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Abstract

Itsykson and Sokolov [IS14] identified resolution over parities, denoted by Res(⊕), as a
natural and simple fragment of AC0[2]-Frege for which no super-polynomial lower bounds
on size of proofs are known. Building on a recent line of work, Efremenko and Itsykson
[EI25] proved lower bounds of the form exp(NΩ(1)), on the size of Res(⊕) proofs whose
depth is upper bounded by O(N logN), where N is the number of variables of the un-
satisfiable CNF formula. The hard formula they used was Tseitin on an appropriately
expanding graph, lifted by a 2-stifling gadget. They posed the natural problem of prov-
ing super-polynomial lower bounds on the size of proofs that are Ω(N1+ϵ) deep, for any
constant ϵ > 0.

We provide a significant improvement by proving a lower bound on size of the form
exp(Ω̃(N ϵ)), as long as the depth of the Res(⊕) proofs are O(N2−ϵ), for every ϵ > 0. Our
hard formula is again Tseitin on an expander graph, albeit lifted with a different type of
gadget. Our gadget needs to have small correlation with all parities.

An important ingredient in our work is to show that arbitrary distributions lifted with
such gadgets fool safe affine spaces, an idea which originates in the earlier work of Bhat-
tacharya, Chattopadhyay and Dvorak [BCD24].

1 Introduction

One of the simplest proof systems in propositional proof complexity is Resolution. Haken
[Hak85] obtained the first super-polynomial lower bounds on the size of proofs in this system
for a CNF encoding of the pigeon-hole-principle forty years ago. Since then it has been very
well studied with many beautiful results (see for example [Urq87], [BW01], [ABRW04]). Yet,
seemingly slight strengthenings of resolution seem to frustrate current techniques in obtaining
non-trivial lower bounds. We will consider one such strengthening, that was introduced by
Itsykson and Sokolov [IS14], about ten years ago. This system is called resolution over parities,
abbreviated by Res(⊕) and denoted by Res(⊕). It augments resolution by allowing the prover
to make F2-linear inferences, while working with F2-linear clauses. Proving superpolynomial
lower bounds for Res(⊕) remains a challenge. It is easy to see that Res(⊕) is a subsystem of
AC0[2]-Frege. While we know strong lower bounds for AC0-Frege (see for example [BIK+92]),
obtaining super-polynomial lower bounds for AC0[2]-Frege for any unsatisfiable formula in CNF
would be a major breakthrough (see for example [MP97]). Thus, Res(⊕) is in some sense the
weakest natural subfragment of AC0[2]-Frege for which we don’t currently have lower bounds.
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Proving lower bounds for Res(⊕) would be a stepping stone towards proving lower bounds for
AC0[2]-Frege.

Itsykson and Sokolov proved exponential lower bounds on the size of tree-like Res(⊕) proofs
using customized arguments for some formulas. General techniques for tree-like Res(⊕) proofs
were developed in the independent works of Beame and Koroth [BK23] and Chattopadhyay,
Mande, Sanyal and Sherif [CMSS23] that lifted lower bounds on the height of ordinary tree-like
resolution proofs of a formula to that of the size of tree-like Res(⊕) proofs of the same formula
lifted with an appropriate gadget. A more recent line of work ([EGI24], [BCD24], [AI25], [EI25])
has focused on proving lower bounds against subsystems of Res(⊕) that are stronger than tree-
like but weaker than general Res(⊕). Gryaznov, Pudlak and Talebanfard [GPT22] had proposed
several notions of regular proofs for the Res(⊕) system as appropriate first target for proving
lower bounds. Efremenko, Garlik and Itsykson [EGI24] established lower bounds against such
a subsystem of Res(⊕) known as bottom-regular Res(⊕). Bhattacharya, Chattopadhyay and
Dvorak [BCD24] exhibited a CNF which is easy for resolution but hard for bottom-regular
Res(⊕) - thereby strictly separating unrestricted Res(⊕) from bottom-regular Res(⊕). Subse-
quently, Alekseev and Itsykson [AI25] significantly extended the reach of techniques by showing
exp(NΩ(1)) lower bounds against Res(⊕) refutations whose depth is restricted to be at most
O(N log logN), where N is the number of variables of the unsatisfiable CNF. This depth re-
striction was further improved to O(N logN) by Efremenko and Itsykson [EI25].

A natural way towards proving lower bounds for unrestricted Res(⊕) would be improving
the depth restriction all the way to Nω(1). However, the techniques of Efremenko and Itsykson
[EI25] seem to get stuck at O(N logN). Efremenko and Itsykson [EI25] posed the natural open
problem of proving superpolynomial lower bounds against Res(⊕) refutations whose depth is
restricted to O(N1+ϵ) where ϵ > 0 is some constant .

Our main result, stated below, achieves such a bound.

Theorem 1.1. Let Φ be the Tseitin contradiction on a (|V |, d, λ) expander with 0 < λ < 1
a small enough constant and |V | odd. Let n = |V |d/2 be the number of edges (which is also
the number of variables in Φ). Let IP be the inner product gadget on b = 500 log(n) bits. Let
Ψ = Φ ⊙ IP be the lift of Φ by IP. Let N = nb be the number of variables in Ψ. Then, any
Res(⊕) refutation of Ψ of depth ≤ O(N2−ϵ) requires size exp(Ω̃(N ϵ))

This pushes the frontier of depth of proofs against which super-polynomial lower bounds
on size for Res(⊕) can be obtained, from O(N log(N)) to Õ(N2). Another way of interpreting
our result is to say that any Res(⊕) proof of the hard formula Ψ of size exp(No(1)) has to be
almost N2 deep, which is significantly super-critical.

Our work combines the approaches of Alekseev and Itsykson [AI25], Efremenko and Itsykson
[EI25] and Bhattacharya, Chattopadhyay and Dvorak [BCD24] - along with a new equidistri-
bution lemma for safe affine spaces.

1.1 Some Other Related Work

Our work makes use of the notion of amortized closure that was introduced by Efremenko and
Itsykson [EI25]. Apart from improving the depth lower bounds of small size Res(⊕) proofs,
[EI25] used this notion to give an alternative proof of a lifting theorem of Chattopadhyay and
Dvorák [CD25] and their proof works for a broader class of gadgets. The lifting theorem is used
in [CD25] to prove super-criticial tradeoffs between depth and size of tree-like Res(⊕) proofs.

Our work also crucially uses lifted distributions to boost the success probability of random
walks with restarts. In particular, it uses an analytic property of the gadget to argue equid-
itribution of pre-images in a safe affine space in the lifted world of a point z ∈ {0, 1}n in the
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unlifted world. Such equidistribution, albeit wrt rectangles, have been earlier implicitly proved
(see for example [GLM+16, CFK+21]) as well as explicitly proved in [CDK+17]. The analytic
property of the gadget used in these works was essentially small discrepancy wrt rectangles (or
being a 2-source extractor), something that seems to be significantly stronger than what we
need of the gadget in this work.

2 Organization

We have introduced preliminaries (basic notation, facts about closure, amortized closure etc
in) Section 3. After that we have included a high level overview of our proof in Section 4. We
describe the CNF in our final result in Section 6. We prove our final result (Theorem 1.1) in Sec-
tion 9, which uses machinery developed in Sections 5, 7, 8. In the remaining part of this Section
we describe what each of Sections 5, 7, 8 do. To gain a better understanding of the picture, the
reader is advised to read the high level overview in Section 4 before continuing with this section.

In Section 5 we establish the conditional fooling lemma (Lemma 5.1) - which gives us the
freedom to work with any lifted distribution. Along the way we shall prove an equidistribution
lemma (Lemma 5.6) - this lemma will be used later in another part of the proof.

In Section 6 we describe our CNF. We also mention the properties of expanders that we
shall use in our proof.

In Section 7 we formalize the idea of [AI25] used to establish lower-bounds for depth-
restricted Res(⊕) refutations combined with our equidistribution lemma. To instantiate this
approach, one has to specify a set of partial assignments P ⊆ {0, 1, ∗}n with certain properties.
We mention those properties in Section 7, and show how this implies a lower-bound for depth-
restricted Res(⊕).

In Section 8 we find a set of partial assignments with the aforementioned properties when
the base CNF is the Tseitin contradiction over an expander graph. As mentioned in Section 4,
given any partial assignment ρ ∈ P ⊆ {0, 1, ∗}n, we have to construct a distribution µ = µρ on
the unfixed coordinates satisfying certain properties. The last of these properties talks about
the inability of low-depth parity decision trees to perform a certain task (on average) when the
input is sampled from G−1(µ). For ease of presentation, in Section 8 we first prove an unlifted
analogue of that property: here, we establish the inability of low-depth ordinary decision trees
to perform the analogous task in the unlifted world, when the input is chosen from µ. Then, we
shall sketch how to modify the proof (in a white-box manner) to prove the original requirement
of hardness against parity decision trees. The main technical tool required while modifying the
proof to the lifted world is the equidistribution lemma (Lemma 5.6) established in Section 5. For
completeness, we have included a self-contained proof of hardness against PDTs in Appendix B.

In Section 9, we put everything together to prove our final result (Theorem 1.1): existence of
a CNF on N variables such that any Res(⊕) refutation of depth N2−ϵ requires size exp(Ω̃(N ϵ)).

3 Preliminaries

3.1 General Notation

• For a probability distribution µ, when we sample a point x according to µ, we denote it
by x← µ.

• When x is sampled according to uniform distribution over a set T , we denote it by x ∼ T .
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3.2 Resolution over parities

Definition 3.1. A linear clause ℓC is an expression of the form

ℓC(x) = [⟨ℓ1, x⟩ = b1] ∨ [⟨ℓ2, x⟩ = b2] · · · ∨ [⟨lk, x⟩ = bk]

Here x, ℓ1, · · · , ℓk ∈ Fn
2 . Note that the negation of ℓC , ¬ℓC is an affine space:

¬ℓC = {x ∈ Fn
2 |⟨ℓ1, x⟩ = 1− b1, · · · , ⟨ℓk, x⟩ = 1− bk}

Also notice that every ordinary clause is also a linear clause.

Res(⊕) (defined in [IS14]) is a proof system where every proof line is a linear clause. The
derivation rules are as follows:

1. Weakening: From ℓC , derive ℓ′C(x) = ℓC(x) ∨ [⟨ℓ, x⟩ = b]

2. Resolution: From ℓ
(1)
C (x) = ℓC(x) ∨ [⟨ℓ, x⟩ = b] and ℓ

(2)
C (x) = ℓc(x) ∨ [⟨ℓ, x⟩ = 1 − b],

derive ℓC(x)

A Res(⊕) refutation of a CNF Φ starts with the axioms being the clauses of Φ (which, as
noted above, are also linear clauses) and applies a sequence of derivation rules to obtain the
empty linear clause ∅.

Affine DAGs

For an unsatisfiable CNF Φ define the search problem

Search(Φ) = {(x,C)|C is a clause of Φ, C(x) = 0}.

Just as a resolution refutation of Φ can be viewed as a cube-DAG for solving Search(Φ), a
Res(⊕) refutation can be viewed as an affine-DAG for solving Search(Φ).

Definition 3.2. An affine DAG for Search(Φ) is a DAG where there is a distinguished root r,
each node v has an associated affine space Av, and each node has outdegree either 2, 1, or 0.
Each outdegree 0 node w is labelled with a clause of Φ, Cw. The following requirements are
satisfied:

1. If v has two children v1, v2 then Av = Av1
∪Av2 .

2. If v has only one child w, then Av ⊆ Aw.

3. If v has no children, then for any x ∈ Av, Cv(x) = 0 where Cv is the clause labelled on v.

4. The affine space labelled on the root is the entire space Fn
2 .

A Res(⊕) refutation for Φ can be viewed as an affine DAG for Search(Φ) by viewing the
sequence of derivations as a DAG: for each node, the associated affine space is the negation of
the linear clause derived at that node. The leaves are the axioms - the clause labelled at each
leaf is simply the corresponding axiom.

We classify nodes based on their outdegree as follows.

1. A node with no children is called a leaf.

2. A node with one child is called a weakening node. (Because in the Res(⊕) refutation this
node was derived by weakening.)

3. Let v be a node with two children v1, v2. In this case it holds that Av = Av1 ∪ Av2 ;
Av1 = Av ∧ [⟨ℓ, x⟩ = b] and Av2 = Av ∧ [⟨ℓ, x⟩ = 1 − b] for some ℓ ∈ Fn

2 . Such a node is
called a query node; we say the affine DAG queries ℓ at node v. (In the Res(⊕) refutation,
node v was obtained by resolving the linear form ⟨ℓ, x⟩.)
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Path of an input

Here we consider any affine DAG that arises from some Res(⊕) refutation. For any node v and
any x ∈ Av, we define the path of x starting from v as follows:

• Start with the currrent node v.

• If the current node is w and w has no children, terminate the path.

• If the current node is w and has two children w1, w2, we know that Aw = Aw1 ∪Aw2 . In
this case it will hold that Aw1

= Aw ∩ {x̃|⟨ℓ, x̃⟩ = b} and Aw2
= Aw ∩ {x̃|⟨ℓ, x̃⟩ = 1 − b}

for some ℓ ∈ F2. If ⟨ℓ, x⟩ = b, the next node in the path is w1. Otherwise, the next node
in the path is w2

• If the current node w has only one child w1, the next node in the path is w1.

The way the path is defined ensures that if the path of x visits the node w, x ∈ Aw. Con-
sequently, for any x and v such that x ∈ Av, the path of x starting from v visits a leaf whose
clause is falsified by x.

In particular, for any x, if we follow the path traversed by x from the root, we end up at a
clause falsified by x.

Definition 3.3. We define the length of a path to be the number of query nodes encountered
on the path. (The weakening nodes do not contribute to the length.)

Definition 3.4. The depth of a node v is the largest length of a path from the root to v. The
depth of the refutation is the depth of the deepest node.

3.3 Lifting CNFs

Definition 3.5. For a base CNF Φ on variables {z1, z2, · · · , zn} and a gadget g : Fn
2 → F2 we

define the lifted CNF Φ ◦ g as follows.

• The set of variables is {xi,j |i ∈ [n], j ∈ [b]}

• For each clause C in Φ, we define the set of clauses C ◦ g as follows: let the variables
involved in C be {xi|i ∈ S} and let α ∈ FS

2 be the unique assignment to those variables that
falsifies C. The set of clauses C ◦ g will involve variables from the set {xi,j |i ∈ S, j ∈ [b]}.
For every choice of (ai|i ∈ S) where ai ∈ g−1(αi) we add the following clause to C ◦ g:

∨i∈S
[
∨j∈[b][xi,j ̸= αi,j ]

]
• The lifted CNF Φ ◦ g is the conjunction of C ◦ g for every C ∈ Φ.

The semantic interpretation of Φ ◦ g is as follows:

Φ ◦ g(x) = Φ(g(x1,1, x1,2, · · · , x1,b), g(x2,1, x2,2 · · · , x2,b), · · · , g(xn,1, xn,2, · · · , xn,b))

Thus if Φ is unsatisfiable, so is Φ ◦ g.
If the largest width of a clause in Φ is w and Φ has m clauses, the number of clauses in

Φ ◦ g will be at most mbw. In particular, if m ≤ poly(n), b = O(log(n)) and w = O(1) then the
number of clauses of Φ ◦ g is bounded by poly(n).
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3.4 Notations about lifted spaces

In this paper, we shall be working with a gadget g : Fb
2 → F2. The base space will be Fn

2 . The
lifted space will be FN

2 where N = nb. The coordinates of the lifted space are {(i, j)|i ∈ [n], j ∈
[b]}.

Definition 3.6. The set of coordinates {xi,j |j ∈ [b]} is called to be the block of i.

Definition 3.7. For any set S ⊆ [n], the set VARS(S) is defined as the following set of
coordinates in the lifted space: VARS(S) = {xi,j |i ∈ S, j ∈ [b]}.

Definition 3.8. For any point x ∈ Fnb
2 and i ∈ [n], define x(i) = (xi,1, xi,2, · · · , xi,b).

The gadget g naturally induces a function gn : Fnb
2 → Fn

2 by independent applications of g
on the n different blocks. We shall abbreviate gn by G.

Definition 3.9. For any assignment β ∈ FVARS(S)
2 to the variables in blocks of S, we define

the partial assignment G(β) ∈ {0, 1, ∗} as follows:

G(β)i =

{
∗ if i ̸∈ S

g(β(i)) otherwise

Definition 3.10. For any partial assignment α ∈ {0, 1, ∗}n define G−1(α) as follows:

• Let S = supp(α). Then, G−1(α) ⊆ FVARS(S)
2 :

G−1(α) = {y|y ∈ FVARS(S)
2 , g(y(i)) = αi ∀i ∈ S}

Definition 3.11. For any distribution µ on Fn
2 define the lifted distribution G−1(µ) on Fnb

2 as
the outcome of the following sampling procedure:

1. Sample z ← µ.

2. Sample x uniformly at random from G−1(z).

Any distribution of the form G−1(µ) is called a lifted distribution.

Definition 3.12. For an affine space A ⊆ Fnb
2 and a partial assignment y ∈ {0, 1, ∗}nb, call y

extendable for A if there exists x ∈ A consistent with y

Definition 3.13. For an affine space A ⊆ Fnb
2 and an extendable partial assignment y ∈ FS

2

(where S ⊆ [nb]) define Ay ⊆ F[nb]\S
2 as follows:

Ay = {x̃|(x̃, y) ∈ A}

3.5 Linear algebraic facts about lifted spaces

In this subsection we import facts about closure and amortized closure proved by [EGI24],
[AI25] and [EI25].

• Safe set of vectors

Definition 3.14. (from [EGI24]) A set of vectors V = {v1, v2, · · · , vm} ⊆ Fnb
2 is safe if

for any k linearly independent vectors w1, w2, · · · , wk ∈ span(S), supp(w1) ∪ supp(w2) ∪
· · · ∪ supp(wk) includes at least k distinct blocks.
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• Equivalent definition of safe: Let

M =


v1
v2
· · ·
vm

 ∈ Fm×nb
2

Let r = rank(M). V is nice iff there exist indices c1, c2, · · · , cr ∈ [nb], each lying in
different blocks, such that the set {Mec1 , · · · ,Mecr} ⊆ Fm

2 is linearly independent. (Mej
is the j-th column of M) The proof of equivalence of these two definitions can be found
in Theorem 3.1 in [EGI24].

Fact 3.15. Whether or not a set of vectors is safe depends only on their span. This is
clear from the second equivalent definition.

• Safe affine spaces:

Definition 3.16. Let A ⊆ Fnb
2 be an affine space. Let A = {x|Mx = b}. Then, A is

called a safe affine space if and only if the rows of M are safe. 1 By Fact 3.15, the choice
of M does not affect this definition.

• Deviolator: For a subset of the blocks S ⊆ [n] and a vector v ∈ Fnb
2 , define v[\S] ∈

F(n−|S|)b
2 to be the projection of v on the coordinates of [n] \ S.

Definition 3.17. A subset S ⊆ [n] is a deviolator for V = {v1, v2, · · · , vm} ⊆ Fnb
2 if

{v1[\S], v2[\S], · · · , vm[\S]} ⊆ F(n−|S|)b
2 is a nice set.

• Closure of a set of vectors:

Definition 3.18. (from [EGI24]) Closure of a set V = {v1, v2, · · · , vm} is the minimal
deviolator for V . (It is known that this deviolator is unique, and also it depends only on
span(V ) - Lemma 4.1 in [EGI24].)

• Closure of an affine space:

Definition 3.19. For an affine space A given by the set of equations A = {x|Mx = b},
define Cl(A) to be the closure of the set of rows of M . 2

• Closure Assignment

Definition 3.20. For an affine space A, a closure assignment y is any assignment to

VARS(Cl(A)): y ∈ FVARS(Cl(A))
2 .

• Amortized Closure of a set of vectors

1We emphasize that whenever we are talking about the safety of an affine space, we are talking about the
safety of its set of defining equations.

2This does not depend on a specific choice of M .

A possible source of confusion could be that we defined closure for a set of vectors in item 4, and in item 5
we are defining the closure for an affine space in a different manner. In this paper, whenever we talk about the
closure of a set of vectors V , we refer to the previous definition (item 4). Whenever we talk about the closure
of an affine space A, we refer to this definition (item 5): the closure of its set of defining equations. This should
not cause too much confusion: after the preliminaries section, we shall onlk talk about closures of affine spaces.
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Definition 3.21. (from [AI25]) Let V = {v1, v2, · · · , vk} ∈ Fnb
2 . We define Ĉl(V ) ⊆ [n]

as follows: Let

M =



v1

v2

· · ·

vt


Call a set of blocks S = {s1, s2, · · · , sk} ⊆ [n] acceptable if there exist columns c1, c2, · · · , ck,
such that cj lies in block sj and the set {Mec1 ,Mec2 , · · · ,Meck} is linearly independent.

The amortized closure of V , Ĉl(V ), is the lexicographically largest acceptable set of blocks.

It is known that Ĉl(V ) depends only on span(V ) (Lemma 2.11 in [EI25])

• Amortized Closure of An Affine Space

Definition 3.22. Let A ⊆ Fnb
2 be an affine space; A = {x|Mx = b}. The amortized

closure of A, Ĉl(A), is defined to be the amortized closure of the set of rows of M . This
does not depend on a specific choice of M (Lemma 2.11 in [EI25])

Now we import some facts and lemmas about closure and amortized closure from [EGI24],
[EI25] and [AI25].

Lemma 3.23. If y is an extendable closure assignment of A, Ay is a safe affine subspace.
(Follows from definition.)

Lemma 3.24. For any affine space, Cl(A) ⊆ Ĉl(A) (Lemma 2.15 in [EI25])

Lemma 3.25. If A,B are affine spaces with B ⊆ A, then Ĉl(A) ⊆ Ĉl(B) (Corollary 2.19 in
[EI25]) and Cl(A) ⊆ Cl(B) (Lemma 4.2 in [EGI24])

Lemma 3.26. Let V ⊆ FN
2 be a set of vectors with Cl(V ) = S. Let W = V ∪ {ej,k|j ∈ S, k ∈

[b]}. Then, Ĉl(V ) = Ĉl(W ),Cl(V ) = Cl(W ).

Lemma 3.26 becomes clear once one examines the proof of Lemma 2.15 in [EI25] closely.
For completeness we include a self-contained proof in Appendix A.

Lemma 3.27. Let V ⊆ W ⊆ FN
2 be sets of vectors with |W | = |V | + 1. Then, |Ĉl(W )| ≤

|Ĉl(V )| + 1, and moreover, if |Ĉl(W )| = |Ĉl(V )| + 1 then Cl(W ) = Cl(V ) (Theorem 2.18 and
Lemma 2.17 in [EI25]).

We now state a useful corollary of the above.

Corollary 3.28. Let B ⊆ A be affine spaces such that codim(B) = codim(A)+1 and |Ĉl(B)| =
|Ĉl(A)| + 1. Let y be any extendable closure assignment for A. Then, Ay, By are both nice
affine subspaces and codim(By) = codim(Ay) + 1.

A proof of Corollary 3.28 is included in Appendix A.

4 Intuition and High-Level overview

At a high level, our proof combines the approaches of Alekseev and Itsykson [AI25], Efremenko
and Itsykson [EI25] and Bhattacharya, Chattopadhyay and Dvorak [BCD24]. It does so by
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boosting the success probability of the ‘random walk with restart’ method of [AI25] by sampling
inputs from a lifted distribution. The idea of using lifted distribution to do random walks
appeared in [BCD24]. The bottleneck counting uses the notion of amortized closure instead of
codimension of an affine space as done in [EI25]. However, combining these approaches requires
significant new ideas – along with a new equidistribution lemma for gadgets with sufficiently
small Fourier coefficients (Lemma 5.6). In this section we give a brief overview of how these
approaches fit together.

Approach of Alekseev and Itsykson [AI25] We start by describing this approach which
proved super-polynomial lower bounds for depth n log log(n) Res(⊕). Their main idea is this:
they take the CNF Ψ to be Tseitin contradiction over a (n, log(n), O(log(n))-expander lifted
with an appropriate gadget; they assume we are given a size s Res-(⊕) refutation Π of Ψ, and
they locate a path of length n log log(n) in Π. They do this inductively: at Phase j, they locate
a vertex vj at depth Ω(nj). Given this vertex vj , they show that as long as codim(Avj ) is not
too large, there is another vertex vj+1 which is at distance Ω(n) from j. They show they can
inductively find one more vertex as long as j ≤ O(log log(n)) - and this gives the depth lower
bound.

Let us describe it in a bit more detail. Alekseev and Itsykson carefully choose a set of par-
tial assignments in the unlifted world, P ⊆ {0, 1, ∗}n with the idea that any partial assignment
ρ ∈ P leaves some uncertainty about which clause of the unlifted Tesitin formula would be
falsified if one were to extend ρ at random to a full assignment.

In Phase j, Alekseev and Itsykson [AI25] have located a vertex vj at depth Ω(jn). They
want the codimension of Avj , the affine space that the proof Π associates with vj , to be small (
≤ O(j(log(s/p))(b+1)j), which is less than jn when j is small enough; p is a parameter we shall
specify soon). Small co-dimension implies a small closure, i.e. codim(Avj ) ≥ |Cl(Avj )|. We
assume that variables in the unlifted world that correspond to blocks in Cl(Avj ) are revealed,
but variables that correspond to blocks outside of the closure, i.e. in [n]− Cl(Avj ) are yet not

revealed. Hence, Alekseev and Itsykson fix a closure assignment yj ∈ F
VARS(Cl(Avj

))

2 such that
G(yj) lies in P . Alekseev and Itsykson show (using a combinatorial argument) that the following
holds when we uniformly sample a point x ∈ Avj ∩Cy and follow the path of x from vj for Θ(n)
steps: with probability ≥ p, after Θ(n) steps, the following holds: let w be the vertex reached.

Let x̃ ∈ FVARS(Cl(Aw))
2 be the restriction of x to the variables of Cl(Aw). Let ρ ∈ {0, 1, ∗}n be

the partial assignment that leaves all vars outside of Cl(Aw) free and ρ|Cl(Aw) = G(x̃). With
probability at least p, ρ is in P , i.e. this ρ reveals little about where a potential falsified clause
may be. For this combinatorial argument to work, it is essential that the current partial as-
signment, G(yj) lies in P and it does not fix too many bits: |Cl(Avj )| ≤ O(n/ log(n)).

One such w will be the next node, vj+1 - and the next closure assignment yj+1 could be

anything in FVARS(Cl(Aw))
2 such that G(yj+1) ∈ P and yj+1 is extendible in Aw. The existence

of such a yj+1 trivially follows as x|VARS(Cl(Aw)) satisfies those requirements with non-zero
probability. Note that all possible w’s are at distance Ω(n) from vj - so the only condition
Alekseev and Itsykson need to maintain is that the codimension of Aw is not too high. They
show the existence of such a w using a simple bottleneck argument: there exists a w such that
a uniformly random node from Av ∩Cy reaches Aw with probability ≥ p/s as there are at most

s many nodes at any given distance from node vj . In particular, |Aw| ≥
p

s
|Av ∩ Cy|, which

implies codim(Aw) ≤ (b+ 1)codim(Av) + log(s/p) ≤ O((j + 1)(log(s/p))(b+ 1)j+1).

Let us briefly mention why this approach fails to go beyond depth O(n log log n). Once
codim(Avj ) exceeds n/ log(n), the underlying combinatorial argument in [AI25] to get the next
node fails. Hence, the depth lower bound obtained by this argument depends on the number

9



of iterations till which codim(Avj
) is guaranteed to be less than n/ log(n). In this case, there

are two factors causing rapid growth of (the guaranteed upper bound on) codim(Avj ): first, at
each step, the codimension of the next node can increase geometrically. Second, the success
probability p in [AI25] is pretty low: around 2−O(n/ log(n)) - this also contributes to the growth
of the valid upper bound on codim(Avj )

Improvement to depth Ω(N logN): In 2025, Efremenko and Itsykson [EI25] bypassed the
first barrier (of the codimension growing geometrically at each step) by introducing a new notion

of progress other than the codimension: the amortized closure Ĉl(A). Notice that the reason
why the codimension was possibly growing geometrically in [AI25] is that fixing the bits of
Cl(Av) to y adds b|Cl(Av)| more equations, which can be as large as b× codim(Av). One of the

key observations in [EI25] is that if |Ĉl(Aw)| = |Ĉl(v)|+ k, then Prx∼Av∩Cy [x ∈ Aw] ≤ 2−k. In

other words, if |Ĉl(Aw)| = |Ĉl(Av)|+k, among the equations defining Aw, there exist k linearly
independent equations and moreover, these equations are also linearly independent from the
equations of Av ∩Cy as the properties of amortized closure ensure Ĉl(Av) = Ĉl(Av ∩Cy). Now,

[EI25] runs the same argument again. This time, it yields the following recursion: |Ĉl(Avj+1
)| ≤

|Ĉl(Avj )|+ log( sp ), which prevents a geometric growth on the size of the amortized closure (as

was happening with codimension earlier). This ensures that |Ĉl(Avj )| ≤ O(j log(s/p)) at Phase
j. This enables Efremenko and Itsykson [EI25] to find a vertex at depth Ω(N log(N)) assuming
s was exp(No(1)). However, the second barrier still remains: their success probability p is very
small; around 2−n/ log(n). Thus, this argument could not go beyond depth N log(N).

Our approach for depth N2−ϵ: One of the main contributions of this work is getting
around this low success probability barrier. To do so, the starting point is the main idea of
Bhattacharya, Chattopadhyay, and Dvorak [BCD24]. In [BCD24], the authors prove a sepa-
ration between a restricted class of Res(⊕) refutations (known as bottom-regular refutations)
and general Res(⊕) refutations. Their proof also employed a bottleneck argument, but instead
of sampling from the uniform distribution, they were sampling from a lifted distribution. The
key observation in [BCD24] was that if g : Fb

2 → {0, 1} is an appropriate gadget, then for any
lifted distribution µ̄ and any affine space A, Prx←µ̄[x ∈ A] ≤ 2−Ω(codim(A)/b).

One might hope that the conditional version of such a statement is true: if B ⊆ A are two
affine spaces and µ̃ is a lifted distribution, then Prx←µ̃[x ∈ B|x ∈ A] ≤ 2−Ω(codim(B)−codim(A))/b.
If this were true, we could modify the proof of [AI25]: instead of sampling the input uniformly
from Av ∩ Cy, we could sample from a lifted distribution tailored to our needs - which can
hopefully boost the success probability. Unfortunately, such a statement cannot be true for any
gadget, as the following counterexample shows.

Counterexample to conditional fooling

Let t ∈ Fb
2 be a point, such that the first bit (wlog) is g-sensitive at

t, i.e. g(t) ̸= g(t ⊕ e{1}). WLOG, let g(t) = 0. The equations for
A are as follows: for all i ∈ [n], j ∈ [t] \ {1}, xij = tj . In B, we add
the following extra equations: for all i ∈ [n], xi1 = t1. Let µ̄ be the
uniform distribution on G−1(0n). Then, even though codim(B) =
codim(A) + n,

Prx←µ̄[x ∈ B|x ∈ A] = 1

Intuitively, the reason why conditional fooling does not happen in this counterexample is
that A fixes too many linear forms in a block - and thus, when sampling from G−1(0n) ∩ A,
the distribution on each block is not controllable. One might imagine if the equations defining
A do not concentrate too much on any single block, the distribution G−1(z) ∩A behaves more
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nicely. One notion of the equations defining A not concentrating on any single block is that A is
a safe affine space. Indeed, it turns out that the conditional fooling conjecture is actually true
when A and B are both safe affine spaces (Lemma 5.9) and the gadget has certain properties
(gadget size b = Ω(log(n)) and all Fourier coefficients are exponentially small). And given this,
it is not hard to show that lifted distributions fool amortized closure. Going back to the proof
outline in [EI25], we shall show that if µ̄ is any lifted distribution and |Ĉl(Aw)| = |Ĉl(Av)|+ k,
then Prx←µ̄∩Cy

[x ∈ Aw|x ∈ Av] ≤ (3/4)k (Lemma 5.1).

Lemma 5.1 provides us with the crucial flexibility for choosing any lifted distribution to
boost the success probability of the random walk and re-start method. We exploit this to
improve the sucess probability, from just 2−O(n/ logn) in [EI25] to a constant independent of
n in the following way: we continue with the base CNF being the Tseitin contradiction over
a constant degree expander. We take the set of partial assignments to be (roughly) the same
as the one taken by [AI25]. But now, given any partial assignment in P , we have to define
a distribution on the unfixed variables whose lift will provide the required boost to success
probability of the random walk. This part is new to our approach. The formal requirements
are described in Section 7, called (p, q)-PDT-hardness – and the construction is described in
Section 8. Analyzing the random walk on this new distribution requires further non-trivial
technical ideas and we manage to prove that the success probability is indeed boosted from
2−n/ log(n) to 1/3 - this helps us remove the last log(n) factor, and we get a superpolynomial
lower bound for depth-N2−ϵ proofs in Res-⊕ for any ϵ > 0.

As a remark, we note that unlike [BCD24], [EI25], [AI25], we don’t use any combinatorial
properties of the gadget such as stifling. The property of the gadget we use is exponentially
small ||ĝ||∞. The proof of the conditional fooling lemma is significantly more involved than
the proof of the vanilla fooling lemma in [BCD24]; we need to employ an exponential sum
argument, whereas the vanilla fooling lemma has a simple combinatorial proof using stifling.

It also seems that N2 is the best depth lower bound one can hope for using the random
walk with restarts technique: at each phase, the path taken can have length at most n, and the
amortized closure will increase by at least 1. We obtain a depth lower bound that is arbitrarily
close to N2. One would require new ideas to obtain depth ω(N2)-lower bounds.

5 Conditional fooling lemma

Throughout this section, assume the gadget g : Fb
2 → F2 has the following properties.

• ||ĝ||∞ ≤ 2−αb for some constant α > 0. In other words, for all S ⊆ [b],
|ĝ(S)| =

∣∣E[g(x)(−1)∑i∈S xi ]
∣∣ ≤ 2−αb

• The gadget size is b(n) =
250

α
log(n).

In this section, we will establish a key result that shows that lifted distributions fool amor-
tized closure (Lemma 5.1).

In the following, we state a fact that will be, in some sense, a significant generalization of
the following simple, well known fact: If B ⊆ A ⊆ Fnb

2 are two affine spaces, then Prx∼A[x ∈
B] ≤ 2codim(A)−codim(B). This fact was generalized recently by Efremenko and Itsykson [EI25].
Let y be an extendible assignment to the variables in closure of A, i.e. Cl(A). Then, Lemma 5.1
of [EI25], that they point out is their key lemma for improving the lower bound on resolution
over parities, shows the following:

Pr
x∼A∩Cy

[x ∈ B] ≤ 2|Ĉl(A)|−|Ĉl(B)|. (5.1)
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Note here we cannot hope to work with co-dimension of B and A since, for example, B
might precisely be those elements in A that extend y which is an affine space and codim(B)−
codim(A) = |y|. The argument in [EI25] uses a convenient property of amortized closure,
combined with simple linear algebra. In another direction, Bhattacharya, Chattopadhyay and
Dvorak [BCD24] showed the following: if g is a gadget with safe properties, then the following
is true for every z ∈ {0, 1}n:

Pr
x∼G−1(z)

[x ∈ B] ≤ 2−Ω(codim(B)/b) (5.2)

Below, we prove our main lemma which has the features of both (5.1) and (5.2).

Lemma 5.1. Let B ⊆ A ⊆ Fnb
2 be affine subspaces such that |Ĉl(B)| = |Ĉl(A)| + k. Let

y ∈ FVARS(Cl(A))
2 be an extendable closure assignment of A, and let z ∈ Fn

2 be a point such that
G(y) = z|Cl(A). Then,

Prx∼G−1(z)∩Cy
[x ∈ B|x ∈ A] ≤

(
3

4

)k

Currently, we do not know of a short argument to prove this. We prove it here in steps,
establishing some equidistribution properties of gadgets with small Fourier coefficients wrt safe
affine spaces that seem independently interesting.

Lemma 5.2. Let A ⊆ Fnb
2 be a safe affine subspace with codim(A) = m. Let z ∈ Fn

2 be any
target assignment. Then,

Prx∼Fnb
2
[x ∈ A ∧G(x) = z] ∈

[
1− o(n−100)

2m+n
,
1 + o(n−100)

2m+n

]
.

Proof. Let M be a matrix for the equations defining A. Since A is safe, there exist m blocks
such that one can choose one column from each block, such that those columns are linearly
independent. WLOG (for notational convenience) assume those blocks are 1, 2, · · · ,m, and
from block j we choose column aj .

We first rewrite the system of equations in a more convenient form. Since the matrix M
restricted to column set S = {(j, aj)|1 ≤ j ≤ m} is invertible, we can perform row operations
on M so that the submatrix M[m],S becomes Im. Let ℓi denote the i-th row of this modified
matrix. Thus, for every i ∈ [m], there exists a c ∈ [b] such that li has a non-zero entry at
coordinate (i, c), and for every i′ ̸= i, li′ has a zero entry at coordinate (i, c). An easy but
crucial consequence of this is the following.

Observation 5.3. For every subset T ⊆ [m], the vector
∑
j∈T

ℓj has a non-zero coordinate in

the j-th block for each j ∈ T .

Suppose the system of equations in this basis is

⟨ℓ1, x⟩ = c1

⟨ℓ2, x⟩ = c2

· · · · · ·
⟨ℓm, x⟩ = cm

Notation: for an assignment x ∈ Fnb
2 , we denote by x(i) ∈ Fb

2 the restriction of x to the i’th
block.

Let p := Prx∼Fnb
2
[x ∈ A ∧G(x) = z]. We have
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p = Ex

 n∏
j=1

(
1 + (−1)g(x(i))+zi

2

) m∏
j=1

(
1 + (−1)ℓj(x)+cj

2

)
Expanding the RHS, we get the following expression:

p− 1

2n+m
=

∑
S⊆[n]
T⊆[m]
S∪T ̸=ϕ

Ex

 (−1)
∑
i∈S

(g(x(i)) + zi) +
∑
j∈T

(ℓj(x) + cj)

2n+m



For S ⊆ [n], T ⊆ [m] let fS,T (x) := (−1)

∑
i∈S

g(x(i)) +
∑
j∈T

ℓj(x)

and uS,T :=
∑
i∈S

zi +
∑
j∈T

cj . We

have

p− 1

2n+m
=

1

2n+m

∑
S⊆[n]
T⊆[m]
S∪T ̸=ϕ

(−1)uS,TEx[fS,T (x)]

We start by showing that Ex[fS,T (x)] vanishes unless T ⊆ S. This is where we use the
safety of A.

Claim 5.4. If T ̸⊆ S, Ex[fS,T (x)] = 0

Proof. Let u ∈ T \S. By Observation 5.3, there exists a coordinate k in the u-th block on which∑
j∈T

ℓj is non-zero:
∑
j∈T

(ℓj)(u,k) = 1. Since u ̸∈ S, this coordinate does not affect
∑
i∈S

g(x(i)).

So we have that for all x, fS,T (x) = −fS,T (x ⊕ eu,k). Therefore, exactly half of the x’s have
fS,T (x) = 1 and the result follows.

It now suffices to bound the terms where T ⊆ S. We do this using the fact that all Fourier
coefficients of g are small.

Claim 5.5. If T ⊆ S, |Ex[fS,T (x)]| ≤
1

2αb|S|

Proof. Let g⊕S : Fb×|S|
2 → F2 be the XOR of |S| disjoint copies of g; for y ∈ Fb×|S|

2 ,

g⊕S(y) =

(∑
i∈S

g(y(i))

)
(mod 2)

Note that ||ĝ⊕S ||∞ = (||ĝ||∞)
|S| ≤ 2−αb|S|. Therefore,

|Ex[fS,T (x)]| =

∣∣∣∣∣∣ĝ⊕S
supp

∑
j∈T

lj

∣∣∣∣∣∣ ≤ 2−αb|S|.

13



Now, we upper bound the magnitude of the error as follows. If |S| = k, Claim 5.4 implies
that there are at most 2k possible values of T for which Ex[fS,T (x)] ̸= 0. Claim 5.5 implies that

the magnitude of each of these terms is at most
1

2αbk
. Thus, in our setting of b =

250

α
log(n),

we get that

∣∣∣∣p− 1

2n+m

∣∣∣∣ = 1

2n+m

∣∣∣∣∣∣∣∣∣∣∣
∑
S⊆[n]
T⊆[m]
S∪T ̸=ϕ]

(−1)uS,TEx[fS,T (x)]

∣∣∣∣∣∣∣∣∣∣∣

≤ 1

2n+m

n∑
k=1

(
n

k

)
2k

1

2αbk

≤ 1

2n+m
o(n−100)

This completes the proof.

Corollary 5.6. If A is a safe affine space, for all z ∈ Fn
2 ,

Prx∼A[G(x) = z] ∈
[
1± o(n−100)

] 1

2n

Proof.

Prx∼A[G(x) = z] =
Prx[x ∈ A ∧G(x) = z]

Prx[x ∈ A]

The denominator is 2−codim(A), and to estimate the numerator use Lemma 5.2.

We will now show that the set of pre-images of an arbitrary z ∈ {0, 1}n, are approximately
equidistributed among the various translates of a safe affine space in the lifted world.

Lemma 5.7. Let A ⊆ Fnb
2 be a safe affine space with codimension m, and let z ∈ Fn

2 be a target
point. Then,

Prx∼G−1(z)[x ∈ A] ∈
[
1− o(n−90)

2m
,
1 + o(n−90)

2m

]
Proof. Let A1 = A,A2, · · · , AM be the M = 2m translates of A. Let Sj = G−1(z)∩Aj . Lemma

5.6 implies
|Sj |
|A|
∈
[
1− o(n−100)

2n
,
1 + o(n−100)

2n

]
for all j. We have

Prx∼G−1(z)[x ∈ A] =
|S1|∑
j

|Sj |
∈
[
1− o(n−100)

1 + o(n−100)
× 1

2m
,
1 + o(n−100)

1− o(n−100)
× 1

2m

]

=

[
1− o(n−90)

2m
,
1 + o(n−90)

2m

]

Using the above, we show below that if B ⊂ A are two safe affine spaces, then B cannot
significantly distinguish the distributions x ∼ (G−1(z) ∩A) and x ∼ A.
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Lemma 5.8. Let B ⊆ A ∈ Fnb
2 be safe affine subspaces such that codim(B) = codim(A) + 1.

Let z ∈ Fn
2 be any point. Then,

Prx∼G−1(z)[x ∈ B|x ∈ A] ≤ 1

2
+ o(n−50)

Proof. Letm = codim(A). Lemma 5.7 implies Prx∼G−1(z)[x ∈ A] ≥ 1− o(n−90)

2m
and Prx∼G−1(z)[x ∈

B] ≤ 1 + o(n−90)

2m+1
Thus,

Prx∼G−1(z)[x ∈ B|x ∈ A] =
Prx∼G−1(z)[x ∈ B]

Prx∼G−1(z)[x ∈ A]
≤ 1 + o(n−90)

1− o(n−90)
× 1

2
≤ 1

2
+ o(n−50)

The structure of safe affine spaces that we have discovered so far allows us to say the
following about any two arbitrary affine spaces that are not necessarily safe.

Lemma 5.9. Let B ⊆ A ∈ Fnb
2 be affine spaces such that |Ĉl(B)| = |Ĉl(A)|+1 and codim(B) =

codim(A) + 1. Let y be an extendable closure assignment for A, and let z ∈ Fn
2 be a point such

that z|Cl(A) = G(y). Then,

Prx∼G−1(z)∩Cy
[x ∈ B|x ∈ A] ≤ 1

2
+ o(n−50)

Proof. Let z = (G(y), w). Rewrite the desired probability expression as

Prx̃∼G−1(w)[x ∈ By|x ∈ Ay]

By Corollary 3.28, Ay, By are both safe affine subspaces, and codim(By) = codim(Ay)+1. Now
the result follows from Lemma 5.8.

An easy corollary is that the result still holds if we condition only on a subset of the blocks
in Cl(A) instead of all the blocks in Cl(A).

Corollary 5.10. Let B ⊆ A ∈ Fnb
2 be affine spaces such that |Ĉl(B)| = |Ĉl(A)| + 1 and

codim(B) = codim(A) + 1. Let S ⊆ Cl(A) and let y ∈ FVARS(S)
2 be a partial assignment. Let

z ∈ Fn
2 be a point such that z|S = G(y) and G−1(z) ∩ Cy ∩A ̸= ϕ. Then,

Prx∼G−1(z)∩Cy
[x ∈ B|x ∈ A] ≤ 1

2
+ o(n−50)

Proof. Sampling x from G−1(z)∩Cy can be done as follows: first sample y(1) ∈ FVARS(Cl(A))
2 ∩Cy

according to G−1(z), then sample x from G−1(z)∩Cy(1) . For each possible y(1) use Lemma 5.9

to upper bound the conditional probability of lying in B conditioned on y(1). Formally, let D
denote the distribution of x|Cl(A) as x ∼ G−1(z) ∩ Cy. Then,

Prx∼G−1(z)∩Cy
[x ∈ B|x ∈ A] = Ey(1)←D[Prx∼G−1(z)∩C

y(1)
[x ∈ B|x ∈ A]]

≤ 1

2
+ o(n−50)

Now we prove the final result of this section.
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Proof. of Lemma 5.1 Let B = W0 ⊆W1 ⊆W2 ⊆ · · · ⊆Wl−1 ⊆Wl = A be a sequence of affine
subspaces such that codim(Wj) = codim(Wj+1) + 1. We have

Prx∼G−1(z)∩Cy
[x ∈ B|x ∈ A] =

l−1∏
j=0

Prx∼G−1(z)∩Cy
[x ∈Wj |x ∈Wj+1]

We assume there exists a point in G−1(z)∩Cy ∩B (as otherwise the conditional probability
is 0), so in particular, for all j there exists a point in G−1(z) ∩ Cy ∩ Cj .

By Lemma 3.27 there exist k indices j ∈ {0, 1, · · · , l−1} such that |Ĉl(Wj)| = |Ĉl(Wj+1)|+1.
Note that Cl(A) ⊆ Cl(Wj+1) by Lemma 3.25. Invoking Corollary 5.10 for each such index j,
where Wj plays the role of B and Wj+1 that of A, we have

Prx∼G−1(z)∩Cy
[x ∈Wj |x ∈Wj+1] ≤

3

4

So, in the product

l−1∏
j=0

Prx∼G−1(z)∩Cy
[x ∈Wj |x ∈Wj+1], at least k terms are ≤ 3/4. The result

follows.

6 Description of CNF

The CNF we shall use is the Tseitin contradiction over an expander graph, lifted with an appro-
priate gadget. Let G = (V,E) be a (|V |, d, λ < 1/1000) expander with |V | odd and d = O(1).
The base CNF Φ has variables zu,v for (u, v) ∈ E. For each v ∈ V we express the constraint∑
(v,w)∈E

zv,w ≡ 1 (mod 2) using 2d = O(1) clauses. This system is unsatisfiable because adding

up all the equations yields 0 ≡ 1 (mod 2).

The property of G we shall use is isoperimetric expansion (which follows from Cheeger’s
inequality [Che71]):

Lemma 6.1. For any S ⊆ V , the cut E(S, V \S) has at least d

5
min(|S|, n−|S|)

edges.

Explicit constructions of such graphs were provided in [LPS88] and [Mar73].

We lift Φ with an appropriate gadget. We will take the gadget g : Fb
2 → F2 to have the

properties mentioned in section 5. For convenience of the reader we restate the properties here.

• ||ĝ||∞ ≤ 2−αb for some constant α > 0. In other words, for all S ⊆ [b],
|ĝ(S)| =

∣∣E[g(x)(−1)∑i∈S xi ]
∣∣ ≤ 2−αb

• The gadget size is b(n) =
250

α
log(n).

A concrete instantiation of g is the Inner Product function g = IP:

IP(x1, x2, · · · , xb/2, y1, y2, · · · , yb/2) = (x1y1 + · · ·+ xb/2yb/2) (mod 2)

Theorem 6.2. For g = IP, ||ĝ||∞ ≤ 2−b/2

In the case of g = IP we get α = 1/2 and b(n) = 500 log(n). Throughout the rest of
the paper, we shall assume the gadget g has all Fourier coefficients ≤ 2−αb in magnitude and

b(n) =
250

α
log(n).
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The CNF for which we will prove our depth restricted lower bounds is Ψ = Φ ◦ g. Note that
the number of clauses in Ψ is NO(1).

7 The Utility of (p, q)-PDT Hardness

Alekseev and Itsykson [AI25] introduced the ‘random walk with restarts’ approach to prove
superlinear lower bounds on depth of Res(⊕) proofs of small size. To analyze their random
walk with restarts, [AI25] uses certain elaborate games. We find it more convenient to analyze
random walks using the language of decision trees. In particular, this allows us naturally to
bring in the notion of a hard distribution that seems crucial to boost the success probability
of our random walk with restart significantly, all the way from 2−n/ log(n) to a constant. In
this section, we formalize our notion which we call (p, q)-PDT hardness. We point out that
our notion here is a significant refinement of the ideas of Bhattacharya, Chattopadhyay and
Dvorák [BCD24] where as well random walks on lifted distributions were analyzed, but without
restarts.

We first set up some notation to define our hardness notion. For a parity decision tree T and
a point x, define the affine subspace Ax(T ) to be the one corresponding to the set of inputs y
that traverse the same path in T as x does. More formally, Ax(T ) is defined as follows: suppose
on input x, T queries the linear forms ℓ1, · · · , ℓd and gets responses c1, c2, · · · , cd respectively.
Then, Ax(T ) = {y|⟨ℓj , y⟩ = cj∀j ∈ [d]}.

We are ready now to introduce the notion of a hard set of partial assignments that will
abstract our requirements for finding a deep node in the proof DAG.

Definition 7.1. Let Φ be a CNF formula on n variables. A non-empty set of partial assignments
P ⊆ {0, 1, ∗}n is (p, q)-PDT-hard for Φ if the following properties hold:

• No falsification: No partial assignment in P falsifies any clause of Φ.

• Downward closure: If ρ ∈ P and ρ̃ is obtained from ρ by unfixing some of the bits set
in ρ, then ρ̃ ∈ P

• Hardness against parity decision trees: Let A ⊆ Fnb
2 be an affine space with

|Ĉl(A)| ≤ p. Let y ∈ FVARS(Cl(A))
2 be an extendable closure assignment for A such that

α = G(y) ∈ P . Then, there exists a distribution µ = µ(α) on Fn
2 such that the following

properties hold:

1. z|Cl(A) = α for all z ∈ supp(µ)

2. Let T be any parity decision tree (with input nb bits) of depth ≤ q. For any x, define
Ã(x) = AT (x)∩A∩Cy.With probability ≥ 1/3, as x is sampled from G−1(µ)∩A∩Cy,
it holds that G(x|Cl(Ã(x))) ∈ P 3.

The CNF Φ is (p, q)-PDT-hard if it admits a non-empty (p, q)-PDT-hard set of partial assign-
ments.

We now state the main result of this section that shows (p, q)-PDT-hardness of a CNF is
sufficient to get us good lower bound on depth of a refutation of the lifted formula, assuming
the size of the refutation is small.

Theorem 7.2. Let Φ be a CNF on n variables having a non-empty (p, q)-PDT-hard set of
partial distributions. Then, any Res(⊕) refutation of Φ ◦ g of size s must have depth at least

Ω

(
pq

log(s)

)
.

3G−1(µ) ∩A ∩ Cy is non-empty by Lemma 5.6 applied on the nice affine space Ay
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To prove the above, we will first establish the following lemma. This lemma essentially tells
us that as long as we are at a node whose associated affine space satisfies some convenient
properties, we are assured to find another node at a distance q from our starting node whose
corresponding affine space continues to have reasonably convenient properties.

Lemma 7.3. Suppose Φ has a non-empty (p, q)-PDT-hard set of partial assignments P . Let

Π be a Res(⊕) refutation of Φ ◦ g of size s. Let v be a node in Π such that |Ĉl(Av)| ≤ p, and

let y ∈ FVARS(Cl(Av))
2 be an extendable closure assignment for Av such that G(y) ∈ P . Then,

there exists another node w in Π such that:

1. There exists a length q path from v to w in Π.

2. There exists an extendable closure assignment for Aw, ỹ, such that G(ỹ) ∈ P .

3. |Ĉl(Aw)| ≤ |Ĉl(Av)|+ 2 log(s)

Proof. Let µ = µ(α) be the hard distribution guaranteed to exist by the definition of (p, q)-
PDT-hardness, where α = G(y). Let T be the following parity decision tree: on any input x,
it simulates the queries made by Π starting from node v for q steps. For any x ∈ Av, define
ENDq(x) to be the node of Π reached by x starting from v after q steps. (In case Π on x reaches
a leaf within q steps starting from v, define ENDq(x) to be that leaf.)

We have AT (x) ∩ Av ⊆ AENDq(x). Let GOOD = {x|G(x|Cl(Ãv(x))
) ∈ P} (recall, Ãv(x) =

AT (x)∩Av ∩Cy). The definition of (p, q)-PDT-hardness guarantees that Prx←G−1(µ)∩A∩Cy
[x ∈

GOOD] ≥ 1/3.
Let N = {ENDq(x)|x ∈ GOOD}. Note that since no assignment in P falsifies any clause of Φ,
no vertex inN is a leaf - and therefore, there is a length q walk from v to w for all w ∈ N (i.e., the
parity decision tree does not terminate before q queries if x ∈ GOOD). Also, AT (x)∩Av∩Cy ⊆
AENDq(x), so Cl(AENDq(x))) ⊆ Cl(AT (x)∩Av∩Cy), so x ∈ GOOD implies G(x|Cl(ENDq(x))) ∈ P
(since P is downward closed). Thus, properties (i) and (ii) are satisfied for all w ∈ N . To

complete the proof, we have to find a w ∈ N such that |Ĉl(Aw)| ≤ |Ĉl(Av)|+ 2 log(s).

Since |N | ≤ s, there exists a w ∈ N such that Prx←G−1(µ)∩Cy∩A[ENDq(x) = w] ≥ 1

3s
. In

particular, this implies

Prx←G−1(µ)∩Cy
[x ∈ Aw|x ∈ A] ≥ 1

3s

Lemma 5.1 then implies |Ĉl(Aw)| ≤ |Ĉl(Av)|+ 2 log(s)

Now we are ready to prove our main result for this section, by repeatedly making use of
Lemma 7.3.

Proof of Theorem 7.2. Let Π be a Res(⊕) refutation of Φ. We shall inductively find vertices

v1, v2, . . . , vj in Π for j ≤ p

2 log(s)
such that:

• depth(vj) ≥ jq

• |Ĉl(Avj )| ≤ 2j log(s)

• There exists an extendable closure assignment yj for Avj such that G(yj) ∈ P

For j = 0 we pick the root. To get vj+1 we apply Lemma 7.3 to vj . We can continue this way

as long as |Ĉl(Avj )| ≤ p. Hence, we do this for j =
⌊

p
2 log s

⌋
many steps. In the end, we get a

node at depth Ω

(
pq

log(s)

)
.
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8 Proving (p, q)-PDT hardness

Our goal in this section is to show that the Tseitin contradiction over an expander graph meets
the requirements of (Ω(n),Ω(n))-PDT hardness as specified in Definition 7.1 in the previous
section.

Note that (p, q)-PDT hardness is a notion that measures the hardness of a set of partial
assignments against parity decision trees. We start by proving that vanilla Tseitin tautologies
defined over constant-degree expanders graphs (as opposed to being lifted by a gadget), already
satisfy a weaker notion of hardness that we call (p, q)-DT hardness that is effective against
ordinary decision trees operating in the unlifted world. This will allow us to introduce many
of the ideas more cleanly that will then be re-used in the more involved lifted world of parity
decision trees. After establishing (p, q)-DT hardness in the unlifted setting, we shall sketch how
to modify the argument to prove the original requirement of (Ω(n),Ω(n))-PDT hardness in the
lifted setting. For completeness, a self-contained and direct proof of the original requirement of
(Ω(n),Ω(n))-PDT hardness is presented in Appendix B.

8.1 Hardness Against Ordinary Decision Trees

We define the analogue of (p, q)-PDT-hardness in the unlifted setting.

Definition 8.1 ((p, q)-DT hardness). For a CNF Φ on n variables, call a set of partial assign-
ments P ⊆ {0, 1, ∗}n to be (p, q)-DT-hard if the following hold:

• No falsification: No partial assignment ρ ∈ P falsifies any clause of Φ.

• Downward closure: For any ρ ∈ P and any j ∈ [n], if ρ̃ is obtained by setting ρ(j)←∗,
then ρ̃ ∈ P

• Hard for decision trees: For any ρ ∈ P which fixes at most p variables, there exists a
distribution µ on the assignment to unfixed variables such that the following holds:

– Let T be a decision tree of depth q querying the unfixed variables. If we sample
an assignment to the unfixed variables from µ and run T for q steps, the partial
assignment we see in the end also lies in P with probability ≥ 1/3.

The CNF Φ is (p, q)-DT hard if it admits a non-empty set of (p, q)-DT-hard partial assign-
ments.

Recall that we are working with the base CNF to be a Tseitin contradiction over an expander
graph, as defined in Section 6. The main theorem of this subsection is that Tseitin contradiction
over an expander is (Ω(n),Ω(n))-DT hard.

Theorem 8.2. Let Φ be the Tseitin contradiction over a (|V |, d, λ < 1/1000) expander (with |V |
odd). Then, Φ is (n/2000, n/2000)-DT-hard – i.e., there exists a non-empty (n/2000, n/2000)-
DT-hard set of partial assignments for Φ.

8.1.1 Choosing the set of partial assignments

We define a partial assignment to the edges of our graph to be valid below. The set P ⊆
{0, 1, ∗}n will be the set of valid partial assignments.

Definition 8.3. Let ρ ∈ {0, 1, ∗}E be a partial assignment. We define the criteria for checking
if ρ is valid as follows: let S = {e|e has been fixed by ρ}. For each v ∈ V , define fρ(v) =

1 +
∑

(v,w)∈S

ρ(v, w) (i.e., fρ(v) denotes the parity of the unfixed edges incident to v in order
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to satisfy the original degree constraint for v). Then, ρ is said to be valid if the following
conditions are satisfied:

1. There exists exactly one connected component C in (V,E \ S) such that
∑
v∈C

fρ(v) = 1.

We call this component the odd component and every other component is called even.

2. The size of the odd connected component, |C|, is more than n/2.

We now show that the set P of all valid partial assignments is indeed (p, q)-DT-hard. We
begin by showing below that the first two properties for being (p, q)-DT-hard are satisfied.

Lemma 8.4. The set of partial assignments P satisfies the conditions Downward Closure
and No falsification for Φ (as defined in Definition 8.1).

Proof. Both properties are straightforward to verify.

• No falsification: In order to falsify any clause, ρ has to fix all edges of some vertex. In
that case, that vertex is an isolated connected component in (V,E \ S) and the total fρ
in that component is 1. However, the first condition stipulates that there is exactly one
connected component whose total fρ is odd, and that component has size more than n/2.

• Downward closure: Let ρ ∈ P , and let ρ̃ be obtained from ρ by setting ρ(e) =∗ for
some e ∈ E that was fixed by ρ. There are three cases.

1. e = (a, b) bridges the largest component C with some other component W . Wlog,
a ∈ C and b ∈W . Let S′ = S \ {e}. Let the new expanded connected component be
C ′ = C ∪W . Note that W forms a connected component in (V,E \S) and therefore∑
v∈W

fρ(v) = 0 (mod 2). For each v ̸= a, b, fρ̃(v) = fρ(v), and fρ̃(a) = ρ(e) + fρ(a)

(mod 2), fρ̃(b) = ρ(e) + fρ(b) (mod 2). We have |C ′| ≥ |C| ≥ n/2, so all we need to

verify is that
∑
e∈C′

fρ̃(v) ≡ 1 (mod 2).

∑
v∈C∪W

fρ̃(v) =
∑
v∈C

fρ(v) + ρ(e) +
∑
v∈W

fρ(v) + ρ(e) = 1 + 0 = 1 (mod 2)

2. e = (a, b) bridges two components U and W , none of which is C. Very similar
argument as above shows that∑

v∈U∪W
fρ̃(v) =

∑
v∈U

fρ(v) + ρ(e) +
∑
v∈W

fρ(v) + ρ(e) = 0 + 0 = 0 (mod 2)

Thus, C remains the unique odd connected component.

3. e = (a, b) does not bridge two different components. It is simple to verify in this case
that the parity of all components remain unchanged.

Now we come to the final property: hardness for decision trees. First, we prove an easy but
crucial lemma:

Lemma 8.5. Let G = (V,E) be a connected undirected graph and let g ∈ FV
2 a vector. Let

T ⊆ E be a spanning tree, and let h ∈ FE\T
2 be an assignment to the edges not in T . Let

v ∈ V be a vertex. There exists a unique assignment h̃ ∈ FE
2 such that h̃ extends h and∑

w∈N(u)

h̃(u,w) = g(u) for all u ̸= v.
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Proof. We construct h̃ as follows: convert T to a rooted tree by making v the root and then
process the vertices bottom up, starting at the leaves of T . When vertex u is being processed,
all edges in the subtree of u have been assigned. Then, exactly one edge incident to u is kept

unfixed (the edge (u,parent[u]) - assign it so that
∑

(u,w)∈E

h̃(u,w) = g(u) is satisfied.

It is also clear that this is the unique assignment to the edges in T which satisfies all these
constraints and is consistent with the assignment to the edges of E \ T . This is because once
the edges in the subtree of u has been fixed, there is a unique choice of h̃(u,parent[u]) that
satisfies the parity constraint of u.

Note that if
∑
u∈V

g(u) is even, the procedure in the proof of Lemma 8.5 automatically ensures∑
w∈N(v)

h̃(v, w) = g(v) (mod 2) is also satisfied. And if
∑
u∈V

g(u) is odd, the procedure automat-

ically ensures
∑
w∈V

h̃(v, w) = g(v) (mod 2) is not satisfied. Therefore, we get the following

corollary.

Corollary 8.6. Let G be a connected undirected graph and let g : V → F2 be any map.

1. If
∑
v∈V

g(v) = 1 (mod 2), then for any v ∈ V there exists an assignment h̃ ∈ FE
2 such that∑

w∈N(u)

h̃(u,w) = g(u) (mod 2) for each u ̸= v, and
∑

w∈N(v)

h̃(v, w) ̸= g(v) (mod 2).

2. If
∑
v∈V

g(v) = 0 (mod 2), there exists an assignment h̃ ∈ FE
2 such that

∑
w∈N(u)

h̃(u,w) =

g(u) (mod 2) is satisfied for all u ∈ V .

Now we define the following hard distribution for each ρ ∈ P , when |ρ| ≤ n

2000
.

8.1.2 The hard distrbution

Our goal in this subsection is to define for each ρ ∈ P a distribution µ = µρ on the unfixed
variables so that the requirement in Definition 8.1 is satisfied.

Definition 8.7. Let ρ ∈ P be a valid partial assignment which fixes at most
n

1000
edges.

Define the following:

1. Let Sρ = {e|ρ(e) ̸=∗} and Uρ = {e|ρ(e) =∗}

2. Define fρ as before (i.e. for each v ∈ V , fρ(v) = 1+
∑

(u,v)∈Sρ

ρ(u, v) - the interpretation of

fρ(v) is that among the unfixed edges incident to v, the number of edges fixed to 1 must
be fρ(v) (mod 2) in order to satisfy the original parity constraint for v).

3. Let Cρ be the unique connected component in Gρ = (V,E \ Sρ) whose total fρ is odd.

Now we describe the procedure of sampling from µ. Note that the values of edges in Sρ are
fixed; we have to define a distribution on the unfixed edges. We do this as follows.
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DTFooling

Input:

• Graph G = (V,E)

• A valid partial assignment ρ ∈ {0, 1, ∗}E , ρ ∈ P

Output: A sample z ∈ {0, 1}E from µρ

Sampling procedure

• For every vertex v ∈ Cρ, fix an arbitrary spanning tree Tv of C rooted at v.

• Uniformly at random pick a vertex v ∈ Cρ. Let z̃ be a uniformly random assignment
to the unfixed edges in C not in Tv. Extend z̃ to the unique assignment z to all unfixed

edges of Cρ as guaranteed in Lemma 8.5 so that for all u ̸= v, fρ(u) =
∑

(u,w)∈Uρ

z(u,w)

is satisfied.

• For every other connected component C ′, pick an arbitary spanning tree (with an
arbitrary root). Give a uniformly random assignment to the non-tree edges; then
fix the values of the tree edges according to Lemma 8.5. (Note that this assignment
satisfies the parity constraint of all vertices in C ′ by the remark following Lemma 8.5.)

Let Aρ,v denote the set of all z ∈ FE
2 that are consistent with ρ and satisfy the following:

1. For all u ̸= v,
∑

w∈N(u)

z(u,w) = fρ(u).

2.
∑

w∈N(v)

z(v, w) = 1 + fρ(v).

We make the following remark now.

Remark 8.1. Let ρ be any valid (partial) assignment to edges of G. Then,

1. Aρ,v is an affine space in FE
2 , for each v ∈ Cρ.

2. DTFooling picks a random v ∈ Cρ and then samples a random point in Aρ,v.

For any z ∈ supp(µ), the parity constraint is violated for exactly one vertex (the vertex
which was chosen as the root of the spanning tree of the odd connected component). Call this
vertex root(z).

Before proving the hardness, we note down some properties of the distribution.

8.1.3 Conditional Distribution of the Root is Uniform

We prove a useful property of the distribution sampled by DTFooling, given a valid partial
assignment ρ. The idea is when a decision tree queries bits from an assignment z to the edges
sampled according to µρ, the graph Gρ starts splitting into further smaller components. The
decision tree knows at every instant in which component root(z) lies,as there is always a unique
odd component. The lemma below ensures that conditioned on what the decision tree has ob-
served so far, the distribution of root(z) remains uniform over all vertices in the odd component.

In the following let Eρ ⊆ E be the set of edges free in ρ. For convenience of the reader, we
re-state the definition of fρ in Definition 8.3 here.
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• fρ ∈ FV
2 , fρ(v) = 1 +

∑
(v,w)∈E\Eρ

ρ(v, w)

Lemma 8.8. Let ρ be a valid partial assignment and µ = µρ be the distribution in Defini-
tion 8.7. Let S ⊆ Eρ be a subset of free edges and α ∈ FS

2 be an assignment to S. Define

fα(v) = fρ(v) +
∑

(v,w)∈S

α(v, w). Suppose the components of (V,Eρ \ S) are C1, C2, · · · , Ck,

where
∑
v∈C1

fα(v) = 1, and for all j ̸= 1,
∑
v∈Cj

fα(v) = 0. Then, the following are true:

1. For any u ∈ C1, let Su := {x ∈ FEρ\S
2 | root(x, α) = u}. Then, |Su| = |Sv|, for all v ∈ C1.

2. The distribution of root(z) as z is sampled from µ = µρ conditioned on z|S = α, is uniform
on C1.

Proof. We shall prove point (2) (about the conditional distribution of the root being uniform
on the odd component). En-route, we shall also end up proving point (1).

Conditioned on z|S = α, the root cannot lie in any of C2, C3, · · · , Ck. (Reason: after we
choose the root, only the parity constraint at the root is violated; other parity constraints are
satisfied. But after fixing S to α, it is not possible to satisfy all parity constraints of C1 simul-
taneously as the sum of the modified parity constraints of C1 is odd.)

So we need to show that for all u ∈ C1, Prµ[root(z) = u|zS = α] is a non-zero quan-
tity independent of u. Note that C1 ⊆ Cρ (recall that Cρ is the unique odd component of

Gρ; for a justification see Remark 8.2). Since for all u ∈ C1, Prµ[root(z) = u] =
1

|Cρ|
is a

non-zero quantity independent of u, by Bayes’ rule it suffices to show that for all u ∈ C1,
Prµ[zS = α|root(z) = u] is a non-zero quantity independent of u.

Let M ∈ FV×E
2 be the edge-vertex incidence graph of G. Let γv ∈ FV

2 be the following
vector:

γv(u) =

{
fρ(u) if u ̸= v

1 + fρ(u) otherwise

Once v is chosen as the root, the sampling procedure samples a uniformly random element of
the affine space {z|Mz = γv}.

Let S = {r1, r2, · · · , r|S|}. Let N ∈ FS×E be the matrix whose j-th row is the standard
basis vector at coordinate rj . Once u is chosen as the root, z|R = α if and only if z satisfies
the following equation: [

M
N

]
z =

[
γu
α

]
Let

J =

[
M
N

]
Conditioned on satisfyingMx = γu, the probability of satisfying z|R = α is either 2rank(M)−rank(J)

(if there is a solution) or 0 (if there is some inconsistency in the right hand sides of the system
of equations). (Indeed, for v ̸∈ C1 there is an inconsistency in the right hand sides - as noted
above.)

Now for all v ∈ C1, we shall show there is a z such that root(z) = v and z|S = α – this will
show that for v ∈ C1, Pr[z|S = α|root(z) = v] is a non-zero quantity independent of v. To show
this, we construct an assignment as follows:
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• For each Cj , choose a spanning tree Qj disjoint from S.

• Assign z|S = α, and for all non-tree edges not in S, give an arbitrary assignment.

• Assign the values of the edges in Q1 according to Lemma 8.5 with v as root.

• For j > 1, set the edges of Qj according to Lemma 8.5 (with any arbitrary root).

This assignment satisfies z|S = α by construction; moreover, it also satisfies Mz = γv because
of Lemma 8.5 and the remark following it (Corollary 8.6). This argument, at one go, establishes
both properties (1) and (2) claimed in our lemma.

8.1.4 Proving Hardness

Now we prove (p, q)−hardness for ordinary decision trees.

Theorem 8.9. Let G = (V,E) be a (|V |, d, 1/3000)-spectral expander with |V | odd. Let P be
the set of partial assignments defined in Definition 8.3. Let ρ ∈ P be a partial assignment with

|ρ| = p ≤ n

2000
. Let µ be the distribution defined in Definition 8.7 4. Let T be any decision tree

making at most q ≤ n

2000
queries. Sample z ← µ. Then, with probability ≥ 1/3, the partial

assignment seen by the tree after q queries (this includes the edges fixed by ρ and the edges
queried by T ) also lies in P .

Proof. We fix some notation that will be used in the rest of the proof.

1. At time-step j, the partial assignment seen by the tree is ρj (this includes the edges fixed
by ρ and the edges queried by T ).

2. The set of edges fixed by ρj is Ej . The corresponding graph is Gj = (V,E \ Ej).

3. Define fj(v) = 1 +
∑

(v,w)∈Ej

ρj(v, w).

4. Let the connected components of Gj be D1, D2, · · · , Dk. Because of the way µ is defined,

there always exists exactly one connected component Dl such that
∑
v∈Cl

fj(v) = 1 (for a

justification, see remark 8.2). Call this the odd component of Gj . Denote it by Cj .

Before proceeding, we make some remarks.

Remark 8.2. After some vertex v is chosen to be the root, it is guaranteed that the parity
constraint of all vertices other than v is satisfied. It is also known that all parity constraints are
not satisfiable simultaneously (since sum of the right hand sides is odd). So, after we know the
value of some edges (say given by the partial assignment σ), after removing those edges, exactly
one connected component has odd

∑
fσ - and the root lies in this component. This means that

after z is sampled according to µ, condition (i) defining membership in P is always satisfied.
Only condition (ii) (which stipulates that the odd component must have large size) can possibly
be violated

Remark 8.3. Suppose after querying an edge, in Gj+1 the component Cj splits into Cj = A∪B.

Initially
∑
v∈Cj

fj(v) is odd. After querying the edge, exactly one of
∑
v∈A

fj+1(v) and
∑
v∈B

fj+1(v)

is odd - and the root must lie in the component where the sum is odd.. Suppose
∑
v∈A

fj+1(v) is

4µ is a distribution on Fn
2 such that every z ∈ supp(µ) is consistent with ρ
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odd. Then, the decision tree now knows the root lies in A = Cj+1 ⊆ Cj. Thus, the decision tree
has made some progress in determining the location of the root.

We want to say that the decision tree can never make too much progress - our tool here is
Lemma 8.8, which says that the decision tree does not know anything about the root other than
it lies in the current odd component.

We start with a crucial lemma.

Lemma 8.10. At any time-step j, the largest connected component of Gj must have size

≥ n

(
1− 1

50d

)
Proof. Suppose not; let time-step j be a time step where all the connected components of Gj

have size < n

(
1− 1

50d

)
. We then greedily pick a subset of the connected components whose

union T has size in the interval
[ n

100d
, n− n

100d

]
. Cheeger’s inequality (Lemma 6.1) then im-

plies the cut E(T, V \ T ) has at least n

500
edges.

This means the current partial assignment fixes at least n/500 edges. However, the current
partial assignment can only fix p+ q ≤ n/1000 edges.

Now, every time the decision tree queries an edge, we make it pay us some coins as follows.
Suppose the current partial assignment lies in P ; the current graph is Gj and the current odd
component is Cj , and the tree queries the edge e.

• If removing e keeps Cj connected, the tree does not have to pay anything.

• Suppose removing e splits Cj into two components: Cj = A∪B. The value of e is revealed
- and it determines in which component of A,B the root belongs to. Suppose the root lies
in A. If |A| ≤ n/2, the decision tree does not pay anything and wins the game. Otherwise,
the decision tree has to pay |B| coins.

(In other words: if, at any point of time, the largest component in Gj isn’t the odd com-
ponent, the decision tree wins the game. Otherwise, if the decision tree shrinks the size of the
largest component by s, it must pay s coins.)

By Lemma 8.10, the decision tree only pays ≤ n

50d
coins. So we start by awarding the

decision tree a budget of b =
n

50d
coins, and argue (by induction on number of coins remaining)

that the decision tree loses the game with high probability. (The decision tree loses the game
when it has to pay some coins but it is broke.)

At this point, we allow the decision tree to make as many as queries as it wants – as long

as it maintains that the largest component has size ≥ n

(
1− 1

50d

)
(and therefore it does not

use more than b coins). We prove the following statement by inducting on number of coins
remaining.

Lemma 8.11. Suppose the decision tree has c coins remaining and has not won the game yet.

Then, the probability it wins the game is ≤ 3c

n
+

1

10
.

Proof. We induct on c. Consider the base case c = 0: the decision tree has no coins remaining.
Let the current odd component be C. The first time the tree splits C, the root must lie in the
smaller component for the decision tree to win. Suppose the tree queries an edge e and C splits
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into C = A ∪ B where |A| ≥ n

(
1− 1

50d

)
. Before querying e, the conditional distribution

of the root was uniform on C by Lemma 8.8. Conditioned on the partial assignment revealed
before querying e, the probability the root lies in A is |A|/|C|. The probability the tree wins
the game is thus

|A|
|C|
≤

n

50d

n

(
1− 1

50d

) ≤ 1

10
,

so the base case is true.
Now we handle the inductive step. Suppose the tree has c coins. Suppose the current odd

component is Cj , with |Cj | ≥ n

(
1− 1

50d

)
. Suppose the decision tree queries e and removing

e splits Cj into Cj = A∪B, where A is the larger component

(
|A| ≥ n

(
1− 1

50d

))
. The tree

wins this game at this stage if the root lies in B, otherwise it pays |B| coins and proceeds to the
next stage. Before querying e the distribution of the root is uniform on C, so the probability

it lies in B is
|B|

|A|+ |B|
≤ 3|B|

n
. If the root does not lie in B, the decision tree has c − |B|

coins remaining, so then it can win the came with probability at most
3(c− |B|)

n
+

1

10
by the

inductive hypothesis. By union bound, the probability the tree wins the game is at most

3|B|
n

+
3(c− |B|)

n
+

1

10
=

3c

n
+

1

10

Since the decision tree starts off with
n

50d
coins, it can win with probability at most

3

50d
+

1

10
<

2

3
. Hence, with probability ≥ 1

3
, the partial assignment seen by the decision tree after q

queries lies in P .

Now we have all the ingredients require to prove (n/2000, n/2000)-DT-hardness of Φ.

Proof. (of Theorem 8.2) Choose the set of partial assignments P as defined in Section 8.1.1.
We have already established that this set P satisfies all requirements in Definition 8.1 defining
DT-hardness.

• No falsification and Downward Closure: Established in Lemma 8.4.

• Hardness against decision trees: Established in Theorem 8.9.

This completes the proof.

8.2 Onto (p, q)-PDT Hardness

Theorem 8.9 shows that Tseitin contradiction over a constant degree expander is (Ω(n),Ω(n))-
DT hard. In this section, we show how to modify the proof of Theorem 8.9 (in a white-box
manner) to prove the original requirement of (p, q)-PDT hardness for p, q = Ω(n).

Recall the condition for (p, q)-PDT hardness:

• Hardness: Let A ⊆ Fnb
2 be an affine space with |Ĉl(A)| ≤ p. Let y ∈ FVARS(Cl(A))

2 be
an extendable closure assignment for A such that α = G(y) ∈ P . Then, there exists a
distribution µ = µ(α) on Fn

2 such that the following properties hold:
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1. z|Cl(A) = α for all z ∈ supp(µ)

2. Let T be any parity decision tree (on nb bits of input) of depth at most q. For any
x, define Ã(x) = AT (x)∩A∩Cy. When x is sampled according to G−1(µ)∩Cy, with
probability ≥ 1/3, it holds that G(x|Cl(Ã(x))) ∈ P .

We state the main result of this section below.

Theorem 8.12. The set of valid assignments P , as specified in Definition 8.3, and the hard
distributions µρ sampled by DTFooling for each ρ ∈ P , together exhibit that Tseitin contra-
dictions on graphs G = (V,E) (with |V | odd) which is are sufficiently good expanders, are
(Ω(n),Ω(n))-PDT hard, where n is the number of variables in the Tseitin CNF (which is also
equal to the number of edges in G).

For a PDT T and an input x, denote by Tj(x) the following affine space:

• Let l1, l2, · · · , lj be the first j linear forms queried by T on input x, and let c1, c2, · · · , cj be
the responses. Then, Tj(x) = {x̃|⟨li, x̃⟩ = ci∀i ∈ [j]} (in case j is more than the number
of queries issued by T on x, define Tj(x) = Tk(x) where k is the number of queries issued
by T on x).

Let Ãj(x) = Tj(x) ∩ A ∩ Cy, for any PDT T , and any affine space A. Also, define A(x) =
Ãr(x) where r is the number of queries made by T on input x.

Since the amortized closure of Ã0(x) := A ∩Cy is at most |Ĉl(A)| ≤ p, we know by Lemma

3.27 that |Cl(A(x))| is at most p+ q. We construct a modified PDT T̃ such that it makes some
additional queries, but it still holds that |Cl(A(x))| ≤ p + q (by Lemma 3.27). We will prove
the lower bound for the modified PDT T̃ , which also implies the lower bound for the original
PDT.
The modification is as follows: suppose originally T was about to query a linear form ℓ, and
that would add k new blocks B1, B2, · · · , Bk to Cl(Ã). Then, the modified PDT T̃ first queries
all bits of B1, B2, · · · , Bk, and then it queries ℓ. (After this stage, Cl(Ã) is the same for both
T and T̃ ).
So we can describe the behaviour of T̃ as follows:

• At any time-step j, T̃ has queried all bits of a subset of blocks Sj ⊂ [n]. At this point, it

holds that Cl(Ãj) = Sj .

• At each time-step, T̃ can either query all bits of some new blocks, or query a general
linear form ℓ such that querying ℓ does not change Cl(Ã).

• In total, it can query at most p+ q blocks.

The crucial observation is the following: suppose currently T̃ has so far queried the subset

Sj of blocks and the current closure assignment is yj ∈ FVARS(Sj)
2 . Suppose αj = G(yj) ∈ P .

Then, the distribution of root(G(x)) as x is sampled from G−1(µ)∩ Ãj ∩Cyj
5, is o(n−20)-close

to uniform (in statistical distance) over the unique odd component of αj . This fact is formally
stated in the next lemma below, which is the lifted analogue of Lemma 8.8. Indeed, the proof
of Lemma 8.13 below will make use of Lemma 8.8.

Recall that for a partial assignment α ∈ FE
2 , the graph Gα is defined to be the original

graph G with the edges fixed by α removed.

Lemma 8.13. Let A ⊆ Fnb
2 be an affine subspace and let y1 ∈ FVARS(Cl(A)) be an extendable

closure assignment such that α = G(y1) ∈ P . Let µ = µα be the distribution in definition 8.7 6.

5Note that since T̃ queries all bits of Cl(Aj) separately, we have that Ãj ⊆ Cyj . But we still write G−1(µ)∩
Ãj ∩ Cyj in the subscript for notational consistency.

6µ is a distribution on Fn
2 such that every point in supp(µ) is consistent with G(y). We emphasize that µ

only depends on y, not on A2 or y2
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Let A2 ⊆ A be an affine space, and let y2 ∈ FVARS(Cl(A2))
2 be an extendable closure assignment

for A2 such that β = G(y2) ∈ P and y2 extends y1. Let C be the unique odd component of Gβ.
Then, the conditional distribution of root(G(x)), as x is sampled from G−1(µ) ∩ Cy2 ∩ A2 is
o(n−20)-close to UNIFORM(C) in ℓ1 distance.

Proof. As before, in the proof of Lemma 8.8, conditioned on G(y2), the root cannot lie in any
of the even components.

Claim 8.14. For all u, v ∈ C,

Prx∼G−1(µ)∩A2∩Cy2
[root(G(x)) = u]

Prx∼G−1(µ)∩A2∩Cy2
[root(G(x)) = v]

∈
[
1− o(n−80)

1 + o(n−80)
,
1 + o(n−80)

1− o(n−80)

]
Proof. Let Su be the set of z̃ ∈ F[n]\Cl(A2)

2 such that (z, β) ∈ supp(µ) and root(z, β) = u. Define
Sv similarly. Note that, |Su| = |Sv| by Property (1) in Lemma 8.8.

Let µ̃ be projection/marginal of µ on F[n]\Cl(A2)
2 We re-write the numerator on the LHS in our

claim as follows:

Prx∼G−1(µ)∩Cy2
∩A2

[root(G(x)) = u] =
∑
z̃∈Su

Prx∼G−1(µ)∩A2∩Cy2
[G(x) = (z̃, β)]

=
∑
z̃∈Su

Prx∼G−1(µ)[(x ∈ A2 ∩ Cy2
) ∧ (G(x) = (z̃, β))]

Prx∼G−1(µ)[x ∈ A2 ∩ Cy2
]

(8.1)

Re-writing things, letting M = |supp(µ)|, we get the following:

Prx∼G−1(µ)[(x ∈ A2 ∩ Cy2
) ∧ (G(x) =(z̃, β))]

= Prx∼G−1(µ)[G(x) = (z̃, β)] · Prx∼G−1(z̃,β)[x ∈ (A2 ∩ Cy2
)]

=
Prx∼G−1(z̃,β)[x ∈ (A2 ∩ Cy2)]

M
(8.2)

Note that in the second equality, we have simply used the fact that µ samples every point in its
support uniformly at random. Let, x̃ = x|[nb]−Cl(A2) and x̂ = x|Cl(A2) and p = Prx̂∼G−1(β)[x̂ =

y2]. Finally, let (A2)y2
denote the affine subspace of F[nb]−bCl(A2)

2 induced as follows:

(A2)y2
:= {w ∈ F[nb]−bCl(A2)

2 | (w, y2) ∈ A2}.

Then, continuing from (8.2), we get the following:

Prx∼G−1(µ)[(x ∈ A2 ∩ Cy2
) ∧ (G(x) = (z̃, β))] =

Prx̃∼G−1(z̃)[x̃ ∈ (A2)y2
] · Prx̂∼G−1(β)[x̂ = y2]

M

=
p

M
Prx̃∼G−1(z̃)[x̃ ∈ (A2)y2

]

=
p

M

|G−1(z̃) ∩ (A2)y2
|

|G−1(z̃)|
(8.3)

Combining (8.1) and (8.3), we get

Prx∼G−1(µ)∩Cy2
∩A2

[root(G(x)) = u] =
p

M · Prx∼G−1(µ)[x ∈ A2 ∩ Cy2
]

∑
z̃∈Su

|G−1(z̃) ∩ (A2)y2 |
|G−1(z̃)|

Let d = codim(A2)y2 . Note that (A2)y2 is a nice affine space, so by Lemma 5.7 we have for
all z̃,

|G−1(z̃) ∩ (A2)y2
|

|G−1(z̃)|
∈
[
1− o(n−90)

1 + o(n−90)
× 1

2d
,
1 + o(n−90)

1− o(n−90)
× 1

2d

]
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Thus,

Prx∼G−1(µ)∩Cy2∩A2
[root(G(x)) = u] ∈ p|Su|

Prx∼G−1(µ)[x ∈ A2 ∩ Cy2 ]M2d

[
1− o(n−90)

1 + o(n−90)
,
1 + o(n−90)

1− o(n90)

]
The same bounds hold for the denominator (the corresponding expression for v), so we have
that (since, by Property (1) of Lemma 8.8, |Su| = |Sv|)

Prx∼G−1(µ)∩A2∩Cy2
[root(G(x)) = u]

Prx∼G−1(µ)∩A2∩Cy2
[root(G(x)) = v]

∈
[
1− o(n−80)

1 + o(n−80)
,
1 + o(n−80)

1− o(n−80)

]

The proof of Lemma 8.13 follows easily from Claim 8.14. We shall show that for all u ∈ C,∣∣∣∣Prx∼G−1(µ)∩A2∩Cy2
[root(G(x)) = u]− 1

|C|

∣∣∣∣ ≤ o(n−70)

This means root(G(x)) and UNIFORM(C) are o(n−70) close in ℓ∞ distance, which implies they
are o(n−50) close in ℓ1 distance.

There exists a v ∈ C such that Prx∼G−1(µ)∩A2∩Cy2
[root(G(x)) = v] ≥ 1

|C|
(since the support

of root(G(x)) conditioned on x ∈ A2 ∩ Cy2 is C), so

Prx∼G−1(µ)∩A2∩Cy2
[root(G(x)) = u] ≥ 1

|C|
× 1− o(n−80)

1 + o(n−80)
≥ 1

|C|
− o(n−70)

Similarly

Prx∼G−1(µ)∩A2∩Cy2
[root(G(x)) = u] ≤ 1

|C|
+ o(n−70)

The result follows.

We have all the technical results in place for proving Theorem 8.12, the main result of this
section stating that Tseitin contradictions on expanding graphs are Ω(n),Ω(n))-PDT hard.

Proof Sketch of Theorem 8.12. First modify the given PDT as described above (after the state-
ment of Theorem 8.12). The rest of the proof proceeds identically to the proof of the (p, q)-DT
hardness where Lemma 8.11 made repeated use of the (perfectly) uniform distribution of the
root as given by Lemma 8.8. Here we have to straightforwardly modify the argument in the
proof of Lemma 8.11 by invoking Lemma 8.13 instead of Lemma 8.8 – every time the PDT
queries some new blocks, it has to pay some money depending on how much the odd connected
component shrinks. Since the conditional distribution of the root is close to uniform on the
odd component, with high probability it will end up in the largest component during each cut
(in the same way as in the unlifted case). The linear queries which don’t affect the closure do
not affect the conditional distribution of the root in any significant way.

For completeness, we have presented a complete self-contained proof of Theorem 8.12, using
Lemma 8.13, in Appendix B
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9 Putting everything together

With Theorem 8.12 in hand, we are now in a position to prove our main result, Theorem 1.1.

Proof. (of Theorem 1.1) Let Φ be the Tseitin contradiction on G. Theorem 8.12 shows that
that Tseitin contradiction over an expander is (Ω(n),Ω(n))-hard. It is also known that the
Inner Product gadget has exponentially small Fourier coefficients (Theorem 6.2). Applying
Theorem 7.2, we get the following result:

• Any size s refutation of Φ ◦ IP must require depth Ω

(
n2

log(s)

)
Note that the number of variables in Φ ◦ IP is N = O(n log(n)). We can also interpret the

result as follows:

• Any depth N2−ϵ Res(⊕) refutation of Φ ◦ IP requires size exp(Ω̃(N ϵ))

This is what we wanted to show.
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Appendices

A Facts about Amortized Closure

Proof. (of Lemma 3.26) Cl(V ) = Cl(W ) follows from the definition of closure.

To see that Ĉl(V ) = Ĉl(W ), consider the following set: Vin = {v|v ∈ span(V ), supp(v) ⊆
Cl(V )}. LetBin = {v1, v2, · · · , vt} be a basis for Vin, and extend it to a basisB = {v1, v2, · · · , vt, w1, w2, · · · , wk}
for span(V ). Now replace V in the statement by B - since Ĉl depends only on the span, Ĉl(V )

and Ĉl(W ) do not change.
Define the following matrices:

M =



v1

v2

· · ·

vt


I =

[
eb,j |b∈Cl(V),j∈[b]

]
∈ Fb|Cl(V )|×nb

2

K =



M
w1

· · ·

wt


J =

[
K
I

]
In words, the matrix Ĩ stacks the standard basis vectors ej,k for each j ∈ Cl(V ), k ∈ [b]

together. The matrix K is obtained by stacking the vectors in V . The matrix J is obtained by
stacking the vectors in W .

By the previous fact, the set Cl(V ) is acceptable for the set of vectors Vin.
Let Cl(V ) = {s1, s2, · · · , st}, and suppose we choose indices {c1, c2, · · · , ct} such that cj

lies in block sj and the corresponding columns of M are linearly independent. Consider any

maximally acceptable set for w, S̃. Note that S̃ contains Cl(V ). Since S̃ is acceptable, for
each block p̃ ∈ S̃ we can pick an index IND(p̃) in the p̃-th block such that the corresponding
columns in J are linearly independent. Given any such choice of indices, for each sj ∈ Cl(V ),
we can change IND(sj) to cj and the new choice will still be valid. (Reason: the corresponding
columns in cj are linearly independent in M itself; and the other columns are 0 within the first
t rows.)
Now it is clear that any maximal acceptable set for J is also acceptable for K - simply modify
the IND function as mentioned above.
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Proof. (of Corollary 3.28) By Lemma 3.27 we have that Cl(A) = Cl(B), so Ay, By are nice
affine spaces. It remains to show that codim(By) = codim(Ay) + 1.

Let A = {x|Mx = b} and let the set of rows of M be v1, v2, · · · , vk. Let B = {x|M̃x = b̃}
where M̃ has k + 1 rows, the first k of which are v1, v2, · · · , vk. Let the last row be w.

Let S = Cl(A) = Cl(B). The set of defining linear forms of Ay is v1[\S], v2[\S], · · · , vk[\S]
and the set of defining linear forms of By is v1[\S], · · · , vk[\S], w[\S]. We wish to show
w[\S] is linearly independent from v1[\S], v2[\S], · · · , vk[\S]. This is equivalent to showing
that w does not lie in span({v1, v2, · · · , vk} ∪ {ei,j |i ∈ S, j ∈ [b]}). FTSOC assume w lies in
span({v1, v2, · · · , vk} ∪ {ei,j |i ∈ S, j ∈ [b]}). Thus, w = r + s for some r ∈ span(v1, v2, · · · , vk)
and s ∈ Fn

2 such that supp(s) ⊆ S. Since Cl and Ĉl of a set depend only on its linear span, we
can WLOG replace w by s. Hence, assume supp(w) ⊆ S.

By Lemma 3.26, we have that

Ĉl({v1, v2, · · · , vk, w}) ⊆ Ĉl({v1, v2, · · · , vk} ∪ {ei,j |i ∈ S, j ∈ [b]}) = Ĉl({v1, v2, · · · , vk})

This is a contradiction, since we assumed that

|Ĉl({v1, v2, · · · , vk, w)| = |Ĉl(v1, v2, · · · , vk)|+ 1

B Proof of (Ω(n),Ω(n))-PDT-hardness of Tseitin contra-
diction over an expander

In this Appendix we shall provide a self-contained proof that when Φ is the Tseitin contradiction

over a sufficiently good expander, Φ is
( n

2000
,

n

2000

)
PDT-hard (which was Lemma 8.12 in the

paper). As mentioned in section 8, the following proof simply combines the analogous unlifted
proof of Theorem 8.7 with the equidistribution lemma as applied in Lemma 8.13.

Proof. (of Lemma 8.12)
We choose the set P ⊆ {0, 1, ∗}n to be the same as that in the proof of Lemma 8.7 (there

exists exactly one component with sum
∑

fρ odd and that component has size at least n/2).
We shall show this set of partial assignments is (Ω(n),Ω(n)) hard as defined in Definition 7.1.

We are given an affine space A with Ĉl(A) ≤ p = n/2000 and a closure assignment y ∈ FCl(A)
2

such that G(y) ∈ P :. We start by re-introducing some notation for the convenience of the
reader.

• For a PDT T , define A(T, x, j) to be the following affine space:

– Let ℓ1, ℓ2, · · · , ℓj be the first j queries made by T on x and let b1, b2, · · · , bj be the
responses. Define Aj(T, x) = {x|⟨ℓi, x⟩ = bi ∀i ∈ [j]}. If T issues fewer than j
queries on x, define Aj(T, x) = Aq(T, x) where q is the number of queries issued by
T on x.

– Define Ãj(T, x) = Aj(T, x) ∩ A ∩ Cy.

We choose the distribution µ = µG(y) to be the same distribution defined in section 8
(DTFooling). Following the definition of (p, q)-hardness in Definition 7.1, we have to show
the following:

• Let T be a PDT of depth ≤ n/1000 (working on nb bits). With probability ≥ 1/3, as we
sample x← G−1(µ) ∩A ∩ Cy, letting B = Ã(T, x, n/2000), we have that G(x|Cl(B)) ∈ P
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(The other two requirements, no falsification and downward closure were already es-
tablished in Lemma 8.4.)

Since |Ĉl(A)| < n/2000, by Lemma 3.27 we know that |Ĉl(A(T, x, n/2000))| ≤ n

1000
and

therefore, |Cl(A(T, x, n/2000))| ≤ n

1000
.

We construct a modified PDT T ′ which makes a few more queries than T , but it still holds

that |Cl(A(T ′, x, n/2000))| ≤ n

1000
. The modified PDT functions at follows:

• The PDT T ′ queries in time-steps. At time-step j, it simulates the j-th query of T
and makes some additional queries. Denote by Ã′j(x) to be the affine space after the
j-th time-step – i.e., if K is the total number of queries issued by T ′ till time-step j,
Ã′j(x) = ÃK(T ′, x)

The following invariant is maintained by T ′:

• At the end of time-step j, let Sj = Cl(Ãj) be the closure of the current affine space. Then,

at this point, T ′ has queried all bits of VARS(Sj). It also holds that Sj = Cl(Ã(T, x, j))
(where recall that Ã(T, x, j) was the subspace of the original PDT T ).

The simulation of T ′ happens as follows:

• Suppose the invariant is maintained till time-step j−1: it holds that Sj−1 = Cl(Ãj−1(T )) =

Cl(Ã′j−1) is the closure at time-step j−1. At time-step j, the original PDT was about to
query a linear form ℓ. Suppoe querying ℓ adds the blocks B1, B2, · · · , Bk to ℓ. Then, T ′

first queries all coordinates in VARS({B1, B2, · · · , Bk}), and then queries Cl(Ã′j . After
this time-step j finishes. All necessary invariants are maintained by Lemma 3.26.

To summarize, can describe the behavior of T ′ as follows:

• At each time-step j, T ′ queries all coordinates of a set of blocks Tj ⊆ [n]. Then, it issues
some general linear queries which do not affect the closure.

Now we essentially lift the argument in the proof of Theorem 8.7 in this case. We introduce
some notation first:

• Let Sj = Cl(Ãj−1(T )) = Cl(Ã′j(x)) be the closure at time-step j.

• Let yj ∈ FVARS(Cj)
2 be the closure assignment at time-step j. Note that T ′ knows yj at

the end of time-step j.

• Let ρj = G(yj) and Gj = Gρj (the graph obtained by deleting all edges fixed by ρj).

We start with the following consequence of Cheeger’s inequality.

Lemma B.1. For all j ≤ n/2000, the largest connected component of Gj has size at least

n
(
1− n

50d

)
.

Proof. Suppose all connected components of Gj have size at most n
(
1− n

50d

)
. Then, we

can pick a subset of the connected components such that their union, S has size in the range[
n

100d
, n

(
1− 1

100d

)]
. By Cheeger’s inequality (Lemma 6.1) the cut |E(S, V \S)| has at least

n

500
edges. However, the current partial assignment ρj can fix at most |Cl(A)| + j ≤ n/1000

edges. This is a contradiction.
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Suppose the current partial assignment ρj lies in P . By Lemma 8.13, the conditional dis-

tribution of root(G(x)), as x← G−1(µ)∩ Ãj ∩Cyj
(= G−1(µ)∩ Ãj) is o(n

−20) close to uniform
on the unique odd component of ρj .

We make the PDT T ′ pay us some amount of coins at each time-step according to the
following rules.

• Suppose at time step j, T ′ queries the sets of coordinates in B1, B2, · · · , Bk. Let C be
the odd component of ρj . In ρj+1, C splits as

C = C̃1 ∪ C̃2 ∪ · · · ∪ C̃h

By Lemma B.1, one of the C̃js has large size; say |C̃1| ≥ n
(
1− n

50d

)
. After the responses

to the queries are revealed, it is revealed in which component root(G(x)) lies. If it does
not lie in C̃1, the PDT does not pay anything and wins the game. If it lies in C̃1, the
PDT has to pay |C| − |C̃1| coins and the game continues.

By Lemma B.1, the PDT never pays more than
n

50d
coins. So we award the PDT a budget

of
n

50d
coins. We say the PDT loses the game when it has to pay some coins but it is broke.

Our goal is to show that the PDT loses the game with high probability. We prove the following
statement by induction.

Lemma B.2. Suppose the PDT has c coins remaining and has not won the game yet. Then,

the probability it wins the game is at most
5c

n
+

1

5
.

Proof. We induct on c. We prove the base case c = 0 first. When the PDT has no coins remain-
ing, for the PDT to win the game, whenever it splits the odd component, the root has to lie in
one of the smaller components. Suppose the current odd component C splits as C̃1∪C̃2∪· · ·∪C̃h

where |C̃1| ≥ n
(
1− n

50d

)
. By Lemma 8.13, conditioned on the current information obtained

(before querying the new blocks), the distribution of root(G(x)) is o(n−20) close to uniform on

C. So the probability the root does not lie in |C̃1| is ≤
|C| − |C̃1|
|C|

+ o(n−20) ≤ 1

5
. This proves

the base case.

Now we prove the induction step. Suppose the PDT has c > 0 coins remaining, and at some

time-step it splits the current odd component C into C̃1∪C̃2∪· · ·∪C̃h where |C̃1| ≥ n
(
1− n

50d

)
.

By Lemma 8.13, conditioned on current information obtained (before querying the new blocks),
the distribution of root(G(x)) is o(n−20) close to uniform on C. So the probability the root

does not lie in |C̃1| is ≤
|C| − |C̃1|
|C|

+ o(n−20) ≤ 5(|C| − |C̃1|)
n

. If the root does not lie in |C̃1|,

the PDT has to pay |C| − |C̃1| coins, and by the induction hypothesis it then wins the rest of

the game with probability at most
5(c− (|C| − |C̃|))

n
+

1

5
. By union bound, the probability the

PDT wins the game is at most

≤ 5(|C| − |C̃1|)
n

+
5(c− (|C| − |C̃1|))

n
+

1

5
=

5c

n
+

1

5

Since the PDT starts with a budget of
n

50d
, the probability it wins the game is at most

1

3
by Lemma B.2. The desired result now follows.
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