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Abstract

Alekseev and Itsykson (STOC 2025) proved the existence of an unsatisfiable CNF formula
such that any resolution over parities (Res(⊕)) refutation must either have exponential size (in
the formula size) or superlinear depth (in the number of variables). In this paper, we extend
this result by constructing a formula with the same hardness properties, but which additionally
admits a resolution refutation of quasi-polynomial size. This establishes a supercritical tradeoff
between size and depth for resolution over parities.

The proof builds on the framework of Alekseev and Itsykson and relies on a lifting argument
applied to the supercritical tradeoff between width and depth in resolution, proposed by Buss
and Thapen (IPL 2026).

1 Introduction

Propositional proof complexity investigates proof systems used to demonstrate the unsatisfiability
of Boolean formulas. A central goal — often referred to as Cook’s program, motivated by the NP
vs. coNP problem — is to establish superpolynomial lower bounds on the size of refutations within
stronger and stronger proof systems.

Resolution is the most extensively studied such a system, valued for its conceptual simplicity
and its close relationship with modern SAT solvers. A resolution refutation of a CNF formula φ is a
sequence of clauses C1, C2, . . . , Cs, concluding with the empty clause (representing a contradiction).
Each clause in the sequence is either an original clause of φ or is derived from earlier clauses using the
resolution rule: A∨x B∨¬x

A∨B . Numerous techniques have been developed for proving lower bounds
in Resolution, and exponential lower bounds are known for a wide range of formulas. Notably,
Urquhart [Urq87] showed that certain unsatisfiable systems of linear equations over F2 require
exponential-size resolution refutations when encoded naturally in CNF.

In this paper, we study the proof system resolution over parities (Res(⊕)), which extends
classical resolution by integrating linear algebra over the finite field F2. Proof lines in this proof
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system are disjunctions of linear equations over F2, called linear clauses. A Res(⊕) refutation of
a CNF formula φ is a sequence of linear clauses C1, C2, . . . , Cs that ends with the empty clause
(a contradiction), every clause of this sequence is either a clause of φ or is obtained from previous
clauses by one of the two inference rules:

1. The resolution rule, which infers C ∨D from premises C ∨ (f = 0) and D ∨ (f = 1) for some
linear form f .

2. The weakening rule, which derives a linear clause D from C if C semantically implies D, i.e.
if any assignment satisfying C also satisfies D.

The question of proving a superpolynomial lower bound on the size of Res(⊕) refutations remains
open and appears to be very challenging. The study of lower bounds for Res(⊕) is motivated by the
long-standing challenge of proving exponential lower bounds for Frege systems — a formalization
of textbook propositional logic. Despite decades of effort, no such bounds are known, even for
considerably weaker subsystems. The strongest Frege subsystem for which we currently have lower
bounds is AC0-Frege [Ajt94], which operates with constant-depth formulas using only ∧, ∨, and
¬ gates. However, once parity gates are added — resulting in AC0[2]-Frege — existing lower
bound techniques completely break down. This is in sharp contrast to circuit complexity, where
exponential lower bounds for AC0[2] circuits have been known for over 30 years [Smo87, Raz87].
Bridging this discrepancy requires a deeper understanding of proof systems that reflect the power
of reasoning with parities. As a subsystem of AC0[2]-Frege, Res(⊕) offers a natural and tractable
framework for exploring the power of reasoning with parity, making it a central object of study in
this context.

1.1 Recent progress on lower bounds for subsystems of resolution over parities

There are numerous results establishing exponential lower bounds for tree-like Res(⊕) refutations
of standard combinatorial formulas, using a variety of techniques [IS14, IS20, GK18, GOR24, IR21,
Kra18, BI24].

Independently, Chattopadhyay, Mande, Sanyal, and Sherif [CMSS23] and Beame and
Kroth [BK23] introduced a lifting approach for establishing lower bounds in tree-like Res(⊕).

Given a CNF formula φ(y1, y2, . . . , yn) and a Boolean function g : {0, 1}ℓ → {0, 1}
(called a gadget), we define the lifted formula φ ◦ g as the CNF encoding of the formula
φ(g(x1,1, x1,2, . . . , x1,ℓ), . . . , g(xn,1, xn,2, . . . , xn,ℓ)) where each variable yi in φ is replaced by
g(xi,1, . . . , xi,ℓ) for fresh variables xi,1, xi,2, . . . , xi,ℓ.

Chattopadhyay, Mande, Sanyal, and Sherif [CMSS23] introduced the notion of k-stifling gadgets
as follows. A Boolean function g : {0, 1}ℓ → {0, 1} is called a k-stifling gadget if, for every a ∈ {0, 1}
and every choice of ℓ−k input variables, there exists a setting of those ℓ−k variables such that the
output of g is always equal to a, regardless of the values of the remaining k variables. They further
showed that if every resolution refutation of a formula φ has depth at least h, and g is a k-stifling
gadget, then any tree-like Res(⊕) refutation of the lifted formula φ ◦ g must have size at least 2kh.

Efremenko, Garlik, and Itsykson [EGI24] made the first significant progress beyond the tree-
like setting by establishing exponential lower bounds for bottom-regular Res(⊕) refutations of the
Binary Pigeonhole Principle formula BPHPn+1

n . Their work introduced the notions of closure
and a random-walk technique, both of which have proven instrumental in subsequent research.
Building on these ideas, and combining them with lifting techniques, Bhattacharya, Chattopadhyay,
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and Dvořák [BCD24] showed that certain formulas require exponential-size refutations in bottom-
regular Res(⊕), while still admitting polynomial-size refutations in Resolution.

Alekseev and Itsykson [AI25] showed that one can construct formulas hard for bottom-regular
Res(⊕) based on any formula that requires large resolution depth. Specifically, they proved that if
φ is an unsatisfiable CNF formula over n variables with resolution depth at least Ω(n), then any
regular Res(⊕) refutation of the lifted and transformed formula mix(φ) ◦ g must have size at least
2Ω(n), where g is a constant-size gadget and mix is a semantic-preserving transformation of φ.

Moreover, Alekseev and Itsykson [AI25] made progress beyond bottom-regular Res(⊕) by estab-
lishing a tradeoff between the size and depth of general Res(⊕) refutations. Specifically, they con-
structed a family of formulas — lifted Tseitin formulas — over n variables and of size poly(n) such
that any Res(⊕) refutation must have either size at least 2Ω(n/ logn) or depth at least Ω(n log logn).
Subsequently, Efremenko and Itsykson [EI25] improved the depth lower bound to Ω(n log n). In
particular, this result implies exponential lower bounds for regular Res(⊕) for all reasonable notions
of regularity. However, a limitation of this result is that it applies to a specific formula. In this
paper, we address this issue by developing a general lifting result.

1.2 Main question addressed

It is important to note that, for the lifted Tseitin formulas used in the size-or-depth lower bound
of [AI25], it remains unclear whether they actually admit short Res(⊕) refutations. In other words,
it is still unclear whether the observed phenomenon constitutes a genuine tradeoff or merely reflects
the current limitations of our techniques for proving size lower bounds. In this paper, we address
the following question: Does there exist a formula that admits a short Res(⊕) refutation, yet any
such refutation must have either superlinear (in the number of variables) depth or exponential (in
the size of the formula) size?

A negative answer to this question — combined with the result from [AI25] — would yield
exponential lower bounds on the size of Res(⊕) refutations.

On the other hand, a positive answer would establish a supercritical tradeoff between size and
depth in Res(⊕). Here, supercritical means that for refutations of small size, the required depth
significantly exceeds the worst-case upper bound achievable in the unrestricted setting. A positive
answer would also lend support to a possible explanation for why proving Res(⊕) lower bounds for
seemingly simple formulas — such as the pigeonhole principle — remains so challenging. It may
be that these formulas do admit short refutations, but all such refutations necessarily have large
depth, making them difficult to construct.

1.3 Supercritical tradeoffs in proof complexity

A supercritical tradeoff between two proof complexity measures µ and ν for a formula φ occurs
when φ has proofs with small µ and others with small ν, but any proof with µ below a certain
threshold forces ν to significantly exceed the worst-case upper bound known for all formulas.

In the last few years, many supercritical tradeoffs in proof complexity have been established
[Raz16, BBI16, Ber12, BNT13, Raz18, Raz17, BN20, FPR22, BT26, dRFJ+25, GMRS25, CD24].
We briefly overview the most relevant results concerning Resolution and Res(⊕). Razborov [Raz16]
established a supercritical tradeoff between width and size for tree-like Resolution. Fleming, Pitassi,
and Robere [FPR22] proved supercritical tradeoffs between size/width and depth for Resolution.
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More recently, Buss and Thapen [BT26] introduced a simple and highly flexible construction yield-
ing a supercritical tradeoff between size/width and depth in Resolution. Finally, de Rezende et
al. [dRFJ+25] and Göös et al. [GMRS25] showed that many of these tradeoffs can be made truly
supercritical, meaning that the lower bounds are expressed in terms of the formula’s size, rather
than merely the number of variables.

Chattopadhyay and Dvořák [CD24] established a supercritical tradeoff between width and size
for tree-like Res(⊕). Their proof builds on a corresponding lifting theorem, which directly lifts
Razborov’s result for tree-like Resolution [Raz16] to the Res(⊕) setting.

Note that all the tradeoffs mentioned above have been established for proof systems for which
superpolynomial size lower bounds are already known.

1.4 Our contributions

Our main result is the following theorem.

Theorem 1.1 (Theorem 6.1). Let ψ be an unsatisfiable CNF formula such that ψ does not have
a resolution refutation with width at most w and depth at most h. Assume that there is a natural
number s ≥ 2 such that h ≥ s2w − w. Let g : {0, 1}ℓ → {0, 1} be a 2-stifling gadget (for example,
g can be the 5-bit Majority function). Then any Res(⊕) refutation of ψ ◦ ⊕s ◦ g has either size at

least 2w or depth at least s2w
4ℓ .

By applying the lifting from Theorem 1.1 to the width-depth tradeoff established by Buss and
Thapen [BT26], we obtain a supercritical tradeoff between the size and depth of Res(⊕) refutations.

Theorem 1.2 (Theorem 6.3). For every natural K ≥ 2 and n ≥ 2 such that K ≤
√

n
10 log3 n

there

is a CNF formula φn,K that contains O(Kn log n) variables, the formula φn,K is in O(K log2 n)-
CNF and of size nO(K logn). The formula φn,K has a resolution refutation of size nO(K logn) and
of width O(K log2 n) but every its Res(⊕) refutation has either size at least 2Ω(n/ logn) or depth at
least Ω(K2n log n).

To our knowledge, this is the first instance of a supercritical tradeoff demonstrated in a proof
system lacking known superpolynomial lower bounds on proof size.

Corollary 1.3 (Corollary 6.4). For every δ > 0, Depth- n4/3

log4/3+δ n
Res(⊕) does not p-simulate

Resolution.

Another important specific case of Theorem 1.1 is a size-depth tradeoff for Res(⊕) obtained by
lifting from resolution width.

Theorem 1.4 (Theorem 6.5). Let ψn be a family of unsatisfiable O(1)-CNF formulas such that
ψn has n variables and the resolution width of ψn is w(n). For every natural K ≥ 2 consider a
formula Ψn,K := ψn ◦ ⊕K ◦Maj5; it has 5nK variables, Ψn,K is an O(K)-CNF formula of size at
most poly(n)2K and any Res(⊕) refutations of Ψn has either depth at least Ω(w(n)K2) or size at
least 2Ω(w(n)).

Consider several interesting specific cases of Theorem 1.4.
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• Size-depth tradeoff for formula of size polynomial in number of variables. Let
w(n) = Ω(n). Then the formula Ψn,⌈logn⌉ contains m := Θ(n log n) variables, Ψn,⌈logn⌉ is
an O(logm)-CNF formula of size poly(m) and any Res(⊕) refutations of Ψn,⌈logn⌉ has either

depth at least Ω(m logm) or size at least 2Ω(m/ logm).

This result extends the result from [EI25] for a large number of formulas.

• Maximal depth. Let w(n) = Ω(n). Consider an arbitrary 1 > δ > 0. The formula Ψn,⌈n1−δ⌉

contains m := Θ(n2−δ) variables, Ψn,⌈n1−δ⌉ is a CNF formula of size poly(n)2n
1−δ

and any

Res(⊕) refutations of Ψn,⌈n1−δ⌉ has either depth at least Ω(m3/2−δ/2) or size at least 2Ω(n).

So if we do not restrict ourselves to formulas of polynomial size in the number of variables,
then we can get a superpolynomial size lower bound for depth less than m3/2−δ.

• Minimal width. Let w(n) = Ω
(
n1/2+δ

)
, where 1/2 > δ > 0. The formula Ψn,⌈n1/2⌉ contains

m := Θ(n3/2) variables, Ψn,⌈n1/2⌉ is a CNF formula of size poly(n)2n
1/2

and any Res(⊕)

refutations of Ψn,⌈n1/2⌉ has either depth at least Ω
(
n3/2+δ

)
= Ω

(
m1+2δ/3

)
or size at least

2Ω(n
1/2+δ).

So we can get a non-trivial size-depth tradeoff starting from a formula with the resolution
width Ω

(
n1/2+δ

)
.

1.5 Technique

Proof of Theorem 1.1 builds on the size-depth tradeoff established by Alekseev and Itsykson [AI25],
with subsequent improvements by Efremenko and Itsykson [EI25].

As a first step, we develop a more flexible size-depth tradeoff that applies to a broad class
of formulas. Below, we outline the main ideas behind the tradeoff established by Alekseev and
Itsykson [AI25].

Consider a Res(⊕) refutation Π. We identify certain linear clauses within Π as good clauses. By
definition, a good clause cannot be an axiom of the original formula. These clauses satisfy a crucial
property we refer to as the dichotomy property. Specifically, for every good clause C of moderately
small width, one of the following holds:

• The size of the refutation Π is exponential;

• There exists another good linear clause in Π that appears at a significantly greater depth
than C and whose width exceeds that of C by only a small amount.

Assuming that the empty clause is good and the size of Π is small, the dichotomy property
implies that one can iteratively find increasingly deeper good clauses within Π, ultimately yielding
a lower bound on the depth.

The dichotomy property is established through a combination of a random walk argument and
a bottleneck argument. We begin by defining a set Σ of good full assignments that falsify a given
linear clause C0 (for simplicity, one may think of Σ as the set of all assignments falsifying C0). We
then select a random assignment σ ∈ Σ and perform a t-step random walk along the refutation
graph. At each step, we move from a linear clause to one of its premises that is also falsified by σ,
counting only applications of resolution rules (applications of weakening are ignored).
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The random walk theorem asserts that, with probability at least p, such a walk ends at a good
linear clause. Now, if all good linear clauses reachable from C0 within t steps have width greater
than |C0|+ s, then there must be at least p · 2s such clauses. This is because a random assignment
falsifying C0 can falsify a clause of width at least |C0|+ s with probability at most 2−s.

Alekseev and Itsykson [AI25] proved a random walk theorem for formulas of the form φ ◦ g,
where g is a 2-stifling gadget and φ is an unsatisfiable CNF formula that admits a sufficiently
strong strategy for Delayer in a specific Prover–Delayer game. This game is defined with respect
to the formula φ and a set A of its partial assignments, which must satisfy two conditions: (1) no
assignment in A falsifies any clause of φ, and (2) A is closed under restriction, i.e., any restriction
of an assignment in A also belongs to A.

The game proceeds as follows. It begins with some initial assignment ρ0 ∈ A. In each round,
Prover selects a variable x and queries its value. Delayer then has two options:

1. Pay one black coin to choose a value a ∈ {0, 1} and extend the current assignment by setting
x := a; or

2. Reply with ∗, allowing Prover to choose the value a.

Regardless of the outcome, Delayer earns one white coin for every move. The game terminates as
soon as the current assignment no longer belongs to A.

The required property of Delayer’s strategy is as follows: for every starting assignment ρ0 ∈ A
in the (φ,A)-game, there exists a strategy for Delayer that guarantees earning at least t−|ρ0| white
coins while spending at most n black coins, where t is significantly larger than n. Alekseev and
Itsykson [AI25] provide an example of such a strategy for Tseitin formulas, in which t is, roughly
speaking, the number of edges and n is the number of vertices in the underlying graph.

Our first observation is that Delayer strategies for such games can be derived from strategies in
the Atserias–Dalmau games [AD08], which characterize resolution width, via a lifting transforma-
tion using a parity gate. This simple but powerful idea allows us to establish Theorem 1.4, thereby
completing the first step of our approach.

However, formulas with large resolution width are inherently hard for resolution and can there-
fore only be used to show that small-depth Res(⊕) refutations require large size. To establish a
supercritical tradeoff, we also need to demonstrate the existence of short refutations with large
depth. Our second step is to refine the lifting theorem so that it can be applied starting from
formulas whose every resolution refutation must have either width at least w or depth at least h.
This refinement precisely enables us to apply lifting to the known supercritical tradeoffs between
resolution width and depth.

In Section 4, we introduce an analogue of the Atserias–Dalmau games tailored to formulas that
require resolution width at least w for any resolution proof of depth at most h. The properties
of winning positions in these games closely resemble those in the original Atserias–Dalmau games,
provided we focus on positions within distance h from the empty position. We then apply the
parity gadget to these games. Notably, in the proof of the size-versus-depth tradeoff for suitable
parameters, it suffices to consider Delayer’s strategy only on positions that remain close to the
empty position. This insight enables us to establish the size-depth tradeoff starting from formulas
that have no refutations of width at most h and depth at most w simultaneously, thereby proving
Theorem 1.1.
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2 Preliminaries

2.1 Resolution

Let φ be an unsatisfiable CNF formula. A resolution refutation of φ is a sequence of clauses
C1, C2, . . . , Cs such that Cs is the empty clause (i.e., identically false) and for every i ∈ [s] the
clause Ci is either a clause of φ or is obtained from previous clauses by the resolution rule that
allows us to derive a clause C ∨D from clauses C ∨ x and D ∨ ¬x.

The size of a resolution refutation is the number of clauses in it. The depth of a resolution
refutation is the length of the longest path between the empty clause and the clause of the original
formula. The width of a resolution refutation is the maximal size of a clause from the refutation.
The resolution width of an unsatisfiable CNF formula φ is the minimal possible width over all
resolution refutations of φ.

2.2 Resolution Over Parities

Here and after, all scalars are from the field F2. Let X be a set of variables taking values in F2.
A linear form in variables from X is a homogeneous linear polynomial over F2 in variables from X
or, in other words, a polynomial

∑n
i xiai, where xi ∈ X is a variable and ai ∈ F2 for all i ∈ [n]. A

linear equation is an equality f = a, where f is a linear form and a ∈ F2.
A linear clause is a disjunction of linear equations:

∨t
i=1(fi = ai). Note that over F2 a linear

clause
∨t

i=1(fi = ai) may be represented as the negation of a linear system: ¬
∧t

i=1(fi = ai + 1).
Now we define the proof system resolution over parities (Res(⊕)) [IS20].
Let φ be an unsatisfiable CNF formula. A Res(⊕) refutation of φ is a sequence of linear clauses

C1, C2, . . . , Cs such that Cs is the empty clause (i.e., identically false) and for every i ∈ [s] the
clause Ci is either a clause of φ or is obtained from previous clauses by one of the following inference
rules:

• Resolution rule allows us to derive a linear clause C ∨D from linear clauses C ∨ (f = a) and
D ∨ (f = a+ 1).

• Weakening rule allows us to derive from a linear clause C any linear clause D in the variables
of φ that semantically follows from C (i.e., any assignment satisfying C also satisfies D).

The size of a Res(⊕) refutation is the number of linear clauses in it. The depth of a Res(⊕)
refutation is the maximal number of resolution rules applied on a path between a clause of the
initial formula and the empty clause.

Remark 2.1. A resolution refutation of a formula φ is a special case of a Res(⊕) refutation, where
all linear clauses are plain (i.e., disjunctions of literals).

For any function f(n), we denote by Depth-f(n) Res(⊕) the subsystem of Res(⊕) consisting
of refutations with depth at most f(n), where n is the number of variables in the formula being
refuted.

For a linear clause C we denote by L(C) the set of linear forms that appear in C; i.e.
L
(∨t

i=1(fi = ai)
)
= {f1, f2, . . . , ft}. The same notation we use for linear systems: if Ψ is a F2-linear

system, L(Ψ) denotes the set of all linear forms from Ψ.
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2.3 Lifted formulas

For every CNF formula Φ over the variables Y = {y1, y2, . . . , ym} and every Boolean function
g : {0, 1}ℓ → {0, 1} we define a CNF formula Φ ◦ g with variables X = {xi,j | i ∈ [m], j ∈ [ℓ]}
representing in CNF Φ(g(x1,1, x1,2, . . . , x1,ℓ), g(x2,1, x2,2, . . . , x2,ℓ), . . . , g(xm,1, xm,2, . . . , xm,ℓ)) (i.e.
we substitute to every variable of Φ the function g applied to ℓ fresh variables). Let Φ =

∧
i∈I

Ci,

where Ci is a clause for all i ∈ I. For every i ∈ [m] we denote by yi ◦ g the canonical CNF
formula representing g(xi,1, xi,2, . . . , xi,ℓ) which has ℓ variables in every clause and by (¬yi) ◦ g the
canonical CNF formula representing ¬g(xi,1, xi,2, . . . , xi,ℓ) which has ℓ variables in every clause.
Let Ci = li,1 ∨ li,2 ∨ · · · ∨ li,ni , where li is a literal. Then we denote by Ci ◦ g a CNF formula that
represents li,1 ◦ g ∨ li,2 ◦ g ∨ · · · ∨ li,ni ◦ g as follows: Ci ◦ g is the conjunction of all clauses of the
form D1 ∨D2 ∨ · · · ∨Dni , where Dj is a clause of li,j ◦ g for all j ∈ [mi]. And Φ ◦ g :=

∧
i∈I

Ci ◦ g.

We refer to Φ ◦ g as a formula Φ lifted with a gadget g, to the set Y = {y1, y2, . . . , ym} as a set
of unlifted variables, and to the set X = {xi,j | i ∈ [m], j ∈ [ℓ]} as the set of lifted variables.

Lemma 2.2 (Folklore, see [IS20], for example). Let g : {0, 1}ℓ → {0, 1} be a gadget. If a CNF
formula φ has a resolution refutation of size S and width w, then the formula φ◦g has a resolution
refutation of size S2O(wℓ) and width O(wℓ).

2.4 Closure and Amortized Closure

We consider the set of propositional variables X = {xi,j | i ∈ [m], j ∈ [ℓ]}. The variables from X
are divided into m blocks by the value of the first index. The variables xi,1, xi,2, . . . , xi,ℓ form the
i-th block, for i ∈ [m]. We may view the set X as the set of lifted variables with respect to a gadget
of size ℓ.

Let F = {f1, f2, . . . , fn} be a set of F2-linear forms with variables from X. Consider a coefficient
matrix M of F : its columns correspond to X, and for all i ∈ [n], i-th row is the coefficient vector
of fi. For every i ∈ [m], let Mi consist of matrix columns corresponding to the variables from the
i-th block. Let I ⊆ [m]. We say that {Mi}i∈I is safe if there are distinct indices i1, i2, . . . , it ∈ I
and elements vi1 ∈Mi1 , vi2 ∈Mi2 , . . . , vit ∈Mit such that vi1 , vi2 , . . . , vit is a basis of ⟨∪i∈IMi⟩.

A closure [EGI24] of a set of linear forms F is any inclusion-wise minimal set S ⊆ [m] such that
{Mi}i∈[m]\S is safe. Informally, the closure indicates the set of the most essential unlifted variables
for the set of linear forms F .

Lemma 2.3 (Uniqueness [EGI24]). For any F , its closure is unique.

We denote the closure of F by Cl(F ).

Lemma 2.4 ([EGI24]). Closure has the following properties.

1. If F ⊆ G, then Cl(F ) ⊆ Cl(G);

2. Cl(F ) = Cl(⟨F ⟩);

3. |Cl(F )| ≤ dim⟨F ⟩.

We also require the notion of amortized closure, introduced by Efremenko and Itsykson [EI25].
Unlike the plain closure, which can grow dramatically with the addition of a single linear form, the
amortized closure is a superset of the plain closure designed to grow more gradually and smoothly.
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We say that a subset A ⊆ [m] is coverable w.r.t. {Mi | i ∈ [m]} if for every i ∈ A there is
vi ∈Mi such the set {vi | i ∈ A} is linearly independent. For subsets A,B ⊆ [m], we say that A is
less than B (A ⪯ B) if the largest element in the symmetric difference A△B belongs to B.

An amortized closure of F [EI25], denoted by C̃l(F ), is the ⪯-maximal subset of [m] that is
coverable w.r.t. {Mi | i ∈ [m]}. It is easy to see that C̃l(F ) does not depend on the permutation
of rows in the coefficient matrix of F .

Lemma 2.5 (Size bound [EI25]). | C̃l(F )| ≤ dim⟨F ⟩.

Proof. | C̃l(F )| is at most the rank of a coefficient matrix of F that equals dim⟨F ⟩.

Lemma 2.6 ([EI25]). Cl(F ) ⊆ C̃l(F )

Lemma 2.7 (Lipschitz continuity [EI25]). C̃l(F ) ⊆ C̃l(F ∪ {f}) and | C̃l(F ∪ {f})| ≤ | C̃l(F )|+ 1.

Lemma 2.8 ([EI25]). Let Φ and Ψ be two linear systems in variables X = {xi,j | i ∈ [m], j ∈ [ℓ]}.
Let π be a partial assignment defined on {xi,j | i ∈ Cl(L(Φ)), j ∈ [ℓ]}. Let Σ consist of all solutions
σ of Φ such that σ extends π. Assume that Σ ̸= ∅. Let τ be a random element of Σ. Then

Pr[τ satisfies Ψ] ≤ 2| C̃l(L(Φ))|−| C̃l(L(Ψ))|.

2.5 Lifting via stifling gadgets

In the lifting settings, we will identify subsets of [m] with corresponding subsets of the lifted variables
Y . It is especially convenient to use such correspondence for closure and amortized closure. So,
we will assume that the support and the (amortized) closure of the set of linear forms over lifted
variables is the set of unlifted variables.

A partial assignment ρ to the set of variables X is called block-respectful if, for every i, ρ either
assigns values to all variables with support i or does not assign values to any of them.

Suppose that ρ is a block-respectful partial assignment. Then we define by ρ̂ the partial assign-
ment on the set of variables Y such that ρ̂(yi) = g(ρ(xi,1, xi,2, . . . , xi,ℓ)) (here we assume that if the
right-hand side is undefined, then the left-hand side is also undefined).

Let k < ℓ. A gadget (i.e. Boolean function) g : {0, 1}ℓ → {0, 1} is called k-stifling [CMSS23] if
for every A ⊂ [ℓ] of size k for every c ∈ {0, 1} there exists a ∈ {0, 1}ℓ such that for every b ∈ {0, 1}ℓ
if a and b agree on set of indices [ℓ] \A, then g(b) = c.

It is easy to see that the majority functionMaj2k+1 : {0, 1}2k+1 → {0, 1} is a k-stifling for every
k.

Lemma 2.9 ([AI25]). Let Ψ be a satisfiable linear system in the lifted variables X. Let g : {0, 1}ℓ →
{0, 1} be a 1-stifling gadget. Suppose there exists a full assignment σ to lifted variables X satisfying
Ψ such that σ̂|Cl(L(Ψ)) does not falsify any clause of φ. Then, Ψ does not contradict any clause of
φ ◦ g.

2.6 Supercritical tradeoff between width and depth for resolution

Here, we state the supercritical tradeoff between width and depth in resolution, as established by
Buss and Thapen [BT26].

Theorem 2.10 ([BT26]). Let b, c, d ≥ 2 be integers and b be a power of two. Then there is an
explicit formula Φb,c,d that has the following properties:
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• Φb,c,d has bcd+ b log b variables;

• Φb,c,d has c+ (dc − 1)bc2 + b ≤ dcb2c clauses, of width at most c+ log b+ 1;

• Φb,c,d has a resolution refutation of size O(dcb2c) and width c+ log b+ 1;

• Any resolution refutation of Φb,c,d of width strictly below b/2 must have depth at least dc.

Corollary 2.11. There exists a family of unsatisfiable CNF formulas {Ψn}∞n=1 such that

• Ψn contains n variables;

• the width of Ψn is O(log n) and, moreover, Ψn has a resolution refutation of size poly(n) and
of width O(log n);

• any resolution refutation of Ψn of width at most n/40 log n has depth greater than
n2/400 log2 n.

Proof. Let b be the maximal power of two such that 5b log b ≤ n. Then n < 10b(log b+ 1). Hence,
b > n

20 logn .
Let us fix d = 2, c = 2 log b.
Consider Φb,c,d from Theorem 2.10. Φb,c,d contains exactly 5b log b variables. We define Ψn as

Φb,c,d with n− 5b log b fictive fresh variables. Precisely we take Ψn = Φb,c,d ∧ y1 ∧ y2 · · · ∧ yn−5b log b,
where variables yi have no occurrences in Φb,c,d.

It is easy to see that Ψn contains exactly n variables. The width of Ψn is 3 log b+1 = O(log n).
Any resolution refutation of Φb,c,d is also a refutation of Φn. Hence, Ψn has a resolution refutation
of size poly(n) and of width O(log n). Since Φb,c,d can be obtained form Ψn by substitution of all
yi to 1, we get that any resolution refutation of Ψn of width at most n/40 log n (which is less than
b/2) has depth at least dc = b2 > n2/400 log2 n.

3 Prover-Adversary and Prover-Delayer games

In this section, we define two games based on an unsatisfiable CNF formula φ. Let A be a set
of partial assignments for the variables of φ. We say that A is proper for φ if the following two
properties hold:

• A is closed under restrictions: for every ρ ∈ A for every σ ⊆ ρ, σ ∈ A.

• For every σ ∈ A, σ does not falsify any clause of φ.

(φ,A)-game of Prover and Adversary with starting position ρ0 ∈ A. In this game, two
players, Prover and Adversary, maintain a partial assignment ρ for variables of φ that initially
equals ρ0. On every move, Prover chooses a variable x, and Adversary earns a coin and chooses
a Boolean value a of x. The current assignment ρ is updated: ρ := ρ ∪ {x := a}. The game ends
when ρ /∈ A. The goal of Adversary is to earn as many coins as he can.

Let C(φ) denote the set of all partial assignments that do not falsify any clause of φ. It is
easy to see that C(φ) is proper and the maximal number of coins that Adversary can earn in the
(φ, C(φ)) with the empty starting position is precisely the resolution depth of φ. (See [Urq11] for
details.)
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Remark 3.1. In terms of Prover-Adversary games, one can also define the resolution width. Indeed,
Atserias and Dalmau [AD08] showed that the resolution width of φ is at least w if and only if there
exists a proper set of assignments A such that for every ρ0 ∈ A if |ρ0| < w, then in the (φ,A)-game
with starting position ρ0 Adversary has a strategy that guarantees him to earn at least |w| − |ρ0|
coins.

Alekseev and Itsykson defined the following games [AI25].

(φ,A)-game of Prover and Delayer with starting position ρ0 ∈ A. In this game, two
players, Prover and Delayer, maintain a partial assignment ρ for variables of φ that initially equals
ρ0. On every move, Prover chooses a variable x, and Delayer has two options:

• Delayer can earn a white coin and reports ∗. Then, Prover chooses a Boolean value a of x.

• Delayer can earn a white coin and pay a black coin to choose a Boolean value a of x by
himself.

The current assignment ρ is updated: ρ := ρ ∪ {x := a}. The game ends when ρ /∈ A.

Remark 3.2. It is easy to see that if, in the (φ, C(φ))-game starting from the empty position, there
exists a value t such that Delayer has a strategy ensuring that at some point he accumulates t more
white coins than the total number of spent black coins, then any tree-like resolution refutation of
φ must have size at least 2t. See [PI00] for details.

Delayer’s strategy is called linearly described [AI25] if there exists a map f that takes as input
an ordered set of variables L and a variable x, and returns either ∗ or an F2-affine function h
depending on the variables in L. The strategy is applied as follows: given a game history x1 =
a1, x2 = a2, . . . , xk = ak and a requested variable x, Delayer evaluates f((x1, x2, . . . , xk), x). If
f((x1, x2, . . . , xk), x) = ∗, then Delayer reports ∗. Otherwise, if f((x1, x2, . . . , xk), x) = h for some
affine function h, Delayer reports h(a1, a2, . . . , ak).

3.1 Lifting by parity

Let A be a proper set of partial assignments for a CNF formula φ(y1, y2, . . . , yn).
We denote by ⊕k the parity gadget {0, 1}k → {0, 1} that maps (a1, a2, . . . , ak) to a1+a2+ · · ·+

ak mod 2.
For every partial assignment ρ to the variables of the formula φ ◦ ⊕k we define the partial

assignment ρ̃ to the variables of φ as follows:

• ρ̃ is defined on yi, if and only if ρ is defined on all xi,1, xi,2, . . . , xi,k;

• ρ̃(yi) =
⊕k

j=1 ρ(xi,j).

Based on the formula φ ◦ ⊕k we define a set A⊕k that consists of partial assignments ρ to
variables of φ ◦ ⊕k such that ρ̃ ∈ A.

Proposition 3.3. If A is a proper set for φ, then A⊕k is a proper set for φ ◦ ⊕k.

Proof. Consider ρ ∈ A⊕k and let ρ′ ⊆ ρ. By the definition, ρ̃′ ⊆ ρ̃. Since ρ̃ ∈ A, then ρ̃′ ∈ A, then
ρ′ ∈ A⊕k .

Consider ρ ∈ A⊕k , every clause of φ ◦⊕k is a clause of C ◦⊕k, where C is a clause of φ. Since ρ̃
doesn’t falsify C, there is a variable yj of C such that ρ̃ is not defined on yj . Hence, there is i ∈ [k]
such that ρ is not defined on xj,i, hence ρ doesn’t falsify C ◦ ⊕k.
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Now we explore the simple idea of Urquhart [Urq11] that the strategy of Adversary can be lifted
to the strategy of Delayer if we lift the formula by the parity gadget. The following lemma extends
[AI25, Lemma 6.1].

Lemma 3.4. Assume that Adversary has a strategy in a Prover-Adversary game (φ,A) with start-
ing position ρ0 ∈ A that guarantees him to earn at least t coins. Consider a Prover-Delayer game
(φ ◦ ⊕k,A⊕k) with starting position σ0, where σ̃0 = ρ0. Then Delayer has a linearly described
strategy that guarantees him to earn at least k(t + |ρ0|) − |σ0| white coins while paying at most t
black coins.

Proof. We describe a strategy for Delayer in the Prover–Delayer game (φ◦⊕k,A⊕k), obtained from
the Adversary’s strategy in the Prover–Adversary game (φ,A). Let σ denote the current partial
assignment in the first game. We maintain the invariant that the corresponding partial assignment
in the second game is σ̃.

Initially, we set σ = σ0 and, thus, σ̃ = ρ0. Suppose the requested variable in the first game is
xj,i. If there exists an index i′ ∈ [k] \ {i} such that σ is undefined on xj,i′ , then Delayer responds
with ∗, and σ̃ remains unchanged.

Otherwise, if σ is defined on all xj,i′ for i
′ ∈ [k]\{i}, we simulate a Prover request for variable yj

in the second game. Let a ∈ {0, 1} be the Adversary’s response according to his strategy. Delayer
then responds with a⊕

⊕
i′∈[k]\{i} σ(xj,i′).

To show that this strategy is linearly described, it suffices to prove that the value of a is
uniquely determined by the Adversary’s strategy, the ordered list of queried variables, and the
initial assignment σ0.

Indeed, given the ordered list of queried variables in the first game and the initial assignment σ0,
we can compute both the initial assignment ρ0 in the second game and the corresponding sequence
of variable requests. Since the Adversary’s strategy deterministically specifies the response to each
query in the second game, we can compute all answers, in particular the last one, which is the value
of a.

While σ̃ ∈ A, we have σ ∈ A⊕k . Since the Adversary in the first game earns at least t white
coins, consider the first moment when |σ̃| = |ρ0|+ t. Each payment of a black coin corresponds to
an increment of σ̃ by one, so by this point Delayer has paid exactly t black coins. The number of
earned white coins is at least |σ| − |σ0| ≥ k|σ̃| − |σ0| = k(|ρ0|+ t)− |σ0|.

4 Bounded-depth width games

In this section, we present a combinatorial characterization — an analogue of the Atserias–Dalmau
games [AD08] — that captures when an unsatisfiable formula φ admits no resolution refutation of
both width at most w and depth at most h simultaneously. A different game characterization for the
same property, more closely related to depth-based games, has already appeared in the literature
[Ber12, FPR22, EI25]. In contrast, our characterization is more aligned with width-based games.

Let φ be a CNF formula. Let H be a set of pairs (ρ, i) of a partial assignment ρ and an integer
number i. We say that H is a (w, h)-winning strategy for φ if the following conditions hold:

• (ε, 0) ∈ H, where ε is an empty assignment.

• If (ρ, i) ∈ H, then |ρ| ≤ w, i ≤ h and ρ doesn’t falsify any clause of φ.
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• If (ρ, i) ∈ H and ρ′ ⊆ ρ, then (ρ′, i) ∈ H.

• If (ρ, i) ∈ H, |ρ| < w, i < h, and x ∈ Vars(φ) \Dom(ρ), then there exists a ∈ {0, 1} such that
(ρ ∪ {x := a}, i+ 1) ∈ H.

Theorem 4.1. Let w ≥ 0 and h ≥ 0 be some integers; and let φ be an unsatisfiable CNF formula
such that φ doesn’t have a resolution refutation of width at most w and simultaneously with depth
at most h. Then there exists a (w, h)-winning strategy for φ.

Proof. Proof by induction on h. The base case is h = 0. In this case, we can take H consisting of
the only element (ε, 0), where ε is an empty clause.

We only have to verify that the formula does not contain an empty clause; this is true since the
formula φ does not have refutation with depth zero and width zero.

Induction step. Let ϕ′ be a CNF formula containing all clauses that can be derived from ϕ in
at most one step with width at most w. It is easy to see that any resolution refutation of ϕ′ has
either width greater than w or depth greater than h− 1. We apply the induction hypothesis to ϕ′.
Let H′ be a (w, h− 1) winning strategy for ϕ′.

• For every (ρ, i) ∈ H′, ρ does not falsify clauses of φ′ and hence clauses of φ of width at most
w; |ρ| ≤ w, hence ρ does not falsify any clause of φ.

• Consider (ρ, h − 1) ∈ H′ such that |ρ| ≤ w − 1. Let x be a variable from Vars(φ) \ Dom(ρ).
We claim that either ρ ∪ {x := 0} or ρ ∪ {x := 1} does not falsify any clause of φ. Suppose
that ρ ∪ {x := 0} falsifies C0 and ρ ∪ {x := 0} falsifies C1, where C0 and C1 are clauses of φ.
Since |ρ ∪ {x := 0}| ≤ w, width of C0 and C1 are at most w. Since ρ doesn’t falsify neither
C0 nor C1, C0 = D0 ∨ x and C1 = D1 ∨ ¬x and ρ falsifies D0 and D1. Therefore ρ falsifies
D0 ∨D1. Note that |D0 ∨D1| ≤ |ρ| ≤ w and D0 ∨D1 is the result of resolution rule applied
to C0 and C1, hence, D0 ∨D1 is a clause of ϕ′. We get a contradiction since (ρ, h− 1) ∈ H′.

Let us define Γ to be the set of all pairs of the form (ρ ∪ {x := a}, h) such that (ρ, h − 1) ∈ H′,
|ρ| ≤ w − 1, and a ∈ {0, 1}, provided that ρ ∪ {x := a} does not falsify any clause of φ. Let Γ′ be
the set of all pairs (ρ′, h) such that there exists an assignment ρ with ρ′ ⊆ ρ and (ρ, h) ∈ Γ.

We define H := H′ ∪ Γ′. Let us verify that H is a (w, h)-winning strategy for φ.

• Consider a pair (ρ, i) ∈ H. If i < h − 1, then (ρ, i) ∈ H′, so |ρ| ≤ w and ρ does not falsify
any clause of φ. If i = h, then (ρ, h) ∈ Γ′, which implies that there exists an assignment σ
such that ρ ⊆ σ and (σ, h) ∈ Γ. Therefore, σ (and thus ρ) does not falsify any clause of φ,
and |ρ| ≤ |σ| ≤ w.

• Consider a pair (ρ, i) ∈ H and let ρ′ ⊆ ρ. If i < h−1, then (ρ, i) ∈ H′ and thus (ρ′, i) ∈ H′ ⊆ H.
If i = h, (ρ, i) ∈ Γ′, hence (ρ′, i) ∈ Γ′ ⊆ H.

• Consider a pair (ρ, i) ∈ H such that |ρ| < w and i < h, and let x ∈ Vars(φ) \ Dom(ρ). If
i < h−1, then (ρ, i) ∈ H′. By the properties of H′, there exists a ∈ 0, 1 such that ρ∪{x := a}
does not falsify any clause of φ′ (and hence none of φ), and (ρ ∪ {x := a}, i + 1) ∈ H′ ⊆ H.
If i = h− 1, then as noted above, there exists a ∈ 0, 1 such that ρ ∪ {x := a} does not falsify
any clause of φ. Thus, (ρ ∪ {x := a}, i+ 1) ∈ Γ ⊆ Γ′ ⊆ H.
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Proposition 4.2. Let H be a (w, h)-winning strategy for the formula φ. Consider a set B that
consists of all partial assignments ρ such that (ρ, i) ∈ H for some i. Then for every (ρ0, i0) ∈ H
in the Prover-Adversary game (φ,B) there is a strategy of Adversary with starting position ρ0 that
guarantees him to earn min{w − |ρ0|, h− i0} coins.

Proof. Let ρ denote the current partial assignment in the Prover-Adversary game (φ,B). Adversary
will maintain the number i such that (ρ, i) ∈ A. Initially ρ := ρ0 and i := i0. Let |ρ| < w and i < h
and x be the requested variable. Then there exists such a ∈ {0, 1} such that (ρ∪{x := a}, i+1) ∈ H,
hence ρ ∪ {x := a} ∈ B. The Adversary chooses any of such a and updates ρ := ρ ∪ {x := a} and
i := i + 1. After each step, the value min{w − |ρ|, h − i} decreases by one. And we can not make
the next step if min{w − |ρ|, h− i} = 0. Thus Adversary earns min{w − |ρ0|, h− i0} coins.

Definition 4.3. Consider a (φ,A)-game between Prover and Delayer, and let H be a strategy for
Delayer in this game. For any two assignments σ, σ′ ∈ A, we define the distance between them,
denoted ∆A,H(σ, σ′), as the minimal integer K such that there exists a sequence of assignments
σ0 = σ, σ1, . . . , σn = σ′ ∈ A satisfying the following conditions:

• For every i ∈ [n], either σi+1 is obtained from σi by one step of Delayer’s strategy H, or
σi+1 ⊆ σi;

• The total number of steps of the first type (i.e., applications of H) is exactly K.

If no such sequence exists, we define ∆A,H(σ, σ′) = ∞.

Proposition 4.4. Let H be a (w, h)-winning strategy for a formula φ. Define B as the set of all
partial assignments ρ such that (ρ, i) ∈ H for some i. Now consider a strategy H for Delayer in
the game (φ ◦ ⊕k,B⊕k), obtained via Lemma 3.4 from the Adversary’s strategy in the (φ,B)-game
constructed in Proposition 4.2.

1. Let (ρ0, j) ∈ H, consider σ0 ∈ B⊕k such that σ̃0 = ρ0. Let σ ∈ B⊕k such that ∆B⊕k ,H(σ0, σ) <
∞. Then (σ̃, j′) ∈ H for some j′ ≤ j +∆B⊕k ,H(σ0, σ).

2. Let σ ∈ B⊕k such that ∆B⊕k ,H(ϵ, σ) ≤ h − w, where ϵ is an empty assignment. Then, the
strategy H with starting position σ guarantees that Delayer earns at least kw−|σ| white coins
while paying at most w black coins.

Proof. 1. Let us denote K = ∆B⊕k ,H(σ0, σ). There are exist σ1, σ2, . . . , σm = σ such that for
every i ∈ [m] either σi ⊆ σi−1 or σi can be obtained from σi−1 by one step according the
strategy H. Let us define the sequence j0, j1, . . . , jm as follows: j0 = j, for every i ∈ [m]: if
σi ⊆ σi−1, then ji = ji−1; if σi is obtained from σi−1 by one step according the strategy H,
then if σ̃i = σ̃i−1, then ji = ji−1 and if σ̃i ̸= σ̃i−1, then ji = ji−1 +1. Taking into account the
definition of the game (φ◦⊕k,B⊕k) and the construction of the strategy H, it is easy to verify
that (σ̃i, ji) ∈ H for all i ∈ [m]. In particular, this implies that (σ̃, jm) ∈ H. Observe that
ji > ji−1 only when si is obtained from si−1 by a single step of the strategy H. Therefore,
jm ≤ j +K.

2. By the previous item, there exists j′ ≤ h − w such that (σ̃, j′) ∈ H. Proposition 4.2 gives
a strategy of Adversary in the Prover-Adversary game (φ,B) with starting position σ̃ that
guarantees him to earn w−|σ̃| coins. Then by Lemma 3.4 the strategyH in the Prover-Delayer
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game with starting position σ guarantees Delayer to earn at least k(w−|σ̃|+|σ̃|)−|σ| = kw−|σ|
white coins while paying at most w black coins.

5 Random-walk theorem

In this section, we present the main tool developed by Itsykson and Alekseev [AI25] for proving
size-depth tradeoffs in Res(⊕).

Let Π be a Res(⊕) refutation, C0 be a linear clause from Π, Σ be a set of full assignments
that falsify C0, and t ∈ N be a natural number. A (Π, C0,Σ, t)-random walk is defined as follows:
sample an assignment σ uniformly at random from Σ, and perform a walk of weighted length t on
the refutation graph of Π, starting at the node labeled by C0. At each step, the walk proceeds from
a linear clause to a premise falsified by σ. There are two cases: if the step uses the weakening rule,
there is a single premise and the step has weight zero; if it uses the resolution rule, there are two
premises and the step has weight one. The walk terminates either upon reaching a clause from the
initial formula or when the total weight accumulated over all steps reaches t. If the walk terminates
at a node labeled with a linear clause C, then C is the value of the random variable defined by the
walk.

Theorem 5.1 (Theorem 4.3 from [AI25]). Let φ be an unsatisfiable CNF formula and g : {0, 1}ℓ →
{0, 1} be a 2-stifling gadget. Consider a Res(⊕) refutation Π of φ ◦ g and a linear clause C0 from
Π. Let τ be a solution of ¬C0 and let ρ0 be the restriction of τ̂ to Cl(L(C0)). Let Σ be the set of
all full assigmnets π such that π satisfies ¬C0 and π̂ extends ρ0. Let t be integer number such that
t ≤ w− | C̃l(L(C0))|+ |ρ0|. Let a linear clause C denote the result of the (Π, C0,Σ, t)-random walk
defined by a random variable σ distributed uniformly on Σ.

Let A be a proper set of partial assignments for Vars(φ). Assume that in the (φ,A)-game with
starting position ρ0 ∈ A, Delayer has a linearly described strategy H that guarantees him to earn w
white coins while paying at most c black coins. Then σ̂|Cl(L(C)) ∈ A and ∆A,H(ρ0, σ̂|Cl(L(C))) ≤ w

with probability at least 2−c(ℓ−1).

Theorem 5.1 is a slightly modified version of [AI25, Theorem 4.3], with two minor adjustments to
the statement that do not affect the validity of the original proof. The first modification, introduced
in [EI25], concerns the inequality for t, namely the bound t ≤ w− | C̃l(L(C0))|+ |ρ0| was originally
stated in a stronger form as t ≤ w−rk(¬C0)+ |ρ0|. We refer the reader to [EI25] for an explanation
of why the proof remains valid under the weaker bound.

Here, we focus on the second modification: namely, we additionally assert that
∆A,H(ρ0, σ̂|Cl(L(C))) ≤ w.

First, observe that in the “lucky” execution of the random walk — that is, when σ̂|Cl(L(C)) ∈
A — Lemma 2.9 implies that C is not a clause of φ◦g. Hence, the random walk successfully makes
t steps (i.e., it does not terminate prematurely at a leaf). Let us denote the sequence of visited
linear clauses by C0, C1, . . . , Cm = C. There exist indices 0 ≤ i1 < i2 < · · · < it ≤ m such that:

• For every i ∈ {i1, i2, . . . , it}, the clause Ci is obtained from Ci+1 and another premise by
applying the resolution rule over the linear form fi.

• For every i ∈ {0, 1, . . . ,m − 1} \ {i1, i2, . . . , it}, the clause Ci is obtained from Ci+1 by the
weakening rule.
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By the definitions of the resolution and weakening rules, it follows that L(C) ⊆
⟨L(C0), f1, f2, . . . , ft⟩. Hence, by Lemma 2.4, we have

Cl(L(C)) ⊆ Cl (L(C0) ∪ {f1, f2, . . . , ft}) .

The proof of [AI25, Theorem 4.3] shows that, with probability at least 2−c(ℓ−1), the restriction of
σ̂ to Cl(L(C0)∪{f1, f2, . . . , ft}) is consistent with the strategy H in the game (φ,A) starting from
position ρ0. This means that there exists some sequence of moves by Prover for which Delayer’s
strategy H reaches the assignment σ̂|Cl(L(C0)∪{f1,f2,...,ft}). Since A is closed under restrictions, it
follows that σ̂|Cl(L(C)) ∈ A. The number of moves in the game does not exceed

|Cl (L(C0) ∪ {f1, f2, . . . , ft}) |
(Lem. 2.6)

≤ | C̃l (L(C0) ∪ {f1, f2, . . . , ft}) |
(Lem. 2.7)

≤ | C̃l(L(C0))|+ t ≤ w.

Hence, ∆A,H(ρ0, σ̂|Cl(L(C))) ≤ w by the definition of the distance ∆.

6 Size vs depth tradeoff

Theorem 6.1. Let ψ be an unsatisfiable CNF formula such that ψ does not have a resolution
refutation with width at most w and simultaneously depth at most h. Assume that there is a
natural number s ≥ 2 such that h ≥ s2w − w. Let φ := ψ ◦ ⊕s.

Let g : {0, 1}ℓ → {0, 1} be a 2-stifling gadget. Then any Res(⊕) refutation of φ ◦ g has either

size at least 2w or depth at least s2w
4ℓ .

Proof. By Theorem 4.1 for the formula ψ there is a (w, h)-winning strategy H. Let B be the set of
all partial assignments ρ such that (ρ, i) ∈ H for some i. By Proposition 4.2, for every (ρ, i) ∈ H
in Prover-Adversary game (ψ,B) there is a strategy of Adversary with starting position ρ that
guarantees him to earn min{w − |ρ|, h− i} coins.

We define A = B⊕k and consider a linearly described strategy H for Delayer in the Prover-
Delayer game (φ,A) that exists by Lemma 3.4.

Let us denote t := ws. By Proposition 4.4, for every ρ0 ∈ A such that ∆A,H(ϵ, σ) ≤ h− w, in
the game with starting position ρ0 the strategy H guaranties Delayer to earn at least t− |ρ0| white
coins while paying at most w black coins.

In what follows, we use our lifting notations assuming that variables of φ are unlifted and
variables of φ ◦ g are lifted.

Let C be a linear clause over lifted variables (i.e., variables of the formula φ ◦ g), and let ρ ∈ A
be a partial assignment over the original (unlifted) variables. We say that C corresponds to ρ if
there exists an assignment τ satisfying ¬C such that the restriction of τ̂ onto Cl(L(C)) coincides
with ρ, that is, τ̂ |Cl(L(C)) = ρ. We denote this relation by C ∼ ρ. For convenience, we also define a

measure µ of a clause C as µ(C) :=
∣∣∣C̃l(L(C))∣∣∣.

Consider a Res(⊕) refutation of φ ◦ g and denote it by Π.

Claim 6.2. Assume that Π contains a linear clause C0 such that

• µ(C0) ≤ r, where r < t;

• there exists ρ0 ∈ A such that C0 ∼ ρ0 and ∆A,H(ϵ, ρ0) ≤ h− w.

16



Let St−r(C0) denote the set of all linear clauses C from Π such that

• there is a path from C0 to C of weighted length t− r in the graph of Π (computing length, we
compute weakening rules with weight zero and resolution rules with weight one);

• there exists ρ ∈ A such that C ∼ ρ and ∆A,H(ρ0, ρ) ≤ t− r.

Assume that for every C ∈ St−r(C0), µ(C) ≥ r + wℓ. Then, the size of the refutation Π is at
least 2w.

Proof. Notice that |ρ0| = |Cl(L(C0))|
(Lemma 2.6)

≤ | C̃l(L(C0))| = µ(C0) ≤ r.
Let Σ be the set of all assignments π such that π satisfies ¬C0 and π̂|Cl(L(C0)) = ρ0. Since

C0 ∼ ρ0, Σ ̸= ∅.
Let a linear clause C denote the result of the (Π, C0,Σ, t−r)-random walk defined by a random

variable σ distributed uniformly on Σ. Notice that t − r ≤ (t − |ρ0|) + |ρ0| − | C̃l(L(C0))|. Let
ρ = σ̂|Cl(L(C)). By Theorem 5.1, with probability at least 2−(ℓ−1)w, ρ ∈ A, C ∼ ρ and ∆A,H(ρ0, ρ) ≤
(t− r). By Lemma 2.9, C is not a clause of ϕ ◦ g, hence, the length of the path between C0 and C
is exactly t− r, hence C ∈ St−r(C0). Thus, µ(C) ≥ r + wℓ.

Consider some linear clauseD such that µ(D) ≥ r+wℓ. By Lemma 2.8, Prσ∈Σ[σ satisfies ¬D] ≤
2| C̃l(L(C0))|−| C̃l(L(D))| = 2µ(C0)−µ(D) ≤ 2−wℓ.

Hence, the refutation Π contains at least 2−(ℓ−1)w

2−ℓw = 2w clauses D with µ(D) ≥ r + wℓ.

Assume that the size of Π is less than 2w. Our goal is to show that under this assumption, the
depth of Π is at least ws2

4ℓ .
Let D0 denote the empty clause from Π. D0 ∼ ρ0, where ρ0 equals the empty assignment ϵ and,

thus, ρ0 ∈ A. Since |Π| < 2w, by Claim 6.2, there is a clause D1 in Π such that there is a path from
D0 to D1 of length t and µ(D1) ≤ wℓ and there is ρ1 ∈ A such that D1 ∼ ρ1 and ∆A,H(ϵ, ρ1) ≤ t.

Let k := ⌊ t
2wℓ⌋, then wℓk ≤ t/2. We repeat the same reasoning k−1 more times for all i from 1

to k − 1, maintaining invariant µ(Di)| ≤ wℓi. Since |Π| < 2w, by Claim 6.2 there is a linear clause
Di+1 in Π such that there is a path from Di to Di+1 of length t−wℓi and there is ρi ∈ A such that
Di ∼ ρi and ∆A,H(ρi, ρi+1) ≤ t and µ(Di+1)| ≤ wℓ(i+ 1). Note that for all i ∈ [k − 1], by triangle

inequalities, ∆(ϵ, ρi) ≤ kt ≤ t2

2wℓ = ws2

2ℓ ≤ h − w; the last inequality holds since by the conditions

of the theorem s ≥ 2 and h ≥ w(s2 − 1) ≥ w( s
2

2ℓ + 1) = ws2

2ℓ + w. So the distance conditions in
applications of Claim 6.2 are satisfied.

So under the assumption |Π| < 2w we get that the depth of Π is at least the length of the path

from D0 to D1, from D1 to D2, etc, from Dk−1 to Dk which is at least kt/2 ≥ ws2

4ℓ .

We now examine two specific cases of Theorem 6.1.

Theorem 6.3. For every natural K ≥ 2 and n ≥ 2 such that K ≤
√

n
10 log3 n

there is a CNF

formula φn,K that contains 5Kn⌊log n⌋ variables, the formula φn,K is in O(K log2 n)-CNF and
of size nO(K logn). The formula φn,K has resolution refutation of size nO(K logn) and of width
O(K log2 n) but every its Res(⊕) refutation has either size at least 2⌊n/40 logn⌋ or depth at least
Ω(K2n log n).

Proof. Let Ψn be a formula from Corollary 2.11.
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Let us define φn,K := Ψn ◦ ⊕K⌊logn⌋ ◦Maj5. Then φn,K that contains 5Kn⌊log n⌋ variables, of

the formula φn,K is in O(K log2 n)-CNF and of size nO(K logn). By Lemma 2.2, the formula φn,K

has resolution refutation of size nO(K logn) and of width O(K log2 n).
Let w = ⌊n/40 log n⌋ and h = ⌊n2/400 log2 n⌋. The formula Ψn does not have resolution

refutations of width at most w and of depth at most h. Let s = K⌊log n⌋. It is easy to see that
s ≥ 2.

If w < 1, then the conclusion of the theorem is trivial. Assume that w ≥ 1. Notice that
h + w ≥ h + 1 ≥ n2

400 log2 n
= n

10 log3 n
n

40 logn · log2 n ≥ K2 log2 nw ≥ ws2, by Theorem 6.1, any

Res(⊕) refutation of φn,K has either size at least 2w = 2⌊n/40 logn⌋ or has depth at least w2s
20 =

Ω(K2n log n).

Corollary 6.4. For every δ > 0, Depth- n4/3

log4/3+δ n
Res(⊕) does not p-simulate resolution.

Proof. Consider K =

⌊√
n

10 log3 n

⌋
and the formula φn,K from Theorem 6.3. φn,K contains m =

Θ
(

n3/2

log1/2 n

)
variables and has resolution refutation of size at most nO(

√
n/ logn) and the size of φn,K

is also nO(
√

n/ logn) . There is a constant c such that every Res(⊕) refutation of φn,K of depth at
most cn2/ log2 n has size at least 2Ω(n/ logn).

Notice that for n large enough, m4/3

log4/3+δ m
= Θ

(
n2

log2+δ n

)
< cn2/ log2 n. Thus, for n large

enough every Res(⊕) refutation of φn,K of depth at most m4/3

log4/3+δ m
has size at least 2Ω(n/ logn).

And 2Ω(n/ logn) can not be bounded by a polynomial in n
O
(√

n/ logn
)
.

Theorem 6.5. Let ψn be a family of unsatisfiable O(1)-CNF formulas such that ψn has n variables
and the resolution width of ψn is w(n). For every natural K ≥ 2 consider a formula Ψn,K :=
ψn ◦ ⊕K ◦Maj5; it has 5nK variables, Ψn,K is an O(K)-CNF formula of size at most poly(n)2K

and any Res(⊕) refutations of Ψn has either depth at least Ω(w(n)K2) or size at least 2Ω(w(n)).

Proof. Let w(n) be the resolution width of ψn, take s = K. Let h = w(n)s2. There are no resolution
refutations of ψn of width at most w(n) − 1 and depth h. Maj5 is a 2-stifling gadget. Then by
Theorem 6.1, any Res(⊕) refutation of Ψn has either size at least 2w(n)−1 = 2Ω(n) or depth at least
ws2

4ℓ = Ω(nK2).

7 Open questions

Two main avenues for improving our results are:

1. Construct a polynomial-sized CNF formula that admits a polynomial-sized resolution refuta-
tion, yet any Res(⊕) refutation of it must have either superlinear depth or exponential size.
One approach to achieving this is by strengthening the supercritical tradeoff between width
and depth in resolution. Specifically, it suffices to construct an O(1)-CNF formula with n
variables that has a resolution refutation of constant width, but for which any resolution
refutation must have either superlinear depth or width Ω(n).

2. Establish a truly supercritical tradeoff between size and depth for Res(⊕), in which the depth
is superlinear with respect to the size of the formula.
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Mathematical Foundations of Computer Science 2014 - 39th International Symposium,
MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II, volume
8635 of Lecture Notes in Computer Science, pages 372–383. Springer, 2014.

[IS20] Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two.
Ann. Pure Appl. Log., 171(1), 2020.
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