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Abstract. Randomness is a fundamental requirement in cryptographic systems, enabling secure en-
cryption, commitments, and zero-knowledge proofs. However, real-world randomness sources often suffer
from weaknesses that adversaries can exploit, leading to significant security vulnerabilities. While de-
terministic randomness extraction from a single min-entropy source is impossible, two-source extractors
provide a robust solution by generating nearly uniform randomness from two independent weak sources.
Moreover, cryptographic systems must also be resilient to leakage and tampering attacks, necessitating
the development of non-malleable two-source extractors.
In this work, we construct a two-source non-malleable extractor in the Common Reference String (CRS)
model, where a random low-degree polynomial is sampled once and made accessible to independent
random sources, the distinguisher, and the tamperer. Our extractor requires only linear min-entropy in
both sources and doesn’t rely on strong computational assumptions, in contrast to prior constructions
requiring computational assumptions such as sub-exponential hardness of the Decisional Diffie-Hellman
(DDH) problem. Notably, our construction builds upon and relies on the recent breakthrough proof
of the polynomial Freiman-Ruzsa conjecture. A connection of the Freiman-Ruzsa conjecture with two-
source extractors was considered in prior work [ZBS11,AGMR24], but their construction did not achieve
non-malleability.
Our results advance the state of non-malleable cryptographic primitives, with applications in secure
storage, leakage-resilient cryptography, and privacy amplification. By eliminating the need for strong
computational hardness assumptions, our techniques provide a more foundational and widely applicable
method for randomness extraction.
We also show, that the requirements on CRS for our application are so mild that the CRS can be sampled
with 2 party computation even when one of the parties is malicious (setting in which establishing
unbiased coins is impossible).

Keywords: Randomness Extraction · Tamper-resilient cryptography · Leakage-resilient cryptography.

1 Introduction

Cryptography with weak randomness. Randomness is a fundamental requirement in cryptography. Many
core cryptographic primitives, including semantically secure encryption, commitments, and zero-knowledge
proofs rely on it. Dodis, Ong, Prabhakaran, and Sahai [DOPS04] established that these primitives cannot be
securely implemented using weak randomness sources, even those with high min-entropy, and instead require
truly random inputs.

Despite its necessity, obtaining perfect randomness in real-world applications is highly challenging. Nu-
merous cryptographic attacks exploit flaws in randomness generation. For instance, Breitner and Heninger
[BH19] demonstrated how weak randomness in key generation allowed them to recover hundreds of Bit-
coin private keys. Similar vulnerabilities have been reported in other cryptographic contexts [HDWH12],
[BCC+13].

Real-world randomness often originates from physical processes, such as electronic noise or user activity,
which contain entropy but rarely produce uniformly random outputs. Additionally, adversaries may gain
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partial insight into the randomness generation process, further compromising its quality. The difficulty arises
not only from the lack of uniformity of the source but also from the uncertainty about the exact distribution.

The best one can hope for is to deterministically extract a nearly perfect random string for direct us-
age in the desired application. While there are source models which allow for deterministic randomness
extraction, such as von Neumann sources [VN51], affine sources [Bou07], and other efficiently generated
or recognizable sources [Blu86,SV86,TV00,DGW09,KRVZ06,Dvi12,BGLZ15,CL16], all these models make
strong assumptions about the structure of the source.

One can at best assume that they satisfy some minimal property, for example, that none of the outcomes
is highly likely. This is the most natural, flexible, and well-studied source model and it is captured by the
notion of min-entropy. The situation is complicated even further by the presence of leakage and tampering
attacks.

Leakage and Tampering Attacks. In modern cryptographic systems, ensuring security against adversaries who
may gain partial knowledge of secret information is critical. This is where leakage-resilient cryptography plays
a vital role. Traditional cryptographic models assume that secret keys remain entirely hidden from attackers,
but in reality, side-channel attacks, memory leakage, and hardware vulnerabilities can expose portions of the
secret state . Leakage-resilient cryptography is designed to withstand such threats by ensuring that security
is preserved even when an adversary obtains partial information about the secret. These techniques are
particularly crucial in embedded systems, smart cards, and cloud computing, where attackers may exploit
unintended information leaks, such as power consumption, timing variations, or electromagnetic emissions.
So, even if we have uniform randomness, it is essential for applications that the source remains uniform
conditioned on the view of an adversary, who potentially can obtain leakage about the source. For example,
this problem was considered for partial key exposure by [CDH+00,DSS01]and later generalized to memory
leakage by [Dzi06,DCLW06,AGV09].

Equally important is non-malleable cryptography, which prevents adversaries from tampering with en-
crypted and signed messages or even worse with the secret keys in a meaningful way. In many real-world
scenarios, attackers not only aim to learn secret information but also to modify data in a controlled man-
ner to deceive or manipulate the system. An example of this is a related key attack where the adversary
can tamper with the secret key, and observe the outputs of the cryptographic algorithms on those related
keys [GLM+04,BDK08,FKOS22]. Non-malleability ensures that any modification/tampering results in an
output that is either completely unusable or unrelated to the original message. Together, leakage-resilience
and non-malleability strengthen cryptographic foundations, ensuring robust security even in the presence of
sophisticated and resourceful adversaries.

Two-source extractors. Sadly, assuming a lower bound on the min-entropy of the source does not allow deter-
ministic extraction of even 1 almost uniformly random bit [CG88]. This holds even in the highly optimistic
case where the source is supported on {0, 1}d and has min-entropy d − 1. Fortunately, [CG88] showed that
if we are given two independent min-entropy sources, then we can produce uniform randomness via what is
called a two-source extractor.

The problem of constructing explicit low-error two-source extractors for low min-entropy sources was an
important focus of research in pseudorandomness over more than 30 years, with fundamental connections
to combinatorics and many applications in computer science. The first non-trivial explicit construction was
given by Chor and Goldreich [CG88], who showed that the inner product function is a low-error two-source
extractor for n-bit sources with min-entropy (1/2 + γ)n, where γ > 0 is an arbitrarily small constant. A
standard application of the probabilistic method shows that (inefficient) low-error two-source extractors
exist for polylogarithmic min-entropy. Although several attempts were made to improve the construction
of [CG88] to allow sources with smaller min-entropy, the major breakthrough results were obtained after
almost two decades. Raz [Raz05] gave an explicit low-error two-source extractor where one of the sources
must have min-entropy (1/2 + γ)n for an arbitrarily small constant γ > 0, while the other source is allowed
to have logarithmic min-entropy. In an incomparable result, Bourgain [Bou05] gave an explicit low-error
two-source extractor for sources with min-entropy (1/2− γ)n, where γ > 0 is a small constant. Recently, an
improved analysis by Lewko [Lew19] showed that Bourgain’s extractor can handle sources with min-entropy
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4n/9. In another line of work, Chattopadhyay and Zuckerman [CZ19] succeeded in constructing explicit
1-bit two-source extractors for polylogarithmic min-entropy with polynomially small error (this was quickly
improved to larger output length [Li16] and near-logarithmic min-entropy [BADTS17,Coh17,Li17], with the
state-of-the-art currently found in [Li23].

The applications for two-source extractors in cryptography goes beyond just extracting randomness from
sources with small min-entropy. Two-source extractors play a crucial role in leakage-resilient cryptography by
enabling the generation of uniform randomness even when individual sources may be partially compromised.
For example, Davi, Dziembowski, and Venturi [DDV10] used two-source extractors to build a leakage-resilient
storage scheme in the model where the physical memory may leak some side-channel information.

Non-malleable extractors. In a breakthrough result, Dodis and Wichs [DW09] introduced the notion of
seeded non-malleable extractors as a natural tool for applications in tamper-resilient cryptography. Their
main goal was towards achieving privacy amplification against active adversaries [MW97] with an optimal
number of rounds and small entropy loss. Roughly speaking, the output of a seeded non-malleable extractor
with a uniformly random seed and a source X with some min-entropy should look uniformly random to an
adversary who can tamper the seed and obtain the output of the non-malleable extractor on a tampered
seed. A natural strengthening of both seeded non-malleable extractors, and two-source extractors are two-
source non-malleable extractors (also known as seedless non-malleable extractors). Two-source non-malleable
extractors were introduced by Cheraghchi and Guruswami [CG14][CG17] in the single-tampering setting
and by Chattopadhyay, Goyal, and Li [CGL16] in the multi-tampering setting. Roughly speaking, a function
nmExt : {0, 1}n × {0, 1}n → {0, 1}m is said to be a non-malleable extractor if the output of the extractor
remains close to uniform (in statistical distance), even conditioned on the output of the extractor on an
input correlated with the original source. In other words, we require that

nmExt(X,Y ),nmExt(f(X), g(Y )) ≈ε Um,nmExt(f(X), g(Y )) ,

where X and Y are independent sources with enough min-entropy, f, g : {0, 1}n → {0, 1}n are arbitrary
tampering functions such that (f, g) has no fixed points, Um is uniform over {0, 1}m and independent of the
rest, and ≈ε means the two distributions are ε-close in statistical distance (for small ε). The original moti-
vation for studying efficient two-source non-malleable extractors stems from the fact that they directly yield
efficient split-state non-malleable codes [DPW18] (provided the extractor also supports efficient preimage
sampling).

The initial constructions of non-malleable codes [DKO13,ADL14] were largely based on the (limited) non-
malleability of the inner-product two-source extractor. Later, improved constructions of non-malleable codes
in the split-state model can be broadly classified as: those that made use of both the inner-product two-source
extractor [ADKO15,AO20,AKO+22] and more sophisticated constructions of two-source non-malleable ex-
tractors [CGL16,Li17,Li19,ACO23,Li23] that required alternating extractors. This topic has been extensively
explored in the literature; for a more comprehensive list of works on non-malleable codes in the split-state
model, see [Li23] and the references therein. Non-malleable codes and two-source non-malleable extractors
have since been applied to other areas, including non-malleable secret sharing [GK18a,GK18b,BS19,ADN+19],
randomness extraction from adversarial sources [CGGL19], network extraction protocols [GSZ21], non-
malleable commitments [GPR16], and privacy amplification [CKOS19,AOR+22].

In particular, in [AOR+22], the authors present an extension of privacy amplification (PA) against active
adversaries, where Eve, as an active adversary, is further allowed to fully corrupt the internal memory of one
of the honest parties, Alice or Bob, before the protocol execution. Their construction required two-source
non-malleable extractors where one source has a small entropy rate δ (where δ is a constant close to 0). Such
non-malleable two-source extractors were constructed in [ACO23,Li23].

(Non-malleable) Extractors in the CRS Model were introduced by [GKK20] The Common Reference String
(CRS) model, introduced by Garg, Kalai, and Khurana [GKK20], provides a computational framework
for constructing non-malleable extractors. In this model, a CRS is sampled once and for all, and three
adversaries have full access to it: the sampler, which samples independent randomness sources with sufficient
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min-entropy; the tamperer, which is allowed to tamper with these source samples; and the distinguisher,
which attempts to distinguish the extractor’s output from a uniform distribution, given access to outputs on
tampered versions. Their work constructed a one-source non-malleable extractor in this model under the DDH
assumption, but only handled one-sided tampering. In a follow-up work, [AOR+22] extended this approach
to two-source non-malleable extractors, achieving significantly improved parameters while handling both-
sided tampering. Their construction remains secure against an unbounded distinguisher under the existence
of nearly optimal collision-resistant hash functions. Furthermore, under the quasi-polynomial hardness of the
DDH assumption, their extractor requires much lower min-entropy and handles a broader class of tampering
functions, significantly improving upon previous constructions.

In [AGMR24] Alrabiah, Goodman, Mosheiff, and Ribeiro explored the properties of random low-degree
multivariate polynomials over F2, they show that such polynomials are good extractors for sumset sources
and any small families of sources. Most relevant to our context, they give the construction of a two-source
extractor for small min-entropy in the CRS model. Their construction obtains negligible error relevant in
cryptographic setting.

1.1 Our Contributions.

Our main result is a two-source non-malleable extractor construction in the CRS model, where a random
low degree polynomial needs to be sampled once and for all, and then the independent random sources,
the distinguisher and the tamperer are allowed arbitrary access to this polynomial. The informal theorem
statement is as below.

Theorem 1 (Informal).

1. For all n, constant ρ > 0 there are constants µ, γ > 0 so that there is an efficiently sampleable polynomial
p and the efficiently computable function nmExtp : {0, 1}n×{0, 1}n → {0, 1}m, that depends on p, is with
probability 1 − 2−Ω(n2) over the randomness of p, an (n,m, ρn, 2−γn) 2-source non-malleable extractor,
where m = µn.

2. For all n, there are constants C0 > 0 and σ, ν > 0 so that there is an efficiently sampleable polynomial
p and the efficiently computable function nmExtp : {0, 1}n × {0, 1}n → {0, 1}m, that depends on p, is
with probability 1 − 2−Ω(n2) over the randomness of p, an

(
n,m, C0n

logn , 2
−σ
√
n
)

2-source non-malleable
extractor, where m = ν

√
n.

This should in particular be contrasted with [GKK20,AOR+22] which required very strong computational
assumptions in addition to the common reference string, for the construction of a two-source non-malleable
extractor. Our construction on the other hand does not require any additional assumption.

Our work is heavily inspired from [ZBS11] that showed a connection between a two-source extractor and
the polynomial Freiman-Ruzsa conjecture.

Notice that a non-malleable two-source extractor is also, by default, a two-source extractor. Alrabiah,
Goodman, Mosheiff, and Ribeiro [AGMR24] also gave a construction of two-source extractors for small
min-entropy in the CRS model, but it doesn’t seem easy to extend their construction to give a two-source
non-malleable extractor.

It should also be noted that in the absence of CRS our polynomial can even be sampled by two parties
that mutually distrust each other. See Section 4, Section 5.

1.2 Technical Overview

In this exposition we focus on extractors with 1 bit output. With a bit of care and handling technical issues,
we are able to obtain large output extractors with similar methods.

As a warm-up, let’s build two source extractor first. It is well known that if A and B are two subsets of
{0, 1}n such that log |A|+ log |B| > n+1 then if we sample a← A and b← B independently and uniformly
at random and evaluate inner product ⟨a, b⟩ the output distribution will be statistically close to uniform.
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In the language of random variables this translates to ⟨X,Y ⟩ is statistically close to uniform if X,Y are
independent random variables over {0, 1}n such that H∞(X)+H∞(Y ) > n+1. The equivalence of these two
views comes from a standard observation that every random variable with min-entropy k can be decomposed
into a convex combination of distributions that are uniform over sets of size 2k (i.e. flat sources).

Recent progress in additive combinatorics gives us a much stronger statement to work with: if dimF2
(A)+

dimF2
(B) > n + 1 (where dimF2

stands from dimension of the span of the set, see Definition 7), then the
inner-product ⟨a, b⟩ of independent uniform samples a ← A and b ← B will be distributed uniformly at
random.

The idea behind two-source extractor is therefore simple – given two random sources X and Y over {0, 1}n
that fulfil some minimal lower bound on min-entropy H∞(X), H∞(Y ) > ρ · n, if we could deterministically
encode X → ψ(X) and Y → ψ(Y ), such that ψ(Supp(X)) has large dimension (specifically, for every random
variables with min-entropy at least ρ · n we need dimF2

(ψ(Supp(X))) > n+1
2 ), then we could simply apply

inner-product
(X,Y )→ ⟨ψ(X), ψ(Y )⟩

and know that the output is uniform since

dimF2(ψ(Supp(X))) + dimF2(ψ(Supp(Y ))) > n+ 1 .

There are some technical limitations to this approach like the size of the output of ψ has to be linear in the
size of the input but for the purpose of this overview, we don’t get into those technical details.

So, it suffices to find an appropriate ψ. Let us begin by picking ψ as a random degree t = O(n) polynomial
over F2n , i.e. ψ : F2n → F2n . Notice that randomness complexity (or description) of such polynomial is
(t+ 1) · n which is efficient to express and work with.

Now we need to show that for any X random variable with H∞(X) ≥ ρ ·n, we have dim(ψ(Supp(X))) >
0.51 · n (where 0.51 is a placeholder for “slightly more than half”). Again, it is sufficient to talk about X, a
flat distribution over a set of the size 2ρ·n. This task can be viewed as a matrix problem: Find a matrix with
rows iterated by all 2n strings representing all possible values of x ∈ {0, 1}n, and let i-th row be filled with
ψ(i) ∈ {0, 1}n, this means our matrix has 2n rows and n columns. To show that for any random variable X
with H∞(X) > ρ · n we have dimF2

(Supp(X)) > 0.51 · n, all we need to show is that any 2ρ·n rows of our
matrix span space of dimension at least 0.51 · n. We will focus on fixed set of rows and then union-bound
over all possible choices of 2ρ·n rows.

First, notice that ψ is a random polynomial of degree t, which means that all t rows in our matrix
are independent and uniformly random. So clearly probability that the fixed 2ρ·n rows of our matrix are
spanning a large dimension space is very high, it’s as high as the probability that t uniformly random vectors
span a high dimensional space. But we have the order of quantifiers wrong, we fixed the choice of rows and
said it’s very likely they are of high dimension, what we need to show is that every choice of rows gives
a high dimensional space. This can be done via union bound over

(
2n

2ρ·n

)
possible sources. Let’s get some

optimistic bound on the failure probability i.e. probability that t uniformly random vectors do not span
space of dimension at least 0.51 ·n, such probability is clearly smaller than 20.51·n·t, this follows from picking
a subspace of dimension 0.49 ·n, each vector falls into this space with probability 20.51·n. Even this extremely
optimistic bound on the failure probability 20.51·n·t can not withstand the union bound

(
2n

2ρ·n

)
.

First idea: Notice that we don’t have to union bound over
(

2n

2ρ·n

)
sources. Instead, it is actually sufficient to

bound over all choices of t rows as it is sufficient to show that every t rows span a sufficiently large space, as
every source of high entropy contains some t possible values/rows (since t < 2ρ·n). But our optimistic failure
probability of 20.51·n still can’t withstand a union bound of

(
2n

t

)
≈ 2n·t.

Second idea: We have to boost the probability that each of t rows have a large span. This can be done
by picking larger t. However, this will also increase the union-bound penalty and leads nowhere (at least
if we want to keep t reasonably small). Let us increase the size of each row then: ψ : {0, 1}n → {0, 1}10n
while maintaining the t−wise independence. Now our t random vectors are much longer and span space of
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dimension 0.51 · 10 · n with much higher probability that can withstand 2n·t union-bound penalty. Sampling
such function ψ is also easy: pick a random polynomial p : F210n → F210n of degree t, and let ψ(x) = p(09n◦x).
Notice that because of the union bound we get that almost every polynomial p gives us a matrix such that
each t rows of this matrix span large dimensional space. Thus we are done:

(X,Y )→ ⟨p(09n ◦X), p(09n ◦ Y )⟩ ,

is a good extractor for sources with min-entropy1 at least ρ · n.

Building non-malleable extractor: Now that the warm-up is concluded and we have constructed a two-source
extractor we can proceed with the construction of a non-malleable two-source extractor. The construction
will be basically the same,

(X,Y )→ ⟨p(09n ◦X), p(09n ◦ Y )⟩ .

It is just that the polynomial p will have to be of slightly higher (but still linear) degree.
To show that nmExt(X,Y ),nmExt(f(X), g(Y )) is close to U,nmExt(f(X), g(Y )) by XOR lemma, all we

need to show is that both nmExt(X,Y ) is close to uniform and nmExt(X,Y ) + nmExt(f(X), g(Y )) is also
close to uniform.

First statement is already done – that is simply the extractor statement from the warm-up part of this
exposition. Let us focus on proving that nmExt(X,Y ) + nmExt(f(X), g(Y )) is uniform. Notice:

nmExt(X,Y ) + nmExt(f(X), g(Y )) =

= ⟨p(09n ◦X), p(09n ◦ Y )⟩+ ⟨p(09n ◦ f(X)), p(09n ◦ g(Y ))⟩ =
= ⟨p(09n ◦X) ◦ p(09n ◦ f(X)), p(09n ◦ Y ) ◦ p(09n ◦ g(Y ))⟩

Consider our matrix again, with 2n rows, with i’th row equal p(09n ◦ i) ◦ p(09n ◦ f(i)), now each row is
20 · n bits long. If we could show again that every t-rows form a high dimension subspace (say, dimension
0.51 · 20 · n) we would be done. Sadly, this is not quite true. If f is a constant function then the dimension
spanned by any t rows is at best 10 · n which is not enough.

At this point we identify, that f−close to constant is the only barrier standing between us and the proof.
But notice that if f is close to constant then nmExt(f(X), g(Y )) is basically a deterministic function of Y ,
and by a strong extraction property nmExt(X,Y ) = ⟨p(09n ◦X), p(09n ◦ Y )⟩ is close to uniform even given
Y , which means nmExt(X,Y ) is close to uniform even given nmExt(f(X), g(Y )). So in the case of close to
constant f we are done.

What happens when f is far from constant i.e. almost bijective? Then look at the rows of our matrix
p(09n ◦ i) ◦ p(09n ◦ f(i)), if f is close to bijection than for any large enough set of rows (remember t << 2ρ·n

so we have plenty of rows to play with) we can find subset of t rows that x1, ..., xt, f(x1), ..., f(xt) are all
2t distinct values, and thus all t vectors p(09n ◦ xi) ◦ p(09n ◦ f(xi)) are uniform and independent. Thus, we
can show that every such t row spans large dimension subspace with an overwhelming probability that can
withstand a union bound.

Notice that there are plenty of functions that are neither close to constant nor far from constant: function
can be constant on some part of domain and bijective on the rest. This is formally handled by splitting domain
into subsets: part of domain where f is constant and part of domain where f is not constant. We prove that
our extractor is good on each partition(which follows exactly the ideas highlighted above) and then combine
it all together.

Two-party setting. To sample the polynomial in two-party setting Alice and Bob can proceed as follows:
Alice will come up with polynomial q of degree 10 · 30 · n, in response Bob will generate a polynomial r of
degree 30 ·n, the combined polynomial is degree 10 ·30 ·n and is equal to q+r. Notice that we need 30 ·n-wise
1 Above we only really required that t ≤ 2ρ·n, so one can ask a fair question why not require entropy log t? Unfor-

tunately this is a result of our proof approach via additive combinatorics that require us to have entropy linear in
n
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independent function, and if Bob was honest that is trivially guaranteed by the uniformity of r. If Alice was
honest then we can guarantee that the polynomial q + r has been sampled from the source of min-entropy
at least 9 · 30 · n2 (i.e. the entropy rate of the source was at least ≈ 0.9) which is sufficient by Remark 25.
We also note that this can be generalized to multiple parties where each party publishes shorter and shorter
polynomials and last one picks polynomial degree 30 · n. For formal proof one can look at Section 5. This
also means that if malicious Bob decides not to publish his polynomial (abort), Alice can safely reset and
engage in the selection process again, and again, polynomial number of times, and as long as at least one of
reruns terminates Alice is guaranteed that the generated polynomial is good.

This result is impressive because it demonstrates that the common reference string (CRS) required for
the extractor is so weak that it can be securely sampled even in the presence of a malicious party using a
two-party computation protocol. In contrast, as shown by Cleve [Cle86], it is impossible to sample uniform
random coins with guaranteed fairness in the presence of a single malicious participant—one party can always
bias the protocol. Therefore, our construction circumvents this barrier by requiring only a highly relaxed form
of the CRS, significantly lowering the trust and setup assumptions compared to traditional approaches that
demand strong, unbiased randomness. This advances both the practicality and the robustness of protocols
in the CRS model.

This protocol can be expanded to larger number of parties where each subsequent party samples smaller
and smaller polynomials - albeit this becomes impractical with larger number of parties.

2 Preliminaries

For a positive integer n, we denote [n] := {1, · · · , n}. For strings x, y, we denote x◦y to be the concatenation
of the strings x, y. If M be a n× n matrix with entries from F2 and S be a set {v1, · · · , vt} ⊆ Fn

2 , we denote
M · S = {M.v1, · · · ,M · vt}. For any set S, we use X ∼ S to denote that X is a distribution over the set S.
And for any positive integer n, we use the notation Un to denote the uniform distribution over {0, 1}n. We
define the support and min-entropy of a random variable as follows.

Definition 1 (Support). For a random variable X ∼ {0, 1}n, we say support of X,

Supp(X) :=
{
x ∈ {0, 1}n : Pr[X = x] ̸= 0

}
.

Definition 2 (Min-entropy). For a random source X ∼ {0, 1}n, we say X has min-entropy (denote it as
H∞(X)) at least k if, for all x ∈ {0, 1}n,

Pr[X = x] ≤ 2−k.

We say X is an (n, k) source if X ∼ {0, 1}n and H∞(X) ≥ k.

Fact 2. For any two distributions X,Y ∼ {0, 1}n, we have H∞((X,Y)) ≥ H∞(X), where (X,Y) is the
joint distribution of X,Y.

Flat sources are a special class of (n, k) sources defined as follows.

Definition 3 (Flat sources). For any random variable X over {0, 1}n, we call it a flat-k source if there
is S ⊆ {0, 1}n so that |S| = 2k and X is uniform over S.

The following lemma gives a relation between min-entropy k sources and flat-k sources.

Lemma 1 ([Vad12, Lemma 6.10]). Any (n, k)-source X is a convex combination of flat-k sources, i.e.,
X =

∑
i piXi where for all i, pi ≥ 0,

∑
i pi = 1 and each Xi is a flat-k source.

A 2-source disperser (with one-bit output) is a deterministic function that takes two entropy sources, and
outputs a non-constant bit.

Definition 4 (2-Source Dispersers). A function f : {0, 1}n × {0, 1}n → {0, 1} is an (n, k) 2-source
disperser if for all sources X ∼ {0, 1}n,Y ∼ {0, 1}n with H∞(X) ≥ k, H∞(Y) ≥ k, Supp(f(X,Y)) = {0, 1}.
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The statistical distance is a standard measure for the proximity of two random variables sampled from
the same set.

Definition 5 (Statistical Distance). Given two random variables A,B ∼ Ω, we define the statistical
distance as

∆(A;B) :=
1

2

∑
ω∈Ω
|Pr[A = ω]− Pr[B = ω]|.

The following inequality states that if X,Y are statistically close, then f(X), f(Y) are also statistically
close.

Lemma 2 (Data processing inequality [Vad12, Lemma 6.3]). For any possibly randomized function
f : {0, 1}n → {0, 1}∗, and random sources X,Y ∼ {0, 1}n, ∆(f(X); f(Y)) ≤ ∆(X;Y).

A 2-source extractor is a deterministic function that takes as input two entropy sources, and outputs a
random variable that is statistically close to uniform.

Definition 6 (2-source extractors). A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is an (n,m, k, ε) 2-
source extractor if for all independent sources X ∼ {0, 1}n, Y ∼ {0, 1}n with H∞(X), H∞(Y) ≥ k we
have

∆(Ext(X,Y);Um) ≤ ε .

The extractor is said to be an (n,m, k, ε) strong 2-source extractor if

∆(Ext(X,Y),Y;Um,Y) ≤ ε ,

and

∆(Ext(X,Y),X;Um,X) ≤ ε .

The following theorem says that every 2-source extractor is a strong 2-source extractor with some loss in
error.

Lemma 3 ([Rao07, Theorem 5.1]). If Ext : {0, 1}n×{0, 1}n → {0, 1}m is a (n,m, k, ε) 2-source extractor
then Ext is a strong (n,m, k′, ε′) 2-source extractor where ε′ ≤ (2k−k

′
+ ε)2m.

Lemma 4 (Vazirani’s XOR lemma [Vaz86]). X = (X1, . . . ,Xt) ∼ Ft be a random variable. If for
every a1, . . . , at ∈ F, not all zero, ∆(

∑t
i=1 aiXi;U1) ≤ ε. Then, ∆(X;Ut) ≤ ε · |F|(t+2)/2.

The following is a variant of the XOR lemma that includes side information. For a proof, one can look
at [ACLV19, Lemma 13].

Lemma 5. Let F be a finite field. Given X = (X1, . . . ,Xt) ∼ Ft and Y ∼ Y for some set Y be random vari-
ables. If for every a1, . . . , at ∈ F, not all zero, ∆((

∑t
i=1 aiXi,Y); (U1,Y)) ≤ ε, then, ∆((X,Y); (Ut,Y)) ≤√

ε · |F|(t+2)/2.

Definition 7. For a set A ⊆ Fn
2 , let dimF2(A) denote the dimension of SpanF2

(A) over F2, where

SpanF2
(A) =

{
n∑

i=1

xiai : xi ∈ F2 and ai ∈ A

}
.

Definition 8. For sets A,B ⊆ Fn
2 we define the duality measure of the sets A,B as

D(A,B) =

∣∣∣∣Ea∼A, b∼B [(−1)⟨a,b⟩]
∣∣∣∣.
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For any F2 subspace S ⊂ Fn
2 , we call Ŝ is an affine shift of S if,

Ŝ = v + S := {v + s : s ∈ S} ,

for some fixed v ∈ Fn
2 . Notice that for a pair of set A,B ⊆ Fn

2 , we have D(A,B) = 1 holds when A is
contained in an affine shift of (SpanF2

B)⊥, where (SpanF2
B)⊥ denotes the set of all vectors, those are

orthogonal to every vectors in SpanF2
(B), more formally

(SpanF2
B)⊥ := {y : for all b ∈ SpanF2

(B), ⟨y, b⟩ = 0}.

Definition 9 (Rank of Binary Function). Rank of a binary function E : Fn
2 ×Fn

2 → F2 is the minimum
integer r so that there are functions h1, h2 : Fn

2 → Fr
2 and E(x, y) = ⟨h1(x), h2(y)⟩.

Equivalently rank of the function E is same as rank of the 2n × 2n matrix over F2 whose (x, y)th entry is
E(x, y).

Also for X,Y ∼ {0, 1}n, we denote the bias of ⟨X,Y⟩ as

bias(X,Y) =

∣∣∣∣ Pr
x∼X, y∼Y

[⟨x, y⟩ = 1]− 1

2

∣∣∣∣ .
Theorem 3 (Polynomial Freiman-Ruzsa Theorem [GGMT25, Theorem 1.2]). Suppose A ⊂ Fn

2

such that |A + A| ≤ K|A|, then A can be covered by atmost 2K12 translates of a subspace H of Fn
2 of

cardinality atmost |A|.

[ZBS11] showed that PFR conjecture (now a theorem as stated above) implies the ADC-exp (Approximate
Duality Conjecture-exp) which is now a theorem.

Theorem 4 (ADC-exp [ZBS11, Conjecture 1.2]). For every pair of constants 0 < γ, β < 1 there
exists a constant ζ > 0 such that the following holds: Suppose that A,B ⊆ Fn

2 are such that D(A,B) ≥ 2−ζn

and |A| ≥ 2βn, then there exists A′ ⊆ A,B′ ⊆ B such that |A′| ≥ 2−γn|A|, |B′| ≥ 2−γn|B|, D(A′, B′) = 1.

In a subsequent work there was another version of ADC has been proved from PFR that says that
assuming slightly larger duality of given two sets A,B, we can find A′, B′, subsets of A,B respectively so
that they are orthogonal and |A′|/|A| and |B′|/|B| is at least 2−cn/ logn, where c is some constant. Formally
it is stated below.

Theorem 5 (Strong ADC [BSLRZ14, Lemma 1.10]). For every pair of sets A,B ⊆ Fn
2 which satisfy

D(A,B) ≥ 2−
√
n, there are subsets A′ ⊆ A and B′ ⊆ B so that |A′| ≥ 2−cn/ logn|A| and |B′| ≥ 2−cn/ logn|B|

for some absolute constant c and D(A′, B′) = 1

2.1 Low rank Disperser to Extractor

In this section we show that constructing 2-source dispersers are enough to construct 2-source extractors. A
key ingredient in constructing 2-source dispersers is the following elementary lemma whose proof we include
for completeness.

Lemma 6 ([ZBS11, Lemma 3.1]). Let A,B ⊆ {0, 1}n such that dim(A) + dim(B) > n + 1, then ⟨., .⟩ :
A×B → {0, 1} is a non-constant function.

Proof. We will argue via contradiction. Throughout the proof when we say span of some set, we mean the
span over F2. Say, ⟨., .⟩ is constant on A×B.
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(i) When ⟨A,B⟩ = 0, this implies that A ⊆ (Span B)⊥. So we have, dim(A) ≤ n−dim(B), which contradicts
the fact that dim(A) + dim(B) > n+ 1.

(ii) When ⟨A,B⟩ = 1, fix a ∈ A. For any other a′ ∈ A, we have ⟨a′ − a, b⟩ = 0 for all b ∈ B. This
implies A − a ⊆ (Span B)⊥. Therefore we have dim(A − a) + dim(B) ≤ n, which in turn implies that
dim(A) + dim(B) ≤ n+ 1, that leads to contradiction.

The next lemma shows how low-rank dispersers are also 2-source extractors (Lemma 2.15 from [ZBS11]).
We will include the result as well as its proof for self containment.

Lemma 7 ([ZBS11, Lemma 2.15]). For all constants δ, α, t > 0, there exists a constant ζ such that,
every (n, δn) 2-source disperser E : {0, 1}n × {0, 1}n → {0, 1} of rank n/t is also a (n, 1, (δ + α)n, 2−ζn)
2-source extractor.

Proof. The following proof is taken almost verbatim from [ZBS11, Lemma 2.15], and is included here for
completeness. In the proof we identify {0, 1} as F2. As defined before, E : Fn

2 × Fn
2 → F2 be a 2 source

disperser of rank n/t. By Definition 9, there are f, g : Fn
2 → Fn/t

2 so that

E(x, y) = ⟨f(x), g(y)⟩ For all x, y ∈ Fn
2 .

Let us define f̃ , g̃ : Fn
2 → F(2n+n/t)

2 , as

f̃(x) = f(x) ◦ x ◦ 0n and g̃(y) = g(y) ◦ 0n ◦ y

Here 0n is all zero vector of length n. Let ζ ′ > 0 be the constant from Theorem 4 with constants β =
(α+ δ)(1/t+ 2)−1 and γ = α(1/t+ 2)−1. Define ζ = ζ ′(2 + 1/t).

We proceed by contradiction. Let us assume, there exist two independent distributions X,Y ∼ Fn
2 with

min-entropy at least (δ + α)n such that

∆(E(X,Y);U1) > 2−ζn. (1)

From Lemma 1 we can assume X and Y are flat-(δ + α)n sources with support A,B respectively. Define
Ā = {f̃(x) : x ∈ A} and B̄ = {g̃(y) : y ∈ B}. Note that from definition of f̃ and g̃, we have |Ā|, |B̄| =
2(δ+α)n = 2β(2n+n/t). Note that,

1

2
D(Ā, B̄) =

1

2

∣∣∣∣Ex∼X, y∼Y(−1)⟨f̃(x),g̃(y)⟩
∣∣∣∣ = 1

2

∣∣∣∣Ex∼X, y∼Y(−1)⟨f(x),g(y)⟩
∣∣∣∣.

Hence from Equation (1) we have,

1

2
D(Ā, B̄) = ∆(E(X,Y);U1) > 2−ζn = 2−ζ

′(n/t+2n).

Applying Theorem 4, there are A′ ⊆ Ā and B′ ⊆ B̄ so that D(A′, B′) = 1 and

|A′| ≥ |Ā|
2γn

>
2(δ+α)n

2γ(2n+n/t)
=

2(δ+α)n

2αn
= 2δn .

And similarly |B′| ≥ 2δn. As, f̃ , g̃ are injective, we say that X′ and Y′ which are uniformly distributed over
f̃−1(A′), g̃−1(B′) respectively, has min-entropy at least δn but E(X′,Y′) is constant, which is a contradiction.

The above proof follows from the weaker version of ADC. Starting from Theorem 5 we follow the same
proof, we get that every two source disperser for the sources of min-entropy O (n/ log n) is also a two source
extractor with error 2−

√
n and the same min-entropy requirement.
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Lemma 8 (Extractor for lower min-entropic sources from strong ADC). For any constant t > 0
and δ > 0 (δ may not be a constant) we have: Every function E : {0, 1}n×{0, 1}n → {0, 1} which is a (n, δn)

2-source disperser of rank n/t, is also a
(
n, 1, δn+ cn

logn , 2
−
√
n
)

2-source extractor. Here c is the absolute
constant that we get from Theorem 5.

Additionally, we will need the following well known fact.

Fact 6. A polynomial of degree at most d over a field can be uniquely determined by specifying its values
at any d+ 1 distinct points. In the case of a finite field GF(q) with q elements (where q is a prime power),
this fact provides a way to construct a sequence of q random variables that are (d + 1)-wise independent.
Specifically, if the d + 1 coefficients of the polynomial are chosen independently and uniformly at random
from GF(q), then the polynomial’s values at any d+ 1 distinct inputs are also uniformly and independently
distributed.

Throughout the paper we only work with F2 and some finite extension of it. Hence we state the above more
formally for some extension of F2. Say Ht,r := {p ∈ F2r [Z] : deg(p) ≤ t − 1}. Then, for distinct x1, . . . , xt
and y1, . . . , yt from F2r ,

Pr
p←Ht,r

[p(x1) = y1 ∧ · · · ∧ p(xt) = yt] =
1

|F2r |t
= 2−rt.

3 Strong two source extractor construction

In this section, we establish that a random low-degree polynomial evaluated over a source with sufficient
entropy induces a large span. This result serves as a key component in the construction of a strong two-
source extractor based on the inner product. Throughout the section, we use {0, 1}r and Fr

2 interchangeably
for any r ∈ N. Additionally, note that the additive group of Fr

2 is homomorphic to F2r . We will use these
notions interchangeably and explicitly clarifying any distinctions when necessary.

Throughout this section, for any set S ⊆ Fn
2 and u ∈ N with u > 1, we define

S(u) :=
{
(0(u−1)·n ◦ s) : s ∈ S

}
.

Now we are ready to formally state the large-span property of a randomly chosen low-degree polynomial
over a fixed (sufficiently large entropy) source.

Lemma 9. Let u > 2 be an integer and X ⊆ Fn
2 , such that |X| ≥ un. Let p : F2un → F2un be a polynomial

of degree un with all the (un + 1)-many coefficients chosen uniformly and independently from F2un . Define
the set p(X) := {p(y) : y ∈ X(u)}. Then, for any d ≤ un,

Pr
p←Hun,un

[dimF2
(p(X(u))) ≤ d] ≤ 2un−(un−d)

2

.

Proof. Let x1, . . . , xun be kn distinct elements of X, chosen arbitrarily, and let X ′ = {x1, . . . , xun}. We will
prove an upper bound on the probability of the event dimF2

(p(X ′(u))) ≤ d. Note that this will trivially imply
our desired upper bound.

By definition, dimF2
(p(X ′(u))) ≤ d, if p(X ′(u)) is in the F2 span of the elements {p(y(u)1 ), p(y

(u)
2 ), . . . , p(y

(u)
d )},

for some y1, . . . , yd ∈ X ′. For any such y1, . . . , yd, the size of the span of {p(y(u)1 ), . . . , p(y
(u)
d )} is at most 2d,

and using (un+1)-wise independence of the hash function, the probability that p(X ′(u)) is contained in the
F2 span of {p(y(u)1 ), p(y

(u)
2 ), . . . , p(y

(u)
d )} is at most(

2d

2un

)un−d

.
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Taking a union bound over all possible choices of y1, . . . , yd, we get that

Pr
p←Hun,un

[dimF2
(p(X ′(u))) ≤ d] ≤

(
un

d

)
2−(un−d)

2

≤ 2un−(un−d)
2

.

We now recall the following definitions for a p ∈ H10n,10n:

Disp : {0, 1}n × {0, 1}n → {0, 1}
Disp(x, y)→ ⟨p(09n ◦ x), p(09n ◦ y)⟩
Extp : {0, 1}n × {0, 1}n → {0, 1}
Extp(x, y)→ ⟨p(09n ◦ x), p(09n ◦ y)⟩

Remark 1. Note that for any p ∈ H10n,10n, p takes elements from Fn
2 to F10n

2 . So, by Definition 9, for all p,
we have rank of Disp and Extp are at most 10n.

Our claim is that with overwhelming probability over the choice of polynomial p ∈ H10n,10n, the above
object is a 2-source disperser for all logarithmic entropy sources.

Corollary 1 (Disperser of linear rank for log-entropy sources). Consider any ρ ≥ log 10n
n .

Pr
p←H10n,10n

[Disp is a (n, ρn) disperser] ≥ 1− 2−5n
2

.

Proof. Consider any X ⊆ Fn
2 with |X| ≥ 10n. From Lemma 9 with parameters u = 10 and d = 6n, we get

that
Pr

p←H10n,10n

[dimF2(p(X
(10))) ≤ 6n] ≤ 2−15n

2

.

By union bound over all such X ⊆ Fn
2 , we get the following,

Pr
p←H10n,10n

[∃ X ⊆ Fn
2 of size at least 10n, s.t. dimF2(p(X

(10))) ≤ 6n]

≤ Pr
p←H10n,10n

[∃ X ⊆ Fn
2 of size exactly 10n, s.t. dimF2(p(X

(10))) ≤ 6n]

≤
(

2n

10n

)
2−15n

2

≤ (2n)10n2−15n
2

= 2−5n
2

.

This means that with probability at least 1−2−5n2

, for all X ⊆ Fn
2 of size at least 10n, dimF2

(p(X(10))) > 6n.
Note that, if for some X,Y ⊆ Fn

2 with size at least 10n, if dimF2
(p(X(10))),dimF2

(p(Y (10))) ≥ 6n, then
trivially

dimF2(p(X
(10))) + dimF2(p(Y

(10))) > 10n+ 1 .

Combining the above facts along with Lemma 6 it follows that,

Pr
p←H10n,10n

[
∀ X,Y ⊆ Fn

2 with size at least 10n,
⟨p(X(10)), p(Y (10))⟩ is non-constant

]
≥ 1− 2−5n

2

.

Therefore, for all ρ ≥ log 10n
n

Pr
p←H10n,10n

[Disp is a 2-source disperser for ρn-flat sources] ≥ 1− 2−5n
2

.

And combining the above with Lemma 1 we can conclude the proof.
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Combining Lemma 7 and Corollary 1 gives us a randomized construction of 2-source extractors for all
sources having linear entropy. More succinctly,

Theorem 7 (Strong extractor of exponential error).

(i) For any constant ρ > 0 there exists a constant ζ ′ > 0 so that the following holds

Pr
p←H10n,10n

[
Extp is a (n, 1, ρn, 2−ζ

′n) strong 2-source extractor
]
≥ 1− 2−5n

2

.

(ii) There is an absolute constant C so that,

Pr
p←H10n,10n

[
Extp is a

(
n, 1,

Cn

log n
, 2−
√
n/2

)
strong 2-source extractor

]
≥ 1− 2−5n

2

.

Proof. Proof of (i). From Remark 1 rank of Extp over F2 is 10n. By Corollary 1 and Lemma 7 with
parameters δ = 0.1ρ, which is strictly greater than log(10n)/n and α = 0.8ρ, we get ζ > 0 so that,

Pr
p←H10n,10n

[Extp is a (n, 1, 0.9ρn, 2−ζn) 2-source extractor] ≥ 1− 2−5n
2

.

From Lemma 3 we have,

Extp is (n, 1, 0.9ρn, 2−ζn) 2-source extractor
=⇒ Extp is (n, 1, ρn, ε1) strong 2-source extractor.

for ε1 = (2−0.1ρn+2−ζn)×2. Hence, ε1 ≤ 2−ζ
′n for some positive constant ζ ′ and this completes the proof of (i)

Proof of (ii). Using the fact that (x, y) 7→ ⟨p(09n ◦ x), p(09n ◦ y)⟩ has rank 10n and Lemma 8 we have,

Pr
p←H10n,10n

[
Extp is a

(
n, 1,

2cn

log n
, 2−
√
n

)
2-source extractor

]
≥ 1− 2−5n

2

.

Fix C = 3c. Lemma 3 tells us, if Extp is a
(
n, 1, 2cn

logn , 2
−
√
n
)
2-source extractor, it is also a

(
n, 1, Cn

logn , ε2

)
strong 2-source extractor, where ε2 =

(
2−

n
log n + 2−

√
n
)
× 2 ≤ 2−

√
n/2. From here the theorem follows.

Remark 2. Note that for any full rank matrix L ∈ F10n×10n
2 we have, dimF2

(p(X(10))) = dimF2
(L · p(X(10))),

for X ⊆ Fn
2 . Hence following the line of proof given in Lemma 9 and Corollary 1, we can infer the following,

Pr
p←H10n,10n

[
∀ X,Y ⊆ Fn

2 with size at least 10n,
⟨p(X(10)), L · p(Y (10))⟩ is non-constant

]
≥ 1− 2−5n

2

.

If we define a map,

Ep : {0, 1}n × {0, 1}n → {0, 1}
(x, y) 7−→ ⟨p(09n ◦ x), L · p(09n ◦ y)⟩

Then from proof of part (i) of Theorem 7 we have, for all ρ > 0 there is ζ ′ > 0 so that

Pr
p←H10n,10n

[Ep is (n, 1, ρn, 2−ζ
′n) strong 2-source extractor] ≥ 1− 2−5n

2

.

And from proof of part (ii) we have, there is an absolute constant C so that,

Pr
p←H10n,10n

[
Ep is a

(
n, 1,

Cn

log n
, 2−
√
n/2

)
strong 2-source extractor

]
≥ 1− 2−5n

2

.
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3.1 Multi-bit output extractors

Previously we have seen a randomized construction of a 2-source extractor with only 1 bit output. In this
subsection, we will extend it to the multi-bit output extractor, with a small increment in the error.

Definition 10. A set of matrices L1, . . . , Lr ∈ Fr×r
2 are called independent if for all v1 . . . , vr ∈ F2 not all

zero,
∑r

j=1 vjLj is a full rank matrix.

It turns out that one can efficiently construct such independent matrices, as shown in [ZBS11].

Lemma 10 (Constructing independent matrices [ZBS11, Section 6.2]). Consider the field F2r and
let v1, . . . , vr ∈ F2r be the F2 basis of F2r with ej : F2r → F2r denoting the invertible map ej(x) = vj · x for
all j ∈ [r]. Let Li denote the matrices representing the linear transformation ei, then the matrices L1, . . . , Lr

are independent.

We use the above-defined explicit matrices Li to extend our result in the multi-bit output regime, as
follows.

Theorem 8 (Multi-bit output 2-source Extractor). Define a map E′p : {0, 1}n × {0, 1}n → {0, 1}m,
for m ≤ 10n as follows,

E′p(x, y) := (⟨p(09n · x), L1 · p(09n · y)⟩, . . . , ⟨p(09n · x), Lm · p(09n · y)⟩).

where L1, . . . , Lm ∈ F10n×10n
2 are explicit matrices from Lemma 10. Then,

(i) For constant ρ > 0, say, ζ ′ > 0 is the constant from Theorem 7. Then there exists constant β > 0 such
that if m = ζ ′n/8,

Pr
p←H10n,10n

[E′p is a (n,m, ρn, 2−βn) strong 2-source extractor] ≥ 1− 2−5n
2

.

(ii) There exists a constant C so that if m =
√
n/8, we have,

Pr
p←H10n,10n

[
E′p is a

(
n,m,

Cn

log n
, 2−
√
n/8

)
strong 2-source extractor

]
≥ 1− 2−5n

2

Proof. Without loss of generality let us assume that our input sources X,Y are flat-ρn sources with support
X,Y respectively. Note that, for any non-empty set S ⊆ [m],∑

i∈S
⟨p(X(10)), Li · p(Y (10))⟩ = ⟨p(X(10)), L · p(Y (10))⟩.

where L ∈ F10n×10n
2 is a full-rank matrix. Define ES

p (x, y) := ⟨p(09n ◦ x), L · p(09n ◦ y)⟩.

Proof of (i). From Remark 2, we have constant ζ ′ > 0 such that

Pr
p←H10n,10n

[ES
p is (n, 1, ρn, 2−ζ

′n) strong 2-source extractor] ≥ 1− 2−5n
2

.

For any S ⊆ [m], if we have ∆
((∑

i∈S⟨p(X(10)), Li · p(Y(10))⟩,Y
)
;
(
U1,Y

))
≤ 2−ζ

′n, by using Lemma 5,

we can deduce that

∆

((
⟨p(X(10)), L1 · p(Y(10))⟩, . . . , ⟨p(X(10)), Lm · p(Y(10))⟩,Y

)
;
(
Um,Y

))
≤
√
2−ζ′n × 2(m+2)/2 .
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Here X(10) and Y(10) are uniform distributions over X(10) and Y (10). From the choice of our m, 2−0.5ζ
′n ×

2(m+2)/2 ≤ 2−βn for some positive constant β and we are done.

Proof of (ii). From Remark 2 we have, there is an absolute constant C, so that for uniformly sampled
p from H10n,10n, with probability at least 1− 2−5n

2

,

ES
p is a

(
n, 1,

Cn

log n
, 2−
√
n/2

)
strong 2-source extractor .

Hence, by the same idea as above, from Lemma 5, we can say,

Pr
p←H10n,10n

[
E′p is a

(
n,m,

Cn

log n
, ε′
)

strong 2-source extractor
]
≥ 1− 2−5n

2

,

for ε′ =
√
2−
√
n/2 × 2(m+2)/2 ≤ 2−

√
n/8 as, m ≤

√
n/8.

4 Non-malleable Extractors

For any function f : {0, 1}n → {0, 1}n, we say that s ∈ S is a fixed point of f , if f(s) = s. Let Fn be the set
of all functions from {0, 1}n to {0, 1}n without any fixed points. Now we state the definition of Non-malleable
strong 2-source extractors, as defined by Cheraghchi and Guruswami in [CG14].

Definition 11 (Non-malleable strong 2-source extractor [CG14]). We say nmExt : {0, 1}n ×
{0, 1}n → {0, 1}m is a non-malleable (n,m, k, ϵ) strong 2-source extractor if for all functions f, g ∈ Fn

and for all independent sources X,Y ∼ {0, 1}n, with H∞(X), H∞(Y) ≥ k, the following three properties
hold:

1. nmExt(X,Y),nmExt(f(X), g(Y)),Y ≈ε Um,nmExt(f(X), g(Y)),Y

2. nmExt(X,Y),nmExt(X, g(Y)),Y ≈ε Um,nmExt(X, g(Y)),Y

3. nmExt(X,Y),nmExt(f(X),Y),Y ≈ε Um,nmExt(f(X),Y),Y

Recall the definition of Ht,r: it denotes the set of univariate polynomials over the field F2r of degree
at most (t − 1). For a p ∈ H30n,10n and m ≤ 10n, let us define our non-malleable extractor nmExtmp :
{0, 1}n × {0, 1}n → {0, 1}m in the following way:

nmExtmp (x, y) :=
(
⟨p(09n ◦ x), L1 · p(09n ◦ y)⟩, . . . , ⟨p(09n ◦ x), Lm · p(09ny)⟩

)
.

In the above equation, L1, . . . , Lm are the explicit independent matrices that can be constructed us-
ing Lemma 10.

In this section, we will show that (uniformly) sampling a random polynomial of linear degree, over an
extension field where the degree of extension is linear, would yield a strong non-malleable 2-source extractor
for all linear entropy sources. Moreover the function obtained by the uniformly chosen polynomial is a strong
non-malleable extractor for the sources of min-entropy O(n/ log n), with a slight loss in error. More formally,

Theorem 9 (Efficient strong non-malleable two source extractor).

(i) For every constant ρ > 0, there exist constants µ, γ > 0 so that with m = µn, we have,

Pr
p←H30n,10n

[
nmExtmp is a strong two source

(n,m, ρn, 2−γn) non-malleable extractor

]
≥ 1− 2−2n

2

.

(ii) There are constants C0 and σ, ν > 0 so that when m = ν
√
n,

Pr
p←H30n,10n

[
nmExtmp is a

(
n,m,

C0n

log n
, 2−σ

√
n

)
strong 2-source non-malleable extractor

]
≥ 1− 2−2n

2
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Remark 3. To prove the above, we will only use the fact that H30n,10n is a family of 30n-wise independent
hash functions. Instead of polynomials if we take any arbitrary 30n-wise independent hash family H over
F210n , for an uniformly random h← H we can prove the same.

To show the above theorem, we will prove Lemma 11 (which would prove the first item of Definition 11)
and Lemma 12 (which would prove the second and third items of Definition 11). In particular, for the first
item, we will prove the following.

Lemma 11. Let f, g ∈ Fn. Then we have:

(i) For any constant ρ > 0, there exist constants γ, µ > 0 such that with probability at least 1−2−3n2

over the
uniformly random choice of p ∈ H30n,10n the following holds: for all independent sources X,Y ∼ {0, 1}n,
with H∞(X), H∞(Y) ≥ ρn, we have

nmExtµnp (X,Y),nmExtµnp (f(X), g(Y)),Y ≈2−γn Uµn,nmExtµnp (f(X), g(Y)),Y

(ii) There are constants C0 and σ, ν > 0 so that, with probability at least 1 − 2−3n
2

over the uniformly
random choice of p ∈ H30n,10n the following holds: for all independent sources X,Y ∼ {0, 1}n, with
H∞(X), H∞(Y) ≥ C0n

logn , we have

nmExtν
√
n

p (X,Y),nmExtν
√
n

p (f(X), g(Y)),Y ≈2−σ
√

n Uν√n,nmExtν
√
n

p (f(X), g(Y)),Y .

For the second and third items (which are symmetric) i.e. when exactly one of the two sources is corrupted,
we will prove the following.

Lemma 12. Let f, g ∈ Fn. Then,

(i) For any ρ > 0, there are constants µ̃, γ̃ > 0 such that with probability at least 1 − 2 · 2−4n2

over the
uniformly random choice of p ∈ H30n,10n the following holds: for all independent sources X,Y ∼ {0, 1}n,
with H∞(X), H∞(Y) ≥ ρn, the following two properties hold.

1. nmExtmp (X,Y),nmExtmp (f(X),Y),Y ≈ε Um,nmExtmp (f(X),Y),Y

2. nmExtmp (X,Y),nmExtmp (X, g(Y)),Y ≈ε Um,nmExtmp (X, g(Y)),Y

where m = µ̃n, and ε = 2−γ̃n.

(ii) There are constants C0 and σ̃, ν̃ > 0 so that, with probability at least 1 − 2 · 2−4n2

over the uniformly
random choice of p ∈ H30n,10n the following holds: for all independent sources X,Y ∼ {0, 1}n, with
H∞(X), H∞(Y) ≥ C0n

logn , we have

1. nmExtmp (X,Y),nmExtmp (f(X),Y),Y ≈ε Um,nmExtmp (f(X),Y),Y

2. nmExtmp (X,Y),nmExtmp (X, g(Y)),Y ≈ε Um,nmExtmp (X, g(Y)),Y

where ε = 2−σ̃
√
n and m = ν̃

√
n

From now on, we will focus on proving Lemma 11, which will be covered in Section 4.1-4.3. We will
prove Lemma 12 in Section 4.4, which would follow a similar pattern of proof as Lemma 11.

A sneak-peak into the Partition Lemma. For notational ease, let us denote

Dm
p (X,Y) := Um,nmExtmp (f(X), g(Y)),Y

ϕmp (X,Y) := nmExtmp (X,Y),nmExtmp (f(X), g(Y)),Y .

For any set P ⊆ Fn
2 × Fn

2 , we denote by ϕ(X,Y)|P , the distribution obtained by restricting (X,Y) ∈ P.
We will prove Lemma 11 by conditioning ϕmp on various partitions P1, . . . ,Pk of P, showing that either the
statistical distance in each case between ϕmp (X,Y)|Pi and Dm

p (X,Y)|Pi is small, or the size of the partition
Pi is small. This is enough to imply that ϕmp (X,Y) is close to Dm

p (X,Y). A more general statement on the
statistical distance between two distributions can be stated as follows.
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Lemma 13 (Partition Lemma [AHL16, Lemma 3.3]). Let ψ1 and ψ2 be two functions from {0, 1}n×
{0, 1}n → {0, 1}r. Further, let P ⊆ Fn

2×Fn
2 , and let A,B ∼ {0, 1}n be two distributions such that sup(A,B) ⊆

P. Finally, let P1, . . . ,Pk be disjoint partitions of P such that for all i ∈ [k]:

∆(ψ1(A,B)|(A,B)∈Pi
;ψ2(A,B)|(A,B)∈Pi

) ≤ εi .

Then the following holds:

∆(ψ1(A,B);ψ2(A,B)) ≤
∑
i

εi
|Pi|
|P|

.

Proof strategy using Lemma 13 over flat sources. Let us fix f, g ∈ Fn for the rest of the subsections. We will
argue that for a uniformly chosen polynomial p and k, there exist ε and m, such that with high probability
the following holds:

∆(ϕmp (X,Y);Dm
p (X,Y)) ≤ ε ,

for all independent k-flat sources X,Y with supports X and Y respectively, and P = X × Y . In our case k
will be either ρn, for any constant ρ or C0n/ log n, for some fixed constant C0 and m, ε will be according to
the value of k. We will analyze both the cases. Importantly, from Lemma 1, one would then infer the same
for any two independent sources X,Y, where H∞(X), H∞(Y) ≥ k.

4.1 Inverse image of the image under f (resp. g) is large

In this subsection, we analyze the case when f(x) has a large pre-image (in X) under f .

When |X|, |Y | is 2ρn, for some constant ρ. Formally, define:

Xlarge :=
{
x ∈ X : |f−1(f(x)) ∩X| ≥ 2ρn/2

}
.

In the next lemma, we will prove that the two distributions ϕmp (X,Y) and Dm
p (X,Y), when restricted

to Xlarge × Y , are statistically close.

Lemma 14. Given any ρ > 0, there are constants β′, µ′ > 0 such that with probability at least 1 − 2−4n
2

over the uniformly random choice of p ∈ H30n,10n, the following holds: for all X,Y ∼ Fn
2 flat-ρn sources

with supports X and Y respectively, we have

∆(ϕmp (X,Y)|Xlarge×Y ;Dm
p (X,Y)|Xlarge×Y ) ≤ 2−β

′
n ,

where m = µ′n.

To prove the above lemma, we will further partition Xlarge into disjoint union of sets Az1 , Az2 , . . . , Azℓ ,
with |Azi | ≥ 2ρn/2, where,

Azi :=
{
x ∈ X : f(x) = zi

}
∩ Xlarge ∀ i ∈ [ℓ] .

We will first show that for suitable m, with high probability, over uniformly random choice of p fromH30n,10n,
the distribution ϕmp (X,Y)|Azi

×Y is close to Dm
p (X,Y)|Azi

×Y .

Lemma 15. Given any ρ > 0, and z ∈ {z1, . . . , zℓ}, there exist constants β′, µ′ > 0 such that with probability
at least 1− 2−5n

2

over the uniformly random choice of p ∈ H30n,10n, the following holds: for all independent
flat-ρn sources X,Y ∼ Fn

2 with supports X and Y respectively, we have

∆(ϕmp (X,Y)|Az×Y ;Dm
p (X,Y)|Az×Y ) ≤ 2−β

′
n ,

where m = µ′n,

17



Proof. Let Az denote the uniform distribution over Az. Since, by definition f(Azi) = zi for all i ∈ [ℓ], we
have

ϕmp (X,Y)|Az×Y = nmExtmp (Az,Y),nmExtmp (f(Az), g(Y)),Y

= nmExtmp (Az,Y),nmExtmp (z, g(Y)),Y.

Since |Az| ≥ 2ρn/2, using Theorem 8, one can conclude that there exist constants β
′
, µ′ > 0 such that

for uniformly chosen p from H30n,10n, the non-malleable extractor nmExtmp is a (n, µ′n, ρn/2, 2−β
′
n) strong

2-source extractor with probability at least 1 − 2−5n
2

over uniformly random choice of p from H30n,10n.
Further, using Lemma 2, we get

∆((nmExtmp (Az,Y),Y); (Um,Y))

≤ ∆((nmExtmp (Az,Y),Y,nmExtmp (z, g(Y))); (Um,Y,nmExtmp (z, g(Y))).

Hence, ∆(ϕmp (X,Y)|Az×Y ;Dm
p (X,Y)|Az×Y ) ≤ 2−β

′
n, for m = µ′n for all flat-ρn source X,Y. This finishes

the proof.

The above lemma can be directly used for the distributions restricted to Xlarge × Y , to get the desired
result of Lemma 14.

Proof of Lemma 14. From Lemma 15, we know that for all i ∈ [ℓ], with probability at least 1 − ℓ · 2−5n2

,
over uniformly chosen p from H30n,10n, for all independent flat-ρn sources X,Y ∼ Fn

2 with supports X and
Y respectively the following holds:

∆(ϕmp (X,Y)|Azi
×Y ;Dm

p (X,Y)|Azi
×Y ) ≤ 2−β

′
n .

Since trivially ℓ < 2n, we have ℓ · 2−5n2 ≤ 2−4n
2

. Consider P = Xlarge × Y and its partitions P1, . . . ,Pℓ to
be Az1 × Y ,. . . , Azℓ × Y . Using Lemma 13, our result follows.

Remark 4. Similar to Xlarge, we define Ylarge with respect to g as follows:

Ylarge := {y ∈ Y : |g−1(g(y)) ∩ Y | ≥ 2ρn/2} .

Let us further partition Ylarge as Bv1 ⊔ · · · ⊔Bvp , where ∀ i ∈ [p],

Bvi := {y ∈ Y : g(y) = vi} ∩ Ylarge .

For any v ∈ {v1, . . . , vp} and any constants ρ, ρ′ > 0, there are constants α′, ν′ > 0 such that taking m = ν′n,
with probability at least 1− 2−5n

2

over the uniformly random choice of p ∈ H30n,10n, the following holds:
for all independent flat-ρn sources X,Y with support X,Y respectively, with X ′ ⊆ X of size at least

2ρ
′n, we have (

nmExtmp (X,Y),Y
)
|X′×Bv

≈2−α′n

(
Um,Y

)
|X′×Bv

.

Note that g(Bv) = {v}, and hence if we leak nmExt(f(X), g(Y))|X′×Bv
, with a little loss in the parameter

we get, (
nmExtmp (X,Y),Y

)
|X′×Bv

,nmExtmp (X, v)|X′ ≈ε

(
Um,Y

)
|X′×Bv

,nmExtmp (X, v)|X′

for ε = 2−αn and m = βn, where β, α are positive constants. Therefore we get, for any constant ρ > 0 we
have positive constants α, β such that with m = βn the following holds:

For all independent flat-ρn sources X,Y ∼ Fn
2 , with supports X and Y respectively and X ′ ⊆ X of size

at least 2ρ
′n,

ϕmp (X,Y)|(X′,Ylarge) ≈2−αn Dm
p (X,Y)|(X′,Ylarge) .
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When |X| and |Y | is at least 2C
′n/ logn, where C ′ is any constant bigger than 30C and C is the constant

from item (ii) of Theorem 8, we analyze in the exact same way we did in the previous case. Define,

X̂large :=
{
x ∈ X : |f−1(f(x)) ∩X| ≥ 2C

′n/2 logn
}

Ŷlarge :=
{
y ∈ X : |g−1(g(y)) ∩ Y | ≥ 2C

′n/2 logn
}
.

Also define the partitions X̂large = Az1 ⊔ · · · ⊔Azℓ and Ŷlarge = Bv1 ⊔ · · · ⊔Bvp as before. If we follow the line
of proof exactly as shown in the previous case and instead of (i) if we apply item (ii) of Theorem 8, we have
the following lemma.

Lemma 16. 1. There exists a constant C ′ (as defined before) so that for uniformly chosen p from H30n,10n,
with probability at least 1− 2−4n

2

we have the following: For all X,Y ∼ Fn
2 flat C ′n/ log n-sources with

supports X and Y respectively,

∆
(
ϕmp (X,Y)|Xlarge×Y ;Dm

p (X,Y)|Xlarge×Y
)
≤ 2−

√
n/8

where m =
√
n/8.

2. There exists a constant C ′ (as defined before) so that for any C̃ satisfying C < C̃ < C ′ and uniformly
chosen p from H30n,10n, the following holds with probability at least 1 − 2−4n

2

: For all X,Y ∼ Fn
2 flat

C ′n/ log n-sources with supports X,Y respectively, and for any X ′ ⊆ X of size 2C̃n/ logn,

∆
(
ϕmp (X,Y)|X′×Ylarge

;Dm
p (X,Y)|X′×Ylarge

)
≤ 2−

√
n/8

where m =
√
n/8.

4.2 Inverse image of the image under f (resp. g) is small

Till now we have taken care of the case when ϕmp (X,Y) and Dm
p (X,Y) are restricted to the partition

Xlarge × Y . Now let us focus on the subsets of X and Y which contain those elements whose images have
small pre-image under f and g respectively. When |X| = |Y | = 2ρn, define,

Xsmall := {x ∈ X : 0 < |f−1(f(x)) ∩X| < 2ρn/2} ⊆ X,
Ysmall := {y ∈ Y : 0 < |g−1(g(y)) ∩ Y | < 2ρn/2} ⊆ Y .

And when |X| = |Y | = 2Ĉn/ logn where Ĉ ≥ 30C,

X̂small :=
{
x ∈ X : 0 < |f−1(f(x)) ∩X| < 2Ĉn/2 logn

}
⊆ X,

Ŷsmall :=
{
y ∈ Y : 0 < |g−1(g(y)) ∩ Y | < 2Ĉn/2 logn

}
⊆ Y .

We will analyze the first case in detail. The analysis of the second case will be almost same to the first one.
We will make remarks in suitable places to mention the formal statement and the small changes that we will
need to prove the second case.

When |X| and |Y | are exponential (linear min-entropy), i.e. |X| = |Y | = 2ρn. In this case, our
main goal is to prove the following:

Lemma 17. Fix f, g ∈ Fn. For X,Y ⊆ Fn
2 with |X| = |Y | = 2ρn and Xsmall, Ysmall, defined as before,

consider the following property:
|Xsmall × Ysmall| ≥ 21.7ρn , (2)

where ρ > 0 is some constant. Then, there are positive constants β′′, µ′′ such that for m = µ′′n, with
probability at least 1− 2−4n

2

over uniformly random choice of p from H30n,10n the following holds:
For all X,Y ∼ Fn

2 such that |X| = |Y | = 2ρn and satisfies property 2,

∆
(
ϕmp (X,Y)|Xsmall×Ysmall

;Dm
p (X,Y)|Xsmall×Ysmall

)
≤ 2−β

′′n .
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In order to prove the above lemma, we start with a small technical claim that will be used later.

Lemma 18. Let X,Y,Xsmall, Ysmall be defined as above with |Xsmall|, |Ysmall| ≥ 20.7ρn. Then, the following
two properties hold.

1. There exists a subset X
′′ ⊆ Xsmall, with |X ′′ | ≥ 20.1ρn, such that all elements in X ′′ and f(y), for all

y ∈ X ′′
are distinct. That is, f |X′′ is injective, and for any y ∈ X ′′

, y ̸∈ f(X ′′
).

2. There exists a subset Y
′′ ⊆ Ysmall, with |Y ′′ | ≥ 20.1ρn, such that all elements in Y ′′ and g(z) for all

z ∈ Y ′′
are distinct. That is, g|Y ′′ is injective, and for any z ∈ Y ′′

, z ̸∈ f(Y ′′
).

Proof. Consider the following algorithm (see Algorithm 1).

Algorithm 1 Finding a small subset X
′′

1: X
′′
← ∅

2: while Xsmall ̸= ∅ do
3: Pick x from Xsmall

4: X
′′
← X

′′
∪ {x}

5: S ← {x′ ∈ Xsmall : f(x
′) = f(x)} ∪ {y ∈ Xsmall : f(y) = x} ∪ {f(x)}

6: Xsmall ← Xsmall\S
7: Return X

′′

In an iteration of the Algorithm 1 (Line 5), if we insert x inside X
′′
, then by the step specified, we remove

f−1(f(x)), f−1(x)∩Xsmall and f(x). Therefore, X
′′

satisfies the required property. Further, by assumption,
we have

|f−1(f(x))| < 2ρn/2 and |f−1(x) ∩Xsmall| < 2ρn/2 .

Hence, in each iteration, at most 20.5ρn+1 + 1 many elements are removed from Xsmall. On the other hand,
by assumption, |Xsmall| ≥ 20.7ρn. Therefore,

|X
′′
| × (20.5ρn+1 + 1) ≥ 20.7ρn =⇒ |X

′′
| ≥ 20.1ρn .

This proves our claim for X
′′
. Similarly, we can find Y

′′ ⊆ Ysmall with the desired properties.

Remark 5. When |X| = |Y | = 2Ĉn/ logn for Ĉ ≥ 30C and |X̂small|, |Ŷsmall| ≥ 20.7Ĉn/ logn, in the same way as
above we can show there are S1 ⊆ X̂small and S2 ⊆ Ŷsmall so that |S1|, |S2| ≥ 20.1Ĉn/ logn and they satisfy
same property as X ′′ and Y ′′ do.

We now follow the proof strategy previously employed in Section 3 for the randomized construction of
strong 2-source extractors. First, we define the following.

Definition 12. For any set X ⊆ Fn
2 , a function f ∈ Fn and a positive integer u ≥ 2, and a polynomial p ∈

H3un,un, define

p
(
X

(u)
f

)
:=

{
p(0(u−1)nx) ◦ p(0(u−1)nf(x)) : x ∈ X

}
,

where

X
(u)
f := {(0(u−1)n ◦ x) ◦ (0(u−1)n ◦ f(x)) : x ∈ X} .
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30-feet above proof overview in two lines. We will show that dim((X
′′
)
(10)
f ) and dim((Y

′′
)
(10)
g ) are large,

which in turn will imply that dim((Xsmall)
(10)
f ) and dim((Ysmall)

(10)
g ) are also large. To show this we will

prove a more general statement that all the sets which satisfy the property given in Lemma 18, have large
dimension. For that we need the following formal definition.

Property Pf . For a set A ⊆ {0, 1}n and f ∈ Fn, we say A satisfies property Pf if

f |A is injective and a ̸∈ f(A) ∀ a ∈ A. (3)

Theorem 10. Let f ∈ Fn. Let A ⊆ Fn
2 , such that |A| ≥ 2un, for a positive integer u ≥ 2. Further, assume

that A satisfies property Pf . Then for any d ≤ 1.4un, the following holds.

Pr
p←H3un,un

[dimF2
(p(A

(u)
f )) ≤ d] ≤ 22un−(2un−d)

2

.

Proof. We follow the exact proof structure of Lemma 9. Let A′ := {x1, . . . , x2un}, where xi, for i ∈ [2un] are
arbitrarily chosen distinct elements from A. Let B := {x1, . . . , xd}. We will prove an upper bound on the
probability that dimF2

(p(A
′(u)
f )) ≤ d, which will readily imply the desired upper bound. For some x ∈ A,

define:
puf,x := p(0(u−1)nx) ◦ p(0(u−1)nf(x)) .

Pick any t = (t1, . . . , td) ∈ Fd
2kn , and k = (k1, . . . , kd) ∈ Fd

2cn . For a = (a1, . . . , ad) ∈ Fd
2, define the following

events:

1. Eat :=

(∧d
i=1 p(0

(u−1)nxi) = ti

)∧(
p(0(u−1)nz) =

∑d
i=1 aiti

)
.

2. Γa
z :=

(∧d
i=1 p(0

(u−1)nf(xi)) = ki

) ∧ (
p(0(u−1)nf(z)) =

∑d
i=1 aiki

)
.

Pick any z ∈ A′\B. Then,

Pr
p←H3un,un

[puf,z ∈ SpanF2
(puf,x1

, . . . , puf,xd
)] ≤

∑
a ∈ Fd

2

 ∑
t,k ∈ Fd

2un

Pr
p←H3un,un

[
Eat ∧ Γa

k

] 
=

∑
a ∈ Fd

2

 ∑
t,k ∈ Fd

2un

1

22un(d+1)


=

22und+d

22un(d+1)
=

1

22un−d
.

Since A satisfies property 3, all of x1, . . . , xd and f(x1), . . . , f(xd) must be distinct. Since 2d ≤ 3un, we can
use the property of (2d)-wise hash family in the first equality above.

Further, the probability that puf,z is in SpanF2
(B

(u)
f ), for all z ∈ A′\B, is 2−(2un−d)

2

, since p is chosen
from a (3un)-wise independent hash family.

Finally, we need to take a union bound on all such B ⊆ A′ which in turn will give the final probability
bound of 22un−(2un−d)

2

, as desired.

A similar calculation as above shows the following; we state it without proving in detail.

Lemma 19. Let f ∈ Fn. Let A ⊆ Fn
2 , such that |A| ≥ 50n. Further, assume that A satisfies property Pf .

Then, the following holds.

Pr
p←H300n,10n

[dimF2
(p(A

(10)
f )) ≤ 10n] ≤ 250n−400n

2

.
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By applying the union bound over all set of size 50n, we get the following corollary.

Corollary 2. Let f ∈ Fn. Then, with probability at most 2−349n
2

over the choice of uniformly random p
from H300n,10n we have,

∃ A ⊆ Fn
2 of size at least 50n that satisfies Pf ,dimF2(p(A

(10)
f )) ≤ 10n .

Following the (exact) same line of proof that has been provided for the above, it is easy to see that in
fact picking a polynomial of degree 300n, sampled from a source of min-entropy rate 0.9 still works!
In the next remark, we argue that all the above probability calculations hold if one multiplies the space by
a full-rank matrix.

Remark 6. Since SpanF2
(p(A

(u)
f )) ⊆ F2un

2 , for any full-rank matrix M ∈ F2un×2un
2 , we have

M · SpanF2
(p(A

(u)
f )) = SpanF2

(M · p(A(u)
f )) = SpanF2

(p(A
(u)
f )).

Hence, for given A, f, c, d same as in Theorem 10 and any full-rank matrix M ∈ F2un×2un
2 , we also have,

Pr
p←H3un,un

[dimF2
(M · p(A(u)

f )) ≤ d] ≤ 22un−(2un−d)
2

.

Lemma 20. Let f ∈ Fn and let ρ > 0 be any constant. Further let M be any 20n×20n full-rank matrix over
F2. Then with probability at least 1− 2−5n

2

over the uniformly random choice of p ∈ H30n,10n, the following
holds: for all X ⊆ Fn

2 of size 2ρn with |Xsmall| ≥ 20.7ρn we have,

dimF2

(
M · p

(
(Xsmall)

(10)
f

))
≥ 12n .

Proof. Substitute u = 10 and d = 12n in Theorem 10 to get that with probability at most 2−50n
2

, over the
uniformly random choice of p from H30n,10n, we have dimF2(p(A

(10)
f )) ≤ 12n. By applying the union bound

over all A ⊆ Fn
2 of size 20n, we obtain the following.

With probability at most 2−5n
2

, where the probability is over the uniformly random choice of p ∈ H30n,10n,
there exists A ⊆ Fn

2 , of size at least 20n, where A satisfies property Pf such that

dimF2

(
M · p(A(10)

f )
)
≤ 12n .

Recall that, we are only interested in X ⊆ Fn
2 such that |X| = ρn and |Xsmall| ≥ 20.7ρn. By Lemma 18,

we know that there exists A ⊆ Xsmall with |A| ≥ 20n, such that A satisfies property Pf . Therefore, the
following holds:

∃X ⊆ Fn
2 , of size 2ρn, where |Xsmall| ≥ 20.7ρn, such that

dimF2

(
p
(
(Xsmall)

(10)
f

))
≤ 12n ,

with probability at most 2−5n
2

, where the probability is over the uniformly random choice of p ∈ H30n,10n.
Since M is a full rank matrix, our lemma follows.

Now we will formally argue that the inner-product of the image of (Xsmall)
(10)
f and image of (Ysmall)

(10)
g

under p is non-constant. From there, we show that a random polynomial can be used to construct a strong
extractor on the sources (Xsmall)

(10)
f and (Ysmall)

(10)
f .

By (Xsmall)
(10)
f and (Ysmall)

(10)
g , we denote uniform distributions over (Xsmall)

(10)
f and (Ysmall)

(10)
g respec-

tively.
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Corollary 3. Fix any f, g ∈ Fn. Let M be any 20n× 20n full-rank matrix over F2. Then for any constant
ρ > 0, there is another constant β1 > 0 such that with probability at least ≥ 1−2−4.5n2

, over uniformly random
choice of p ∈ H30n,10n, the following holds: For X,Y ⊆ Fn

2 such that |X| = |Y | = 2ρn and |Xsmall|, |Ysmall| ≥
20.7ρn, we have,

∆
(
⟨p((Xsmall)

(10)
f ),M · p(Ysmall)

(10)
g )⟩,Ysmall ; U1,Ysmall

)
≤ 2−β1n .

Proof. By Lemma 20, we know that with probability at least 1− 2−5n
2

over the uniformly random choice of
p ∈ H30n,10n, the following holds: for all X ⊆ Fn

2 of size 2ρn with |Xsmall| ≥ 20.7ρn,

dimF2

(
M · p

(
(Xsmall)

(10)
f

))
≥ 12n .

And the similar will hold for all Y ⊆ Fn
2 with |Y | = 2ρn and |Ysmall| ≥ 20.7ρn, with probability at least

1 − 2 · 25n2

if p is chosen uniformly from H30n,10n. If both the dimensions: dimF2(p((Xsmall)
(10)
f )) and

dimF2(M · p((Ysmall)
(10)
g )) are at least 12n, then trivially their sum is strictly larger than 20n+ 1.

Therefore, applying Lemma 6, one concludes that with probability at least 1−2·2−5n2

, over the uniformly
random choice of p ∈ H30n,10n, the following holds:

For all X,Y ⊆ Fn
2 , each of size 2ρn, where both |Xsmall|, and |Ysmall| are at least 20.7ρn, we have

⟨p((Xsmall)
(10)
f ), p((Ysmall)

(10)
g )⟩ is non-constant.

Note that, both |(Xsmall)
(10)
f |, |(Ysmall)

(10)
g | ≥ 20.7ρn. Finally, we can replace ρ by 0.7ρ in Theorem 7, and

get our desired result.

From the proof idea of Lemma 20 and Corollary 3 and using Remark 5, item (ii) of Theorem 7 we can have
the following lemma, which we are stating without formal proof.

Lemma 21. Fix any f, g ∈ Fn and M be any 20n× 20n full rank matrix over F2. For any Ĉ ≥ 30C where
C is from Theorem 8, with probability at least 1− 2−4.5n

2

over uniformly random choice of p from H30n,10n

we have: For all X,Y ⊆ Fn
2 so that |X| = |Y | = 2Ĉn/ logn and |X̂small|, |Ŷsmall| ≥ 20.7Ĉn/ logn,

∆
(
⟨p((X̂small)

(10)
f ),M · p(Ŷsmall)

(10)
g )⟩, Ŷsmall ; U1, Ŷsmall

)
≤ 2−

√
n/8 .

Here X̂small and Ŷsmall are uniform distributions over X̂small and Ŷsmall respectively.

As, Ĉ ≥ 30C, we have 0.1× 0.7× Ĉ > C, we can impose item (ii) of Theorem 8.
Now we are ready to prove Lemma 17 (main lemma of this subsection). For completeness, we restate the

lemma here.

Lemma 22. Fix f, g ∈ Fn. For X,Y ⊆ Fn
2 with |X| = |Y | = 2ρn and Xsmall, Ysmall are as defined before,

consider the following property,
|Xsmall × Ysmall| ≥ 21.7ρn , (4)

where ρ > 0 is some constant. Then, there are positive constants β′′, µ′′ such that for m = µ′′n, with
probability at least 1 − 2−4n

2

over uniformly random choice of p from H30n,10n the following holds: For all
X,Y ∼ Fn

2 such that |X| = |Y | = 2ρn and satisfies Equation (4),

∆
(
ϕmp (X,Y)|Xsmall×Ysmall

;Dm
p (X,Y)|Xsmall×Ysmall

)
≤ 2−β

′′n .

23



Proof. If for X,Y ⊆ Fn
2 , both of size ρn, we have 21.7ρn ≤ |Xsmall × Ysmall| ≤ |Xsmall| × 2ρn, we can easily

conclude that
|Xsmall| ≥ 20.7ρn, and |Ysmall| ≥ 20.7ρn .

For this proof, we introduce the following notations:
We use Xsmall and (Xsmall)

(10) to denote uniform distribution over Xsmall and (Xsmall)
(10) respectively.

And similarly, we use notations Ysmall and (Ysmall)
(10) to denote uniform distribution over Ysmall and

(Ysmall)
(10) respectively.

We will show a more general statement that there exists a constant β′′ > 0 (see Equation (5)), such that
with probability at least 1− 2−4n

2

, over uniformly random choice of p ∈ H30n,10n, the following holds:
For all X,Y ⊆ Fn

2 where |X| = |Y | = 2ρn such that they satisfy Equation (4), we have

∆
(
ϕmp (X,Y)|Xsmall×Ysmall ; (Um,Um,Ysmall)

)
≤ 2−β

′′n . (5)

To show the above, we will apply Vazirani’s XOR lemma (Lemma 5). We need to show that for any a1, . . . , am,
b1, . . . , bm ∈ F2, where not all of them are zero, with probability at least 1−2−4n2

, over the uniformly random
choice of p ∈ H30n,10n, we have:

For all X,Y ⊆ Fn
2 both of size 2ρn satisfying Equation (4),

∆

(( m∑
i=1

ai⟨p((Xsmall)
(10)), Li · p((Ysmall)

(10))⟩

+

m∑
i=1

bi⟨p((f(Xsmall))
(10)), Li · p((g(Ysmall))

(10))⟩,Ysmall

)
;
(
U1,Ysmall

))
≤ 2−βn ,

for some β > 0. Fix arbitrary a1, · · · , an, b1, · · · , bn ∈ F2, where not all of them are zero. Observe that the
above distribution of the sum of the output bits of nmExtmp reduces to the following distribution

⟨p((Xsmall)
(10)), L′ · p((Ysmall)

(10))⟩ + ⟨p((f(Xsmall))
(10)), L′′ · p((g(Ysmall))

(10))⟩ ,

where L′ :=
∑

i∈[m] aiLi and L
′′
:=
∑

i∈[m] biLi.

We will denote the above distribution by ψL′,L′′ (Xsmall,Ysmall), for the rest of the subsection.

Since, by assumption, not all of a1, · · · , an, b1, · · · , bn are zero, and since Li are independent matrices,
we know that at least one of L′ or L

′′
must be full-rank. In particular, either both are nonzero full-rank

matrices, or one is 0, while the other remains a full-rank matrix. We will go over all the 3 cases below.

Case 1: Both L
′
, L

′′
are full-rank.

Proof of Case 1. In this case, we have ψL′,L′′ (Xsmall,Ysmall)

= ⟨p(09n||Xsmall), L
′ · p(09n||Ysmall)⟩ + ⟨p(09n||f(Xsmall)), L

′′
· p(0(9n||g(Ysmall))⟩

= ⟨p(09n||Xsmall) ◦ p(09n||f(Xsmall)),M · p(09n||Ysmall) ◦ p(09n||g(Ysmall))⟩ ,

where

M :=

(
L′ 0
0 L′′

)
20n×20n

.

Note that M is full-rank since both L′ and L
′′

are full-rank matrices (by assumption).
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Therefore from Corollary 3 we can conclude, with probability at least 1−2−4.5n2

over uniformly random choice
of p from H30n,10n, we have the following: For all X,Y such that both of size ρn and satisfy Equation (4),

∆
(
ψL′,L′′ (Xsmall,Ysmall),Ysmall ; U1,Ysmall

)
≤ 2−β1n .

Case 2: L′ is full-rank and L
′′
= 0.

Proof of Case 2. In this case,

ψL′,L′′ (Xsmall,Ysmall) = ⟨p((Xsmall)
(10)), L′ · p((Ysmall)

(10))⟩ .

Therefore, if we start with the min-entropy of the input sources 0.7ρn, and use Theorem 7, we get a constant
β2 > 0 such that, with probability at least 1 − 2−5n

2

over uniformly random choice of p ∈ H30n,10n, the
following holds:

for all X,Y ⊆ Fn
2 such that |X| = |Y | = 2ρn and satisfy Equation (4), we have

∆
(
⟨p((Xsmall)

(10)), p((Ysmall)
(10)),Ysmall ; U1,Ysmall

)
≤ 2−β2n ,

which is what we wanted.

Case 3: L′ = 0 and L
′′

is full-rank.
Proof of Case 3. In this case,

ψL′,L′′ (Xsmall,Ysmall) = ⟨p((f(Xsmall)
(10)), L′′ · p((g(Ysmall)

(10))⟩ .

We consider our random sources as f(Xsmall) and g(Ysmall). Let X,Y ⊆ Fn
2 , each of size 2ρn which satisfy

Equation (4). Using Lemma 18, we get that there exists X
′′ ⊆ Xsmall, and Y

′′ ⊆ Ysmall, each of size at least
20.1ρn, such that both f |X′′ and g|Y ′′ are injective.

If we replace A by f(X
′′
), and c = 10, d = 6n in Lemma 9, we get that for X

′′
, the following holds:

Pr
p←H30n,10n

[dimF2

(
p((f(X

′′
)(10))

)
≤ 6n] ≤ 2−15n

2

.

Since both |f(Xsmall)| and |g(Ysmall)| are at least 20.1ρn, from Remark 2, there exist a constant β3 > 0 such
that, with probability at least 1 − 2−4.5n

2

over the uniformly random choice of p ∈ H30n,10n, the following
holds:

for all X,Y ⊆ Fn
2 each of size 2ρn and |Xsmall| and |Ysmall| at least 20.7ρn, we have

∆
(
⟨p((f(Xsmall))

(10)), L
′′ · p((g(Ysmall))

(10))⟩,Ysmall ; U1,Ysmall

)
≤ 2−β3n .

This finishes the proof of Case 3.

Finishing off the proof. Therefore, case 1− 3, combined with XOR lemma (Lemma 5), yields that with
probability at least ≥ 1− 2−4n

2

, over the uniformly random choice of p from H30n,10n, the following holds:

For all X,Y ⊆ Fn
2 each of size 2ρn and satisfying 2

∆1

(
ϕmp (X,Y))|Xsmall×Ysmall ; (Um,Um,Ysmall)

)
≤ 2−βn/2 · 2m ,

where β′′ := min{β1, β2, β3} and take m = µ′′n = βn/4. This finishes the proof of our lemma.

When |X| = |Y | = 2Ĉn/ logn, again by the similar proof idea as above, from Lemma 21, item (ii) of
Theorem 7 and Theorem 8 we have,
Lemma 23. There is a constant Ĉ ≥ 30C and σ̂, ν̂ > 0 so that with probability at least 1 − 2−4n

2

over
the uniformly choice of p from H30n,10n we have: For all X,Y ∼ Fn

2 with supports X,Y respectively so that
|X| = |Y | = 2Ĉn/ logn and |X̂small × Ŷsmall| ≥ 21.7Ĉn/ logn,

∆
(
ϕmp (X,Y)|Xsmall×Ysmall

;Dm
p (X,Y)|Xsmall×Ysmall

)
≤ 2−σ̂

√
n

where m = ν̂
√
n.
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4.3 Putting it all together: Proof of Lemma 11

Till now, we have shown that our nmExtmp works with overwhelming probability, over the uniformly random
choice of p, on disjoint partitions {Pi}i of X × Y ⊆ Fn

2 . That is :

for all i, ∆(ϕmp (X,Y)|Pi ;Dm
p (X,Y)|Pi) ≤ εi .

where εi’s can be replaced by 2−O(n) when input sources have entropy O(n) and by 2−O(
√
n) when input

sources have entropy O(n/ log n) respectively. Using Lemma 13, we will argue that for any two independent
sources X and Y each having sufficiently large support, our non-malleable extractor still works.

Proof of Lemma 11.
(i) When X,Y ⊆ Fn

2 , each of size 2ρn, recall the definitions of the partition of X and Y with respect to f, g
respectively.

Xlarge =
{
x ∈ X : |f−1(f(x)) ∩X| ≥ 2ρn/2

}
,

Xsmall =
{
x ∈ X : 0 < |f−1(f(x)) ∩X| < 2ρn/2

}
.

Similarly for Y , we had defined the following:

Ylarge =
{
y ∈ Y : |g−1(g(y)) ∩ Y | ≥ 2ρn/2

}
,

Ysmall =
{
y ∈ Y : 0 < |g−1(g(y)) ∩ Y | < 2ρn/2

}
.

Note that, X = Xlarge ⊔Xsmall and Y = Ylarge ⊔ Ysmall. We consider two cases: (1) when |Xsmall| = 2Ω(n),
and (2) when |Xsmall| = 2o(n). We solve both cases one by one.

1. Case I
(
|Xsmall| ≥ 2ρ

′n for ρ ≥ ρ′ > 0
)
: Consider the partition,

X × Y =
(
Xlarge × Y

)
⊔
(
Xsmall × Ylarge

)
⊔
(
Xsmall × Ysmall

)
.

Since |Xsmall| ≥ 2ρ
′n for some constant ρ′ > 0, using Remark 4, we know that there are constants

ν, α > 0 such that with probability at least 1− 2−4n
2

, over uniformly random choice of p from H30n,10n,
the following holds:
for all independent flat-ρn sources X,Y ∼ Fn

2 , with supports respectively X and Y , and further with,
|Xsmall| ≥ 2ρ

′n, we have

∆(ϕνnp (X,Y)|Xsmall×Ylarge ;Dνn
p (X,Y)|Xsmall×Ylarge) ≤ 2−αn .

We further divide this case into two sub-cases, as follows.

(i) Sub-case I
(
|Xsmall × Ysmall| ≤ 21.7ρn

)
:

For a constant ρ > 0, we know there are constants β′, µ′ > 0, from Lemma 14. Further, let α, ν be
the positive constants as mentioned above. Finally, consider µ1 := min{ν, µ′} and m := µ1n.

Using these parameters, along with Lemma 13, we get that with probability at least 1−3 ·2−4n2

, for
all independent flat-ρn sources X,Y ∼ Fn

2 , with support X and Y respectively, where |Xsmall| ≥ 2ρ
′n

and |Xsmall × Ysmall| ≤ 21.7ρn, the following holds:

∆
(
ϕmp (X,Y),Dm

p (X,Y)
)

≤ 2−β
′n · |Xlarge × Y |

|X × Y |
+ 2−αn · |Xsmall × Ylarge|

|X × Y |
+
|Xsmall × Ysmall|
|X × Y |

≤ 2−β
′n + 2−αn + 2−0.3ρn ≤ 2−γ̂1n ,

where γ̂1 := 1
2 ·min{β′, α, 0.3ρ}.
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(ii) Sub-case II
(
|Xsmall × Ysmall| ≥ 21.7ρn

)
:

For a constant ρ > 0, we know there are positive constants β′′, µ′′ > 0, from Lemma 17. Take
µ2 := min{µ′, µ′′

, ν} and take m := µ2n.
Then, with probability at least 1−2−4n2

for uniformly random choice of p fromH30n,10n, the following
holds:
For all independent flat-ρn sources X,Y ∼ Fn

2 , with support X and Y respectively, where |Xsmall| ≥
2ρ

′n and |Xsmall × Ysmall| ≥ 21.7ρn, we have

∆
(
ϕmp (X,Y)|Xsmall×Ysmall ,Dm

p (X,Y)|Xsmall×Ysmall

)
≤ 2−β

′′n .

Hence, with probability at least 1− 3 · 2−4n2

we have,

∆
(
ϕmp (X,Y),Dm

p (X,Y)
)

≤ 2−β
′
n · |Xlarge × Y |

|X × Y |
+ 2−αn · |Xsmall × Ylarge|

|X × Y |
+ 2−β

′′n · |Xsmall × Ysmall|
|X × Y |

≤ 2−γ̂2n ,

where γ̂2 := min{β′, β′′, α}.
2. Case II

(
|Xsmall| < 2λn for all constant λ > 0

)
:

Consider the partition
X × Y =

(
Xlarge × Y

)
⊔
(
Xsmall × Y

)
.

For a constant ρ > 0, we know there are constants µ′, β′ > 0, from Lemma 14. Therefore, with probability
at least 1− 3 · 2−4n2

, over uniformly random choice of p from H30n,10n, the following holds:
For independent flat-ρn sources X,Y ∼ Fn

2 , with support X and Y respectively, where |Xsmall| < 2λn

for all constant λ > 0, we have

∆(ϕmp (X,Y),Dm
p (X,Y))

≤ 2−β
′
n · |Xlarge × Y |

|X × Y |
+ 2−0.5ρn

(
since |Xsmall| ≤ 20.5ρn

)
≤ 2−β

′n + 2−ρn/2 ≤ 2−γ̂3n ,

where γ̂3 := 1
2 ·min{β′, ρ2}.

This finishes the proof of case II.

Finishing off. From our analysis above, we know that for any constant ρ > 0, there exist positive constants
γ := min{γ̂1, γ̂2, γ̂3}, and µ := min{µ1, µ2, µ

′}, such that taking m = µn, with probability at least 1− 2−3n
2

over the uniformly random choice of p from H30n,10n, the following holds:

For all independent flat-ρn sources X,Y ∼ Fn
2 , we have

∆
(
(nmExtmp (X,Y),nmExtmp (f(X), g(Y)),Y); (Um,nmExtmp (f(X), g(Y)),Y)

)
≤ 2−γn .

The above statement combined with Lemma 1 yields the desired statement.

(ii) When |X| = |Y | = 2Ĉn/ logn for Ĉ ≥ 30C, we give the brief proof sketch as the idea is quite sim-
ilar to the previous case. Let us again define:

X̂large =
{
x ∈ X : |f−1(f(x)) ∩X| ≥ 2Ĉn/2 logn

}
,

X̂small =
{
x ∈ X : 0 < |f−1(f(x)) ∩X| < 2Ĉn/2 logn

}
.
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And similarly for Y ,

Ŷlarge =
{
y ∈ Y : |g−1(g(y)) ∩ Y | ≥ 2Ĉn/2 logn

}
,

Ŷsmall =
{
y ∈ Y : 0 < |g−1(g(y)) ∩ Y | < 2Ĉn/2 logn

}
.

Here also, we break this into the following cases,

1. When |X̂small| ≥ 2Ĉn/2 logn. Under this case, there are two sub-cases as before:

(i) |X̂small × Ŷsmall| ≥ 21.7Ĉn/ logn

(ii) |X̂small × Ŷsmall| < 21.7Ĉn/ logn.

Consider the partition of X × Y as follows,

X × Y = X̂large × Y ⊔ X̂small × Ŷlarge ⊔ X̂small × Ŷsmall .

When sub-case (i) occurs, by Lemma 16, Lemma 23 and the partition lemma Lemma 13 we can conclude
that

∆
(
ϕmp (X,Y);Dm

p (X,Y)
)
≤ 2−σ

√
n

where m = ν
√
n for some constants ν, σ.

When we are in sub-case (ii), again by Lemma 16 we know,

ϕmp (X,Y)|Xlarge×Y ≈2−σ̃
√

n Dm
p (X,Y)|Xlarge×Y

ϕmp (X,Y)|Xsmall×Ylarge ≈2−σ̃
√

n Dm
p (X,Y)|Xsmall×Ylarge

where m = ν̃
√
n and σ̃, ν̃ are fixed constants. As, |X̂small×Ŷsmall| ≤ 2−0.3Ĉn/ logn which is at most 2−σ̃

√
n,

by Lemma 13 we have ∆
(
ϕmp (X,Y);Dm

p (X,Y)
)
≤ 2−σ

√
n where m = ν

√
n and ν, σ are constants.

2. When |X̂small| < 2Ĉn/2 logn, we make the partition

X × Y = X̂large × Y ⊔ X̂small × Y .

As, |X̂small×Y |
|X×Y | ≤ 2−0.5Ĉn/ logn, by item (i) of Lemma 16 and Lemma 13 we can again conclude that,

∆
(
ϕmp (X,Y);Dm

p (X,Y)
)
≤ 2−σ

√
n

for m = ν
√
n and we achieve our desired result.

4.4 Exactly one of the two sources is tampered: Proof of Lemma 12

After finishing the proof of Lemma 11, it remains to prove that when exactly one of the two sources is tampered
(i.e. second and third items of Definition 11), then also a random polynomial works with overwhelming
probability, proving Lemma 12. For the sake of completeness, we restate the lemma below.

Lemma 24. Let f, g ∈ Fn. Then,

(i) For any ρ > 0, there are constants µ̃, γ̃ > 0 such that with probability at least 1 − 2 · 2−4n2

over the
uniformly random choice of p ∈ H30n,10n the following holds: for all independent sources X,Y ∼ {0, 1}n,
with H∞(X), H∞(Y) ≥ ρn, the following two properties hold.

1. nmExtmp (X,Y),nmExtmp (f(X),Y),Y ≈ε Um,nmExtmp (f(X),Y),Y
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2. nmExtmp (X,Y),nmExtmp (X, g(Y)),Y ≈ε Um,nmExtmp (X, g(Y)),Y

where m = µ̃n, and ε = 2−γ̃n.

(ii) There are constants C0 and σ̃, ν̃ > 0 so that, with probability at least 1 − 2 · 2−4n2

over the uniformly
random choice of p ∈ H30n,10n the following holds: for all independent sources X,Y ∼ {0, 1}n, with
H∞(X), H∞(Y) ≥ C0n

logn , we have

1. nmExtmp (X,Y),nmExtmp (f(X),Y),Y ≈ε Um,nmExtmp (f(X),Y),Y

2. nmExtmp (X,Y),nmExtmp (X, g(Y)),Y ≈ε Um,nmExtmp (X, g(Y)),Y

where ε = 2−σ̃
√
n and m = ν̃

√
n

Proof sketch. We will only sketch the proof of the first statement of item (i) since we have proved similar
arguments before. The second statement can be similarly proved as well. And also by the similar argument
using Lemma 8 and Theorem 8 item (ii), one can prove the case when input sources have min-entropy at
least C0n/ log n for some fixed constant C0.

Without loss of generality, we assume X,Y to be flat-ρn sources with supports X and Y respectively
from Lemma 1. Observe that in this case Y = Ysmall, with respect to the identity function. Consider the
following partition,

X × Y = (Xlarge × Y ) ⊔ (Xsmall × Y ) .

The subsets Xlarge and Xsmall are already defined before in Section 4.3. For now, let us restrict our focus on
the case when |Xsmall| ≥ 20.7ρn.

Consider the matrix Ã ∈ F|Y |×20n2 , where each row is indexed by an element of Y , and for some y ∈ Y ,
the corresponding row is p(09n ◦ y) ◦ p(09n ◦ y). By the exact similar proof strategy of Theorem 10, we can
prove that

Pr
p←H30n,10n

[dimF2(Ã) ≥ 12n] ≥ 1− 2−50n
2

.

Define p(Y (10) ◦ Y (10)) := {p(09n ◦ y) ◦ p(09n ◦ y) : y ∈ Y }. For any full-rank matrix M ∈ F20n×20n
2 , taking a

union bound over all such Y of size 2ρn, we conclude that with probability at least 1− 2−5n
2

, over uniformly
random choice over p from H30n,10n, the following holds: ∀ Y ⊆ Fn

2 , of size 2ρn, we have

dimF2

(
M · p(Y (10) ◦ Y (10))

)
≥ 12n .

By Lemma 20, we get that with probability at least 1 − 2−5n
2

, over uniformly random choice of p from
H30n,10n, the following holds:

∀X ⊆ Fn
2 , with |X| = 2ρn and |Xsmall| ≥ 20.7ρn, we have

dimF2

(
p((Xsmall)

(10)
f

)
≥ 12n .

Combining the above two equations, we have that with probability at least 1− 2 · 2−5n2

, for all X,Y of size
2ρn with |Xsmall| ≥ 20.7ρn,

dimF2
(p(Xsmall)

(10)
f ) + dimF2

(p(Y (10) ◦ Y (10)) > 20n+ 1

So, following the line of proof similar to Corollary 3 and Lemma 17, we can conclude that there are constants
µ0, β0 > 0, depending on ρ > 0, such that with probability at least 1− 2−5n

2

, over uniformly chosen p from
H30n,10n, the following holds:

∀X,Y ⊆ Fn
2 with |X| = |Y | = 2ρn and |Xsmall| ≥ 20.7ρn,we have
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nmExtmp (Xsmall,Y),nmExtmp (f(Xsmall),Y),Y ≈ε Um,nmExtmp (f(Xsmall),Y),Y,

where ε = 2−β0n and m = µ0n and further, Xsmall is the uniform distribution over Xsmall for all X.
Finally, we can conclude that for µ̃ = min{µ′, µ0} and m = µ̃n, with probability at least 1− 2−3n

2

, over
uniformly random choice of p from H30n,10n the following holds:

For all independent flat-ρn sources X,Y ∼ Fn
2 , with the supports X and Y respectively, when

1. Case I. (|Xsmall| ≤ 20.7ρn):

∆(nmExtmp (X,Y),nmExtmp (f(X),Y),Y ; Um,nmExtmp (f(X),Y),Y)

≤ 2−β
′n |Xlarge × Y |
|X × Y |

+
|Xsmall × Y |
|X × Y |

≤ 2−β
′n + 2−0.3ρn ≤ 2−γ̃1n ,

where γ̃1 := 1
2 ·min{β′, 0.3ρ},

2. Case II. (|Xsmall| ≥ 20.7ρn):

∆(nmExtmp (X,Y),nmExtmp (f(X,Y),Y;Um,nmExtmp (f(X),Y),Y)

≤ 2−β
′n · |Xlarge × Y |

|X × Y |
+ 2−β0n · |Xsmall × Y |

|X × Y |
≤ 2−β

′n + 2−β0n ≤ 2−γ̃2n ,

where γ̃2 := 1
2 ·min{β′, β0}.

This finishes the proof of the first statement as desired.

5 Selecting polynomial via two party computation

We have seen that if a uniformly sample a polynomial of degree O(n) and coefficients from a small extension
of F2 (degree of extension O(n)), with high probability we have: For any constant ρ > 0 there are constants
µ, γ > 0 so that,

nmExtmp is a (n,m, k, ε) strong 2 source non-malleable extractor .

where when k = ρn for some constant ρ > 0, we have ε ≤ 2−γn and m = µn for some appropriate constants
µ, γ > 0. And when k = C0n/ log n for some fixed constant C0, we have ε ≤ 2−σn and m = ν

√
n, for

constants ν, σ > 0.
In this section we will show that even without access to uniformly random coin tosses, one can come

up with a good polynomial via two party computation. We will define an explicit two party protocol, that
outputs a low degree polynomial p so that even when one of the parties are corrupted, nmExtp retains its
properties. Recall the definition of Ht,cn

Ht,cn := {p ∈ F2cn [Z] : deg(p) ≤ t} .

Let us start by proving a technical claim that tells that instead of choosing the polynomial uniformly if one
samples it according to a distribution of min-entropy rate at least 0.9, with high probability it will be a good
polynomial.

Lemma 25. Let X be any distribution on H300n,10n so that H∞(X)
log |H300n,10n| ≥ 0.9 (i.e. min entropy rate of X

is at least 0.9). Then:
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1. For all constant ρ > 0, there exist constants µ, γ > 0 so that the following holds.

Pr
p∼X

[
nmExtµnp is a (n, µn, ρn, 2−γn) strong 2-source non-malleable extractor

]
≥ 1− 2−48n

2

2. There are constants C0 > 0 and ν, σ > 0 so that,

Pr
p∼X

[
nmExtµnp is a

(
n, ν
√
n,

C0n

log n
, 2−σ

√
n

)
strong 2-source non-malleable extractor

]
≥ 1− 2−48n

2

Proof. We will only prove (1) as by Theorem 9, the second item immediately follows. Fix ρ > 0 and µ, γ > 0
are the constants that we get from Theorem 9, item (i). Let us define the following set

Bad :=
{
p ∈ H300,10n : nmExtµnp is not a (n, µn, ρn, 2−γn) strong 2-source non-malleable extractor

}
.

From Lemma 19 and Corollary 2 and following the line of proof same as Theorem 9 we can say,

Pr
p←H300n,10n

[p ∈ Bad] ≤ 2−348n
2

That implies |Bad| ≤ |H300n,10n| × 2−348n
2 ≤ 22652n

2

. Now consider any distribution X over H300n,10n with
min-entropy rate at least 0.9. By definition, for any p ∈ H300n,10n, we have Pr[X = p] ≤ 2−2700n

2

. Therefore
finally we have,

Pr
p∼X

[p ∈ Bad] ≤ 2−48n
2

.

This completes our proof.

Now we are ready to describe the two party protocol.

Definition 13 (Two party protocol for selecting the polynomial). The protocol is as follows:

(i) Alice: Uniformly samples a polynomial q from H300n,10n and broadcasts.
(ii) Bob: Uniformly samples a polynomial r from H30n,10n and broadcasts.
(iii) Both of them agree on the final polynomial p(Z) := q(Z) + r(Z) and output.

Lemma 26. Say Y is the output distribution of the protocol 13. Even if either Alice or Bob is corrupted: If
for ρ > 0 we have µ, γ > 0 are the constants from item (i) and C0, σ, ν > 0 are the constants from item (ii)
of Theorem 9

1.
Pr
p∼Y

[
nmExtµnp is a (n, µn, ρn, 2−γn) strong 2-source non-malleable extractor

]
≥ 1− 2−2n

2

2.

Pr
p∼Y

[
nmExtν

√
n

p is a
(
n, ν
√
n,

C0n

log n
, 2−σ

√
n

)
strong 2-source non-malleable extractor

]
≥ 1− 2−2n

2

Proof. Note that from Theorem 9 and Lemma 25 it is enough to prove the item 1.
When both of Alice and Bob are honest, Y is uniform distribution over H300n,10n. Hence, the lemma
follows immediately from Theorem 9.

When Alice is honest and Bob is corrupted, Alice picks polynomial from uniform distribution over
H300n,10n. We denote it as U ′. Bob picks a polynomial from some arbitrary distribution X′ over H30n,10n.
Note that U ′ can be written as (U (1),U (2)) where,

• U (1) denotes the uniform distribution from which coefficients of monomials of degree ≤ 30n+1 is picked
• U (2) denotes the uniform distribution from which coefficients of remaining monomials are picked.
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Therefore, Y = U ′ +X′ = (U (1),U (2) +X′). As, H∞(U (1)) ≥ 270n2, i.e. min-entropy rate of U (1) is at least
0.9, together Theorem 2 and Lemma 25 imply the lemma.

When Bob is honest and Alice is corrupted. As Alice has to start the communication, trivially the
final polynomial p will be 30n-wise independent. From Remark 3 we know that if we pick p uniformly from
30n-wise independent hash family, nmExtµnp is a (n, µn, ρn, 2−γn) strong 2-source non-malleable extractor
with probability at least 1− 2−3n

2

. Hence, this concludes our proof.
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