
How to Construct Random Strings

Oliver Korten∗ and Rahul Santhanam†

July 29, 2025

Abstract

We address the following fundamental question: is there an efficient deterministic algorithm
that, given 1n, outputs a string of length n that has polynomial-time bounded Kolmogorov
complexity Ω̃(n) or even n− o(n)?

Under plausible complexity-theoretic assumptions, stating for example that there is an ϵ > 0
for which TIME[T (n)] ̸⊆ TIMENP[T (n)ϵ]/2ϵn for appropriately chosen time-constructible T , we
show that the answer to this question is positive (answering a question of [RSW22]), and that
the Range Avoidance problem [KKMP21, Kor21, RSW22] is efficiently solvable for uniform
sequences of circuits with close to minimal stretch (answering a question of [ILW23]).

We obtain our results by giving efficient constructions of pseudo-random generators with
almost optimal seed length against algorithms with small advice, under assumptions of the form
mentioned above. We also apply our results to give the first complexity-theoretic evidence for
explicit constructions of objects such as rigid matrices (in the sense of Valiant) and Ramsey
graphs with near-optimal parameters.

∗Department of Computer Science, Columbia University, New York, NY, USA. oliver.korten@columbia.edu
†Department of Computer Science, Oxford University, UK. rahul.santhanam@cs.ox.ac.uk

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 104 (2025)

mailto:oliver.korten@columbia.edu
mailto:rahul.santhanam@cs.ox.ac.uk

1 Introduction

1.1 Motivation

Constructing Random Strings: Time-bounded Kolmogorov complexity KT [LV19] is a funda-
mental measure of complexity of a Boolean string. Given a string x and a time bound T , KT (x) is
the size of the smallest program p such that U(p) outputs x within T steps, where U is a universal
Turing machine fixed in advance. Intuitively, for feasible time bounds T (n), KT (n)(x) measures the
inherent compressibility or “structure” in x from the point of view of efficient algorithms, in the
sense that any x with low KT (n) complexity has a short description from which it can be recovered
efficiently. Thus a string with high KT complexity can be considered unstructured or random-like.

Given functions T, ℓ : N → N and a sequence (xn)n∈N of strings, where each xn is of length
n, let us call the sequence (KT , ℓ)-hard if KT (n)(xn) ≥ ℓ(n) for all n. We are interested in the
complexity of producing a (KT , ℓ)-hard sequence of strings, for polynomial time bounds T and for
ℓ as large as possible. Three particularly important settings we focus on here will be ℓ(n) = nΩ(1),
ℓ(n) = Ω̃(n), and ℓ(n) = n − o(n). A simple argument shows that KT -hard strings cannot be
produced in time T ′ = o(T/ log(T)) by an algorithm A which outputs xn when given n in unary.
Indeed, the existence of such an algorithm would imply that KT (xn) = O(log(n)), as the universal
machine U can output xn in less than time T when given n in binary and a constant-size program for
A 1. But is it possible for such a sequence to be produced by an algorithm running in time poly(T)?

Question 1: Let T : N → N be any time-constructible function and let ℓ(n) ∈ {nΩ(1), Ω̃(n), n −
o(n)}. Is there a deterministic algorithm A, which given input 1n, runs in time poly(T) and outputs
a (KT , ℓ)-hard string?

Question 1 is a fundamental question about Kolmogorov complexity, for which we currently do
not have clear positive or negative complexity-theoretic evidence. A positive answer to Question 1
would be very interesting, as it would demonstrate the power of having polynomially more time:
a poly(T) time algorithm would be capable of producing highly T -incompressible strings, while a
o(T/ log(T)) time algorithm can only produce strings that are highly T -compressible. Indeed Hy-
pothesis 1.19 in a recent work of [RSW22] asks a very similar question2 to Question 1, and states
that “The plausibility of Hypothesis 1.19 remains to be investigated”. Question 1 also has impli-
cations for the theory of meta-complexity, which has seen much recent work [All17, Hir22, LO22].

A natural approach to Question 1 is via pseudo-randomness. Under the assumption that E
requires non-deterministic circuits of size 2ϵn for some constant ϵ > 0, it is known [IW97, KvM99]
that for any constant c > 0 there is a pseudo-random generator Gn with seed length O(log(n)) and
error o(1) against co-non-deterministic circuits of size nc, computable in time poly(n). Consider
T (n) = nd, where d < c is any constant. The property of being a KT -incompressible string, i.e.,
a length-n string of KT -complexity ≥ n − 1, can be checked by a co-non-deterministic circuit of
size at most nc, and moreover at least half of all strings of length n satisfy the property. Hence
close to half of the outputs of Gn satisfy the property of KT -incompressibility, which means that
the range of Gn is a poly(n) size set Sn computable in time poly(n) and containing at least one
KT -incompressible string for large enough n. However, it is unclear how to identify efficiently which
of the strings in Sn is incompressible - this seems to require calls to an NP oracle. We could try

1Here we use the standard fact that any algorithm A running in time T ′ can be simulated by U in time
O(T ′ log(T ′)).

2The difference is that instead of only asking about producing KT -hard strings for time-constructible functions T ,
[RSW22] asks for an algorithm that gets T and n as input in unary, and outputs a KT -hard string of length n.

2

and combine the strings in Sn together into a string that is Kt-hard, for example by concatenating
them. This approach has two drawbacks:

1. Concatenating the strings yields a new string of length >> T (n) rather than length n, since
the set Sn has size >> nc. Hence for any reasonable setting of ℓ(n), even ℓ(n) = nΩ(1), we do
not get any interesting consequences for KT -hardness when we are interested in time bounds
as a function of input length.

2. Even if we don’t mind destroying the relation between the time bound and input length, con-
catenating poly(n) strings which are maximally incompressible can, at best, achieve incom-
pressibility ℓ(n) = nΩ(1). If we are in the more stringent compressibility settings ℓ(n) = Ω̃(n)
or ℓ(n) = n−o(n) which occur more frequently in explicit construction applications, concate-
nating poly(n) many strings appears to be useless.

Like most of the interesting problems in derandomization, answering Question 1 unconditionally
would be difficult, as any (KT , nΩ(1))-hard string for T > n2 can be transformed easily into the truth
table of a hard Boolean function in E, i.e., a function with circuit complexity at least 2ϵm for some
ϵ, and hence would imply E ̸⊆ P/poly. Instead, we would simply like complexity-theoretic evidence
in favor of or against Question 1. Preferably, this evidence should avoid exotic assumptions, and
involve standard beliefs about the difficulty of simulating one resource efficiently by another, e.g.,
the belief that time cannot be simulated by much smaller space or by much smaller non-uniformity.

Explicit Constructions and Range Avoidance: Recently there has been a lot of interest
[Kor21, KKMP21, RSW22, GLW22, ILW23, GGNS23, CGL+23, CHLR23, CL24, CHR24, Li24,
KP24] in the Range Avoidance problem, where the input is a circuit C from ℓ bits to n bits, where
n > ℓ, and the task is to find a non-output of C. This task is efficiently doable with randomness -
we can just output a random string of length n, and this will be a non-output of C with probability
at least 1/2. The question is whether this can be done efficiently deterministically.

The problem was motivated in [Kor21, KKMP21] by its applications to explicit constructions of
combinatorial objects. Let Π be a property, such as the property of a graph being Ramsey or of a
matrix being rigid, that is satisfied by a random object with probability very close to 1. For many
natural such Π, including the Ramsey and Rigidity properties, it can be shown that objects not
satisfying Π can be efficiently recovered from a compressed representation. This recovery process
can be modeled by a small Boolean circuit C for which any non-output is the representation of
an object satisfying Π. In other words, solving Range Avoidance on C enables an efficient explicit
construction for Π.

Given that explicit constructions for properties such as Ramsey and Rigidity have been long
sought after, this motivates the study of the complexity of Range Avoidance, and in particular
the search for evidence that Range Avoidance is feasible. Unfortunately it was shown in [ILW23]
that under plausible cryptographic and complexity-theoretic assumptions, Range Avoidance is in-
tractable.

However the intractability of Range Avoidance doesn’t give evidence for the intractability of the
explicit construction problems mentioned above - it could be that a weaker assumption than solving
Range Avoidance is sufficient for efficient explicit constructions. Indeed such an assumption was
identified in [ILW23] - solving Range Avoidance for uniformly generated circuits. It turns out that
all of the explicit construction problems studied in [Kor21] can be captured by Range Avoidance
on uniform circuits. This now raises the question of how tractable it is to solve Range Avoidance
in this special case.

3

Question 2: Is there compelling complexity-theoretic evidence in favour of efficient explicit con-
structions for properties such as Ramsey and Rigidity, and more generally in favour of the tractabil-
ity of Range Avoidance on uniform circuits?

Indeed the tractability of Range Avoidance on uniform circuits is raised explicitly in [ILW23].
It is also stated there that “some of the authors are skeptical that this special case of Avoid is
easy.”

The pseudorandomness approach to Question 1 can be applied to Question 2 as well. Essentially
the same argument as we used there gives that, for properties such as Ramsey and Rigid, under
standard derandomization assumptions, there is an efficient construction of a list of objects at least
one of which satisfies the property. However, as we do not know polynomial-time algorithms for
verifying the Ramsey or Rigidity properties, it is unclear how to pick out a single object satisfying
the property from such a list. Indeed the pseudo-randomness approach applies to general Range
Avoidance as well, but in that case we now have evidence that the problem is not tractable.

1.2 Our Results

We give positive answers to Questions 1 and 2, under believable complexity assumptions. Our
hardness assumptions are of the following two forms, each involving a parameter d ∈ N:

Hypothesis (Hardness Assumptions for dth-Exponential Time Bounds).

1. (Strong Form) There is an absolute constant ϵ > 0 so that the following holds. For any time
constructible T (n),m(n), with T (n) ≥ n having at most dth-order exponential growth rate
and n ≤ m(n) ≤ poly(n), there is a function f : N 7→ {0, 1}∗, |f(n)| = m(n) computable in
poly(T (n)) time, which cannot be computed in time T (n)ϵ with m(n)ϵ bits of advice by any
NP-oracle machine for more than finitely many n.

2. (Weak Form) Let T (n) = exp[d+1](n). There is some ϵ > 0 and a language computable in
time T (n) which is not computable in time T (n)ϵ with an NP oracle and 2ϵn bits of advice
even infinitely often.

We are using exp[d](n) for the d-fold iteration of the exponential function exp(n) = 2n. Such
assumptions, particularly of the second kind, are fairly standard in complexity theory. Indeed, when
d = 0, the second assumption is a standard derandomization assumption, asserting that there is a
language in TIME[2n] which does not have NP oracle circuits of size 2o(n). The main novelty in our
case is that we use these assumptions for larger values T , in particular for time bounds T which
have iterated-exponential growth rate. While we state the strong form assumption by quantifying
over all time constructible T (n),m(n), in fact we only require the assumption to hold for quite a
limited class of bounds: the bounds T (n) needed are representable by constant length arithmetic
expressions with exp, log, and ceiling/floor functions, while the bounds m(n) needed are simply of
the form m(n) = exp(c⌈log n⌉) for constants c.

The first assumption is analogous to assumptions made in the recent literature on hardness
vs randomness [CT21], and generalizes the second assumption in a natural way. Both the first
and second assumptions involve natural beliefs about the relationships between the fundamental
resources of time, non-determinism and advice. Both assumptions formalize the intuition that
time cannot be sped up by an arbitrary polynomial amount using non-determinism and advice.
Indeed, note that there is no known way to speed up time even by a super-constant amount by
using non-determinism and advice.

4

We believe that our assumptions hold relative to a random oracle, and here is an informal
argument for the case of the second assumption. Given oracle A, define the time T bounded Turing
machine MA to accept x of length n if the x’th string of length T (n) is in A (where we consider
the lexicographic order on strings). For a random oracle A, the truth table of A at length T (n) is
Kolmogorov-random even conditioned on truth tables below length T (n). Since T (n)ϵ time non-
deterministic oracle machines can only access strings of A at length T (n)ϵ or below, it should not
be possible to compute the first 2n bits of A at length T (n) from this information together with
arbitrary T (n)ϵ bits of advice.

Our approach to using these assumptions in service of constructing random strings is via pseudo-
randomness, and is a variation on the strategy we critiqued a few paragraphs ago: construct
a pseudorandom generator, enumerate its range, and concatenate the constituent strings. The
problems with this approach discussed in the last section boiled down to one issue: for a standard
complexity-theoretic PRG fooling polynomial size nondeterministic circuits, we can at best achieve
a seed length of O(log n), and hence will end up needing to concatenate a very long list of poly(n)
strings. To remedy the situation, it would suffice to use pseudorandom generators with much
smaller seed length of o(log n) or even log log n. While it is known that O(log n) seed length is
information-theoretically optimal for fooling nonuniform circuits of size poly(n), we aim to exploit
the uniformity of the adversary we are fooling to get seed length as small as possible; for uniform
adversaries the lower bound of log n no longer applies. This yields a result which is interesting
in its own right: efficient constructions of small pseudo-random sets for uniform (or even slightly
non-uniform) algorithms, under assumptions of the form discussed in the previous paragraph.

Theorem 1 (Informal, see Theorems 5 and 7). Under the Hypotheses above with d = 1, there is a
pseudorandom generator with seed length O(log log n) which fools TIMENP[poly(n)]; if we assume
the strong form the generator runs in polynomial time, and if we assume the weak form it runs in
quasipolynomial time.

More generally, under the above hardness assumption with large parameters d (i.e. for higher-
exponential time bounds), we obtain pseudorandom generators fooling TIMENP[poly(n)] with seed
length O(log[d+1](n)) (for infinitely many n). If we assume the strong form hypothesis our gen-
erators will run in polynomial time, and if we assume the weak form they will run in iterated
quasipolynomial time. When d > 1, our construction will require in addition that the input length
n is of the form n = exp[d−1](n′) for some n′, or more generally that Kpoly(n)(n) ≤ log[d](n).

Some terms in the above require clarification. We are using log[d](·) to denote the d-fold iteration
of the logarithmic function. Our notion of “iterated quasipolynomial time” will be defined in the
preliminaries - it describes a family of runtime bounds which grows faster than polynomial and
quasipolynomial, but is much closer to polynomial than to exponential. Finally, the notation
Kpoly(n)(n) denotes the time bounded Kolmogorov complexity of the number n, when written as a
string in standard binary notation.

Our PRG construction can actually handle advice (nonuniformity) up to log[d](n) when the
seed length is log[d+1](n), which we observe is optimal via a standard argument (Lemma 4). It also
holds for fooling larger time bounds TIMENP[T (n)] for T (n) >> poly(n) (at the cost of the time
complexity of the generator being low as a function of T (n) rather than of n), and for other oracles
O in place of the NP oracle (provided we use O in place of NP in the hardness assumption).

We then turn our attention briefly to PRGs fooling uniform algorithms without NP oracles: what
is the minimal seed length such that we can fool TIME[T (n)] by a PRG with running time T (n)O(1)?
For this problem we show in Theorem 9 that the machinery developed above is unnecessary: if
the PRG is capable of simulating the distinguishers it is trying to fool, there is a straighforward
method which can reduce seed length O(log n) to arbitrarily small seed length. Hence under

5

the standard assumptions that achieve logarithmic seed length for TIME[T (n)]/n (namely that E
requires exponential circuit size) we can obtain an arbitrarily strong reduction in seed length for
TIME[T (n)]. Like our NP-oracle result, this result applies to distinguishers with mild nonuniformity,
and the achievable seed length scales with the uniformity in a way that is provably optimal according
to Lemma 4.

Random Strings and Explicit Constructions: We next use our short-seed pseudorandom
generators for PNP (Theorem 1) to give (conditional) constructions of Kpoly-random strings. Our
first construction of random strings is the following, which achieves incompressibility Ω̃(n):

Theorem 2 (Informal, see Theorems 10 and 11). Under our main hardness assumption with
d = 1, for any k ∈ N there is an algorithm A such that A(1n) outputs an n-bit string x satisfying

Knk
(x) ≥ n

polylog(n) for all n; the algorithm will run in polynomial time if we use the strong form of
the assumption, and quasipolynomial time if we use the weak form.

More generally under our main hardness assumption for larger values of d, we obtain con-
structions of strings with Knk

(x) ≥ n
poly(log[d](n))

. Using the strong form of the assumption the

construction runs in polynomial time, and under the weak form it runs in iterated quasipolynomial
time. When d > 1 we require the integer n to be of the form n = exp[d−1](n′) for some integer n′,
or more generally to satisfy Kpoly(n)(n) ≤ log[d] n.

If we are satisfied with our construction algorithms succeeding on some unknown infinite set
of input lengths, we are able to bootstrap the above constructions so that the log[d](n) loss in
K-complexity becomes additive rather than multiplicative:

Theorem 3 (Informal, see Theorem 12). Assume the first version of our main hardness assumption
for all d. Then for any k, d ∈ N there is a polynomial time algorithm A such that A(1n) outputs

an n-bit string x satisfying Knk
(x) ≥ n− log[d] n for infinitely many n.

In Section 4.2 we then use the previous results to give conditional polynomial time explicit
constructions of various important combinatorial objects shown reducible to Range Avoidance in
[Kor21]. We will defer most of the specifics to Section 4.2, but highlight the following two results:

Theorem (See Theorems 13 and 14).

1. Under the strong form of our main hardness assumption with d = 2, there is a poly(n) time
algorithm which produces a matrix M ∈ Fn×n

2 which is Valiant-Rigid whenever n is a power
of 2.

2. Assuming that there is a language in TIME[22
n
] that is not computable in TIMENP[2ϵ2

n
]/2ϵn

(even infinitely often)3, there is a language in EXP that requires Boolean circuits of size 2n

poly(n)
for all n.

Crucially, our results give the first standard-form hardness assumptions under which the above
explicit construction problems (and others in Section 4.2) have an efficient algorithm, and they do
so via a universal approach: we have a single object, Kpoly-random strings, whose efficient explicit
construction follows from plausible hardness assumptions, and which automatically satisfies various
other pseudorandom properties, e.g. rigidity as a matrix or maximal hardness as a Boolean function.

Further Applications: In Sections 4.3 and 4.4 we discuss two further applications of our random

3This is a particular case of the weak form hardness assumption.

6

string constructions. The first shows a “hardness condensation” phenomenon for the main hardness
assumptions we use in this paper (with the lower bound relativized to a PSPACE oracle), whereby
we may amplify the degree of nonuniformity in the lower bounds from 2n

ϵ
to 2n−o(n). The second

addresses the question of the relative difficulty of uniform range avoidance and general (nonuniform)
range avoidance posed in [RSW22, ILW23], where we observe using our main results and some
previous hardness results ([ILW23, ABK24]) that under plausible hardness assumptions, nonuniform
range avoidance is significantly harder than the uniform variant.

Barriers to Improving Our Main Results: In the final section we give two sets of results
indicating barriers to improving our main PRGs and random string constructions. Our first re-
sult casts our iterated-logarithmic seedlength PRG fooling PNP (Theorem 1) as a reconstructive
multi-source extractor, similar to Trevisan’s analysis [Tre01] of the classical hardness randomness
connection in [NW94, IW97] in terms of reconstructive single-source extractors. We show that any
such extractor must have iterated-logarithmic seed length, and thus that any improvement to the
seed length of our PRG in Theorem 1 must use substantially different techniques.

Second, we give an oracle separation showing that it is not possible via black-box arguments
to obtain our main results from more standard assumptions like E ̸⊆ SIZE[2ϵn]. In [Kor21] it is
shown that explicit construction of (Kpoly, n − 1) random strings and 2ϵn hard truth tables are
equivalent with respect to NP oracle reductions. If such an equivalence held without NP oracles it
would supersede our main results here: we could start with an assumption that E requires 2ϵn-size
circuits, and then use the reduction to produce from the hard truth table a string with high time
bounded Kolmogorov complexity. We show that no such reduction exists which is relativizing. This
justifies in some sense the need for more high-end hardness assumptions to achieve our main results.

1.3 Overview of Main Construction

We describe at a high level our construction of pseudorandom generator with small seed length
secure against any L ⊆ {0, 1}n computable in TIMENP[poly(n)]. Using the classical hardness-
randomness connection, under the assumption that TIME[2O(n)] requires exponential size NP-oracle
circuits we can obtain a generator G0 : {0, 1}s0(n) → {0, 1}n with seed length s0(n) ≤ O(log n).
The key observation is that this first attempt at a generator significantly overshoots our primary
goal in one respect: the generator G0 obtained from the generic hardness-randomness connection
would in fact be secure against TIMENP[poly(n)]/n machines which have access to n bits of advice.
On the other hand we only want a generator which fools uniform algorithms.

To use this to our advantage, we consider a recursive argument. Let n1 = s0(n), and consider
n1 as our new input length. Define the language L1 ⊆ {0, 1}n1 consisting of the seeds z of G0 such
that G0(z) ∈ L. We know that Prz∼{0,1}n1 [z ∈ L1] ≈ Prx∼{0,1}n [x ∈ L] by the security of our first

generator G0, and therefore if we could find a second generator G1 : {0, 1}s1(n1) → {0, 1}n which
fools the language L1, we would find that the composition G0 ◦G1 fools the original language L. If
s1(n1) = O(log n1) = O(log log n) we would have made significant progress. For such a generator
G1 to fool L1, we would need it to fool NP-oracle algorithms with running time poly(n); however
the input length of L1 is n1 = O(log n), so as a function of the new input length we need G1 to
fool algorithms running in exponential time with an NP oracle. We may proportionally increase the
allowable runtime of G1 to exponential as well; so overall we have scaled the time complexities of our
generator/distinguisher by an exponential. However, crucially, the advice complexity of deciding
L1 remains O(1): this is where we use crucially the uniformity of our distinguisher. If L required
n bits of advice compute, then the best advice upper bound we could place on L1 is n ≈ 2n1 which
is trivial.

7

Continuing in this way, we are able to iteratively reduce the seed length of our original generator
by a logarithmic composition, for an arbitrary constant number of phases. The cost is that we
need to obtain, in each step, psuedorandom generators with logarithmic seed length that fool
algorithms running in exp(exp(· · · exp(n) · · ·)) time with an NP oracle, and which are computable
in a comparable amount of time (without an NP oracle). To achieve such generators we rely on
the standard toolkit of hardness-randomness transformations [NW94, IW97, Uma02]. In this way,
we can argue the security of our construction based on the kind of hardness assumptions described
above.

There are a few additional intricacies that we are skimming over here, which contribute to
the two caveats in our main theorem statements: the weaker runtime bounds when using the
second version of our hardness assumptions, and the requirement that the number n is of the form
n = exp[d−1](n′) for some n′ when using the first version of our hardness assumptions. The first of
these issues roughly stems from the fact that, when trying to apply our hardness assumption to get
an O(log nj) seed length generator on input length nj ≈ log[j](n) (which we will then compose with
the outer generator to reduce the total seed length by another logarithm), we will actually need to
apply our hardness assumption on some other input length mj = O(nj); this will mean that we

can at best hope for our generator to run in time poly(exp[j](O(nj))) ≈ exp[j](O(log[j] n)), which
will be superpolynomial when j > 1. This issue can be avoided by considering the more refined
first version of our hardness hypothesis.

For the second issue, it turns out that we can only guarantee the security of our generator on
inputs lengths n such that the number n itself has time-bounded Kolmogorov complexity log[d](n).
For d = 1 this changes nothing, since every number n has KO(n)(n) ≤ log n via its binary represen-
tation, so we achieve a generator with seed length O(log log n) which is valid on all input lengths,
but for large values of d our construction is only valid for infinitely many n (in particular it will
work for all n of the form exp[d−1](n′) for some n′). The reason for this issue is as follows: in the
above exposition, we considered the language L1 ⊆ {0, 1}n1 of seeds mapping to strings in the base
language L, and argued it is computable in time exponential in its input length. When we continue
this argument for more steps and obtain languages L2, L3, . . ., we would like to argue at each step
that they are uniformly computable with a small amount of advice (comparable to the input length
they are defined on). However, the definition of these languages depends on the original input
length n that we started on, and since log[d](·) is not injective for any d > 0, we cannot determine
n solely from the smaller input lengths, but will need to somehow supply the number n as advice.
If we assume the number n is sufficiently compressible, we are able to skirt this issue and complete
the argument.

1.4 Related Work

We have already mentioned connections of our work to meta-complexity and Range Avoidance.
In terms of derandomizing uniform algorithms, there has been a lot of work on uniform hardness-
randomness tradeoffs, beginning with [IW98], but much of that work is not relevant to our setting
as the emphasis is on uniform assumptions for derandomization, while we are interested instead in
decreasing the seed length, and are not concerned with uniformity of the assumption.

However the recent work of [CT21] on super-fast derandomization is indeed very relevant
from a technical point of view. They give a (conditional) derandomization of BPTIME[T (n)] into
TIME[T (n)1+ϵn]. The classical approach to derandomizing BPTIME[T (n)] would be to model it
as a circuit of size T (n) with input length T (n) (the input represents the randomness) and use a
PRG fooling this class. To fool this class of circuits requires a PRG with seed length log T (n) and
running time T (n), and if T (n) = n3 we could therefore not hope to achieve derandomization in

8

time T (n)1+ϵn no matter how fast the PRGs runtime is. A key observation in [CT21] is that that
this approach to derandomizing BPTIME[T (n)] actually overshoots whats required: if we model
the BPTIME[T (n)] machine more precisely as a TIME[T (n)] machine on input length T (n) with
nonuniformity n << T (n), then we only need a PRG which fools TIME[T (n)]/n; for this task, it
is possible (at least information-theoretically) to achieve a seed length of log n or more generally
(1+ ϵ) log n rather than log T (n), which means that the enumeration of seeds will only cost us n1+ϵ

time.
They then proceed to construct a PRG for TIME[T (n)]/n with seed length (1 + ϵ) log n and

computable in time T (n)1+ϵ. In their case a great deal of work must be dedicated to optimizing the
runtime of the PRG which has no relevant parallel in our work; however the question of reducing
the seed length down to the true level of uniformity, and the assumptions under which they are
able to achieve it, have similarities to ours. In particular, they require assumptions of the form
TIME[T (n)] ̸⊆ TIME[T (n)1−δ]/2(1−δ)n where T (n) = 2kn for a large constant k.

The innovation in our work is the use of recursion to achieve dramatically smaller seed length
against inefficient uniform adversaries using a small amount of non-uniformity, which enables us to
address Questions 1 and 2.

2 Preliminaries

We start with some notation for the classes of growth rates appearing in this work:

Definition 1 (Growth Rates). Both log(·), exp(·) are base 2. For any function f : N → N, d ∈ N
we use f [d] to denote the d-ary composition of f with itself, with f [0] being the identity n 7→ n. We
say that a function f has elementary growth rate, or that it is “elementary,” if f(n) ≤ exp[d](n)
for some absolute constant d. We say that a funciton f : N → N is time-constructible if there is a
Turing machine M such that M(1n) prints f(n) in binary, and M has running time O(f(n)) on
all inputs.

For each d ∈ N and α ∈ R+ we define the function Φd,α(n) = exp[d](log(α log[d−1](n))). Using
this function we define a hierarchy of O(·) notations more relaxed than the standard as follows; for
f, g : N → N, we say f(n) = O⟨d⟩(g(n)) if f(n) ≤ Φd,C(g(n)) for some C ∈ N and sufficiently large
n, and f(n) = Ω⟨d⟩(g(n)) if f(n) ≥ Φd,ϵ(g(n)) for some ϵ > 0 and sufficiently large n. o⟨d⟩(g(n)),
ω⟨d⟩(g(n)) are defined analogously.

In this notation we have O⟨1⟩(n) = O(n), O⟨2⟩(n) = poly(n), O⟨3⟩(n) = quasipoly(n). This
hierarchy of growth rates enumerates a class of strongly subexponential growth rates having mag-
nitude much closer to n than to 2n: indeed for each fixed d, O⟨d⟩(n) is closed under composition
and grows slower than Ω⟨d′⟩(2n) for any fixed d′. Similarly, Ω⟨1⟩(n) = Ω(n), Ω⟨2⟩(n) = nΩ(1),

Ω⟨3⟩(n) = 2log
Ω(1) n, and for each fixed d the class Ω⟨d⟩(n) has a growth rate much closer to n than

to log n, and in particular far exceeds the growth rate of O⟨d′⟩(log n) for any fixed d′.

Definition 2 (Languages and Complexity Classes). For functions f, g : N → N and language
A ⊆ {0, 1}∗ we define the complexity class TIMEA[f(n)]/g(n) consisting of those languages decidable
in time O(f(n)) with an oracle for the language A and using O(g(n)) bits of advice on inputs of
length n. When g(n) = 0 we omit this argument.

For a language L ⊆ {0, 1}∗ we use Ln : {0, 1}n → {0, 1} to denote the restriction of L to {0, 1}n,
and SIZE[f(n)] to denote the set of languages L so that Ln is computed by Boolean circuits of size
O(f(n)) for all n.

We next define our notation for time-bounded Kolmogorov complexity:

9

Definition 3 (Kolmogorov Complexity). We fix an efficient universal oracle turing machine U
once and for all. For an oracle language O ⊆ {0, 1}∗, time bound T ∈ N, x, y ∈ {0, 1}∗ we use
KT,O(x | y) to denote the length of the shortest program π ∈ {0, 1}∗ so that UO(π, y) halts with
output x in at most T time steps. If O = {} or y is the empty string we omit them from the
notation as in KT (x | y), KT,O(x) respectively.

For a number n ∈ N, we use KT,O(n) to denote KT (bin(n)) where bin(n) ∈ {0, 1}⌈logn⌉ is the
canonical binary representation of n.

Finally we introduce relevant notation for pseudorandom generators:

Definition 4 (Pseudorandom Generators). For a family of “distinguishers” D ⊆ {0, 1}{0,1}n and
ϵ ∈ [0, 1], we say that G : {0, 1}s → {0, 1}n is a pseudorandom generator (PRG) secure against D
with error ϵ if, for all D ∈ D, we have

| Pr
x∼{0,1}n

[D(x) = 1]− Pr
z∼{0,1}s

[D(G(z)) = 1]| ≤ ϵ

We say that G is a hitting set generator (HSG) if it satisfies the weaker condition

(Pr
x∼{0,1}n

[D(x) = 1] > ϵ) ⇒ (Pr
z∼{0,1}s

[D(G(z)) = 1] > 0)

Let s : N → N, ϵ : N → [0, 1]. If C ⊆ {0, 1}{0,1}∗ is a complexity class (set of languages) and
G = (Gn : {0, 1}s(n) → {0, 1}n)n∈N is an ensemble of generators, we say that G is a PRG (resp.
HSG) secure against C if, for all L ∈ C, there is n0 ∈ N so that for all n > n0, Gn is a PRG (resp.
HSG) secure against {Ln} with error ϵ(n).

2.1 Range Avoidance and Construction of Random Strings

We formalize a general notion of explicit construction problems as follows:

Definition 5 (Explicit Construction Problems). An explicit construction problem is defined by a
language Π ⊆ {0, 1}∗, such that Πn ̸= ∅ for all n. The computational task is: given 1n as input,
output a string x ∈ Πn.

If Π is an explicit construction problems, we say that a function S : {0, 1}∗ → {0, 1}∗ is a “list
solution” to Π if S(1n) ∩Πn ̸= ∅ for all n. The “list size” ℓ(·) is defined as ℓ(n) = |S(1n)|.

As discussed in the introduction, an important class of explicit construction problems are those
reducible to the problem range avoidance:

Definition 6 (Range Avoidance [KKMP21, Kor21, RSW22]). Range avoidance, or “Avoid,” is
the following search problem: given a Boolean circuit C : {0, 1}m → {0, 1}n with m < n, output a
string x ∈ {0, 1}m \ range(C). We say that this Avoid instance has “stretch” m 7→ n.

We say that an explicit construction problem Π reduces to Avoid in polynomial time with stretch
function ℓ(n), if there is a polynomial time algorithm which, given 1n, outputs an Avoid instance
Cn : {0, 1}ℓ(n) → {0, 1}n so that whenever x is a solution for Cn, we have x ∈ Π.

The key connection between Kpoly random strings and explicit construction problems reducible
to Range Avoidance is the following:

Observation 1 ([RSW22]). Say that for every k ∈ N, there is a polynomial time algorithm which,

for every n (resp. infinitely many n) outputs a string x ∈ {0, 1}n with Knk
(x) ≥ ℓ(n). Then every

explicit construction problem reducible to Avoid with stretch function ℓ(n) is solvable in polynomial
time .

10

Proof. The definition of the reduction implies that there is a polynomial time algorithm Cn :
{0, 1}ℓ(n) → {0, 1}n, so that whenever x /∈ range(Cn) we have x ∈ Π. If k is such that the algorithm
constructing Cn runs in time nk, then we observe that every string x in the range of Cn satisfies
Knk

(x) ≤ ℓ(n).

Recall that our approach to constructing Kpoly random strings will consist of two steps. First, we
will try only to construct a short list of strings, one of which is guaranteed to have Kpoly complexity
≥ n − 1: we then concatenate the list to obtain a single string whose complexity degrades by a
factor proportional to the length of the list. The second step (concatenation) is justified by the
following standard claim:

Observation 2. Let x1, . . . , xm ∈ {0, 1}n and let x̂ = (x1, . . . , xm) be their concatenation. Then
for any time bound T and i ≤ m we have KT−O(mn)(x̂) ≥ KT (xj)−O(logm).

For the first step (obtaining a short list of candidate solutions), we rely on the following obser-
vation:

Observation 3. Let (Gn : {0, 1}s(n) → {0, 1}n)n∈N be a hitting set generator secure against
TIMENP[O(T (n))] with error 1

2 . Then there exists a seed z ∈ {0, 1}s(n) so that KT (n)(Gn(z)) ≥ n−1;

in other words the range of Gn is a list solution for the set of strings with KT (n)(·) ≥ n− 1.

Proof. At least half of n bit strings have KT (n)(·) ≥ n−1. On the other hand KT (n)(·) is computable
in time O(T (n)) with an NP oracle.

Hence, we have reduced the problem of constructing random strings to constructing hitting
generators against PNP with short seed length. The next section is dedicated to the construction of
such a generator under plausible hardness assumptions. We will in fact produce a pseudorandom
generator (despite only needing a hitting set generator).

3 PRGs for Uniform Classes with Near-Optimal Seed Length

The main goal in this section is to produce a pseudorandom generator computable in a poly(n)
time, or more generally O⟨d⟩(n) time for some fixed constant d, which is secure against uniform
PNP algorithms and has seed length significantly smaller than log n. We will phrase all of our
assumptions/generator construction with respect to an arbitrary oracle O in place of NP for the
sake of generality.

We will consider here two qualitatively distinct classes of hardness assumption used to instan-
tiate our generators, each parameterized by an oracle O (typically we set O = NP) and a constant
d ∈ N:

Hypothesis 1 (Strong Assumption for O, d, abbreviated SH(O, d)). There is ϵ > 0 so that for
all time constructible T (n) ≤ (exp[d](n))O(1) and all time constructible m : N → N, n ≤ m(n) ≤
poly(n) the following holds: there is a sequence of strings (fn ∈ {0, 1}m(n))n∈N so that the map
n 7→ fn is computable uniformly in T (n) time, but no machine running in time T (n)ϵ with an
O oracle and m(n)ϵ bits of advice can compute fn for more than finitely many n. In the case
T (n) ≤ poly(n), we only require the assumption to hold in the case m(n) = n.

We refer to m(n) as the “length bound” in the above.

11

Hypothesis 2 (Weak Assumption for parameters O, d, v, d ≥ 1, abbreviated WH(O, d, v)). Let
1 ≤ d′ ≤ d and T (n) = exp[d

′](n). There is some constant ϵ > 0 and a language L computable in
TIME[T (n)] which is not computable in TIMENP[Φv,ϵ(T (n))]/Φv,ϵ(2

n) on more than finitely many
input lengths.

Note that WH(O, 1, 2) translates to the assumption that E requires 2Ω(n) circuit complexity
with O oracles, which is the standard regime in which polynomial time generators fooling PO with
logarithmic seedlength can be constructed by known methods.

3.1 Fooling TIMENP[T (n)] with O(log n) Seed Length

The first step in our construction is to use classical hardness-randomness constructions to give
pseudorandom generators which fool TIMENP[T (n)] with O(log n) seed length and runtime ≈ T (n)
in the case T (n) is very large, under the appropriate hardness assumptions. Depending on which
assumption we use we get a generator with different parameters:

Lemma 1. Assume SH(O, d). Then for every time constructible T (n) ≤ (exp[d](n))O(1) there
is a PRG (Gn : {0, 1}s(n) → {0, 1}n)n∈N computable uniformly in time poly(T (n)) which fools
TIMEO[T (n)]/3n.

Lemma 2. Assume WH(O, d + 1, v), d ≥ 0, v ≥ 2. Then for any k ∈ N there is a PRG (Gn :
{0, 1}s(n) → {0, 1}n)n∈N computable uniformly in time O⟨d+v⟩(n) which fools TIMEO[nk]/3n and
has seed length s(n) ≤ O⟨v−1⟩(log n).

We will prove the first case (Lemma 1) here, and reserve Lemma 2 for the Appendix as it’s proof
is similar. We require the following standard tool from complexity-theoretic pseudorandomness:

Theorem 4 (Black-Box Hardness-Randomness Connection [IW97]). For each ϵ > 0 exists a con-
stant c ∈ N, c ≥ 3

ϵ and a uniform algorithm IW with the following behavior. On input n and given

oracle access to a function f : {0, 1}ℓ(n) → {0, 1} with ℓ(n) = c · ⌈log n⌉, IWf computes a function
IWf : {0, 1}s(n) → {0, 1}n in poly(n) time for s(n) ≤ O(ℓ(n)) such that for any D : {0, 1}n → {0, 1}
with

| Pr
x∼{0,1}n

[D(x) = 1]− Pr
z∼{0,1}s(n)

[D(IWf (z)) = 1]| ≥ 1

n

there exists a circuit C with D oracle gates computing f whose total size is at most 2ϵℓ(n).

Proof of Lemma 1. We will invoke SH(O, d) on some yet to be determined time bound T ′(n) and
length bound m(n), with respect to oracle O and constant d; let ϵ > 0 be the implied constant
guaranteed by the hypothesis (which does not depend on the choice of T ′, m).

Next, invoke Theorem 4 with parameter δ := ϵ/2, and let c ∈ N be the guaranteed constant
from this Theorem. So there is a function IWf : {0, 1}s(n) → {0, 1}n which, given oracle access to
a function f : {0, 1}ℓ(n) → {0, 1} with ℓ(n) = c · ⌈log n⌉, runs in poly(n) time with poly(n) oracle
calls to f , and such that whenever D : {0, 1}n → {0, 1} distinguishes IWf from uniform, there is a
D-oracle circuit C of size 2δℓ(n) computing f .

Now we set m(n) = 2ℓ(n) = 2c·⌈logn⌉ and let T ′(n) = T (n)3k, which are both time constructible,
and use these in our specific invocation of SH(O, d) as hinted previously. We then obtain an
algorithm which, in time T (n)3k, computes a string fn ∈ {0, 1}m(n), which cannot be computed
by by any machine running in time T ′(n)ϵ = T (n)3 with m(n)ϵ = 2ϵ·ℓ(n) bits of advice. We then
claim that, setting Gn = IWfn : {0, 1}ℓ(n) → {0, 1}n gives the required generator. By assumption it
is computable in time T (n) · poly(n) ≤ poly(T (n)). On the other hand if it were distinguished in

12

time T (n) with 3n bits of advice, we’d obtain a circuit computing every bit of fn of size 3n+2
ϵ
2
ℓ(n)

with oracle gates that can be evaluated in time T (n), hence overall we would be able to compute

fn in time T (n) ·m(n)
ϵ
2 + O(n · T (n)) = T (n) · n

1
2 + O(T (n) · n) < n3 with 3n +m(n)

ϵ
2 < m(n)ϵ

bits of advice, provided n = o(m(n)ϵ). Recalling from our application Theorem 4 that cδ ≥ 3, we

have that m(n)
ϵ
2 ≥ Ω(n

cϵ
2) = Ω(n

3
2) and we are done.

3.2 Recursive Generator Construction

We give here our main construction of a generator fooling languages decidable in polynomial time
with an NP oracle under a natural computational hardness assumption, specifically the assumptions
SH(NP, d), d ∈ N. Our construction will have seed iterated-logarithm type seed length length
log[O(1)] n for infinitely many n; in particular it will work for all n such that the number n has
time-bounded Kolmogorov complexity comparable to the seed length. Afterwords we show that a
similar construction gives a generator fooling the same class with a slower runtime under the weak
form hardness assumptions; the proof of this construction will be relegated to the appendix.

Theorem 5. Let O ⊆ {0, 1}∗ be any oracle, d, v ∈ N, and assume Hypothesis SH(O, d + v).
Let T (n) ≤ (exp[v](n))O(1) be time constructible. There exists a generator (Gd

n : {0, 1}sd(n) →
{0, 1}n)n∈N computable uniformly in poly(T (O(n))) time, so that the following hold:

1. For all n, sd(n) ≤ O(log[d+1](n))

2. For all L ∈ TIMEO[T (n)]/ log[d](n), we have

| Pr
z∼{0,1}s(n)

[Gn(z) ∈ L]− Pr
x∼{0,1}n

[x ∈ L]| ≤ O(
1

log[d](n)
)

for all but finitely many n ∈ {n | KT (n)(n) ≤ log[d](n)}.

Proof. Using our hardness assumption SH(O, d + v) in combination with Lemma 1, for each time
constructible bound R : N → N bounded above by (exp[d+v](n))O(1) there is a constant c(R) ∈ N and

a pseudorandom generator (G
(R)
n : {0, 1}c(R)⌈logn⌉ → {0, 1}n)n∈N computable in TIME(R(n)c(R))

which fools TIMEB[R(n)]/3n with error 1
n . Using c(·) we may define a sequence of constants (ci)i∈N

and functions (Td, fd : N → N)d∈N∪{0} as follows:

1. T0 = T , f0 = (x 7→ x).

2. Set cd = c(Td−1), fd = cd · ⌈log fd−1(·)⌉, Td = 4 · Td−1(exp(⌈ ·
cd
⌉))cd

Observe that 3Td−1(fd−1(n)) + Td−1(fd−1(n))
cd ≤ Td(fd(n)).

Then for each d, we have the generator (G
(Td)
n)n∈N defined for every input, which we abbreviate

as Gd. We use this family of generators to construct the generators (Gd
n)n∈N promised in the theorem

statement. In particular, we define for every d ∈ {0, . . . , } the generator

(Gd
n : {0, 1}fd+1(n) → {0, 1}n)n∈N, Gd

n = G0
n ◦G1

f1(n)
◦ · · · ◦Gd

fi(n)

We prove its security by induction, using the following stronger induction hypothesis for each
d ≥ 0:

1. Gd
n is computable in time ≤ Td+1(fd+1(n)) − 3T (n) with the number n and O(1) additional

bits as advice

13

2. Gd
n fools any L ⊆ {0, 1}n, L ∈ TIMEB[Td(fd(n))]/fd(n) with error ≤

∑
j≤d fj(n)

−1 for all

sufficiently large n satisfying KT (n)(n) ≤ fd(n)

For the base case, we know that G0
n = G0

n which, by assumption, fools TIMEB[T (n)]/n with error
1
n . Recall that T1(f1(n)) ≥ 3T0(f0(n))+T0(f0(n))

c1 = 3T (n)+T (n)c1 , hence G0
n = G0

n is computable
in time T (n)c1 ≤ T1(f1(n)) − 3T (n) (with no advice). Now assume the induction hypothesis up
to d − 1. Let L ⊆ {0, 1}n be given, n sufficiently large, so that L ∈ TIMEB[Td(fd(n))]/fd(n) and
and KT (n)(n) ≤ fd(n). Define Ld ⊆ {0, 1}fd(n), Ld = {x | Gd−1(x) ∈ L}. By induction, Gd−1 is
computable in time Td(fd(n)) − 3T (n) given the number n as advice, and O(1) additional advice
bits; hence Ld is computable in TIMEB[Td(fd(n))]/3fd(n): if we are given the number n as advice,
then we may determine f0(n), . . . , fd(n) using the number d as advice which costs O(1), after which
we can compute the generator Gd−1

n , and the language L using ≤ fd(n) additional bits of advice
(together with some O(1) bits to specify the algorithm described in the current sentence). Under
the assumption KT (n)(n) ≤ log[i](n) ≤ fi(n) we may produce the number n from an additional fi(n)
bits of advice, for a total advice cost ≤ 3fi(n), and the time of the additional operations (beyond
the original computation of Gd−1) is bounded by 3T (n).

Now, using the second part of our induction hypothesis, we determine that Gi−1
n fools L, in

particular we have:

| Pr
z∈{0,1}fi(n)

[Gi−1
n (z) ∈ L]− Pr

x∈{0,1}n
[x ∈ L]| ≤

∑
j<i

fj(n)
−1

On the other hand, using the security of the generator Gd
n on input length fd+1(n) (which is

sufficiently large), we have that Gd
n fools Ld, in particular:

| Pr
w∈{0,1}fd+1(n)

[Gd
n(w) ∈ Li]− Pr

z∈{0,1}fd(n)
[z ∈ Ld]| ≤ fd(n)

−1

Recalling that Gd
n = Gd−1

n ◦ Gd
n and combining the previous two inequalities using the triangle

inequality we have:

| Pr
z∈{0,1}fd+1(n)

[Gd
n(w) ∈ L]− Pr

x∈{0,1}n
[x ∈ L]| ≤

∑
j≤d

fj(n)
−1

which establishes the second condition in our inductive hypothesis. For the first, note that to
compute Gd

n, we need only recover the number n from its shortest KT (·) description in time T (n),
compute Gi−1

n which takes time ≤ Ti(fi(n)) − 3T (n) by induction, and finally compute Gi
n which

takes time Ti(fi(n))
ci+1 ; overall this is bounded by Ti+1(fi+1(n))− 3T (n).

At this point the theorem is proven; it remains to verify a few bounds:

1.
∑

j≤d fj(n)
−1 ≤ O(fd(n)

−1) so that the error bound is as stated in the theorem.

2. fd(n) ≤ O(log[d](n))

3. Td(fd(n)) ≤ poly(T (O(n)))

The first and second hold trivially. For the last, we prove it by induction; more specifically we will
show by induction that Td(O(fd(n))) ≤ T (O(n))O(1). In the base case, T0(O(f0(n))) = T (O(n)).
We then have that

Td(O(fd(n))) = 4 · Td−1

(
O(exp(⌈cd⌈log fd−1⌉

cd
⌉))

)cd
(1)

≤
(
Td−1(O(exp(log fd−1(n) +O(1)))

)O(1)
(2)

= Td−1(O(fd−1(n)))
O(1) ≤ T (O(n))O(1) (3)

14

where the last step uses the induction hypothesis.

We highlight an important special case of the above:

Theorem 6. Assume that for some ϵ > 0 and every time constructible T (n) ≤ 2O(n), m(n) ≤
poly(n), there is a function n 7→ {0, 1}m(n) computable uniformly in time T (n) which is not com-
putable in TIMENP[T (n)ϵ]/m(n)ϵ even infinitely often. Then for every k ∈ N, there is a pseudoran-
dom generator family (Gn)n∈N with seed length O(log log n) which fools TIMENP[nk]/ log n for all
sufficiently large n.

Proof. We will set v = 0, d = 1, T (n) = nk in Theorem 5. Observe that for all n, we have
KO(n)(n) ≤ log n since we may encode the number n in binary.

If we rely instead on the weak form hypotheses WH(·) we get:

Theorem 7. Assume Hypothesis WH(O, d + 1, v) with d ≥ 0, v ≥ 2 fixed constants, and k ∈ N
a fixed constant. Then there is a pseudorandom generator with seed length O⟨v−1⟩(log[d+1](n)) and

runtime O⟨d+v⟩(n) that fools TIMEO[nk]/ log[d](n) with error (2 log[d](n))−1 whenever Knk
(n) ≤

log[d](n).

As in the case of Lemma 2, we relegate the proof to the appendix since it uses essentially the
same ideas as that of Theorem 5 and is in fact a bit simpler. As before we highlight an important
special case, obtained immediately from Theorem 7 by setting O = NP, d = 1, v = 2:

Theorem 8. Assume that there is some ϵ > 0 and a language L ∈ TIME[22
n
] which is not com-

putable in TIMENP[2ϵ2
n
]/2ϵn on more than finitely many input lengths. Then for any k ∈ N there

is a pseudorandom generator fooling TIMENP[nk] with seedlength O(log log n) and quasipolynomial
runtime.

3.3 Fooling Uniform Deterministic Time

For our application to construction of random strings, we will use the generator in the previous
section with oracle setting O = NP. It is nonetheless natural to consider the implications of our
generator in the case O = ∅; in this case we obtain a generator with o(log n) seed length fooling
TIME[T (n)] under plausible hardness assumptions. However, we demonstrate here that in the
regime of a deterministic distinguisher, once O(log n) seed length is achieved for TIME[poly(n)],
we can reduce the seed length all the way down to an arbitrarily small super-constant value; more
generally, we can fool TIME[poly(n)]/a(n) with essentially optimal seed length O(log a(n)) for any
time constructible a(n) ≤ log n. The discrepancy between the simplicity of the result here and
the work required in the previous section is due to the key distinction that in this regime, the
pseudorandom generator has enough resources to simulate the distinguishers it is trying to fool.

Theorem 9. Let a(n) ≤ log n be time constructible. Assuming E requires 2Ω(n)-size Boolean circuits
for sufficiently large n, there is a polynomial time computable generator Ga : {0, 1}O(log a(n)) →
{0, 1}n which fools TIME[n]/a(n) with error ≤ 1

3 .

Proof. Using the hardness assumption we obtain (uniformly in n) a pseudorandom generator with
seed length c log n for some constant c. Settingm = nc and enumerating the outputs of our PRG, we
obtain a list of n bit strings x1, . . . , xm ∈ {0, 1}n which is a pseudorandom generator for TIME[n]/n.
Let r = 2a(n), let L1, . . . , Lr enumerate TIME[n]/a(n) machines. Define the matrix M ∈ {0, 1}m×r

with M(i, j) = Lj(x
i); we may compute M in poly(n) time.

15

We now deterministically construct a set I ⊆ [m] of size a(n)O(1) so that for every j we have

| Pr
i∼I

[M(i, j) = 1]− Pr
i∼[m]

[M(i, j) = 1]| ≤ 1

3

If we can accomplish this, we output the condensed PRG whose range consists of the strings
{xi | i ∈ I} and has seed length ⌈log |I|⌉ = O(log a(n)) and are finished. The algorithm to find the
set I is given in the next lemma.

Lemma 3. There is a polynomial time algorithm which, given M ∈ {0, 1}m×r with r ≤ mO(1),
outputs a set I ⊆ [m] of rows so that |I| ≤ O(log r), and for every column j ∈ [r], we have

| Pr
i∼I

[M(i, j) = 1]− Pr
i∼[m]

[M(i, j) = 1]| ≤ 1

3

Proof. Using known results on the so-called “set balancing problem” [MSN94], for any I ⊆ [m] we

may efficiently compute I ′ ⊆ I, |I ′| ≤ |I|
2 +

√
|I| log r so that

| Pr
i∼I

[M(i, j) = 1]− Pr
i∼I′

[M(i, j) = 1]| ≤

√
log r

|I|

for every j. In particular, provided
√

|I| log r ≤ 1
4 |I|, i.e. |I| ≥ 16 log r, we have that |I ′| ≤ 3

4 |I|.
Initializing I0 = [m], we may apply the above to obtain I0 ⊇ I1 ⊇ · · · ⊇ Iq, |Iq| = Θ(log r), and for
every j

| Pr
i∼Iℓ

[M(i, j) = 1]− Pr
i∼Iℓ+1

[M(i, j) = 1]| ≤

√
log r

|Iℓ|

Hence

| Pr
i∼[m]

[M(i, j) = 1]− Pr
i∼Iq

[M(i, j) = 1]| ≤
∑
ℓ≤q

√
log r

|Iℓ|

For a suitable choice of q we will have
√

log r
|Iq | = ϵ for an arbitrarily small constant ϵ, and

√
log r
|Iℓ| ≤√

3
4 ·

√
log r
|Iℓ+1| , hence

| Pr
i∼[m]

[M(i, j) = 1]− Pr
i∼Iq

[M(i, j) = 1]| ≤
∑
ℓ≤q

√
log r

|Iℓ|
≤ ϵ

∞∑
ℓ=0

(√3

4

)ℓ
<

1

3

3.4 Optimality of the Seed Length

We include a simple (and basically standard) argument which indicates that the seed lengths
obtained in the previous are essentially optimal with respect to the amount of advice they can
handle:

Lemma 4. Let s(n) ≤ log n be time-constructible, and G = (Gn : {0, 1}s(n) → {0, 1}n)n∈N an
arbitrary family of generators which fools TIME[n]/a(n) almost everywhere with error 1

2 . Then
s(n) ≥ log a(n).

In particular, if G fools TIME[n] then s(n) ≥ λ(n) for some inverse-total computable λ(n) =
ω(1).

16

Proof. Let ℓ(n) = s(n) + 1, and consider the family L of languages L with Ln(x) depending only
on the first ℓ(n) bits of x, and |Ln| = 2n−1. For each n ∈ N , we have that |range(Gn)| ≤ 2ℓ(n)−1,
hence there exists a language L ∈ L so that for all n sufficiently large, we have range(Gn)∩Ln = ∅.
On the other hand for every n we have Prx∼{0,1}n [x ∈ L] = 1

2 , hence Gn fails to fool the language

Ln for all n sufficiently large. Every language L ∈ L is decidable in deterministic time n + 2ℓ(n)

with 2ℓ(n) bits of advice (we only need that s(n), and hence ℓ(n) are time constructible) so we get
a contradiction if 2ℓ(n) ≤ O(n) or 2ℓ(n) ≤ a(n).

In the case of deterministic time (Section 3.3) this implies that the stated construction is optimal
for advice complexity ≤ log n. For our main construction fooling TIMENP, we have no indication
that to fool uniform languages (no advice) requires iterated-logarithmic seed length. However The-
orem 5 is able to fool languages with advice complexity log[d](n) with seed length O(log[d+1](n)),
so in this sense we are able to achieve the maximum advice complexity for the given seed length
O(log[d+1](n)). It is consistent with our current knowledge that fooling completely uniform al-
gorithms, even with an NP oracle, is achievable with arbitrarily slow-growing time constructible
seed lengths, as we can achieve in the case of deterministic adversaries (under standard hardness
assumptions).

4 Construction of Random Strings and Applications

In this section we discuss the applications of our main result to explicit constructions of random
strings and circuit lower bounds.

4.1 Random String Construction Via PRG Concatenation

We start by applying our PRG constructions to give polynomial time explicit constructions of
highly random strings. The first is a direct combination of our main PRG constructions with
Observations 2 and 3 from the preliminaries. We start with the situation in which we use the
strong form of our hardness assumptions, and hence Theorem 5 as our PRG:

Theorem 10. Let d ∈ N, T (n) ≤ (exp[c](n))O(1), and assume Hypothesis SH(NP, d + c). Then
for any constant k ∈ N, there is a polynomial time algorithm A so that, for all n with KT (n)(n) ≤
log[d](n), A(1n) ∈ {0, 1}n is an n-bit string x with KT (n)(x) ≥ Ω(n

(log[d](n))O(1)
).

In the special case d = 1, c = 0, under a hardness assumption for singly exponential time bounds
and NP oracles we obtain an algorithm A which produces, for every n ∈ N, a string x of length n
with KT (n)(x) ≥ n

poly(logn) for all n.

More generally, a hardness assumption for exponential time bounds and O′ oracles yields an
efficient algorithm for computing strings with Ω̃(n) O-oracle time-bounded Kolmogorov complexity,
provided there is a poly(T (n)) time O′ oracle algorithm which can test the KT (n),O complexity of
an n-bit string.

Proof. This is a rather direct corollary of Theorem 5. Let n be given with KT (n)(n) ≤ log[d](n),
and let sd(·) ≤ O(log[d+1](·)) be the seed length bound of the generator Gd from Theorem 5
using the base time bound T (n). Let n′ be the largest integer such that n′2sd(n

′) ≤ n; clearly
KT (n)(n′) ≤ KT (n)(n) + O(1) ≤ log[d](n), hence we may apply Theorem 5 to compute (uniformly)
a pseudorandom generator Gd

n : {0, 1}sd(n′) → {0, 1}n′
which fools TIMENP[T (n)]/O(1) on input

length n′. By Observation 3 we conclude that some string z in the range of Gn has KT (n)(z) ≥
n′ − 1, hence the concatenation of all strings in the range of Gd

n (padded at the end with 0s to

17

bring the length up to n) will have KT (n)(·) complexity at least n′ − sd(n
′) ≥ n

(log[d](n))O(1)
(recall

Observation 2).
The second part of the theorem is the special parameter setting given by Theorem 6, and for

the last sentence in the statement, we use the fact that Theorem 6 works for any oracle O′.

If we instead rely on the weaker form hardness assumptions and the associated PRG from
Theorem 7 we obtain via the exact same argument:

Theorem 11. Assume Hypothesis WH(NP, d + 1, v) with d ≥ 0, v ≥ 2. Then for every k ∈ N,
there is a O⟨d+v⟩(n) time algorithm A such that for all sufficiently large n, A(1n) ∈ {0, 1}n is a

string x satisfying Knk
(x) ≥ n

O⟨v⟩(log[d](n))
.

In particular, assuming that there is a language in TIME[22
n
] which cannot be decided in

TIMENP[2ϵ2
n
]/2ϵn infinitely often, there is a quasipolynomial time algorithm which outputs strings

x ∈ {0, 1}n with Knk
(x) ≥ n

poly(logn) .

More generally, a hardness assumption for exponential time bounds and O′ oracles yields an
efficient algorithm for computing strings with Ω̃(n) O-oracle time-bounded Kolmogorov complexity,
provided there is a poly(T (n)) time O′ oracle algorithm which can test the KT (n),O complexity of
an n-bit string.

We now move on to a second class of constructions which achieves a far superior degree of
randomness, but the cost is that our construction only works for infinitely many n, and unlike the
previous we have no control over which specific values of n our construction succeeds on.

Theorem 12. Assume Hypothesis SH(NP, d). Then for any constant k ∈ N, there is a polynomial

time algorithm A so that, for infinitely many n, A(1n) ∈ {0, 1}n is an n-bit string x with Knk
(x) ≥

n− poly(log[d] n).

Proof. Applying the assumption with Theorem 5 and the argument in the previous proof, we have
an algorithm A which prints, for all sufficiently large n in Nd := {n | n = exp[d+1](n′) for some n′},
a list of poly(log[d](n)) strings, one of which must have Knk

(n) ≥ n − 1. We now define a second
algorithm A′, which, given n, computes the largest value m ≤ n with m ∈ N , and prints the
(n − m)th element of the list A(1m) (if (n − m) is larger than the length of the list, it does
something arbitrary). For every m ∈ N , there is some n ≤ m+poly(log[d](n)) which prints a string

x of length m with Knk
(x) ≥ m− 1 ≥ n− poly(log[d](n)).

As before, a modified variant of this construction can be done in the case of the alternative
weak form hardness assumptions, where the cost of using the weaker kind of assumption is that
the run time of the construction will degrade correspondingly; we leave the details to the interested
reader as we will not use this variant in what follows.

4.2 Explicit Constructions Under Plausible Hardness Assumptions

By our main result, under reasonable hardness assumptions we are able to obtain explicit con-
structions of strings with time-bounded Kolmogorov complexity n

β(n) , where β(n) grows like an
arbitrarily slow iterated logarithm function. We show here how to use this construction to build
various important pseudorandom objects under our main hardness assumptions. We start with a
list of fundamental explicit construction problems, focusing on those studied originally in [Kor21],
in addition to so-called “incompressible functions” considered in [AASY15]. For background on
substantial literature dedicated to these problems see [Kor21, AASY15],

18

Definition 7 (List of Explicit Construction Problems).

• (s, r)-Rigidity: A matrix M ∈ {0, 1}n×n such that M ̸= S + R whenever S,R ∈ Fn×n
2 , S has

at most s nonzero entries, R has rank at most r

• s-Hard Boolean Functions: A Boolean function f : {0, 1}n → {0, 1} not computed by any
Boolean circuit of size ≤ s

• (s, k)-Incompressible Boolean Functions: A Boolean function f : {0, 1}n → {0, 1} which
cannot be expressed in the form f(x) = g(C(x)) where C : {0, 1}n → {0, 1}k is a circuit of
size s and g : {0, 1}k → {0, 1} is an arbitrary Boolean function

• s-PSPACEcc-Complexity: A communication matrix M ∈ {0, 1}2n×2n such that M cannot be
solved by space-s communication protocols

• (s, t)-Bit-Probe Complexity: A data structure problem D ∈ {0, 1}2n×2n which requires space
≥ s or time ≥ t in the bit-probe model.

• Ramsey: A graph G ∈
(
n
2

)
with no clique or independent set of size ≥ 2.1 · log n

We then have:

Lemma 5. Say that a Range Avoid instance has “stretch n 7→ m” if it is of the form C : {0, 1}n →
{0, 1}m. The following uniform reductions exist from the problems in Definition 7 to Range Avoid-
ance:

1. (s, r)-Rigidity reduces uniformly to Avoid with stretch (2s log n+ 2nr) 7→ n2

2. s-Hard Boolean Function reduces uniformly to Avoid with stretch (1 + o(1))s log s 7→ 2n

3. (s, k)-Incompressible Boolean Functions reduces uniformly to Avoid with stretch 2k + (1 +
o(1))s log s 7→ 2n

4. s-PSPACEcc-Complexity reduces uniformly to Avoid with stretch 2O(s)+n 7→ 22n

5. (s, t)-Bit-Probe Complexity reduces uniformly to Avoid with stretch s2n + 2t+n 7→ 22n

6. Ramsey reduces uniformly to Avoid with stretch n− Ω(log n) 7→ n

Proof. All of these proofs occur in [Kor21], with the exception of Incompressible Functions. For
this, if f(x) = g(C(x)) for a circuit C : {0, 1}n → {0, 1}k of size s and g : {0, 1}k → {0, 1}, we may
represent the circuit C (gate by gate) using (1 + o(1))s log s bits via a standard encoding, and the
function g via its 2k-bit truth table. From these it is clear how we may reproduce the function f
efficiently.

Combining this with our first generator construction from the previous section and Observa-
tion 1, we have:

Theorem 13. Assume Hypothesis SH(NP, d). Then for all n with Kpoly(n)(n) ≤ log[d](n), we have
the following:

1. Polynomial time construction of matrices in Fn×n
2 which are (n2

logn·poly(log[d](n))
, n
poly(log[d](n))

)-

rigid. In particular, for any d > 2 such matrices achieve Valiant rigidity.

19

2. Boolean functions in E = TIME[2O(n)] with circuit complexity at least 2n

n·poly(log[d−1](n))

3. Boolean functions in E = TIME[2O(n)] which are (Ω(2n

n·poly(log[d−1](n))
), n−O(log[d] n)) incom-

pressible

4. Polynomial time construction of communication matrices M ∈ {0, 1}2n×2n which require space
Ω(n) (for any setting of d)

5. Polynomial time construction of data structure problems D ∈ {0, 1}2n×2n which require space
Ω(2n) or time Ω(n) in the bit probe model (for any setting of d)

In the important case d = 1, each of the constructions works for all n and requires the hardness
assumption only for singly-exponential time bounds.

We arrive at similar conclusions if we use the weak form hypothesis in combination with Theo-
rem 7 instead, at the cost of a slow-down in our construction algorithms. We highlight below the
results obtained by using the special case of Theorem 7 given in Theorem 8:

Theorem 14. Assume that there is some ϵ > 0 and a language L ∈ TIME[22
n
] which is not

computable in TIMENP[2ϵ2
n
]/2ϵn on more than finitely many input lengths (this is Hypothesis

WH(NP, 1, 2)). Then we have the following for all n:

1. Quasipolynomial time construction of matrices in Fn×n
2 which are (n2

(logn)O(1) ,
n

(logn)O(1))-rigid.

2. Boolean functions in EXP = TIME[2n
O(1)

] with circuit complexity at least 2n

poly(n)

3. Boolean functions in EXP which are (Ω(2n

poly(n)), n−O(log n)) incompressible

4. Quasipolynomial time construction of communication matrices M ∈ {0, 1}2n×2n which require
space Ω(n) (for any setting of d)

5. Quasipolynomial time construction of data structure problems D ∈ {0, 1}2n×2n which require
space Ω(2n) or time Ω(n) in the bit probe model (for any setting of d)

The above results cover the vast majority of explicit construction problems considered originally
in [Kor21]. A notable exception is the construction of near-optimal Ramsey graphs; here the stretch
n−Ω(log n) 7→ n given by Lemma 5 is to small to apply Theorem 10, and we must appeal instead
to Theorem 12. Using this approach, we will be able to construct near-optimal Ramsey graphs
infinitely often, provided we modify appropriately our encoding of graphs by strings to be well-
defined on every input length:

Definition 8 (Ramsey Graphs of Every Length). We associate every every string x ∈ {0, 1}∗ to a

graph Gx as follows. Let n = |x| and set n′ to be the greatest integer so that
(
n′

2

)
≤ n. Set m =

(
n′

2

)
,

truncate x to the first m bits and interpret it as a graph on
(
n′

2

)
vertices canonically. Under this

encoding, we say that x encodes a Ramsey graph if Gx contains no clique or independent set of size
≥ 2.1 · log n′.

We then have:

Lemma 6. Assume Hypothesis SH(NP, 2). Then there is a polynomial time algorithm which, for
infinitely many n, outputs a string x ∈ {0, 1}n so that Gx is Ramsey.

20

Proof. We claim that we may uniformly construct a Range Avoidance instance C : {0, 1}n−Ω(n) →
{0, 1}n so that for all n, range(Cx) contains every x such that Gx fails to be Ramsey. In particular,
given n we may compute efficiently the parameters n′, m being the number of vertices and edges for
the graphs {Gx | x ∈ {0, 1}n}; we then apply Lemma 5 to obtain (uniformly) a Range Avoidance
instance with stretch m − Ω(logm) 7→ m covering all strings z ∈ {0, 1}m which fail to encode
Ramsey graphs. If x ∈ {0, 1}n fails to be Ramsey, then x = zy for some z ∈ {0, 1}m which fails
to be Ramsey, hence we may uniformly construct an Avoid instance covering every non-Ramsey
string x ∈ {0, 1}n with stretch n − Ω(log n′) 7→ n, which is n − Ω(log n) 7→ n. We thus conclude
that Kpoly(n)(x) ≤ n − Ω(log n) whenever Gx fails to be Ramsey. Applying Theorem 12 and our
hardness assumption yields the lemma.

4.3 Hardness Condensation

We also apply Theorem 10 to derive a new hardness condensation result. Hardness condensation is
a phenomenon where a mild hardness assumption can be transformed into a much stronger hardness
assumption of the same type. It was first studied in [BS06], who showed hardness condensation
results for complexity classes with advice. It is more interesting to get hardness condensation for
uniform classes, and indeed [Kor21] achieves this for ENP - he shows that ENP requires exponential-
size circuits iff it requires almost maximum-size circuits.

We obtain a new hardness condensation result for deterministic time without an NP-oracle. Here
the condensation is with respect to non-uniform complexity - the stronger hardness assumption
can handle almost a maximum non-trivial amount of non-uniformity, while the weaker hardness
assumption only involves an exponential amount of non-uniformity.

Theorem 15. The following ar equivalent:

1. For every d there exists v so that, for all time constructible T (n) ≤ exp[d](n), we have
TIME[T (n)] is not contained even infinitely often in SPACE[o⟨v⟩(T (n))]/o⟨v⟩(2n)

2. For every d there exists v so that, for all time constructible T (n) = exp[d](n), we have
TIME[T (n)] is not contained even infinitely often in SPACE[o⟨v⟩(T (n))]/2n−ω(logn)

Proof. Clearly the second item implies the first. We show that the first item implies the second.
Assuming (1), we have that every every d there exists v so that WH(QBF, d, v) holds. Applying
Theorem 11, for every d there is v so that for any time constructible T ≤ exp[d](n), there is an
algorithm A running in time O⟨v⟩(T (2n)) which, given 12

n
, outputs a string of length 2n which

cannot be produced by any algorithm running in space T (2n) with 2n−ω(logn) bits of advice 4.
Interpreting this string as a function f : {0, 1}n → {0, 1}, we obtain a language in TIME[O⟨v⟩(T (2n))]
which is not contained even infinitely often in SPACE[T (2n)]/2n−ω(logn). Reparameterizing the time
bounds yields (2).

4.4 Range Avoidance vs Uniform Range Avoidance

We use our results together with previous work to argue that the Range Avoidance problem be-
comes much more tractable for uniformly computable maps. While there is compelling complexity-
theoretic evidence in various settings that Range Avoidance is intractable in general, our results
show that Uniform Range Avoidance is tractable under plausible complexity-theoretic assumptions.

The first setting we consider is where the Range Avoidance instance is an arbitrary polynomial-
size circuit C : {0, 1}n → {0, 1}m, and we wish to solve Range Avoidance in polynomial time.

4We are using here the fact that SPACE[T (n)] can be simulated in TIMEQBF[poly(T (n))]

21

Ilango, Li and Williams [ILW23] showed that in this setting, Range Avoidance is infeasible, un-
der the standard assumption that NP ̸= coNP and the plausible assumption that subexponentially-
secure indistinguishability obfuscation exists [JLS21].

Theorem 16. [ILW23] If NP ̸= coNP and subexponentially-secure indistinguishability obfuscation
exists, then for any c ≥ 0, there is no polynomial-time algorithm which solves Range Avoidance for
polynomial-size circuits mapping n to nc bits.

Corollary 1. Assume that NP ̸= coNP, subexponentially-secure indistinguishability obfuscation,
and Hypothesis SH(NP, 1). There is a constant c such that for all d ≥ c, there is a polynomial-time
algorithm which solves Range Avoidance on uniform circuits of size nd mapping n bits to nd bits
but no polynomial-time algorithm which solves Range Avoidance on all circuits of size nd mapping
n bits to nd bits.

Proof. We show that we can take c to be 1 + δ, for arbitrarily small δ > 0. Indeed, for such
c and d ≥ c, the intractability of general Range Avoidance follows from Theorem 16, under the
given assumptions. We show that uniform Range Avoidance can be solved by applying Theorem
10 and using the third assumption. Indeed, by this assumption, for every constant k, there exists
a polynomial-time algorithm Ak which for all n, on input 1n outputs a length-n string of Knk

complexity at least n/polylog(n).
Let {Cn} be a sequence of uniform circuits mapping n bits to nd, where d is any constant greater

than 1. Here our notion of uniformity is standard DLOGTIME-uniformity, but the argument can
be adapted to work for more relaxed notions of uniformity. Note that any output y = Cn(x) has

Knk
complexity at most n + O(log(n)) for any k > d, as we can first generate Cn given n using

the uniformity condition and then generate y from Cn and x by simulating Cn. By running Ak

on input 1n
d
, we obtain a string of length nd and Knkd

complexity at least nd/polylog(n), which is
therefore a non-output of Cn when n is large enough.

We also consider the setting where the Range Avoidance instance is an arbitrary polynomial-size
TQBF-oracle circuit C : {0, 1}n → {0, 1}m, and we wish to solve Range Avoidance in polynomial
time. The negative evidence for this is even stronger - the task is intractable under the standard
assumption PSPACE ̸= NP. Somewhat surprisingly, we show that uniform Range Avoidance is
tractable under plausible assumptions even though the uniform Range Avoidance instance C is
allowed to use a TQBF-oracle.

Theorem 17. [ABK24] Suppose PSPACE ̸= NP (resp. PSPACE ̸⊆ NTIME[2log
O(1) n]). There is

a constant c such that for all d ≥ c, there is no polynomial-time (resp. quasipolynomial time)
algorithm which solves Range Avoidance on all TQBF-oracle circuits of size nd.

In fact, [ABK24] showed that computing an KS-incompressible string x of length n condi-
tional on a given string y is hard for polynomial time if PSPACE ̸= NP, where KS is Kolmogorov
space-bounded complexity. This is easily seen to imply the result above by considering the Range
Avoidance instance which takes a TQBF-oracle program as input and evaluates it. The extension
to quasipolynomial time bounds is not stated in [ABK24] but follows immediately from the proof.

Corollary 2. Assume SH(PSPACE, 1), and that PSPACE ̸⊆ NTIME[2log
O(1) n]. Then there is a con-

stant c such that for all d ≥ c, there is a polynomial-time algorithm which solves Range Avoidance
on uniform TQBF-oracle circuits of size nd but no polynomial-time algorithm which solves Range
Avoidance on all TQBF-oracle circuits of size nd.

Proof. For the negative result on Range Avoidance, we simply apply Theorem 17. For the positive
result, we apply Theorem 10 (relativized to a TQBF oracle) and then use the same argument as in
the proof of the previous corollary.

22

5 Barriers to Improvements

In this section we present two barriers to improving our main results. First we show that the seed
length log[O(1)] n achieved in our PRG from Section 3 is in some sense optimal for hardness/ran-
domness approaches which use the same overall structure as our argument: specifically, we show
that our PRG construction corresponds to a construction of a special kind of seeded extractor with
seed length log[O(1)] n, and prove unconditionally that this is the minimal achievable seed length in
any such construction. Second we show that there is no relativizing argument that directly reduces
the construction of Kpoly(n)-random strings to the construction of hard truth tables.

5.1 Multi-Reconstructive Extractors for Block Sources

The classical approach to turning hardness into randomness [NW94, IW97] was famously shown by
Trevisan [Tre01] to be essentially equivalent to the task of constructing an explicit seeded extractor.
Roughly speaking, Trevisan showed that any method for producing a pseudorandom generator using
a hard boolean function whose correctness is proven in a sufficiently black box fashion must actually
produce a seeded extractor, which treats the hard function as a high min-entropy source and the
seed of the PRG as the seed in the seeded extractor.

In Section 3 a PRG was constructed against uniform algorithms (or more generally, algorithms
with extremely small advice), whose seed length was much smaller than log n, using a different
kind of hardness assumption applied across many different input lengths. In the section we cast
such a hardness/randomness construction in terms of certain seeded multi-source extractors, where
each source corresponds to a hardness assumption used at a different input length. Through this
connection we are able to show that the iterated logarithmic (log[d](n), d = O(1)) seed length in
our PRGs from Section 3 is necessary for any hardness/randomness tradeoff that uses the same
general framework as ours, and in particular which uses “only O(1) many” hardness assumptions.

We start by recalling the proof of correctness of the PRG from Section 3, first in the case where
O(log log n) seed length is achieved using a hardness assumption at two different input lengths.
We first used a hard function whose truth table had size poly(n) in order to get a PRG with seed
length O(log n); call this f1. We then bounded the run time of this PRG by some T (n) = poly(n),
and in the next step required a hard function f2 of truth table size ≈ log n, which was hard for
algorithms with running time T (n); in particular f2 needed to be hard even in the regime where the
computation of f1 is easy. For this reason, we may roughly interpret this as saying, f2 is a function
(of much smaller input length) which is hard conditioned on f1. When we iterate the argument
to reduce the seed length to log[d](n), we require a sequence of functions f1, . . . , fd, of smaller and
small input lengths, with fj being hard for algorithms with enough running time to compute all
of f1, . . . , fj−1, i.e. which is hard conditioned on f1, . . . , fj−1. This is naturally analogous to the
following well-studied information-theoretic notion of a sequence of random variables, each with
high min-entropy conditioned on all of the previous:

Definition 9 (Block Sources [CG85]). A random variable X̄ = (X1, . . . ,Xd) is said to be a block
source with d blocks and entropy sequence (k1, . . . , kd), if for every (x1, . . . , xd) ∈ supp(X̄) and
every j ≤ d,

H∞(Xj | X1 = x1, . . . ,Xj−1 = xj−1) ≥ kj

In the case j = 1, this means H∞(X1) ≥ k1.

A (seeded) block source extractor is a function which can produce nearly uniform randomness
from a block source and an independent uniform seed:

23

Definition 10 (Seeded Block Source Extractors). We say that a function E :
∏

j≤d{0, 1}mj ×
{0, 1}s → {0, 1}n is a block source extractor for entropy sequence (k1, . . . , kd) and error ϵ if, for
every block source X̄ = (X1, . . . ,Xd) supported on

∏
j≤d{0, 1}mj with entropy sequence (k1, . . . , kd),

we have that E(X̄ ,Us) is ϵ-close to Un in TV distance, where Us is the uniform distribution on
{0, 1}s (independent of the block source) and Un is uniform on {0, 1}n. The parameter s is called
the seed length of the extractor.

We will now show that our PRG construction can be viewed as giving a specific kind of explicit
reconstructive extractor for block sources (with a seed), in the same sense that the standard hardness
randomness constructions can be viewed as reconstructive single-source extractors via Trevisan’s
connection. We define such reconstructive seeded block source extractors as follows:

Definition 11 (Multi-Reconstructive Extractors). Let E :
∏

j≤d{0, 1}mj × {0, 1}s → {0, 1}n. We
say that E is a multi-reconstructive extractor for entropy sequence (k1, . . . , kd) and error ϵ if there
are poly(m1, . . . ,md)-time algorithms R1, . . . , Rd, each taking oracle access to some D : {0, 1}n →
{0, 1}, with the following behavior

1. Each Rj takes strings x1, . . . , xj−1 ∈ {0, 1}m1 , . . . , {0, 1}mj−1 and an advice string aj ∈
{0, 1}kj and outputs a string in {0, 1}mj (in the case j = 1 the only input to R1 is a1 ∈
{0, 1}k1).

2. For every x̄ ∈
∏

j≤d{0, 1}mj , if

| Pr
z∼{0,1}s

[D(E(x̄, z)) = 1]− Pr
y∼{0,1}n

[D(y) = 1]| ≥ ϵ

then there exists j ≤ d and some aj ∈ {0, 1}kj such that RD
j (x1, . . . , xj−1, aj) = xj

Note that in the case d = 1, we obtain the standard definition of reconstructive single source
extractors. As shown in the single-source case by Trevisan [Tre01], we may observe that any
multi-reconstructive extractor is automatically a block source extractor with similar parameters:

Lemma 7. If E :
∏

j≤d{0, 1}mj × {0, 1}s → {0, 1}n is a muti-reconstructive extractor for en-
tropy sequence (k1, . . . , kd) and error ϵ, then it is a block source extractor for entropy sequence
(2k1, . . . , 2kd) and error ϵ′ = ϵ+

∑
j≤d 2

−kj .

Proof. Let X̄ be a block source with entropy sequence (2k1, . . . , 2kd). The deviation of E(X̄ ,Us)
from uniform is bounded by ϵ+ δ, where δ is the maximum over all distinguishers D of the proba-
bility that any of the d reconstruction procedures associated with E succeed on a random sample
(x1, . . . , xd) ∼ X̄ from the source. We bound the probability for each reconstruction procedure sepa-
rately and take a union bound over j ≤ d. For a fixed D and any fixing of X1 = x1, . . . ,Xj−1 = xj−1,
there are at most 2kj values in {0, 1}mj that RD

j (x1, . . . , xj−1, aj) can output as we range over aj ;
if H∞(Xj | X1 = x1, . . . ,Xj−1 = xj−1) ≥ 2kj then the probability that Xj lies in this set is at most
2−kj .

We can now recast the central step in our main construction in Theorem 5 in the language of
reconstructive extractors:

Theorem 18 (Essentially in [NZ96]). Let E1, . . . , Ed be single source extractors Ej : {0, 1}mj ×
{0, 1}sj → {0, 1}nj , so that Ej is a reconstructive single-source extractor for min entropy kj
and error ϵj and is computable in polynomial time. Say that for each j < d, we have sj =
nj+1. Define Ẽj :

∏
j′≤j{0, 1}

mj′ × {0, 1}sj → {0, 1}n1 by induction on j, with Ẽ1 = E1, and

Ẽj+1(x1, . . . , xj+1, z) = Ẽj−1(x1, . . . , xj−1, E
j(xj , z)). Then Ẽd is a multi-reconstructive extractor

for entropy sequence (k1, . . . , kd) and error
∑

j≤d ϵd.

24

In [NZ96], the same method of composing single source extractors to form a seeded block source
extractor is analyzed in the information theoretic setting (rather than the computational/recon-
structive setting). The proof of this lemma in the reconstructive framework is essentially identical
to the core argument justifying the correctness of our pseudorandom generator construction in
Theorem 5:

Proof. We prove by induction on j that Ẽj is a multi-reconstructive extractor with error δj :=∑
j′≤j ϵj . By definition it is true for Ẽ1 = E1. Now, say that Ẽj is a reconstructive extractor for

entropy sequence (k1, . . . , kj) and error δj . So there are reconstruction procedures R1, . . . , Rj taking
oracle access to a function D : {0, 1}n1 → {0, 1} so that, given any D ⊆ {0, 1}n distinguishing
Ẽj(x̄, z) with error δ, there exists j′ ≤ j so that RD

j′ (x, . . . , xj′−1, a) produces xj′ for some a ∈
{0, 1}kj′ . We then consider Ẽj+1(x1, . . . , xj+1, z

′); our reconstruction procedures for R1, . . . , Rj

will be as they were for Ẽj+1, and for Rj+1 we use the construction procedure for the single source
extractor Ej+1. Let D be given. For any x1, . . . , xj+1 such that the first R1, . . . , Rj reconstruction
procedures all fail to reconstruct a symbol of x1, . . . , xj+1 from its prefix using D, we know that
Ẽj(x1, . . . , xj+1,Usj) fools D with error δj . Now define the test D′ ⊆ {0, 1}nj+1 (recall nj+1 = sj),

with D′(z) = D(Ẽj(x1, . . . , xj , z)) = 1. Then, for a uniformly random z ∈ {0, 1}sj with have that
D′(z) = 1 with probability in the range Pry∼nj+1 [D(y) = 1] ± δj . Observe that D′ is efficiently

computable with oracle access to D and the values x1, . . . , xj , since each of the Ej′ extractors are
efficiently computable. Thus, using the reconstruction procedure for Ej+1, either Rj+1 succeeds
in reconstructing xj+1 using oracle access to D, the previous inputs x1, . . . , xj , and kj+1 bits of
advice, or else we must have that Ej+1(xj+1,Usj+1) fools D

′ with error ϵj+1, and hence the overall
construction fools D with error δj + ϵj+1, completing the proof.

Using the above in combination with explicit families of single-source reconstructive extractors
(e.g. Trevisan’s extractor [Tre01]) we observe:

Corollary 3. For any n and fixed constants d ∈ N, γ > 0, there is an explicit multi-reconstructive
extractor E :

∏
j≤d{0, 1}mj ×{0, 1}s → {0, 1}n for entropy sequence (k1, . . . , kd) and error ϵ, where:∑
j≤d

mj ≤ poly(n), kj = mγ
j , s ≤ O(log[d] n), ϵ ≤ (log[d−1] n)−1

Moreover, kj ≥ log[j] n for each j, and hence by Lemma 7 this construction is also a block source
extractor with the same parameters stated above.

We now prove that the seed length log[d] n achieved above is optimal as a function of the output
length n, regardless of how we choose the source lengths m1, . . . ,md:

Theorem 19. Say E :
∏

j≤d{0, 1}mj ×{0, 1}s → {0, 1}n is a block source extractor for min entropy

sequence (k1, . . . , kd), kj ≤ 1
2mj, and error 1

2 . Then s ≥ Ω(log[d] n).

To prove this we rely on the following lemma:

Lemma 8. Let A ⊆
∏

j≤d{0, 1}mj with log |A| ≥ (
∑

j≤dmj)− q. Then there is a block source with
entropy sequence (k1, . . . , kd) supported on A, with kj ≥ mj − q − d.

Proof of Lemma 8. We prove by induction on d; the case d = 1 is trivial. Let A be given;
for each x1 ∈ {0, 1}m1 define Ax1 = {(x2, . . . xd) | (x1, x2, . . . , xd) ∈ A}, deg(x1) = |Ax1 |. So∑

x1∈{0,1}m1 deg(x) = |A|. Define the set V ⊆ {0, 1}m1 by

V = {x1 | deg(x1) ≤ exp((
∑
j>1

mj)− q − 1)} ⊆ {0, 1}m1

25

Let U = {0, 1}m1 \ V ; if |U | < exp(m1 − q − 1) then we must have

|A| ≤ |V | · max
x1∈V

deg(x1) + |U | · max
x1∈U

deg(x1) (4)

< 2m1 · exp((
∑
j>1

mj)− q − 1) + exp(m1 − q − 1) · exp(
∑
j>1

mj) (5)

= exp((
∑
j≤d

mj)− q − 1) + exp((
∑
j≤d

mj)− q − 1) ≤ exp((
∑
j≤d

mj)− q) (6)

and we get a contradiction. Hence, we know that |U | ≥ exp(m1− q− 1). For every x1 ∈ U , we also
know that Ax1 ⊆

∏
j>1{0, 1}mj has size at least exp(

∑
j mj−q−1), so by induction there is a block

source Xx1 with min entropies (k2, . . . , kd), kj ≥ mj−(q+1)−(d−1) ≥ mj−q−d supported on Ax1 .
We then construct our overall distribution X as follows: sample x1 ∼ U uniformly, then sample
(x2, . . . , xd) ∼ Xx1 and output (x1, . . . , xd). We know that the first coordinate of this distribution
has min entropy k1 := log |U | ≥ m1 − q− 1, and that the remaining entries are a block source with
min entropy sequence (k2, . . . , kd) conditioned on any fixing of the first coordinate; so overall X is
a block source with entropy sequence (k1, . . . , kd).

The proof of Theorem 19 combines the above lemma with the argument of [NZ96] used to show
an Ω(log n) lower bound on the seed length of single source extractors:

Proof of Theorem 19. When d = 0, E is of the form E : {0, 1}s → {0, 1}n, so that E(Us) is
1
2 close to uniform on {0, 1}n; in this case we clearly require s ≥ n − 1. For d > 0, we will
show how to choose some j ≤ d and construct from E a second extractor E′ :

∏
j ̸=j′{0, 1}mj ×

{0, 1}s′ → {0, 1}n using only d − 1 sources, so that E′ is a block source extractor for entropy
sequence (k1, . . . , kj′−1, kj′+1, . . . , kd), the same error (12), and at most exponentially larger seed
length s′ ≤ s+ 2s+2 + 2d. This will yield the theorem by induction.

We will set j′ to be any index such that mj′ ≤ 2s+2 + 2d; if we can find such an index, we
construct E′ by simply moving input j′ of E into the seed, i.e.

E′(x1, . . . , xj′−1, xj′+1, xd, (xj′ , z)) = E(x1, . . . , xj′−1, xj′ , xj′+1, . . . , xd, z)

Clearly for any choice of j′, E′ remains a block source extractor for the contracted entropy sequence
(k1, . . . , kj′−1, kj′+1, . . . , kd) and the same error as E. To argue that mj ≤ 2s+2 + 2d for some j we
rely on Lemma 8 above. Let D ⊆ {0, 1}{0,1}n consist of all functions D : {0, 1}n → {0, 1} which
depend only on the first s + 1 bits. So |D| ≤ 22

s+1
. For every x̄ ∈

∏
j≤d{0, 1}mj , there is some

Dx̄ ∈ D such that

| Pr
z∼Us

[D(E(x̄, z)) = 1]− Pr
y∼Un

[D(y) = 1]| ≥ 1

2

hence there exists a fixed D, so that for the set X̄D = {x̄ | Dx̄ = D}, we have log |X̄D| ≥
(
∑

j≤dmj)− 2s+1. We then apply Lemma 8 with q = 2s+1 to conclude that there is a block source

(X1, . . . ,Xd) supported on X̄D with min entropy sequence (k′1, . . . , k
′
d), k

′
j := mj−2s+1−d. If k′j ≥ kj

for all j this will contradict the correctness of the extractor E, since E(X̄ ,Us) will be distinguished
with error 1

2 by the test D. Hence there exists j such that k′j < kj , i.e. mj − kj < 2s+1 + d.

Recalling that kj ≤ 1
2mj , we get mj < 2s+2 + 2d which concludes the proof.

Note that the proof yields more than just a lower bound on s:

26

Observation 4 (Follows from Proof of Theorem 19). In any construction achieving the optimal
seed length s = O(log[d] n), there must be some smallest source length mj1 with mj1 = Ω(log[d−1] n),

then a second smallest source length of Ω(log[d−2] n), and so on with the longest source having length
on the order Ω(n)

Hence our construction uses essentially the only possible sequence of source lengths (m1, . . . ,md)
which can be made to achieve a an optimal seed length of log[d] n.

5.2 No Relativizing Reduction from Kpoly Randomness to Hard Truth Tables

In [Kor21] it is shown that if we are permitted the use of an NP oracle in our explicit construction
algorithms we have the following appealing equivalence:

Theorem 20. The following are equivalent:

1. There is a polynomial time NP-oracle algorithm constructing strings x ∈ {0, 1}n with Kpoly(n)(x) ≥
n− 1

2. There is a polynomial time NP-oracle algorithm constructing truth tables f : {0, 1}n → {0, 1}
with hardness 2Ω(n) (i.e. poly(2n) = 2O(n)).

If this kind of equivalence could be shown without the aid of an NP oracle, it would supersede all
of the main results in this paper. The proof of Theorem 20 is relativizing, and more specifically it
gives a black-box reduction from the problem of constructing high Kolmogorov-complexity strings
to constructing hard truth tables (the nontrivial direction). We give some indication here that an
NP oracle is necessary for such an argument to work.

Observe that if f : {0, 1}n → {0, 1} has circuit complexity o(2n/n), then for N = 2n and
interpreting f as an N -bit string, we have KN2

(f) ≤ N/2; this is because evaluating a circuit on
an input takes at most 2n = N time, and hence reconstructing f from a circuit computing it takes
at most quadratic time. Hence if there were an analogue to Theorem 20 in the polynomial time
regime, it would give, in particular, a reduction from constructing strings of large Knc

(·) to strings
of large Kn2

(·) complexity.
We show here that there is no such reduction which is “black box” in the same sense as Theo-

rem 20. We first need to define the suitable notion of a black box reduction:

Definition 12. Let c, d be fixed constants and n large. A black box reduction from Knc
(·)-construction

to Kn2
(·)-construction is an algorithm, given access to some oracle O : {0, 1}∗ → {0, 1}, which has

the following behavior:

1. There is a procedure AO
n which, given strings y1, . . . , ypoly(n) with ym ∈ {0, 1}m, makes

poly(m) additional queries to O and outputs a string x ∈ {0, 1}n

2. For any oracle O, if y1, . . . , ypoly(n) are strings such that Kmd,O(ym) ≥ m
2 for each m,

AO(y1, . . . , ypoly(n)) outputs a string x ∈ {0, 1}n with Knc,O(x) ≥ nΩ(1).

Theorem 21. For c > d fixed constants, c − d > 1, there is no black box reduction from d-Avoid
to c-Avoid.

Proof. Consider the Range Avoidance instance CO : {0, 1}nϵ → {0, 1}n, defined by CO(z) =
(O((z, 1n

c−1
, 0)), . . . ,O((z, 1n

c−1
, 0))) where (·, ·, ·) is some standard pairing function. Clearly for

any oracleO and any x such that x ∈ range(CO) we have Knc,O(x) ≤ nϵ. Hence if we can find an ora-

cle O and supply strings y1, . . . , ypoly(n) so that Kmd,O(ym) ≥ m
2 for each m, but AO(y1, . . . , ypoly(n))

27

outputs a string in range(CO) then we are done. Initially we fix the value of the oracle O to be zero
on all strings of length at most nc−1. We then conclude that for any m ≤ 4n, we may determine
a string ym so that Kmd,O(ym) ≥ m

2 is already forced by the current information about the oracle;
this holds since a machine running in time md ≤ O(nd) < nc−1 cannot access the any unfixed part
of the oracle. We will fix these strings y1, . . . , y4n for the remainder of the proof.

Now, consider the algorithm A with the first 4n arguments fixed, as a function of the remaining
arguments y4n+1, . . . , ypoly(n). By the correctness of A, for any extension of the partially defined
oracle O and any valid solutions for these remaining arguments to A, A will find a solution to the
Range Avoidance instance CO. On the other hand, observe that if y4n+1, . . . , ypoly(n) are chosen

uniformly at random, then for any oracle O the probability that any ym fails to have Kmd,O(ym) ≥ m
2

is bounded by poly(n)2−
m
2 ≤ 2−2n+o(n) since for each such m we have m ≥ 4n. Hence we obtain

a randomized query procedure, making poly(n) queries to the oracle O, which outputs a solution
to Avoid on CO with failure probability ≤ 2−2n+o(n). Since we have not fixed the behavior of O
above input length nc−1, CO can take on any value {0, 1}nϵ → {0, 1}n, and is thus an arbitrary
oracle-presented Range Avoidance instance. It then remains only to show that a randomized query
algorithm making poly(n) queries to an Avoid instance with stretch nϵ 7→ n cannot succeed with
probability as high as 1− 2−2n+o(n).

To obtain this randomized query lower bound, we appeal to Yao’s lemma, and consider the best
success probability of a deterministic poly(n)-query algorithm Q on a uniformly random instance
C : {0, 1}nϵ → {0, 1}n. For each possible sequence of poly(n) queries we argue the probability the
supplied answer is incorrect conditioned on this query sequence ocurring is is at least 2−n. This
holds trivially, since poly(n) < 2n

ϵ
, and hence a random C extending a fixed sequence of poly(n)

mappings C(x1) = y1, . . . , has probability at least 2−n of hitting any fixed string in {0, 1}n.

Acknowledgment

The authors would like to thank Hanlin Ren for many useful discussions.

References

[AASY15] Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang. Incompress-
ible functions, relative-error extractors, and the power of nondeterministic reductions
(extended abstract). In Proceedings of the 30th Conference on Computational Complex-
ity, CCC ’15, page 582–600, Dagstuhl, DEU, 2015. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[ABK24] Scott Aaronson, Harry Buhrman, and William Kretschmer. A qubit, a coin, and an
advice string walk into a relational problem. In Venkatesan Guruswami, editor, 15th
Innovations in Theoretical Computer Science Conference, ITCS 2024, January 30 to
February 2, 2024, Berkeley, CA, USA, volume 287 of LIPIcs, pages 1:1–1:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/
LIPIcs.ITCS.2024.1, doi:10.4230/LIPICS.ITCS.2024.1.

[All17] Eric Allender. The complexity of complexity. In Adam R. Day, Michael R. Fellows,
Noam Greenberg, Bakhadyr Khoussainov, Alexander G. Melnikov, and Frances A.
Rosamond, editors, Computability and Complexity - Essays Dedicated to Rodney G.
Downey on the Occasion of His 60th Birthday, volume 10010 of Lecture Notes in Com-
puter Science, pages 79–94. Springer, 2017. doi:10.1007/978-3-319-50062-1_6.

28

https://doi.org/10.4230/LIPIcs.ITCS.2024.1
https://doi.org/10.4230/LIPIcs.ITCS.2024.1
https://doi.org/10.4230/LIPICS.ITCS.2024.1
https://doi.org/10.1007/978-3-319-50062-1_6

[BS06] Joshua Buresh-Oppenheim and Rahul Santhanam. Making hard problems harder. In
21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16-20 July
2006, Prague, Czech Republic, pages 73–87. IEEE Computer Society, 2006. doi:10.

1109/CCC.2006.26.

[CG85] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. In 26th Annual Symposium on Foundations
of Computer Science (sfcs 1985), pages 429–442, 1985. doi:10.1109/SFCS.1985.62.

[CGL+23] Eldon Chung, Alexander Golovnev, Zeyong Li, Maciej Obremski, Sidhant Saraogi,
and Noah Stephens-Davidowitz. On the randomized complexity of range avoidance,
with applications to cryptography and metacomplexity. Electron. Colloquium Comput.
Complex., TR23-193, 2023. URL: https://eccc.weizmann.ac.il/report/2023/193,
arXiv:TR23-193.

[CHLR23] Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren. Range avoidance, remote point,
and hard partial truth table via satisfying-pairs algorithms. In Barna Saha and Rocco A.
Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Com-
puting, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1058–1066. ACM,
2023. doi:10.1145/3564246.3585147.

[CHR24] Lijie Chen, Shuichi Hirahara, and Hanlin Ren. Symmetric exponential time requires
near-maximum circuit size. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors,
Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC
2024, Vancouver, BC, Canada, June 24-28, 2024, pages 1990–1999. ACM, 2024. doi:
10.1145/3618260.3649624.

[CL24] Yilei Chen and Jiatu Li. Hardness of range avoidance and remote point for restricted
circuits via cryptography. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors,
Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC
2024, Vancouver, BC, Canada, June 24-28, 2024, pages 620–629. ACM, 2024. doi:

10.1145/3618260.3649602.

[CT21] Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions:
eliminating randomness at almost no cost. In STOC, pages 283–291. ACM, 2021.
doi:10.1145/3406325.3451059.

[GGNS23] Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi.
Range avoidance for constant depth circuits: Hardness and algorithms. In Nicole Megow
and Adam D. Smith, editors, Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13,
2023, Atlanta, Georgia, USA, volume 275 of LIPIcs, pages 65:1–65:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.
APPROX/RANDOM.2023.65, doi:10.4230/LIPICS.APPROX/RANDOM.2023.65.

[GLW22] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range avoidance for low-
depth circuits and connections to pseudorandomness. In Amit Chakrabarti and
Chaitanya Swamy, editors, Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2022, September 19-
21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference), vol-
ume 245 of LIPIcs, pages 20:1–20:21. Schloss Dagstuhl - Leibniz-Zentrum für In-

29

https://doi.org/10.1109/CCC.2006.26
https://doi.org/10.1109/CCC.2006.26
https://doi.org/10.1109/SFCS.1985.62
https://eccc.weizmann.ac.il/report/2023/193
https://arxiv.org/abs/TR23-193
https://doi.org/10.1145/3564246.3585147
https://doi.org/10.1145/3618260.3649624
https://doi.org/10.1145/3618260.3649624
https://doi.org/10.1145/3618260.3649602
https://doi.org/10.1145/3618260.3649602
https://doi.org/10.1145/3406325.3451059
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.65

formatik, 2022. URL: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20,
doi:10.4230/LIPICS.APPROX/RANDOM.2022.20.

[Hir22] Shuichi Hirahara. Meta-computational average-case complexity: A new paradigm to-
ward excluding heuristica. Bull. EATCS, 136, 2022. URL: http://bulletin.eatcs.
org/index.php/beatcs/article/view/688.

[ILW23] Rahul Ilango, Jiatu Li, and R. Ryan Williams. Indistinguishability obfuscation, range
avoidance, and bounded arithmetic. In Barna Saha and Rocco A. Servedio, editors,
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023,
Orlando, FL, USA, June 20-23, 2023, pages 1076–1089. ACM, 2023. doi:10.1145/

3564246.3585187.

[IW97] Russell Impagliazzo and Avi Wigderson. P = bpp if e requires exponential circuits:
derandomizing the xor lemma. In Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing, STOC ’97, page 220–229, New York, NY, USA, 1997.
Association for Computing Machinery. doi:10.1145/258533.258590.

[IW98] Russell Impagliazzo and Avi Wigderson. Randomness vs. time: De-randomization
under a uniform assumption. In 39th Annual Symposium on Foundations of Computer
Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages 734–743.
IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743524.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 60–73. ACM, 2021. doi:10.1145/3406325.

3451093.

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou.
Total functions in the polynomial hierarchy. In James R. Lee, editor, 12th Innova-
tions in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021,
Virtual Conference, volume 185 of LIPIcs, pages 44:1–44:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ITCS.2021.
44, doi:10.4230/LIPICS.ITCS.2021.44.

[Kor21] Oliver Korten. The hardest explicit construction. In 62nd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10,
2022, pages 433–444. IEEE, 2021. doi:10.1109/FOCS52979.2021.00051.

[KP24] Oliver Korten and Toniann Pitassi. Strong vs. weak range avoidance and the linear
ordering principle. In 65th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024, pages 1388–1407. IEEE,
2024. doi:10.1109/FOCS61266.2024.00089.

[KvM99] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexpo-
nential size proofs unless the polynomial-time hierarchy collapses. In Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC ’99,
page 659–667, New York, NY, USA, 1999. Association for Computing Machinery.
doi:10.1145/301250.301428.

30

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.20
http://bulletin.eatcs.org/index.php/beatcs/article/view/688
http://bulletin.eatcs.org/index.php/beatcs/article/view/688
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1145/258533.258590
https://doi.org/10.1109/SFCS.1998.743524
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.4230/LIPICS.ITCS.2021.44
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1109/FOCS61266.2024.00089
https://doi.org/10.1145/301250.301428

[Li24] Zeyong Li. Symmetric exponential time requires near-maximum circuit size: Simplified,
truly uniform. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings
of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver,
BC, Canada, June 24-28, 2024, pages 2000–2007. ACM, 2024. doi:10.1145/3618260.
3649615.

[LO22] Zhenjian Lu and Igor C. Oliveira. Theory and applications of probabilistic kolmogorov
complexity. Bull. EATCS, 137, 2022. URL: http://bulletin.eatcs.org/index.php/
beatcs/article/view/700.

[LV19] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, 4th Edition. Texts in Computer Science. Springer, 2019. doi:10.1007/

978-3-030-11298-1.

[MSN94] Rajeev Motwani, Joseph (Seffi) Naor, and Moni Naor. The probabilistic method
yields deterministic parallel algorithms. Journal of Computer and System Sci-
ences, 49(3):478–516, 1994. 30th IEEE Conference on Foundations of Com-
puter Science. URL: https://www.sciencedirect.com/science/article/pii/

S0022000005800698, doi:10.1016/S0022-0000(05)80069-8.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer
and System Sciences, 49(2):149–167, 1994. URL: https://www.sciencedirect.com/
science/article/pii/S0022000005800431, doi:10.1016/S0022-0000(05)80043-1.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst.
Sci., 52(1):43–52, February 1996. doi:10.1006/jcss.1996.0004.

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem
for circuits. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 640–650. IEEE,
2022. doi:10.1109/FOCS54457.2022.00067.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and
a new pseudorandom generator. J. ACM, 52(2):172–216, March 2005. doi:10.1145/

1059513.1059516.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879, July
2001. doi:10.1145/502090.502099.

[Uma02] Christopher Umans. Pseudo-random generators for all hardnesses. In Proceedings of
the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, page
627–634, New York, NY, USA, 2002. Association for Computing Machinery. doi:

10.1145/509907.509997.

A Proof of Lemma 2

We prove here Lemma 2, which we restate below for convenience:

Lemma (Lemma 2, Restated). Assume Hypothesis WH(O, d + 1, v), d ≥ 0, v ≥ 2. Then for
every time constructible exp[d](n) ≤ T (n) ≤ poly((exp[d](n)) there is a PRG (Gn : {0, 1}s(n) →
{0, 1}n)n∈N computable uniformly in time O⟨d+v⟩(T (n)) which fools TIMEO[T (n)]/3n and has seed
length s(n) ≤ O⟨v−1⟩(log n).

31

https://doi.org/10.1145/3618260.3649615
https://doi.org/10.1145/3618260.3649615
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://www.sciencedirect.com/science/article/pii/S0022000005800698
https://www.sciencedirect.com/science/article/pii/S0022000005800698
https://doi.org/10.1016/S0022-0000(05)80069-8
https://www.sciencedirect.com/science/article/pii/S0022000005800431
https://www.sciencedirect.com/science/article/pii/S0022000005800431
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1145/1059513.1059516
https://doi.org/10.1145/1059513.1059516
https://doi.org/10.1145/502090.502099
https://doi.org/10.1145/509907.509997
https://doi.org/10.1145/509907.509997

For this we require a strengthening of Theorem 4 due to Umans [Uma02] (following a similar
result of Shaltiel-Umans [SU05]) given as follows:

Theorem 22 ([Uma02]). There is a fixed universal constant γ > 0 so that the following holds. Let
h : N → N be any time-constructible “hardness” parameter, h(n) ≤ 2n. On input n and given oracle
access to a function f : {0, 1}n → {0, 1}, UMf computes a function UMf : {0, 1}s(n) → {0, 1}m(n)

in 2O(n) time for some time constructible m(n) = Θ(h(n)γ), s(n) ≤ O(n), such that for any
D : {0, 1}m(n) → {0, 1} with

| Pr
x∼{0,1}m(n)

[D(x) = 1]− Pr
z∼{0,1}s(n)

[D(UMf (z)) = 1]| ≥ 1

m

there exists a circuit C with D oracle gates computing f whose total size is at most h(n).

Proof of Lemma 2. Assuming Hypothesis WH(O, d+ 1, v), we conclude that for some ϵ > 0, there
is a language in TIME[exp[d+1](n)] which is not in TIMEO[Φv,ϵ(exp

[d+1](n))]/Φv,ϵ(2
n) even infinitely

often. Let h(n) = Φv,ϵ2(2
n), and define G̃n : {0, 1}s(n) → {0, 1}m(n) by Gn = UMLn where

s(n) ≤ O(n),m(n) = Θ(h(n)γ) are the time constructible bounds guaranteed in Theorem 22. By
Theorem 22, if G̃n is distinguished by some D : {0, 1}m(n) → {0, 1} then there is an oracle circuit
of total size ≤ h(n) computing Ln; hence if a distinguisher for G̃n exists which is computable in
time t(n) with an O oracle and O(m(n)) bits of advice for infinitely many n, then L is decidable
with an O oracle in time t(n) · h(n) with O(m(n)) + h(n) = O(h(n)) bits of advice for infinitely
many n.

Let T (n) = (exp[d](n))k for some constant k. We then define our final generator G in terms of
G̃ by a simple reparameterization of input lengths; for n ∈ N, we determine the least ñ such that
m(ñ) ≥ n and T (n) ·h(ñ) < Φv,ϵ(exp

[d+1](ñ)) and set Gn = G̃ñ (truncating the output length of G̃ñ

as necessary). We want to show that Gn fools time T (n) algorithms using an O oracle and O(n)
bits of advice, and runs in time O⟨d+v⟩(T (n)) with seed length O⟨v−1⟩(log n). For the first point,
observe that for any D : {0, 1}n → {0, 1} running in time T (n) with O(n) bits of advice, we obtain
a computation of Lñ running in time T (n) ·h(ñ) time with O(h(ñ)) bits of advice, which contradicts
our hardness assumption provided T (n) · h(ñ) < Φv,ϵ(exp

[d+1](ñ)) and O(h(ñ)) < Φv,ϵ(2
ñ) which

both hold by construction.
On the other hand the runtime and seedlength of Gn are bounded by 2O(ñ) ·exp[d+1](ñ) and O(ñ)

respectively, so it remains to bound the growth rate of ñ. Recall that we chose ñ to be the least
integer such that m(ñ) ≥ n and T (n) · h(ñ) < Φv,ϵ(exp

[d+1](ñ)), where m(ñ) = Θ(h(ñ))γ . For the
first point, we have h(x) ≤ 2x ≤ T (x) hence we can bound ñ by the least integer satisfying T (n)2 <
Φv,ϵ(exp

[d+1](ñ)), i.e. (exp[d](n))2k < Φv,ϵ(exp
[d+1](ñ)), so it suffices here to take ñ = O⟨v−1⟩(log n).

On the other hand, to have m(ñ) ≥ n it suffices to have h(ñ) ≥ n, i.e. Φv,ϵ2(2
ñ) ≥ n, so setting

ñ ≤ O⟨v−1⟩(log n) suffices. Hence in the end we obtain a runtime of exp[d+1](O⟨v−1⟩(log n)) ≤
O⟨d+v⟩(T (n)) and seed length O⟨v−1⟩(log n).

We will use a slight generalization of Lemma 2 that follows directly by padding (the difference
compared to the previous lemma is merely that we allow a slightly more general upper bound on
T (n)):

Corollary 4. Assume Hypothesis WH(O, d+ 1, v), d > 0, v ≥ 2 and let ℓ ≥ d be a fixed constant.
Then for every time constructible exp[d](n) ≤ T (n) ≤ O⟨d+v⟩(exp[d](n)) there is a PRG (Gn :
{0, 1}s(n) → {0, 1}n)n∈N computable uniformly in time O⟨d+v⟩(T (n)) which fools TIMEO[T (n)]/3n
and has seed length s(n) ≤ O⟨v−1⟩(log n).

32

Proof. Using Lemma 2, from our hardness assumption we get a generator fooling TIMEO[exp[d](n)]/3n
with runtime O⟨d+v⟩(T (n)) and seed length s(n) ≤ O⟨v−1⟩(log n). On input length n, we choose
some n′ = n′(n) such that exp[d](n′) ≥ T (n) and apply our generator on input length n′; clearly
we may use this generator for input length n as well, by considering a language L ⊆ {0, 1}n as
L′ ⊆ {0, 1}n′

depending on only the first n ≤ n′ bits. It suffices to take n′ = O⟨v⟩(n), in which
case the seed length as a function of n is O⟨v−1⟩(logO⟨v⟩(n)) ≤ O⟨v−1⟩(log n) and the runtime is
O⟨d+v⟩(exp[d](O⟨v⟩(n))) ≤ O⟨d+v⟩(exp[d](n)) = O⟨d+v⟩(T (n)).

We are now ready to prove Theorem 7:

Theorem (Theorem 7, Restated). Assume Hypothesis WH(O, d + 1, v) with d ≥ 0, v ≥ 2, fixed
constants, and k ∈ N a fixed constant. Then there is a pseudorandom generator with seed length
O⟨v−1⟩(log[d+1](n)) and runtime O⟨d+v⟩(n) that fools TIMEO[nk]/ log[d](n) with error (2 log[d](n))−1

whenever Knk
(n) ≤ log[d](n).

Proof. Let k ≥ 1, d ≥ 0, v ≥ 2 be fixed constants and let T (n) = nk. We prove by induc-
tion on d that there is a pseudorandom generator (Gd

n : {0, 1}sd(n) → {0, 1}n)n∈N which runs in
time O⟨d+v⟩(n) and fools TIMEO[nk]/ log[d](n) with error ≤

∑
j≤d(log

[j](n))−1 and has seed length

sd(n) ≤ O⟨v−1⟩(log[d+1](n)), provided the input length n satisfies Knk
(n) ≤ log[d](n).

In the case d = 0 we may apply Lemma 2 directly. Now, say that the generator (Gd−1
n :

{0, 1}sd−1(n) → {0, 1}n)n∈N is given, computable in time Td−1(n) := O⟨d−1+v⟩(n) with sd−1(n) ≤
O⟨v−1⟩(log[d] n) and fooling TIMEO[nk]/ log[d−1](n) with error

∑
j≤d−1(log

[j](n))−1. Let td be a

time constructible function such that Td−1(n) ≤ 3td(sd−1(n)); we may set td = O⟨d−1+v⟩(exp[d](n)).
Now, let (Gn : {0, 1}s′(n) → {0, 1}n)n∈N be the generator guaranteed by Corollary 4 for time
bound td(·); so Gn fools TIMEO[td(n)]/3n, runs in time t′d(n) = O⟨d+v⟩(td(n)), and has error n−1

and seed length s′(n) = O⟨v−1⟩(log n). We then set Gd
n to be the generator with seed length

sd(n) = s′(sd−1(n)) given by Gd
n(z

′) = Gd−1
n (Gsd−1(n)(z

′)). The run time of Gd
n is bounded by

some constant times the sum of the run times of the two constituent generators, which overall is
bounded by O⟨d−1+v⟩(n) + O(t′d(sd−1(n))). Let L ⊆ {0, 1}n be decided by a TIMEO[nk]/ log[d](n)
machine; recall that n = exp[d−1](ℓ) for some ℓ. Define L′ ⊆ {0, 1}sd−1(n) given by L′ = {z |
Gd−1
n (z) ∈ L}; since Gd−1

n fools L with error ϵ :=
∑

j≤d−1 log
[j](n), we have that Pr[y ∈ L] ∈

Pr[z ∈ L′] ± ϵ. On the other hand L′ is decidable in time ≤ 3td(sd(n)) with 2 log[d](n) + O(1)

bits of advice provided n is of the form Knk
(n) ≤ log[d](n): we use the advice for deciding

L, together with log[d](n) bits of advice describing the number n, and O(1) advice to specify
the code for Gd−1 and the procedure explained herein. Hence Gsd−1(n) fools L′ to within er-

ror δ := (sd−1(n))
−1 ≤ (log[d](n))−1, so overall we must have that Gd

n = Gd−1
n ◦ Gsd−1

fools

L to within error ϵ + δ ≤
∑

j≤d(log
[j](n))−1. It remains to bound the seed length and run-

time of Gd
n. The seed length is O⟨v−1⟩(log sd−1(n)), and sd−1 = O⟨v−1⟩(log[d](n)), so overall the

seed length is bounded by O⟨v−1⟩(log[d+1](n)). On the other hand the runtime is dominated by
t′d(sd−1(n)) = O⟨d+v⟩(exp[d](sd−1(n))) = O⟨d+v⟩(exp[d](O⟨v−1⟩(log[d](n)))) ≤ O⟨d+v⟩(n).

33
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

