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Abstract
The Forrelation problem is a central problem that demonstrates an exponential separation

between quantum and classical capabilities. In this problem, given query access to n-bit Boolean
functions f and g, the goal is to estimate the Forrelation function forr(f, g), which measures the
correlation between g and the Fourier transform of f .

In this work we provide a new linear algebraic perspective on the Forrelation problem, as
opposed to prior analytic approaches. We establish a connection between the Forrelation prob-
lem and bent Boolean functions and through this connection, analyze an extremal version of the
Forrelation problem where the goal is to distinguish between extremal instances of Forrelation,
namely (f, g) with forr(f, g) = 1 and forr(f, g) = −1.

We show that this problem can be solved with one quantum query and success probability
one, yet requires Ω̃

(
2n/4

)
classical randomized queries, even for algorithms with a one-third

failure probability, highlighting the remarkable power of one exact quantum query. We also
study a restricted variant of this problem where the inputs f, g are computable by small classical
circuits and show classical hardness under cryptographic assumptions.

1 Introduction

Understanding the relative power of quantum versus classical computation is one of the major
goals in complexity theory. Following the seminal work of Shor [Sho97], it is widely believed that
quantum computation is exponentially more powerful than classical computation; however, since
we are unable to prove classical lower bounds for strong models of computation, there are relatively
few settings in which such a separation can be unconditionally established. Query complexity is
an important example of such a setting where we can unconditionally prove exponential quantum
speedups.

In query complexity, we typically consider a Boolean function f : {0, 1}n → {±1} and the
objective is to compute some property of f by querying the values f(x) on as few inputs x ∈ {0, 1}n
as possible. In the classical setting, the algorithm can adaptively and probabilistically choose inputs
to query, and the goal is to solve the problem with high success probability, say at least 2/3. In
the quantum setting, the standard way to model a quantum query is by means of the unitary
operator Of which maps |x〉 to |x〉 f(x) for all x ∈ {0, 1}n and as before, the goal is to compute
some property of f with high success probability, while minimizing the number of calls to the
unitary Of . Numerous works [DJ92, Sim97, BV97, Aar10] have demonstrated properties of f that
are exponentially easier to compute with quantum queries as opposed to classical queries. For
instance, a version of periodicity testing [Cle04] can be solved with poly(n) quantum queries, while
requiring 2Ω(n) classical randomized queries; this algorithm is a key subroutine in Shor’s factoring
algorithm [Sho97], and the classical query lower bound helps explain some of the difficulty in finding
efficient classical algorithms for factoring.
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Understanding the strongest possible separation between quantum and classical computation
has long been a topic of great interest. The overarching motivation here is to find a problem that is
as easy as possible for quantum algorithms and as hard as possible for classical algorithms. In this
context, a new problem called the Forrelation problem has emerged as a central concept.

In the Forrelation problem, given query access to Boolean functions f, g, the goal is to estimate
the value of the Forrelation function forr(f, g) ∈ [−1, 1], which captures the correlation between g
and f̂ , the Fourier transform of f . The Forrelation function has been used to establish numerous
results about the power of quantum computation. The first such result is due to Aaronson [Aar10],
who showed that the Forrelation problem can be solved with high probability using just one quan-
tum query, yet randomized algorithms require 2Ω(n) queries. This was quantitatively strengthened
by [AA15] who defined variants of the Forrelation problem that are now known to demonstrate the
largest possible separation between quantum and randomized query complexity for partial func-
tions [AA15, Tal20, SSW23, BS21, BGGS22]. The Forrelation problem has since been used to
prove many other results, including the celebrated oracle separation of BQP and PH [RT22]. Vari-
ants of this problem have been used to prove quantum lower bounds, such as a construction of a
classical oracle relative to which P = NP but BQP 6= QCMA [AIK22], as well as the existence
of various quantum cryptography primitives [KQST23, KQT25], separations between adaptive and
non-adaptive quantum algorithms [GSTW24], and various separations between quantum and clas-
sical communication complexity [GRT22, GRZ21, AG23].

However, all these works share one common limitation – they only establish classical hardness
for estimating the Forrelation function up to a constant less than one. The best-known result
in this context is due to Aaronson and Ambainis [AA15], who show that distinguishing between
forr(f, g) ≥ 2/π and forr(f, g) ≤ −2/π requires 2Ω(n) classical randomized queries. The factor of
2/π arises from their analytic approach, which involves sampling Gaussian random variables and
rounding them to {±1}. All existing techniques use this framework and run into the same 2/π
barrier. This naturally leads us to ask: just how hard is it to approximate the Forrelation function
in the extremal case? In particular, Aaronson and Ambainis [AA15] ask the following question (see
open question #4 in the discussion section of their paper): if we want a 1 versus 2Ω(n) separation
between quantum and classical query complexity, how small can the error of the quantum algorithm
be? More precisely, we ask:

How hard is it to distinguish forr(f, g) = 1 from forr(f, g) = −1?

These two extreme cases capture the largest and smallest possible values of the Forrelation function,
and hence this question captures the hardness of approximating Forrelation to any non-trivial factor.

To study this problem, we introduce a fundamentally new way of looking at the Forrelation
problem. In contrast to previous analytic approaches, which rely on rounding high-dimensional
Gaussian distributions, our approach uses only simple linear algebra over Fn2 and elementary prob-
abilistic arguments. We establish a novel connection between the Forrelation problem and bent
functions, a well-studied concept in the analysis of Boolean functions. Using this connection, we
show that despite the strong promise on the inputs, the extremal Forrelation problem is classically
hard. Our main theorem establishes a bounded-error randomized lower bound of 2Ω(n) for this
problem. In contrast, there is a simple quantum algorithm [Aar10] that solves this problem with
one quantum query and success probability one.

In the following section, we formally define the Forrelation problem, describe the history of the
problem, and state our main results.
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Figure 1: Quantum circuit for the Forrelation problem for n = 5. Here, |+〉 = 1√
2
(|0〉 + |1〉) and

Of,g is the oracle mapping basis states |0〉 |x〉 to |0〉 |x〉 f(x) and |1〉 |x〉 to |1〉 |x〉 g(x).

1.1 Forrelation Problem

To describe the Forrelation problem, we first need to introduce the concept of the Fourier
transform and the Forrelation function. The Boolean Fourier transform, also known as the Walsh-
Hadamard transform, is a central concept in Boolean function analysis which has applications
to learning theory, social choice theory, circuit complexity, property testing, and quantum versus
classical separations. It is defined as follows.

Definition 1.1 (Fourier Transform). For f : Fn2 → R, define f̂ : Fn2 → R by

f̂(y) :=
1

2n

∑
x∈Fn2

f(x)(−1)〈x,y〉 for all y ∈ Fn2 .

We now define the Forrelation function, which has close connections with the Fourier transform
of Boolean functions. The input to this function consists of the truth tables of two Boolean functions
f and g and the output is the correlation between g and the Fourier transform of f .

Definition 1.2 (Forrelation Function). The function forr is defined as follows. For Boolean func-
tions f, g : Fn2 → {±1}, define

forr(f, g) :=
1

2n/2

∑
y∈Fn2

f̂(y)g(y) (1)

=
1

23n/2

∑
x,y∈Fn2

f(x)g(y)(−1)〈x,y〉.

It is not too difficult to see that for any pair of Boolean functions (f, g), the value of forr(f, g)
is between −1 and 1. Indeed, applying Cauchy-Schwarz on Equation (1) implies that |forr(f, g)| ≤
2−n/2

√∑
y f̂(y)2

√∑
y g(y)2. Since f and g are ±1-valued functions, Parseval’s theorem implies

that
∑

y f̂(y)2 = Ex[f(x)2] = Ey[g(y)2] = 1 and it follows that |forr(f, g)| ≤ 1.
The Forrelation function is also interesting from the perspective of quantum algorithms as it

can be interpreted as the bias of a certain one-query quantum algorithm. More precisely, Aaron-
son [Aar10] gave a simple quantum query algorithm that makes one call to Of,g and returns 1 with
probability precisely 1

2 + forr(f,g)
2 (see Figure 1 for an illustration of the algorithm.) The intuition

for this quantum algorithm comes from the ability of quantum circuits to implement the Fourier
transform. We can view the Fourier transform as a unitary map that transforms the truth table of
f into that of f̂ (up to a normalization factor of 2n/2). Additionally, this unitary map turns out to
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be a Hadamard matrix, i.e., a tensor product of n Hadamard gates. In contrast, it seems difficult to
estimate the Forrelation of f and g using only classical queries to the truth tables of f and g. This
motivates the definition of the Forrelation problem, where the goal is to estimate the Forrelation
function up to a small additive error.

Definition 1.3 (Forrelation Problem). Fix a parameter 0 ≤ ε ≤ 1. Given query access to the
truth tables of Boolean functions f, g : Fn2 → {±1} that are promised to satisfy either

• yes case: forr(f, g) ≥ ε, or

• no case: forr(f, g) ≤ −ε,

distinguish between the two cases.1

As mentioned before, there is a simple quantum algorithm that solves the Forrelation problem
with one query, and the success probability of the algorithm is precisely 1

2 + ε
2 where ε is the

underlying parameter. In particular, when ε = 1, the algorithm makes no error.

Limitations of Prior Works on Forrelation. Numerous works have established classical hard-
ness of the Forrelation problem for ε bounded away from 1 [Aar10, AA15, RT22, BS21]. We will
describe these results in more detail in Figure 2, but all these works share a common limitation,
which is that they only establish hardness for estimating the Forrelation up to a global constant less
than one. The best-known constant is due to Aaronson and Ambainis [AA15], who showed that the
Forrelation problem with ε = 2/π − o(1) requires 2Ω(n) randomized queries.

1.2 Our Results

We consider the Forrelation problem with ε = 1, and call this the Extremal Forrelation
Problem. Here, we are given query access to Boolean functions f, g : {0, 1}n → {±1} that are
promised to satisfy |forr(f, g)| = 1, and we wish to tell whether forr(f, g) = 1 or forr(f, g) =
−1. As mentioned before, the quantum algorithm for this problem follows immediately from the
works of [Aar10, AA15]. When this algorithm is run on inputs to the Extremal Forrelation
Problem it makes one query and solves the problem with success probability one. Our main
theorem is that the classical randomized bounded-error query complexity of this problem is 2Ω(n).

Theorem 1.4. The Extremal Forrelation Problem, which is solvable with one quantum
query and success probability one, requires Ω̃(2n/4) queries for any classical randomized query algo-
rithm that succeeds with at least 2/3 probability.

We also analyze a variant of this problem where the oracles f, g are efficiently computable.

Corollary 1.5. Suppose one-way functions exist against classical poly(n)-time algorithms. Then,
there is no poly(n)-time randomized algorithm that solves the Extremal Forrelation Prob-
lem with probability at least 2/3, even if the oracles f, g are computable by poly(n)-sized classical
circuits.

We remark that the above result is proved in the black-box setting where the algorithm can only
query the truth tables of f, g. We do not know if these results apply in the white-box setting where
the algorithm is given an explicit description of a small circuit computing f, g.

1In prior works, the goal of the Forrelation problem is usually to distinguish forr(f, g) ≥ ε from forr(f, g) ≤ ε/2.
Nevertheless, existing lower bounds also work for our variant of the problem; the proofs can be modified to produce two
distributions supported on forr(f, g) ≥ ε and forr(f, g) ≤ −ε, respectively, such that they are each indistinguishable
from the uniform distribution over (f, g) for classical algorithms of small cost.
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Forrelation
Problem Classical Model Classical Lower Bound

[Aar10] ε = 0.05 Randomized decision tree Ω̃(2n/4) queries (depth)
[AA15] ε = 2/π Randomized decision tree Ω̃(2n/2) queries
[RT22] ε = Θ(1/n) Randomized AC0 circuits exp

(
2Ω(n/d)

)
size

[BS21] ε = 1/210 Randomized AC0 circuits exp
(
2Ω(n/d)

)
size

[This work] ε = 1 Randomized decision tree Ω̃(2n/4) queries

Figure 2: Lower Bounds for the Forrelation Problem

We now mention a few consequences of our results.

Lower Bounds for the Forrelation Problem. Numerous works have studied lower bounds
for the Forrelation problem. See Figure 2 for a summary. The first classical lower bound for the
Forrelation problem was established by Aaronson [Aar10], who showed a Ω̃(2n/4) lower bound when
ε = 0.05. This was improved to a Ω̃(2n/2) lower bound for ε = 2/π − o(1) by Aaronson and
Ambainis [AA15]. In their breakthrough result, Raz and Tal [RT22] proved lower bounds when
ε = Θ(1/n). Although this choice of ε is smaller than in the previously mentioned works, the true
strength of [RT22] lies in their classical lower bound which holds against a much more powerful
model than classical query algorithms. Bansal and Sinha [BS21] strengthened this result by proving
it in the regime of ε = Θ(1). It is worth emphasizing that a crucial aspect of this work – and a key
reason they were able to resolve the conjecture of Aaronson and Ambainis on maximal separations
– was their focus on lower bounds in the regime of ε = Θ(1) as opposed to ε = Θ(1/n). All of
this underscores the difficulty and importance of proving lower bounds for the Forrelation problem,
particularly as ε increases. In particular, as mentioned earlier, [AA15] have asked the following
question (open question #4): how large ε can be for the Forrelation problem while remaining
classical hard with 2Ω(n) queries? Our main theorem shows that even when ε is as large as can be
(i.e., one), the Forrelation problem requires 2Ω(n) classical queries.

Efficient Oracle Separation. In [AC17], Aaronson and Chen ask, what happens if we consider
quantum algorithms that can access an oracle, but we impose a constraint that the oracle has to
be “physically realistic”? The motivation is to design a quantum advantage experiment by studying
query complexity separations where the input oracles are implementable by small classical circuits.
Motivated by this, we ask

How hard is it to estimate forr(f, g) when f, g are computable by poly(n)-sized circuits?

As an easy corollary of our main result (Corollary 1.5), we show that if (classically secure) one-way
functions exist, then there is no classical poly(n)-time algorithm for the Forrelation problem, even
if f, g are computable by polynomial-sized circuits. As mentioned before, our result is a query
complexity lower bound that holds in the black-box setting where the algorithm can only query the
truth tables of f, g and does not have an explicit description of the circuits computing f, g.

Power of Exact Quantum Computation. Exact algorithms are algorithms that make no er-
ror, that is, they succeed with probability one. The power of exact quantum algorithms has been
studied extensively in the past; see Figure 3 for a summary. Numerous works have tried to un-
derstand the best possible separations between exact quantum and classical algorithms for total
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Exact Quantum Classical Lower Bound

Queries Queries Success
Probability

Deutsch-Jozsa [DJ92] 1 2Ω(n) 1
O(1) 2/3

Simon’s Problem [Sim97,
BH97] O(n) (adaptive) 2Ω(n) 2/3

Welded Tree [CCD+03,
LLL23] O(n2.5) (adaptive) 2Ω(n) 2/3

Order Finding (QFT)
[MZ04, Cle04]

O(n) (parallel),
can be made 1

2Ω(n) 2/3

Hidden Linear Structure
(QFT) [dBCW01]

O(n) (parallel),
can be made 1

2Ω(n) 2/3

Extremal Forrela-
tion Problem [this
work]

1 2Ω(n) 2/3

Figure 3: Speedups with Exact Quantum Computation

functions [Amb12, ABB+17, BCdWZ99]. For partial functions, one of the earliest results is due to
Deutsch–Jozsa [DJ92], who showed that distinguishing between the constant function and a bal-
anced function can be solved by an exact quantum algorithm with one query, but any zero-error
randomized algorithm requires 2Ω(n) queries. However, the randomized query complexity drops
to O(1) if the algorithm is allowed to err with small probability. The first exponential speedup
over bounded-error randomized algorithms is demonstrated by Simon’s problem [Sim97], which can
be solved exactly [BH97] with O(n) quantum queries, but requires 2Ω(n) classical queries in the
bounded-error model. Since then, there have been other problems showing a similar separation
using Discrete Fourier transforms, with the additional advantage that all the queries can be made
in parallel [Cle04, MZ04, dBCW01]. While many of these works describe their quantum algorithms
as making one query, in their models one can retrieve the truth table values at n different points
with just one query; this corresponds to making O(n) parallel queries in the standard model. In
particular, they consider query access of the form |x〉 → |f(x)〉 where f has n-bit outputs, whereas
the standard model only allows single-bit outputs. At first glance, it appears that such quantum
algorithms need to make Ω(n) queries. However, using this, one can obtain a new Boolean function
on 2n-bit inputs with an exact one-query quantum algorithm such that every randomized algorithm
requires 2Ω(n) queries 2. The idea here is to replace f(x) by the Hadamard encoding of f(x) and to
use the Bernstein-Vazirani algorithm. Our main result (Theorem 1.4) achieves a similar separation,
arguably for a simpler function and a simpler quantum protocol.

1.3 Outlook & Future Directions

We now highlight a number of open questions inspired by our work.

Optimal Separations. The bounded-error randomized query complexity of Extremal Forre-
lation Problem remains to be understood. The results of [AA15, BGGS22] implies a Õ(2n/2)

2We thank the anonymous reviewer for TQC 2025 pointing this out.
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upper bound, while we prove an Ω̃(2n/4) lower bound in Theorem 1.4. We conjecture that our lower
bound can be improved to Ω̃(2n/2), matching the upper bound from [AA15, BGGS22]. This would
recover the separation from [AA15], with the additional advantage that the quantum algorithm
succeeds with probability one.

Conjecture 1.6. The bounded-error randomized complexity of the Extremal Forrelation Prob-
lem is Ω̃(2n/2).

More broadly, one can ask about optimal separations between quantum and classical query
complexity. This question was studied by [AA15], who introduced a variant of Forrelation called
k-Forrelation whose quantum query complexity is dk/2e and conjectured that its randomized query
complexity is Ω̃(2n·(1−1/k)). When k = 2, this problem is identical to the Forrelation problem
as in Definition 1.3. They further conjectured that this is the best possible separation between
bounded-error quantum and randomized query complexity. There have been a number of works
on this topic [BGGS22, Tal20], culminating in the works of [SSW23] and [BS21] that proved this
conjecture. One can ask if a similar separation can be achieved by exact quantum algorithms. We
conjecture that this can indeed be achieved.

Conjecture 1.7. For k > 2, the bounded-error randomized complexity of the extremal version of
the k-Forrelation problem is Ω̃(2n(1−1/k)).

Resolving this conjecture would shed light on the best possible separations between exact quan-
tum and bounded-error randomized query complexity for partial functions.

Forrelation of Low-Degree Polynomials Recently, there has been a lot of interest in studying
the complexity of forrelation for instances in which f and g are degree-d F2-polynomials [Geo25,
Shu25]. It is not too difficult to define pairs of low-degree polynomials that have large Forrelation,
for instance, in Definition 2.2, we can sample h to be a random degree-d F2-polynomial as opposed to
a uniformly random Boolean function. This variant of Forrelation has been studied with the broad
motivation of finding an efficient instantiation of an oracle which makes Forrelation classically hard.
Towards this, researchers have tried to understand the computational complexity of estimating
Forrelation for low-degree polynomials [Geo25, Shu25].

We believe that understanding the query complexity of this version of Forrelation is indepen-
dently interesting. In this setting, given query access to low-degree polynomials f, g, we wish to
compute forr(f, g) using as few queries to the truth tables of f and g as possible. One trivial al-
gorithm for this is to learn the polynomials using

(
n
≤d
)
queries each and then compute Forrelation

offline. We conjecture that this algorithm is more or less optimal.

Conjecture 1.8. The Extremal Forrelation Problem where the inputs are restricted to
degree-d F2-polynomials has randomized query complexity nΩ(d).

Proving this conjecture would give some evidence towards the hardness of computing forrelation
even when the inputs are low-degree polynomials – it would indicate that computing the forrelation
of low-degree polynomials is almost as hard as learning the polynomials.

Hardness Against Stronger Classical Models One of the original motivations in [Aar10] for
introducing the Forrelation problem is that it was conjectured to be classically hard to compute, even
for the relatively powerful model of AC0 circuits. This conjecture was proved in the breakthrough
result of Raz and Tal [RT22], resulting in an oracle separation between BQP and PH. We conjecture
that a variant of the extremal Forrelation problem can be used to demonstrate a similar separation.
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Conjecture 1.9. Depth-d AC0 circuits require exp
(
2Ω(n/d)

)
size to solve the Extremal Forre-

lation Problem.

We suspect that proving this conjecture would require studying a richer class of bent functions.
We think this question is also interesting from the perspective of classical complexity theory, as it
may lead to new techniques to prove AC0 lower bounds.

1.4 Our Ideas

Before we go into our proof ideas, we first describe the existing approaches to proving Forrelation
lower bounds and explain why they fail to work as ε tends to 1.

1.4.1 Why prior approaches don’t work for ε = 1.

To prove randomized lower bounds on the Forrelation problem, one needs to produce hard
distributions, i.e., distributions on the yes and no instances of the problem that are classically hard
to distinguish. For now, let us focus on generating yes instances. It is not too difficult to generate
a pair of real-valued functions f, g with large Forrelation and E[f2] = E[g2] = 1; indeed, given any
nonzero function f , we may define g to be proportional to f̂ , with an appropriate normalization
factor so as to satisfy forr(f, g) = 1 and E[f2] = E[g2] = 1. The difficulty is in producing a pair of
±1-valued functions with large Forrelation. Existing techniques to generate such pairs of functions
follow essentially the same framework:

1. For each x ∈ Fn2 , independently sample f(x) according to the Gaussian distribution with
mean 0 and variance Θ(ε). For each y ∈ Fn2 , define g(y) := 2n/2f̂(y).

2. For each x, y ∈ Fn2 , independently round each f(x), g(y) to ±1.

It is not difficult to show that Item 1 generates a distribution on pairs of real-valued functions
that with high probability have large Forrelation, namely at least Θ(ε). The goal of Item 2 is to
modify these functions to produce ±1-valued functions that continue to have large Forrelation, at
least Θ(ε). This is where the choice of the rounding function and the parameter ε become crucial.
The best parameters to date are obtained in [AA15], where Item 1 is as described above with ε = 1
and the rounding in Item 2 is done using the sign function, which maps non-negative reals to 1 and
negative reals to −1. Using properties of the Gaussian distribution, [AA15] show that the resulting
Boolean functions (namely sign(f), sign(g)) have Forrelation at least 2/π in expectation.3

One might wonder if there is a different rounding procedure that produces a distribution on
inputs with Forrelation very close to 1, but we suspect that this is not the case. The reason is that
this framework is actually fairly oblivious to the underlying unitary matrix. In particular, one can
consider the problem of estimating the Rorrelation function,

rorrU (f, g) := 2−n
∑

x,y∈Fn2

f(x)g(y)Ux,y,

where U is any 2n× 2n unitary matrix; note that when U = H⊗n this is identical to the Forrelation
function. The Rorrelation problem was introduced and studied by [Tal20]. It turns out that the
problem of estimating rorrU (f, g) is classically hard for any unitary matrix whose entries are small

3An intuition for the 2/π factor is as follows. A basic fact about the Gaussian distribution is that for nearly-
uncorrelated Gaussians f(x) and g(y), we have E[sign(f(x)) · sign(g(y))] ≈ 2

π
E[f(x) · g(y)]. Since the Forrelation

function is a linear combination of terms of the form f(x) · g(y), we get that E[forr(sign(f), sign(g))] ≈ 2/π.
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(at most 1/2Ω(n) in magnitude), furthermore, this can be proved by using the above framework.
In particular, if we sample a Haar random orthogonal matrix U , all of its entries will be small
in magnitude and the framework described above will establish classical hardness of estimating
rorrU (f, g) up to a small global constant. On the other hand, the extremal version of the Rorrelation
problem is vacuously easy for a Haar random orthogonal matrix U . In more detail, in Lemma A.1
we prove the following:

Claim 1.10. With extremely high probability over a Haar random orthogonal matrix U ,

max
f,g:Fn2→{±1}

|rorrU (f, g)| < 0.99. (2)

In other words, for a typical Haar random orthogonal matrixU , there are no ±1-valued functions
for which rorrU (f, g) = ±1 and thus, the extremal version of the Rorrelation problem becomes
vacuously easy. There is something special about the Forrelation problem and the Hadamard
matrix which makes it possible for there to exist even one pair of ±1-valued functions (f, g) such
that |forr(f, g)| = 1.

It turns out that these extremal instances of the Forrelation problem arise from an important
class of Boolean functions known as bent functions; we now describe this connection.

1.4.2 Connections to Bent Functions

Let us try to generate Boolean functions f, g : Fn2 → {±1} with as large Forrelation value as
possible. To do this, let us first revisit the argument for why forr(f, g) cannot be larger than 1.
Recall that

forr(f, g) , 2−n/2
∑
y∈Fn2

f̂(y)g(y) ≤ 2−n/2 ·
√∑

y

f̂(y)2 ·
√∑

y

g(y)2 = 1,

where the inequality is by Cauchy-Schwarz. For this to be tight, we need to set each g(y) to be a
multiple of f̂(y). Due to the normalization factor, it turns out that we need to set g(y) = 2n/2 · f̂(y).
In particular, since g(y) is ±1, it implies that each Fourier coefficient f̂(y) is ±2−n/2. Boolean
functions with this property, namely that all of the Fourier coefficients have equal magnitude, are
known as bent Boolean functions. These are precisely the functions that give rise to extremal
instances of the Forrelation problem. In more detail, as shown above any pair of functions (f, g)
whose Forrelation value is 1 must arise from a bent function f ; conversely, it is easy to see that any
bent function f gives rise to a Boolean function g (namely g(y) := 2n/2 · f̂(y)) such that (f, g) has
Forrelation 1.

Bent functions are extensively studied in Boolean function analysis. One important class of
bent functions is the Maiorana-McFarland class of bent functions (see e.g. Section 6.1 of [CM16]).
This family consists of all n-bit Boolean functions (−1)f where f : Fn2 → F2 is defined at x ∈ Fn2
by f(x) := 〈x1, x2〉 + h(x2) where n is even, x1 and x2 denote the first and second halves of x,
and h : Fn/22 → F2 is any Boolean function. Here, 〈x1, x2〉 is the inner product function (mod 2).
It is not too difficult to show that every function of this form is bent (see [Dil74]; a proof of this
is implicit in the proof of our Lemma 2.3); intuitively, the inner product function itself is a bent
function and adding any Boolean function that only depends on the second half of x preserves the
bent-ness. We will use the Maiorana-McFarland family to construct hard instances for our lower
bound.
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Related Works. There have been a few works [Rot20, CKOR13, ABOS25] that observe the close
connections between bent functions and the hidden shift problem (Simon’s problem). Independently
of our work, [DMM24] observed the connection between bent functions and extremal instances of
the Forrelation problem 4.

A related problem is property testing for the class of bent Boolean functions. Here, we are
given query access to a Boolean function f and the objective is to tell whether f is bent or Ω(1)-far
from every bent function. This problem was studied by [BCK14, GWX13]. In particular, [GWX13]
established an Ω(2n/4) lower bound on the bounded-error randomized query complexity of this
problem and they used the Maiorana-McFarland family to construct hard distributions. In our
problem, we are given truth table access to f and g that are promised to be bent and that satisfy
either g = f̂ · 2n/2 or g = −f̂ · 2n/2 and we wish to tell these apart. As both f and g are promised
to be bent and there is a high degree of correlation between f and g, this significantly complicates
the problem and we need to introduce some new ideas in our proof.

1.4.3 Proof Sketch

The high-level structure of our argument is reminiscent of the lower bound argument of [GWX13]
(see Section 4 of [GWX13]). For ease of notation, let χ : F2 → {±1} be the function mapping
x→ (−1)x. For a Boolean-valued function f : Fn2 → F2, let χf denote the function (−1)f .

To explain the ideas underlying our proof, we instead consider the problem of distinguishing
forr(f, g) = 1 from forr(f, g) = 1/

√
2n. It is simpler to describe a pair of hard distributions for this

variant of the problem, so we focus on it in the current sketch; however, the main section of our
paper directly tackles the case of forr(f, g) = 1 versus forr(f, g) = −1. For the distributions we
work with in the proof overview (Equations (3) and (4)), it is easier to pinpoint exactly where the
classical hardness arises from, whereas the actual distributions we work with (Definition 2.2) have
more complicated terms.

We will now define a distribution over pairs of functions (χf , χg) where f, g : Fn2 → F2 are
Boolean functions. For the yes distribution, we will sample χf to be a bent function. As de-
scribed before, this determines a unique ±1-valued function χg (namely, χg := 2n/2χ̂f ) such that
forr(χf , χg) = 1.5 The process to generate f consists of two steps:

1. Maiorana-McFarland family: First, sample a random bent function from the Maiorana-
McFarland family. We use this step to ensure that we only produce bent functions – this is
essential to construct instances with forr(χf , χg) = 1.

2. Linear Transformation: We then apply an invertible linear transformation on the input
variables; doing this simply permutes the Fourier coefficients, and hence preserves bent-ness.
We will show this step sufficiently masks the input and “hides” the inner-product structure,
which effectively prevents classical algorithms from detecting structural properties by reading
just a few coordinates.

In contrast, for the no distribution, we will sample both f, g to be highly non-bent functions that
mimic the Maiorana-McFarland family of bent functions. We now give a more formal description of
this process. Sample A ∈ Fn×n2 to be a random invertible matrix, h : Fn/22 → F2 to be a uniformly
random function, and let B = (AT )−1. For the yes distribution, define

f(x) := 〈A1x,A2x〉+ h(A2x) and g(y) := 〈B1y,B2y〉+ h(B1y), (3)
4We thank anonymous reviewers for TQC 2025 for pointing this out.
5Throughout the paper we use bold font to indicate random variables; note that in the current context both f

and g are random variables, albeit (completely) correlated ones.
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where M1,M2 denote the upper and lower halves of a matrix M . For the no distribution,

f(x) := h(A2x) and g(y) := h(B1y), (4)

We then let (χf , χg) be the inputs to the Forrelation problem. It is not too difficult to show that
f , g in Equation (3) satisfy forr(χf , χg) = 1 and similarly, in Equation (4) satisfy forr(χf , χg) =
1/
√

2n. The proof of this involves analyzing the Fourier transform of the Maiorana-McFarland
family and applying a suitable change of variables; a more general version of this statement is
proved in Lemma 2.3.

Classical Hardness. We will now give some intuition as to why these distributions are hard to
distinguish by classical algorithms. Consider a randomized decision tree of depth ` that distinguishes
these distributions with large advantage. By Yao’s minmax principle, fixing the randomness of this
algorithm, there exists a deterministic decision tree with the same properties. For now, let us
assume that the tree is non-adaptive, that is, it fixes a set of ` points and this same set is queried
along every root-to-leaf path. (This assumption turns out to be not so important, and the analysis
for general adaptive algorithms closely follows the non-adaptive case.) Let x1, . . . , xk ∈ Fn2 and
y1, . . . , y`−k ∈ Fn2 be the points queried by the non-adaptive decision tree. Here, xi and yj indicate
points in the truth table of f and g respectively and k ∈ {0, . . . , `}; in other words, the algorithm
just queries f(x1), . . . ,f(xk) and g(y1), . . . , g(y`−k). We can assume without loss of generality that
the xi are distinct and similarly the yj are distinct (there may be collisions between xi and yj).
We will assume for the proof sketch that none of xi, yj are zero, since such queries are useless in
distinguishing the yes and no distributions (as the outcomes are the same for both distributions).

Let us look at the contribution of h(◦) to each of f(x1), . . . ,f(xk) and g(y1), . . . , g(y`−k).
Recalling the definition of the yes and no distribution in Equations (3) and (4), it is easy to see
that for both these distributions, the contribution of h(◦) is given by

h(A2x1), . . . ,h(A2xk) and h(B1y1), . . . ,h(B1y`−k). (5)

In particular, the sequence of points on which h(◦) is implicitly queried is

A2x1, . . . ,A2xk and B1y1, . . . ,B1y`−k. (6)

The main technical lemma of our work shows that if ` ≤ 2cn, for a suitable absolute constant c > 0,
then with high probability Equation (6) is a sequence of ` distinct points. (This is not necessarily
the case if some of xi, yj are allowed to be zero, but as we argued before, such queries are useless
and we can assume without loss of generality that xi, yj 6= 0.) A version of this is formalized
in Lemma 3.1 and Lemma 3.2. Whenever this is the case, the sequence of outcomes in Equation (5)
consists of uniform and independent random bits – indeed, h is a uniformly random function and
hence its evaluations on distinct points are independent and uniform. This happens for both the
yes and the no distributions and as a result, any decision tree of depth ` ≤ 2cn cannot sufficiently
distinguish these distributions. We now sketch the proof that Equation (6) is a distinct sequence
with high probability.

Collision Probability Analysis. This is done in Section 3.1. We will analyze the probability
that any two points in Equation (6) are equal and show that it is at most 2−Ω(n). We then apply
a union bound over all pairs of points (there are at most `2 pairs) to conclude that with high
probability, at least 1 − `2 · 2−Ω(n) ≥ 2/3, the sequence of points in Equation (6) is distinct. This
along with the above paragraph would complete the proof.
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Collisions within the A2xi are significantly easier to analyze; the matrix A is distributed accord-
ing to a uniformly random invertible matrix, and hence intuitively the lower half A2 has enough
entropy to make collisions of the form A2xi = A2x

′
i highly unlikely. Collisions within the B1yj can

be similarly controlled. We prove this in Lemma 3.2. Collisions between A2xi and B1yj are signif-
icantly harder to analyze, since A2 and B1 are correlated with each other due to the relationship
B = (AT )−1, but this can nevertheless be shown.

The General Case: Forrelation 1 versus −1. We now describe the additional ideas required
to prove the classical hardness of the Extremal Forrelation Problem. In order to generate
instances with forr(f, g) = 1 and forr(f, g) = −1, we are forced to sample f to be a bent function
and we are forced to set g so that either χg = +χ̂f or χg = −χ̂f . If we were to naively modify the
aforementioned yes distribution to a no distribution by letting χg = −χ̂f , then the resulting yes
and no distributions would become easy to classically distinguish: querying the yes distribution on
x = 0 and y = 0 would produce identical answers, namely (−1)h(0) and (−1)h(0) while querying the
no distribution on these points would produce different answers, namely (−1)h(0) and −(−1)h(0).
In order to get around this issue, in Item 2 of our actual hard distributions we need to apply an
affine transformation on the input variables, instead of a linear transformation. This has the effect
of shifting the origin, which intuitively means that the classical algorithm “does not know” which
point to query in order to see this correlated pair of answers. Remarkably, applying this random
shift also simplifies the collision probability analysis in the case of collisions between A2xi and B1yj .
For more details, see Definition 2.2.

1.4.4 Organization

We describe our hard distributions in Section 2. We prove that these are indeed valid distribu-
tions (Lemma 2.3) and prove some some key properties about them (Lemma 2.4 and Corollary 2.6).
In Section 3, we present the main technical lemma (Lemma 3.1) and prove the main theorem
assuming this in Section 3.2. In Section 3.1, we prove the main lemma.

2 Hard Distributions for the Extremal Forrelation Problem

As described in the introduction, the hard instances of our problem will be based on the
Maiorana-McFarland family (see e.g. Section 6.1 of [CM16]) of bent functions – this family consists
of “inner-product-like” functions. To sample our hard instances, we will first sample an affine shift,
followed by a random “inner-product-like” function under this affine shift. We describe this in more
detail below.

2.1 Descriptions of Hard Distributions

Notation. For simplicity of notation, define the function χ : F2 → {±1} mapping x to (−1)x.
For any Boolean-valued function f : Fn2 → F2, let χf : Fn2 → {±1} denote the function χ(f)(x) =

(−1)f(x). For matrices A,B ∈ Fn×n2 , let A =

[
A1

A2

]
and B =

[
B1

B2

]
where A1, A2 and B1, B2 are

n/2×n matrices representing the upper and lower halves of A and B respectively. We use 〈x, y〉 to
denote the inner product (mod 2) between vectors x, y ∈ Fn2 .

We now proceed to the description of the hard distributions. We first define a joint distribution
on 4-tuples (A,B, a, b) where A,B are matrices and a, b are affine shifts (vectors) as follows.
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Definition 2.1. Let A ∼ Fn×n2 be a uniformly random matrix of full rank and let B := (AT )−1.

Let a ∼ Fn2 be a uniformly vector and let b = BT

[
B2

B1

]
a.

Let L be the induced distribution on (A,B). We use L21, L2 and L1 to denote the induced dis-
tribution on (A2,B1), A2 and B1 respectively. We now define the hard instances of the Extremal
Forrelation Problem for a family of functions H.

Definition 2.2 (Hard Instances of Extremal Forrelation Problem). Let H be any collection
of boolean functions mapping Fn/22 to {0, 1}. Sample (A,B,a, b) as in Definition 2.1. Sample
h : Fn/22 → {0, 1} to be a uniformly random Boolean function in H. Define Boolean functions
f , g : Fn2 → F2 as follows.

f(x) := 〈A1x,A2x〉+ 〈x,a〉+ h(A2x)

g(y) := 〈B1y,B2y〉+ 〈y, b〉+ h(B1y + B1a) + 〈B1a,B2a〉 .

Let µHyes and µHno be the induced distributions on (χf , χg) and (χf ,−χg) respectively for h ∼ H.

We will later instantiate H in various ways. The following lemma shows that regardless of H,
these are indeed valid distributions, that is, µHyes and µHno are indeed supported on the yes and no
instances of the Extremal Forrelation Problem.

Lemma 2.3. For (χf , χg) in the support of µHyes and µHno, we have forr(f, g) = 1 and forr(f, g) = −1
respectively (regardless of H).

Proof of Lemma 2.3. Fix any A,B, a, b as in Definition 2.2 and let f, g be as specified in Defini-
tion 2.2. For any y ∈ Fn2 , consider

χ̂f (y) =
1

2n

∑
z∈Fn2

χf (z) · χ (〈z, y〉)

=
1

2n

∑
z∈Fn2

χ (f(z) + 〈z, y〉)

=
1

2n

∑
z∈Fn2

χ (〈A1z,A2z〉+ 〈z, a〉+ h(A2z) + 〈z, y〉) .

Since A is invertible we can do a change of variables x← Az, which in particular gives us x1 ← A1z
and x2 ← A2z. This lets us rewrite the above as

χ̂f (y) =
1

2n

∑
x∈Fn2

χ
(
〈x1, x2〉+

〈
A−1x, a

〉
+ h(x2) +

〈
A−1x, y

〉)
.

We now observe that
〈
A−1x, ◦

〉
= 〈x,B◦〉, since (A−1)T = B. Substituting this above, we see that

χ̂f (y) =
1

2n

∑
x∈Fn2

χ (〈x1, x2〉+ 〈x,Ba〉+ h(x2) + 〈x,By〉) .

We now express 〈x,B◦〉 as 〈x1, B1◦〉+ 〈x2, B2◦〉. Thus,

χ̂f (y) =
1

2n

∑
x∈Fn2

χ (〈x1, x2〉+ 〈x1, B1a〉+ 〈x2, B2a〉+ h(x2) + 〈x1, B1y〉+ 〈x2, B2y〉) .
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We now group the terms based on x1.

χ̂f (y) =
1

2n

∑
x∈Fn2

χ (〈x1, x2 +B1a+B1y〉+ 〈x2, B2a+B2y〉+ h(x2))

=
1

2n

∑
x2∈Fn/22

∑
x1∈Fn/22

χ (〈x1, x2 +B1a+B1y〉) · χ (〈x2, B2a+B2y〉+ h(x2)) .

Observe that the first term χ (〈x1, x2 +B1a+B1y〉) when summed over all x1 ∈ Fn/22 is non-zero
only if x2 + B1a + B1y = 0 (equivalently, x2 = B1a + B1y); and if it is non-zero, it equals 2n/2.
Thus, we have

χ̂f (y) =
1

2n/2
χ (〈B1a+B1y,B2a+B2y〉+ h(B1a+B1y)) .

We now expand the terms in the R.H.S. to obtain

χ̂f (y) =
1

2n/2
χ

(
〈B1y,B2y〉+

〈[
B1

B2

]
y,

[
B2

B1

]
a

〉
+ h(B1a+B1y) + 〈B1a,B2a〉

)
=

1

2n/2
χ

(
〈B1y,B2y〉+

〈
y,
[
BT

1 BT
2

] [B2

B1

]
a

〉
+ h(B1a+B1y) + 〈B1a,B2a〉

)
.

Recall that we have b = BT

[
B2

B1

]
a =

[
BT

1 BT
2

] [B2

B1

]
a. Substituting this in the above equation,

we have

χ̂f (y) =
1

2n/2
χ (〈B1y,B2y〉+ 〈y, b〉+ h(B1a+B1y)) + 〈B1a,B2a〉 .

Recalling the definition of g(y) from Definition 2.2, we see that

χ̂f (y) ,
1

2n/2
χg(y). (7)

We now use the defining equation for the Forrelation function (Equation (1)) to get

forr(χf , χg) ,
1

2n/2

∑
y∈Fn2

χ̂f (y)χg(y).

Combining this and Equation (7), we see that forr(χf , χg) = 1
2n
∑

y χg(y)2 = 1. It can be similarly
shown that forr(χf ,−χg) = 1

2n
∑

y(−1) ·χg(y)2 = −1. This completes the proof of Lemma 2.3.

2.2 Characterizing the Marginals of the Distributions

Recall that we used L to denote the induced distribution on (A,B), and L2 and L1 to denote the
induced distribution on A2 and B1 respectively. In this section, we will characterize the marginal
distributions L1 and L2, which turn out to be identical, as follows:

Lemma 2.4. Each of the distributions L1 and L2 is precisely the uniform distribution over all
matrices in Fn/2×n2 that have full row-rank.

We then show the following fact about the row-rank of a uniformly random rectangular matrix.
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Fact 2.5. A uniformly random matrix in Fn/2×n2 has full row-rank with probability at least 1 −
(n/2)2−n/2.

As an immediate corollary of this and Lemma 2.4, we obtain the following.

Corollary 2.6. Each of the distributions L1 and L2 is (n/2)·2−n/2−close to the uniform distribution
over Fn/2×n2 in total variational distance.

We now give the proofs of Lemma 2.4 and Fact 2.5.

Proof of Lemma 2.4. We will prove this for the distribution L1 and the argument for L2 is identical.
Recall that B is sampled according to a uniformly random full-rank matrix. Fix any full row-rank
matrix B1. We will count the number of matrices B2 such (B1, B2) has full rank. We will show
that this number is precisely (2n− 2n/2)× (2n− 2n/2+1)× . . .× (2n/2− 2n−1). This would complete
the proof.

To count the number of B2, we first count the number of possibilities for each row of B2. Firstly,
each row of B2 must not lie in the span of the previous rows of B2 and the rows of B1. The first row
of B2 is any vector not in the span of the rows of B1 and thus has 2n − 2n/2 possibilities. Having
fixed this, the second row of B2 can be any vector that is not in the span of the first row of B2 and
the rows of B1, and thus has 2n − 2n/2+1 possibilities. We repeat this argument and at the i-th
step, we choose a vector that is not in the n/2 + i− 1-dimensional space spanned by the first i− 1
rows of B2 and the n/2 rows of B1; this can be done in 2n − 2n/2+i−1 ways. Doing this for all n/2
rows shows that the total number of possibilities for B2 is precisely

∏n/2
i=1(2n − 2n/2+i−1) and this

completes the proof of Lemma 2.4.

Proof of Fact 2.5. We perform a calculation identical to that in Lemma 2.4. By a similar argument,
we can show that the number of matrices in Fn/2×n2 with full row-rank is precisely

n/2∏
i=1

(2n − 2i−1).

Thus, the probability that a uniformly random n/2× n matrix is of full row-rank is precisely

∏n/2
i=1(2n − 2i−1)

2n2/2
=

n/2∏
i=1

(
2n − 2i−1

2n

)
≥ (1− 2−n/2)n/2 ≥ 1− (n/2)2−n/2.

This completes the proof of Fact 2.5.

3 Classical Lower Bound

The main technical ingredient in the classical lower bound will be Lemma 3.1. We will describe
this lemma and its proof in Section 3.1. We will then prove Theorem 1.4 in Section 3.2 assuming
this.

3.1 Statement of Lemma 3.1 and its Proof

The main technical ingredient is the following.
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Lemma 3.1. Let x, y ∈ {0, 1}n be any two vectors. Then,

Pr
(A2,B1)∼L21

a∼Fn2

[A2x = B1y + B1a] = 2−n/2.

In the above lemma, (A2,B1) ∼ L21 and a ∼ Fn2 are sampled independently, just as in Defini-
tion 2.1. We will also require the following lemma.

Lemma 3.2. For x 6= x′ ∈ Fn2 and y 6= y′ ∈ Fn2 , we have

Pr
A2∼L2

[A2x = A2x
′] ≤ (n/2 + 1) · 2−n/2

Pr
B1∼L1

[B1y = B1y
′] ≤ (n/2 + 1) · 2−n/2.

We now prove these two lemmas.

Proof of Lemma 3.1. Let E be the eventA2x = B1y+B1a. This is equivalent toB1a = A2x+B1y.
Now, regardless of what x, y are, the vector a is distributed as a uniformly random vector in Fn2 that
is independent of A,B, because a is sampled uniformly and independently of A,B. Furthermore,
B1 has full row-rank. Therefore, fixing A = A and B = B, we see that the probability over a that
B1a is equal to A2x+B1y is precisely 2−n/2. This completes the proof.

Proof of Lemma 3.2. We prove this lemma for A2 ∼ L2 and the proof of B1 ∼ L1 is identical. The
event we wish to bound the probability of is [A2(x − x′) = 0]. We use Corollary 2.6 to conclude
that the total variational distance between L2 and the uniform distribution is at most (n/2) ·2−n/2.
Let us now work with a uniformly random matrix A2. Since (x− x′) 6= 0, the vector A2(x− x′) is
a uniformly random vector in Fn/22 . Therefore, the probability that it is zero is at most 2−n/2. This
completes the proof.

We now complete the proof of Theorem 1.4 using these lemmas.

3.2 Proof of Theorem 1.4

Let H be any family of all n/2-variate boolean functions. Consider a classical randomized query
protocol for the Extremal Forrelation Problem with D queries. Recall from Lemma 2.3
that µHyes and µHno are supported on the yes and no instances of the Extremal Forrelation
Problem. Given a randomized query protocol with D queries for the Extremal Forrelation
Problem that succeeds with at least 2/3 probability, by Yao’s principle, there exists a deterministic
decision tree of depth D that distinguishes µHyes and µHno with advantage at least 1/3.

Given such a deterministic decision tree of depth D ≤ 2n/4/6 and a root-to-leaf path P of length
` in the tree, each node in the path P corresponds to either a query of the form f(x) (where the
truth table of f is probed), or a query of the form g(y) (where the truth table of g is probed). We
assume without loss of generality that the query vectors for f are distinct and similarly the query
vectors for g are distinct (there may be common query vectors which are given to both f and g).
We will then use the following claims.

Claim 3.1. Consider any deterministic decision tree of depth D ≤ 2n/4/(6
√
n), and fix any root-

to-leaf path P of length ` ≤ D in the tree. Let x(1), . . . , x(k) ∈ Fn2 and y(1), . . . , y(`−k) ∈ Fn2 be
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the sequence of vectors queried. Let A,B,a be distributed as in Definition 2.1, and consider the
sequence of points

A2x
(1), . . . ,A2x

(k) and B1y
(1) + B1a, . . . ,B1y

(`−k) + B1a. (8)

Let E be the event that (8) is a sequence of ` distinct points. Then, PrµHyes [E ],PrµHno [E ] ≥ 9/10.

Claim 3.2. Let H be the family of all n/2-variate boolean functions. Under the same hypothesis
as Claim 3.1, whenever E occurs, the probability of taking path P for the distributions µHyes|E and
µHno|E is exactly 2−`.

Remark. Claim 3.2 is the only place where the properties of H come into play – every other part
of the proof is independent of H.

Once we have these claims, the proof follows quite easily. Let H be the family of all n/2-variate
boolean functions. Let us look at the induced distributions µleaf,H

yes and µleaf,H
no on the leaves of the

decision tree when the inputs are sampled according to µHyes and µHno respectively and let µ be the
distribution on the leaves induced by a truly random walk down the tree. Claim 3.1 and Claim 3.2
imply that for any leaf, the probability that µleaf,H

yes and µleaf,H
no assign to that leaf are each at least

9/10 times the probability assigned by µ. This implies that there exists distributions µ̃leaf,H
yes , µ̃leaf,H

no

on the leaves such that
µleaf,H

yes = 9
10µ+ 1

10 µ̃
leaf,H
yes ,

µleaf,H
no = 9

10µ+ 1
10 µ̃

leaf,H
no .

This implies that the total variational distance between µleaf,H
yes and µleaf,H

no is at most 1/10 and
hence, the output distributions of the decision tree on inputs sampled according to µHyes and µHno

differ in total variational distance by at most 1/10. This contradicts the assumption that the
decision tree distinguishes these distributions with advantage at least 1/3. This completes the proof
of Theorem 1.4 assuming Claim 3.1 and Claim 3.2. We will now prove these claims.

3.3 Proof of Claim 3.1 and Claim 3.2

We now proceed to the proof of Claim 3.1, which is where we will use Lemma 3.1 and Lemma 3.2.
We will then prove Claim 3.2 which relies primarily on the properties of H.

Proof of Claim 3.1. We first analyze the probability of E when the distribution on inputs is µHyes.
The calculation for µHno is identical and is omitted. Note that (8) is a random sequence of points
(where the randomness comes from A,B and a). As stated in Claim 3.2, let E be the event that
this is a sequence of ` distinct points. We will now argue that E is a high-probability event.

First, let us bound the probability of collisions within the A2x
(i). Fix any i 6= i′ ∈ [k]. We

apply Lemma 3.2 to the vectors x(i) 6= x(i′). Lemma 3.2 implies that

Pr[A1x
(i) = A1x

(i′)] ≤ (n/2 + 1) · 2−n/2.

We now apply a union bound over i, i′ ∈ [k]. There are at most k2 possibilities to union bound over.
This implies that with probability at least 1− k2 · (n/2 + 1) · 2−n/2, the sequence of points

A2x
(1), . . . ,A2x

(k)
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is a sequence of k distinct points. We can similarly argue about collisions within the B1y
(j) to

conclude that with probability at least 1− (`− k)2 · (n/2 + 1) · 2−n/2, the sequence of points

B1y
(1) + B1a, . . . ,B1y

(`−k) + B1a

is a sequence of ` − k distinct points. Finally, we argue about collisions between pairs of the form
A2x

(i) and B1y
(j) + B1a. Fix any i ∈ [k] and j ∈ [`− k]. We apply Lemma 3.1 to the vectors x(i)

and y(j). Lemma 3.1 implies that

Pr[A2x
(i) = B1y

(j) + B1a] ≤ 2−n/2.

We now apply a union bound over (i, j). There are at most k · (`− k) possibilities to union bound
over. This implies that with probability at least 1− k · (`− k) · 2−n/2, there are no collisions among
pairs of the form A2x

(i) and B1y
(j) + B1a. So by a union bound, the total probability of the bad

event ¬E is at most

k2 · (n/2 + 1) · 2−n/2 + (`− k)2 · (n/2 + 1) · 2−n/2 + k · (`− k) · 4 · 2−n/2 ≤ 3 ·D2 · n · 2−n/2.

for large enough n. Recall that we set D ≤ 2n/4/(6
√
n), so we get that

3 ·D2 · n · 2−n/2 ≤ 3 · 2n/2 · 1
36n · n · 2

−n/2 < 1
10 .

This shows that PrµHyes [E ] ≥ 9/10. The argument for µHno is identical. This completes the proof
of Claim 3.1.

Proof of Claim 3.2. We first analyze the probability of receiving any particular sequence of outcomes
when the distribution on inputs is µHyes. The calculation for µHno is identical and is omitted.

Recall the µHyes distribution. This is obtained by sampling A,B,a, b as in Definition 2.2, sam-
pling h uniformly at random from H, and outputting (χf , χg) where f , g : Fn2 → F2 are defined
as:

f(x) := 〈A1x,A2x〉+ 〈x,a〉+ h(A2x)

g(y) := 〈B1y,B2y〉+ 〈y, b〉+ h(B1y + B1a) + 〈B1a,B2a〉 .

Along the path P, we have queried f(x(1)), . . . ,f(x(k)) and g(y(1)), . . . , g(y(`−k)). Let us consider
the contribution of h(◦) to these query responses. This is given by evaluating h(◦) on the following
sequence of points

A2x
(1), . . . ,A2x

(k) and B1y
(1) + B1a, . . . ,B1y

(`−k) + B1a

which is precisely the sequence given in Equation (8). We will now argue that when E happens,
the probability of taking this path under µHyes (and similarly µHno) is precisely 2−`. Let us compute
the probability of taking the path P under µHyes conditioned on E happening. When E happens, we
have that the sequence of points

A2x
(1), . . . ,A2x

(k) and B1y
(1) + B1a, . . . ,B1y

(`−k) + B1a

is a sequence of ` distinct points. We now observe that the evaluations of the function h on these
points are independent and uniformly random bits in {0, 1}. In other words,

h(A2x
(1)), . . . ,h(A2x

(k)) and h(B1y
(1) + B1a), . . . ,h(B1y

(`−k) + B1a)

is a sequence of uniformly random bits in {0, 1} when h ∼ H. Thus, the probability of receiving any
particular sequence of outcomes when querying the truth tables of f , g at the ` vectors x(1), . . . , x(k),
y(1), . . . , y(`−k) is either exactly 2−`. This completes the proof.
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3.4 Proof of Corollary 1.5

Proof of Corollary 1.5. Let H be the family of all boolean functions {h : {0, 1}n/2 → {0, 1}}. It is
well known [HILL99, GGM86] that if one-way functions exist, then we can construct a family of
pseudorandom functions H′ := {hλ : {0, 1}n/2 → {0, 1}}λ∈{0,1}k(n) with k(n) = poly(n) such that

• Efficiency: there is a poly(n)-sized classical circuit that computes hλ(x) given inputs λ ∈
{0, 1}k(n) and x ∈ {0, 1}n/2.

• Security: Any classical polynomial-time algorithm A that queries the truth-table of an n/2-
bit Boolean function cannot sufficiently distinguish a uniformly random function in H′ from
a truly uniformly random function, i.e.,∣∣∣∣ E

λ∼{0,1}k(n)

[
Ahλ(x)(1n)

]
− E
h∼H

[
Ah(x)(1n)

]∣∣∣∣ ≤ negl(n).

Let µHyes and µHno be the hard distributions as in Definition 2.2 defined with respect to H and
similarly µH′yes and µH′no be defined with respect to H′.

Implementability of f, g. For any pair (f, g) drawn from either µH′yes or µH′no , the functions f, g
are computable by polynomial-sized circuits. In more detail, for a fixed draw of A,B, a, b, λ, the
circuit for f takes input x, first computes the inner products 〈A1x,A2x〉 and 〈x, a〉, then com-
putes the vector A2x, and finally applies the circuit for hλ on this vector and thus computes
f(x) = 〈A1x,A2x〉+ 〈x, a〉+hλ(A2x). All of these operations can be implemented by poly(n)-sized
classical circuits and the circuit for g is analogous. We will now show that under the cryptographic
assumption, there is no classical algorithm that distinguishes µH′yes and µH′no with poly(n) queries.

Classical Indistinguishability of f, g. Let A′ be any classical algorithm that makes at most
poly(n) queries to the truth tables of f and g. Theorem 1.4 shows that A′ cannot distinguish
µHyes and µHno with advantage more than negl(n)6. We will now show that under the cryptographic
assumption, A′ cannot distinguish µHyes and µH′yes with more than negl(n) advantage. By the same
argument, an analogous statement holds for the distributions µHno and µH′no . Consequently, by the
triangle inequality, we get that A′ cannot distinguish µH′yes and µH

′
no with more than negl(n) advantage

and this completes the proof.
To see that A′ cannot distinguish µHyes and µH

′
yes with more than negl(n) advantage, we show that

any such algorithm can be turned into a distinguisher for H and H′. Indeed, consider the algorithm
A that given query access to an unknown n/2-bit boolean function h, first samples (A,B,a, b) as
in Definition 2.1 and runs A′ on the pair of functions (f, g) as defined in the yes distribution in
Definition 2.2. Similarly to the argument before, each query to f at the point x can be simulated
by making a query to h at the point A2x and computing f(x) = 〈A1x,A2x〉+ 〈x, a〉+ h(A2x), and
similarly for g. Thus, a distinguisher for µH′yes and µHyes can be turned into one for H′ and H with
the same number of queries and same advantage. This completes the proof.

6While the statement of Theorem 1.4 only refers to 1/3 advantage, the proof (Claim 3.1) shows that the advantage
of a classical algorithm in solving the Extremal Forrelation Problem scales as 2−n/2 times D2 where D is the
number of queries. In particular, for poly(n)-time algorithms (which make at most at most poly(n) queries), this
advantage is negl(n).
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A Appendix: Upper bounding the maximum Rorrelation for a
Haar random orthogonal matrix

In this appendix we establish Claim 1.10 from the Introduction. Recall the definition of the
Rorrelation function,

rorrU (f, g) := 2−n
∑

x,y∈Fn2

f(x)g(y)Ux,y,

where U is any 2n × 2n unitary matrix. Let N = 2n.

Lemma A.1. Consider the Rorrelation function rorrU for an N × N Haar random orthogonal
matrix U . With probability at least 1− 2−Θ(N), we have

max
f,g:Fn2→{±1}

rorrU (f, g) ≤ 0.99.

A similar proof can be used for the event minf,g:Fn2→{±1} rorrU (f, g) ≥ −0.99, and this establishes
that the largest value of |rorrU (f, g)| is at most 0.99 with probability at least 1− 2−Θ(N). We now
prove Lemma A.1.

Proof of Lemma A.1. Fix any Boolean function f : Fn2 → {±1} and let us optimize over g : Fn2 →
{±1}. Recall that (for a fixed given U)

max
g:Fn2→{±1}

rorrU (f, g) , max
g:Fn2→{±1}

2−n
∑
y

(∑
x

Ux,yf(x)

)
g(y) (9)

It is easy to see that the optimal solution g∗ to Equation (9) over all {±1}-valued functions is
g∗(y) := sign(

∑
x Ux,yf(x)), since this choice of g∗ makes all the summands in the outer sum non-

negative. Interpreting f as a vector in {±1}N denoting the truth table of the function f , the
optimizer to Equation (9) is g∗ = sign(Uf) and the optimal value is N−1‖Uf‖1. Thus,

max
f,g:Fn2→{±1}

rorrU (f, g) = N−1 max
f :Fn2→{±1}

‖Uf‖1. (10)

We will now argue that for any fixed f ∈ {±1}N , with overwhelming probability (at least 1− 3−N )
over a Haar random orthogonal matrix U , we have ‖Uf‖1 ≤ 0.99N . This, along with a union bound
over all f ∈ {±1}N (there are at most 2N such functions), implies that with probability at least
1− (3/2)N , for all ±1-valued functions f , we have ‖Uf‖1 ≤ 0.99N . This, along with Equation (10),
completes the proof of Lemma A.1.

Fix any f ∈ {±1}N . Observe that ‖f‖2 =
√
N and hence v := 1√

N
f is a unit vector in RN .

Hence as we vary over Haar random orthogonal matrices U , the vector Uv is a Haar random unit
vector in SN−1. Intuitively, such a vector is highly unlikely to have `1 norm larger than 0.99

√
N

(recall that by Cauchy-Schwarz,
√
N is the largest possible `1 norm of any vector in SN−1). More

precisely, Fact A.2 implies that with probability least 1 − 3−N over a Haar random orthogonal
matrix U , we have

‖Uv‖1 ≤ 0.99
√
N.

This completes the proof.

23



Fact A.2. For a Haar random unit vector u ∼ SN−1, we have

Pr[‖u‖1 ≥ 0.99
√
N ] ≤ 3−N .

Proof. We use vol, area to denote the Lebesgue volume and surface area of subsets of RN and µ to
denote the Haar measure on SN−1. Observe that for any measurable subset T ⊆ SN−1, we have

µ(T ) ,
area(T )

area(SN−1)
. (11)

Consider the intersection of the unit sphere SN−1 (depicted in black in Figure 4) and the comple-
ment of the `1-ball, S := {v ∈ RN : ‖v‖1 ≥ 0.99

√
N}; our goal is to bound µ(SN−1∩S), the measure

of the intersection under the Haar measure on SN−1. We can view the set S as a union of 2N many
half spaces, namely, for each α ∈ {±1}N , we have the half-space Sα := {v ∈ RN :

∑N
i=1 αivi ≥

0.99
√
N}. For each α ∈ {±1}N , the set SN−1 ∩ Sα is a spherical cap, and we will show that the

measure of this cap is at most 7−(N−1). A union bound over all 2N choices of α ∈ {±1}N gives that
with probability at least 1 − 2N · 7−(N−1) ≥ 1 − 3−N (for large N), we have ‖u‖1 ≤ 0.99

√
N , and

this completes the proof.
We now upper bound the measure of the spherical cap SN−1 ∩ Sα (depicted in red in Figure 4).

Observe that the diameter (distance between two furthest points) of this spherical cap is d :=
2
√

1− (0.99)2 and that d ≤ 2/7. Consider the sphere B′ in RN of diameter d that intersects the
spherical cap precisely at its edge (depicted in blue in Figure 4); note that there is a unique such
sphere B′ and that the intersection of B′ with the spherical cap SN−1 ∩ Sα forms a great circle of
B′. Now, consider the intersection of the interiors of B′ and SN−1 (depicted in yellow in Figure 4).
This is a convex body that is contained in B′ and hence its surface area is at most that of B′ (this
inequality is a known direct consequence of Cauchy’s surface area formula, see e.g. [Mat11] and
Section 5.5 of [KR97]). Since the boundary of SN−1 ∩Sα is a subset of the boundary of this convex
body, the surface area of SN−1 ∩ Sα is at most that of B′. Therefore, by Equation (11), we have
the following inequality

µ(SN−1 ∩ Sα) ,
area(SN−1 ∩ Sα)

area(SN−1)
≤ area(B′)

area(SN−1)
= (d/2)N−1 ≤ 7−(N−1),

where the second-to-last inequality uses the fact that a ball of radius d/2 in RN has surface area
(d/2)N−1 times that of the unit ball in RN . This completes the proof.
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1 ∑N
i=1 αivi ≥ 0.99

√
N

0.99

Figure 4: Proof of Fact A.2. Depiction of SN−1 in black, SN−1 ∩ Sα in red, B′ in blue.
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