one simply has to take a random em-
bedding and find the rank of the rigidity matrix. Note that computing the rank of a matrix is
highly parallelizable [Mul87] and so is the above algorithm, which puts the rigidity problem in the
complexity class RNC. Its connection with matching and polynomial identity testing (PIT) makes
graph rigidity a very interesting candidate for studying derandomization.

Our results. For certain graph classes we are able to derandomize and give an NC-algorithm for
minimal rigidity. Streinu and Haas et al. [Str00, HOR"05] developed a geometric characterization
of planar Laman graphs that yields a more efficient algorithm than for general graphs. This was
improved further by Rollin, Schlipf, Schulz [RSS19]. Our first observation is that by combining
the subroutines in [Str00, HOR 05, RSS19] appropriately, we obtain a parallel algorithm and get



planar minimal rigidity in NC?. We can even compute a rigid embedding of a planar Laman graph
in NC2.

Then we extend these parallel complexity results to some minor-free graph classes. Our first
main result is that for Kj3-free graphs, we can decide whether a graph is Laman in NC? (Theo-
rem 4.4) and also compute an embedding (Theorem 4.6). Also whether a Ks-free graph is Laman
can be decided in NC3. Actually, our technique works for the more general class of one-crossing-
manor-free graphs. For this class, we can decide Laman graphs in NC3 (Theorem 5.4). However,
an NC-algorithm for computing a rigid embedding remains an open problem.

Note that extending results from planar graphs to such minor-free graphs is a technically non-
trivial step that has also been done in other contexts, for example, famously by Vazirani [Vaz89]:
Kasteleyn [Kas67] showed that the number of perfect matchings in planar graphs can be efficiently
computed. Then, based on a result of Little [Lit74], Vazirani [Vaz89] extended the result to K3 3-free
graphs in NC?. Later, the result was further extended to Ks-free graphs in NC3 [STW16]. There
are many more results in a similar flavor, see for example [DNTW09, TW14, Khu90b, Khu90a,
AGGT16, CDGS24, CE10, EV21]. Although the literature gives a meta strategy, a result for pla-
nar graphs does not automatically imply a result for other minor-free graph classes and new ideas
are required.

Following the literature, our idea is to decompose the given one-crossing-minor-free graph (or
K3 3-free graph) into planar components or components of bounded treewidth. We observe that
there are parallel algorithms to decide rigidity of graphs of bounded treewidth, see Section 2.2.
Hence, for planar and bounded treewidth components we can check whether they are Laman.
Our main technical tools which allow us to lift the results from planar/bounded treewidth case to
K3 3-free/one-crossing-minor free graphs are as follows.

e Characterization of Laman graphs in terms of Lamanness of certain split graphs obtained by
splitting the graph along separating pairs/triples (Lemmas 4.3, 5.1).

e For all families of 3-vertex graphs, we construct gadget graphs such that adding the gadget
to a graph makes it Laman if and only if adding some member of the family makes it Laman
(Lemma 5.3).

e Combining rigid embeddings of a set of Laman graphs to find a rigid embedding of a Laman
graph obtained by joining them using 2-sum operations (Lemma 4.5).

Note that obtaining a parallel algorithm for minimal rigidity does not give the same for rigidity,
as there is no parallel reduction known. In fact, finding an NC (or quasi-NC) algorithm for rigidity
is open, even for planar graphs.

Organization of the paper. In the preliminaries, we give a self-contained derivation of the
rigidity matrix in Section 2.1. We show that for graphs of bounded treewidth, rigidity can be
decided efficiently in parallel in Section 2.2. In Section 2.4, we describe the characterization of
Laman graphs via Henneberg extensions.

In Section 3, we explain our basic observation that the sequential algorithms to decide whether a
planar graph is Laman and compute infinitesimally rigid embeddings can be efficiently parallelized,



it is in NC. The reader can safely skip this section in first reading, since we use the planar case
only as a blackbox subroutine in the rest of the paper.

Our main results about K3 3-free and one-crossing-minor-free Laman graphs are in Section 4
and 5, respectively.

2 Preliminaries

For n € N, we denote [n] = {1,2,...,n}. We use standard complexity classes, in particular,
the classes NC* that consist of uniform boolean circuit families with bounded fan-in, polynomial
size, and depth O(log*n). The corresponding randomized classes are denoted by RNCF. A slight
extension is quasi-NC* that is defined similarly to NC¥, but with circuits of quasi-polynomial
size 218", Many problems from Linear Algebra are in known to be efficiently solvable in
parallel. For example the determinant and the rank of matrices can be computed in NC?, as well
as the solution of linear systems of equations [Mul87].

For a graph G = (V,E), we denote n = n(G) =|V| and m = m(E) = |E| throughout the paper.
For a set S C V, the edges of G that are within S are denoted by E(S). A graph G is planar if it can
be drawn in the Euclidean plane such that the edges intersect only at the endpoints. Such a drawing
is called a planar (topological) embedding of the graph. The faces of a planar embedding are
the regions of the embedding. The outer face of a planar embedding is the unbounded face. It
is known that every planar embedding can be turned into a planar embedding with the same face
structure such that every edge is a straight line [F448, Wag36]. A planar embedding can be turned
into a combinatorial embedding, a cyclic order of the edges around each vertex in counter clockwise
order of the planar embedding. One can check if a graph is planar and compute topological and
combinatorial planar embeddings in NC? [RR94].

The crossing number of a graph G is the minimum number c such that G has an embedding in
the plane with c edge crossings. For example planar graphs have crossing number 0 and K33 and K5
have crossing number 1. Planar graphs are minor-closed. However, this does not hold in general
for graphs with crossing number > 1: There are examples of graphs G with crossing number 1
that have minors H with crossing number 2. To capture such graphs H as well, Robertson and
Seymour [RS93] defined a graph H to be single-crossing or one-crossing, if H is the minor of
a graph G with crossing number < 1. With this definition, one-crossing graphs are closed under
minors. However, in the literature, often the simpler definition is used that one-crossing graphs are
those with crossing number < 1. Note that this is a subset of the one-crossing graphs as defined
by Robertson and Seymour. Hence, our results hold for the simplified definition as well.

For graphs G, H, we say that G is H-free, if H is not a minor of G. When H is one-crossing, we
call G one-crossing-minor-free. Hence, planar, K3 3-free, and Ks-free graphs are all one-crossing-
minor-free.

We also need to solve a flow problem on planar graphs. Given a planar flow graph with
multiple sources and sinks, capacities and fixed demands at every source and sink, the objective
is to compute a feasible flow function. Miller and Naor [MN95] showed that the problem can be
solved in NC2.



2.1 Infinitesimal rigidity of frameworks

In a bar-and-joint framework we are given a graph G = (V,E) and an embedding p : V — R? in
the plane. The edges of the graph are considered as bars and the vertices as joints that are free to
move continuously. However, the length of the bars does not change. The framework is flezible,
if there is a continuous motion such that the distance of some vertices changes. Otherwise, the
framework is rigid. Figure 1 shows examples.

/ /
/ /

Figure 1: The triangle is rigid whereas the rectangle is flexible with the motion indicated in blue. The

distance of the diagonally opposite vertices changes with the motion.

The problem whether a given framework (G,p) is flexible is NP-hard [Abb08]. It is complete
for the existential theory of reals [ADD"16]. We consider a restricted version of the problem called
infinitesimal rigidity that can be solved efficiently.

Let G = (V,E) where V = [n] and [E| = m. Let p(i) = (xi,yi) € R? be the coordinates of
vertex 1 € V. For an edge e = (1,j) € E, the square of its length is

lel* = (xi — %)% + (yi —yj)% (2)

Consider a smooth motion by treating the coordinates as functions x;(t) and yi(t) in time t, such
that (x;(0),yi(0)) = (xi,yi). The condition for the motion is that ||’ does not change, i.e. is
constant. Hence, when we look at the derivative of (2) w.r.t. t, we get

2(xi — %) (x{ —%j) + 2(yi —y;)(y{ —yj) = 0. (3)

We get m such equations, one for every edge in G. We combine them in matrix-vector form. That
is, we define the mgidity matriz R = R(G, p) as a m x 2n matrix, with n columns for the x-part of
the nodes and n columns for the y-part. Let R, be the row for edge e = (i,j) € E in R. We define
the k-th entry Rex as

Xi — Xj, for k = i,

Xj —xq, for k =j,

Rex =< yi—vy;, fork=n-+i,

Yj —VYi, for k=mn-+j,

0, otherwise.
The derivatives we put in the velocity vector v,
_ ! ! ! li ! T
V= (XDXZV-'»Xm y]aUZ»---»Un)

Then (3) becomes
Rv = 0. (4)



For example, consider the triangle graph on three nodes 1,2,3. Then R is a 3 x 6 matrix,

X1 —X2 X2 —X 0 Yr—Y2 Y2 —yj 0
R = 0 X2 —X3 X3 —X2 0 Y2—Y3 yYs—y2
X1 — X3 0 X3—X1 Y1 —Y3 0 Y3 —yi

Any nonzero vector v that fulfills (4) corresponds to an infinitesimal motion. However, there
are three trivial motions that are always possible: a shift s, of all vertices in x-direction or sy in
y-direction, and a rotation r around the origin,

sy =(1,1,...,1, 0,0,...,0)T,
sy = (0,0,...,0, 1,1,..., 1)1

T= (=Y, —Y2, " — Yn, X1,X2..,%n)
Hence, the nullspace of R has dimension at least 3, and therefore, the rank of R can be at most 2n—3.
Definition 2.1 (Infinitesimal rigidity) A framework (G,p) s infinitesimally rigid if
rank(R(G,p)) =2n—3.

A graph G 1is (infinitesimally) rigid! if there exists an embedding p such that the framework
(G,p) s infinitestmally rigid.

The definition for a graph G to be rigid given here is equivalent to the definition given in the
Introduction [Glu75, AR79].

Clearly, the condition for the rank can only be achieved when we have m > 2n — 3 edges.
The rank of a matrix can be computed in NC? [Mul87], thus, infinitesimal rigidity for a given
embedding p can be tested in NC?. If P is mot given, the rigidity problem becomes a PIT-question.
In 2D, it can be solved in polynomial time.

We remark that the notions of rigidity and infinitesimal rigidity of a framework (G, p) are not
equivalent: If (G,p) is infinitesimal rigid, it is also rigid. But when rank(R(G,p)) < 2n — 3, the
framework might still be rigid. This is because a nonzero velocity vector v with Rv = 0 only
guarantees that the edges of G maintain their lengths in direction v. It does not insure that two
non-adjacent nodes change their distance. Examples where this happens are the trivial motions,
but there are also examples with non-trivial motions.

2.2 Rigidity of graphs with bounded treewidth

A tree decomposition of a graph G = (V,E) is a tree 7 with a set of nodes B, the bags, where each
B € B is a subset of V, such that the following conditions hold.

L UBeBB = V>

2. V(u,v) €eEJIB € B u,veB,

'In the literature it is common to skip the adjective infinitesimally when considering a graph G.



3. WeV B,={BeB|veB}forms a subtree of 7.

The width of the tree decomposition is w = maxgcp|B| — 1. The treewidth of G is the minimum
width over all tree decompositions of G. A class of graphs G has bounded treew:dth, if there is a
constant c, such that all graphs in G have treewidth bounded by c.

Courcelle [Cou90] showed that when a graph property is expressible in monadic second-order
logic (MSO-logic), then it can be decided in linear time when the input graph has bounded
treewidth. Elberfeld, Jakoby and Tantau [EJT10] showed a logspace-version of Courcelle’s Theo-
rem.

Theorem 2.2 ([EJT10]) All graph properties expressible itn MSO-logic can be solved in L on
graphs of bounded treewidth.

The characterization in Theorem 1.3 can be used to express rigidity in MSO-logic. For a simple
undirected graph G = (V,E), there is a MSO-predicate Tree(V,E) that is true iff G is a tree,
see [CE12, Section 1.3]. Then the following predicate minRigid(V, E) is true iff G is minimally rigid,

minRigid(V,E) = Vee EdT;, T, CE ( Tree(V, Ty) N Tree(V, T2) A
ecTiNee L A\
VfeE—e(feTiy®dfeTy) ).

Since a graph G = (W, E) is rigid iff it has a spanning minimally rigid subgraph, we get a
MSO-predicate for G being rigid,

Rigid(V, E) = dF C E minRigid(V, F)

It follows that whether a graph is Laman or a rigid graph in general is in NC?, for graphs with
bounded treewidth.

Corollary 2.3 Rigidity of graphs with bounded treewidth can be decided in L and thus in NC?.

2.3 Structural Decompositions

Let G = (V,E) be a graph. A set S C V with |S| = k is called a k-separating set, if G — S is not
connected. Let Gj,..., G| be the connected components of G —S. The split graphs with respect
to S are the subgraphs of G induced by G; U S, where we add virtual edges between every pair of
vertices in S. A graph G is called k-connected if there is no (k — 1)-separating set in G.

A k-separating set is called articulation point for k = 1, separating pair for k = 2, and
separating triple for k = 3.

Laman graphs are clearly connected, actually even 2-connected.

Lemma 2.4 ([JJ05, Lemma 2.6]) Laman graphs are 2-connected.

In particular, every node of a Laman graph has degree at least two.



3-connected components. Let G = (V,E) a 2-connected graph. A separating pair {u,v}in G is
called 3-connected, if there are 3 vertex disjoint paths between u and v in G.

The triconnected components of G are the split graphs we obtain from G when we successively
split G along all 3-connected separating pairs, in any order. If a separating pair {u, v} is connected
by an edge in G, we also define a 3-bond for {u, v} as a triconnected component. This is the multi-
graph with two vertices u,v with 3 edges between them. The 3-bond components are there to be
able to reconstruct the original graph from the components.

It is known that the triconnected components of G are uniquely determined, i.e. independent
of the order of the separating pairs in which we do the splitting.

Lemma 2.5 ([Mac37, HT72]) The triconnected components of a 2-connected graph are unique.

The decomposition leads to the triconnected component tree: There is a node for each tricon-
nected component and each 3-connected separating pair of G. There is an edge between tricon-
nected component node C and separating pair node {u,v}, if u,v € C.

4-connected components. We also need to further decompose 3-connected graphs along sepa-
rating triples into 4-connected components. The split components of two separating triples might
overlap and thus we cannot simply split along all separating triples. For example, in a K3 3-graph
both sides form separating triples and we cannot split along both. For an efficient splitting proce-
dure with respect to parallel computation see [TW14] or [EV21].

The decomposition again leads to a tree, the 4-connected component tree. In this tree we have
vertices for the separating triples and for the 4-connected components. In addition, there is a vertex
representing a 3-bond component for every edge (u,v) from G, where u,v are part of a separating
triple. Two vertices in the 4-connected component tree are adjacent if one of them corresponds
to a separating triple and the other one to a 4-connected component or a 3-bond sharing vertices
with the triple.

Complexity. Graph reachability problems can be solved in nondeterministic logspace, NL. In
undirected graphs, even in deterministic logspace, L [Rei08]. Problems in NL like directed s-t-
reachability can be reduced to matrix powering which yields efficient parallel algorithms. We have

NC' C L C NL C NC%.
In the following lemma, we list some known results along these lines that we will need later on.

Lemma 2.6 (Complexity summary for connectivity) Let G be an undirected graph. The
following problems can all be solved in NCZ.

1. Compute the articulation points and the connected components of G.

2. When G 1s 2-connected, compute the 3-connected separating pairs, the triconnected
components, and the triconnected component tree of G.

3. When G 1s 3-connected, compute the separating triples, the fourconnected components,
and the four connected component tree of G [TW14].



The component trees can have large depth. As we want to process them in a bottom-up fashion
in logarithmic time, we need to identify long paths and treat them separately. Let T be a rooted
tree and let v be a vertex in T. Then T(v) is the subtree of T rooted at v. A child u of v is a large
chald if |T(w)| > |T(v)|/2. A large child path in T is a maximal path such that every vertex along
the path is a large child of its parent.

Lemma 2.7 ([STW16]) Let T be a tree with n nodes and p be a simple path in T. Then
e the number of large child paths on p is < logn,
e the number of nodes on p that are not large children is <logn,

e all large child paths in T can be computed in NC?.

By the first two items in Lemma 2.7, the number of large child paths in T is polynomially
bounded in n. Then the last item follows because we can compute the number of nodes in subtrees
of T in L and hence, also in NCZ.

Structure theorems. The reason why we are considering the above decompositions is that for
K3 3-free, Ks-free, and one-crossing-minor-free graphs, we end up in components that are planar
or of bounded treewidth. In more detail, for K;3-free graphs, the decomposition leads to planar
components or Ks-components.

Theorem 2.8 ([Asa85]) Ewvery 3-connected K3 3-free graph is either planar or Ks.

For Ks-free Laman graphs, we end up in planar components or a special constant size graph.

Theorem 2.9 ([Wag37]) Every 4-connected component of a Ks-free graph is either planar
or the Mobius ladder on 8 vertices, also known as Wagner graph.

For one-crossing-minor-free graphs, we get planar or bounded treewidth components.

Theorem 2.10 ([RS93]) Ewvery 4-connected component of a one-crossing-minor-free graph
15 either planar or of bounded treewidth.

2.4 Henneberg sequences

Laman graphs can be constructed iteratively via Henneberg extensions [Henll]. The starting
point in a sequence of Henneberg extensions is a graph with two nodes connected by an edge.
Let G be the graph constructed so far. There are two ways to add a new node v to G:

e A Henneberg extension of type 1 connects v with two arbitrary vertices of G.

e A Henneberg extension of type 2 takes an existing edge (u,w) in G and replaces it with
edges (u,v) and (v, w) instead. Additionally v is connected to an arbitrary third vertex in G.

Theorem 2.11 ([TW85]) A graph G = (V,E) is Laman iff it can be constructed by a sequence
of Henneberg extensions that starts with an arbitrary edge e € E.
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Henneberg sequences can also be reversed in the following way.

Lemma 2.12 ([JJ05, Lemma 2.8]) Let G = (V,E) be a Laman graph with |V| >3 andv € V.
1. If deg(v) = 2, then G —v 1s Laman.
2. If deg(v) =3, then G — v+ (u,w) s Laman for some pair u,w of netghbors of v.

Using reversed Henneberg operations one can generalize Theorem 2.11: One can start the
Henneberg sequence for a Laman graph with any two nodes u and v and edge (u,v), even if (u,v)
is not present in G.

Lemma 2.13 (([HOR'05, Lemma 2]) A Laman graph G = (V,E) has a Henneberg construc-
tion that starts from edge (u,v), for any two nodes u,v € V.

The proof for Lemma 2.13 roughly works by applying reversed Henneberg steps to the graph
until we end up with the edge (u,v). We further generalize Lemma 2.13 by showing the existence
of a Henneberg sequence that starts with a triangle on any three vertices T = {u, v, w} that contain
at least one edge in G. To do so, we first make a technical observation for the case that all vertices
not in T have large degree.

Lemma 2.14 Let G = (V,E) be a Laman graph, |V| > 4, and T ={u,v,w} C V such that every
X € V! =V —T has deg(x) > 4. Then we have

o deg(u) = deg(v) = deg(w) = 2,
e G—T 15 a connected graph.

Proof. The sum of all node degrees of G is at least deg(u) + deg(v) + deg(w) + 4(n — 3). By the
degree sum formula, we therefore have

deg(u) + deg(v) + deg(w) +4(n—3) < 2m.
Since m = 2n — 3, we conclude that
deg(u) + deg(v) + deg(w) < 6.

Since G is Laman, we also have deg(u), deg(v),deg(w) > 2. This implies the first item.

To show the second item, let n’ = |V'| and m' = |E(V')|. Let E(V', T) be the edges between V'
and T. Since the nodes in T have degree 2, we have [E(V',T)| < 6. We argue that [E(V',T)| = 6,
and hence |[E(T)| = 0.

The sum of all node degrees in V' is at least 4n’ — |[E(V’/, T)|. By the degree sum formula, we
therefore have

dn' —|E(V,T) <2m'.

11



Since G is Laman, we also have m' < 2n’ — 3, and therefore
[E(V,T)| > 6.

To argue that G — T is connected, assume that there are two components in G — T, say on
nodes V; and V>, respectively. For each component we can make the same estimates as for V'
above to show the second item. Hence, we would get that |[E(Vi,T)|, |[E(V2, T)| > 6. But this
contradicts the first item. O

We use Lemma 2.14 to show that a Henneberg sequence for a Laman graph G can start with
a triangle on any three nodes, as long as there is at least one edge between the nodes in G. This
generalizes a result by Haas et al. [HOR'05, Lemma 3|.

Lemma 2.15 Let G = (V,E) be a Laman graph and T = {u,v,w} C V such that |E(T)| > 1.
Then there 1s a Henneberg sequence for G that starts with triangle (u,v,w).

Proof. We prove the claim by induction on n = [V|. For n = 3 the claim is trivially true since the
only possibility for G is to be exactly triangle (u,v,w). Let n > 4. Let vertex x € V/ =V —T such
that deg(x) < 3. Note that x must exist because otherwise, when deg(x) > 4, for all x € V', then
|[E(T)| = 0 by Lemma 2.14, but we have |[E(T)| > 1.

We remove x by a reversed Henneberg step from Lemma 2.12. Let H = G — x. The removal
operation can only increase the number of edges within T in H. Thus, by the induction hypothesis,
there is a Henneberg sequence for H that starts with triangle (u, v, w). We extend the sequence by
adding x back to H. Then the sequence produces G. O

The assumption in Lemma 2.15 is necessary: There are examples for a graph G where |E(T)| =0
and it is not possible to construct G from triangle (u,v,w). In Section 5, we will consider the case
where G is 3-connected and T is a separating triple. Then we can still get a useful statement about
the starting point of a Henneberg sequence from Lemma 2.14 and 2.15.

Corollary 2.16 Let G = (V,E) be a 3-connected Laman graph with a separating triple T =
{u,v,w} and corresponding split graphs G1, Gy, ..., Gy, where we have removed all virtual edges
from the split graphs. Then there is a Henneberg sequence for G that starts

e either with triangle (u,v,w),

e or there 1s a split component, say G; = (V1,E1), that is Laman and |E;(T)| =0, and the
sequence wnitially constructs Gi.

Proof. The claim follows from Lemma 2.15 when |E(T)| > 1. So assume that [E(T)| = 0. Like in the
proof of Lemma 2.15, we remove vertices x € V' =V — T with deg(x) < 3 by reversed Henneberg
steps, as long as there are such vertices. In case this process introduces an edge within T at
some point, then it will stop with triangle (u,v,w) as in the proof of Lemma 2.15. Otherwise, it
will stop with a Laman graph H = (Vi, Ey) with |Ey(T)| = 0. By Lemma 2.14, graph H — T is
connected. Hence, H can be obtained by reverse Henneberg steps from one of the split components
G1,Ga,...,Gy, say Gi. Now a Henneberg sequence for H can be extended to a sequence for G;
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by adding the vertices of G; back that we removed above. Note that T C V}. Hence, adding the
remaining vertices of G will not introduce an edge within T. Now we can add the rest of the
vertices back that we removed above. This gives the desired Henneberg sequence for G. O

3 Rigid embeddings for planar graphs in NC?

Streinu [Str00] and Haas et al. [HOR"05] showed that planar Laman graphs can be characterized
by planar embeddings in the plane with certain geometric properties. We observe that this char-
acterization can be verified efficiently in parallel. Moreover, the geometric properties can be used
to compute an infinitesimally rigid embedding in NC?.

Consider a straight-line embedding of a planar graph G = (V,E). For an angle between two
adjacent edges, we call the angle conveg, if it is strictly less than 180°, and refiez, if it is strictly
larger than 180°. We say that vertex v € V in the embedding of G is pointed, if some consecutive
pair of edges in the circular order of edges around v span a reflex angle. We call the embedding
of G pointed, if every v € V is pointed.

The faces of a straight-line embedding of G are simple polygons. A vertex of a polygon is
conver, if the interior angle between its two adjacent edges is convex. The vertex is refiez, if the
interior angle is reflex. A polygon is a pseudo-triangle, if it has exactly three convex vertices, and
all other vertices being reflex. Note that a triangle is also a pseudo-triangle.

We say that a planar graph admits a pointed pseudo-triangulation (PPT), if it can be embed-
ded in the plane such that every vertex is pointed, every interior face is a pseudo-triangle, and the
outer face is the complement of the convex hull of all vertices. Streinu [Str00] first showed that the
underlying graph of a pointed pseudo-triangulation is always Laman. Then Haas et al. [HOR"05]
showed the reverse direction.

Theorem 3.1 ([Str00, HOR05]) A planar graph G is Laman iff G admits a pointed pseudo-
triangulation.

Furthermore, a pointed pseudo-triangulation embedding of a Laman graph simultaneously pro-
vides an infinitesimally rigid embedding.

Theorem 3.2 ([Str00, Str05]) Any pointed pseudo-triangulation embedding of a planar Laman
graph 1s an infinitesimally rigid embedding.

The difficulty in finding a PPT embedding of a graph are the conflicting conditions that around
each vertex all angles except one should be convex, but every face must have exactly three convex
angles. For a planar embedding of a graph, Haas et al. [HOR 05| defined a combinatorial pointed
pseudo-triangulation (CPPT) that just assigns label C (for convez) or R (for reflez) to every
angle such that the assignment combinatorially corresponds to a PPT embedding. That is:

1. Every vertex has exactly one angle labeled R,
2. every interior face has exactly three angles labeled C,

3. every angle incident to the outer face is labeled R.
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Clearly, the angles of a PPT embedding of a graph G yield a CPPT, and hence, a CPPT is a
necessary condition for a PPT. However, the converse might not be true. Nevertheless, by Euler’s
formula for planar graphs, one can show that a graph with a CPPT has exactly m = 2n — 3
edges [HOR'05, Lemma 5].

Finding a CPPT for a planar graph G is the first step to find a PPT embedding. Haas et
al. [HOR"05] reduce the CPPT problem to a perfect matching problem on a bipartite graph H.
However, H is no longer planar in general, and NC-algorithms for perfect matching are only known
for planar bipartite graphs. Instead, Rollin, Schlipf, and Schultz [RSS19] reduce the CPPT problem
to a maximum flow problem with multiple sources and sinks on a bipartite graph H’ that is very
similar to H, but is planar. Below we describe H’ so that one can see that it can be constructed
efficiently in parallel. Then the flow algorithm by Miller and Naor [MN95] can be used to compute
a CPPT assignment efficiently in parallel.

Lemma 3.3 ([RSS19, Lemma 9]) For a planar graph G, finding a CPPT can be reduced to
the problem of finding a flow in a planar graph with multiple sources and sinks with given
demands.

Proof. Let G = (V,E) have m = 2n — 3 edges and let F be the set of faces in a planar embedding.
We want to determine which angles in a face should be assigned to be reflex, and the one reflex
angle of every node.

For each face f € F, let df be the number of nodes around f. Recall that df — 3 nodes should
be reflex nodes in f, for the interior faces, and ds when f is the outer face. Correspondingly, we
set up the flow network H’ such that for every face f € F there are two nodes f;, f, connected by a
directed edge (f1, f2) with capacity d; — 3, for every inner face, and capacity ds, for the outer face,
where nodes f; are source nodes.

Then we connect the f;-nodes with the vertices of G. That is, for every v € V there are two
nodes vy, v; in H’ connected by a directed edge (v, v2) with capacity 1, where the nodes v, are sink
nodes. For the connection between faces and nodes, we put a directed edge (f2,vq) with capacity 1,
whenever node v belongs to face f. Note that H' is planar.

Clearly, the sum of the sink-capacities is n. It follows from Euler’s formula that also the sum of
the source-capacities is n. Moreover, an integer flow of value n corresponds to a CPPT-assignment
for G: the edges (f2,vy) with flow 1 indicate where the reflex angle of node v is. All other angles
are set to convex. O

Since the network H’ in the proof of Lemma 3.3 can be constructed efficiently in parallel from G,
we can combine it with the flow algorithm from Miller and Naor [MN95].

Corollary 3.4 For a planar graph G, we can find a CPPT in NC?, if one ezists.

It is not immediately clear that a CPPT-assignment can also be realized geometrically as a
corresponding PPT-embedding.

Definition 3.5 (Stretchable CPPT) A CPPT of a graph G s stretchable, if G admits a
compatible PPT, 1.e. a PPT-embedding, where angles labeled C are conver and angles la-
beled R are reflec.
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Observe that the above flow network H’ might have many maximum flows, and correspond-
ingly, there can be many CPPT assignments for G. For Laman graphs, all these assignments are
stretchable.

Theorem 3.6 ([HOR"05, Theorem 9]) For a planar Laman graph, every CPPT assign-
ment 15 stretchable.

Haas et al. [HOR"05] gave a characterization of when a CPPT assignment of graph G is stretch-
able via an associated planar graph G*. Graph G* contains G, but some of the edges are turned
into directed edges. There are also additional directed edges such that the inner faces of G become
triangulated, but still are planar. Further conditions are

1. the boundary vertices of G have no outgoing edges in G*,

2. every interior vertex v in G has 3 outgoing edges in G*, where two of them are incident to
the reflex angle of v and the third edge lies in the face containing the reflex angle.

The above conditions do not specify G* uniquely. However, any graph with the above properties
is fine for our purpose. Haas et al. [HOR'05] describe a recursive algorithm to construct G*. Rollin,
Schlipf, and Schulz [RSS19] gave a construction that works in linear time. Their construction can
also be accomplished efficiently in parallel.

Lemma 3.7 ([HOR"05, RSS19]) Given a CPPT assignment of a planar graph G, the graph G*
can be constructed in NC'.

Proof. First, for each inner vertex v, the two edges incident to the reflex angle of v are oriented
away from v. Then we triangulate all inner faces that are not already triangles. Consider such a
face and let a,b,c € V be the three nodes marked as convex. Let Vyyu, Vac, Vo,c be the vertices
between a, b, respectively a,c and b,c. At least one of the sets is non-empty, say V,p # 0. For
every v € Vqp, we put a directed edge (v,c). Let x € V,p be the neighbor of a and y € V,p be
the neighbor of b. Then we add directed edges (v,x), for all v € V¢, and (w,y), for all w € Vy ..

Both steps can be done in parallel for every inner vertex and every inner face. O

Whether a CPPT assignment for G is stretchable can now be characterized by a connectivity
property of G*. In a directed graph, a set of vertices S is 3-connected to a disjoint set of vertices T,
if for every v € S there are 3 vertex disjoint paths to 3 distinct vertices in T.

Theorem 3.8 ([HOR'05]) Let G be a planar graph with a CPPT assignment and G* be the
graph assoctated with G. Then the CPPT G 1s stretchable if and only if the set of interior
vertices 15 3-connected to the set of boundary vertices in G*.

It follows that checking stretchability can be done efficiently in parallel.
Corollary 3.9 Given a planar graph G with a CPPT assignment, we can check if G 1s

stretchable in NC?.
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Proof. Let G = (V,E). First, we construct graph G* by Lemma 3.7. Let S be the interior nodes
of G* and T be the nodes on the boundary. We add a new vertex t in the outer face of G* and
connect all nodes v € T with t with a directed edge (v,t). By Menger’s Theorem S is 3-connected
to T if and only if for every s € S and for every u,v € V — {s,t} there is a path from s to t
in G* — {u,v}. The latter condition can be checked in NC? as explained in Section 2.3. Now the
claim follows from Theorem 3.8. O

In summary, we can decide whether a planar graph is minimally rigid efficiently in parallel.
Theorem 3.10 Deciding whether a planar graph is Laman s in NC2.

Proof. Let G be planar. We first compute a planar combinatorial embedding for G, and then a
CPPT assignment for the embedding. Finally, we check if the CPPT is stretchable.

By Lemma 3.4 and Corollary 3.9 we know that G is Laman if and only if all subroutines work
out positively. Moreover, all subroutines are in NC?, and hence the overall algorithm as well. O

Remark 3.11 In terms of logarithmic space classes, observe that all the subroutines in the
decision algorithm for planar Laman graphs are actually in NL, incluswely the Miller-Naor
flow problem [DGKT12]. Hence, a stronger form of Theorem 3.10 is that planar Laman
decision s in NL.

Haas et al. [HOR™05] also show that one can compute a PPT embedding for planar Laman
graphs. By Theorem 3.2, this provides an embedding, where the rigidity matrix has full rank.
Hence, this gives a derandomization of the rank problem for the rigidity matrix for planar graphs.

Theorem 3.12 ([HOR'05]) Given a planar Laman graph G with n nodes, one can compute
a PPT embedding for G in time O(n%?).

The algorithm to compute the PPT embedding is based on Tutte's Theorem on barycentric
embeddings of graphs. Essentially, we fix the coordinates of the outer face vertices vq,..., vk to be
the vertices of a convex k-gon. The coordinates of the remaining vertices are computed by solving
a system of linear equations which can be done in NC? [Mul87].

Corollary 3.13 Given a planar Laman graph G, computing a PPT embedding for G is in NC?.

4 Rigid embeddings for Kj;;3-free graphs in NC?

Let G be a K33-free graph. We want to check whether G is Laman efficiently in parallel. By
Lemma 2.4, we may assume that G is 2-connected. By Theorem 2.8, when we decompose G into
3-connected components, these components are either planar or Ks. For planar components we can
check if they are Laman by Theorem 3.10. Hence, what we need is a connection between the Laman
properties of G and its 3-connected components. This is established by the following lemma.

Lemma 4.1 Let G = (V,E) be a 2-connected graph with a separating pair {u,v} and corre-
sponding split graphs G, Ga,..., Gy, where we have removed all virtual edges from the split
graphs.
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1. If (u,v) € E, then G is Laman ff Gy,...,G¢ are Laman.

2. If (u,v) € E, then G 1s Laman ff there exists one component, say G1, that s Laman,
and Gy + (u,v),...,Gg+ (w,v) are Laman.

Proof. Let G be Laman. By Lemma 2.13, there is a Henneberg construction for G that starts
with edge (u,v). Recall that this is independent of whether (u,v) is an edge in G. When a new
vertex is added in the Henneberg sequence, it belongs to exactly one of the split graphs G; and the
extension cannot interfere with some vertex from another split graph. Otherwise, the separating
pair would not separate the split graphs from each other in G.

1. If (u,v) € E, this gives us Henneberg sequences for all split graphs by subdividing the sequence
for G in its parts for Gi,..., Gy, respectively. Hence, they are all Laman.

2. If (u,v) ¢ E, it has been replaced by a type 2 extension adding a vertex in exactly one split
graph, say G;. Again we subdivide the Henneberg sequence for G, and get sequences for G;
and for G + (u,v),..., G¢ + (u,v). Therefore, they are all Laman.

For the backward direction, in the first case, we consider Henneberg constructions for G, Gy, ...,
that start with edge (u,v). Since the edge is present in all the components, it is never used in any
of the Henneberg sequences. Hence, we can combine all the Henneberg sequences to a sequence
for G. Hence, G is Laman.

The second case is similar. Since (u,v) is not present in Gy, the edge is used in the sequence
for Gy, but not in any of the sequences for G, + (u,v),..., G¢+ (u,v). Hence, we can again combine
all the Henneberg sequences to a sequence for G. Hence, G is Laman. O

The above lemma motivates us to define an operation on 2-connected graphs, which we call
Laman-split.

Definition 4.2 (Laman-split) For a 2-connected graph G = (V,E) with a separating pair
{u,v}, let G1,Gy,...,Gy be the split graphs obtained after splitting G along {u,v}, where we
have removed all virtual edges. The Laman-split of G along {u, v} are the graphs G{, G, ..., Gy,
where for each i € [{],

ol Gi+ (u,v), f m(Gy) =2n(G;) —4,
' Gi, otherwise.

For a Laman graph, all split graphs G; in Definition 4.2 have either 2n(G;) —4 or 2n(G;) — 3 edges
by Lemma 4.1. Note that we define Laman-split also for graphs that are not Laman. In this case,
the split graphs can also have other numbers of edges. In such a case, Gi, and hence G, are trivially
detected as not being Laman.

Recall that by Lemma 2.5, the standard splitting of 2-connected graphs in triconnected com-
ponents is unique, i.e. independent of the order of the separating pairs we do the splitting. The
following lemma shows when we apply Laman-splits to the components on the way, the resulting
Laman components are unique as well.
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Lemma 4.3 Let G = (V,E) be a 2-connected graph. Then G 18 Laman iff there s a way to
put the separating pair edges (u,v) ¢ E into the triconnected components of G such that (u,v)
1s 1n all but one of the components that contain u,v and that the resulting components are
all Laman.

Moreover, in case G 1s Laman, this Laman decomposition is unique and can be computed
in NC2.

Proof. Consider the standard recursive splitting procedure to compute the triconnected component
tree of G. When we have split along a separating pair {u, v}, we can also compute the Laman-split
that says in which split components edge (u,v) should be put. Note that the recursive splitting
is always done on the components computed by the standard splitting procedure. The Laman-
split is a post-computation on these components that does not affect the recursive splitting. By
the characterization given in Lemma 4.1, we conclude that G is Laman iff all the components
computed by Laman-splits are Laman.

It remains to argue about the uniqueness of the Laman decomposition. This property is crucial
for our parallel algorithm to compute the decomposition. So assume that G is a Laman graph.
By Lemma 2.5, the triconnected components are unique. We argue that also the corresponding
components we get from Laman-splits are uniquely determined. That is, whether a separating pair
edge is present or not in a component is irrespective of the order of the decomposition.

This is trivial in case a separating pair {u,v} is connected by an edge (u,v) in G. Then all
components will have the edge (u,v) as well by Lemma 4.1. We only have to argue for the case
that {u,v} is not connected by an edge in G. In this case, the edge (u,v) will be present in all
but one of the components by Lemma 4.1. We argue that the component without edge (u,v) is
uniquely determined.

Consider the triconnected component tree 7. We argue via induction on the number of com-
ponent nodes in 7. If 7 has just one component node, then there is no separating pair and the
claim is trivial.

In the inductive step, let 7 have more than one component node. Let C be a component node
with a separating pair {u, v} such that all other split components at {u, v} are leafs in 7. In the leaf
components {u, v} is the only separating pair. Hence, it is uniquely defined whether the separating
pair edge should be present in a leaf component or not, so that it has the right number of edges to
be Laman. Therefore the same holds for the parent component C by Lemma 4.1. Note also that
the presence or absence of a separating pair edge (u,v) in C is not affected when C is further split
along a different separating pair.

Now we can prune the leaf components considered above from 7 and get a tree with a smaller
number of component nodes where we can apply the induction hypothesis.

For the complexity bound, we describe a parallel procedure to obtain the Laman components.
First we compute all triconnected components in NC? (Lemma 2.6). To determine where to put the
separating pair edges, we do a Laman-split of G, for every separating pair {u, v} in parallel. That
is, we treat each separating pair as the starting point of a Laman decomposition of G. Thereby
we will put the edges correctly in the respective components by the uniqueness property: For any
triconnected component H that contains {u, v}, we add the separating pair edge (u,v) to H, if after
Laman-split in G the component H’ that contains H has edge (u,Vv). O
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Now we have all the tools to decide efficiently in parallel whether a given Kj33-free graph is
Laman.

Theorem 4.4 Given a K33-free graph G, we can decide whether G 18 Laman in NC?.

Proof. Given a 2-connected K3 3-free graph G, we apply the algorithm from Lemma 4.3 to compute
its Laman components. Here we might already detect that G is not Laman when the Laman-
split yields some component where the number of edges does not match the number according to
Lemma 4.1. Otherwise, we have that G is Laman iff all the components are Laman. Note that the
components are planar graphs or subgraphs of K5 by Theorem 2.8, because separating pair edges
only replace virtual edges, and hence do not affect planarity. Thus, we can apply Theorem 3.10 for
all components in parallel to check if they are all Laman. All the subroutines used are in NC2.

O

The decision algorithm splits the graph G along separating pairs until all components are planar
and then checks that these components are Laman. We observed in Section 3 that we can also
compute rigid embeddings for the planar components. To find a rigid embedding of G, we now
want to reassemble the embeddings of the components appropriately.

In Lemma 4.5, we make the assumption that the two nodes of a separating pair are mapped to
the same pair of points in all the components, respectively. We show that then we directly have a
rigid embedding for the whole graph G.

Lemma 4.5 Let G = (V,E) be a Laman graph with a separating pair {u,v}. Let Gy, Ga,...,Gy
be the Laman components obtained after a Laman-split of G along {u,v}. Let p1,p2,...,p¢ be
infinitesimal rigid embeddings of the components such that

pr(u) =p2(u) = --- =pe(u),
pi(v) =p2v) = .-+ =pev),
pr(u) #pi1(v),

so that the common embedding p = Uf:mi 1s well defined. Then p s an infinitesimally rigid
embedding of G.

Proof. We prove the claim for { = 2. For larger {, we can iterate the argument, combining
two graphs in every round. By Lemma 4.1, edge (u,v) is not contained in at most one of the
components. Hence, we may assume that (u,v) is contained in G;.

When we combine the rigidity matrices Ry = R(Gy,p1) and R, = R(Gy, p2) as shown in Figure 2,
we essentially get the rigidity matrix R = R(G, p).

By our assumption, edge (u,v) is in G, and hence, there is a row (u,v) in R;. Since R; has full
rank, row (u,v) is linearly independent from the other rows of R;.

e If (u,v) € E, then also Ry and R have a row (u,v), and the row is linearly independent of the
other rows of Ry as well.

e If (u,v) € E, then row (u,v) is present only in R,, but not in Ry and R. Now, row (u,v)
might be linearly dependent on the rows of R;.
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R = (v 00 0 00 0
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a = ’oo . 0 ]x xJo0o - 0

Figure 2: The rigidity matrix R = R(G, p) in case (u,v) € E, up to a permutation of the columns. If
(u,v) € E, we have to remove row (u,v). The x-entries represent possible non-zero entries. Each
stands for two values, an x- and a y-value.

Vector a is in the row-span of each, the upper part from Ry and the lower part from R) = Ry — (u, V).
Therefore the only non-zero entries of a can be at positions u and v.

We have to show that the rows of matrix R are linearly independent. Let R) denote the matrix
consisting of all rows of R, except row (u,v). Recall that if row (u,v) belongs to R then it also
belongs to Ry. Hence, the rows of R can be partitioned into R; and Rj. Since Ry and R; have full
rank, the only way we can have a dependency in R is that there is a non-zero vector a that is in
the row-span of Ry and of R} as illustrated in Figure 2. Then a — a = 0 would give a non-trivial
linear combination of the rows of R that produces the zero vector.

By the structure of R as shown in Figure 2, the only non-zero entries of a can be at positions u
and v. We restrict our attention to these positions. Let a,, and by, be the the part of a and
row (u,v) at positions u and v, respectively,

Quy = (auxy Quyy Quyy Gy ))
bu,v = (Xu —XvyXv —Xuy Yu —Ywy Yv — yu)-

By assumption, we have by, # 0. Let M be the matrix consisting of the vectors for the three
trivial motions, M = (vx, vy, v;), on these four positions. That is

_y u
_y v
Xu

o O - -
—_ - O O

Xy
Because a, and hence a,,, are a linear combination of the rows of the rigidity matrix, we have

QuyM = by M = 0.
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Note that M is 4 x 3 matrix and rank(M) = 3 since we assume that (x,,yv) # (xv,yy). Hence,
the codimension of M is 1, or, in other words, the kernel of M has dimension 1. It follows that Qv
must be a multiple of b, ,. Hence, vector a is a multiple of the row-vector (u,v) of R. But recall
that a is in the row-span of R} and row-vector (u,v) is linearly independent of Rj. Hence, we must
have a = 0. Therefore, the rigidity matrix R has full rank. O

To get a rigid embedding of a K3 3-free Laman graph, it now remains to show how to achieve
the assumption of Lemma 4.5.

Theorem 4.6 Gwen a K33-free Laman graph G, we can compute an infinitesimally rigid
embedding in NC?.

Proof. We follow the algorithm from Theorem 4.4 and apply Lemma 4.3 to decompose G into
planar Laman components C;,Cy,...,Cx. Then we compute infinitesimally rigid embeddings
P1,P2,---,Ppx for the components in parallel by Corollary 3.13.

The vertices that belong to some separating pair occur in several components. We will construct
new rigid embeddings q1, q2, ..., qk that will map different copies of any such vertex to the same
point, and leave all other vertices unchanged. Then q1,q2,...,qx will fulfill the assumption of
Lemma 4.5, and q = UE:] gi will be a rigid embedding for G.

ForveV, let

Sy={i€lkl|veV(C)}

For every v € V where |S,| > 1, we construct a pair of univariate polynomials (a,(t),b,(t)) that
interpolates the points {pi(v) |1 € S, }. That is, we compute the interpolation polynomials such
that (ay(i),by(1)) = pi(v), for every i € S,. Then we replace the coordinates of such a vertex v
by (ay(t), by(t)) in each component. That is, we define embeddings pi(v), for i € [k] and v € V(Cy),

(av(t), by(t)), if[Sy[>1,
Pi,t(V) = .
pi(v), otherwise.

Note that a component C; can have several separating pair nodes and we replace their coordinates
by different polynomials, respectively, but all in the same variable t. The interpolation guarantees
that pi¢(v) agrees with pi(v) for t =1, for every v € V(C;),

piilv) = pi(v). (5)

Consider the rigidity matrices R(Cj, pi ), where some of the entries are polynomials in t. Our goal
is to find a value for t such that all matrices R(C;, pi¢) have full rank. Let R; be a non-singular
(2n;—3)-square submatrix of R(Cj, p;) and define R; as the corresponding submatrix of R(Cy, pi ).
Since det(R;) # 0 and R; = Ry by (5), we have that det(R;) is a non-zero polynomial. Hence, the
product

A(t) = det(Ry () det(Rz¢) --- det(R)

is a non-zero polynomial too. For the degree of A(t) note that deg(a,),deg(b,) =[Sy —1 < n.
Therefore
deg(det(Riy)) < n(2n; —3) < 2n?.
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Hence, for A(t) we get
deg(A(t)) < k2n? < 2n’.

It follows that we can find a ty € [2n® + 1] such that A(ty) # 0. Now we define q; = Pirto
for all i € [k]. By construction, q; is still a rigid embedding of C;. Then q = [JX, q; is a rigid
embedding for G by Lemma 4.5.

For the complexity, note that polynomial interpolation and evaluation is in NC? [EGK90].

O

5 Deciding Lamanness of one-crossing-minor-free graphs in NC>

In this section, we give an NC? algorithm for deciding whether a Ks-free graph is Laman, or even
more general, whether a one-crossing-minor-free graph is Laman. We use Theorem 2.9, respectively
Theorem 2.10, and further decompose the graph at separating triples into 4-connected components.
We first show how the Laman property is preserved in the components. This can be seen as a
generalization of Lemma 4.1 for separating pairs to separating triples.

Lemma 5.1 Let G = (V,E) be a 3-connected graph with a separating triple T = {u,v,w} and
corresponding split graphs G, Gy,..., Gy, where we have removed all virtual edges from the
splat graphs. Let At = {(u,v), (u,w), (v,w)} be the triangle edges and E(T) the actual edges
of GinT.

Then G s Laman iff there is a way to put each e € AT—E(T) in all but one of Gy, Ga,..., Gy,
such that the resulting components are all Laman.

Proof. The argument goes along the lines of the proof of Lemma 4.1, extended to triples.
Let G be Laman. By Corollary 2.16, there is a Henneberg construction for G that starts either
with triangle (u,v,w), or with one component, say G; = (V1, E1), where |[E;(T)| = 0.

e If the sequence starts with triangle (u,v,w), each triangle edge e € At — E(T) will be sub-
divided by a type 2 step, adding a vertex in one split component, say G;. Hence, to get a
Henneberg sequence for all the components, we have to add e to all of them except G;.

e If the sequence starts by constructing G;, the rest of the sequence constructs Gy,..., G¢ by
extending from T, but without using any triangle edges, because |E;(T)| = 0. Hence, we get
Henneberg sequences for G, + AT,...,G¢ + Ar.

For the reverse direction, we have Henneberg sequences for all the components, where we have
added the edges from AT—E(T) to Gy, Gy, ..., G, as described in the lemma. If all components have
a Henneberg sequence that starts with triangle (u, v, w), then we can combine them to one sequence
for G. If there is component, say G; = (V;,E;) with |E;(T)| = 0, that cannot be constructed
from triangle (u,v,w), we start with the sequence for G;. By definition, the other components
are Gy + Ar,..., Gy + A7, that have Henneberg sequences starting with triangle (u,v,w). These
sequences will not use any triangle edge, and hence, we can attach them to the sequence for G;.
This yields a sequence for G. O
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While using Lemma 5.1, we will be considering different choices of triangle edges which can be
added to make a component Laman. The following lemma states that when two of the choices of
a pair of triangle edges work, then so does the third one.

Lemma 5.2 Let G = (V,E) be a graph and u,v,w € V be three nodes in G with no edge
between them. If G +{(u,v), (u,w)} and G +{(u,v), (v,w)} are Laman then G + {(u,w), (v,w)}
18 also Laman.

Proof. Assume that G + {(u,w), (v, w)} is not Laman. Then there must be a subset S of vertices
including at least two triple vertices such that

[E[S]| > 2|S| — 3. (6)
Then S will also satisfy (6) in G 4 {(u,v), (u,w)} or G + {(u,v), (v, w)}, a contradiction. O
Consider the 4-connected component tree of a 3-connected graph. Let components Hy,..., H;

be leaf nodes in the tree that are attached via a common separating triple to parent component Hy.
The following lemma shows how to prune the leafs in the tree and replace them by a constant size
gadget in Hp such that the Laman property is maintained.

Lemma 5.3 Let H= (V,E) be a graph with a separating triple T = {u,v,w} and corresponding
split graphs Ho, Hi,...,H¢, where we have removed all virtual edges, such that Hy,...,H¢ are
planar or of bounded treewidth (even with the virtual edges). Then there s an NC2-algorithm
that

e either computes a constant-size gadget graph I' on T such that

H s Laman <= HoUT s Laman

e or determines directly that H 1s not Laman.

Moreover, let H| be graph Ho plus the edges missing from triangle T. If H| is planar or of
bounded treewndth w > 5, then Ho UT 1s planar or of bounded treewidth w, respectively.

Also, the choice of the gadget in the first item depends only on E(T) and Hy,...,H, and
not on Hp.

Proof. Let At = {(u,Vv), (v,w), (u,w)} be the triangle edges on T. Lemma 5.1 describes how to
put triangle edges in split components for graph H to be Laman. However, this does not uniquely
determine the placement of the edges. Therefore we consider all distribution of the edges that are
consistent with Lemma 5.1.

Let 7y be the family of those sets Fo C At — E(T) for which there exist sets Fi,Fy,...,F; C
At — E(T) such that

1. each edge in At — E(T) appears in all but one of Fy, Fy,...,F; and

2. Hi +F,Hy+Fy,...,H¢ + F¢ are all Laman.
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From Lemma 5.1, we have
His Laman <<= dFy€ Fo Hpo + Fp is Laman. (7N

We claim that the family Fy can be computed in NCZ. To see this observe that the number of
possible tuples (Fo, F1,...,F;) which satisfy item 1 above is (£ + 1)A7—E(Ml < (¢ + 1)3. For all such
tuples, we can check the Lamanness of H; +F; for all j € [{] in parallel. Since Hy,...,H, are planar
or of bounded treewidth (with virtual edges), we can invoke the NC-algorithm from Theorem 3.10
or Theorem 2.2 to check whether H; + F; is Laman.

If 7o = 0, then we can say that H cannot be Laman. When Fy # 0, we construct an appropriate
gadget. By (7), it suffices to construct a gadget I' such that

dFy € 7o Hp + Fo is Laman <= Hy+ T is Laman.

Recall that we need the construction of I to depend only on E(T), but to be independent of H,.
For each family Fy and E(T), we construct a gadget graph I" such that for any Fy C At — E(T), we
have

Fo € Fo &= T can be obtained from (T, Fy) via a sequence of Henneberg steps. (8)

If 7o has a unique set 7y = {Fp}, then we take I' = (T,Fy). Note that by construction, each
Fo € Fo has the same cardinality. Thus, Fy is always unique when |E(T)| = 3 or |[E(T)| = 2. But
also when [E(T)| =1 or [E(T)| = 0, Fp can have a unique set. In the following, we consider all cases
where Fp contains at least two sets. For these, we construct gadgets I' shown in Table 1 that we
put into Hy. We use the notation e; = (u,v), e2 = (u,w), e3 = (v, w). Clearly, the definition of the
gadgets is up to vertex relabeling.

Below we explain why property (8) holds for each of the gadgets given in the table. The
implication from left-to-right in (8) is given in the description of the gadgets in Figure 3. We
argue for the reverse direction. Note that in both types of Henneberg steps, the quantity 2|V|— |E|
remains constant. Hence, all graphs (T, Fy) which lead the same gadget via Henneberg steps must
have the same number of edges.

Case | E(T) Fo r
1 {er} {{e2},{es}} Figure 3a
2 0 {{e1, e2},{e1, e3}} Figure 3b
3 0 | {{er,ez},{er, e3},{ez, e3}} Figure 3c
4 0 {{e1},{e2},{e3}} Figure 3a
5 0 {{e1},{e2}} Not a valid possibility

Table 1: Gadgets for all possibilities of Fy and E(T) where |Fp| > 2.

Case 1. The only possible reverse Henneberg steps from the gadget in Figure 3a is to remove the
degree 3 node x and add a triangle edge. Since Fj is restricted to be a subset of Ay — E(T) =
{ez, e3}, the only possibility for the resulting graph is either (T,{e;}) or (T, {es}).
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(a) (b) (c)

Figure 3: Gadgets from Lemma 5.3. (a) The or-gadget that can be obtained from any one of the triangle
edges via a Henneberg type 2 step. (b) The uv-or-gadget that can be obtained from edge (u,v) plus
any one of the other two triangle edges via two Henneberg type 2 steps. (c) The 2-or-gadget that can
be obtained from any two triangle edges via a Henneberg type 1 step and two type 2 steps.

Case 2. Starting from the gadget in Figure 3b, the first reverse Henneberg step has to remove x
because it has degree 3. Then the edge we have to add can only be e; = (u,v). Then the
second reverse Henneberg step can only be to remove y. The edge we can add has to be
either e, or e3. Thus, the resulting graph can only be either (T,{e, ez}) or (T,{e1, e3}).

Case 3. From any two triangle edges we can construct the gadget in Figure 3c as explained in the
caption. Hence, starting from the gadget, we can reverse these steps and and end up in any
two triangle edges.

Case 4. The only possible reverse Henneberg steps from the gadget in Figure 3a is to remove the
degree 3 node x and add one of the triangle edges.

Case 5. We show that Fy = {{e1},{e2}}is not a valid possibility. From the definition of 7, recall that
we can have Fy = {e} only when, say, Fi = {e2,e3} and F; = {e, e, e3} for j > 2. Similarly,
we can have Fy = {e;} only when F; = {e7, e3}. Then from Lemma 5.2, F; = {ej, e} is also a
valid choice for H; to be Laman. Hence, Fyp = {e3} should also be present in F;.

Finally, we argue the last part of the lemma about planarity and bounded treewidth. If com-
ponent H| is planar, it can be embedded such that the triangle is one face of the embedding. Then
we can put any of the gadgets from Figure 3 inside the triangle so that Hy + I' is planar.

If the component Hj has bounded treewidth w, consider a tree decomposition (7, B) of width w.
In a tree decomposition, every clique must be contained in a common bag [Bod89, Lemma 2.1].
Thus, there must exist a bag B € B that contains the triangle nodes, i.e., T C B.

To get a tree decomposition of Hj+T", we put an additional bag B’ = V(I') in 7 that is adjacent
to B. Note that [B’| < 6. Hence, the treewidth of H)+TI" is bounded by max{w, 5}. The same holds
for Hy + I" because treewidth does not increase when edges are removed. O

Now we can prove our main Theorem.

Theorem 5.4 Given a one-crossing-minor-free graph G, we can decide whether G 1s Laman
in NC3.
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Proof. We first decompose the input graph G into triconnected components in NC? by Lemma 2.6.
Then, in parallel we further decompose each triconnected component into 4-connected components
in NC? by Lemma 2.6 and we identify the large child paths in the 4-connected component trees by
Lemma 2.7. As G is one-crossing-minor-free, the 4-connected components are planar or of bounded
treewidth by Theorem 2.10.

By Lemma 4.3, we can decompose G into components resulting from the triconnected compo-
nents, such that G is Laman iff all these components are Laman. Then for every such component C,
in parallel, we decide whether it is Laman as follows. We apply Lemma 5.1 in a bottom up fashion
along the 4-connected component tree of C. The leaf components in a 4-connected component tree
contain a single separating triple and we can decide for what choices of triple edges the component
is Laman by Theorem 3.10 or by Theorem 2.2. Then we put gadgets into the parent components
according to Lemma 5.3. The gadgets we put into each separating triple in a parent component are
only defined by the children components that are attached to the triple. In particular, we can put
the gadgets into the parent components by working in parallel for every triple. Note that in case
of overlapping separating triples, multi-edges could emerge in a parent component after we have
added the gadgets. In this case, we detected that a parent component is not Laman. We continue
this in a bottom-up fashion until we reach the root. Note that if we run this procedure as it is,
the parallel complexity would be proportional to the depth of 4-connected component tree, which
could be large.

Instead, when we reach a large child path along the way in component C, we deviate from
the bottom-up evaluation. Let the large child path consists of components Py, Py,..., Pk, where P;
is the parent component of P;;; in the 4-connected component tree. Let T; be the separating
triple between components P; and Pi,q, fori=1,2,...,k— 1, and Ty be separating triple between
component P; and its parent in the tree.

If the above procedure reaches some component of the large child path at a separating triple T #
Ti, foralli =0,1,...,k—1, then we put a gadget as described above. Then each path component P;
is planar or of bounded treewidth and has at most two triples that have not been replaced by a
gadget. Therefore, for each path component in parallel we can apply Theorem 3.10 or Theorem 2.2
to check for what choices of edges in the two triples the component is Laman in NC?. We describe
how to merge the components Py, P2,..., Pk into one component.

Merging two components: Let H be a graph with a separating triple T. Let A, B, C;,Cp,...,Cn
be the components obtained when we split H at T. Let To and Tg be two other triples that are
present in A and B, respectively. Suppose for each component C;, we have already computed for
which choices of edges in triple T it is Laman. Similarly, suppose we have computed for which
choices of edges in triples Tp and T, component A is Laman, and analogously for the edges in
triples T and Tp, w.r.t. component B. Then using the conditions in Lemma 5.1, we can find out
for what edge choices in triples Ta and Tg, graph H is Laman. This can be done in NC' because
there is only a polynomial number of possibilities of putting the edges of triple T in components
A, B, Cy,...,Cy by the condition in Lemma 5.1, which can be checked in parallel. Moreover, the
number of edge choices in Tp and Tp is constant.
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Merging a path: We apply the process of merging two components recursively in a binary tree
fashion on Py, Py,...,Px. At the bottom layer, we start with applying the above merge procedure
on pairs of neighboring path components at their common separating triple Ti, in parallel. After
merging two path components, we get a new component that again has two triples at each end and
we have computed the edge choices in these two triples that make the component Laman.

When we have merged all path components into a single component, we find the choices of
edges in the triple Ty for which the split graph in C — Ty that contains P; is Laman. Then we put
the corresponding gadget in Ty and carry on with the bottom up evaluation. Clearly, the above
procedure for a large child path is in NC?, as the merge step is in NC'.

If it happens during the bottom up evaluation that a component or a large child path is not
Laman for any choice of edges we can conclude that the graph is not Laman and stop the bottom-up
evaluation.

Regarding the complexity, note that the NC?-algorithms that we run as subroutines in the
bottom up evaluation are the ones from Theorem 3.10 and 2.2. By Lemma 2.7, there are at
most logn many large child paths on a path from a leaf node to the root in the 4-connected
component tree Thus, the algorithm sequentially runs at most logn many NC? algorithms as
subroutines and therefore we end up in NC3. O

6 Open problems

For K3 3-free Laman graphs we can compute an infinitesimally rigid embedding efficiently in paral-
lel. This is open for the case of one-crossing-minor-free graphs. In fact, it is open even for graphs
of bounded treewidth. It is also open for Ks-free Laman graphs, even though the 4-connected
components are all planar. A problem there is that we do not have the analog of Lemma 4.5 for
separating triples. For example, an embedding of a K33 on a conic section as in Figure 4 is in-
finitesimally flexible [Whi84]. However, the split graphs Gi, G, G3 corresponding to the separating
triple {u, v, w} are infinitesimally rigid in the same embedding, where one has to add two edges to
each component to make it Laman.

u
v
G (
/ w
G2

Figure 4: K33 on an ellipsoid

The main open problem is still to show rigidity or minimal rigidity in 2D for arbitrary graphs
in NC. Note that even for planar graphs, rigidity is not known to be in NC.
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A seemingly even more challenging open problem is to consider infinitesimal rigidity in higher
dimensions. The m x 2n rigidity matrix R = R; in 2D can clearly be generalized to the m x dn
rigidity matrix Rq4, for dimensions d > 3. The PIT problem for R; is in polynomial time because
of the various characterizations we have for rigidity, like Theorems 1.2, 1.3, and 2.11. However, we
do not have such characterizations even for d = 3. A derandomization in polynomial time of the
PIT for R3 is an open problem for decades. See also the exposition of Raz and Wigderson [RW19]
on this topic.
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