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Abstract

We prove that for the bit pigeonhole principle with any number of pigeons and n holes, any
depth D proof in resolution over parities must have size exp(Ω(n3/D2)). Our proof uses the
random walk with restarts approach of Alekseev and Itsykson [STOC ’25], along with ideas from
recent simulation theorems for randomized parity decision trees.

1 Introduction

The Resolution proof system is perhaps the most well-studied proof system in propositional proof
complexity. Lines in Resolution are clauses (disjunctions of literals). The resolution rule allows
one to derive from clauses A ∨ x and B ∨ ¬x, the clause A ∨ B (where A and B are arbitrary
clauses). A resolution refutation of a CNF formula ϕ is a sequence of clauses deriving the empty
clause (which is clearly unsatisfiable) from the clauses of ϕ thereby proving that ϕ cannot have a
satisfying assignment. The first superpolynomial lower bound for Resolution was proved by Haken
[Hak85] for the unary CNF encoding of the pigeonhole principle. Many more lower bounds for
Resolution proofs of several other natural formulas have been proved in the following decades.

Going beyond reasoning with clauses, it is natural to consider proof systems where the lines are
more powerful circuits like AC0-circuits or AC0[p]-circuits. A superpolynomial lower bound for the
pigeonhole principle in AC0-Frege was first shown by Ajtai [Ajt94] which was later strengthened
to an exponential lower bound [BIKP+92]. On the other hand, proving any superpolynomial lower
bound for AC0[p]-Frege is a longstanding challenge. A natural subsystem of AC0[2]-Frege is the
proof system Resolution over parities Res(⊕), introduced by Itsykson and Sokolov [IS20] a decade
ago as a step towards AC0[2]-Frege. Res(⊕) extends the power of Resolution to allow linear algebra
over F2. The lines in Res(⊕) are linear clauses, which are disjunctions of linear equations over F2.
In Res(⊕), a resolution step can derive from given linear clauses A and B a linear clause C such
that every x ∈ {0, 1}n satisfying both A and B also satisfies C. In particular, for any linear form
v, we can derive A ∨B from A ∨ (v = 0) and B ∨ (v = 1).

Proving lower bounds for this seemingly simple strengthening of Resolution has turned out
to also be quite challenging in general, though there has been progress on restricted subsystems
of Res(⊕). Several works like [IS20, IR21, GOR24, CMSS23, BK23] have shown lower bounds
for tree-like Res(⊕). In the last couple of years, there has been progress on restricted DAG-
like subsystems of Res(⊕) starting with the work of Efremenko, Garlik and Itsykson [EGI24] who
showed an exponential lower bound for bottom-regular Res(⊕) proofs of the bit pigeonhole principle.
Bhattacharya, Chattopadhyay and Dvořák [BCD24] and later Alekseev and Itsykson [AI25] gave
such exponential lower bounds for formulas that have polynomial size proofs in ordinary Resolution.
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Going beyond bottom-regular Res(⊕), [AI25] gave an exponential lower bound for Res(⊕) proofs
whose depth is at most O(N log logN) where N is the number of variables of the formula. The
depth limit was further pushed to O(N logN) by Efremenko and Itsykson [EI25]. These lower
bounds were proved for the Tseitin formula lifted with 2-stifling gadgets. No other examples were
known where such strong lower bounds could be obtained for depth-restricted Res(⊕). These works
also raised the question of proving lower bounds for depth Ω(N1+ϵ) for some ϵ > 0.

Our main result is such an exponential lower bound for Res(⊕) proofs of the bit pigeonhole
principle with n holes when the depth is O(n1.5−ϵ) for any ϵ > 0. Independently, Bhattacharya and
Chattopadhyay [BC25] have proved an exponential lower bound for any depth n2−ϵ Res(⊕) proof
of the Tseitin formula on an expander lifted with logarithmic size inner product gadget.

Let BPHPm
n denote the bit pigeonhole principle formula with m pigeons and n holes.

Theorem 1.1. Suppose there exists a Res(⊕) proof of BPHPm
n whose size is S and depth is D.

Then D
√
logS = Ω(n1.5).

When m = O(n), the number of variables N is O(n log n). So Theorem 1.1 implies that for any

ϵ > 0, any depth O(N1.5−ϵ) proof of BPHP
O(n)
n must have size exp(Ω̃(N2ϵ)).

Another natural setting is when the depth is bounded by the number of variables m log n
without restricting m to be linear in n. Theorem 1.1 implies that any such Res(⊕) proof of BPHPm

n

must have size at least exp
(
Ω
(

n3

m2 log2 n

))
. In particular, we get an exponential lower bound if

m = n1.5−Ω(1) improving upon [EGI24] who gave an exponential lower bound for bottom-regular
proofs when m = n+ 1.

The pigeonhole principle tautology and its variations have played a central role in proof com-
plexity, especially in connections between propositional proofs and bounded arithmetic. The first
superpolynomial lower bounds for resolution [Hak85] were for the pigeonhole principle, and con-
certed effort has been devoted to extending these lower bounds to stronger proof systems [Ajt94,
BIKP+92]. On the other hand, Buss gave a polynomial upper bound for PHP in Frege [Bus87], and
Paris, Wilkie and Woods [PWW88] gave a quasipolynomial upper bound for the weak pigeonhole
principle in constant depth Frege, which they used to show that the existence of arbitrarily large
primes was provable in I∆0. (See also the simpler proof of Maciel, Pitassi and Woods [MPW02].)
The dual weak pigeonhole principle was used by Jeřábek [Jeř04] to define a bounded arithmetic
theory that captures probabilistic polynomial time reasoning. The bit pigeonhole principle has
recently been studied in various proof systems including Resolution and DNF-resolution [AMO15,
DGGM24], cutting planes and its strengthenings [HP17, IR21, BW25, dRV25], Sherali Adams and
Sum of Squares [DGGM24]. Because of the variety of surprising proofs of these tautologies that
have been found, which often make fine distinctions between variations, and because of their use
in formalizing counting arguments, precisely characterizing the proofs of the pigeonhole principle
and its variants is an on-going theme of work in proof complexity.

1.1 Proof overview

Our proof follows the random walk with restarts strategy of Alekseev and Itsykson [AI25] with
some simplifying modifications. To illustrate their approach, we now sketch a proof that every size
S Resolution proof of the bit pigeonhole principle with n holes must have depth Ω(n1.5/ logS). Our
strategy for the Res(⊕) bound will be very similar.

We wish to find a sequence of clauses C0 = ⊥, C1, . . . , Ck in the proof such that for each i ∈ [k],
there is a path of length d :=

√
n between Ci−1 and Ci, and k = Ω(n/ logS). To ensure that k

is large, we will want the width to only increase by O(logS) when going from clause Ci−1 to Ci.
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We will maintain the property that for each clause Ci, whose width is O(i logS), there is a partial
assignment ρi fixing O(i logS) blocks of the input to distinct holes which falsifies Ci.

Suppose we have found a clause Ci which is at depth i
√
n from the root. We find the next

clause Ci+1 in the following way. Let Ui ⊆ {0, 1}l denote the collection of holes which have been
assigned to some pigeon by ρi and let Fixi ⊆ [m] denote the blocks that are fixed by ρi. Suppose
|Ui| ≤ n/3. Consider a random assignment x ∈ ({0, 1}l)m which is picked uniformly from all
assignments consistent with ρ and for which all of the pigeons in [m] \ Fixi are sent to holes in
{0, 1}l \Ui. Note that the only clauses of BPHPm

n which can be falsified by such an assignment are
those mentioning two pigeons from [m] \ Fixi.

Consider the depth d decision tree T obtained by unraveling the DAG rooted at Ci and only
considering nodes up to distance d. Since each query affects at most one block, by the standard
birthday problem calculation, with probability at least 1− d2/2(n− |Ui|) ≥ 1/4, the decision tree
has not found a collision under the above distribution. Since the DAG only has S nodes, there is
some clause C for which the corresponding leaves in the decision tree are reached with probability
at least 1/(4S) without having found a collision. If C mentions r pigeons outside Fixi, then the
probability that a random assignment picked above falsifies C is at most (n/2(n− |Ui|))r ≤ (3/4)r.
Together these imply that r ≤ O(logS). So we can take Ci+1 := C and there is some extension
ρi+1 of ρi fixing only O(logS) additional blocks to distinct holes in {0, 1}l \Ui. This argument can
be repeated as long as |Ui+1| ≤ n/3 implying that we can take k = Ω(n/ logS) as desired.

The overall strategy for the Res(⊕) lower bound is similar. Our random walk analysis can be
seen as an extension of the ideas of Efremenko, Garlik and Itsykson [EGI24] but phrased in terms
of simulating PDTs as in the alternative proof of the random walk analysis for BPHP provided
by Byramji and Impagliazzo [BI24]. At a high level, their argument for the uniform distribution
is as follows. To give a lower bound against PDTs, their analysis tries to mimic the argument for
ordinary decision trees. To do this, they rely on the idea of localizing parities used for PDT lifting
theorems [CMSS23, BK23] combined with the observation that if some variable xi,j in a parity P
is uniformly distributed and is independent of all other variables xi′,j′ , i

′ ̸= i or j′ ̸= j, occurring
in P , then this parity is also a uniform bit which is independent of all variables other than xi,j .
This gives the ability to condition on the value of this parity while still not having revealed any
information about the other variables.

Whenever we localize a parity to a variable xi,j , we also condition on the values of all xi,h, h ∈
[l] \ {j}. In this way, each parity query affects just one block. In the overall analysis, we essentially
only rely on the revealed bits ignoring the parity constraints. Specifically in the case of BPHP, for
a block where one of the variables is marked (xi,j is fixed in terms of other variables) and the rest
are fixed to bits, we think of that pigeon as being sent to two holes obtained by considering both
possible values of fixing the marked variable. This does not change the probability of a collision
significantly from sending each pigeon to just one random hole.

Our proof here is an extension of the above idea to product distributions where each block
is uniform over a large fraction, say 2/3, of inputs {0, 1}l, by using ideas from recent simulation
theorems for randomized parity decision trees [PS25, BI24, BGGMY25]. Since each parity is fairly
balanced with respect to this distribution, we can still show that to simulate any depth d PDT on
such a distribution we only need to reveal O(d) many blocks except with probability exp(−Ω(d)).

To reason about Res(⊕) proofs, instead of maintaining partial assignments fixing blocks to only
bits, we will consider affine restrictions which fix some blocks to linear functions of all unfixed
blocks. Still, our affine restrictions will be very similar to the above partial assignments, in that
for each fixed block, all but at most one of the variables are fixed to bits. As described above,
this lets us think of that pigeon being sent to one of at most two holes. To find such an affine
restriction which falsifies a linear clause ¬Φ reached, we rely on properties of closure and safe
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systems, introduced by Efremenko, Garlik and Itsykson [EGI24], along with some other ideas used
in their BPHPn+1

n lower bound for regular Res(⊕).
To get the bound D

√
logS = Ω(n1.5) instead of just D logS = Ω(n1.5), we rely on the insight

of Alekseev and Itsykson [AI25] that this random walk with restarts approach works even when we
have small success probability as long as it is at least polynomial in 1/S. This allows us to choose
the length of the walk to be

√
n logS instead of just

√
n. (Here we can assume S ≤ 2ϵn for some

suitable constant ϵ since otherwise the statement follows from the general depth lower bound Ω(n)
[EGI24].)

2 Preliminaries

For a search problem R ⊆ {0, 1}N ×O, for any x ∈ {0, 1}N , R(x) denotes {o ∈ O | (x, o) ∈ R}.
For a string y ∈ {0, 1}l and j ∈ [l], we use y⊕j to denote the string which is the same as y but with
the jth bit flipped ((y⊕j)j ̸= yj).

We will mostly consider inputs x from ({0, 1}l)m viewed as m blocks of l bits. It will be
convenient to allow parities to also contain a constant term, that is a parity is a function on
({0, 1}l)m of the form b +

∑
i∈[m],j∈[l] ci,jxi,j where b ∈ F2 and ci,j ∈ F2 for all i ∈ [m], j ∈ [l]. For

B ⊆ [m], we use LB to denote the collection of all parities P whose support lies in B, supp(P ) ⊆ B.
A linear form is a homogeneous polynomial of degree 1. If v is a linear form and b ∈ F2, v = b

is a linear equation. A linear system is a collection of linear equations. For any satisfiable linear
system, we will assume that it is represented by a collection of linearly independent equations. We
will not distinguish between different linear systems defining the same affine subspace.

2.1 Safe collections and closure

We make use of the notions of closure and safe collections of linear forms, introduced by [EGI24].
A set of linear forms V , is said to be safe if there is no subset W ⊆ span(V ) such that the

linear forms in V are linearly independent and the support of W (the blocks in [m] whose variables
appear in W ) has size less than |W |.

For S ⊆ [m], V [\S] denotes the linear forms obtained from V by setting all variables in blocks
in S to 0. The closure of V , denoted Cl(V ), is the minimal set S such that V [\S] is safe. Abusing
notation, for a linear system Φ, we will use Cl(Φ) to denote the closure of the linear forms of Φ.
Similarly we say that Φ is safe if the associated set of linear forms is safe. The fact that safety and
closure do not depend on the choice of basis [EGI24] allows us to freely apply invertible operations
to the rows of a linear system or a collection of linear forms.

We now recall some of the properties that we will use.

Lemma 2.1 ([EGI24]). Let V be a collection of k independent linear forms and M the correspond-
ing coefficient matrix. V is safe if and only if we can pick k variables, no two from the same block,
such that the corresponding columns in M are linearly independent.

Lemma 2.2 ([EGI24]). If F is a collection of linear forms, then |Cl(F )| + dim⟨F [\Cl(F )]⟩ ≤
dim(F ).

2.2 Affine DAGs and affine restrictions

We will use affine DAGs to reason about Res(⊕) proofs in a top-down way as in prior work. These
are essentially the same as Res(⊕) refutation graphs [EGI24, AI25]. We prefer the term affine
DAGs so that we can discuss search problems that are not necessarily false clause search problems.
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An affine DAG for a search problem R ⊆ {0, 1}N ×O is a directed acyclic graph with one source
where every internal node has outdegree 2 and it is labeled in the following way:

• At each non-sink node v, we have a linear system Φv on {0, 1}N and a parity query Pv on
{0, 1}N .

• At each sink w, we have a linear system Φw on {0, 1}N and an output label ow ∈ O.

The linear system at the source node must be the empty system (which is satisfied by all x ∈
{0, 1}N ). For every internal node v, one of the outgoing edges is labeled Pv = 0 and the other is
labeled Pv = 1. We have the consistency requirement that if the edge (v, w) is labeled by Pv = b,
then the system Φw is implied by the system Φv ∧ {Pv = b}. For the DAG to correctly solve R, we
require that for every sink w, every x ∈ {0, 1}N satisfying Φw must also satisfy (x, ow) ∈ R.

Semantically, each node in an affine DAG corresponds to an affine subspace of FN
2 and for an

internal node v, if its immediate successors are w1 and w2, then the affine subspace corresponding to
node v is contained in the union of the affine subspaces at nodes w1 and w2. For considering affine
restrictions below, it will be convenient to allow inconsistent systems in an affine DAG. Similarly,
an empty set will be considered an affine subspace.

Every Res(⊕) refutation of a CNF formula ϕ gives an affine DAG solving the search problem Rϕ

associated with ϕ [EGI24] whose size and depth are no larger than the size and depth, respectively,
of the Res(⊕) refutation. With this in mind, we will only discuss affine DAGs from now on.

The following lemma is essentially Lemma 2.3 in [EGI24].

Lemma 2.3 ([EGI24]). Consider nodes u and v in an affine DAG with systems Φu and Φv respec-
tively such that there is some path p from u to v. Let Ψ be the system consisting of all equations
labeling the edges of p. Then Φu ∧Ψ implies Φv.

We now consider inputs in ({0, 1}l)m. We will make use of certain block-respecting affine
restrictions in our proof. Since we do not use any other kind of affine restrictions, we simply call
them affine restrictions. Recall that LB denotes the collection of all linear functions supported on
B. Let A ⊆ [m]. We say that ρ : {xi,j | i ∈ A, j ∈ [l]} → L[m]\A is an affine restriction fixing A.

For a parity P on ({0, 1}l)m and an affine restriction ρ fixing A, we use P |ρ to denote the parity
obtained by substituting for all xi,j , i ∈ A, j ∈ [l] according to ρ. This results in a parity in L[m]\A.
Similarly, we use Φ|ρ to denote the linear system obtained by substituting in Φ all xi,j , i ∈ A, j ∈ [l]
according to ρ. This substitution could make the system inconsistent in which case we simply
represent the resulting system by 1 = 0. Otherwise, we tacitly assume that all equations in Φ|ρ
are linearly independent by removing any equations which are implied by others. Again the exact
choice of which redundant equations to remove is not important for what follows.

Let us give an equivalent way of describing Φ|ρ when it is satisfiable. We use Ψρ to denote the
collection of equations defining the affine restriction ρ. (This is essentially just a change in how we
view ρ.) The collection of all equations implied by Φ|ρ is the same as the collection of equations
implied by Φ ∧Ψρ whose support does not contain any variable from A.

If V ⊆ (Fl
2)

m is the affine subspace defined by Φ and W is the set of inputs consistent with
ρ (or equivalently, satisfy Ψρ), the affine subspace defined by Φ|ρ is obtained by considering the
projection of V ∩W onto the blocks not fixed by ρ.

For a given affine DAG D and affine restriction ρ fixing A, we use D|ρ to denote the affine
DAG obtained by applying ρ to each parity and linear system appearing in D. Observe that the
consistency condition still holds for the DAG obtained after applying the restriction. This is perhaps
easiest to see from the semantic view above of how a restriction affects an affine subspace. (Note
that an inconsistent system implies every linear system.) D|ρ does not mention any variable from A.
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If D solves a search problem R ⊆ ({0, 1}l)m×O, then D|ρ solves R|ρ where R|ρ ⊆ ({0, 1}l)[m]\A×O
is defined by R|ρ(y) = R(x) where x is the unique extension of y according to ρ. In other words,
x is the unique solution of Ψρ which agrees with y on the blocks outside A.

2.3 Bit pigeonhole principle and collision-finding

The bit pigeonhole principle BPHPm
n on m pigeons and n = 2l holes (m > n) encodes the unsat-

isfiable statement that m pigeons can be placed into n holes such that no two pigeons are in the
same hole. For each pigeon i ∈ [m], we have variables xi,j , j ∈ [l] encoding the hole it flies to. In

the associated false clause search problem, given such an assignment x ∈ ({0, 1}l)n, the goal is to
find distinct i, k ∈ [m] and z ∈ {0, 1}l such that xi = xk = z.

We will consider the closely related search problem of collision-finding Collmn ⊆ ({0, 1}l)m×
(
[m]
2

)
where we only need to find distinct i, k such that xi = xk. It is easy to see that any affine DAG
solving the false clause search problem associated with BPHPm

n also solves the collision-finding
problem once we change the output labels suitably.

For our proof, we will need to consider a promise version of collision finding where each pigeon
is promised to only fly into a collection of available/allowed holes A ⊆ {0, 1}l. We use CollmA ⊆
({0, 1}l)m ×

(
[m]
2

)
to denote this problem. Formally, CollmA = {(x, {i, k}) | xi = xk, i ̸= k} ∪

{(x, {i1, i2}) | xk /∈ A for some k ∈ [m], i1 ̸= i2}. The second set is to simply allow all outputs for
any input violating the promise. If m > |A|, the problem CollmA is total.

3 PDT lower bound for collision-finding

Let n := 2l = | {0, 1}l |. We use U ⊆ {0, 1}l to denote a collection of used/forbidden holes. Let
A = {0, 1}l \U be the set of available holes. Let µ be the uniform distribution on Am. Let T be a
deterministic parity decision tree on ({0, 1}l)m of depth d.

We describe a procedure, Algorithm 1, which will let us give a lower bound on the probability
that T has not solved CollmA when run on the distribution µ. Since the procedure is similar to recent
simulations for randomized parity decision trees [PS25, BI24, BGGMY25], we call it a simulation.

Lemma 3.1. The simulation maintains the following invariants in the beginning of each iteration
of the while loop:

1. The collection of equations L uniquely determines xi, i ∈ [m]\F as linear functions of xi, i ∈ F .
Moreover, for each assignment to all blocks in F , if we assign values to xi (i ∈ [m] \ F )
according to L, we have xi ∈ A for each i ∈ [m] \ F .

2. L implies all the parity constraints on the path from the root to the current node.

Proof. The proof is by induction on the number of iterations, iter. At the beginning of the first
iteration, iter = 0 and all the statements are seen to be trivially true.

So suppose the statement holds at the beginning of the iteration when iter = i, i ≥ 0. We
want to show that all the conditions also hold at the end of the iteration (at which point we have
iter = i+ 1).

In the case that the condition in Line 10 is satisfied, we do not change L and the parity
constraint labeling the edge traversed in this iteration is implied by the condition in Line 10. So
all the invariants are satisfied at the end of the iteration.

Next let us consider the case where the else clause on Line 12 is executed. The case y⊕j /∈ A is
clear since in this case we explicitly set xi,j = yj ensuring that xi = y ∈ A. We stay at the same
node in this case.
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Algorithm 1: PDT simulator

Input: U ⊆ ({0, 1}l)m, PDT T
1 A = {0, 1}l \U ; // Available holes

2 C ← [] ; // List of holes used during simulation

3 F ← [m] ; // Free blocks

4 L← ∅ ; // Collection of equations

5 v ← root of T ;
6 iter ← 0 ;
7 while v is not a leaf do
8 P ′ ← query at v ;
9 P ← P ′ after substituting according to L;

// P now depends only on blocks in F and is equivalent to P ′ under L
10 if P is a constant, b ∈ F2 then
11 Update v according to b;

12 else
13 (i, j)← min{(i, j) ∈ F × [l] | xi,j appears in P}} ;
14 Pick y uniformly at random from A;
15 L← L ∪ {xi,h = yh | h ∈ [l] \ {j}};
16 if y⊕j /∈ A then
17 L← L ∪ {xi,j = yj};
18 Append {y} to C;

19 else
20 Pick b ∈ F2 uniformly at random;
21 L← L ∪ {P = b};
22 Append {y, y⊕j} to C;
23 Update v according to b;

24 F ← F \ {i};
25 iter ← iter + 1;

26 if there exist i ̸= k such that Ci ∩ Ck ̸= ∅ then
27 return FAIL ; // There is a potential collision

28 else
29 return v, C, L, F
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In the other case y⊕j ∈ A, we know that no matter what bit we set xi,j to we will have xi ∈ A.
In this case, we fix xi,j as determined by the constraint P = b. Since we ensured that under L, the
constraint P = b is equivalent to the original parity constraint at the edge just crossed, we have
preserved the invariant that each parity constraint on the path from the root to the current node
is implied by L.

In all these cases, to see the first point, note that L has an upper triangular structure if we
rearrange the columns so that all the fixed blocks appear before the free blocks. Moreover, as
explained above, the fixed bits in these blocks ensure that for any assignment to the free blocks,
each fixed block belongs to A.

Lemma 3.2. Let W (v) be the event that node v of T is visited by Algorithm 1. Let V (v) be
the event that for a random x ∼ µ, running T on x reaches v. Then for every v ∈ T , we have
Pr[W (v)] = Pr[V (v)].

Proof. Suppose at the beginning of an iteration, we have a linear system L which fixes some subset
S := [m] \F of blocks as linear functions of the blocks F such that conditioned on x ∼ µ satisfying
L, the distribution on x restricted to the free blocks F is uniform on AF . We will show that the
simulation adds equations to L with the correct probability and the resulting system L also satisfies
the above condition. The claim then follows by induction and Lemma 3.1.

In the case that the parity we are trying to simulate is already determined by L, it is clear that
the simulation goes to the correct child with probability 1.

Consider the case where the parity query is not determined by L. Let P denote the equivalent
parity query under L which only depends on the blocks in F . Fix i ∈ F, j ∈ [l] occurring in P . We
condition on all xi,h, h ̸= j (Lines 15-16). If these uniquely determine xi,j also according to A, then
we fix xi,j to the unique possible value. This happens in the if clause at Line 16. Since block i is
independent of the other blocks, the blocks in F \ {i} continue to be distributed according to the
uniform distribution on AF\{i}.

In the case that xi,j is not uniquely determined by xi,h, h /∈ [l], xi,j is a uniform random bit.
Since the parity P (which only depends on blocks in F ) contains xi,j , this parity is independent
of xi′,h′ for i′ ∈ F \ {i} and is uniformly distributed. The independence implies that conditioned
on P = b for any b, the distribution on all blocks in F \ {i} remains the uniform distribution on
AF\{i}.

Lemma 3.3. Let d denote the depth of the PDT T . If |A| ≥ 2n/3 and 35 ≤ d ≤ |A|/300, then the
probability that Algorithm 1 does not return FAIL is at least exp(−64d2/|A|)/2.

Proof. We need to lower bound the probability that there is no collision in C. We will give a lower
bound on the probability that there is no collision in C and iter ≤ 4d. It suffices to give an upper
bound on Pr[iter > 4d] and a lower bound on the probability that there is no collision in C in the
first 4d iterations.

To bound the probability that iter > 4d, we will use that in each of the first 4d iterations (if we
have not already reached a leaf), after conditioning on the history, the probability that Line 10 or
19 is executed is at least 1/2. Remember that whenever either of these lines is executed, we move
down the PDT. Since the depth of the PDT is d, the only way we could not have reached a leaf
after 4d iterations is if these lines were executed fewer than d times during the first 4d iterations.

Define for each i ∈ [4d], the following random variables Xi and Yi where Xi encodes the changes
to the state of the simulation (L,F, v ) that occur during the ith iteration and Yi is a binary random
variable which is 1 if the simulation ended before the ith iteration, or Line 10 or 19 is executed and
satisfied in the ith iteration. Note that Yi is determined by X1, . . . , Xi.
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Conditioned on X1, X2, . . . , Xi−1 (i ≤ 4d), we know (deterministically) that one of the following
cases happens.

1. There is no ith iteration

2. The if clause following Line 10 is executed in the ith iteration

3. The else clause Line 12 is executed in the ith iteration

In the first two cases, we have Yi = 1 by definition.
So let us verify in the third case that Pr[Yi = 1 | X1, X2, . . . , Xi−1] ≥ 1/2. Note that together

X1, X2, . . . , Xi−1 determine F,L in the beginning of the ith iteration. The probability that y⊕j /∈ A
is at most (n−|A|)/|A| since each such y with y⊕j /∈ A corresponds to a unique used hole in [n]\A.
Since we assumed |A| ≥ 2n/3, we get that this probability is at most 1/2. Thus we have y⊕j ∈ A
with probability at least 1/2 in which case Line 19 is executed.

This implies E[
∑4d

i=1 Yi] ≥ 2d. We now use a variant of the Chernoff bound which applies to
such dependent Yi’s (see, for instance, [MU17, Lemma 17.3]) to conclude

Pr[
4d∑
i=1

Yi < d] ≤ exp(−d/4).

We next give a lower bound on the probability that no collision is created in C in the first 4d
iterations. To do this, we will give a lower bound on the conditional probability that in a given
iteration i, conditioned on the events in previous iterations, the sampled y is such that the new set
{y} or {y, y⊕j} appended to C does not cause a collision with one of the previous sets in C.

If in the ith iteration, we are in the trivial case where P is already determined by L, then the
probability of there being no new collision is 1.

So consider the case where some y is sampled uniformly from A. In each iteration, we append
at most one set to C and each such set contains at most 2 elements. This means that the union
of all sets in C has size at most 2(i − 1) at the beginning of the ith iteration. So the total
number of bad y ∈ A sampling which can cause a collision with a previous string in C is at most
2 · 2(i − 1) = 4(i − 1) where the additional factor 2 comes from also considering collisions caused
by y⊕j . Thus the probability that the sampled y is such that the appended {y} or {y, y⊕j} causes
a collision is at most 4(i− 1)/|A|.

Since we have shown that with probability at least 1− 4(i− 1)/|A|, no new collision is created
in C in the ith iteration after conditioning on all the events in previous iterations, this is also a
lower bound on the probability that no new collision is created if we condition on any subset of
allowed events in the previous iterations. In particular, conditioned on there being no collision in
C at the beginning of the ith iteration, the probability that there is no collision in C at the end of
the ith iteration is at least 1− 4(i− 1)/|A|.

Combining these, we get that the overall probability that there is no collision in C in the first
4d iterations is at least

4d−1∏
i=0

(
1− 4i

|A|

)
≥

4d−1∏
i=0

exp

(
− 8i

|A|

)
≥ exp(−64d2/|A|)

For the first inequality, we used 1− x ≥ exp(−2x) which holds for x ≤ 0.75.
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By the union bound,

Pr[no collision in C and iter ≤ 4d]

≥ Pr[no collision in C in first 4d iterations]− Pr[iter ≥ 4d]

≥ exp(−64d2/|A|)− exp(−d/4) ≥ exp(−64d2/|A|)/2

where the last inequality used the assumed bounds on d.

Lemma 3.4. Let v, C, L, F be returned by a successful run of Algorithm 1. Suppose |A| ≥ 3. For
every pair i, k ∈ [m], i ̸= k, there exists x ∈ Am such that xi ̸= xk and x reaches the leaf v.

Proof. By Lemma 3.1, L implies all the parity constraints on the path from the root to v. So it is
sufficient to find x ∈ Am satisfying L for which xi ̸= xj . We consider cases depending on whether
i, k belong to F .

1. If {i, k} ⊆ F , set xi and xk to distinct values from A, set all other blocks in F to arbitrary
strings in A and fix blocks outside F according to L. By Lemma 3.1, such a string x is unique
and lies in Am.

2. If exactly one of {i, k} lies in F , say k, then we consider the possible strings that xi can be
according to L. Since i /∈ F , L fixes at least l − 1 bits of xi. So there are at most two such
strings and there is some other string in A since |A| ≥ 3. Set xk to such a string. Set all
other blocks in F to arbitrary strings in A and fix blocks outside F according to L.

3. If both i, k lie outside F , we set blocks in F to arbitrary strings in A and fix blocks outside
F according to L. Since this was a successful run, we must have xi ̸= xk as all the sets in C
are disjoint and xi, xk belong to sets at different indices in C.

4 Size-depth lower bound for affine DAGs solving collision-finding

The following simple lemma will let us upper bound the rank of a linear system in terms of the
probability that it is satisfied under the distribution µ.

Lemma 4.1. Let Ψ be a linear system on ({0, 1}l)m whose rank is r. Let A ⊆ {0, 1}l be such that
|A| ≥ 2n/3. Let µ be the uniform distribution on Am. Then

Pr
x∼µ

[x satisfies Ψ] ≤
(
3

4

)r

.

Proof. Fix a collection of r linearly independent columns of the coefficient matrix of Ψ. Let B
the blocks containing the corresponding variables. We have b := |B| ≤ r. Condition on all blocks
outside B. For any possible assignment to all blocks outside B, the number of solutions for the
resulting system Ψ′ whose rank is r and depends on b blocks (bl variables) is nb

2r . In particular, the

number of such solutions from Ab is at most nb

2r . By assumption, |A|b ≥ (2n/3)b. So the conditional

probability is at most nb

2r /(2n/3)
b = 1.5b/2r ≤ (3/4)r. Since this holds for all possible assignments

to the blocks outside B, we have the bound Prx∼µ[x satisfies Ψ] ≤
(
3
4

)r
as desired.

The next lemma will be used between random walks to obtain an affine restriction which fixes
few blocks to distinct strings and implies the linear system at the node reached at the end of the
random walk.
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Lemma 4.2. Let v, C, L, F be returned by a successful run of Algorithm 1 when run on T and
U ⊆ {0, 1}l. Let Ψ be the linear system labeling the node in the affine DAG corresponding to v.
Let r be the rank of Ψ. If |U | + 2r ≤ n/2, then there exists an affine restriction ρ fixing blocks
[m] \ F ′ and satisfying the following conditions:

1. The number of blocks fixed by ρ, say s, is at most r.

2. Ψ is implied by Ψρ (the linear system equivalent to the affine restriction ρ).

3. There exists a set U ′ ⊆ {0, 1}l \U such that |U ′| ≤ 2s, |U ′| ≥ s and for any assignment to F ′,
if we set the blocks [m] \ F ′ according to ρ, all the strings assigned to [m] \ F ′ lie in U ′ and
are distinct.

Proof. Consider the blocks in Cl(Ψ) ∩ F . Let Û be the set of all possible holes used by the blocks
in Cl(Ψ) \ F during this run of the simulation. Since we assign at most two holes to each fixed
block during the simulation, |Û | ≤ 2|Cl(Ψ) \ F |. Assign distinct strings from {0, 1}l \(U ∪ Û) to
the blocks in Cl(Ψ) ∩ F . This can be done if |Cl(Ψ) ∩ F | ≤ n − (|U | + 2|Cl(Ψ) \ F |). This holds
since |U |+2|Cl(Ψ) \F |+ |Cl(Ψ)∩F | ≤ |U |+2(|Cl(Ψ) \F |+ |Cl(Ψ)∩F |) ≤ |U |+2r ≤ n/2 where
the second inequality used Lemma 2.2.

Now assign all blocks in F \ Cl(Ψ) arbitrarily and extend to a full assignment x by fixing all
blocks in [m]\F according to L. By Lemma 3.1, there is a unique such extension which also ensures
that all fixed blocks lie in {0, 1}l \U . By Lemma 3.1, we have that L implies all parity constraints
on some path p from the root to the node labeled by Ψ. By Lemma 2.3, the system of parity
constraints on path p implies Ψ. Combining these, we get that L implies Ψ and in particular, the
full assignment x defined above satisfies Ψ.

This means that the partial assignment to blocks in Cl(Ψ) which agrees with x satisfies all
equations in span(Ψ) whose support is contained in Cl(Ψ). Let σ1 denote this (bit-fixing) restriction
which sets blocks in Cl(Ψ) according to x. Since we are considering a successful run of the algorithm,
the blocks in Cl(Ψ) \ F are assigned distinct strings from Û which does not contain any strings
from U . Moreover, we ensured above that each block in Cl(Ψ) ∩ F is not assigned a string from
U ∪ Û . So σ1 fixes blocks in Cl(Ψ) to distinct strings in {0, 1}l \U .

Now consider Ψ′ := Ψ|σ1 . Since σ1 fixes blocks in Cl(Ψ) to bits, Ψ′ is safe. By Lemma 2.1,
there exist dim(Ψ′) variables lying in distinct blocks such that the corresponding columns in Ψ′ are
linearly independent. Let X denote the set of these variables and B the set of blocks containing
X. We will now define a restriction σ2 which fixes all variables in blocks B except those in X to
bits. We wish to ensure that irrespective of how the bits in X are set, σ2 guarantees that together
with σ1 all blocks in Cl(Ψ) and B are assigned distinct strings from {0, 1}l \U .

We do this inductively, considering all blocks in B in any order and for each block, picking
an assignment to its l − 1 variables that do not belong to X in such a way that the two possible
strings do not agree with any of the previously assigned strings. This can be done as long as n/2 >
|U |+|Cl(Ψ)|+2(dim(Ψ′)−1). To see this, note that the left side denotes the number of assignments
to l − 1 bits. The right hand side denotes the maximum number of forbidden assignments: there
are |U | forbidden holes from before, |Cl(Ψ)| holes assigned to blocks in the closure by σ1 and 2
forbidden assignments for each block in B which we have already fixed. This condition is satisfied
since we have |U |+ |Cl(Ψ)|+2(dim(Ψ′)− 1) < |U |+2(|Cl(Ψ)|+dim(Ψ′)) ≤ |U |+2r ≤ n/2 where
the second to last inequality used Lemma 2.2. So such a restriction σ2 exists.

Finally consider the system Ψ′|σ2 . Since the restriction σ2 only fixed variables in blocks B
outside X to bits, X is still a collection of dim(Ψ′) variables whose corresponding columns are
linearly independent. So we can solve for each variable in X to express it as a linear function
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depending only on variables in blocks outside Cl(Ψ)∪B. This gives us the desired affine restriction
once we combine with the restrictions σ1 and σ2.

Let us verify that this affine restriction satisfies the desired properties. The number of blocks
fixed is s = |Cl(Ψ)|+ dim(Ψ[\Cl(Ψ)]) ≤ r by Lemma 2.2.

To see that Ψρ implies Ψ, first note that all equations supported on the closure of Ψ are satisfied
by the restriction σ1 above and ρ is an extension of σ1. Next we need to check that Ψ|σ1 is implied
by ρ. This was ensured since Ψ|σ1 is implied by σ2 and Ψ′|σ2 above which are contained in ρ.

For the third point, we obtain U ′ by considering all possible strings that the blocks in Cl(Ψ)∪B
are assigned by σ1∪σ2. Note that the blocks in Cl(Ψ) are fixed completely to distinct strings outside
U . Each block in B is assigned two strings since only one variable is left undetermined by σ2. So the
set of all strings assigned to these blocks has size |Cl(Ψ)|+2dim(Ψ′) ≤ 2|Cl(Ψ)|+2dim(Ψ′) = 2s.
Similarly, |U ′| = |Cl(Ψ)| + 2dim(Ψ′) ≥ |Cl(Ψ)| + dim(Ψ′) = s. We also ensured above that no
matter how the bits in X are assigned, all the blocks in Cl(Ψ) ∪B receive distinct strings.

Next we prove our main lemma which performs a random walk to find a node far from the root
where the DAG has not made much progress.

Lemma 4.3. Let A ⊆ {0, 1}l with |A| ≥ 2n/3 and m > |A|. Suppose there is an affine DAG
C solving CollmA whose depth is at most D and size is at most S. Suppose lnS ≤ n/106. Set
d := ⌊

√
n lnS⌋. There exist m′ ≥ m − O(logS) and A′ ⊆ A with |A′| ≥ |A| − O(logS) such that

m′ > |A′| and there exists an affine DAG C ′ solving Collm
′

A′ whose depth is at most D − d and size
is at most S.

Proof. Let T be the depth d PDT obtained by starting at the root of the DAG C, repeating nodes
at depth at most d if required and removing any nodes beyond depth d. Run Algorithm 1 on T and
U := {0, 1}l \A. By Lemma 3.3, it succeeds with probability p at least S−O(1). The assumptions
on d for Lemma 3.3 are satisfied as explained next. The lower bound on d follows from n being
large. Combining the assumptions logS ≤ n/106 and |A| ≥ 2n/3 implies the required upper bound
on d. Since the affine DAG has size at most S, there must be a node w in the DAG such that the
leaves in T corresponding to w are successfully reached with probability at least p/S ≥ S−O(1).
By Lemma 3.2, this is also a lower bound on the probability that when x is picked uniformly at
random from Am and we follow the path taken by x in the DAG C starting at the root, the path
reaches the node w.

Let Φ denote the linear system at w in the DAG C. By Lemma 4.1 and the S−O(1) lower bound
on the probability of Φ being satisfied by a random x ∈ Am, we get that the rank r of Φ is at most
O(logS). Now fix a successful run of the simulation which ends at a leaf v in T corresponding to
w. Apply Lemma 4.2 to this successful run and the linear system Φ to obtain ρ, s and U ′ ⊆ A.
Here ρ is an affine restriction fixing s blocks as linear functions of the other m− s blocks.

Set m′ = m−s and A′ = A\U ′. Since |U ′| ≥ s, we have m′ = m−s > |A|−s ≥ |A|−|U ′| = |A′|.
Consider C|ρ which solves CollmA |ρ. Note that since Ψρ implies Φ (Lemma 4.2), Φ|ρ is the empty
system. So the node w in C|ρ is now labeled by the empty system and we can consider the affine
DAG C ′ consisting only of nodes reachable from w. C ′ still solves CollmA |ρ.

We claim that C ′ solves Collm
′

A′ after some minor modifications. We first modify C ′ so that it
solves Collm

′
A′ when the input blocks are indexed using F ′ instead of [m′]. Fix any distinct i and k

in F ′. For any sink node in C ′ whose output label is not contained in F ′, we replace it by {i, k}.
We now verify that for every sink in C ′, the output label is correct for every input satisfying

the linear system at the sink. Note that we only need to check this for inputs in (A′)F
′
since for

other inputs, all outputs are considered correct. We consider cases on the original output label
i′, k′ (before changing it above):
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1. If {i′, k′} ⊆ F ′, then the label stays unchanged. Consider any x ∈ (A′)F
′
satisfying the linear

system labeling this node. Then since A′ ⊆ A, x’s extension y according to ρ satisfies y ∈ Am

and we must have yi′ = yk′ since C ′ solves CollmA |ρ. This implies xi′ = xk′ since yi′ = xi′ and
yk′ = xk′ . So the output label is correct for all x at this node.

2. If |{i′, k′} ∩ F ′| = 1, the label is changed to {i, k}. Suppose i′ ∈ F ′ (the case k′ ∈ F ′ is
analogous). Consider any x ∈ (A′)F

′
satisfying the linear system at this node. Its extension

y according to ρ lies in Am. So we have yi′ = yk′ . However, yk′ ∈ U ′ by Lemma 4.2 and
yi′ = xi′ ∈ A′ which is a contradiction since A′ = A \ U ′. So there is no x ∈ (A′)F

′
which

satisfies the linear system at this node.

3. If {i′, k′} ∩ F ′ = ∅, the label is changed to {i, k}. By Lemma 4.2, for every x ∈ ({0, 1}l)F ′
,

the extension y according to ρ satisfies yi′ ̸= yk′ since i′, k′ lie outside F ′. This means that
the linear system at this node must be inconsistent after applying the restriction ρ.

So C ′ correctly solves Collm
′

A′ on the index set F ′. Finally we relabel according to any bijection
between F ′ and [m′] to obtain a DAG solving Collm

′
A′ .

It is clear that the DAG C ′ has size at most S. If the DAG C ′ has depth more than D − d,
then the original DAG C must have depth more than D. To see this, take a successful run of the
algorithm ending at a leaf v in T where v corresponds to w in C. Observe that v must be at depth
d since otherwise w would be a sink in C which is not possible by Lemma 3.4. So there is a path p
in C from the source to w of length d corresponding to the root to v path in T . If there is a path
in C ′ of length more than D− d, there is a corresponding path in C which we can combine with p
to obtain a path of length more than D, which would be a contradiction.

We now make repeated use of the above lemma to prove our result.

Theorem 4.4. Suppose there exists an affine DAG C on ({0, 1}l)n of depth D and size S which
solves Collmn , m > n. Then D and S satisfy D

√
logS ≥ Ω(n1.5).

Proof. We may assume that S ≤ en/10
6
. If this is not the case, then the Ω(n) lower bound on the

depth of any affine DAG for Collmn [EGI24] implies the desired bound.
Set A = {0, 1}l. We repeatedly invoke Lemma 4.3 with A, m and C, updating A, m and C

according to A′, m′, C ′ guaranteed by the statement. We can do this as long as |A| ≥ 2n/3.
The other conditions required by the lemma continue to hold by the conclusion of the lemma
statement. In each iteration, |A| decreases by at most O(logS). So we can use Lemma 4.2 at
least (n/3)/O(logS) = Ω(n/ logS) many times. This finally gives a DAG of depth at most D −
Ω(nd/ logS) where d = ⌊

√
n lnS⌋. Since depth must be nonnegative, we have D ≥ Ω(nd/ logS) =

Ω(n1.5/
√
logS) as desired.
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