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Abstract

A property of functions is called location-invariant (or symmetric) if it can be characterized
in terms of the frequencies in which each value occurs in the function, regardless of the locations
in which each value occurs. It is known that the (query) complexity of testing location-invariant
properties of functions is closely related to the (sample) complexity of testing the (corresponding
properties of the) corresponding distributions.

The main message of the current work is that this close relationship is not maintained in
the context of verification. This holds both when considering verification by general interactive
proofs of proximity (i.e., IPPs) and when restricting attention to doubly-sublinear IPPs (ds-
IPPs). Alternatively, one may view this work as a subsequent step in the study of doubly-
sublinear IPPs (of properties of functions), where we say that an IPP is doubly-sublinear if
(1) the query complexity of the verifier is sublinear in the query complexity of testing the
property, and (2) the query complexity of the honest prover is sublinear in the query complexity
of learning a function in the property.

Specifically, we present doubly-sublinear IPPs for several natural location-invariant proper-
ties. Our results include:

� We present doubly-sublinear IPPs for the set of functions from [m] to [n] in which each
value occurs m/n times: For every α ∈ (0, 0.5), the query complexity of the verifier is

O(n0.5−α), and the query complexity of the honest prover is Õ(n0.5+α/ϵ2).

� We present doubly-sublinear IPPs for the set of functions from [m] to [n] in which each
value occurs either m/k times or not at all: For every α ∈ (0, 1/3), the query complexity
of the verifier is poly(1/ϵ) · k(2/3)−2α, and the query complexity of the prover is poly(1/ϵ) ·
Õ(k(2/3)+α).

In contrast, in both cases, it is known that the corresponding properties of distributions have
no doubly-sublinear IPP (see Herman and Rothblum, 2025). Actually, the first property of
distributions (i.e., uniformity over [n]) does not even have an IPP in which the verifier uses
o(n1/2) samples, regardless of other complexity measures.

Keywords: Property Testing, distribution testing, interactive proofs of proximity, doubly-efficient
interactive proofs, doubly-sublinear interactive proofs of proximity.
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1 Introduction

A generic description of property testing says that this area studies probabilistic algorithms of
sub-linear complexity for deciding whether a given object has a predetermined property or is far
from any object having this property. This description avoids the question of what these objects
are and how one obtains partial information on them in sub-linear complexity.

The two common answers correspond to two sub-areas of property testing. The arguably main
area (which emerged in [8, 29, 15] and is surveyed in [13, Chap. 1–10]) views the tested objects as
functions and postulates that partial information is obtained by query access to these functions. In
contrast, the sub-area associated with the name distribution testing (which emerged in [7, 6] and
is surveyed in [13, Chap. 11]), views the tested objects as distributions and postulates that partial
information is obtained by samples (of the distribution being tested). The difference between these
types of objects is reflected in different orientations of the two areas: the first area is more oriented
towards algorithms and complexity, whereas the second area is more oriented towards statistics.

The gap between these two areas is bridged in the study of testing location-invariant properties of
functions (defined in Section 1.1). These properties can be characterized in terms of the frequencies
in which each value occurs in the function, regardless of the locations in which each value occurs.
Hence, the correspondence between such properties of functions and properties of distributions is
evident: We are actually looking at the probability that a value occurs in a random location (in
the function).

As shown in [20, Sec. 6], the (query) complexity of testing location-invariant properties of
functions is closely related to the (sample) complexity of testing the (corresponding properties of
the) corresponding distributions. The main message of the current work is that this close relation
is not maintained in the context of verification. This holds both when considering verification
by general interactive proofs of proximity (i.e., IPPs) and when restricting attention to doubly-
sublinear IPPs (ds-IPPs). Alternatively, one may view this work as a subsequent step in the study
of doubly-sublinear IPPs (of properties of functions).

In order to state our actual results, we first present and discuss the relevant definitions:
Location-invariant properties are defined in Section 1.1, whereas IPPs and doubly-sublinear IPPs
are defined in Section 1.2. We assuming familiarity with the standard definitions of property testing
and distribution testing, reviewed in Appendix A.1.

1.1 Location-invariant properties of functions

We say that a property of functions is location invariant if it is preserved under permuting the
domain of the function; that is, the function f : [m]→ [n] is in the property if and only if for every
permutation π : [m]→ [m] the function f ◦π is in the property, where (f ◦π)(i) = f(π(i)) for every
i ∈ [m]. (Indeed, we let [m] rather than [n] denote the domain of the function in order to relate
such functions to distributions over [n].)

Definition 1.1 (location invariant properties): Let Π =
⋃

m,n∈NΠm,n be a property of functions
such that Πm,n is a set of functions from [m] to [n]. We say that Π is location invariant if for every
n,m ∈ N, every f : [m] → [n], and every permutation π : [m] → [m] it holds that f ∈ Πm,n if and
only if f ◦ π ∈ Πm,n, where (f ◦ π)(i) = f(π(i)) for every i ∈ [m].

In other words, a location invariant property is determined in terms of the frequencies of the
different values of functions; that is, a location invariant property Π =

⋃
m,nΠm,n is determined
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by a set of frequency functions Π′ =
⋃

nΠ
′
n; such that f ∈ Πm,n if and only if f ′ such that

f ′(v) = |{i∈ [m] :f(i)=v}|/m is in Π′
n.

Testing location-invariant properties was considered by Goldreich and Ron in [20, Sec. 6] (under
the name “symmetric properties”), where it was related to testing properties of distributions.
Specifically, a function f : [m] → [n] is related to the distribution D such that D(v) = |{i∈ [m] :
f(i)= v}|/m, where [m] is the underlying probability space of D. Likewise, a distribution D over
[n] having an underlying probability space [m] is related to the set of functions f : [m]→ [n] such
that |{i∈ [m] :f(i)=v}| = m · D(v). Indeed, the distribution D reflects the frequency function of f .

The difference between testing a location-invariant property and testing the corresponding prop-
erty of distributions is that in the former case we may make arbitrary queries to the function whereas
in the latter case we only obtain samples of the distribution, which correspond to the function val-
ues at uniformly and independently distributed locations (in the function’s domain; i.e., in [m])).1

This difference has two aspects:

1. Making queries to the function f versus obtaining random location-value pairs (of the form
(i, f(i)), where i is uniformly distributed in [m]).

However, as shown in [20, Thm. 6.1], this difference (between general testers and so called
sample-based testers) does not matter when testing location-invariant properties.

2. Obtaining random location-value pairs (of the form (i, f(i))) versus obtaining random values
(i.e., f(i)) only.

As shown in [20, Thm. 6.4], under some natural conditions (i.e., m being sufficiently large),
this difference does not matter too much either.

Jumping ahead, we mention that in contrast to the foregoing, the difference between the two settings
does matter in the context of IPPs both for general IPPs and also for doubly-sublinear IPPs. That
is, better general IPPs (resp., doubly-sublinear IPPs) are available for location-invariant properties
of functions, when compared to what is possible for properties of distributions.

A different type of isomorphism. The definition of location invariant properties (i.e., Defi-
nition 1.1) may be viewed as referring to a notion of “isomorphism” between functions such that
f : [m] → [n] and g : [m] → [n] are “isomorphic” if there exists a permutation π : [m] → [m] such
that g = f ◦ π (i.e., g(i) = f(π(i)) for every i ∈ [m]). This type of “isomorphism” (also considered
in [20, 14])2 is fundamentally different from the (Boolean) function isomorphism studied in [2, 3],
where f : {0, 1}ℓ → {0, 1} and g : {0, 1}ℓ → {0, 1} are isomorphic if there exists a permuation
π : [ℓ]→ [ℓ] such that f(x1, ..., xℓ) = g(xπ(i), ..., xπ(ℓ)).

1.2 IPPs and ds-IPPs

As stated upfront, our focus is on verification rather than on testing. That is, we seek interactive
proofs of proximity (IPPs) in which the verifier’s complexity is significantly lower than the com-
plexity of testing. Furthermore, our actual focus is on IPPs in which the complexity of the honest

1In terms of (a non-standard model of) testing distributions, querying the function corresponds to querying the
underlying probability space (i.e., [m]). We stress that such queries are not allowed in the standard distribution
testing model.

2In [14] testing graph isomorphism (in the bounded-degree graph model) is related to testing “location invariant”
properties of sequences over an alphabet that encodes the possible connected components in the graph. Needless to
say, this relationship is useful only for graphs with small connected components.
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prover strategy is significantly lower than the complexity of learning. We start by recalling the
relevant definitions.

The notion of an interactive proof of proximity is a hybrid of the notions of property testing
and interactive proof systems. The basic mind-frame – of approximate decision and sub-linear com-
plexity – is inherited from the former, whereas the actual setting – of verification via an interaction
between a powerful but untrusted prover and a probabilistic verifier – is taken from the latter. In
other words, a verifier is a tester that is assisted by interaction with an untrusted prover. In the
context of properties of functions, which is the primary focus of this work, we denote by (P̃ , V f )(x)
the output of V , on input x and oracle access to f , after interacting with an arbitrary prover P̃ .

Definition 1.2 (verifier for property Π):3 Let Π =
⋃

m,n∈NΠm,n such that Πm,n contains functions
of the form f : [m]→ [n]. An interactive verifier of proximity for Π is an interactive and probabilistic
oracle machine, denoted V , that, on input parameters m,n and ϵ and oracle access to a function
f : [m] → [n], interacts with a potential prover, and outputs a binary verdict that satisfies the
following two conditions.

1. Completeness: V accepts inputs in Π: For every m,n ∈ N and ϵ > 0, and for every f ∈ Πm,n,
there exists a prover strategy P that makes the verifier accept (w.h.p); that is,

Pr[(P, V f )(m,n, ϵ)=1] ≥ 2/3.

If Pr[(P, T f )(m,n, ϵ)=1] = 1 always holds, then we say that V has perfect completeness.

2. Soundness: V rejects inputs that are ϵ-far from Π: For every m,n ∈ N and ϵ > 0, and for
every f : [m]→ [n] such that δΠ(f) > ϵ, no prover strategy P̃ can make the verifier accept
(w.h.p); that is,

Pr[P̃ , V f )(m,n, ϵ)=0] ≥ 2/3,

where δ(f, g)
def
= |{i∈ [m] :f(i) ̸=g(i)}|/m and δΠ(f)

def
= ming∈Πm,n {δ(f, g)}.

The query complexity of V is a function (of m,n and ϵ) that specifies the number of queries made
by V on input parameters m,n and ϵ, when given oracle access to any function f : [m]→ [n].

An alternative formulation specifies the (honest) prover strategy that is used in the completeness
condition. This is called for when wishing to discuss the complexity of such honest prover strategies.
Indeed, verifier of proximity that admit an efficient proving strategy (in case f ∈ Π) are of natural
interest, and are our main focus. In these cases, we provide these prover strategies with oracle
access to the input function and consider their query complexity. Hence, we use the following
definition.

Definition 1.3 (an IPP for property Π): For Π and V as in Definition 1.2, we say that (P, V ) is
an interactive proof of proximity (IPP) for Π if P is an interactive oracle machine and Condition 1
(completeness) holds with P replaced by P f ; that is, for every m,n ∈ N and ϵ > 0 and for every
f ∈ Πm,n, it holds that

Pr[(P f , V f )(m,n, ϵ)=1] ≥ 2/3.

3Since our focus is on properties of the form Π =
⋃

m,n∈N Πm,n (as in Definition 1.1), we provide all machines
with two size parameters (i.e., m and n). The definition of a tester can be derived as a special case by considering
verifiers that do not interact with the prover.
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We stress that V also satisfies Condition 2 (soundness). The query complexity of P is a function
that specifies the number of queries made by P on input parameters m,n and ϵ, when given oracle
access to any function f : [m]→ [n].

Analogous definitions are used for interactive proofs of proximity (IPPs) for distributions (cf. Def-
inition A.2). Since we refer to such IPPs for the sake of comparison only, we do not define them
here.

We say that (P, V ) is a doubly-sublinear IPP (ds-IPP) for Π if (1) the query complexity of V is
sublinear in the query complexity of testing Π, and (2) the query complexity of P is sublinear in
the query complexity of learning Π. We stress that this definition is minimal: It only refers to the
query complexity of the two parties, and it only requires some advantage over the straightforward
case.4

1.3 Our results

As stated in Section 1.1, testing a location-invariant property of functions Π is closely related to
testing a related property of distributions D, where the distributions in D reflect the frequencies of
the functions in Π. This close relationship is based on the fact that making queries to a function
(in Π) is not more beneficial than obtaining random samples of the function’s value.

The latter assertion, rigorously stated and proved in [20, Sec. 6], no longer holds in the context
of IPPs. In the latter context, the ability to make queries (rather than get samples) is advantageous
(even when the property is location-invariant). This is the case because it may be beneficial for
the verifier to check the validity of location-value pairs provided by the prover. We stress that such
a possibility exists in the setting of properties of functions, but not in the setting of properties of
distributions. This is the source of the gap between IPPs for properties of functions and IPPs for
corresponding properties of distributions. Let us illustrate this point by considering the property
of location-invariant functions that corresponds to the uniform distribution.

Definition 1.4 (the equal-frequencies property): We say that f : [m]→ [n] is an equal-frequencies

function if for every v ∈ [n] it holds that #v(f)
def
= |{i ∈ [m] : f(i) = v}| = m/n. The set of

equal-frequencies functions is called the equal-frequencies property.

We first comment that testing the equal-frequencies property requires Ω(
√
n) queries. Furthermore,

an IPP for uniform distribution (over [n]) requires the verifier to make Ω(
√
n) queries [9]. However,

as shown next, the equal-frequencies property has an IPP in which the verifier runs in poly(1/ϵ)-
time.

The latter (non-doubly-sublinear) IPP proceeds essentially as follows. Given oracle access to
f : [m]→ [n], the verifier selects i ∈ [m] uniformly at random, obtains v ← f(i) and asks the prover
to prove to it that |f−1(v)| = m/n. As shown next, such a proof can be carried out in the current
context (of functions, but not in the context of distributions).

The crucial observation is that the standard lower and upper bound protocols (see [24, 17]
and [11, 1], respectively) are applicable here: the lower bound protocol is applicable because the
verifier can check claims of membership in f−1(v), whereas the upper bound protocol is applicable
here because the verifier keeps i ∈ f−1(v) secret. In both protocols, the parties use a random

4Evidently, verification is reducible to testing, whereas proving is essentially reducible to (perfectly) learning the
function (when considering the query complexity only).
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hashing function h : [m]→ [m/(t ·n)], where t = poly(1/η), and the prover is asked to answer with
(1 ± η) · t indices j such that f(j) = v and h(j) = 0.5 Unfortunately, implementing the prover’s
strategy essentially requires full knowledge of f .

Our main result is showing that the aforementioned gap between IPPs for location-invariant
properties of functions and IPPs for the corresponding properties of distributions occurs also in
case of doubly-sublinear IPPs (ds-IPPs). For example, we show that doubly-sublinear IPPs exist
for the equal-frequencies property.

Theorem 1.5 (ds-IPP for the equal-frequencies property): For every α ∈ (0, 0.5), the equal-
frequencies property (of functions from [m] to [n]) has an IPP in which the query complexity of
the verifier is O(n0.5−α), the query complexity of the honest prover is p = Õ(n0.5+α/ϵ2), and the
communication complexity is O(p · logm).

Recall that this result stands in contrast to the analogous situation wrt ds-IPPs for testing the
uniform distribution [9, 26], where IPPs for this property (of distributions) offer no advantage over
testers. (Recall that an IPP for testing uniformity over [n] must have sample complexity Ω(

√
n),

regardless of other complexity measures.)
Theorem 1.5 extends to any fixed-frequencies property, where for any ρ : [n] → [0, 1] that

sums to 1, we say that f : [m] → [n] is a ρ-frequencies function if for every v ∈ [n] it holds that
#v(f) = ρ(v)·m (i.e., the equal-frequencies property corresponds to the case in which ρ(v) = 1/n for
every v ∈ [n]). This extension is shown by carefully using known reductions (see [13, Sec. 11.2.2]).
A different generalization refers to the following (locally-invariant) property.

Definition 1.6 (the flat-frequencies property): We say that f : [m] → [n] is a flat-frequencies
function if f is a ρ-frequencies function for a frequency function ρ such that for some k ∈ N
and every v ∈ [n] it holds that ρ(v) ∈ {0, 1/k}. In this case we say that f is k-flat. The set of
flat-frequencies functions is called the flat-frequencies property.

Indeed, the equal-frequencies functions corresponds to the special case of flat-frequency in which
k = n. Note that the flat-frequencies property (of functions) corresponds to generalized uniformity
studied in [5, 10]. Recall that testing generalized uniformity has query complexity Θ(k2/3) [5],
which cannot be improved by ds-IPPs [26]; that is, obtaining sample complexity o(k2/3) for the
verifier requires sample complexity Ω(k) for the prover. In contrast, we show

Theorem 1.7 (ds-IPP for the flat-frequencies property): For every α ∈ (0, 1/3) and every k ∈ [n],
the k-flat property (of functions from [m] to [n]) has an IPP in which the query complexity of the
verifier is poly(1/ϵ) · k(2/3)−2α, the query complexity of the prover is p = poly(1/ϵ) · Õ(k(2/3)+α),
and the communication complexity is O(p · logm).

The foregoing IPP requires the honest prover to have a good approximation of k, which it can
obtain by itself (using the tester of [5]).

5Recall that if |f−1(v)| ≥ m/n (resp., |f−1(v)| < (1 − 2η) · m/n), then (whp) |f−1(v) ∩ h−1(0)| ≥ (1 − η) · t
(resp., |f−1(v) ∩ h−1(0)| < (1 − η) · t). Likewise, if |f−1(v)| ≤ m/n (resp., |f−1(v)| > (1 + 3η) · m/n), then (whp)
|f−1(v) ∩ h−1(0)| ≤ (1 + η) · t (resp., |f−1(v) ∩ h−1(0)| > (1 + 2η) · t, which means that with probability Ω(η) the
index i is not in the (1 + η) · t-subset sent by the prover).
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Digest: In all our IPPs, the query complexity of the prover as well as the communication com-
plexity is larger than the query complexity of the corresponding tester. Hence, the gain in reducing
the query complexity of the verifier comes at the cost of increasing the query complexity of the
prover (above the query complexity of the tester). Furthermore, the communication complexity
(and so the verifier’s running time) is also at the latter level. So the verifier gains in reducing its
query complexity at the cost of increasing its running-time (and communication complexity). This
trade-off is beneficial in settings in which the query access is more costy than running-time and
communication.

IPPs for all locally-invariant properties. Turning back to general IPPs, which are not nec-
essarily doubly-sublinear, we observe that every locally-invariant property has an IPP in which the
verifier makes O(1/ϵ) queries.

Theorem 1.8 (IPP for any locally-invariant property): Every locally-invariuiant property Π =⋃
m,n∈NΠm,n has an IPP in which the query complexity of the verifier is O(1/ϵ), the query com-

plexity of the prover is p = O(n/ϵ2), and the communication complexity is O(p · logm).

Recall that the corresponding distribution tester requires Ω(n/ log n) queries. Hence, the query
complexity of the prover in Theorem 1.8 is optimal up to a polylogarithmic (in n) factor.

1.4 Techniques

The common theme in all our doubly-sublinear IPPs is that the verifier delegates the task of
querying the function f to the (untrusted) prover. In light of the fact that we aim at verifying
location-invariant properties, it suffices to obtain the value of the function at random locations, but
the verifier has to make sure that these locations are indeed random and that the prover returns
the correct values. Specifically, in all cases, the ds-IPP (for Π) proceeds as follows, where p is the
query complexity of the prover and q ≪ p is the query complexity of the verifier.

1. The verifier selects p locations, i1, ..., ip ∈ [m], uniformly at random, and sends them to the
prover.

2. The prover queries the function f : [m]→ [n] at these p locations, obtains vj = f(ij) for each
j ∈ [p], and sends v1, ..., vp to the verifier.

3. The verifier subjects v1, ..., vp to some check, which is related to some known tester for Π. If
the check fails, the verifier rejects. Otherwise, it proceeds to the next step.

4. The verifier selects a random q-subset J of [p] and queries f on ij for all j ∈ J . It accepts if
and only if f(ij) = vj for every j ∈ J .

The check performed in Step 3 typically amounts to counting the number of pairwise (and 3-wise)
collisions in the sequence v1, ..., vp. (Indeed, this corresponds to the way uniformity and generalized
uniformity are tested; see [13, Sec. 11.2.1] and [5].)

As usual, the main challenge is the soundness analysis. We show that passing the check per-
formed in Step 3 requires cheating on sufficiently many (i.e., ω(p/q)) values, whereas such cheating
will be detected in Step 4. Proving this is relatively easy in the special case of Theorem 1.5 in
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which m = n. In this case, the set Πm,n of equal-frequencies functions coincides with the set PERMn
of permutations over [n]. This special case was outlined by us in [4, Sec. 1.2.3], and a full analysis
of it is presented in Section 2.

The analysis of the ds-IPP for PERM is facilitated by the fact that in that case no collisions may
exist under a tested function f ∈ PERM. In contrast, in the other cases, we have to approximate
the number of (pairwise and 3-wise) collisions, and this is more complicated for arbitrary tested
functions f . In fact, we reduce the analysis to the case that no value occurs in f with frequency
larger than 1/p (or so). In some of these cases, the reduction is explicit, and in others it is implicit.
In Section 5 we distill and study the computational problem that underlies these reductions (i.e.,
IPP for “frequency-bounded” properties).

Evidently, all these IPPs use two messages. While the IPP for PERM has perfect completeness,
this is not the case for our other IPPs. The latter deficiency is inherent to the fact that these IPPs
are based on estimating various quantities.

Comment: In all cases, the analysis holds also if the p locations selected in Step 1 are selected
in an O(1)-wise independent manner rather than totally independent of one another. While this
reduces the length of the message sent in Step 1, it does not reduce the length of the message sent
in Step 2 (nor the time required for checking it in Step 3).

On the proof of Theorem 1.8. Our IPP for any locally-invariant property also follows the
foregoing theme. Specifically, the verifier learns the frequency function of the input function f :
[m] → [n] (i.e., ρ : [n] → [0, 1] s.t. ρ(v) = #v(f)/m for each v) by delegating the corresponding
O(n/ϵ2) queries to the prover. The verifier checks whether this frequency function is close to the
set of frequency functions underlying the property, and that the O(n/ϵ2) values provided by the
prover are actually correct (by querying a sub-sample of O(1/ϵ) points).

1.5 Prior works on which we build

Evidently, we refer to a host of notions that were defined in prior works. In particular, as stated
above, property testing emerged in the works of Blum, Luby and Rubinfeld [8], Rubinfeld and
Sudan [29], and Goldreich, Goldwasser and Ron [15]. Distribution testing (although mentioned
in [15]) emerged in the work of Batu, Fortnow, Fischer, Kumar, Rubinfeld, Smith and White [7, 6].

Interactive proofs of proximity (for functions) were defined by Rothblum, Vadhan, and Wigder-
son [27], whereas interactive proofs of proximity for distributions were later defined by Chiesa and
Gur [9]. Doubly-sublinear IPPs (for functions) were recently defined and studied in [4], whereas
doubly-sublinear IPPs for distributions were studied (even more recently) in [26]. (Evidently, IPPs
adapt the notion of interactive proofs [23] to the context of approximate decisions, whereas doubly-
sublinear IPPs adapt the notion of doubly-efficient interactive proofs [22] to that context.)

In addition, we also refer and use a few prior results. For example, location-invariant properties
were previously considered by Goldreich and Ron [20, Sec. 6], in the context of studying “‘sample-
based” testers. In particular, they showed that testing such properties (of functions) is essentially
equivalent testing properties of distributions (i.e., the corresponding “frequencies” distributions).
Our IPPs utilize ideas that underlie testing the uniform distribution (see [13, Sec. 11.2.1]), testing
equality to fixed distributions (see [13, Sec. 11.2.2]), and testing generalized uniformity [5].
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We also reproduce the ds-IPP for the set of permutations over [n], denoted PERMn, presented
by us in [4, Sec. 1.2.3], and revise and detail its analysis. This serves as a good warm-up for the
rest of our results.

1.6 Organization

As stated above, the doubly-sublinear IPP for PERM, presented in Section 2, is a good warm-up
towards the rest of our results. The main results of this work are presented in Sections 3 and 4,
which contain proofs of Theorem 1.5 and 1.7, respectively. In Section 5 we distil and study a
computational problem that arises in the previous two sections, but reading this section is not
essential for the results presented in Sections 3 and 4. Lastly, in Section 6, we present the proof of
Theorem 1.8 (asserting IPPs for any locally-invariant property).

2 Warm-up: IPPs for PERM

For n ∈ N, the set PERMn consists of all permutations over [n]. Indeed, PERM =
⋃

n PERMn is a specail
case of the equal-frequencies property; this special case is obtained by setting m = n.

Here we consider the problem of testing (resp., verifying) whether a function f : [n] → [n] is
in PERMn. Note that PERM has a tester of complexity O(

√
n/ϵ), which we outline below, whereas a

query lower bound of Ω(
√
n) follows from [25].6 Furthermore, PERM has two fundamentally different

(1-round) IPPs, which were presented in [25] and [16], respectively. We review them next:

1. In the IPP of [25] the verifier selects uniformly at random a point r ∈ [n], and sends r to
the prover, who is supposed to return its f -preimage; the verifier accepts if and only if the
prover’s answer is mapped by f to r.

(The analysis of this IPP relies on the fact that the distance of f : [n] → [n] from PERMn
is linearly realted to the number of elements in [n] that have no preimage under f (i.e.,
n− |f([n])|).)

2. In the IPP of [16], the verifier selects uniformly at random a point r ∈ [n], queries f on it, and
sends y ← f(r) to the prover, who is supposed to return its f -preimage; the verifier accepts
if and only if the prover’s answer equals r.

(This IPP, unlike the previous one, utilizes prover-oblivious queries. Its analysis relies on the
fact that the distance of f : [n]→ [n] from PERMn is linearly related to

∑
v∈F ([n])(|f−1(v)|−1).)

In both cases, f ∈ PERMn is always accepted, whereas functions that are ϵ-far from PERM are rejected
with probability Ω(ϵ). (In both cases, the protocol is repeated O(1/ϵ) times to yield an IPP.)

More importantly, in both cases, the honest prover finds the required f -preimage by querying
f on all points (or practically so). In contrast, we seek and obtain a ds-IPP for PERM in which the
verifier uses o(

√
n) queries and a honest prover that makes o(n) queries.

We stress that the following result stands in contrast to the analogous situation wrt IPPs for
testing the uniform distribution [?, 26]. (Recall that an IPP for testing uniformity over [n] must
have sample complexity Ω(

√
n), regardless of other complexity measures.)

6See also a direct proof in [30, Apdx A].
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Theorem 2.1 (ds-IPP for PERM): For every α ∈ (0, 0.5), there exists an IPP for PERMn that
has a verifier that uses O(n/ϵ)0.5−α queries and an honest prover that uses O(n/ϵ)0.5+α queries.
Furthermore, the IPP has perfect completeness.

The communication and time complexity of both parties is Õ((n/ϵ)0.5+α).

Proof: The straightforward tester for PERM consists of selecting q = O(
√

n/ϵ) random points in
[n], querying the function f : [n] → [n] on them, and rejecting if and only if collisions are found
(among the f -images).

Evidently, any f ∈ PERM is accepted with probability 1, whereas (as implicitly shown below)
any f that is ϵ-far from PERM is rejected with high constant probability. A similar analysis implies
that if we select O(n/ϵ)0.5+α random points, then we expect to see Ω(n2α) collisions and that these
collisions involve Ω(n2α) disjoint pairs of points. This leads us to the following protocol.

1. The verifier selects p = O(n/ϵ)0.5+α (distinct) random points in [n], denoted i1, ..., ip, and
sends them to the prover,

2. The prover queries the input f : [n] → [n] on these p sample points, and sends the answers
(v1, ..., vp)← (f(i1), ..., f(ip)) to the verifier.

3. The verifier rejects if it sees a collision (i.e., if vj = vk for some j ̸= k).

4. Otherwise, the verifier sub-samples q = O(n/ϵ)0.5−α of the original points, queries f on each
of these q samples, and accepts if and only if all answers match the prover’s answers (i.e., if
f(ij) = vj for the ij ’s it sub-sampled).

Clearly, f ∈ PERM is always accepted. Turning to the soundness analysis, we fix an arbitrary

function f that is ϵ-far from PERM and let C
def
= {x∈ [n] : |f−1(f(x))| > 1} denote the set of points

that form collisions under f . Then, |C| > ϵ · n; actually, |C| − |f(C)| > ϵ · n, because modifying f
to a permutaion requires changing its value on all but a single point in f−1(y) for every y ∈ f(C).

Actually, let use first consider the special case in which f is 2-to-1 on C. In this case, C
consists of pairs of the form (x, y) such that f(x) = f(y). Each such pair is included in the sample
S = {i1, ..., ip} taken by the verifier with probability

(
p
2

)
/
(
n
2

)
≈ (p/n)2, and so the expected number

of pairs included in S is ≈ (p/n)2 · |C| ≥ ϵ · p2/n = Ω((n/ϵ)2α). Furthermore, with high probability
over the choice of S ∈

(
[n]
p

)
, there are Ω((n/ϵ)2α) disjoint pairs of points in S such that the elements

in each pair have the same f -image.7

Wishing to avoid rejection in Step 2, the prover must cheat on the values of the Ω((n/ϵ)2α)
foregoing points (in S), but (with high probability) at least one of these points will appear in the
sub-sample that the verifier selects in Step 4 (since the sub-sample rate is q/p = O(ϵ/n)2α). Hence,
in Step 4, when querying the function f on this sub-sample, the verifier detects this cheating and
rejects (w.h.p.). Recall however, that this analysis was conducted under the unjustified assumption
that f is 2-to-1 on C.

7The proof relies on the fact that the relevant events (i.e., pairwise collisions) are sufficiently independent. Specifi-
cally, most pairs of events refer to four independent samples and the few pairs of events that refer to three independent
samples correspond to three-way collisions and occur with very small probability. See details in Appendix A.2, where
the current case corresponds to a graph with vertex set [n] such that x is connected to y if f(x) = f(y). (Hence, this
graph consists of |C|/2 isolated edges and n− (|C|/2) isolated vertices.)
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Turning to the general case, we define a function f ′ that is 2-to-1 on most of C such that f(x) ̸=
f(y) implies f ′(x) ̸= f ′(y) (equiv., f ′(x) = f ′(y) implies f(x) = f(y)). Hence, the probability that
the verifier rejects f ′ (when interacting with the worst possible cheating prover) is upper-bounded
by the probability that the verifier rejects f (when interacting with the worst possible cheating
prover).8 The theorem follows by using the foregoing analysis (because f ′ is 2-to-1 on a set C ′ that
contains most of C). The desired function f ′ is defined as follows.

� For each x ∈ [n], let Ex = f−1(f(x)) = {y∈ [n] :f(y)=f(x)}.

� For each x ∈ C (equiv., x s.t. |Ex| > 1), partition Ex to pairs, leaving at most one unpaired

element (where |Ex| is odd). This yields t
def
=

∑
v ⌊|f−1(v)|/2⌋ ≥ |C|/3 pairs.

� Denoting these pairs (x1, y1), ..., (xt, yt), let f ′ assign both elements of each pair a distinct
value that is different from all values assigned by f (to elements that are not in these pairs).

That is, letting C ′ def
= {xi, yi : i ∈ [t]}, and assuming that v1, ..., vt are not in f([n] \ C ′), we

let

f ′(z)
def
=

{
vi if z ∈ {xi, yi}
f(z) otherwise

Observing that f ′ is 2-to-1 on C ′ and that |C ′| ≥ 2 · |C|/3 > ϵ · n/2, we complete the proof of
Theorem 2.1.

3 IPPs for fixed-frequency properties

We start with an explicit definition of the properties that we study in the current section.

Definition 3.1 (the fixed-frequencies property): For ρ : [n]→ [0, 1] such that
∑

v∈[n] ρ(v) = 1, we
say that f : [m]→ [n] is a ρ-frequencies function if for every v ∈ [n] it holds that #v(f) = ρ(v) ·m,

where #v(f)
def
= |{i∈ [N ] : f(i) = v}|. The set of ρ-frequencies functions is called the ρ-frequencies

property.

Indeed, equal-frequencies functions (see Definition 1.4) are a special case of ρ-frequencies functions
(i.e., ρ(v) = 1/n for every v ∈ [n]). We shall first present doubly-sublinear IPPs for this special
case, and then use known reductions of the general case to this special case. These reductions,
originally presented in the context of testing distributions, are shown to hold in the current setting
(of constructing ds-IPPs for the corresponding location-invariant properties of functions).

Recall that PERM is a special case of the equal-frequencies property (obtained by setting m = n).
In general, equal-frequencies functions from [m] to [n] are m/n-to-1 (rather than 1-to-1 as in the
case of m = 1), which makes the construction of IPPs for them more complex.

3.1 IPPs for the equal-frequencies property: Proof of Theorem 1.5

The equal-frequencies property is a special case of the fixed-frequencies property, obtained when
considering the uniform frequency; that is, f : [m]→ [n] is an equal-frequencies function if for every
v ∈ [n] it holds that #v(f) = m/n.

8These probabilities are related to |S| − |f ′(S)| and |S| − |f(S)|, respectively, and the foregoing claim follows by
observing that |f ′(S)| ≥ |f(S)| .

10



Recall that testing the equal-frequencies property requires Ω(
√
n) queries, but it has an IPP

in which the verifier runs in poly(1/ϵ)-time. The latter (non-doubly-sublinear) IPP proceeds es-
sentially as follows. Given oracle access to f : [m] → [n], the verifier selects i ∈ [m] uniformly at
random, obtains v ← f(i) and asks the prover to prove to it that |f−1(v)| = m/n.

However, our goal is to present a doubly-subliner IPP for the foregoing property. Specifically,
for every constant α ∈ (0, 0.5), we present an IPP in which the prover makes p = Õ(n0.5+α/ϵ2)
queries whereas the verifier makes q = O(n0.5−α) queries. We may assume, w.l.o.g., that p < m,
since otherwise the prover can retrieve f using p queries.

Construction 3.2 (ds-IPP for the equal-frequencies property): On input m,n and ϵ, and oracle
access to f : [m]→ [n], the proof system proceeds as follows.

1. The verifier selects i1, ..., ip ∈ [m] uniformly at random, and sends (i1, ..., ip) to the prover.

2. For every j ∈ [p], the prover obtains vj ← f(ij), by querying f , and sends (v1, ..., vp) to the
verifier.

3. The verifier subjects the received p-long sequence (v1, ..., vp) to two checks:

(a) If some value occurs more than log2 n times in the sequence (i.e., if |{j∈ [p] :vj = v}| >
log2 n for some v ∈ [n]), then the verifier rejects.

(b) If the empirical collision probability in the p-long sequence exceeds (1 + 2ϵ2)/n, then the
verifier rejects. That is, the verifier rejects if |{{j, k} ∈

(
[p]
2

)
: vj = vk}| is greater than

1+2ϵ2

n ·
(
p
2

)
.

Recall that the uniform distribution over [n] has collision probability 1/n, whereas a
distribution over [n] that is ϵ-far from uniform (over [n]) has collision probability greater
than (1 + 4ϵ2)/n.

Otherwise (i.e., in case the verifier did not reject), the verifier proceeds to the next step.

4. The verifier selects uniformly at random a q-subset J ⊂ [p], queries f on each element of
{ij : j ∈ J}, and accepts if and only if vj = f(ij) for every j ∈ J .

If f is an equal-frequencies function, then, with high probability, the correct sequence (f(i1), ..., f(ip))
passes both checks of Step 3. Actually, Step 3a is unnecessary, but it simplifies the soundness anal-
ysis (i.e., of the case that f is ϵ-far from the property), which is presented next.

In the simplified analysis (which relies on Step 3a), we may assume that f is 0.1ϵ-close to f ′

such that no element occurs in f ′ with frequency greater than 2 · mp · log2 n, because otherwise either
Step 3a rejects (whp) or the prover has to cheat on Ω(ϵ) of the values (and gets caught (whp) by
Step 4). As a mental experiment, we consider an execution with f ′, which is 0.9ϵ-far from the
equal-frequencies property, rather than with f . Note that we can choose f ′ such that f ′(i) = f ′(j)
implies f(i) = f(j); hence, |{{j, k}∈

(
[p]
2

)
:f ′(ij) = f ′(ik)}| ≤ |{{j, k}∈

(
[p]
2

)
:f(ij) = f(ik)}|, which

means that if an execution with f ′ rejects than the corresponding execution with f rejects too.
Recall that if f ′ is 0.9ϵ-far from uniform, then its collision probability exceeds (1+4 · (0.9ϵ)2)/n,

and, with high probability (see Appendix A.2)9, the true values that correspond to the sample

9Analogously to Footnote 7, the current case corresponds to a graph with vertex set [m] such that x is connected
to y if f(x) = f(y). In the current case, the maximum degree of this graph is O((m/p) · logn) whereas the average
degree is at least m/n.
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(i.e., (f ′(i1), ..., f
′(ip))) will have empirical collision probability greater than (1 + 3ϵ2)/n; that is,

|{{j, k}∈
(
[p]
2

)
:f ′(ij) = f ′(ik)}| exceeds 1+3ϵ2

n ·
(
p
2

)
. To avoid rejection in Step 3b, the prover must

avoid ∆ = ϵ2

n ·
(
p
2

)
= Ω(ϵ2p2/n) of the collisions, which requires it to cheat on at least ∆/ log2 n

values (where here we use the bound on frequencies of f ′ in the sample). Hence, the probability
of catching this cheating (in Step 4) is high, since the verifier checks each value with probability q

p

(i.e., the expectation is (q/p) ·∆/ log2 n = Ω(ϵ2qp/n log n) = ω(1) (by the setting of p and q) and
there is sufficient concentration (see Footnote 9 and Appendix A.2)).

An alternative analysis (which avoids Step 3a). The alternative analysis (of f that is ϵ-far
from the equal-frequencies property) is closer in spirit to the analysis presented in Section 2. Firstly,
we say that a value v is heavy (in f) if #v(f) ≥ 3 ·m/n, and let H denote the set of heavy values.

Next, we replace each heavy value v by a set of ⌊#v(f)
2m/n ⌋ auxiliary values, denoted Cv. Next, we

define f ′ such that f ′(i) ∈ Cf(i) if f(i) ∈ H and f ′(i) = f(i) otherwise. Moreover, we define f ′

such that each value in Cv is assigned approximately the same frequency; that is, for every v ∈ H
and w ∈ Cv it holds that

#w(f
′) ≈ #v(f)

|Cv|
=

#v(f)

⌊#v(f) · (2m/n)−1⌋
∈

[
2 · m

n
, 4 ·

m

n

)
(1)

and for every v ∈ H it holds that∑
w∈Cv

(
#w(f

′)− m

n

)
= #v(f)− |Cv| ·

m

n

≥ #v(f)−
#v(f)

2m/n
· m
n

which equals #v(f)
2 . It follows that∑

w:#w(f ′)>m/n

(
#w(f

′)− m

n

)
=

∑
v ̸∈H:#v(f)>m/n

(
#v(f)−

m

n

)
+

∑
v∈H

∑
w∈Cv

(
#w(f

′)− m

n

)
≥

∑
v ̸∈H:#v(f)>m/n

(
#v(f)−

m

n

)
+

1

2
·
∑
v∈H

#v(f)

≥ 1

2
·

∑
v:#v(f)>m/n

(
#v(f)−

m

n

)
which means that f ′ is ϵ/2-far from the equal-frequencies property. Note that the probability that
f is rejected by the verifier is lower-bounded by the probability that the verifier rejects f ′, since
each collision in f ′ is also a collision in f . Hence, we may just analyze the latter probability while
taking advantage of #w(f

′) < 4 ·m/n (rather than #w(f
′) ≤ 2m

p · log2 n). Furthermore, with high

probability over the choice of the sample (i1, ..., ip) in Step 1, no value of f ′ occurs in the sample
more than log2 n times, which means that Step 3a can be avoided. Hence, we get

Theorem 3.3 (ds-IPP for the equal-frequencies property, Theorem 1.5 restated): For every α ∈
(0, 0.5), the equal-frequencies property (of functions from [m] to [n]) has an IPP the query complexity
of the verifier is O(n0.5−α), the query complexity of the honest prover is p = Õ(n0.5+α/ϵ2), and the
communication complexity is O(p·logN). Furthermore, if p = o(n1−Ω(1)), then the query complexity
of the honest prover can be reduced to O(n0.5+α/ϵ2).
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The condition in the furthermore clause holds whenever ϵ ≥ n−(0.5−α)/2. To justify the furthermore
clause, assume that p = o(n1−(1/t) for some t ∈ N, and consider an execution with input f ′ (as
in the foregoing discussion). Then, with high probability, the sample does not contain a t-way
collision of f ′, and so avoiding rejection in Step 3 requires cheating on ∆/(t − 1) values (rather
than on ∆/ log2 n values). This allows using p = O((n/ϵ)0.5+α) rather than p = Õ((n/ϵ)0.5+α).

3.2 Obtaining IPPs for fixed-frequency properties via reductions

As stated before, our main observation here is that the reductions (presented in [13, Sec. 11.2.2])
from testing equality to any fixed distribution D to testing uniformity apply also in the context of
ds-IPPs.

The aforementioned reductions are based on “filters” that randomly map elements of one dis-
tribution (over [n]) to another distribution (over [n]) such that repeated invocations of the filter
F = FD on the same element e yields independent samples of F (e). When reducing testing equality
to the distribution D to testing uniformity, one uses a filter F , which depends (of course) on D,
such that if X is distributed as D then F (X) is uniformly distributed over [n], whereas if X is ϵ-far
being distributed according to D then F (X) is Ω(ϵ)-far from the uniform distributed over [n].

We shall reduce the construction of ds-IPPs for ρ-frequency property to the construction of ds-
IPPs for the equal-frequency property by using the filter F = FD (that is used to reduced testing
D to testing uniformity), where D(v) = ρ(v) for every v ∈ [n]. Towards presenting this reduction,
suppose that F uses randomness r ∈ R, and let Fr(x) denote its output on input x and coins r.
We shall use an integer M that is a multiple of |R| such that M = ω(n2).

The reduction consists of selecting a random M
|R| -to-1 mapping µ : [M ] → R and defining

fµ : [m] × [M ] → [n] such that fµ(i, j) = Fµ(j)(f(i)), where f is the function that that is input
to the IPP for ρ-frequency (and fµ will be an emulated input to the IPP for equal-frequency).
Thus, for every M

|R| -to-1 mapping µ : [M ]→R and for for every i ∈ [m] and w ∈ [n], it holds that

|{j ∈ [M ] : fµ(i, j)=w}| = Pr[F (f(i))=w] ·M . It follows that

#w(fµ)

m ·M
=

∑
v∈[n]

#v(f)

m
· Pr[F (v)=w]. (2)

The IPP for ρ-frequencies will proceed as follows. On input f : [m] → [n], the parties select
a random µ on-the-fly (see details below), and invoke the equal-frequencies IPP on input fµ :
[m] × [M ] → [n], and emulate the queries as follows: When an emulated party for the latter IPP
makes the query (i, j) ∈ [m] × [M ] to fµ, the corresponding party makes the query i to f and
answers the emulated party with the value Fµ(j)(f(i)) = fµ(i, j). Once the original verifier makes
a decision, the constructed verifier decides accordingly.

As stated above, the parties select µ at random on-the-fly; actually, the selection is performed
by the verifier, and whenever the prover needs the value of µ at some j ∈ [M ], it just asks the
verifier for µ(j).

We stress that, due to the choice of M = ω(n2) and our focus on o(n)-query parties, the queries
(i1, j1), ..., (it, jt) made to fµ, for a random µ as above, yield a distribution of answers that is very
close to the distribution of F (f(i1)), ..., F (f(it)). This is the case because µ(j1), ..., µ(jt) are almost
uniformly and independently distributed. This means that the verdict of our system on input f
is very close to the verdict of the equal-frequencies system invoked on fµ for a random M

|R| -to-1

mapping µ : [M ]→R.
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On the other hand, by Eq. (2), if the frequencies of f are represented by a random variable X,
then (for every µ as above) the frequencies of fµ are represented by the random variable F (X).
Using the hypothesis regarding F (i.e., that it maps D to a uniform distribution over [n] while
mapping X that is ϵ-far from D to a distribution that is Ω(ϵ)-far from uniform over [n]), we get a
reduction from ds-IPPs for fixed-frequency properties to a ds-IPP for the equal-frequency property.

Note that this reduction preserves the query complexities of both parties, while increasing the
communication complexity in a way that depends on the IPP for equal-frequencies. Specifically, if
the communication complexity of the original IPP is logarithmic in the domain of the function, as is
the case in the IPP of used in proving Theorem 3.3, then so is the derived IPP. This assertion relies
on the fact that the filters presented in [13, Sec. 11.2.2] have logarithmic randomness complexity
(and so we can use M such that log2M = O(log n)). Combining the foregoing reduction with
Theorem 3.3, we get

Theorem 3.4 (ds-IPP for fixed-frequency properties): For ρ : [n]→ [0, 1] such that
∑

v∈[n] ρ(v) =
1 and every α ∈ (0, 0.5), the ρ-frequencies property (of functions from [m] to [n]) has an IPP the
query complexity of the verifier is O(n0.5−α), the query complexity of the honest prover is p =
Õ(n0.5+α/ϵ2), and the communication complexity is O(p · logm). Furthermore, if p = o(n1−Ω(1)),
then the query complexity of the honest prover can be reduced to O(n0.5+α/ϵ2).

We comment that the M
|R| -to-one mapping µ was selected at random only for the sake of presenting a

general reduction. This is not required in the case that the ds-IPP for equal-frequencies is “location
oblivious” (as the ds-IPP presented in Section 3.1). Specifically, the distribution of the verifier and
(honest) prover queries (coupled with their communication) is invariant when applying any fixed
permutation to the queries (and the corresponding communication). Recall that in the ds-IPP
presented in Section 3.1, the prover’s queries form a random p-subset of the function’s domain,
which is provided by the verifier, and the verifier’s queries are a random q-subset of the former
subset.

4 IPPs for the flat-frequencies property: Proof of Theorem 1.7

Recall that f : [m]→ [n] is a flat-frequencies function if f is a ρ-frequencies function for a frequency
function ρ such that for some k ∈ N and every v ∈ [n] it holds that ρ(v) ∈ {0, 1/k}. In this case
we say that f is k-flat. Indeed, the equal-frequencies functions correspond to the special case of
flat-frequency in which k = n. The set of flat-frequencies functions is called the flat-frequencies
property.

For simplicity, let us first assume that k is given (i.e., we focus on testing k-flat functions). In
this case, the task is testing whether f : [m] → [n] has k values such that each value occurs m/k
times. This is analogous to testing uniformity over an k-subset of [n], which has sample complexity
Θ(k2/3) [5]. Recall that there are no ds-IPPs for uniformity over k-subsets of [n]; an IPP for this
property of distributions in which the verfier uses o(k2/3) samples requires the prover to take Ω(k)
samples [26].

Towards ds-IPPs for flat-frequencies functions. The tester of uniformity over an k-subset [5]
first approximates the collision-probability of the distribution and if it matches the uniform case
(i.e, is 1/

√
k), then it approximate the 3-way collision probability of the distribution. So the point
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is having the ds-IPP check 3-way-collisions (in samples of the function’s value), and it seems that
the strategy used for 2-way collisions should suffice.

Actually, the ds-IPP for flat-frequencies offers a better verifier-vs-prover query trade-off than
the ds-IPP for equal-frequencies, because the number of 3-way collisions grows cubically with the
number of samples. Hence, if the main sample is of size p = Õ(k(2/3)+α), then the number of 3-way
collisions in the sample of an k-flat function is of the form Ω(p3/k2) = k3α, and so we only need to
subsample at density k−3α, which means Õ(k(2/3)−2α) queries for the verifier. Noting that α < 1/3
anyhow, this suffices also for the pairwise collisions, because

k(2/3)+α · k(2/3)−2α = k1+(1/3)−α ≫ k.

The ds-IPPs for k-flat functions. Let δ = poly(ϵ). For every constant α ∈ (0, 1/3), we
present an IPP in which the prover makes p = Õ((k/δ)(2/3)+α) queries whereas the verifier makes
q = O((k/δ)(2/3)−2α) queries. Again, we assume (w.l.o.g.) that p < m.

Construction 4.1 (ds-IPP for flat-frequency properties): On input m,n, k and ϵ, and oracle acess
to f : [m]→ [n], the proof system proceeds as follows.

1. The verifier selects i1, ..., ip ∈ [m] uniformly at random and sends (i1, ..., ip) to the prover.

2. For every j ∈ [p], the prover obtains vj ← f(ij), and sends (v1, ..., vp) to the verifier.

3. The verifier subjects the received p-long sequence (v1, ..., vp) to three checks:

(a) If some value occurs more than log2 n times in the sequence (i.e., if |{j∈ [p] :vj = v}| >
log2 n for some v ∈ [n]), then the verifier rejects.

(b) If the empirical collision probability in the p-long sequence is not (1 ± δ)/k, then the
verifier rejects. That is, the verifier rejects if |{{a, b}∈

(
[p]
2

)
:va = vb}| is not 1±δ

k ·
(
p
2

)
.

(c) If the empirical 3-way collision probability in the p-long sequence exceeds (1 + δ)/k2,
then the verifier rejects. That is, the verifier rejects if |{{a, b, c}∈

(
[p]
3

)
:va = vb = vc}| is

greater than 1±δ
k2
·
(
p
3

)
.

Otherwise (i.e., in case the verifier did not reject), the verifier proceeds to the next step.

4. The verifier selects uniformly at random a q-subset J ⊂ [p] and accepts if and only if vj = f(ij)
for every j ∈ J .

If f is an k-flat function, then, with high probability, the correct sequence (f(i1), ..., f(ip)) passes
all checks of Step 3. Indeed, in such a case, the collision probability is 1/k and the 3-way collision
probability is 1/k2, whereas (by choice of p) the empirical pairwise and 3-way collision probabilities
are within a factor of 1± δ of the actual value (see Appendices A.2 and A.3).10

The analysis of the case that f is ϵ-far from the property is based on [5, Lem. 3.4] that asserts
the following: If the pairwise collision probability of a distribution D is (1 ± δ)/k and its 3-way
collision probability is at most (1 + δ)/k2, then D is O(δ1/3)-close to being uniform on some set.

10When using Appendix A.3, we consider a 3-uniform hypergraph over vertex set [m] such that {x, y, z} is a hyper-
edge if f(x) = f(y) = f(z). In the current case, there are at least m3/k2 hyper-edges and each vertex (resp., pair of
vertices) participates in at most O((m2/p2) logn) (resp., O((m/p2) logn)) hyper-edges.
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The original proof actually establishes that this set has size (1±O(δ1/3))/k, and it follows that D
is O(δ1/3)-close to being uniform on a set of size k. We shall show that if the function f is accepted
with high probability, then f is O(δ1/3)-close to being k-flat.

We say that a value v as heavy if #v(f) > (3m · log2 n)/p, and let H
def
= {v ∈ [n] : #v(f) >

(3m · log2 n)/p} and L = [n] \ H. Analogously to the alternative analysis in Section 3.1 (which
yields a proof of Theorem 3.3), we decompose f : [m] → [n] into fH : f−1(H) → [n] and fL :
f−1(L) → [n] such that f(i) = fH(i) if i ∈ f−1(H) and f(i) = fL(i) otherwise. We may assume
that Pri∈[m][f(i) ∈H] = O(1/q), since otherwise (w.h.p) the verifier rejects either in Step 3a (if
the prover answers truthfully on most samples with f -values in H)11 or in Step 4 (if the prover
cheats on most of these values). Hence, we may analyze the execution on fL rather than on
f , because, for t ∈ {2, 3}, the difference (due to heavy values) in the claimed number of t-way
collisions in the sample is at most O(p/q) · (log2 n)t−1 = o(pt · δ/kt−1). (The bound on the number
of t-collision follows from the fact that (whp) the sample contains at most O(p/q) heavy values,
whereas the inequality uses p · q = ω((k/δ) log2 n), which implies O(p/q) · (log2 n)2 = o(p2 · δ/k)
and O(p/q) · (log2 n)3 = o(p3 · δ/k2).)

The analysis of the execution on input fL proceeds analogously to the simplified analysis in
Section 3.1. The key observation is that the empirical pairwise and 3-way collision probabilities
under fL are within a factor of 1±δ of their actual value (see Appendices A.2 and A.3). Hence, the
fact that both Step 3b (resp., Step 3c) and Step 4 accept (w.h.p) implies that the pairwise (resp.,
3-way) collision probability under fL is (1 ± 3δ)/k (resp., at most (1 + 3δ)/k2).12 Applying [5,
Lem. 3.4] it follows that fL (and so also f) is O(δ1/3)-close to being m-flat. Thus, we get

Theorem 4.2 (ds-IPP for the flat-frequencies property, Theorem 1.7 restated): For k ∈ [n] and
every α ∈ (0, 1/3), the k-flat property (of functions from [m] to [n]) has an IPP in which the
query complexity of the verifier is poly(1/ϵ) · k(2/3)−2α, the query complexity of the prover is p =
poly(1/ϵ) · Õ(k(2/3)+α), and the communication complexity is O(p · logm).

Although constructing ds-IPPs for flat-frequency does not reduce to constructing ds-IPPs for k-
flatness, we observe that the specific ds-IPP for k-flatness (i.e., of Construction 4.1) can be used
in the straightforward reduction. In this reduction, the honest prover first determines a 1± 0.1 · δ
factor approximation of the size of the image of the flat-frequencies function, denoted k̃, sends k̃
to the verifier, and the two parties proceed with Construction 4.1.13 The point is that the latter
ds-IPP is insensitive to such a small deviation in the size of the image; that is, if f is m-flat,
then the verifier of Construction 4.1. accepts (whp) even when the parties use the size parameter
k̃ = (1± 0.1 · δ) · k (instead of k).

5 IPPs for frequency-bounded functions

In retrospect, constructing IPPs for frequency-bounded functions (which are analogous to “proba-
bility bounded distributions”) is implicit in Sections 3.1 and 4 (see Step 3a in the ds-IPPs presented
there). We detail this IPP here.

11Since in such a case, each heavy value is likely to appear more than 2 log2 n times in the sample.
12Specifically, a larger deviation in the t-way collision probability would translate to a deviation of at least Ω(pt ·

δ/kt−1) = (p/q) · Ω(q · δ · (p/k)t−1) such collisions in the empirical frequencies (in the p-sized sample. Note that
q · δ · (p/k) ≫ (k/δ)(1/3)−α whereas q · δ · (p/k)2) ≫ (1/δ)2.

13This approximation is obtained by using the tester of [5], which has sample complexity poly(δ) · k̃2/3.
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Definition 5.1 (frequency bounded functions): For τ ∈ (0, 1], we say that f : [m] → [n] is τ -

bounded if for every v ∈ [n] it holds that #v(f) ≤ τ ·m. where #v(f)
def
= |{i∈ [m] :f(i)=v}|.

We mention that testing τ -bounded functions requires at least (1/τ)1−Ω(1) queries. This follows
from the work of [21]; see Appendix A.4 for details. In contrast, we present a doubly-sublinear
IPP for τ -bounded functions in which the prover makes p = Õ(1/τ) queries and the verifier makes
O(1/ϵ) queries.

Construction 5.2 (ds-IPP for frequency-bounded functions): On input m,n, τ and ϵ, and oracle
acess to f : [m]→ [n], the proof system proceeds as follows.

1. The verifier selects i1, ..., ip ∈ [m] uniformly at random and sends (i1, ..., ip) to the prover.

2. For every j ∈ [p], the prover obtains vj ← f(ij), and sends (v1, ..., vp) to the verifer.

3. If some value occurs more than (1 + 0.1 · ϵ) · τ · p times in the p-long sequence received by
the verifier, then the verifier rejects. Otherwise, the verifier selects uniformly at random a
O(1/ϵ)-subset J ⊂ [p] and accepts if and only if vj = f(ij) for every j ∈ J .

If f is τ -bounded, then, whp, the sequence selected by the verifier is (1 + 0.1 · ϵ) · τ -bounded (i.e.,
|{j ∈ [p] : f(ij)= v}| ≤ (1 + 0.1ϵ) · τ · p fo every v ∈ [n]). In this case, the prover just provides the
true values and the verifier accepts. On the other hand, if f is ϵ-far from τ -bounded, then∑

v:#v(f)>τ ·m

(#v(f)− τ ·m) > ϵ ·m.

In this case, with high probability over the choice of i1, ..., ip ∈ [m], for g : [p] → [n] such that
g(j) = f(ij) it holds that ∑

v:#v(g)>τ ·p

(#v(g)− τ · p) > 0.5 · ϵ · p.

Hence, to avoid upfront rejection (per the initial counting performed by the verifier), the prover
must provide wrong answers on more than 0.4 · ϵ · p of the indices. But, in that case, the verifier
rejects w.h.p. Hence, we get

Theorem 5.3 (IPP for frequency bounded functions): For every τ ∈ (0, 1], there exist an IPP
for τ -bounded functions in which the prover makes p = Õ(1/τ−1) queries and the verifier makes
O(1/ϵ) queries. When the functions are over the domain [m], the communication complexity is
O(p · logm).

The reason that this result is relevant to the study of ds-IPPs is that when constructing a ds-IPP
system we may set τ such that Õ(1/τ−1) does not exceed the query complexity of the intended
prover. Indeed, this was done implicitly in Section 4, where we implicitly used Theorem 5.3 with
τ that inversely proportional to the query complexity of the intended prover and a proximity
parameter set to 1/q (see Step 3a in Construction 4.1), Executing this τ -bounded IPP yields
complexities that are affordable per Theorem 4.2.
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6 IPPs for all locally-invariant properties: Proof of Theorem 1.8

As outlined in Section 1.4, our basic strategy is to have the verifier learn the frequency function of
the input function f : [m] → [n] (i.e., the function ρ : [n] → [0, 1] s.t. ρ(v) = #v(f)/m for each v)
by delegating the corresponding O(n/ϵ2) queries to the prover. Indeed, we use the fact that any
distribution D over [n] can be learned using O(n/ϵ2) samples of D (see [13, Exer. 11.4]).

Construction 6.1 (IPP for the locally-invariant property Π =
⋃

m,n∈NΠm,n): On input m,n and
ϵ, and oracle access to f : [m]→ [n], the proof system proceeds as follows.

1. For p = O(n/ϵ2), the verifier selects i1, ..., ip ∈ [m] uniformly at random, and sends (i1, ..., ip)
to the prover.

2. For every j ∈ [p], the prover obtains vj ← f(ij), by querying f , and sends (v1, ..., vp) to the
verifier.

3. The verifier computes ρ : [n] → [0, 1] such that ρ(v) = |{j ∈ [p] :vj = v}|/p for every v ∈ [n].
If ρ is ϵ/2-far from the frequency function of each function in Πm,n, then the verifier rejects;
that is, the verifier rejects if for every g ∈ Πm,n it holds that

∑
v |ρ(v)−#v(g)| > ϵ. Otherwise

(i.e., in case the verifier did not reject), the verifier proceeds to the next step.

4. For q = O(1/ϵ), the verifier selects uniformly at random a q-subset J ⊂ [p], queries f on each
element of {ij : j ∈ J}, and accepts if and only if vj = f(ij) for every j ∈ J .

We first observe that, with high probability, the function ρ computed in Step 3 satisfies
∑

v |ρ(v)−
#v(f)| < ϵ/2. Hence, the verifier accepts each f ∈ Πm,n with high probability. Turning to the case
that f : [m] → [n] is ϵ-far from Πm,n, with high probability (over the coice of i1, ..., ip ∈ [m]), it
holds that ∑

v

∣∣∣∣#v(f(i1), ..., f(ip))

p
−#v(f)

∣∣∣∣ < ϵ/2,

where #v(v1, ..., vp) = |{j∈ [p] :vj = v}| for every v ∈ [n]. Hence, to avoid rejection in Step 3, the
prover must provide wrong values on at least ϵ · p/2 of the p indices. But such cheating will be
detected, with high probability, by the verifier (in Step 4).

Appendices

In Appendix A.1 we recall the standard definitions of property testing and distribution testing.
Appendices A.2 and A.3 provide proofs of concentration bounds that are used in the main text. In
contrast, Appendix A.4 merely justifies the value of an IPP for frequency-bounded functions.

A.1 Property testing and distribution testing

Property testing (or testing properties of functions) studies probabilistic algorithms of sub-linear
complexity for deciding whether a given function has a predetermined property or is far from any
function having this property. These functions may represent bit-strings (or sequences over larger
alphabet), graphs, collections of points (in metric spaces), etc. (The representation of such objects
by functions may be redundant.) The aforementioned algorithms, called testers, obtain local views
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of the function by performing queries, and the primary complexity measure is the query complexity.
The query complexity is typically stated in terms of the size of the function (denoted m below)
and a proximity parameter (denoted ϵ), which refers to a distance measure that (combined with
the proximity parameter) determines which functions are considered far from the property. The
vanilla definition, which corresponds to the (relative) Hamming distance, is reproduced next.

Definition A.1 (a tester for property Π):14 Let Π =
⋃

m,n∈NΠm,n such that Πm,n contains func-
tions of the form f : [m]→ [n]. A tester for Π is a probabilistic oracle machine, denoted T , that, on
input parameters m,n and ϵ and oracle access to a function f : [m]→ [n], outputs a binary verdict
that satisfies the following two conditions.

1. T accepts inputs in Π: For every m,n ∈ N and ϵ > 0, and for every f ∈ Πm,n, it holds that

Pr[T f (m,n, ϵ)=1] ≥ 2/3.

If Pr[T f (m,n, ϵ)=1] = 1 always holds, then we say that T has one-sided error; otherwise, we
say that T has two-sided error.

2. T rejects inputs that are ϵ-far from Π: For every m,n ∈ N and ϵ > 0, and for every f : [m]→
[n] such that δΠ(f) > ϵ, it holds that

Pr[T f (m,n, ϵ)=0] ≥ 2/3,

where δ(f, g)
def
= |{i∈ [n] :f(i) ̸=g(i)}|/n and δΠ(f)

def
= ming∈Πn {δ(f, g)}.

The query complexity of T is a function (of m,n and ϵ) that specifies the number of queries made
by T on input parameters m,n and ϵ, when given oracle access to any function f : [m]→ [n].

We stress that, while the foregoing definition underlies most studies of property testing, cases in
which the distance measure is not uniform over the domain are not rare.15

Distribution testing (or testing properties of distributions) studies probabilistic algorithms of
sub-linear complexity for deciding whether a given distribution has a predetermined property or
is far from any distribution having this property. The corresponding testers obtain samples of the
tested distribution, which we view as local views of the distribution, and the primary complexity
measure is the sample complexity, which is stated in terms of the domain of the distribution and a
proximity parameter (denoted ϵ), which determines which distributions are considered far from the
property. In this case, the distance measure is the total variation distance between distributions;

that is, for distributions X and Y , we let δ(X,Y )
def
= 1

2 ·
∑

z |Pr[X = z] − Pr[Y = z]|, which equals
maxS{Pr[X∈S]− Pr[Y ∈S]}. We say that X is ϵ-far from Y if δ(X,Y ) > ϵ.

Definition A.2 (testing properties of distributions): Let D = {Dn}n∈N be a property of distribu-
tions such that Dn is a set of distributions over [n], and s : N× (0, 1]→ N. A tester, denoted T , of
sample complexity s for the property D is a probabilistic machine that, on input parameters n and
ϵ, and a sequence of s(n, ϵ) samples drawn from an unknown distribution X over [n], satisfies the
following two conditions.

14Since our focus is on properties of the form Π =
⋃

m,n∈N Πm,n (as in Definition 1.1), we provide all machines
with two size parameters (i.e., m and n). In addition, the complexity is stated in terms of m,n and ϵ.

15Examples include weighted Hamming distance, edit distance, and L1-distance (see, e.g., [13, Sec. 12.4]).
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1. The tester accepts distributions that belong to D: If X is in Dn, then

Prx1,...,xs∼X [T (n, ϵ;x1, ..., xs)=1] ≥ 2/3,

where s = s(n, ϵ) and x1, ..., xs are drawn independently from the distribution X.

2. The tester rejects distributions that are far from D: If X is ϵ-far from any distribution in Dn

(i.e., X is ϵ-far from D), then

Prx1,...,xs∼X [T (n, ϵ;x1, ..., xs)=0] ≥ 2/3,

where s = s(n, ϵ) and x1, ..., xs are as in the previous item.

An alternative formulation provides the tester with oracle access to a sampling device rather than
to s(n, ϵ) samples. This alternative is streamlined with Definition A.1.

A.2 Probabilistic analysis of pairwise collisions

A technical issue that arises in the proofs of Theorems 2.1, 3.3 and 4.2 is that these proofs rely
on concentration bounds regarding a set of events, where each event refers to a pair of samples;
specifically, the events are collisions of the image of the two samples under a tested function.
The concentration bound follows by the fact that the relevant events are sufficiently independent.
Specifically, as stated in Footnote 7, most pairs of events refer to four independent samples, whereas
the few pairs of events that refer to three independent samples correspond to three-way collisions
and occur with very small probability.

For sake of good order, we provide a detailed analysis of this situation. Actually, to make
the analysis more useful for other applications, we abstract the situation by viewing the relevant
events as edges of a graph. We claim that when the maximal degree of vertices in the graph is
not much larger than the average degree, the edge density in a sufficiently large induced subgraph
approximates the edge density of the graph. In our applications, the vertex-set represents the
domain of the function f : [m] → [n] and the edges of the graph correspond to collisions under f .
Hence, in our application, the graph consists of a collection of isolated cliques (and the number of
samples is p). (In the proof of Theorem 2.1 the maximum degree of the graph is 1 (whereas the
average degree is at least ϵ ≫ 1/p); in the proof of Theorems 3.3 and 4.2 the maximum degree is
O(mp · log n) (whereas the average degree is at least m/n and m/k, resp.).)

Claim:16 Let G = (V,E) be a graph of maximun degree d, and let ρ = 2|E|/|V |2. Then, for suffi-

ciently large s = O(max(ρ
−1/2

η , d|V |
η2|E|)), selecting a multi-set U = {u1, ..., us} of s vertices uniformly

at random, with very high probability, the subgraph of G induced by U has (1 ± η) · ρ ·
(
m
2

)
edges;

that is,

Pru1,...,us∈V

[∣∣∣∣{{i, j}∈([s]2
)

: {ui, uj}∈E
}∣∣∣∣ ̸= (1± η) · ρ ·

(
s

2

)]
≤ O(1)

η2 · ρ · s2
+

O(d)

η2 · (|E|/|V |) · s

Note that the first term represents the upper bound that would have applied if the vertex-pairs
were pairwise independent. The second term is an error term and its size depends on the ratio
between the maximal and average degree of vertices in G (i.e., the ratio of d over 2|E|/|V |).

16An analogous claim can be proved for the case of sampling without repetitions (i.e., a random set U ∈
(
V
s

)
rather

than a random multi-set U ∈ V s.
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Proof: For i, j ∈ [s], let ζi,j be a random variable such that ζi,j = 1 if {ui, uj} ∈ E and ζi,j = 0

otherwise. Then, Exp[ζi,j ] = ρ. Letting P =
(
[s]
2

)
, and applying Chebyshev’s inequality, we get

Pr

∣∣∣∣∣∣
∑

{i,j}∈P

ζi,j − ρ · |P |

∣∣∣∣∣∣ ≥ η · ρ · |P |

 ≤ Var
[∑

{i,j}∈P ζi,j

]
(η · ρ · |P |)2

≤
∑

{i,j}∈P

Var[ζi,j ]

η2 · (ρ · |P |)2
+

∑
{i1,j1}≠{i2,j2}∈P

Var[ζi1,j1ζi2,j2 ]

η2 · (ρ · |P |)2
(3)

Using Var[ζi,j ] ≤ Exp[ζ2i,j ] = Exp[ζi,j ] = ρ, the first sum is upper-bounded by 1/(η2 · ρ · |P |). Let-

ting ζi,j = ζi,j − Exp[ζi,j ] and using Var[ζi1,j1ζi2,j2 ] = Exp[ζi1,j1ζi2,j2 ], observe that Var[ζi1,j1ζi2,j2 ]
equals 0 if |{i1, j1, i2, j2}| = 4 and is upper-bounded by Exp[ζi1,j1ζi2,j2 ] otherwise (i.e., when
|{i1, j1, i2, j2}| = 3). In the latter case, we use Exp[ζi1,j1ζi2,j2 ] = Exp[ζi1,j1 ] · Pr[ζi2,j2 =1|ζi1,j1 =1].
Hence, Eq. (3) is upper-bounded by

1

η2 · ρ · |P |
+

O(|P | · s)
η2 · (ρ · |P |)2

· ρ · Pr[ζ2,3=1|ζ1,2=1]. (4)

Using the fact that the maximal degree in G is d, it follows that Pr[ζ2,3=1|ζ1,2=1] ≤ d/|V |, since
fixing u1, u2 such that {u1, u2} ∈ E, the probability that a random u3 ∈ V is a neighbor of u2 is at
most d/|V |. Hence, Eq. (4) is upper-bounded by

1

η2 · ρ · |P |
+

O(s)

η2 · ρ · |P |
· d

|V |
=

1

η2 · ρ · |P |
+

O(1)

η2 · s
· d

|E|/|V |

since ρ = 2|E|/|V |2 (and |P | = Ω(s2)). The claim follows.

Our applications. The foregoing claim is used in Sections 2, 3.1 and 4. In all cases, the vertex-set
V is [m] and the edge-set E corresponds to collisions under the tested function that ranges over [n].
Hence, the average degree 2|E|/|V | is Ω(m/n), whereas the maximum degree d is O((m/p) log n).
Recalling that s = p, for Sections 2 and 3.1, the second (i.e., error) term in the probability bound
of the claim is

O(d)

η2 · (|E|/|V |) · p
=

O((m/p) · log n)
η2 · (m/n) · p

=
O(n · log n)

η2 · p2

which yields a total probability bound of

O(1)

η2 · ρ · p2
+

O(n · log n)
η2 · p2

which is o(1) provided that p = ω(max((n log n)1/2, ρ−1/2)/η). In Section 4, n is replaced by k.
Recall that in Section 2 we use ρ = ϵ and η = 1/2, whereas in Section 3.1 (resp., Section 4) we use
ρ = 1/n and η = ϵ2 (resp., ρ = 1/k and η = δ). Hence, using p = Õ(n1/2/ϵ−2) in Sections 2 and 3.1
(resp., p = Õ(k1/2/ϵ−2) in Section 4) suffices.
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A.3 Probabilistic analysis of 3-way collisions

Analogously to Appendix A.2, we prove the following claim that offer a way to analyze a sequence
of

(
s
3

)
events in which each event refers to three samples (in a sequence of s samples). The point is

that most pairs of events refer to six independent samples, whereas the few pairs of events that refer
to five or less independent samples correspond to events that occur with very small probability.17

Claim: Let G = (V,E) be a 3-uniform hypergraph and ρ = 6|E|/|V |3. Suppose that each vertex
participates in at most d1 hyper-edges, and that each pair of vertices participates in at most d2 hyper-

edges.18 Then, for sufficiently large s = O(max(ρ
−1/3

η2/3
, d1
η2·|E|/|V | ,

√
d2

η2·|E|/|V |2 )), selecting a multi-set

U = {u1, ..., us} of s vertices uniformly at random, with very high probability, the subgraph of G
induced by U has (1± η) · ρ ·

(
s
3

)
edges; that is,

Pru1,...,us∈V

[∣∣∣∣{{i, j, k}∈([s]3
)

: {ui, uj , uk}∈E
}∣∣∣∣ ̸= (1± η) · ρ ·

(
s

3

)]
≤ O(1)

η2 · ρ · s3
+

O(d1)

η2 · (|E|/|V |) · s
+

O(d2)

η2 · (|E|/|V |2) · s2

The claim can be extended to t-uniform hypergraphs for any constant t ≥ 2.

Proof: For i, j, k ∈ [s], let ζi,j,k be a random variable such that ζi,j,k = 1 if {ui, uj , uk} ∈ E and

ζi,j,k = 0 otherwise. Then, Exp[ζi,j,k] = ρ. Letting T =
(
[s]
3

)
, and applying Chebyshev’s inequality,

we get

Pr

∣∣∣∣∣∣
∑

{i,j,k}∈T

ζi,j,k − ρ · |T |

∣∣∣∣∣∣ ≥ η · ρ · |T |

 ≤ Var
[∑

{i,j,k}∈T ζi,j,k

]
(η · ρ · |T |)2

≤
∑

{i,j,k}∈T

Var[ζi,j,k]

η2 · (ρ · |T |)2
+

∑
{i1,j1,k1}̸={i2,j2,k2}∈T

Var[ζi1,j1,k1ζi2,j2,k2 ]

η2 · (ρ · |T |)2
(5)

Using Var[ζi,j,k] ≤ ρ, the first sum is upper-bounded by 1/(η2 · ρ · |T |). Letting ζi,j,k = ζi,j,k −
Exp[ζi,j,k] and using Var[ζi1,j1,k1ζi2,j2,k2 ] = Exp[ζi1,j1,k1ζi2,j2,k2 ], observe that Var[ζi1,j1,k1ζi2,j2,k2 ]
equals 0 if |{i1, j1, k1, i2, j2, k2}| = 6 and is upper-bounded by Exp[ζi1,j1,k1 ]·Pr[ζi2,j2,k2 =1|ζi1,j1,k1 =1]
otherwise (i.e., when |{i1, j1, k1, i2, j2, k2}| ∈ {4, 5}). Hence, Eq. (5) is upper-bounded by

1

η2 · ρ · |T |
+

O(|T | · s)
η2 · (ρ · |T |)2

· ρ · Pr[ζ2,3,4=1|ζ1,2,3=1] +
O(|T | · s2)
η2 · (ρ · |T |)2

· ρ · Pr[ζ3,4,5=1|ζ1,2,3=1]. (6)

Using the hypothesis regarding the maximal “degrees” of vertices and pairs of vertices (i.e., the
bounds d1 and d2), it follows that Pr[ζ2,3,4 = 1|ζ1,2,3 = 1] ≤ d2/|V | and Pr[ζ3,4,5 = 1|ζ1,2,3 = 1] ≤
2d1/|V |2. Hence, Eq. (6) is upper-bounded by

1

η2 · ρ · |T |
+

O(s)

η2 · ρ · |T |
· d2
|V |

+
O(s2)

η2 · ρ · |T |
· 2d1
|V |2

=
O(1)

η2 · ρ · s3
+

O(1)

η2 · s2
· d2
|E|/|V |2

+
O(1)

η2 · s
· d1
|E|/|V |

17Again, we refer to sampling with repetitions (i.e., a random multi-set U ∈ V s), but an analogous claim holds for
sampling without repetitions (i.e., a random set U ∈

(
V
s

)
).

18Needless to say, d1 ≥ 2|E|/|V | and d2 ≥ 2|E|/
(|V |

2

)
.
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since ρ = 3|E|/|V |3 and |T | = Ω(s3). The claim follows.

Our application. The foregoing claim is used in Section 4. In that case, the vertex-set V is [m]
and the edge-set E corresponds to 3-way collisions under the tested function that is supposed to
be uniform on a k-subset of [n]. Hence, |E| = Ω(m3/k2), whereas d1 = O((m2/p2) · log n) and
d2 = O((m/p2) · log n). Recalling that s = p, the second term in the probability bound of the claim
is

O(d1)

η2 · (|E|/|V |) · p
=

O((m2/p2) · log n)
η2 · (m2/k2) · p

=
O(k2 · log n)

η2 · p3

and the third term is

O(d2)

η2 · (|E|/|V |2) · p2
=

O((m/p2) · log n)
η2 · (m/k2) · p

=
O(k2 · log n)

η2 · p3

which yields a total probability bound of

O(1)

η2 · ρ · p3
+

O(k2 · log n)
η2 · p3

which is o(1) provided that p = ω(max((k log n)2/3, ρ−1/3)/η). Recalling that ρ = 1/k2 and η =
δ = poly(ϵ), we may use p = poly(1/ϵ) · k2/3.

A.4 On testing frequency bounded functions

For every β ∈ (0.5, 1), Goldreich and Ron presented an kβ lower bound on the sample complexity
of testing “k-grained” distributions [21]. We first observe that their proof technique allows to prove
a similar lower bound on testing τ -bounded distributions, which are distributions in which every
element occurs with probability at most τ (where τ = 1/k). The latter claim holds because [21]
shows that, for every constant t ∈ N, the following two distributions are indistinguishable by
label-invariant algorithms that take k1−(1/2t) samples:

1. A distribution P over [n] such that P (v) ∈
{

2j
2k : j ∈ [t+ 1]

}
∪ {0} for every v ∈ [n].

2. A distribution Q over [n] such that Q(v) ∈
{

2j−1
2k : j ∈ [t+ 1]

}
∪ {0} for every v ∈ [n].

Furthermore, for every j ∈ [t + 1], it holds that
∑

v:P (v)=2j/2k P (j) (resp.,
∑

v:Q(v)=(2j−1)/2k P (j))
is either Ω(1) or 0, where the constant (in the Ω-notation) is independent of k (but does depend
on t).

Picking the maximal i ∈ {2, ..., 2t + 2} such that {v ∈ [n] : P (v) + Q(v) = i/k} ≠ ∅ (equiv.,
either {v ∈ [n] : P (v) = i/k} ̸= ∅ or {v ∈ [n] : Q(v) = i/k} ̸= ∅), it follows that one of the two
distributions is i−1

k -bounded whereas the other distribution is Ω(1)-far from being i−1
k -bounded.

Letting P (resp., Q) denote the set of all distributions obtained from P (resp., Q) by permuting the
labels, it follows that a ny algorithm that takes k(2t−1)/2t samples fails to distinguish between P and
Q (cf. [13, Thm. 11.12]). Hence, the sample complexity of testing O(1/k)-bounded distributions is
at least k(2t−1)/2t.

Lastly, using the results of [20, Sec. 6], it follows that the same lower bound applies to the query
complexity of testing O(1/k)-bounded functions.
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