Electronic Colloquium on Computational Complexity, Report No. 107 (2025)

Extractors for Samplable Distributions from the Two-Source
Extractor Recipe

Justin Oh* Ronen Shaltiel®

Abstract

Trevisan and Vadhan [TV00] first constructed seedless extractors for distributions samplable
by poly-size circuits under the very strong complexity theoretic hardness assumption that E =
DTIME(2°9(™) is hard for exponential size circuits with oracle access to ¥f . Their construction
works when the distribution has large min-entropy k = (1 —) - n, for small constant v > 0.

Recent works build on the approach of [TV00]. [BDSGM23] obtain the same result under the
weaker assumption that there is a problem in E that is hard for exponential size nondeterministic
circuits. [BSS25] and [Sha25] improve the min-entropy threshold to k¥ = n'~7 and k = nM)
respectively, reinstating oracle access to - for some i in the assumption.

We introduce a new approach, inspired by constructions of two-source extractors [CZ16,
BDT19], using a new (and incomparable) hardness assumption that only involves deterministic
circuits. Our approach reduces the task of constructing extractors for samplable distributions to
constructing explicit non-malleable extractors with short seed-length.

Our new assumption has the same flavor as the classic assumption of [IW97] that E is
hard for exponential size circuits, and similar to one recently considered in the context of fast
derandomization [CT21]. Specifically, we assume that there is a constant 0 < « < 1 such that for
every constant Chaq > 1, there exists a constant Ce,sy and a problem in DTIME(2C=+") that is
not in DTIME(2Chm) /22" The key feature here is that we allow the “adversary” to run in time
larger than 2™ while still only using less than 2" bits of nonuniformity. Under this assumption,
we use currently known constructions of non-malleable extractors to get the following results:

® An extractor for samplable distributions with min-entropy & slightly larger than /2. This
is the first construction of any such extractor under an assumption that does not give the
adversary nondeterminism.

* An extractor for samplable distributions with min-entropy k£ = O(logn - loglogn) also
follows if, in addition to the new assumption, we also have the aforementioned assumption
of [BDSGM23], namely, that E is hard for exponential size nondeterministic circuits. This
is the first construction in the regime of k£ < poly log n under any assumption.

We also show that future improvements of the seed length of the best current non-malleable
extractors [Lil7] would imply the second result without the additional assumption.

Our key observation is that when a given source is samplable, the set of “bad” seeds to a
non-malleable extractor is efficiently recognizable. We utilize this observation to show that
in the constructions of two-source extractors in [CZ16, BDT19], we can hope to replace the
“second source” with (the truth table of) a sufficiently hard function. Thus our work reveals an
unexpected connection between two-source extractors and extractors for samplable distributions,
similar to Trevisan’s connection between extractors and PRGs “in the other direction.”

“University of Haifa. sung-ho.oh@fulbrightmail.org. Supported by a Fulbright Postdoctoral Fellowship and ISF
grant 1006/23.

"University of Haifa. ronen@cs.haifa.ac.il. Supported by ISF grant 1006/23 and also co-funded by the European
Union (ERC, NFITSC, 101097959).

ISSN 1433-8092

Contents

1

Introduction
1.1 OurResults e
1.2 Comparison to Previous Work on Extractors For Samplable Distributions

Technical Overview

21 TheSolutionataHighLevel
2.2 Trouble with Parameters
2.3 The Solution of [BDT19], and Its Computational Analogue
2.4 The Final Piece: Sufficiently Good Explicit Non-Malleable Extractors
2.5 Perspective: A Computational Analog of Two Source Extractors

Preliminaries

3.1 Random Variables e e
3.2 Definition of Circuits of Various Types
3.3 Hardness Assumptions
3.4 Pseudorandom Generators. e e e e e e
35 DISpersers e
3.6 Majority as an Extractor for Non-oblivious Bit Fixing Sources
3.7 Non-Malleable Extractors e

PRGs For Procedures With Large Time and Small Advice
An Algorithm For Recognizing Bad Seeds

A “Somewhere Pseudoentropy Generator” for IsBad

The Extractor Construction

Nice Seeded Non-Malleable Extractors for Samplable Distributions
81 Proofof Theorem 8.4 e
8.2 A Final Remark: PRGson PRGsonPRGs

Discussion and Open Problems
9.1 Evaluating the New Hardness Assumption
92 OpenProblems

10 Acknowledgments

G1 N =

22

24

29

33
35
38

38
38
39

40

1 Introduction

A natural model of the sources of randomness that may occur in nature, or that are otherwise
available to a computer, are distributions samplable by some efficient model of computation, such
as polynomial size circuits. Trevisan and Vadhan [TV00] first considered the possibility of seedless
extraction from such sources. They aimed to design a procedure that can convert such distributions
into the uniform distribution, where it can be used in countless applications such as randomized
algorithms and cryptography.

Definition 1.1. A distribution X over {0,1}" is samplable by size s circuits, if there is a circuit X :
{0,1}° — {0, 1}" (we will use X to denote both for the distribution and the circuit) such that the distribution
X is obtained as X (Us).

A (seedless) (k, e)-extractor for distributions samplable by circuits of size s, is a function:

Ext: {0,1}" — {0,1}™

such that for every distribution X over {0, 1}" that is samplable by size s circuits, and has Hoo(X) > k, we
have that Ext(X) is e-close to Uy,.".

[TV00] show that if Ext is an extractor for samplable distributions computable in time s, then Ext
cannot be computed by circuit of size slightly smaller than s. Given our current inability to prove
circuit lower bounds, this means that explicit constructions of extractors for distributions samplable
by circuits of size s = n® (for any constant ¢ > 1) require hardness assumptions. Furthermore, even
with hardness assumptions, if we want such extractors to run in poly(n) time, then this polynomial
must be larger than n¢. Trevisan and Vadhan [TV00] show how to construct such extractors under
a hardness assumption for a certain generalization of nondeterministic circuits.

Hardness assumptions against various types of circuits. Recall that E = DTIME(29(™)). We say
that “E is hard for exponential size circuits of type X” if there exist constants 0 < o < Ceasy, and a
language L in DTIME(2% ™), such that for every sufficiently large n, the characteristic function
of L on inputs of length n cannot be computed by circuits of size 2°" of type X. See also formal
statement in Definition 3.4.

The assumption that E is hard for exponential size (deterministic) circuits was used by the
celebrated paper of Impagliazzo and Wigderson [IW97] to imply that BPP = P. The stronger
assumption that E is hard for exponential size nondeterministic circuits (see Definition 3.2 for
a formal definition of nondeterministic circuits) was introduced in the context of hardness vs.
randomness tradeoffs for AM [KvM02, MV05, SU05, SU06].

In their seminal paper on extractors for samplable distributions, Trevisan and Vadhan [TV00]
used this form of assumption for an even stronger “nondeterministic circuit class”. More specifically,
a Y;-circuit, is a circuit that in addition to the standard gates, is also allowed to use a special gate
(with large fan-in) that solves the canonical complete language for the class XF (namely, the i'th
level of the polynomial time hierarchy). See Definition 3.2 for a formal definition of ¥;-circuits.

Previous work on extractors for samplable distributions. The extractor of Trevisan and Vadhan
[TV00] relies on the strong assumption that E is hard for exponential size 3¢-circuits. Under this

!See Section 3.1 for various definitions such min-entropy, and statistical distance

hardness assumption, [TV00] showed that there exists a constant v > 0 such that for every constant
¢ > 1, there is a (k, €)-extractor for distributions samplable by size n circuits, where k = (1 —) - n,
e = n~ ¢ and the extractor runs in time poly(n°). The seminal result of Trevisan and Vadhan leaves
two things to be desired.

¢ The min-entropy of X is required to be k = (1 —) - n for some small v > 0. One would hope
that k£ can be as small as what [TV00] prove is possible nonexplicitly. For example, for one
output bit m = 1, constant € > 0, and X samplable by circuits of size n° they show that k£ can
be O.(logn).

¢ One could hope that the hardness assumption used for the construction is minimal, or at least
not mention nondeterministic or Yg-circuits.

Subsequent work on extractors for samplable distributions aims to address these two issues. Ball,
Dachman-Soled, Goldin, and Mutreja [BDSGM23] construct extractors with the same parameters
as in Trevisan and Vadhan [TV00] under the weaker assumption that E is hard for exponential size
nondeterministic circuits. Ball, Shaltiel and Silbak [BSS25] improved the min-entropy parameter
to k = n'™7 for some constant v > 0. This is achieved under the assumption that E is hard
for exponential size ¥s-circuits. Shaltiel [Sha25] further improved the min-entropy parameter to
k = n'/? under the assumption that E is hard for exponential size ¥, 3-circuits (giving a tradeoff
between min-entropy and hardness assumption). See Table 1 for a summary of previous work.

We note that all previous works build off of the core ideas of [TV00] and build on hardness assumptions
against nondeterministic circuits. It was pointed out in [Sha24] that all existing proofs yield extractors
for a class of distributions that is richer than the class of samplable distributions, and that such
extractors imply lower bounds against nondeterministic circuits (see [Sha24] for a precise formu-
lation). Consequently, it seems that the current approach to construct extractors for samplable
distributions cannot avoid hardness assumptions against nondeterministic circuits.

1.1 Owur Results

We introduce a new approach for constructing extractors for samplable distributions (that is not
based on the seminal work of Trevisan and Vadhan [TV00]). Instead, our approach is inspired by,
and builds on, the recent breakthrough constructions of two-source extractors by Chattopadhyay
and Zuckerman [CZ16] and the later improvement by Ben-Aroya, Doron and Ta-Shma [BDT19].

Using this new approach one can aim to achieve extractors for samplable distributions for very
low min-entropy parameter k. We obtain extractors for k£ = O(logn - loglog n) which comes very
close to the min-entropy threshold k£ = O.(log n) obtained by a nonexplicit argument [TV00]. Our
approach relies on a hardness assumption that is incomparable to those used in previous work on
extractors for samplable distributions, and which we now introduce.

1.1.1 A New Hardness Assumption for Extractors for Samplable Distributions

We introduce a new hardness assumption of a flavor that was not considered in previous work
on extractors for samplable distributions. The assumption is incomparable previous the previous
ones. Chen and Tell [CT21] considered stronger version of the assumption in the context of fast
derandomization. The assumption considers a circuit model where running time is separated from
the amount of nonuniformity.

Separating time and advice in the definition of circuits. We consider a circuit model which
separates running time from advice. More specifically, we will consider nonuniform procedures
that run in time ¢, and use a < ¢ bits of advice. (A formal definition of this circuit model is given in
Definition 3.3). Standard (deterministic) circuits of a certain size s correspond to the case where
t = a = s, and we will be interested in a setting in which ¢ > 2" and a < 2". (Obviously allowing
a > 2™ makes such a circuit all-powerful, and we do not allow this). More specifically, we will
consider procedures which on input length n, are allowed to run in time 2% (for some constant
Chard > 1) and use a = 2™ bits of advice, for a constant 0 < a < 1. We will scale the assumption of
[IW97] against such procedures, as follows:

New hardness assumption against circuits with 20" time and 2" advice. We say that “E is
hard for large exponential time with exponential advice” if there exists a constant « > 0, such that for
every constant Charg > 1, there exists a constant Ceasy > Chard, and a language L in DTIME(QCeaSY‘”),
such that for every sufficiently large n, the characteristic function of L on inputs of length n cannot
be computed by nonuniform procedures that run in time 2" and use 2°™ bits of advice. See
also formal statement in Definition 3.5.

To the best of our knowledge, hardness assumptions of this form (separating time from advice)
were first introduced by Chen and Tell [CT21] (see also [CT23]) in the context of fast derandomiza-
tion. The assumption that we introduce is quantitatively weaker than the assumptions introduced
previously by [CT21].2

Comparing Hardness Assumptions. The assumption that E is hard for large exponential time
with exponential advice is incomparable to the previous assumptions used in the context of
extractors for samplable distributions. That is, it is not known whether “E is hard for large
exponential time with exponential advice” implies “E is hard for exponential size non-deterministic
circuits (or X;-circuits)” or vice versa. The new assumption is stronger as it allows the “adversary”
a polynomial increase in time 2¢herd'™ = poly(2%™), and weaker in the sense that it does not give the
“adversary” nondeterminism. A discussion on potential instantiations of this assumption appears
in Section 9.1.

7

1.1.2 A Reduction from Extractors for Samplable Distributions to Non-malleable Extractors

Following the two-source extractor constructions of [CZ16, BDT19] our construction relies on
(seeded) non-malleable extractors. These extractors (defined by Dodis and Wichs [DW(09]) are a
variant of (standard) seeded extractors with an additional property. A precise formal definition
appears in Definition 3.16, however, the precise formal definition is not necessary to describe our
results for readers familiar with (standard) seeded extractors.

We say that an explicit construction of non-malleable extractors is “nice” if the seed-length
is d = O(log ;) (at least when enpy, is not too small). A precise formal definition of a “nice
construction of non-malleable extractors” appears in Definition 3.17. Our main contribution is the
following theorem (stated more formally in Theorem 7.1).

2The hardness assumption considered in [CT21] considers a case where « is very close to one, whereas we allow «
to be close to zero. This makes our assumption weaker. The hardness assumption in [CT21] also requires that Ceasy is
only slightly larger than Chard, whereas we allow arbitrary dependence on of Ceasy on Chara. Once again, this makes our
assumption weaker. However, the two assumptions are of the same flavor apart from these quantitative differences.

Theorem 1.2 (Informal). If
 E is hard for large exponential time with exponential advice, and
* there is a nice construction of non-malleable extractors for min-entropy k,

then for every constant ¢ > 1, every constant € > 0, and every sufficiently large n, there is a (k, €)-extractor
Ext : {0,1}" — {0, 1} for distributions samplable by circuits of size n°. Furthermore, Ext runs in time

poly(n©).

Plugging in a nice explicit construction of non-malleable extractors by Cohen, Raz and Segev
[CRS14] (which works for min-entropy k that is slightly larger than 5) we obtain the following
result.

Theorem 1.3 (Extractors for samplable distributions with min-entropy £ slightly larger than n/2). If
E is hard for large exponential time with exponential advice, then for every constants ¢ > 1, and ¢, > 0 and
for every sufficiently large n, there is a (k = (5 +7) - n, e)-extractor Ext : {0, 1}" — {0, 1} for distributions
samplable by circuits of size n¢. Furthermore, Ext runs in time poly (n°).

Recent constructions of non-malleable extractors ([CGL16, Cohl6b, Cohl6a, CL16] culminating
in [Li17]) achieve d = O(logn) for very low min-entropy k£ = polylogn. Indeed, these non-
malleable extractors are a key ingredient in the aforementioned constructions of two-source extrac-
tors (that inherit this min-entropy [CZ16, BDT19]).

Unfortunately, at this point in time, these explicit constructions are not “sufficiently nice”
for our purposes, as the dependence on e, is “slightly off”. More specifically, instead of seed
length d = O(log ;=) = O(logn + log i), these construction require seed length at least d >

4

logn + log i - log log i

By Theorem 1.2, if these constructions are improved to give “nice non-malleable extractors”
(which is a well known open problem) then our approach immediately produces extractors for
samplable distributions for the very low min-entropy of £ = O(log n - loglog n).

Our next result bypasses the lack of nice constructions of non-malleable extractors for low
min-entropy, by showing that we can obtain extractors for samplable distributions for min-entropy
k = O(logn - loglog n) with current non-malleable extractors. However, to achieve this, in addition
to the (new) assumption that E is hard for large exponential time with exponential advice, we also
assume the weakest assumption that was previously used in the context of extractors for samplable
distributions, namely that E is hard for exponential size nondeterministic circuits. This is stated in
the theorem below.

4

Theorem 1.4 (Extractors for samplable distributions with min-entropy k& = O(logn - loglogn)). If
 E is hard for large exponential time with exponential advice, and
 E is hard for exponential size nondeterministic circuits

then for every constant ¢ > 1, every constant ¢ > 0, and every sufficiently large n, there is a (k =
O(logn - loglogn), e)-extractor Ext : {0,1}" — {0, 1} for distributions samplable by circuits of size n°.
Furthermore, Ext runs in time poly (nc).

As we explain in Section 8 below, this result follows as we can use the additional hardness
assumption to convert current non-malleable extractors into nice non-malleable extractors (in
the special case that the source is efficiently samplable, which is sufficient for our purposes).
Nevertheless, we stress again that we should expect to get nice non-malleable extractors with low
min-entropy without additional hardness assumptions, and such a result would get rid of the
second assumption.

1.2 Comparison to Previous Work on Extractors For Samplable Distributions

Table 1: Comparison of constructions of extractors for distributions samplable by size n¢ circuits.
In all results v > 0 is some small constant, and we ignore technicalities like “infinitely often”.

Work Min-entropy k | Assumption Comments
[TVO00] (I—=9)n E is hard for exponential size ¥-circuits: m =k,
e=n"°¢
30 < o <1 < Cepgy .t
DTIME(2C=sm) ¢ SIZE™6 (207)
[BDSGM23] | (1 —7)n E is hard for exponential size nondeterministic circuits: m =k,
e=n"¢
30 < a <1< Cesy 8.t
DTIME(2C=™) ¢ NSIZE(2%™)
[BSS25] nl=7 E is hard for exponential size X5-circuits: m=k,
e=n"°¢
30 < <1 < Ceagy S0t
DTIME(2C=om) ¢ SIZE™: (207)
[Sha25] nt/? E is hard for exponential size ¥;_ 3-circuits: m=k,
e=n"°¢
30 < o <1 < Ceagy 8.t
DTIME(2C=>"") ¢ SIZE®i+a (20°m)
This work | Any k (i) E is hard for large exponential time with exponential advice: | m =1,
Theorem 1.2 any constant
30 < o < 1, s.t. VChard > 1, FCeasy > Chard S-t. e>0
DTIME(2C=s) ¢ SIZE(2Chera™) /20
(ii) There is a “nice non-malleable extractor” for min-entropy k.
This work (% +79)-n E is hard for large exponential time with exponential advice: m=1,
Theorem 1.3 any constant
40 < a < 1, s.t. VCharg > 1, HCeasy > Chard S.t. e>0
DTIME(2Csm) ¢ SIZE(2Chaam) /2
This work | logn -loglogn | (i) E is hard for large exponential time with exponential advice: | m =1,
Theorem 1.4 any constant
30 < o <1, s.t. VChard 2> 1, FCeasy > Chard S-t. e>0
DTIME(2C=s™) ¢ SIZE(2 ™) /20
(ii) E is hard for exponential size nondeterministic circuits:
30 < a <1< Ceasy 8.t
DTIME(2C=™) ¢ NSIZE(2%™)

A comparison of our results and the previous results appears in Table 1.

Advantages. In Section Section 1.1.1, we have already elaborated on the difference between our
new hardness assumption (that E is hard for large exponential time with exponential advice) and
compared it to the assumptions previously used in extractors for samplable distributions.

We stress again that as demonstrated in Theorem 1.3, our approach already gives extractors
for samplable distributions for min-entropy k = (3 +) - n (that is smaller than that achieved by
Trevisan and Vadhan [TV00]) under a hardness assumption that does not involve nondeterministic
circuits.

Furthermore, by Theorem 1.2 (and as explained earlier) if current explicit constructions of
non-malleable extractors can be improved, then extractors for samplable distributions with very
low min-entropy of £ = O(logn - loglog n) (which is close to the O.(log n) bound achieved by the
probabilistic method [TV00]) immediately follow.

Moreover, as shown in Theorem 1.4 even with current non-malleable extractors (which are not
sufficiently “nice” for our purposes) we can obtain extractors for samplable distributions with
very low min-entropy of £ = O(log n - loglog n), if in addition to the new hardness assumption, we
also assume the weakest assumption assumed previously in this context. We stress that extractors
for samplable distributions with such low min-entropy were not previously known under any
assumption.

Drawbacks. Two drawbacks of our new results is that at the moment:

* We only obtain extractors for samplable distributions that output one bit, whereas previous
work obtained extractors that output m bits, for m is that is very close to k.

¢ We only obtain extractors for samplable distributions that have constant error € > 0, whereas
previous work obtain extractors with error ¢ = n~¢, and sometimes even “multiplicative
error” [Sha24, Sha25].

While these are significant drawbacks, we believe that these drawbacks are not inherent to the new
approach, and in Section 2.5 we elaborate on potential directions to overcome these issues.

2 Technical Overview

In this section we provide a high level explanation of the proofs of Theorem 1.2, Theorem 1.3, and
Theorem 1.4. In Section 2.1 we review the ideas behind the construction of two-source extractors
in [CZ16], and we also explain the computational analogue of their technique as relevant to our
problem. In Section 2.2, we discuss some additional technical details using the (computationally
analogous) ideas of [BDT19] that are required to make our parameters work from the tools available
to us. The two sections mentioned above are sufficient for Theorem 1.2 and Theorem 1.3. Finally, in
Section 2.4, we show how to utilize recent constructions of non-malleable extractors that do not
quite have the right seed length in order to achieve Theorem 1.4.

The later technical sections contain full definitions, statements and proofs and do not build on
the informal explanation of this section. The readers can skip to the technical section if they wish.

2.1 The Solution at a High Level

We first give a high level overview of the construction of two-source extractors from [CZ16].

The Reduction from Two-Source Extractors to Non-Malleable Extractors. [CZ16] provides
a construction of two source extractors using non-malleable extractors (see Definition 3.16 for
a precise definition). We'll first discuss the high level points of this result, which entails first
discussing the notion of a non-malleable extractor, and what a “bad” seed means in this context.
Following the work of [CZ16], a (¢, k, enm)-non-malleable extractor

nmExt: {0,1}" x {0,1}¢ — {0,1},

has the property that for any X with min-entropy k, for most seeds y, nmExt(X, y) close to uniform,
even conditioned on the outcomes nmExt(X,y1), ..., nmExt(X, y;) for any other choice of distinct
seeds y1,...,y:. A bit more formally, for hy(x) = nmExt(z,y), and any y1,...,y; all unique and
distinct from y:

A (y(X), By, (), gy (X)): (U, By (X, Py (X)) < v/ M

We say that a seed with this property is “good.” The set of good and bad seeds depend on X, and
for a non-malleable extractor, there are at most |/cnm - 2¢ bad seeds. A precise formal statement
appears in Theorem 3.21. Roughly speaking, with a bit more work, this implies that the distribution
Z = {nmExt(X, y)}y {0,134 ON 27 bits has the property that the restriction of Z onto the good
coordinates (corresponding to good seeds) is (y = |/€nm)-almost t-wise independent; that is, further
restricting to any subset of ¢ good coordinates yields a distribution that is y-close to U;. There are
at most ¢ = \/€,m bad coordinates. Such distributions are called (g, ¢, v)-non-oblivious bit fixing
sources (see Definition 3.13 for a formal definition).

Extractors for Non-Oblivious Bit Fixing Sources. The above observation is helpful, because it
is possible to construct seedless extractors for such sources. This follows from the fact that there
are such extractors when v = 0; that is, when the restriction to good coordinates is truly t-wise
independent. Using the fact that a y-almost ¢-wise independent distribution on R bits is y - R'-close
to a (truly) t-wise independent distribution, and applying such an extractor on Z yields the final
extractor, with an added error of v - R'. Here lies the main caveat, as pointed out in [CZ16]. We
said above, that v = \/enm and R = 2¢. However, d and en, are related. Indeed, by the known lower
bound of [RT00], d > log &~ — O(1). One can check that this means that - R' is always greater
than 1. ;

The key insight of [CZ16] is to instead pick a subset S of R coordinates containing roughly
the same fraction of bad seeds. The restriction of coordinates to S is still a non-oblivious bit
fixing source with a similar ¢. Furthermore, using a second independent source X5, and using a
seeded extractor, they can construct the subset so that its size R is unrelated to d, and therefore epp,.
Specifically given a sample x5 ~ X, the subset S they construct is the image of Ext(xz,) for an
appropriate Ext: {0,1}" x {0,1}" — {0,1}%. Since v and R = 2" are now “decoupled,” they are
free to take the error of the non-malleable extractor as sufficiently small as they please, in order to
make 7 - R' < 1 and they achieve their two source extractor result.

Constructing S in the Case of Samplable Distributions. Since our goal is to construct a deter-
ministic extractor given the fact that X is samplable by a small circuit, we do not have access to a
second independent source X». The key observation we make is that in this scenario, the set of bad
seeds to a non-malleable extractor is recognizable in polynomial time.

Observation 1. Suppose there is a PRG against polynomial size circuits (and computable in polynomial
time). (Such a PRG can be obtained using the seminal work of Impagliazzo and Wigderson [IW97] under
a hardness assumption, see Theorem 3.7 for a precise statement). If X is samplable by a circuit of size n®,
and nmExt: {0,1}" — {0,1}* — {0, 1} is a non-malleable extractor for constant t, with d = log(n/enm),
then for any enm = 1/poly(n) there is an algorithm |sBad x that recognizes the set of bad seeds to nmExt
(with respect to X) in time poly(n).

Indeed, an algorithm IsBadx (y) as follows can decide for a given X and seed y, whether y is
good for X:

* Enumerate all t-tuples of distinct seeds y1, . . ., ;. There are 2% = poly(n) such tuples.

e For each of the 22' subsets S’ C {0,1}', use the PRG to estimate the probability that
(hy(X), hy (X), ..., hy, (X)) fallsin S, and (Uy, hy, (X), ..., hy, (X)) falls in S'.

¢ If these values differ significantly for any v, ..., y: and any S, then Equation (1) is violated
and y is a bad seed.

The key properties that allow IsBadx to run in polynomial time is threefold: the first is that ¢ is
constant, the second is that d = log(n/enm) (and enm = 1/poly(n)), and the third is that h,(X) is
a polynomial size circuit, and so we can execute the second step using the PRG from [IW97] to
estimate the probabilities to within enm. See Section 5 for details.

Since IsBad x runs in polynomial time, we can once again use a PRG (fooling IsBad x) to construct
a subset of seeds S of size R. More concretely, for an appropriate PRG G: {0,1}" — {0,1}%, we
take S = Im(@) C {0, 1}“. The fraction of seeds within S that are bad is also ~ V/Enm.

A Crucial Step: Decoupling R from ¢,,. A crucial property of the subset S, as discussed in the
overview of [CZ16] above, is that its size R should not be related to the error of the non-malleable
extractor enm (or in other words not related to the seed length d). The solution we present here is
one of the core conceptual contributions of this work.

Unfortunately, if S is the image of a PRG constructed as in [IW97], then R and e, will be
inherently related. Indeed, IsBadx runs time in at least 2td and is therefore implementable by a
circuit of roughly the same size. Using the standard constructions of PRGs from [IW97], fooling
circuits of size s requires a seed length of » > log s > td > d. Therefore, R > 24,

To get around this problem, we observe that we do not seek to fool all circuits of size equal to
SIZE(IsBady). In fact, the total number of tests we wish to fool is the total number of sources X
that are samplable by a circuit of size n°. A probabilistic argument shows that a PRG with seed
length r =~ c - logn suffices for this. Notice here, that now R = 2" does not depend on d, it only
depends on the size of the sampling circuits we consider. What remains is to find the right hardness
assumption that allows us to construct a PRG with such seed length that fools all IsBad x.

We observe that IsBadx is an algorithm that runs in time poly(n) > n® but with only n° bits
of advice. That is, the only nonuniformity in these algorithms is the description of the circuit
sampling X. Following an idea of [CT21], given a hardness assumption that separates time and
advice, namely that E is hard for large exponential time with exponential advice (see Definition 3.5
for a precise statement), one can adapt the hardness vs randomness framework to construct the
desired PRG. In particular, we can convert a truth table of length poly(n°) of a function that is hard
for algorithms using ~ n¢ bits of advice and time a much larger poly(n) into the desired PRG. Since

the seed length of a PRG obtained by such a transformation is logarithmic in the length of the truth
table, we are done.® The precise details are give in Section 4.

Observation 2. Assuming E is hard for large exponential time and exponential advice, one can construct a
PRG against |sBadx with seed length depending only on the size of the sampling circuit n®, even if IsBadx
runs in a much larger polynomial time (that depends on the seed length of the non-malleable extractor).

As a final note, notice that IsBady requires approximating the difference between the two
distributions in Equation (1) to within \/2,m, which in general takes 1/¢,, samples, and thus a
similar amount of time. Therefore, it is crucial that we can generate these samples in uniform
polynomial time, rather than nonuniformly, so that the amount of advice used by IsBad y remains
n¢, and so R does not depend on d. This is possible since our assumption enables us to compute
the first PRG (the one taken from [IW97]) in uniform polynomial time.

A Final Bird’s Eye View. Overall, the current suggestion for our construction of the extractor
is as follows. We can take a non-malleable extractor nmExt: {0,1}" — {0,1}% — {0,1} with
d = O(logn/enm). As long as enm = 1/poly(n), the set of bad seeds to nmExt for any X samplable
by a circuit of size n¢ is recognizable in polynomial time. Then, we can construct our subset
S of seeds to nmExt using a PRG G : {0,1}" — {0,1}* with seed length r ~ clogn, by setting
S ={G(y) :y € {0,1}"}. Thus |S| = R = n°. On the other hand, we can take the error of the non-
malleable extractor to be £, sufficiently smaller than R~* ~ n~". Since ¢ is constant, this means
enm Only needs to polynomially small. Then overall, the error of the final extractor construction
will be YR = \/EnmR" < 1.

2.2 Trouble with Parameters

So far, we’ve shown that whenever ¢ is constant, we can construct a PRG that samples the set of
bad seeds to nmExt. This in turn produces a non-oblivious bit fixing source for constant ¢. The
extractor for non-oblivious bit fixing sources from [CZ16] requires ¢ = poly logn. Since it is crucial
for us that ¢ remain constant, we follow the ideas of [BDT19] which enables the use of the function
majority as an extractor for such non-oblivious bit fixing sources.

Extractors for Non-Oblivious Bit Fixing Sources with Constant ¢. So far, what we have shown
is that we can construct a subset of coordinates S C {0, 1}¢ such that the restriction of Z to S is a
(g,t, v/nm)-non-oblivious bit fixing source for a constant ¢. As is the case in [CZ16, BDT19], there
are two related questions now. The first question is what is g, and the second question is what
function extracts from such a source with such a g and ¢. To the best of our knowledge, the only
known function that can extract from a non-oblivious bit fixing source when ¢ is constant is the
majority function [Vio14]. However, to do so, majority on R bits requires ¢ < v/R. That is, the total
number of bad coordinates must be at most square root the total number of coordinates.

The fact that ¢ must be so small (relative to the total number of coordinates R) raises challenges,
and we follow the solution of [BDT19], which also uses majority. First, let us make a distinction
between the error of the non-malleable extractor, e,m (Which governs d), and the error of the PRG
eprg. We did not explicitly discuss the error of the PRG in the previous discussion, as it wasn’t a

*We note that our analysis of the hardness vs randomness framework when separating time and advice is easier than
that of [CT21]. This is because we are not concerned with optimizing the seed length beyond the fact that it is O(clog n).

necessary detail until now. However, the seed length of the PRG is r = O(log) while the seed
length of nmExt is d = O(log ;*-). What we learned from the previous discussion, is that r and d
can be unrelated, and in particular, for any choice of eprg we are free to choose enm as sufficiently
smaller than eprg as we please. Doing so does not affect the number of sample points R, although
it does affect where they live, i.e. their length as strings in {0, 1}*.

We now discuss what settings of enm and eprg make sense. First we observe that since the
fraction of bad seeds overall is |/e,m, the fraction of bad seeds in .S is no more than /e,y + eprc =~
eprg for sufficiently small choice of e,m. Therefore, the total number of bad seeds in S is at
most eprg - R. The question now, is whether eprg - R < VR? Unfortunately, the answer is no.
For a PRG with error epgg, the seed length should be r» > logn + 2 - log1/eprg. A calculation
confirms our fears that no choice of eprg gives us what we want. We do note however, that if
r = O(logn) + (1 + B)log1/epre, for some § < 1/2, then there is a sufficently small choice of
eprg = 1/poly(n) such that eprg - R < VR and this is what we aim to achieve.

2.3 The Solution of [BDT19], and Its Computational Analogue

Since [CZ16] obtains the subset of coordinates S by using a second source, X5, and applying a
seeded extractor Ext: {0,1}" x {0,1}" — {0,1}? to it, the same problem discussed above arises
in their technique. Namely, it is also true for seeded extractors that » > logn + 2 - log 1 /¢, and so
q > V' R. However, this is not really an issue for them, as they use a different function than majority,
that can handle such a large ¢ (albeit requiring superconstant t). Since keeping ¢ constant is crucial
for our argument, we follow the approach of [BDT19] in order to use majority (as they do).

Achieving the Right Dependence on cprg: Moving from Pseudorandomness to “Pseudoentropy.”
As [BDT19] analogously point out for the information theoretic case, we observe that the argument
sketched in the previous section for why a PRG works, only uses the fact that the PRG fools
a test with extremely small density ,/e,m. Therefore, we don’t need to fool such a test with a
distribution computationally indistinguishable from the uniform distribution, it suffices to use one
computationally indistinguishable from sufficiently high min-entropy. We elaborate on this idea
Now.

First, observe, that if the seed length of the non-malleable extractor is ¢nm - log(n/enm) for some
constant c¢nm, then the the total number of bad seeds is roughly 2(1=1/enm)d — pl= S (for sufficiently
small choice of nm). Concretely, suppose the total number of bad seeds is D-%®. We claim that this
implies that a generator producing a string with .99d bits of pseudoentropy suffices for our purposes.
Although we won’t formally define such a notion here, the high level idea is that now, the set S has
the property that the fraction of seeds in S that fall within any efficiently recognizable set (such
as IsBadx) cannot be more than the probability any .99d-source does so (with an additional error
epeg)- In particular, this means that for the set of bad seeds, the fraction falling within S is:

D9 1
D99 T EPEG = o7 T EPEG
Once again, by taking enm sufficiently small, which in turn makes D sufficiently large, this fraction
is &~ epeg. See Definition 6.1 for the precise notion of pseudoentropy we consider.
The upshot here is that, just as that it is possible to construct condensers with seed length
1-log1/epeg (as [DPW14, BDT19] point out), it is plausible to construct pseudoentropy generators

10

with the same dependence on epgg.*

A Table of Seeds, and the XOR Trick Unfortunately, since we are unaware of any suitable
constructions of pseudoentropy generators with d ~ 1 - log 1 /epgg, we must again follow the ap-
proach from [BDT19] to circumvent this barrier. Following their observation, we show that an even
weaker object than either a pseudorandom generator or pseudoentropy generator suffices for our
application. Instead, the object we construct, roughly described as a “somewhere” pseudoentropy
generator, is a function that takes as input two “seeds” (rather than one as in a pseudoentropy
generator) and outputs a seed to the non-malleable extractor: SEPEG: {0, 1}TI x [A] = {0,1}%.

The property of the somewhere pseudoentropy generator will be as follows (see Section 6 for a
formal definition and details). We interpret the outputs of SEPEG as an [R’] x [4] table of seeds to
nmExt (for constant A), with the property that all but an epgg fraction of rows contains at least one
good seed.

If nmExtisa (¢’ = t- A, k, enm)-non-malleable extractor, then for every such “good” row, the good
seed y* in the row has the property that h,«(X) is a nearly uniform bit that is nearly independent
of hy(X) for any other y in the row, and also any y in any other ¢t — 1 rows. Following a trick
original from [Cohl6a], if we take the XOR of h,(X) for all entries in each row, the result is a
(¢ = epec - R/, t, \/enm) Non-oblivious bit fixing source of length R'. As discussed before, this is

1.1
exactly what we want, provided that 7’ = 1.1 -log =1, or R’ = <#> .

epeGc”’ EPEG

The Disperser Trick of [BDT19] for Error Reduction We finally discuss how to construct SEPEG
and generate the table of seeds discussed above. The first ingredient is a PRG G: {0,1}" — {0,1}?
against IsBadx: {0, 1}d — {0,1} with the wrong dependence on eprg. As discussed before,
under the assumption that E is hard for large exponential time with exponential advice, it’s
possible to construct such PRGs with seed length r = cprg(log n + log 1/eprg). In other words, for

parameter epgg if we insist on only paying, say, r = .1 -log 1/epgg seed, we obtain a PRG with error

1/(10-cpre)
EPRG = €pEG :

The second ingredient is a disperser with the right parameters. Ultimately, using the disperser
of [Zuc07], with the same instantiation of parameters in [BDT19], one can construct a bipartite

1.1 1
graph with R’ = (L) left nodes, left degree a constant A, and R = (L) right nodes.

EPEG EPEG
The property of this graph is that any subset of nodes on the left with fraction at least epgg has a
neighborhood on the right of fraction at least eprg = Eé/E(éO'CPRG).
Overall, the construction of SEPEG is then as follows, use 7’ bits of seed to choose a random
left node ¢’ of the disperser. Then, let the seeds to nmExt in the y’-th row be the evaluation of the
PRG G on all neighbors of ¢ in the disperser. For correctness, suppose more than epgg fraction of

rows in this table have all entries as bad seeds. This implies the neighborhood of these rows is a
EPRG = ella/E(éO'CPRG) fraction of seeds y € {0,1}" to G such that G(y) is a bad seed for nmExt. This is a
contradiction, since, as discussed before, the fact that G is a eprg-PRG to IsBadx implies that there
cannot be more than /enm + eprg = €prg fraction of bad seeds y.

*A probabilistic argument, similar to that in [DPW14] can show that pseudoentropy generators (for some appropriate
notion) with seed length loglog | F| + log 1/epec exists for any family of tests F. Additionally, [AIKS16] construct the
similar notion of a hitting set generator with seed length log 1 /.

11

The final construction and analysis is only slightly more involved, as we also require every
entry of the table to be a unique seed to nmExt. See Theorem 6.3 for details.

2.4 The Final Piece: Sufficiently Good Explicit Non-Malleable Extractors

The discussion above is sufficient to obtain Theorem 1.2, and also Theorem 1.3 using currently
known explicit constructions of non-malleable extractors with seed length O(log ;™). In order
to improve the min-entropy parameter k, we must use newer constructions of non-malleable
extractors, that do not quite have the right dependence on enm in the seed length. The best
known current constructions instead have seed length O(logn + log % - log log i) [Li17]. For
enm = 1/poly(n), this makes the runtime of IsBad x superpolynomial. To fix this issue, we construct
a new object, that we call a “seeded non-malleable extractor for samplable distributions,” and
use this in place of the non-malleable extractor. Such an object has the same properties as a
non-malleable extractor, except that the properties are only true for sources X that are samplable
by circuits of size n°. In particular, the set of bad seeds to the non-malleable extractor (which
depends on source X), is only guaranteed to be small when X is samplable. The point here, is that
a non-malleable extractor for samplable distributions is both a weaker object than non-malleable
extractors (it does not have to work for all k-sources), and extractors for samplable distributions (as
it’s allowed to use seed). Therefore, it should be simpler to construct such an object.

Our final observation is that the ideas to construct such an object have already been discussed
above. We first take an explicit construction nmExt of a seeded non-malleable extractor, with wrong
dependence on €., in the seed length, and reduce the seed length by applying an appropriate PRG
G. That is, the final construction will be nmExt(z, G(r)). Since r can be O(log .”-), we are done. As
long as G fools IsBadx, then this construction has the property that the set of bad seeds € {0,1}" is
small whenever X is a samplable distribution.

We observe that even if the original number of seeds to nmExt is superpolynomial, which would
lead to the procedure IsBadx running in super-polynomial time, we can speed up IsBadx using
nondeterminism and show that it can be implemented by a polynomial sized nondeterministic circuit.

Indeed, on input a seed y, the circuit can use nondeterminism to guess the seeds y1, .. ., y; that
violate Equation (1) and verify that this is true. Notice we are only aiming for the final construction
to have ¢, - log .- seed length and run in polynomial time n‘™, without any particular care for
the dependence of "the constant cnm on the size of the circuits in question, n¢. Therefore, we can use
results from [SUO5] (stated formally in Theorem 3.9) to construct PRGs against nondeterministic
circuits, under a hardness assumption against such circuits.

This argument proves Theorem 1.4. Note that the hardness assumption for nondeterministic
circuits is used only to reduce the seed length of non-malleable extractors, and is unnecessary
(as seen in Theorem 1.2) in case explicit constructions of non-malleable extractors with better
dependence of the seed length on £, can be achieved.

2.5 Perspective: A Computational Analog of Two Source Extractors

Thanks to Trevisan [Tre01], it is by now well known and widely celebrated wisdom in pseudo-
randomness that PRGs are a computational analogue to seeded extractors. We discuss here, that
our work demonstrates a similar idea, used in the “other” direction. That is, we demonstrate that
replacing an ingredient in the recipe for two-source extractors from [CZ16] with its computational
analogue yields extractors for samplable distributions.

12

More specifically, at a high level, the celebrated work of [Tre01] observes that given a construc-
tion of a black-box PRG G/: {0,1}% — {0,1}™ that is given access to the truth table of a hard
function f, replacing f with a sufficiently high entropy source X yields an extractor for that source.
That is, the function Ext(x, y) = G*(y) is an extractor.

Conversely, given a construction of a “reconstructive extractor” Ext: {0,1}" x {0, 13 = {0,1}™,
replacing the (true) randomness from the source X with the truth table of an appropriately hard
function f yields a PRG G” (y) = Ext(f,v).

Our work suggests a similar bridge between two sister lines of inquiry regarding deterministic
extraction. On the “information theoretic” side, there is the question of extracting from two
independent sources. On the “computational” side, there is the question of extracting from
samplable distributions. While Trevisan and Vadhan [TV00] already observed that there is a
similar analogy between the two objects, we suggest that the specific recipe used in recent two-
source extractor constructions [CZ16, BDT19] can be followed to construct extractors for samplable
distributions, if one can explicitly construct computational analogues of the information theoretic
components used in these recipes.

More specifically, in the recipe of [CZ16] (see [Cha20] for a discussion) one applies a seeded
non-malleable extractor to the first source X7, and a seeded extractor on the second source X,. We
suggest that by replacing the second source X, with an appropriate hard function, we can obtain an
extractor for samplable distributions, if we can replace the information theoretic seeded-extractor,
with a suitable computational PRG.

Our current implementation of this analogy requires a shorter seed length from the non-
malleable, compared to what is required in the information theoretic scenario of two-source
extractors (see Remark 3.18 for a more technical discussion) and consequently, some current explicit
constructions of non-malleable extractors are not “sufficiently nice” for our purposes. Nevertheless,
as Theorem 1.2 demonstrates, a future improvement in the parameters of explicit constructions
of non-malleable extractors, will immediately translate into improved extractors for samplable
distributions.

The technical construction presented in this paper imitates a specific instantiation of the recipe
for two-source extractors, given by Ben-Aroya, Doron and Ta-Shma [BDT19]. As we follow this
specific instantiation, our extractors for samplable distributions inherit some limitations of this
specific instantiation, and we only get constant error € > 0, and only output a single bit.

However, it seems to us that the general approach could potentially imitate other instantiations
of the recipe (say [CZ16] which do not suffer from these limitations).

More concretely, the reason that we currently output a single bit with constant error ¢ > 0 is
that (at least the way we currently do it, and as explained in the overview above) we are pushed to
use non-malleable extractors with constant ¢, which in turn pushes us to use the majority function
as a bit-fixing source extractor. However, we would circumvent these limitations if we could find a
way to use super-constant ¢ (as is done in [CZ16]) or if we could find a way to replace the majority
function with an extractor for non-oblivious bit-fixing sources with better error, and better output
length.

13

3 Preliminaries

3.1 Random Variables

In general, lowercase variables (that represent integers) are base 2 logarithms of their upper case
counterparts. For example, D = 2¢, and R = 2. The only explicit exception to this rule is 7" and ¢,
where T usually denotes the running time of an algorithm, and ¢ is the independence parameter of
a non-malleable extractor.

We use U, to denote the uniform distribution in n bits. We say that a random variable X has

min-entropy k, or is a k-source, if Hoo(X) e _ log max, Pr[X = z] > k. We may also refer to such

an X as a k-source.

For distributions A, B over universe (2, we use A(A; B) to denote the statistical distance. That
is, A(A;B) = 1> o |A(z) — B(z)| = maxgcq|A(S) — B(S)|. For arbitrary random variables
A, B, C, we use the notation A((A4; B)|C) to denote the quantity A((A, C); (B, C)). For a collection
of random variables A, ..., A; we use {4;}!_, to denote the joint distribution (4y, ..., 4;).

For subsets of sets, such as A C U we will often abuse notation and conflate the set with an
algorithm recognizing it. That is, we use the notation z € A and A(z) = 1 interchangeably. We also
use |A] and |A~1(1)| interchangeably.

We’'ll use the following lemma about boolean random variables:

Lemma 3.1 ([CZ16], Lemma 2.9). Let X1,..., X, Y1,...,Y, be boolean random variables. Further
suppose that for any i € [t],
A((Xl, Ul)’{X]}];éz, Yl, ceey Yk) S g.

Then
A((Xq, ..., X;; Up) Y1, ...,) < bte.

3.2 Definition of Circuits of Various Types
3.2.1 Nondeterministic Circuits And X;-Circuits
We formally define the circuit types that will be used in this paper.

Definition 3.2 (Nondeterministic circuits, oracle circuits and ¥;-circuits). A randomized circuit C
has additional wires that are instantiated with uniform and independent bits.

A nondeterministic circuit C' has additional “nondeterministic input wires”. We say that the circuit C
evaluates to 1 on x iff there exist an assignment to the nondeterministic input wires that makes C output 1
on .

An oracle circuit C) is a circuit which in addition to the standard gates uses an additional gate (which
may have large fan in). When instantiated with a specific boolean function A, C* is the circuit in which the
additional gate is A. Given a boolean function A(x), an A-circuit is a circuit that is allowed to use A gates
(in addition to the standard gates). An A -circuit is a circuit that makes nonadaptive queries to its oracle A.
(Namely, on every path from input to output, there is at most a single A gate).

An NP-circuit is a SAT-circuit (where SAT is the satisfiability function) a ¥;-circuit is an A-circuit
where A is the canonical XX -complete language. The size of all circuits is the total number of wires and
gates.

®An alternative approach to define these circuit classes is using the Karp-Lipton notation for Turing machines with

14

3.2.2 Separating The Time And Advice Of A Nonuniform Procedure

We will use a hardness assumption against a “circuit model” in which we separate the running time
and the amount of nonuniformity that a circuit uses. In order to comply with the standard notion
of circuits (that work for a fixed input length n and have a fixed size) the definition below considers
a circuit model of “nonuniform procedures with time ¢ and «a bits of advice” that is defined on a
tixed input length n.

Definition 3.3 (Nonuniform procedures separating time and advice). Fix some encoding of Turing
machines, and a universal Turing machine U. We say that a function f : {0,1}" — {0, 1} is computable
by a nonuniform procedure with time ¢ and a bits of advice, if there exists a Turing machine M such
that the length of an encoding < M > of M is at most a, and on every input x € {0,1}", the machine U
simulates M (x) in time at most t, and outputs f(z).

This notion obviously generalizes the standard notion of circuit a.k.a “machines with nonuni-
form advice” in the sense that for a = ¢ a nonuniform procedure with time ¢ and a bits of advice is
equivalent to a circuit of size ¢t (when ignoring the precise circuit model which only matters up to a
fixed polynomial).

This definition allows such procedures to run in time ¢ > 2" and use a < 2" bits of advice.

3.3 Hardness Assumptions
3.3.1 The Old Assumptions: E is Hard for Exponential Size Circuits of Type X

The following hardness assumption was popularized by the celebrated work of Impagliazzo and
Wigderson [IW97].

Definition 3.4 (E is hard for exponential size circuits). We say that “E is hard for exponential size
circuits of type X" if there exist constants 0 < o < Ceasy, and a language L in DTIME(2%™), such that
for every sufficiently large n, the characteristic function of L on inputs of length n cannot be computed by
circuits of size 2°™ of type X.

Impagliazzo and Wigderson [IW97] (see also [STV01, SU05, Uma03]) showed that BPP = P
assuming that E is hard for exponential size (deterministic) circuits. Later work [KvMO02, MVO05,
SU05, SU06] considered the stronger assumption that E is hard for nondeterministic circuits, and
used such assumptions to show that AM = NP.

In their seminal paper on extractors for samplable distributions, Trevisan and Vadhan intro-
duced a version of the assumption for ¥;-circuits, and their extractor is constructed under the
assumption that E is hard for exponential size ¥ -circuits.

3.3.2 The New Assumption: E is Hard for Large Exponential Time with Exponential Advice

In this paper we will use a version of the Impagliazzo and Wigderson assumption against nonuni-
form procedures with time ¢ = 20(") (that can be larger than 2") that use a < 2" bits of advice. To
the best of our knowledge hardness assumptions of this form were first introduced by Chen and
Tell [CT21] in the context of fast derandomization. We will use the following assumption.

advice. For s > n, a size s deterministic circuit is equivalent to DTI ME(59(1>) / s asize s°M) nondeterministic
circuit is equivalent to NTIME(s®™®) /s®™), a size s°*) NP-circuit is equivalent to DTIMEN? (s9)) /s®™M) and a size
59 33, circuit is equivalent to DTIME®" (59 /s,

15

Definition 3.5 (E is hard for large exponential time with exponential advice). We say that “E is
hard for large exponential time with exponential advice” if there exists a constant « > 0 such that for every
constant Charg > 1, there exists a constant Ceasy > Chard, and a language L in DTIME(2Ces™), such that
for every sufficiently large n, the characteristic function of L on inputs of length n cannot be computed by
nonuniform procedures that run in time 23" and use 2*™ bits of advice.

Note that the assumption above is similar to the assumption in Definition 3.4 except that we
now allow the circuit/procedure to run in time 2Chardl for an arbitrary Charg > 1, and we require
that for every constant b > 1 there is a constant Ceasy > Charg such that the problem L can be
computed in time 2C= ™,

Consequently, it is obvious the assumption that E is hard for large exponential time with
exponential advice implies the assumption that E is hard for exponential size circuits.

A discussion that compares this assumption to assumptions like E is hard for exponential
deterministic/nondeterministic circuits, appears in Section 9.1.

3.4 Pseudorandom Generators
We need the following standard definition of pseudorandom distributions and generators.

Definition 3.6 (Pseudorandom generators). A distribution X on n bits is e-pseudorandom for a class
C of functions, if for every C' : {0,1}" — {0,1} € C,

|Pr[C(X) = 1] = Pr[C(Uy)] =1]| <e.
A function G : {0,1}% — {0,1}" is an e-PRG for C if G(Uy) is e-pseudorandom for C. G is seed-extending
if the function G'(x) = x o G(x) is an e-PRG for C.
3.4.1 PRGs for Deterministic Circuits

The classical result of Impagliazzo and Wigderson [IW97] (see also [STV01, SU05, Uma03]) gives a
PRG for poly-size circuits, under the assumption that E is hard for exponential size circuits.

Theorem 3.7 (PRGs from hardness assumptions [IW97]). If E is hard for exponential size circuits then
there exists a constant a > 1 such that for every sufficiently large s, there is a

G :{0,1}*%85 5 0,1}*

that is a seed-extending 1-PRG for circuits of size s. Furthermore, G is computable in time poly(s). (Here,
the polynomial depends on the constants o, Ceasy in the hardness assumption).

An immediate corollary of Theorem 3.7 is the standard application of PRGs to approximate the
number of accepting inputs of a given circuit.

Theorem 3.8. If E is hard for exponential size circuit then for every sufficently large n, s > n and every
€ > 0, there is an algorithm A . that given a circuit A of size s, outputs a number p such that

PrA) = 1] - 7] < .

Furthermore, A’ runs in time poly (s, é) where the polynomial depends on the constants in the hardness
assumption.

16

3.4.2 PRGs for Nondeterministic Circuits

Subsequent work by [KvM02, MV05, SU05, SU06] extended Theorem 3.7 replacing “(deterministic)
circuits” by “nondeterministic circuits”. The theorem below is identical to Theorem 3.7 except that
the hardness assumption is against nondeterministic circuits, and the PRG fools nondeterministic
circuits.

Theorem 3.9 (PRGs for nondeterministic circuits from hardness assumptions against nondetermin-
istic circuits [SUO5]). If E is hard for exponential size nondeterministic circuits then there exists a constant
a > 1 such that for every sufficiently large s, there is a

G : {0,185 5 0,1}

that is a seed-extending 1-PRG for nondeterministic circuits of size s. Furthermore, G is computable in time
poly(s). (Here, the polynomial depends on the constants a, Ceasy in the hardness assumption).

3.5 Dispersers

We'll use dispersers as an ingredient in one of our constructions. We use a less standard parametriza-
tion, stated below.

Definition 3.10. A functionT': [N] x [D] — [M]isa (K, K')-disperser if for every S C [N]| with |S| > K,
Uieip I'(S,9)| = K.

The more standard definition sets K’ = (1 — ¢) - M, where ¢ is the parameter. However, for the
setting that we are interested in the “error parameter” ¢ is close to one, rather than close to zero,
and the parametrization in Definition 3.10 is more natural. This setting (where ¢ approaches one)
was considered by Zuckerman [Zuc07]. The following theorem is a restatement of Zuckerman’s
theorem [Zuc07] using Definition 3.10.

Theorem 3.11 ([Zuc07], Theorem 1.9). For every constant 6 > 0 there exists a constant cs such that for
every sufficiently large n, and every 0 < s < 1,for N = 2", K = N°, M = N%/? = K'? and K' = 5- M,

there is a (K, K')-disperser I : [N]| x [D] — [M], with D = ¢ - ﬁ. Furthermore, I' is computable in

s

time poly(n).

We remark that Zuckerman’s theorem is more general than the one we state here, and allows M
to be closer to K. We do not need this property in this paper.

A key property of Theorem 3.11 is that setting s = M~ for a constant 0 < v < 1, one obtains
that D is a constant that depends on 4, ~.

3.6 Majority as an Extractor for Non-oblivious Bit Fixing Sources
Following [BDT19], we use the function majority as an extractor for non-oblivious bit-fixing source.

Definition 3.12. A distribution X is called (t,~)-wise independent if the restriction of X to every t-
coordinates is y-close to Uy.

Definition 3.13. A source X over {0,1}" is a (g, t,~) non-oblivious bit-fixing source if there is a subset
Q C [n] of size at most q such that the joint distribution of the bits in [n] \ Q is (t,~)-wise independent. The
bits in Q) are allowed to arbitrarily depend on the bits in [n] \ Q.

17

Viola [Viol4] showed that the majority function is an extractor for non-oblivious bit-fixing
sources. This extractor was used by Ben-Aroya, Doron and Ta-Shma [BDT19].

Theorem 3.14 ([Vio14], See [BDT19], Lemma 2.17.). For Maj: {0, 1}R — {0, 1}, there exists a constant
CMaj such that for every o > 0 and a (q = R%_a, t, 'y) non-oblivious bit-fixing source X on R bits,

1 logt
‘Pr[Maj(Xl, o Xpr) =1]— 2‘ < Cataj - <°tg +R 4 vRt) .
For a fixed constant error ¢ of the final extractor, we will instantiate ¢, and «, and choose R (and
~) appropriately, so that the RHS is at most ¢.

2
chaj

Corollary 3.15. Forany ¢ > 0, let t = —*, and let o = 1/8. Suppose further that R >
Y < 34, Lhen fora (q = Rit, fy> non-oblivious bit-fixing source X on R bits,
aj

4.8
10 "CMaj
=8

, and

‘PI‘[Maj(Xl,...,XR) = ” ——|<Le.

3.7 Non-Malleable Extractors
3.7.1 Definition of Non-malleable extractors

We will use the following standard definition of non-malleable extractors (which is defined using
the notation explained in the beginning of Section 3).

Definition 3.16. A function nmExt: {0,1}" x {0,1}* — {0,1} is a (¢, k, enm)-non-malleable extractor if
the following holds: for any (n, k)-source X, and t-tuple of functions (f1, ..., f+), where each f;: {0, 1}d —
{0, 1} has no fixed points, we have:

A((nmExt(X, Uyg); Up) [{nmExt(X, f;(Ua) }21) < enm.

3.7.2 Nice Constructions of Non-Malleable Extractors

We plan to use non-malleable extractors in order to construct extractors for samplable distributions.
When shooting for small constant error in the extractor for samplable distributions, we will require
non-malleable extractors with constant ¢, and e,m = n~%" for a sufficiently large constant ceror
that will be chosen in the proof.

In our reduction, the running time of the final extractor will be poly(n, 2%, 2%, time(nmExt)).
Therefore, in order to obtain extractors for samplable distributions that run in time polynomial in n,
we will require constructions of non-malleable extractors in which this is poly(n). We refer to such
constructions of non-malleable extractors as “nice”, and the precise formulation is stated below.

Definition 3.17 (Nice construction of non-malleable extractors). Let k(t,n,enm) be some integer
function. We say that “there is a nice construction of non-malleable extractors for min-entropy k” if for
every constant t, there exists a constant cnm such that for every constant ceror > 1, and for every sufficiently
large n, setting enm(n) = n=Cc, there is a function d(n) < chm - log ﬁ and a (t, k(t,n,enm), Enm(N))-

non-malleable extractor nmExt : {0,1}" x {0,1}4"

(gnmn(n))Cnm .

— {0, 1}, such that nmExt can be computed in time

18

Remark 3.18 (The role of nice constructions of non-malleable extractors in two-source extractors).
Loosely speaking, a nice construction of non-malleable extractors (as defined in Definition 3.17) should
satisfy two properties:

* The running should be poly(n), even if enm(n) = n=" for a large constant cerror-

® The seed length d should be O(log —"—) for enm(n) = n=Ccrr.

enm(n)

We remark that while the previous reductions that reduce two-source extractors to non-malleable extractors
[CZ16, BDT19] do require that the non-malleable extractor is nice in the first sense (and some of them
require this for eam(n) = n~*W), they do not require that the non-malleable extractor is nice in the second
sense.

This means that some previously known constructions of non-malleable extractors that are suitable for
the application of constructing two-source extractors, will not be suitable for our application of constructing
extractors for samplable distributions.

3.7.3 Some Known Constructions of Non-Malleable Extractors.

Some of the known constructions on non-malleable extractors in the literature are nice. One such
example is by Cohen, Raz and Segev [CRS14] that gave a nice construction of non-malleable
extractors for k that is slightly larger than n /2.

Theorem 3.19 (See [CRS14], Theorem 1.7). For every constant 6 > 0, there is a nice construction of
non-malleable extractors for min-entropy k(t,n,enm) = (3 + 6) n.

For smaller values of min-entropy k, the best known construction is by Li [Li17]. This construc-
tion is not quite “nice” according to our definition. This is because the dependence of the seed
n

length d on n, enm is not O(log 7(71)), but rather d = O(log n + log i -loglog i), which is slightly

Enm
worse than what we need.

Theorem 3.20 ([Lil7]). For any constant t the following holds, there exists a constant ci; = c(i(t) such
that the following holds. For every sufficiently large n and for any enm > 0, there exists a (t,k = d,enm)-
non-malleable extractor

. . o
nmExt: {0,1}" x {0, 1}dSCL' (lognHOg zm L0 log 5nm) — {0,1}

CLi
computable in time (ﬁ) .

3.7.4 A Useful Property of Non-Malleable Extractors

Following Chattopadhyay and Zuckerman [CZ16] we will make use of the following property
of non-malleable extractors (that also plays an important role in constructions of two-source
extractors).

Loosely speaking, Theorem 3.21 below says that there is a small set of “bad seeds”, such that
for every seed y € {0,1}" that is not bad, and every ¢ additional distinct seeds, the output of
the extractor using y is uniform, “even when conditioned” on the ¢ outputs obtained using the
additional seeds. Furthermore, the joint distribution of the output of any ¢ good seeds is close to
uniform.

19

Theorem 3.21 (See [CZ16], Lemma 3.4). Let nmExt: {0,1}" x {0,1}% — {0,1} be a (¢, k, eqm)-n0n-
malleable extractor. For eachy € {0,1}%, define the function h,: {0,1}" — {0,1} as hy(z) = nmExt(z, y).
For any (n, k)-source X, and any e},,, > €nm, define:

BADx,, = {y € {0, 1} | 3distinct y1, ...,y € {0, 13\ {y}, A ((hy(X): U1) {hy, (X)}imt) > V/ehm}-

Then |BADx o | < \/ehmD. Moreover, for any y1, ...,y &€ BADx o :

A({hy,Yie1; U) < 5t/Ehm.

We note that Theorem 3.21 is only stated in [CZ16] for £],,, = enm, however, the statement above
is also true as any (¢, k, enm)-non-malleable extractor is also a (¢, k, €},,,)-non-malleable extractor.

4 PRGs For Procedures With Large Time and Small Advice

We will require a PRG against adversaries that are nonuniform procedures which use s bits of
advice, and run in time s¢ for a potentially large constant c . It will be crucial for our application
that the seed length of the PRG does not depend on c. Fortunately, the same argument used by
[IW97] in the proof of Theorem 3.7, yields such PRGs, if we replace the hardness assumption in
Theorem 3.7 with the new hardness assumption that E is hard for large exponential time with
exponential advice (introduced in Definition 3.5).

Theorem 4.1 (stated below) is very similar to the classical Theorem 3.7 with the key difference
being that we consider nonuniform procedures that use s bits of advice, but are allowed to run in
time s¢, for a large constant c. The key feature of the theorem is that the constant a that governs the
seed length does not depend on the constant ¢ that governs the running time. Indeed, the theorem
allows one to choose c to be arbitrarily large as a function of a.

Theorem 4.1 (PRGs for large time and small advice). If E is hard for large exponential time with
exponential advice, then there exists a constant a > 1 such that for every constant ¢ > 1 and every
sufficiently large s, there is a

G : {0,138 5 {0,1}*

that is a seed-extending 1-PRG for nonuniform procedures that run in time s¢ and use s bits of advice.
Furthermore, G is computable in time poly(s). (Here, the polynomial depends on the constant « in the
hardness assumption, the constant c, and is also affected by the dependence between Charg and Ceasy in the
hardness assumption).

We also remark that alternative analyses and modifications of the hardness vs randomness
framework have been carried out before [KvM02, CT21, LP23] in order to accommodate different
hardness assumptions and carefully account for the usage of various resources (time, advice, etc.).
However, to the best of our knowledge the theorem above has not been stated in its exact form
before. Theorem 4.1 follows from the argument of [IW97] in exactly the same way, with minor
modifications. This argument is explained in the proof below.

Proof: We review the classical proof of [IW97] for Theorem 3.7. At a high level, the proof shows that
for every constant a > 0, there are constants 0 < 6 < §, d > 1, and a construction that transforms a

function f : {0,1}* — {0, 1} into a function Gy : {0, 1344 = o, 1}2”. It is not necessary to go into

20

details of this transformation (which involves “hardness amplification from worst case to average
case” and using the “Nisan-Wigderson generator”). Instead we note that this transformation has
the following properties:

e For every function f : {0,1}" — {0, 1}, the function G s can be computed in time 2°() with
oracle access to f.

e For any functions f : {0,1}* — {0,1},and D : {0, 1}2” — {0,1},if Gyisnota @%—PRG for
D, then there exists an oracle circuit C() of size 25 such that CP computes f.

The standard case. In the regular case of Theorem 3.7 the proof works as follows: under the
assumption that E is hard for exponential size circuits, given the parameter s, the proof chooses
(= % -log s so that 20 = s. It takes f to be the characteristic function of the hard problem L on
inputs of length £. It obtains a function G; from d¢ = 4log s to s bits. This means that the seed
length of Gy is alog s for a = %l which is a constant that depends on .

By the first item, Gy can be computed in time 29(9) . 2Cas¢ = poly(s) (where the polynomial
depends on a, Ceasy). If G5 is not a 2-PRG for some circuit D : {0,1}* — {0, 1} of size s = 2%, then
by the second item, f can be computed by the circuit C” which can be simulated by a circuit of
size 22°¢ . size(D) < 2271 22°¢ = 2% which is a contradiction.

The case of separating time and advice. In order to prove Theorem 4.1 we extend the standard ar-
gument as follows: under the assumption that E is hard for large exponential time with exponential
advice, given the parameters s and c, the proof chooses ¢ = % - log s so that 2°¢ = s (just like before).
The key difference is that in Theorem 4.1 we are allowing c to depend on a, and so s¢ = 2¢%¢ might
be larger than 2¢. We choose Ceasy = 2+ ¢+ 0 - £, and the hardness assumption provides a constant
Ceasy > Chard and a hard problem L. We take f to be the characteristic function of the hard problem
on inputs of length /. we obtain a function Gy from df = % log s to s bits. This means that the seed
length of Gy is alog s for a = %l which is a constant that depends on « (but not on c).

By the first item, Gy can be computed in time 20(0) . 9Cesyt = poly(s) (Where the polynomial
depends on «, Ceasy and recall that Ceasy depends on b that depends on ¢). If Gy is not a %-PRG
for some nonuniform procedure D : {0,1}° — {0,1} with time s¢ = 2¢¢ and s = 2% bits of
advice, then by the second item, f can be computed by the circuit CP which can be simulated
by a nonuniform procedure with time 257, time(D) < 257t . gedt < 920l — 9Casyt and number
of advice bits that is used by C? is 22 4 advice(D) < 227 4 22°¢ < 22/, Once again we obtain a
contradiction.

]

Remark 4.2 (Necessity of the assumption in Theorem 4.1). It is easy to see that the assumption that E
is hard for large exponential time with exponential advice is necessary to construct the PRG guaranteed in
Theorem 4.1. More specifically, it is easy to see (and was first pointed out in [[SW99]) that given a 0.49-PRG
G :{0,1}% — {0,1}" against a class C, if n > d + 1, then the function f : {0, 139 5 {0, 1}, that given
z € {0, 1Y checks whether there exists y € {0,1}? such that x is a prefix of G(y), cannot be computed
by C. By definition, f can be computed in time poly(2%,n), and therefore, the conclusion of Theorem 4.1
implies that E is hard for large exponential time with exponential advice.

21

In the remainder of the paper, it will be convenient to use the following immediate corollary of
Theorem 4.1.

Theorem 4.3. If E is hard for large exponential time with exponential advice, then for every constant ¢ > 1,
there exists a constant cprg, such that for every constant cyyntime > 1, every function eprg = epra(n), and
every sufficiently large n, there is a

G: {o, 1}CPRG-1Og(n/EPRG) - {0, 1}”“

that is a seed-extending eprg-PRG for nonuniform procedures that run in time nvrtime and use n® bits of
advice. Furthermore, G is computable in time poly (n®, nmntime 1 S). (Here, the polynomial depends on the
constant o in the hardness assumption, and is also affected by the dependence between Charg and Ceasy in the
hardness assumption).

A key feature of this theorem is that cprg does not depend on cryntime-

Proof: Theorem 4.3 follows directly from Theorem 4.1 by taking s = max(n®, EPR}; @))-]

5 An Algorithm For Recognizing Bad Seeds

A key component in recent constructions of two-source extractors [CZ16, BDT19] is applying a
(t, k, £nm)-non-malleable extractor nmExt : {0,1}" x {0,1}% — {0,1} to transform a distribution
X over {0,1}" with Hy(X) > k, into D = 2¢ random variables (nmExt(X, y))yE{O 1y As stated

formally in Theorem 3.21, [CZ16] showed that there is a small set BADx . C {0, 1}¢ of “bad
seeds”, such that the distribution Z = (nmExt(X, y)), (0,1}\BAD ., has the property that every

subset of ¢ bits from Z is (close to) uniform.® In this section we show that if:
¢ X is samplable by size n® circuits,
¢ E is hard for large exponential time with exponential advice, and
¢ The non-malleable extractor nmExt comes from a nice construction (See Definition 3.17),

then for every constant cerror > 1, setting e,m = n~ %, deciding whether a seed y is bad can be
done by a nonuniform procedure with running time poly(n, i) and advice n°.

Jumping ahead, we mention that we will later use the theorem choosing a constant cerror that is
much larger than ¢, so that this procedure will run in time n®utime where cyyntime is @ constant that is
much larger than c. Recall that the PRG of Theorem 4.3 is set up for this scenario, and has seed

length that depends on ¢ but not on cyntime-
Theorem 5.1. Assume that:
 E is hard for exponential size circuits.

e There is a nice construction nmExt of non-malleable extractors for min-entropy k = k(t,n, nm).

5The property mentioned above in the text is oversimplified, and following [BDT19] we need the stronger property
(stated formally in Theorem 3.21) which loosely states that every good bit Z,, is (close to uniform) not just conditioned
on t good bits, but also when some of the ¢ bits are bad.

22

Figure 1: A procedure that recognizes bad seeds

Procedure IsBadx 1, ¢ ke

Ingredients: The procedure utilizes as a subroutine a (¢, k, enm/16)-non-malleable extractor

nmExt: {0,1}" x {0,1}% — {0,1} (that comes from a nice construction). Define hy(z) =
nmExt(z,y).

Input: y € {0,1}¢, a seed to nmExt.

Advice: A description of a circuit X of size n°.
Output: Abitb € {0,1}.

Operation:

1. For all t-tuples of distinct y1, ...,y € {0, 1}d, Yi Y-

(a) For every subset S C {0,1}":

i. Let1g: {0,1}" — {0, 1} denote the algorithm determining membership in S.
ii. Define 4;: {0,1}"™ — {0,1} as:

A(2) = 1s(hy(X(2)), by, (X (2)); - - 5 Py, (X (2)))-
Also define Ay: {0,1}"™ x {0,1} — {0,1} as:

AQ(Zv a) = 15(@, hyl (X(Z)), R hyt(X(Z)>)

n

iii. Note that Ay, A; are circuits of size s = ¢-n¢- ()™ = poly(n®, nr), for a polyno-
mial that depends on ¢, ¢,m. We will use the algorithm from Theorem 3.8, compute p;
and po, that are \/e,m/8 approximations to Pr[A; (U,-) = 1] and Pr[As(Uye41) = 1]
respectively. By Theorem 3.8 this can be done in time poly (s, i) = poly(n¢, nerr)
for a polynomial that depends on ¢, c,m, and the constants in the hardness assump-

tion.
iv. If [p1 — P2| > /Enm/2, then break and output b = 1.

2. Output b = 0.

Let t, ¢, Cerror > 1 be constants. Let n be sufficiently large, and let X be a distribution over {0,1}" that
is samplable by a size n® circuit, and has Hyo(X) > k(n). Set nmExt : {0,1}" x {0,1}* — {0,1} to
be a (k,t,enm/16)-non-malleable extractor, where enm = n~C, and note that D = 2% < pom ceror ot
IsBad x .t k.com (y) be the procedure in Figure 1 and let BAD'y = {y | I1sBadx n.t k.com () = 1}.

1. BADx,, C BAD'y and in particular, for any y ¢ BAD'y, and any distinct y1, . .., y;:
A ((hy(X); Un) {hy: (X)}Yi21) < VEnm:

23

Furthermore, for any yi, ...,y € BADx:
A({h’yi}g:l; Ui) < 5ty/Enm.
2. BADy C BADy ., /16 and in particular, |BADx | < \/EnmD.

3. IsBadx ¢ ke TUNS in time poly(n®, nror = —) (where the polynomial depends on t, cnm and the
constants in the hardness assumption) and uses n® bits of nonuniformity.

Proof:

1. We first prove {0,1}%\ BADy c {0,1}%\ BADx .. If IsBadx ¢ £ cnm () = O then for every
distinct y1, ...,y

A ((hy (0300 (X Hy) < Y 4 Vo <

Therefore y € {0,1}*\ BADx..,.. Applying Theorem 3.21 yields the result.

2. We first prove BAD’y C BADx c,../16- If IsBadx .t k,c,m (¥) = 1, then for some distinct 1, ..., ys:

B (g0 Uy, (X)}y) > Yo — Yo Vo

Since nmExt is a (¢, k,enm/16)-non-malleable extractor applying Theorem 3.21 yields the
result.

3. It’s clear that the only nonuniformity in the algorithm comes from the description of the
circuit X. Overall, there are at most D* - 22 iterations of the main loop. In each loop, we apply
Theorem 3.8 with error O (,/Znm) on a circuit of size s = poly(n®, nrr). By Theorem 3.8 each
such iteration can be done in time poly(n¢, nr) (for a polynomial that depends on ¢, cam
and the constants in the hardness assumption).

Overall (as D < n®mror and ¢ is constant) the entire procedure is computable in time
Dt . 22t . poly(nC’ ncerror) — poly(n07 ncerror)

(where the polynomial depends on ¢, c,m and the constants in the hardness assumption) and
the entire procedure uses n° bits of advice.

6 A “Somewhere Pseudoentropy Generator” for IsBad

In Theorem 5.1 we show that (assuming a hardness assumption) for every distribution X that is
samplable by size n° circuits, there is a procedure IsBad that recognizes whether a seed y € {0, 14
is a “bad seed” for the considered nice non-malleable extractor nmExt. We have also observed that
IsBad is a nonuniform procedure that runs in time n‘wntime using n° bits of advice, for a constant
Cruntime that will be set to be much larger than c.

24

Continuing with the plan explained in Section 2 we would like to use a hardness assumption,
and set up a PRG against procedures like IsBad. We have already seen in Theorem 4.3 that under
the hardness assumption that E is hard for large exponential time with exponential advice, we can
get PRGs for such procedures with seed length that is logarithmic in the amount of advice bits (and
does not depend on running time).

However, as explained in Section 2, for our intended application, we would also like that the
dependance of the seed length of the PRG on its error € is (1 + 3) - log £ for a constant 3 < 1 (say
8 = 1). Unfortunately, this is impossible for a PRG. Nevertheless, it is possible for the following
weaker variant of a PRG that we call an “evasive pseudoentropy generator” (evasive PEG) that is
sufficient for our purposes. A formal definition is given below.

Definition 6.1. A function G: {0,1}" — {0,1}% is a (1, epeg)-evasive pseudoentropy generator (evasive
PEG) against a class C if for every C: {0,1}* — {0,1} € C, with Pr[C(U.) = 1] < p, we have that:

Pr [C(G(y)) = 1] < epee.
y~Ur

Note that an ¢-PRG is by definition, a (i, ;1 + ¢)-evasive PEG for every 0 < p < 1. However,
an evasive-PEG only needs to satisfy the latter property for some specific (typically very small) x.
This weaker property allows an evasive-PEG to have seed length where the dependence on epgg is
(1+p)-log EplEG for g < 1.

Unfortunately, we do not know how to construct such evasive PEGs. We will therefore settle
for an even weaker object, which we call a somewhere-evasive-PEG. The definition (that is given
below) is inspired by the “somewhere condenser” used by [BDT19] in their two-source extractor
construction (as explained in Section 2). Loosely speaking, a somewhere-evasive-PEG gets “ A
attempts” to succeed in avoiding the set {z : C(x) = 1}. A formal definition is given below.

Definition 6.2. A function G: {0,1}" x [A] — {0,1}% is a (1, epeg)-somewhere-evasive PEG against a
class C if for every C: {0,1}% — {0,1} € C, such that Pr[C(U,) = 1] < p, we have that:
P(1} Va € [A] : C(G(y,a)) = 1] < epeg.
Yy~Ur

An evasive-PEG can be thought of as a special case of a somewhere-evasive PEG where A = 1.
In our construction below we will show that under the hardness assumption, there is a somewhere-
evasive-PEG where A is a constant (and this will be sufficient for our application later on).

In the theorem below we state our construction of somewhere-evasive PEGs. We do not aim for
general parameters, and instead state a theorem where the parameters are tailored for the intended
application of constructing extractors for samplable distributions.

Theorem 6.3. Assume that E is hard for large exponential time with exponential advice. For every constants
¢, Cruntime > 0and 0 < B,n < 1 there is a constant A = A(3,c) > 1 (that does not depend on n and
Cruntime) Such that for every sufficiently large n, and for every epgg > 0 and every integer d that satisfy:

* The desired error epgg > 0 is a sufficiently small inverse polynomial in n:

1 1 1/v
<epec < | — .
poly(n) n

where cprg (that depends on c and the constant o > 0 from the hardness assumption) is the constant
from Theorem 4.3 and v =

4cpre

25

* The desired output length d is a sufficiently large, compared to the desired error epgg:

1

1
() < 2% =D < poly(n).
€PEG

sl

there is an injective function
- 1
SEPEG: {0,1})" ~U P8 %es o (4] - 0,1}

That is a (. = D™, epgg)-somewhere-evasive PEG for nonuniform procedures B: {0, 14 = {0,1}
running in time nCentime with n¢ bits of advice. Furthermore, SEPEG is computable in time poly(n°).”

In particular, for B = 1/3 this implies that the total number of seeds y' for which B(SEPEG(y', a)) =1
for every a € A is at most (R')'/* for R' = 2",

The theorem statement above is quite technical, and so, we would like to point out the key
points: We are aiming to fool nonuniform procedures that run in ntme using n¢ bits of advice.
We are not aiming for a large stretch and the output length d is only linearly larger than the seed
length . What is important is that (as long as epgg is sufficiently small inverse polynomial in n,

and D = 24 is a sufficiently large polynomial in n) we obtain a seed length r = (1 + 3) - log splgc

(which is the whole point) with constant A. We achieve this for a parameter y = D=7 = 2774
which is quite small, but will be sufficient for our purposes. Furthermore, we insist that SEPEG
is an injective function (as this will be required when we use SEPEG to construct extractors for
samplable distributions).

Proof: The construction closely follows the structure of Theorem 3.1 in [BDT19].

Construction:

Hardness Assumption: We are assuming that E is hard for large exponential size with expo-
nential advice.

Parameters:

e Constants ¢, ¢yyntime > 1 and 0 < 8,1 < 1.

* A sufficiently large n, which determined an output length d = d(n) and an error
parameter epgg = epeg(n) that satisfy the requirements in Theorem 6.3.

Goal: For D = 2¢, construct a (D", epgg)-somewhere-evasive PEG with seed length ' =
(1+ B) - log =L and output length d.

EPEG

Ingredients:

A PRG: We will apply Theorem 4.3 with the constant ¢, to obtain a constant cprg =

nCruntime

cpra(c). We choose runtime S0 that nfruntime — T, and note that we can indeed
PEG

choose such a constant ¢yyntime as we are requiring that epgg >

8

4cpRre

—L - We ch
soly(my- Ve choose

EPRG = €ppg- Recall that v = and note that éprg = e¥g¢ < 1, where the last

"One may ask whether we can be more explicit about the exponent of the runtime, perhaps as a function of cruntime. In
order to keep the assumption in Definition 3.5 as general as possible, we cannot. This is because we make no assumption
on how exactly Ceasy depends on Chard.

26

inequality follows because we are requiring that epeg < (1) 2l Using Theorem 4.3,
we obtain a function

G- {0, 1}f=CPRG-IOg(n/§PRG) — {0, 1}nc

that is an £prg-PRG for nonuniform procedures that run in time ntme and use n®
bits of advice. Furthermore, G is computable in time poly (n¢, ncunstime_ E_PlRG) which is
a polynomial in n.

We have that:

T = cpre - log(n/épre)
= cpRre - logn 4 v - cpre - log(1/epec)

B
= cpRG - logn + 1 log(1/epEc)

< g -log(1/epec)-

Here, the point is that we set £prg to be larger than our desired epgg. More specif-
ically, we took éprg = €pgg for a small constant v > 0. This means that the seed
length 7 of G depends on £pgg (rather than epgg), and so, is small (by a multiplicative
factor of v) when measured as a function of the target error epgg. In particular when
epeG < 1, the seed length 7 is significantly smaller than 1 - log - and is in fact

EPEG
5 -log(1/epeq).
A Disperser: We will apply Theorem 3.11 choosing 6 = % to obtain a function

T {0’1}T’:(1+ﬁ) logﬁ % [A] - {0’ 1}77: log(1/epeg)

/ — - B =
such thatfor ¥ = 2" and R = 2", I'is a (K = (R K = 2§pRgR> -disperser.

B /
Note that Theorem 3.11 indeed gives K = (R/)T3, 7 = % = g -log(1/epgg) and
choosing s = 2 - Zprg, we obtain that K’ = 2&pgrg ith

A=cs- rf _(1+ﬂ)log6P1EG_(1+[3)10g€P1EG
— 9, (1/s) log o= - log g
g g 2EpRG g 2epEG

which is a constant that depends on 3 and cprg (and the constant cprg is determined
by c and the constant « in the hardness assumptions). These choices are made so
that: K

B _q 1 _
R~ (R = (R) T8 = 27 los(l/epee) = cppq,
We also have that I" is computable in time poly(r’) which is some polynomial in n
(as we are requiring that epgg > m).

Definition of the Somewhere-Evasive-PEG: We define:
I 1
SEPEG: {0,1)" ~UA8 5ee o (4] - 0,1}

as follows: we truncate the output length of G to length d’ = d — r' — log |A| (and note
that this is possible as by our requirements d < n and the output length of G is larger
than n). We define:

SEPEG(Y',2) = (v, 2, G(L'(Y, 2))).

27

Correctness: It’s clear that SEPEG is injective. We now prove that SEPEG is indeed a (D™, epgg)-
somewhere-evasive PEG against algorithms running in time n‘untime with n¢ bits of advice.
Suppose that B: {0,1}% — {0, 1} is computable by an ncrnime algorithm using n¢ bits of advice.

To simplify the notation we will also use B to also denote the set {x : B(z) = 1} C {0,1}".
If SEPEG is not a (D™, epgg)-PEG for B, then |B| < D77, and yet:

/P(I]‘ Vz € [A]: (y,2,G(T(Y,2))) € B] > epec.
y'~U,s

Define /
B ={se{0,1}* |3(y,2) st. (y,25) € B}.

In other words, B’ C {0, 1}d/ is the projection of B onto the last coordinates. We conclude that:

,P[r] [VZ € [A] : G(F(y’,z)) S Bl] > EPEG- (2)
y'~U
We have that
RoAs (=g e o L
B EPEG

It follows that B’ is recognizable in time R’ - A - ncruntime < pCruntime / séEG = pCuntime with n¢ bits of
advice. Let D’ = 2¢ and note that

D
D/:ngéEG'D7

which gives that
12 n
(D')"? 2 epgg - D" = epeg - D"* = e <€PlEG> = 5%,1,5@' 3)
We use (3) to conclude that:
B < 1Bl =DV = (- R A < (D) R A < BV <y

!
| + &pra < (D)2 + Epre < 28pRe,

D/

where the last inequality follows using (3) and recalling that éprg = € > €PEG-
We have that | B| < 2 - &prg - |R| = K'. By the disperser property of I, and using (2), it follows
that
_ ~ K
Pr Vz€[A]:T(y,2) € Bl]= Pr [Vze[A4]:G((Y,2)) € B'] > epec = — -
y’NUT/ y’NUT/ R/

However, this is a contradiction to the disperser property, as we have seen that |B| < K'. |

28

7 The Extractor Construction

In this section we prove Theorem 1.2 asserting that under the hardness assumption that E is hard
for large exponential time with exponential advice, there is a reduction that reduces the problem of
constructing extractors for samplable distributions to the task of constructing nice non-malleable
extractors.

We start by restating Theorem 1.2 in a formal way, relying on the precise definition on nice
non-malleable extractors give in Definition 3.17.

Theorem 7.1. Assume that:
* Eis hard for large exponential time with exponential advice.
* There is a nice construction of non-malleable extractors for min-entropy k, for some function k(t,n, enm).

Then for any constants ¢ > 1 and 0 < € < 1, there exist constants t, cerror (Where t depends on c, e, and
Cerror depends on c, € and o from the hardness assumption) such that for every sufficiently large n, there is a
(k,e)-extractor

Ext: {0,1}" — {0,1}

for distributions samplable by circuits of size n°, for k = k(t,n,n=C o). Furthermore, the extractor runs in
time poly (n°).8

Before proceeding with the proof of Theorem 7.1, we note that using Theorem 7.1, together with
the nice construction of non-malleable extractors specified in Theorem 3.19 immediately yields
Theorem 1.3.

High level intuition for the proof of Theorem 7.1. The proof of Theorem 7.1 imitates the structure
of the proof of [BDT19] (replacing information theoretic components with their analogues, as
explained in Section 2). The actual proof is quite technical and involves many parameters. Loosely
speaking, the construction of the extractor for samplable distribution Ext : {0,1}" — {0, 1}, works
as follows:

o Let nmExt : {0,1}" x {0,1}% — {0, 1} be a “nice” non-malleable extractor.
¢ We use the hardness assumption to set up the somewhere-evasive-PEG,
SEPEG: {0,1}" x [4] — {0,1}¢

of Theorem 6.3 to fool the procedure IsBad from Section 5 (which checks whether as seed
y € {0,1}% is bad).

e Giveninputz € {0,1}" and ¢/ € {0,1}", we define:

®NM(z,y) = @5 nmExt(z, SEPEG(Y/, 2)).
z€[A]

8As before, we cannot specify the exact dependence of the exponent of the polynomial on a, ¢, ¢, because we mke no

assumption on the relationship between Charg and Ceasy in Definition 3.5. However, if Ceasy = O (Chara), then the runtime
ig pPely(1/asc,1/e)

29

* The output is given by: Ext(x) = Maj,/c(o,13- ®NM(z, /).
The analysis shows that:

* For every samplable distribution X with min-entropy k, the number of ¥’ € {0, 1}" that are
“bad” in the sense that for every z € [A], the string y = SRPEG(y/, z) is a bad seed for nmExt
on the source X, is small. Here, it will be crucial that this number is less than (R’)1/ 2 for
R’ = 2"". This follows as the seed length of SEPEG is ' = (1 +) - log aplEG and we can choose,
say 3 = 1/3.

e Forevery y’ € {0, 1}T/ which is “good”, one can show that ®NM(X, ') is (close to) uniform.
Loosely speaking, this follows using non-malleability, and that for a good ¢/, there exists a
z* € [A] such that y = SRPEG(y/, z*) is a good seed, meaning that nmExt(X,y) is close to
uniform (even conditioned on the output of nmExt on seeds of the form SEPEG(y/, z) for

z # z¥).

e The R’ input bits that we feed to Maj, are an oblivious bit-fixing source of the type described
in Theorem 3.14. This relies on the previous item and non-malleability (as well as the
aforementioned bound on the number of bad ¢'). It follows that the function Maj outputs a
bit that is close to uniform.

The exact details follow appear in the formal proof below.
Proof: The construction follows the structure of Theorem 5.1 in [BDT19].

Construction:

Hardness Assumption: We are assuming that E is hard for large exponential size with expo-
nential advice.

“Input” Parameters:

e Constantsc > 0,0 <e < 1.

* An n that is sufficiently large according to the requirements of a nice non-malleable
extractor in Definition 3.17 (for constants ¢ and cerror to be chosen shortly), and the
somewhere-evasive PEG in Theorem 6.3 (for constants ¢ yntime, 3, 7 to be chosen
shortly)

* Min-entropy parameter k£ = k(t, n, nm), determined by the construction of the nice
non-malleable extractor.

Goal: Construct Ext: {0,1}" — {0, 1} such that for every X: {0,1}"" — {0,1}" computable
by a circuit of size n® such that Hoo(X) > k, [Pr[Ext(X) = 1] — 3| <e.

Ingredients:

Some Initial Parameter Choices: There are several parameters to consider when com-
bining Definition 3.17 and Theorem 6.3, with many dependencies. We first need to
define some inital parameters before defining the objects that depend on them:

C2 .
e Definet' = 9;\% For a5 according to Theorem 3.14.
* In Theorem 6.3, define 5 = 1/3.

30

* We now have well-defined constant A = A(f3, ¢) from Theorem 6.3.
e Wedefinet =t'- A.
A Nice Non-malleable Extractor: According to Definition 3.17, for our choice of con-
stant ¢, we have a constant c,m = ¢am(t) such that for every polynomially small
error, €nym = n~ %, there is a (¢, k, enm/16)-non-malleable extractor:

nmExt: {0,1}" x {0,1}% = {0,1}

such that for sufficiently large n: d < ¢ym logn/enm computable in time (%) Cnm.

A Somewhere-Evasive PEG: According to Theorem 6.3, for our choice of § = 1/3, and
by choosing n = L for any cruntime, and sufficiently large n, if we set

4cnm’
1 1/v
—12¢
EPEG = <n> =n_ PR

where cprg = cprag(c) is the constant from Theorem 4.3, then for any desired output
length d, as long as:

12

- Cnm
< 1) K — n48'CPRG'Cnm S 2d =D S (") S poly(n)
€EPEG Enm

there is an injective function computable in time poly(n)
SEPEG: {0,1}" ~+)ls1/epes o [4] — (0,1}

that is a (D~1/(4¢m) cpee)-somewhere-evasive PEG for algorithms B: {0,1}% —
{0, 1} running in time nuntime with n° bits of advice. Notice we have now:

) 1 \ 8
R/ — 27‘ — <) — anCpRG‘
€PEG

The Final Parameters, cnm, Cerror, and Cryntime: - We finally set e,y sufficiently small to
satisfy the constraints of both Corollary 3.15 and Theorem 6.3. Namely:

) 12
€nm = Min c ! !
nm (15thaj (R')t)Z’ EPEG

2 288CpRG CMayj
= min % . nTaj,n@'CPRG'Cnm — gy~ Cerror
225t CMaj
. .. . 2
In particular this implies that e, < W, so that for v = 5t\/2nm, we have

v < 3.CM;, 77 as required by Corollary 3.15. Additionally, since any extractor must

have d > log 1/enm, we also have:

n48-CPRG’Cnm S S D - poly(n)

Enm
as required by Theorem 6.3. Thus, we set the output length of SEPEG to d. Finally,
since nmExt: {0,1}"x{0,1}% — {0,1}isa (¢, k, £nm/16)-non-malleable extractor, we
let cruntime be the exponent such that the final (polynomial) runtime of IsBad x 1, .k ¢
is nfuntime according to Theorem 5.1.

31

Definition of the Extractor: Given = ~ X, we define Ext(x) as follows.
e Ext first computes an [R’] x [A] table TABLE where the (v/, z)-th entry is h,/ .(z) =
nmExt(z, SEPEG(y/, 2)).
* It then computes, for every y' € [R'], ®BNM(z, y’) = @D, 4 TABLE[y'][2]
e Finally, it outputs Maj (&NM(z, 1), ..., &NM(z, R'))

One can verify that the algorithm runs in time poly(n).

Correctness: Let k = k(n,t,enm) for the parameters n, ¢ and ,, chosen above. Note that by our
choices, t is a constant that depends on ¢, €, and enm = n7~%" where cerror is a constant that depends
on ¢, ¢, and on the constant & > 0 in the hardness assumption.
Let X be a distribution over {0, 1}" that is samplable by circuits of size n¢, such that H(X) > k.
First, we see, from Theorem 5.1 that:

IBAD x| = [{y | IsBadx n.tkeom(¥) = 1} < VEnmD.

1
However, we can show that /e,mD < D' Term . Indeed using the fact that n < 1/epm, we can show

__1
V/Enm < D™ Zenm since:
1
Chm\ Zo
1 n 4enm
Enm

Thus Pr(lsBadx ;1 k.. (Ud) = 1] < D~". Therefore indeed by Theorem 6.3, for all but epgg R’ <
(VR)'/* seeds 3/, there is a z such that SEPEG(y’,z) ¢ BAD'y. Call a row ¢’ good if there is such
a good z for it. Since nmExtis a (t = ¢’ - A, k,enm/16)-non-malleable extractor, once again by
Theorem 5.1, for any good row 3/, and any good z* for it, h,/ .- (X) is close to a uniform bit, even
conditioned on hy .(X) forall 2 # 2%, and h,, . (X) for any choice of ¢ — 1 other seeds v, ..., ¥;_;
and any z € [A]. Formally:

A ((hy’,z* (X)7 Ul) ’ {hy/,Z(X)}Z#Z*7 {hy;,z(X)}ie[t—l],zeA) < m

Notice here we used the fact that SEPEG is injective, and so every entry in the table repre-
sents the evaluation of nmExt on X and a different seed. We will use this fact to prove that
®NM(z,1),...,&NM(z, R') is a ((R')}/*,t,~) non-oblivious bit-fixing source (on R’ bits) for v =
5t\/Enm = W The proof now proceeds identically to that in [BDT19]. Towards this end,

fix t good seeds (rows) yi, .. .,y;, with corresponding good z1, ..., 2;. By Lemma 3.1, the good
entries (v}, z1), - . ., (Y}, z:) look uniform and independent of each other, even conditioned on all
other entries in the rows of ¥/, ...,y

A <(hy;,z1(X)a o hay 2 (X030 [y (XD 202w 200, (y;,za}) < 5ty/enm =17
Therefore, the XOR of these rows must still look uniform and independent of each other:
A(SNM(z, 4}), ..., ©NM(z,9;); Up) < .

This proves that ®NM(z, 1),...,®NM(z, R') is a ((R')/4,¢,7) non-oblivious bit-fixing source,
where the “good” bits correspond to good rows, and the total number of bad rows is at most
(R")Y/. Applying Corollary 3.15 yields the result. n

32

8 Nice Seeded Non-Malleable Extractors for Samplable Distributions

In this section we prove Theorem 1.4, which we restate below in a more precise way:
Theorem 8.1. Assume that:

 E is hard for large exponential time with exponential advice.
 E is hard for exponential size nondeterministic circuits.

Then, for every constants ¢ > 1 and € > 0, there exists a constant C' = C'(c,) such that for every sufficiently
large n, there is a (k = C - logn - log log n, €)-extractor

Ext: {0,1}" — {0,1}
for distributions samplable by circuits of size n®. Furthermore, the extractor runs in time poly(n°).

In Theorem 8.1 we are assuming the additional assumption that E is hard for exponential
size nondeterministic circuits. Loosely speaking, our plan is to use this assumption to convert
the current known explicit constructions of non-malleable extractors [Lil7] (and recall, that as
explained in Section 1, these are not sufficiently nice for our purpose) into ones that are nice, and
can be used in Theorem 7.1. More specifically, recall the best known constructions of non-malleable
extractors for small min-entropy & [Lil7] (stated in Theorem 3.20) have a seed length that is slightly
too large for our purposes, and we would like to shorten their seed length to O(logn/enm).

The key observation is that we can settle for a weaker extractor than a general non-malleable ex-
tractor. More specifically, it is sufficient for our purposes that the provided non-malleable extractor
is only guaranteed to work on samplable distributions. This follows as when using Theorem 3.21, we
only consider the case that X is a samplable distribution.

This means that it is sufficient for our purposes to have a “nice construction of non-malleable
extractors for samplable distributions” defined below. This definition is similar to Definition 3.17,
except that we restrict our attention to samplable distributions.

Definition 8.2 (Nice construction of non-malleable extractors for samplable distributions). Let
k(t,n,enm) be some integer function. We say that “there is a nice construction of non-malleable extractors
for distributions samplable by circuits of size n® of min-entropy k” if for every constant t, there exists a
constant cym (that can depend on ¢ and t) such that for every constant cerror > 1, and for every sufficiently
large n, setting enm(n) = n=Cre, there is a function d(n) < cam - log Enm”w and a function

nmExtComp {0,1}" x {0,1}* — {0,1}

computable in time (anm”(n)), such that for every distribution X samplable by a size n® circuit of min-

entropy k, the conclusion of Theorem 3.21 holds.

We note that we do not define a nice non-malleable extractor for samplable distributions
according to the original Definition 3.16. This is mainly for convenience as the property we have
used throughout this work is that of Theorem 3.21. We end this discussion by recording the
following relevant observation.

Observation 3. Theorem 5.1 holds even when there is only a nice construction nmExtComp of non-malleable
extractors for distributions samplable by circuits of size n® of min-entropy k(t,n, enm). The same is true for
Theorem 7.1.

33

The point here, is that constructing non-malleable extractors for samplable distributions is easier
than improving the best known constructions of non-malleable extractors (because we only need
our construction to work for samplable distributions), and is easier than constructing extractors for
samplable distribtions (because we can use an independent seed). In fact, we can show that we can
construct such nmExtComp by simply using the best known non-malleable extractor construction
nmExt, and considering nmExtComp(xz,y) = nmExt(z, G(y')) for an appropriately chosen PRG G.
If the seed length of G has the proper dependence on ¢,m then we are done. As we will explain
below, it is sufficient that G is a PRG for nondeterministic circuits.

We start by defining an “almost nice” construction of non-malleable extractors, which are the
same as nice non-malleable extractors, except the constraint on seed length is greatly reduced.
(Loosely speaking we now allow seed length d = (n/ enm)o(l), whereas in Definition 3.17 we
required that d = O(log(;%))).

Definition 8.3. Let k(t,n, enm) be some integer function. We say that “there is an almost-nice construction
of non-malleable extractors for min-entropy k” if for every constant t, there exists a constant cnm such that
for every constant cerror > 1, and for every sufficiently large n, setting enm(n) = n=%e, there is a function

d(n) < (51Gy) ™ and a (¢, k(t,n, enm), €nm (n))-non-malleable extractor nmExt : {0, 13" x {0,1}4™

= \‘enm(n

{0, 1}, such that nmExt can be computed in time (En:(n))enm,

The next theorem asserts that under a suitable hardness assumption, an almost nice construction
of non-malleable extractors (for general distributions) yields a nice construction of non-malleable
extractors for samplable distributions.

Theorem 8.4. Assume that:
* E is hard for exponential size nondeterministic circuits.
* There is a construction of almost-nice non-malleable extractors for min-entropy k.

Then for any constant c, there is a nice construction of non-malleable extractors for distributions samplable
by circuits of size n® of min-entropy k.

High level idea for the proof of Theorem 8.4. We will use Theorem 3.9, and the hardness
assumption to obtain a PRG G for nonbdeterministic circuits. The main goal is to show that the
subset of seeds to the non-malleable extractor in Theorem 3.20 chosen by this PRG preserves the
properties of Theorem 3.21 whenever X is samplable by a circuit of size n°. It turns out, that
the ideas needed to do so are already in Section 5 and Section 6. We’ll show that as long as for
Enm = m, and the seed length of a non-malleable extractor is sufficiently short (poly(n)), we can
recognize the set of bad seeds with a nondeterministic circuit of size poly(n). (Note that in Section 5
we argued that IsBad can be implemented in time roughly 24, where this time came from a brute
force search over all ¢ tuples of seeds in {0, 1}?). The key observation is that while for d > log n, we
can not afford a brute force search over all such seeds (or ¢t-tuples of seeds) in polynomial time, one
can use nondeterminism to guess the right ¢ seeds, if they exist. More concretely, we can change the
procedure IsBad to instead guess the seeds y1,. .., y; rather than brute force over all tuples. This
leads to an implementation of IsBad by a poly(n) size nondeterministic circuit, which we can fool
using the PRG G.

The precise argument proving Theorem 8.4 appears in Section 8.1. Observing that the non-
malleable extractor from Theorem 3.20 is almost-nice, we get the following result:

34

Theorem 8.5. Assume that E is hard for exponential size nondeterministic circuits. For some constant
C = C(t), for every constant c, there is a nice construction of non-malleable extractors for distributions
samplable by circuits of size n® of min-entropy k = C - (logn +log 1/enm - loglog /enm)-

Proof: In Theorem 8.4, we use Theorem 3.20 as the almost-nice non-malleable extractor. Thus,
for any desired constants ¢, cerror, and enm = n~ %", we have constant c¢;; = c¢(;(¢) and utilize a
(t,k = d',enm/64)-non-malleable extractor:

! i (log n+log —L—-log log —*—
nmExt: {0,1}" — {0, 1}d SIGCL'(I BrHoE oo o8] gf“m) — {0,1}
Seting C'(t) = 16¢; and applying Theorem 8.4 yields the result. |
Equipped with this construction, and Observation 3, we can prove Theorem 8.1

Proof: (Proof of Theorem 8.1) The proof is identical to that of Theorem 7.1, and we only sketch
the derivation of the constant C. By Theorem 8.5, for some constant C’ = C’(t), we have a nice
construction of non-malleable extractors for distributions samplable by circuits of size n® of min-
entropy k = C’(t) - (logn +log 1/enm - loglog /enm). In Theorem 7.1, we sett = ¢’ - A = t(e, ¢), and
Enm = N fOT Cerror = Cerror(t, CPRG, Cnm), Where cprg, cnm are also functions of ¢ and ¢. Thus
setting C' = C’ - ¢2,,, yields the result. n

error

8.1 Proof of Theorem 8.4

The proof will follow the high level explanation in Section 8. We start by describing the nondeter-
ministic version of the procedure IsBad explicitly, and provide an analogous result to Theorem 5.1.
Since we are not concerned with fooling the nondeterministic version of IsBad with a PRG of seed
length independent of d (the seed length of nmExt) we only measure the complexity of IsBad by its
size as a nondeterministic circuit. In other words, we do not need to take care to separate time and
advice in this analysis, as this will happen ultimately later on. We now state a theorem that shows
that Theorem 5.1 holds even for this nondeterministic version.

Theorem 8.6. Assume that:
e E is hard for exponential size circuits.
* There is a construction of almost-nice non-malleable extractors for min-entropy k.

Then:

Let t, ¢, cerror > 1 be constants. Let n be sufficiently large. Set nmExt : {0,1}" x {0,1}% — {0,1} to
be the (t, k, enm/16)-non-malleable extractor from the almost-nice construction, where enm = n~ %", with
d< (enm(n))c”m.

For any distribution X over {0,1}" that is samplable by a size n® circuit, and has Ho(X) > k, let
NonDetlsBadx j, + k... (y) be the procedure in Figure 2 and let

BADx = {y | 3w s.t. NonDetlsBadx , ¢ e, (v, w) = 1}.

35

Figure 2: A nondeterministic procedure that recognizes bad seeds

Procedure NonDetlsBadx , ¢ k. com®

Ingredients: The procedure utilizes as a subroutine an almost-nice (t, k, enm/16)-non-malleable
extractor nmExt: {0,1}" x {0,1}% — {0, 1}. Define hy(z) = nmExt(z,y).

Input: y € {0,1}%, a seed to nmExt, and w = (y1,...,y) € ({0,1}%)!, a choice of t other seeds to

nmExt.

Advice: A description of a circuit X of size n°.

Output: ADbitb € {0,1}.

Operation:

1. Check that y, y1, ..., y; are all distinct. If not, break about output b = 0.

(a) For every subset S C {0,1}":

i.

ii.

ii.

Let15: {0,1}' — {0, 1} denote the algorithm determining membership in S.
Define 4;: {0,1}" — {0,1} as:

A1(2) = 1s(hy(X(2)), by, (X (2)), - - 5 Py, (X (2)))-
Also define Ay: {0,1}" x {0,1} — {0,1} as:

AQ(Zv a) = 15(&, hyl (X(Z)), s hyt(X(z)>)

Note that Ay, A are circuits of size s = ¢ - n®- (=)™ = poly(n®, n), for a polyno-
mial that depends on ¢, ¢,m. We will use the algorithm from Theorem 3.8, compute p;
and po, that are |/e,m/8 approximations to Pr[A; (U,-) = 1] and Pr[As(Uye41) = 1]
respectively. By Theorem 3.8 this can be done in time poly (s, i) = poly(n¢, ncerr)
for a polynomial that depends on ¢, ¢,m, and the constants in the hardness assump-

tion.

iv. If [p1 — P2| > /Enm/2, then break and output b = 1.

2. Output b = 0.

1. BADx., . C BAD'y and in particular, for any y & BAD'y, and any distinct y, ..., y;:
Enm X p Y Y

A ((hy(X)leﬂ{hyl(X) 11?:1) < VEnm.

Furthermore, for any yi, ..., y: ¢ BADy:

A({hy, ! 1;Up) < 5ty/Enm.

2. BADy C BADx . /16 and in particular, |BAD'y| < \/EqmD.

36

3. NonDetlsBadx , ¢ ke, 15 cOmputable by a nondeterministic circuit of size poly(n¢, ncrer = 6nlm)
(where the polynomial depends on t and com(t)).

Proof: The proof of the first two items is identical to that in Theorem 5.1. The final item follows
from the fact that NonDetlsBad x , ¢ k... (¥, w) is @ nondeterministic algorithm of size poly(n®, n®rr),

and the input length is |y| + |w| = (¢t + 1)(&:(”))Cnm. =

We clarify that we only use Theorem 8.6 in order to show how to construct a nice non-malleable
extractor for distributions samplable by circuits of size n¢ by combining with a proper PRG.?
That is, we wil show how to combine an almost-nice non-malleable extractor construction with a
PRG to obtain a nice construction of non-malleable extractors for samplable distributions. Using
Theorem 3.9, we can show that there is a PRG that fools NonDetlsBad.

We are finally ready to prove Theorem 8.4.

Proof: (of Theorem 8.4)

Construction:

Hardness Assumption: We are assuming that E is hard for exponential size nondeterministic
circuits.

Parameters:
e Constants t, ¢, Cepror > 0.
¢ An n that is sufficiently large.

Goal: Construct nmExtComp: {0,1}" x {0,1}% — {0, 1} such that for some constant ¢ym, and
for egm = n = Cerrer:

* d < cpmlogn/enm.
Cnm
* nmExtComp is computable in time (ﬁ) .

¢ For every distribution X samplable by a size n¢ circuit, the conclusion of Theo-
rem 3.21 holds for nmExtComp.

Ingredients:

The Non-malleable Extractor: For our desired ¢, and e, = n~ %, we have for con-
stant ¢, = ¢hm(t) a (t, k, £nm/64)-non-malleable extractor

nmExt: {0,1}" — {0, 1}¢SGEmm)™ 5 10, 1)

A PRG Fooling Nondeterministic Circuits: For s = 2 - poly (n, n), the size of
NonDetlsBadx ,, s ., /4 according to Theorem 8.6, let

G: {0,1}*8% - {0,1}*

be the (1/s)-PRG (computable in time poly(s)) for nondeterministic circuits of size
s guaranteed by Theorem 3.9, for some constant a. We will in particular note that
s > d' (since d’ is the input length to NonDetlsBadx ,, 1 k. ., /4) and 1/s < enm /2. Also
note G is seed-extending and therefore injective.

That is, once we construct such a function, the final result will consider yet another IsBad that is meant to determine
whether a seed to the resulting construction is good or not.

37

Definition of the Extractor: We define:
nmExtComp(z,y) = nmExt(z, G(y))

where the output of G(y) is truncated to d’ bits to be of proper length. One can verify
that the algorithm runs in time poly(n).

Correctness: We first verify that d = alogs < a'logn/enm for some constant o’ (depending on ¢
and t), and the runtime is poly(s) + (n/enm)%m < (n/enm)® for some constant a” (also depending
on ¢ and t). Therefore we can take ¢y, = max(a’, a”).

It remains to verify that the conclusion of Theorem 3.21 holds. Fix any X samplable by a size
n¢ circuit of min-entropy k (we set C'(t) = 16¢y;). Fix also any €},,, > €nm, and let i,y = nmExt(-, /).
Define:

BAD* = {r € {0,1}" | 3distinct r1,..., 7 € {0, 1}\{y}, A ((ha(ry(X); UD) [{haiy (X) Y1) > /ehm)-

We wish to show that |[BAD*| < ,/el,,D. First, since G is injective, we know that if » € BAD*
then G(r) € BADx,,. Furthermore, by Theorem 8.6, we know that BADy ., C BAD’ and

|IBADy | < VsT’"D’ Since G (enm/2)-fools BADy, we have that:

‘BAD ‘ Enm €nm
D’

Pr[r € BAD*] < Pr[G(r) € BADx.,.] < Pr[G(r) € BADY] <

8.2 A Final Remark: PRGs on PRGs on PRGs

We conclude by observing that there are four PRGs involved in Theorem 8.1. First, there is the
PRG used as a subroutine to NonDetlsBad, which runs in some time poly(n). In the construction
of Theorem 8.5, we require a PRG that fools NonDetlsBad, and thus this PRG, and the resulting
nmExtComp, should run in an even larger poly(n). Next, nmExtComp is used as a subroutine to
IsBad from Theorem 5.1, where it in turn must also be fooled by yet another PRG running in yet
another larger polynomial. Finally, IsBad itself must be “fooled” by our final SRPEG.

It is entirely possible that some steps are ultimately redundant. Specifically it might be possible
to flatten the construction by combining the PRG in nmExtComp and the PRG in SRPEG. We do not
attempt to do so because we wish to highlight the potential of the technique given improvements
to explicit constructions of non-malleable malleable extractors.

9 Discussion and Open Problems

9.1 Evaluating the New Hardness Assumption

In this paper we use a new hardness assumption (namely the assumption that E is hard for
large exponential time with exponential advice, defined in Definition 3.5). To the best of our
knowledge, hardness assumptions of this flavor where first introduced by Chen and Tell [CT21].
Our assumption has the same structure, but is quantitatively weaker.

38

Discussing the previous assumptions. Before evaluating this assumption, for the purpose of
comparison, let us point out that for the more standard assumption introduced by Impagliazzo
and Wigderson [IW97] (that E is hard for exponential size circuits) one can consider two possible
justifications:

A candidate based justification is that it is commonly believed that there exists an a > 0 such
that SAT ¢ SIZE(2*"), and so (if we add an “infinitely often”) we can instantiate the hardness
assumption with the problem SAT which is obviously in E = DTIME(2°(%)).

A completeness based justification is that the language

L = {(M,z,1") : Turing machine M accepts z in time 2’}

is in E and is obviously complete for E under linear time reductions. This implies that if the
hardness assumption holds (and some problem in E is sufficiently hard) then it can be instantiated
with L (even in case SAT is not sufficiently hard).

We can continue this rationale to the stronger assumption that E is hard for exponential time
nondeterministic circuits. Here, SAT will obviously not do, but a potential candidate is co — SAT.
Furthermore, the completeness justification holds.

One can easily extend this discussion to even stronger hardness assumptions against 3J;-circuits,
where the candidate will be ¥, — SAT.

Discussing the new assumption. We now turn our attention to the new assumption that E is
hard for large exponential time with exponential advice. For this assumption, we can define the
language:

L. = {(M,) : Turing machine M accepts z in time 2¢/2} .

Continuing the previous discussion, note that as before, for every constant ¢, L. is in E, and
furthermore, it is natural to conjecture that nonuniform procedures with time 2¢h that use 20"
bits of advice (for a sufficiently small o > 0) cannot accept L., if c is chosen to be a constant that is
sufficiently larger than Ch,rq. This means that in the assumption that E is hard for large exponential
time with exponential advice, when given a constant C},,rq We can hope to take c to be a constant
that is significantly larger than Ch,q and instantiate the assumption with L.

Furthermore, by the completeness argument explained earlier, if the new hardness assumption
holds, then the candidate choice above can be used.

9.2 Open Problems

The first natural open problem is to improve the seed length of currently known non-malleable
extractors to O(logn/enm). The recent line of work that constructs such extractors for k = Q(d)
[CGL16, Cohléb, Cohléa, CL16, Lil7] do not quite have the right dependence between d and
enm- In fact, as Section 8 suggests, even constructing nice non-malleable extractors for samplable
distributions under, say the asssumption that E is hard for exponential time and exponential advice,
rather than E is hard for exponential size nondeterministic circuits would offer an improvement, by
removing the nondeterministic assumption.

Reducing the min-entropy in Theorem 1.3. As explained in Section 1, the reason that we only
get k slightly larger than n/2 in Theorem 1.3 is that current best constructions of non-malleable

39

extractors are not “sufficiently nice” for our purposes. We remark once again, that the current
best explicit constructions by Li [Lil17], do achieve a very low k of O(logn - loglogn), and if the
seed length d could be improved from O(logn + log i - log log i) to O(logn + log ﬁ), then
Theorem 7.1 immediately implies an extractor for samplable distributions for the same %k, under the
sole assumption that E is hard for large exponential size with exponential advice.

An alternative approach is to try and extend the argument in Theorem 1.4 which achieves a
low k, but assumes the additional assumption that E is hard for exponential size nondeterministic
circuits. As explained in Section 8 this assumption is used to “reduce the seed length” of the non-
malleable extractor of [Lil7] (in the case that the input distribution is samplable). More concretely,
as explained Section 8, a “nice non-malleable extractors for samplable distributions” (in the precise
meaning of Definition 8.2) is sufficient for our purposes. It is natural to ask whether such seeded
non-malleable extractors for samplable distributions can be obtained with a weaker hardness
assumption than the one used in Theorem 8.1.

Improving the output length and error of the extractor. A drawback of Theorem 1.2 (and its
more formal restatement in Theorem 7.1) is that the obtained extractor for samplable distributions
only outputs a single bit, and has error ¢ > 0 that is constant.

As explained Section 2, the output length and error that we get, match the output length and
error that is obtained by Ben-Aroya, Doron and Ta-Shma [BDT19] in their construction of two-
source extractors. It should be noted that other constructions of two-source extractors are able
to obtain error ¢ that is polynomially small in n, with a larger output length m (specifically, the
breakthrough construction of Chattopadhyay and Zuckerman [CZ16] and Li [Lil7]). A natural
approach is to try and imitate the structure of these constructions in our reduction. See discussion
in Section 2.5

We remark that in order to get large output length it may be sufficient to achieve low error, with
logarithmic output length. This is because Shaltiel [Sha08] showed that extractors for samplable
distributions with short output length m = O(logn) and error ¢ < 27", can be improved to
give output length m = k (if the initial extractor has some additional properties) and indeed this
transformation is used in some previous extractor constructions mentioned in Table 1.

10 Acknowledgments

We thank Dean Doron for some clarifications about [BDT19].

References

[AIKS16] Sergei Artemenko, Russell Impagliazzo, Valentine Kabanets, and Ronen Shaltiel.
Pseudorandomness when the odds are against you. In 31st Conference on Computational
Complexity, CCC, pages 9:1-9:35, 2016.

[BDSGM23] Marshall Ball, Dana Dachman-Soled, Eli Goldin, and Saachi Mutreja. Extracting ran-
domness from samplable distributions, revisited. In 2023 IEEE 64th Annual Symposium
on Foundations of Computer Science (FOCS), pages 1505-1514. IEEE, 2023.

40

[BDT19]

[BSS25]

[CGL16]

[Cha20]

[CL16]

[Cohlé6a]

[Coh16b]

[CRS14]

[CT21]

[CT23]

[CZ16]

[DPW14]

[DW09]

Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. An efficient reduction
from two-source to nonmalleable extractors: achieving near-logarithmic min-entropy.
SIAM Journal on Computing, (0):STOC17-31, 2019.

Marshall Ball, Ronen Shaltiel, and Jad Silbak. Extractors for samplable distributions
with low min-entropy. In Proceedings of the 57th Annual ACM Symposium on Theory of
Computing, pages 596-603, 2025.

Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes,
with their many tampered extensions. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 285-298, 2016.

Eshan Chattopadhyay. Guest column: A recipe for constructing two-source extractors.
ACM SIGACT News, 51(2):38-57, 2020.

Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source
extractors, and almost optimal privacy amplification protocols. In Foundations of
Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 158-167. IEEE,
2016.

Gil Cohen. Making the most of advice: New correlation breakers and their applica-
tions. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on,
pages 188-196. IEEE, 2016.

Gil Cohen. Non-malleable extractors-new tools and improved constructions. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 50. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

Gil Cohen, Ran Raz, and Gil Segev. Nonmalleable extractors with short seeds and
applications to privacy amplification. SIAM Journal on Computing, 43(2):450-476, 2014.

Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions:
eliminating randomness at almost no cost. In Proceedings of the 53rd Annual Symposium
on Theory of Computing (STOC), pages 283-291. ACM, 2021.

Lijie Chen and Roei Tell. When arthur has neither random coins nor time to spare:
Superfast derandomization of proof systems. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pages 60—69, 2023.

Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and
resilient functions. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, pages 670-683. ACM, 2016.

Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. Key derivation without
entropy waste. In Advances in Cryptologqy—-EUROCRYPT 2014, pages 93-110. Springer,
2014.

Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key
cryptography from weak secrets. In Proceedings of the forty-first annual ACM symposium
on Theory of computing, pages 601-610. ACM, 2009.

41

[ISW99]

[TW97]

[KvMO02]

[Li17]

[LP23]

[MV05]

[RTO00]

[Sha08]

[Sha24]

[Sha25]

[STVO1]

[SUO05]

[SU06]

[Tre01]

[TV00]

Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Near-optimal conversion
of hardness into pseudo-randomness. In 40th Annual Symposium on Foundations of
Computer Science (Cat. No. 99CB37039), pages 181-190. IEEE, 1999.

Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (STOC 1997), pages 220-229. ACM, 1997.

Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexpo-
nential size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on
Computing, 31(5):1501-1526, 2002.

Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 1144-1156, 2017.

Yanyi Liu and Rafael Pass. Leakage-resilient hardness vs randomness. In Proceedings
of the conference on Proceedings of the 38th Computational Complexity Conference, pages
1-20, 2023.

Peter B. Miltersen and N. Vinodchandran Variyam. Derandomizing Arthur-Merlin
games using hitting sets. Computational Complexity, 14(3):256-279, 2005.

Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors,
and depth-two superconcentrators. SIAM Journal on Discrete Mathematics, 13(1):2-24,
2000.

Ronen Shaltiel. How to get more mileage from randomness extractors. Random
Structures & Algorithms, 33(2):157-186, 2008.

Ronen Shaltiel. Multiplicative extractors for samplable distributions. In Electronic
Colloquium on Computational Complexity (ECCC), TR24-168, 2024.

Ronen Shaltiel. Extractors for samplable distribution with polynomially small min-
entropy. In Electronic Colloquium on Computational Complexity (ECCC), TR25-054, 2025.

Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without
the XOR lemma. Journal of Computer and System Sciences, 62(2):236-266, 2001.

Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a
new pseudorandom generator. Journal of the ACM, 52(2):172-216, 2005.

Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting
and sampling. Computational Complexity, 15(4):298-341, 2006.

Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860—
879, 2001.

Luca Trevisan and Salil Vadhan. Extracting randomness from samplable distributions.
In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2000), pages 32—42. IEEE, 2000.

42

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. Journal of Computer
and System Sciences, 67(2):419-440, 2003.

[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM Journal on Computing, 43(2):655—
672,2014.
[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of Max Clique

and Chromatic Number. Theory of Computing, 3:103-128, 2007.

43

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

