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Abstract

This paper makes two primary contributions. First, we introduce the concept of counting
martingales and use it to define counting measures, counting dimensions, and counting strong
dimensions. Second, we apply these new tools to strengthen previous circuit lower bounds.

Resource-bounded measure and dimension have traditionally focused on deterministic time
and space bounds. We use counting complexity classes to develop resource-bounded counting
measures and dimensions. Counting martingales are constructed using functions from the #P,
SpanP, and GapP complexity classes. We show that counting martingales capture many martin-
gale constructions in complexity theory. The resulting counting measures and dimensions are
intermediate in power between the standard time-bounded and space-bounded notions, enabling
finer-grained analysis where space-bounded measures are known, but time-bounded measures re-
main open. For example, we show that BPP has #P-dimension 0 and BQP has GapP-dimension
0, whereas the P-dimensions of these classes remain open.

As our main application, we improve circuit-size lower bounds. Lutz (1992) strengthened
Shannon’s classic (1 − ϵ) 2

n

n lower bound (1949) to PSPACE-measure, showing that almost all

problems require circuits of size 2n

n

(
1 + α logn

n

)
, for any α < 1. We extend this result to

SpanP-measure, with a proof that uses a connection through the Minimum Circuit Size Problem
(MCSP) to construct a counting martingale. Our results imply that the stronger lower bound
holds within the third level of the exponential-time hierarchy, whereas previously, it was only
known in ESPACE. Under a derandomization hypothesis, this lower bound holds within the
second level of the exponential-time hierarchy, specifically in the class ENP. We study the #P-
dimension of classical circuit complexity classes and the GapP-dimension of quantum circuit
complexity classes. We also show that if one-way functions exist, then #P-dimension is strictly
more powerful than P-dimension.
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1 Introduction

Resource-bounded measures and dimensions [9, 53–55, 57] are fundamental tools for analyzing
complexity classes, offering refined ways to understand the power and limitations of different compu-
tational resources [4, 37, 56, 61]. Traditional approaches based on real-valued martingales provide
insights into classes like P, NP, PSPACE, and EXP, but they leave gaps when it comes to many
intermediate complexity classes. This paper introduces counting martingales, which offer a new
perspective on these intermediate classes by utilizing functions from counting complexity classes.

Our main contributions are:

1. Counting Martingales and Counting Measures and Dimensions: We introduce counting mar-
tingales, which generalize traditional martingales by incorporating functions from counting
complexity classes [20, 46, 50, 84], creating intermediate counting measures and dimensions.
For instance, we define #P-measure, SpanP-measure, and GapP-measure as intermediate mea-
sures between P-measure and PSPACE-measure, allowing finer analysis of complexity classes.

2. Applications to Circuit Complexity: Using these new measures, we provide novel results on
nonuniform complexity and the Shannon-Lupanov bound [52, 78]. Shannon’s (1− ϵ)2

n

n lower
bound was improved by Lutz [55] who showed that for any α < 1, almost all problems require

circuits of size 2n

n

(
1 + α logn

n

)
. We improve this result further by extending it to SpanP-

measure. In our proof, we construct a counting martingale using a connection through the
Minimum Circuit Size Problem (MCSP). Moreover, we study classical and quantum circuit
complexity classes using #P-dimension and GapP-dimension, respectively.

The standard definitions of resource-bounded measure use martingales that are real-valued
functions computable within deterministic time and space resource bounds [55]. In this paper,
we use the counting complexity classes #P [84], SpanP [46], and GapP [20, 50] to introduce the
concept of counting martingales and define counting measures, counting dimensions, and counting
strong dimensions that are intermediate in power between the previous time- and space-bounded
measures and dimensions. A #P function counts the number of accepting paths of a probabilistic
Turing machine (PTM), while a SpanP function counts the number of different outputs of a PTM.
Every #P function is also a SpanP function, and the classes are equal if and only if UP = NP [46].
A GapP function counts the difference between the number of accepting paths and the number of
rejecting paths of a PTM [20, 50]. For more background on counting complexity, we refer to the
surveys [23, 76].

A martingale is a function d : {0, 1}∗ → [0,∞) such that

d(w) =
d(w0) + d(w1)

2

for all w ∈ {0, 1}∗. We view a martingale as acting on Cantor Space C = {0, 1}∞ (the infinite
binary tree). The value at any node is the average of the values below it. By induction, the value
at any node is also the average of the values at any level of the subtree below the node:

d(w) =
1

2n

∑
x∈{0,1}n

d(wx).

A martingale starts with a finite amount d(λ) at the root. We may assume d(λ) = 1 without loss
of generality.

3
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Figure 1.1: Cover Martingale Construction (Construction 4.1)

Intuitively, because the average value of a martingale across {0, 1}n is d(λ) = 1, a martingale
is unable to obtain “large” values on “many” sequences. This intuition is formalized into charac-
terizations of Lebesgue measure [49], Hausdorff dimension [30], and packing dimension [9] using
martingales. A class X ⊆ C has measure 0 if and only if there is a martingale that attains un-
bounded values on all elements of X [86]. A class X ⊆ C has Hausdorff dimension s if 2(1−s)n

is the optimal infinitely-often growth rate of martingales on X [57]. A class X ⊆ C has packing
dimension s if 2(1−s)n is the optimal almost-everywhere growth rate of martingales on X [9].

Resource-bounded measure and dimension come from restricting these characterizations to mar-
tingales computable within some complexity class [9, 55, 57]. The most used resource bounds are
polynomial-time (P) and polynomial-space (PSPACE). Generally, it is much easier to construct
PSPACE-martingales than it is P-martingales [35, 43]. For more background on resource-bounded
measure and dimension we refer to the surveys [4, 37, 56, 58, 61, 67, 68, 81].

1.1 Counting Martingales

Our main conceptual contribution is the introduction of counting martingales, which provide inter-
mediate measure and dimension notions between P and PSPACE by using functions from counting
complexity classes to define martingales. Many martingale constructions in complexity theory are
expressed naturally as counting martingales.

For example, a standard technique for constructing a martingale is betting on a cover (see
Figure 1.1) [4, 56]. Given a set A ⊆ {0, 1}∗ and a length n ≥ 0, we choose x ∈ {0, 1}n uniformly at
random and define a martingale dA by

dA(w) = Pr
x∈{0,1}n

[x ∈ A | w ⊑ x] =
|{x ∈ A ∩ {0, 1}n | w ⊑ x}|

2n−|w|

for all w ∈ {0, 1}≤n. Strings of longer length have the value of their length-n prefix. If we can
construct an infinite family of such martingales that cover a class and the sum of their initial values
converges, the Borel-Cantelli lemma applies to show the class has measure 0 [19].

A key difference between space-bounded measure and time-bounded measure is that a space-
bounded martingale can enumerate a covering, whereas a time-bounded martingale does not have
time to do this. The complexity of computing dA depends on the complexity of A and the enu-
meration bottleneck. Suppose that A ∈ P. Naively computing dA would involve an enumeration
of A, requiring polynomial space. Computing dA in polynomial time would only be possible if
we have some special structure in A. For example, if A is P-rankable [3], then dA is polynomial-
time computable [40]. It is also possible to approximately compute dA using an oracle from the
polynomial-time hierarchy [40, 66, 80].

4



The numerator in the definition of dA is in general a #P function if A ∈ P. This is because
we can use a PTM (Probabilistic Turing Machine) to count how many extensions of a string are in
the cover. We call this a #P-martingale. In general, a martingale is a #P-martingale if it can be
approximated by the ratio of a #P function and a polynomial-time function.

The case when the cover A ∈ NP is also interesting, for example when A is the Minimum Circuit
Size Problem (MCSP). Then the numerator is a SpanP function. A martingale of this form is a
SpanP-martingale.

When we use a GapP function for the numerator of a martingale, we call it a GapP-martingale.
We will show that GapP-martingales are capable of measuring quantum complexity classes. Until
now, quantum complexity has not been addressed by resource-bounded measure and dimension.

We call #P-martingales, SpanP-martingales, and GapP-martingales counting martingales. Def-
inition 3.1 contains the formal definitions of counting martingales.

1.2 Counting Measures and Counting Dimensions

A class X has #P-measure 0, written µ#P(X) = 0, if there is a #P-martingale that succeeds on X.
Analogously, a class X has SpanP-measure 0, written µSpanP(X) = 0, if there is a SpanP-martingale
that succeeds on X. Furthermore, a class X has GapP-measure 0, written µGapP(X) = 0, if there
is a GapP-martingale that succeeds on X. These counting measures are intermediate between
P-measure and PSPACE-measure [55]: for every class X ⊆ C,

µP(X) = 0 ⇒ µ#P(X) = 0 ⇒ µGapP(X) = 0
⇓ ⇓

µSpanP(X) = 0 ⇒ µPSPACE(X) = 0.

We do not know of any relationship between µSpanP and µGapP. An individual problem B is ∆-
random if no ∆-martingale succeeds on B. We show that UE problems are not #P-random and NE
problems are not SpanP-random, where UE and NE are the exponential-time versions of UP and
NP. When we have a proposition that is known in PSPACE-measure, but open in P-measure, we
can investigate it in #P-measure, SpanP-measure, or GapP-measure.

We also introduce counting dimensions, #P-dimension, SpanP-dimension, and GapP-dimension,
written dim#P(X), dimSpanP(X), and dimGapP(X), respectively. These dimensions analogously fall
between P-dimension and PSPACE-dimension [57]. For all X ⊆ C,

0 ≤ dimPSPACE(X) ≤ dimGapP(X)

≤ ≤

dimSpanP(X) ≤ dim#P(X) ≤ dimP(X) ≤ 1.

We do not know of any relationship between dimSpanP and dimGapP. We also develop counting strong
dimensions, written Dim#P(X), DimSpanP(X), and DimGapP(X), respectively. These dimensions
similarly fall between P-strong dimension and PSPACE-strong dimension [9]. For all X ⊆ C,

0 ≤ DimPSPACE(X) ≤ DimGapP(X)

≤ ≤

DimSpanP(X) ≤ Dim#P(X) ≤ DimP(X) ≤ 1.

Strong dimension is a more stringent criterion, requiring success to hold for almost all input lengths,
rather than just for infinitely many. We work out the definitions and basic properties of counting
measures and dimensions in Section 3.
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Figure 1.2: Conditional Expectation Martingale Construction (Construction 4.3)

1.3 Our Techniques

Many martingale constructions in complexity theory are expressed naturally as counting martin-
gales. These and other martingale constructions in this paper follow similar patterns. In Section 4
we present five martingale constructions in a unified framework.

1. Cover Martingale. The Cover Martingale construction utilizes a cover set A and defines
the martingale based on the conditional probability that an extension of the current string
belongs to A. If A ∈ UP, this construction produces a #P-martingale; if A ∈ NP, it results in
a SpanP-martingale. If A is in the counting complexity class SPP, then this generates a GapP-
martingale. The class SPP consists of all languages L for which there exists a GapP function
f such that if x ∈ L then f(x) = 1, and f(x) = 0 otherwise [20]. This approach is effective for
capturing known martingale constructions in the literature, particularly in scenarios where
membership within a subset can be determined with unique or nondeterministic witnesses.
For further details, refer to Figure 1.1 and Construction 4.1.

2. Conditional Expectation Martingale. This martingale generalizes the Cover Martingale
by using a counting function f(x) as a random variable and taking its conditional expectation
given the current prefix w. This construction is adaptable to functions within #P, SpanP and
GapP, making it effective for applications that require combining information from extensions
of a given string. The Conditional Expectation Martingale averages the values of f over all
extensions, providing a flexible tool. See Figure 1.2 and Construction 4.3 for an example and
technical details.

3. Subset Martingale. This martingale is designed to succeed on all infinite subsets of a
language B. If B ∈ UP, it produces a #P-martingale, and if B ∈ NP, it yields a SpanP-
martingale. If B ∈ SPP, then this is a GapP-martingale. Unlike deterministic martingales that
can focus directly on a language, the Subset Martingale is unique in its ability to succeed across
all subsets of a language. This property allows us to conclude that #P-random languages are
not in UE, SpanP-random languages are not in NE, and GapP-random languages are not in
SPE (the exponential version of SPP). See Figure 4.1 for an example and Construction 4.5
for a formal definition.

4. Acceptance Probability Martingale. We also show that betting according to the accep-
tance probabilities of a PTM or QTM (quantum Turing machine) yields a counting martingale.
Using this, we show that BPP has #P-dimension 0 and BQP has GapP-dimension 0. See Fig-
ure 4.2 for an example and Construction 4.9 for a formal definition.

6



5. Bi-Immunity Martingale. Mayordomo [65] showed P-random languages are E-bi-immune
and PSPACE-random languages are ESPACE-bi-immune using a construction that we call a bi-
immunity martingale. This construction is designed to succeed on all supersets of an infinite
language. We show that this construction works as counting martingales to show #P-random
languages are UE∩coUE-bi-immune, SpanP-random languages are NE∩coNE-bi-immune, and
GapP-random languages are SPE-bi-immune. See Figure 4.3 for an example and Construction
4.16 for a formal definition.

Entropy Rates. Hitchcock and Vinodchandran [40] showed a covering notion called the NP-

entropy rate is an upper bound for ∆P
3 -dimension, where ∆P

3 = PΣP
2 . In Section 5.1, we extend this

by showing that SpanP-dimension lies between ∆P
3 -dimension and the NP-entropy rate. Informally,

for a complexity class C and X ⊆ C, the C-entropy rate of X is the infimum s for which all elements
of X can be covered infinitely often by a language A ∈ C that has log |A=n|

n ≤ s for all sufficiently
large n. Intuitively, this corresponds to the compression rate when using A as an implicit code,
where it takes log |A=n| bits to specify a member of A=n.

Kolmogorov Complexity. In Section 5.2, we connect #P-measure and #P-dimension to Kol-
mogorov complexity. For a time bound t(n), Kt(x) is the length of the shortest program that
prints x in t(|x|) time on a universal Turing machine. In particular, we extend a result from Lutz
[55] and show that {S | (∃∞n)Kp(S ↾ n) < n − f(n)} has #P-measure 0, where p is a polyno-
mial, and

∑∞
n=0 2

−f(n) is a P-convergent series. In other words, we prove that if S is #P-random,
then Kp(S ↾ n) ≥ n − f(n) almost everywhere. We also show that #P-dimension is at most the
polynomial-time Kolmogorov rate [31, 40]. We build on recent work of Nandakumar, Pulari, Akhil
S, and Sarma [72] on Kolmogorov complexity rates and polynomial-time dimension to show that if
one-way functions exist, then #P-dimension is distinct from P-dimension.

1.4 Our Results

In Section 6 we study the measure and dimension of classical and quantum circuit complexity
classes. Shannon [78] showed that almost all Boolean functions on n input bits require (1 − ϵ)2

n

n -
size circuits. Lutz [55] strengthened this in two ways, showing that the larger circuit complexity
class

Xα = SIZEi.o.

(
2n

n

(
1 +

α log n

n

))
has PSPACE-measure 0 for all α < 1. Frandsen and Miltersen [26] strengthened the original upper
bound of Lupanov [52] to show that Lutz’s bound is nearly tight: Xα contains all problems when
α > 3.

We improve Lutz’s result to show that µSpanP(Xα) = 0 for all α < 1. Lutz’s proof extensively
reuses polynomial space to consider only novel circuits, that compute a different function than
any previously considered circuit. This proof does not adapt easily to our setting. In Section 5,
we introduce a measure notion called MNP that bridges the gap between µPSPACE and µSpanP by
utilizing the Minimum Circuit Size Problem (MCSP) [44], allowing the construction of a counting

martingale. As a corollary, we conclude that Xα has measure 0 in the third level ∆E
3 = EΣP

2 of the
exponential-time hierarchy. While it was previously known how to construct a problem in ∆E

3 with
maximum circuit-size complexity [70], our result says most problems in ∆E

3 have nearly maximal
circuit-size complexity.

Li [51], building on work of Korten [47] and Chen, Hirahara, and Ren [16], showed the first
exponential-size circuit lower bound within the second level of the exponential-time hierarchy, that

7



SIZEi.o.
(
2n

n

(
1 + α logn

n

))
MNP-measure 0 Theorem 6.1

SIZEi.o.
(
2n

n

(
1 + α logn

n

))
SpanP-measure 0 Corollary 6.2

SIZEi.o.
(
2n

n

(
1 + α logn

n

))
∆P

3 -measure 0 Corollary 6.3

SIZE
(
α2n

n

)
#P-strong dimension α Theorem 6.5

P/poly #P-strong dimension 0 Corollary 6.6

SIZEi.o.
(
α2n

n

)
#P-dimension 1+α

2 Theorem 6.7

BQSIZE
(
o
(
2n

n

))
GapP-strong dimension 0 Theorem 6.10

BQP/poly GapP-strong dimension 0 Corollary 6.11

(P/poly)T(DENSE
c) #P-dimension 0 Theorem 6.13

Figure 1.3: Summary of Measure, Dimension, and Strong Dimension Results

the symmetric alternation class SE
2 ̸⊆ SIZEi.o.(2

n

n ).We note that Li’s proof extends to show SE
2 ̸⊆ Xα

for all α < 1. Under suitable derandomization assumptions (see Derandomization Hypothesis 2.2),
our ∆E

3 result improves by one level in the exponential hierarchy, showing Xα has measure 0 in
∆E

2 = ENP, for all α < 1.
We also improve previous dimension results on circuit-size complexity [40, 57] and the density

of hard sets [27, 34, 59, 63]. Additionally, we use GapP-martingales to apply our counting measure
framework to analyze quantum circuit complexity. We show that the quantum circuit-size class
BQSIZE

(
o
(
2n

n

))
has GapP-dimension 0. We also show that the class of problems that P/poly-Turing

reduce to subexponentially dense sets has #P-measure 0.
See Figure 1.3 for a summary of our results. We anticipate many further applications of counting

measures to refine results where the PSPACE-measure is known and the P-measure is unknown.
We discuss some of these directions and open questions in Section 7.

1.5 Organization

This paper is organized as follows. Section 2 covers preliminaries. Section 3 introduces counting
martingales, counting measures, and counting dimensions. In Section 4, we detail the five con-
structions of counting martingales. Section 5 presents our tools on entropy rates and Kolmogorov
complexity. Our primary applications on circuit complexity are presented in Section 6. Finally,
Section 7 provides concluding remarks and open questions.

2 Preliminaries

The set of all finite binary strings is {0, 1}∗. The empty string is denoted by λ. We use the standard
enumeration of binary strings s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . .. For two strings x, y ∈ {0, 1}∗, we
say x ≤ y if x precedes y in the standard enumeration and x < y if x precedes y and is not equal to
y. Given two strings x and y, we denote by [x, y] the set of all strings z such that x ≤ z ≤ y. Other
types of intervals are defined similarly. We write x − 1 for the predecessor of x in the standard
enumeration. We use the notation x ⊑ y to say that x is a prefix of y. The length of a string
x ∈ {0, 1}∗ is denoted by |x|.
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All languages (decision problems) in this paper are encoded as subsets of {0, 1}∗. For a language
A ⊆ {0, 1}∗ and n ≥ 0, we define A≤n = A ∩ {0, 1}≤n and A=n = A ∩ {0, 1}n.

The Cantor space of all infinite binary sequences is C. For a string w ∈ {0, 1}∗, the cylinder
Cw = w · C consists of all elements of C that begin with w. We routinely identify a language
A ⊆ {0, 1}∗ with the element of Cantor space that is A’s characteristic sequence according to the
standard enumeration of binary strings. In this way, each complexity class is identified with a
subset of Cantor space. We write A↾n for the n-bit prefix of the characteristic sequence of A, and
A[n] for the nth-bit of its characteristic sequence. We use log for the base 2 logarithm.

Our definitions of most complexity classes are standard [6]. For any function s : N → N,
SIZE(s(n)) is the class of all languages A where for all sufficiently large n, A=n can be decided by
a circuit with no more than s(n) gates. We write SIZEi.o.(s(n)) for the class of all A where A=n

has an s(n)-size circuit for infinitely many n.

2.1 Resource-Bounded Measure and Dimension

Lutz used martingales to define resource-bounded measure [55] and dimension [57]. Athreya et al.
[9] defined strong dimension. We review the basic definitions. More background is available in the
survey papers [4, 37, 56, 58, 61, 67, 68, 81].

Definition. (Martingale) A martingale is a function d : {0, 1}∗ → [0,∞) such that for all w ∈
{0, 1}∗,

d(w) =
d(w0) + d(w1)

2
.

If we relax the equality to a ≥ inequality in the above equation, we call d a supermartingale.

Definition. (Martingale Success) Let d be a supermartingale or martingale.

1. We say d succeeds on a sequence A ∈ C if lim sup
n→∞

d(A↾n) = ∞.

2. The success set S∞[d] is the class of sequences that d succeeds on.

3. The unitary success set of d is the set S1[d] = {A ∈ C | (∃n) d(A↾n) ≥ 1}.

4. For s > 0, we say d s-succeeds on A if (∃∞n) d(A↾n) ≥ 2(1−s)n.

5. For s > 0, we say d s-strongly succeeds on A if (∀∞n) d(A↾n) ≥ 2(1−s)n.

6. We say d 0-succeeds on A if d s-succeeds on A for all s > 0.

7. We say d 0-strongly succeeds on A if d s-strongly succeeds on A for all s > 0.

8. For s ≥ 0, we say d s-succeeds on a class X ⊆ C if d s-succeeds on every member of X.

9. For s ≥ 0, we say d s-strongly succeeds on a class X ⊆ C if d s-strongly succeeds on every
member of X.

In the following definition ∆ can be any of the time or space resource bounds including P and
PSPACE considered by Lutz [55], and their relativizations including ∆P

2 = PNP and ∆P
3 = PΣP

2

[40, 66].

Definition. (Resource-Bounded Measure and Dimension) Let ∆ be a resource bound and let
X ⊆ C.

9



1. A class X ⊆ C has ∆-measure 0, and we write µ∆(X) = 0, if there is a ∆-computable
martingale d with X ⊆ S∞[d].

2. A class X ⊆ C has ∆-measure 1, and we write µ∆(X) = 1, if µ∆(X
c) = 0, where Xc is the

complement of X within C.

3. The ∆-dimension of a class X ⊆ C is

dim∆(X) = inf{s | ∃ ∆-martingale d that s-succeeds on all of X}.

4. The ∆-strong dimension of a class X ⊆ C is

Dim∆(X) = inf{s | ∃ ∆-martingale d that s-strongly succeeds on all of X}.

5. The ∆-dimension of a sequence S ∈ C is dim∆(S) = dim∆({S}).

6. The ∆-strong dimension of a sequence S ∈ C is Dim∆(S) = Dim∆({S}).

We note that for all of the classical resource bounds, martingales and supermartingales are equiv-
alent [5].

2.2 Counting Complexity

Valiant introduced #P in the seminal paper for counting complexity [84].

Definition. (#P [84]) Let M be a polynomial-time probabilistic Turing machine that accepts or
rejects on each computation path. The #P function computed by M is defined as

f(x) = number of accepting computation paths of M on input x

for all x ∈ {0, 1}∗.

Köbler, Schöning, and Toran [46] introduced SpanP as an extension of #P.

Definition. (SpanP [46]) Let M be a polynomial-time probabilistic Turing machine that on each
computation path either outputs a string or outputs nothing. The SpanP function computed by M
is defined as

f(x) = number of distinct strings output by M on input x

for all x ∈ {0, 1}∗.

Every #P function is also a SpanP function. Köbler et al. [46] showed that #P = SpanP if and
only if UP = NP. They also extended Stockmeyer’s approximate counting [80] of #P functions in
polynomial-time with a ΣP

2 oracle to SpanP.

Theorem 2.1. (Köbler, Schöning, and Toran [46]) Let f ∈ SpanP. Then there is a function g ∈ ∆P
3

such that for all n, for all x ∈ {0, 1}n, (1− 1/n)g(x) ≤ f(x) ≤ (1 + 1/n)g(x).

Shaltiel and Umans [77] showed that under a derandomization assumption, #P functions can
be approximated by a deterministic polynomial-time algorithm with nonadaptive access to an NP
oracle. Hitchcock and Vinodchandran [40] noted this extends to SpanP functions.

Derandomization Hypothesis 2.2. ENP
∥ requires exponential-size SV-nondeterministic circuits.

10



We refer to [77] for the details of Derandomization Hypothesis 2.2, including equivalent hypotheses.
We note that Derandomization Hypothesis 2.2 is true under more familiar hypotheses like NP does
not have P-measure 0 [40] or E requires exponential-size NP-oracle circuits.

Theorem 2.3. ([40, 77]) If Derandomization Hypothesis 2.2 is true, then for any function f ∈
SpanP, there is a function g computable in polynomial time with nonadaptive access to an NP
oracle such that for all n, for all x ∈ {0, 1}n, g(x) ≤ f(x) ≤ g(x)(1 + 1/n).

Fenner, Fortnow, and Kurtz [20] and Li [50] introduced the class GapP.

Definition. (GapP [20, 50]) Let M be a polynomial-time probabilistic Turing machine that accepts
or rejects on each computation path. The GapP function computed by M is defined as

f(x) = number of accepting computation paths of M on input x

−number of rejecting computation paths of M on input x

for all x ∈ {0, 1}∗.

Equivalently, GapP is the closure of #P under subtraction [20]. Note that every #P function
is also a GapP function and P#P = PGapP. The class SPP consists of all languages L where the
characteristic function of L is a GapP function.

3 Counting Martingales

In this section, we define counting martingales and use them to define counting measures and
dimensions. We then work out their foundations including union lemmas, Borel-Cantelli lemmas,
and measure conservation that will be used in later sections.

3.1 Counting Martingales Definitions

We define counting martingales as martingales that are the ratio of a counting function from #P,
SpanP, or GapP and a polynomial-time function that is always a power of 2. We consider both
approximately computable and exactly computable martingales.

Definition. (Counting Martingales) Let ∆ ∈ {#P,SpanP,GapP} be a counting resource bound.

1. A ∆-martingale is a martingale d(w) where there exist f ∈ ∆ and g ∈ FP with g(w, r) being
a power of 2 for all w ∈ {0, 1}∗, such that for all w ∈ {0, 1}∗ and r ∈ N,∣∣∣∣d(w)− f(w, r)

g(w, r)

∣∣∣∣ ≤ 2−r.

Here r is encoded in unary.

2. An exact ∆-martingale is a martingale

d(w) =
f(w)

g(w)
,

where f ∈ ∆, g ∈ FP, and g(w) is a power of 2 for all w ∈ {0, 1}∗.

11



3.2 Counting Measures and Dimensions Definitions

Analogous to the original definitions of resource-bounded measure [55], we use counting martingales
to define counting measures.

Definition. (Counting Measure Zero) Let ∆ ∈ {#P, SpanP,GapP} be a counting resource bound.
A class X ⊆ C has ∆-measure 0, written µ∆(X) = 0, if there is a ∆-martingale d with X ⊆ S∞[d].

Definition. (Counting Random Sequences) Let ∆ ∈ {#P, SpanP,GapP} be a counting resource
bound. A sequence S ∈ C is ∆-random if {S} does not have ∆-measure 0.

Equivalently, S is ∆-random if no ∆-martingale succeeds on S. We similarly extend the defini-
tions of resource-bounded dimension [57] using stricter notions of martingale success.

Definition. (Counting Dimensions) Let ∆ ∈ {#P, SpanP,GapP} be a counting resource bound.

1. The ∆-dimension of a class X ⊆ C is

dim∆(X) = inf{s | ∃ ∆-martingale d that s-succeeds on all of X}.

2. The ∆-strong dimension of a class X ⊆ C is

Dim∆(X) = inf{s | ∃ ∆-martingale d that s-strongly succeeds on all of X}.

3. The ∆-dimension of a sequence S ∈ C is dim∆(X) = dim∆({S}).

4. The ∆-strong dimension of a sequence S ∈ C is Dim∆(X) = Dim∆({S}).

The following relationships are immediate.

Proposition 3.1. Let ∆ ∈ {#P,SpanP,GapP} be a counting resource bound and let X ⊆ C.

1. 0 ≤ dim∆(X) ≤ Dim∆(X) ≤ 1.

2. If dim∆(X) < 1, then µ∆(X) = 0.

In the following proposition, µ is Lebesgue measure [49], dimH is Hausdorff dimension [30]
and Dimpack is packing dimension [83]. (We use the notation Dimpack to differentiate it from the
polynomial-time dimensions dimP and DimP.)

Proposition 3.2. For all X ⊆ C,

µP(X) = 0 ⇒ µ#P(X) = 0 ⇒ µGapP(X) = 0
⇓ ⇓

µSpanP(X) = 0 ⇒ µPSPACE(X) = 0 ⇒ µ(X) = 0,

0 ≤ dimH(X) ≤ dimPSPACE(X) ≤ dimGapP(X)

≤ ≤

dimSpanP(X) ≤ dim#P(X) ≤ dimP(X) ≤ 1,

and
0 ≤ Dimpack(X) ≤ DimPSPACE(X) ≤ DimGapP(X)

≤ ≤

DimSpanP(X) ≤ Dim#P(X) ≤ DimP(X) ≤ 1.
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Proof. By the Exact Computation Lemma [42], the outputs of a P-martingale d may be expressed
as dyadic rationals of the form n

2m . It is easy to see that the numerator is computed by a #P
function. The polynomial-time PTM M(s, w) associated with the #P function takes input a string
s and witness w and computes d(s) = n

2m in poly(s) time. If w encodes an integer in [1, n] with no
leading zeros, then M(s, w) accepts. Then M(s, w) has n accepting paths, and the denominator 2m

is polynomial-time computable. This implies that every exactly computable P-martingale is also a
#P-martingale. The other relationships follow by complexity class containments and the martingale
characterizations of Lebesgue measure [86], Hausdorff dimension [57], and packing dimension [9].

3.3 Basic Properties of Counting Martingales

We first note that counting martingales are closed under finite sums, which implies finite unions of
counting measure 0 sets have counting measure 0.

Lemma 3.3. Let ∆ ∈ {#P,SpanP,GapP} be a counting resource bound. Exact ∆-martingales are
closed under finite sums.

Proof. Let d1 =
f1
g1

and d2 =
f2
g2

be exact ∆-martingales. We have

d1(w) + d2(w) =
f1(w)g2(w) + f2(w)g1(w)

g1(w)g2(w)
.

The numerator is a ∆-function by closure properties of ∆ and the denominator is an FP function
that is always a power of 2.

We can be more efficient because the denominators are powers of 2. Suppose g2(w) ≤ g1(w).

Then g1(w)
g2(w) is a power of 2. Therefore

d1(w) + d2(w) =
f1(w) + f2(w)

g1(w)
g2(w)

g1(w)
.

The case g1(w) < g2(w) is analogous.

Corollary 3.4. Let ∆ ∈ {#P, SpanP,GapP} be a counting resource bound and let X,Y ⊆ C.

1. If µ∆(X) = 0 and µ∆(Y ) = 0, then µ∆(X ∪ Y ) = 0.

2. dim∆(X ∪ Y ) = max{dim∆(X), dim∆(Y )}.

3. Dim∆(X ∪ Y ) = max{Dim∆(X),Dim∆(Y )}.

Lutz showed that uniform countable unions of ∆-measure 0 sets have ∆-measure 0 for time and
space resource bounds ∆. This was proved by summing martingales. We establish an analogue for
a uniform family of exact counting martingales.

Definition. (Uniform Family of Exact Counting Martingales) Let ∆ ∈ {#P,SpanP,GapP} be a

counting resource bound. We say that a family
(
dn = fn

gn
| n ∈ N

)
of exact ∆-martingales is uniform

if (fn | n ∈ N) is uniformly ∆-computable and (gn | n ∈ N) is uniformly FP.
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Definition. (P-convergence) A series
∑∞

n=0 an of nonnegative real numbers an is P-convergent if
there is a polynomial-time function m : N → N with

∑∞
n=m(i) an ≤ 2−i for all i ∈ N. Such a

function m is called a modulus of the convergence. A sequence
∑∞

k=0 aj,k (j = 0, 1, 2, . . .) of series
of nonnegative real numbers is uniformly ∆-convergent if there is a function m : N2 → N such that
m ∈ ∆ and, for all j ∈ N, mj is a modulus of the convergence of the series

∑∞
k=0 aj,k.

Lemma 3.5. (Counting Martingale Summation Lemma) Let ∆ ∈ {#P,SpanP,GapP} be a count-

ing resource bound. Suppose
(
dn = fn

gn
| n ∈ N

)
is a uniform family of exact ∆-martingales with

∞∑
n=0

dn(w) uniformly P-convergent for all w ∈ {0, 1}∗. Then d(w) =
∞∑
n=0

dn(w) is a ∆-martingale.

Proof. Let m(w, r) be the modulus of P-convergence for
∞∑
n=0

dn(w). Let w ∈ {0, 1}∗ and r ∈ N.

Define
t(w, r) = max(g1(w), . . . , gm(w,r)(w)) = lcm(g1(w), . . . , gm(w,r(w)).

Define

d̂(w, r) =

m(w,r)∑
n=0

dn(w).

Then

|d(w)− d̂(w, r)| =
∞∑

n=m(w,r)+1

dn(w) ≤ 2−r.

We have

d̂(w, r) =

m(w,r)∑
n=0

fn(w) · t(w,r)
gn(w)

t(w, r)
.

This is a ratio of a ∆ function and an FP function that is a power of 2.

We now have our countable union lemmas.

Lemma 3.6. (Counting Measure Union Lemma) Let ∆ ∈ {#P,SpanP,GapP} be a counting re-

source bound. Suppose
(
dn = fn

gn
| n ∈ N

)
is a uniform family of exact ∆-martingales with

∞∑
n=0

dn(w)

uniformly P-convergent for all w ∈ {0, 1}∗. Then
∞⋃
n=0

S∞[dn] has ∆-measure 0.

Proof. This is immediate from Lemma 3.5.

Lemma 3.7. (Counting Dimension Union Lemma) Let ∆ ∈ {#P,SpanP,GapP} be a counting

resource bound and let s > 0. Suppose
(
dn = fn

gn
| n ∈ N

)
is a uniform family of exact ∆-martingales

with
∞∑
n=0

dn(w) uniformly P-convergent for all w ∈ {0, 1}∗.

1. Suppose X0, X1, . . . are classes where each dn s-succeeds on Xn. Then
∞⋃
n=0

Xn has ∆-dimension

at most s.

2. Suppose X0, X1, . . . are classes where each dn s-strongly succeeds on Xn. Then
∞⋃
n=0

Xn has

∆-strong dimension at most s.

Proof. This is immediate from Lemma 3.5.
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3.4 Borel-Cantelli Lemmas

Lutz [55] proved a resource-bounded Borel-Cantelli Lemma. We now present the counting measure
version.

Lemma 3.8. (Counting Measure Borel-Cantelli Lemma) Let ∆ ∈ {#P,SpanP,GapP} be a counting
resource bound. Suppose (dn = fn

gn
| n ∈ N) is a uniform family of exact ∆-martingales with∑∞

n=0 dn(w) being uniformly ∆-convergent for all w ∈ {0, 1}∗. Then

lim sup
n→∞

S1[dn] =

∞⋂
i=0

∞⋃
j≥i

S1[dj ] = {S ∈ C | (∃∞n) S ∈ S1[dn]}

has ∆-measure 0.

Proof. By Lemma 3.5, the exact ∆-martingale family sums to ∆-martingale d. Then
∞⋂
i=0

∞⋃
j≥i

S1[dj ] ⊆

S∞[d].

Analogously, we extend Lutz’s Borel-Cantelli lemma for time- and space-bounded dimension
[57] to counting dimensions.

Lemma 3.9. (Counting Dimension Borel-Cantelli Lemma) Let ∆ ∈ {#P,SpanP,GapP} be a count-

ing resource bound and let s > 0. Suppose
(
dn = fn

gn
| n ∈ N

)
is a uniform family of exact ∆-

martingales with dn(λ) ≤ 2(s−1)n. Then

lim sup
n→∞

S1[dn] =

∞⋂
i=0

∞⋃
j≥i

S1[dj ] = {S ∈ C | (∃∞n) S ∈ S1[dn]}

has ∆-dimension at most s and

lim inf
n→∞

S1[dn] =
∞⋃
i=0

∞⋂
j≥i

S1[dj ] = {S ∈ C | (∀∞n) S ∈ S1[dn]}

has ∆-strong dimension at most s.

Proof. Let t > s and 0 < ϵ < t− s be rational numbers. Define

d′n(w) = 2⌈(1−t)n⌉dn(w)

for all n ∈ N and w ∈ {0, 1}∗. Then d′n is a uniform family of exact ∆-martingales with

d′n(λ) ≤ 2(s−1)n2(1−t)n+1 = 2−(t−s)n+1 < 2−ϵn,

with the last inequality holding for sufficiently large n. Therefore d′ =
∞∑
n=0

d′n is a ∆-martingale

by Lemma 3.5. When dn(w) ≥ 1, we have d′(w) ≥ d′n(w) ≥ 2(1−t)n. Therefore d′ t-succeeds on
lim sup
n→∞

S1[dn] and d′ t-strongly succeeds on lim inf
n→∞

S1[dn].
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3.5 Measure Conservation

Lutz [55] defined a constructor to be a function δ : {0, 1}∗ → {0, 1}∗ that properly extends its input
string. The result R(δ) of constructor δ is the infinite sequence obtained by repeatedly applying
δ to the empty string. For a resource bound ∆, the result class R(∆) is R(∆) = {R(δ) | δ ∈ ∆}.
Lutz’s Measure Conservation Theorem [55] showed that R(∆) does not have ∆-measure 0 for the
time and space resource bounds. Our counting measures do not fit into this framework. It is not
clear what a #P constructor would be. The best measure conservation theorem we can prove using
a constructor approach for counting measures is the following.

Theorem 3.10. 1. E#P does not have #P-measure 0.

2. ESpanP does not have SpanP-measure 0.

3. E#P = EGapP does not have GapP-measure 0.

Proof. Let d be a #P martingale. We recursively construct a language L ∈ E#P that d does not
succeed on. Let x be any length n string and w be the characteristic string for all the strings that
lexicographically come before x. Now we specify the characteristic bit of x. The string x belongs
to L if and only if d(w1) < d(w0). Since d(wb) can be computed by a call to a #P oracle and
computing a polynomial-time function on a length Θ(2n) string, we can decide any x in E#P. Since
d cannot grow on L ∈ E#P, it follows that E#P does not have #P-measure 0. If d is a SpanP
martingale, we can construct a language L ∈ ESpanP. If d is a GapP martingale, we can construct a
language L ∈ EGapP = E#P.

In the proof of Theorem 3.10 the constructor we obtain from a #P-martingale is computable in
P#P, resulting in the E#P upper bound. We will use approximate counting to improve this to the
class ∆E

3 = EΣP
2 . By padding Toda’s theorem [13, 82], ∆E

3 ⊆ E#P. Under suitable derandomization
assumptions, we get an improvement to ∆E

2 = ENP. The results in the remainder of this section
hold not only for #P but for the larger class SpanP. It is open whether GapP can be approximately
counted in the same way, so Theorem 3.10 is the best we have for GapP.

Lemma 3.11. 1. For every SpanP-martingale d, there is a ∆P
3 -supermartingale d′ and a γ > 0

such that d′(w) ≥ γd(w) for all w ∈ {0, 1}∗.

2. If Derandomization Hypothesis 2.2 is true, then for every SpanP-martingale d, there is a
∆P

2 -supermartingale d′ and a γ > 0 such that d′(w) ≥ γd(w) for all w ∈ {0, 1}∗.

Proof. Let d = f
g be a SpanP-martingale. Let h ∈ ∆P

3 be the approximation of f from Theorem
2.1.

For each n, let ϵn = 1
n and define a function dn by

dn(v) =
h(v)

g(v)

(
1− ϵn
1 + ϵn

)n

for all v ∈ {0, 1}≥n and dn(v) = dn(v ↾n) for all v with |v| > n. Then dn is ∆P
3 exactly computable.
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For v ∈ {0, 1}<n, we have(
h(v0)

g(v0)
+

h(v1)

g(v1)

)
≤

(
f(v0)

g(v0)
+

f(v1)

g(v1)

)
1

1− ϵn

= (d(v0) + d(v1))
1

1− ϵn

= 2d(v)
1

1− ϵn

=
2f(v)

g(v)

1

1− ϵn

≤ 2h(v)

g(v)

1 + ϵn
1− ϵn

.

Therefore

dn(v0) + dn(v1) =

(
h(v0)

g(v0)
+

h(v1)

g(v1)

)(
1− ϵn
1 + ϵn

)n+1

≤ 2h(v)

g(v)

1 + ϵn
1− ϵn

(
1− ϵn
1 + ϵn

)n+1

=
2h(v)

g(v)

(
1− ϵn
1 + ϵn

)n

= 2dn(v),

for all v ∈ {0, 1}<n, so dn is a supermartingale.
Let v ∈ {0, 1}n. Since (

1− ϵn
1 + ϵn

)n

=

(
1− 2

n+ 1

)n

→ 1

e2

as n → ∞, let γ ∈ (0, 1
e2
). We have

dn(v) = d(v)

(
1− ϵn
1 + ϵn

)n

≥ γd(v).

when n is sufficiently large.
For part 2, under Derandomization Hypothesis 2.2, we obtain the approximation h ∈ ∆P

2 from
Theorem 2.3 and follow the same proof.

The following two theorems and their corollaries are immediate from the previous lemma.

Theorem 3.12. Let X ⊆ C.

1. If µSpanP(X) = 0, then µ∆P
3
(X) = 0.

2. dim∆P
3
(X) ≤ dimSpanP(X).

3. Dim∆P
3
(X) ≤ DimSpanP(X).

Corollary 3.13. ∆E
3 does not have SpanP-measure 0.

Theorem 3.14. Assume Derandomization Hypothesis 2.2. Let X ⊆ C.
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1. If µSpanP(X) = 0, then µ∆P
2
(X) = 0.

2. dim∆P
2
(X) ≤ dimSpanP(X).

3. Dim∆P
2
(X) ≤ DimSpanP(X).

Corollary 3.15. If Derandomization Hypothesis 2.2 is true, then ∆E
2 = ENP does not have SpanP-

measure 0.

We conclude this section by noting that P#P-measure and the P#P-dimensions dominate the
counting measures and dimensions. This is immediate from Toda’s theorem [82] that PH ⊆ P#P =
PGapP and Theorem 3.12. It appears, however, that the P#P notions are much stronger than our
counting dimensions and measures.

Corollary 3.16. Let X ⊆ C.

1. If µSpanP(X) = 0, then µP#P(X) = 0.

2. If µGapP(X) = 0, then µP#P(X) = 0.

3. dimP#P(X) ≤ dimSpanP(X).

4. DimP#P(X) ≤ DimSpanP(X).

4 Counting Martingale Constructions

In this section we present five techniques for constructing counting martingales: Cover Martingale,
Conditional Expectation Martingale, Subset Martingale, Acceptance Probability Martingale, and
Bi-immunity Martingale.

4.1 Cover Martingale Construction

The first construction uses a cover set A and defines the martingale using the conditional probability
that an extension of the current string is in the cover. The goal is to obtain a value of 1 on nodes
in A while having a small initial value at the root λ.

Construction 4.1. (Cover Martingale) Let A ⊆ {0, 1}∗ and n ≥ 0. Choose x uniformly at random
from {0, 1}n and let

dn(w) = Pr[x ∈ A=n | w ⊑ x]

for all w ∈ {0, 1}≤n. For all w ∈ {0, 1}>n, we let dn(w) = dn(w ↾n) take the value of its length-n
prefix. Then we have

dn(λ) = Pr[x ∈ A=n],

and
dn(x) = 1

for all x ∈ A=n. For all x ∈ {0, 1}n −A=n, note that dn(x) = 0. Therefore

S1[dn] =
⋃

w∈A=n

Cw.

In other words, dn covers all sequences that have a prefix in A=n with a value of 1. See Figure 1.1
for an example with n = 4, where the green nodes are A=n.
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Depending on the complexity of the cover, we have a uniform family of exact counting martin-
gales.

Lemma 4.2. 1. If A ∈ UP, then Construction 4.1 produces a uniform family of exact #P-
martingales.

2. If A ∈ NP, then Construction 4.1 produces a uniform family of exact SpanP-martingales.

3. If A ∈ SPP, then Construction 4.1 produces a uniform family of exact GapP-martingales.

Proof. For w ∈ {0, 1}∗ and n ≥ 0, define ext(w, n) = {x ∈ {0, 1}n | w ⊑ x} and extA(w, n) =
A ∩ ext(w, n). Then

dn(w) =
|extA(w, n)|

2n−|w| (4.1)

for all w ∈ {0, 1}≤n. We have

dn(w0) + dn(w1) =
|extA(w0, n)|

2n−|w0| +
|extA(w1, n)|

2n−|w1|

=
|extA(w, n)|
2n−(|w|+1)

= 2d(w),

for all w ∈ {0, 1}<n and dn(w0) + dn(w1) = 2dn(w ↾ n) = 2dn(w) for all w ∈ {0, 1}≥n, so dn is a
martingale.

If A ∈ UP, then the numerator |extA(w, n)| in (4.1) is computed by the #P function M(0n, w)
that guesses an extension x ∈ ext(w, n), guess a witness v for x, and accepts if v is a valid witness
for x ∈ A. Because A has unique witnesses, there is exactly one accepting computation path for
each x ∈ ext(w, n).

If A ∈ NP, then we compute the numerator |extA(w, n)| in (4.1) by the SpanP function M(0n, w)
that guesses an extension x ∈ ext(w, n), guesses a witness v for x, and prints ⟨x, v⟩ if v is a valid
witness for x ∈ A.

If A ∈ SPP, let M be a PTM such that M(x) has gap 1 when x ∈ A and M(x) has gap 0 when
x ̸∈ A. Consider the GapP function N(0n, w) that guesses an extension x ∈ ext(w, n) and runs
M(x). If M(x) accepts, then N accepts. If M(x) rejects, then N rejects. The gap of N(0n, w) is
|extA(w, n)|.

We will use Construction 4.1 in Section 5.1 to develop tools relating counting dimensions and
entropy rates, with applications in Section 6 to circuit complexity.

4.2 Conditional Expectation Martingale Construction

Here is a more general martingale construction using a counting function f(x) as a random variable
and taking the conditional expectation of f given the current prefix w. This generalizes Construc-
tion 4.1 when f(x) is the indicator random variable for the membership of x in the cover A.

Construction 4.3. (Conditional Expectation Martingale) Let f : {0, 1}∗ → N and view f(x) as a
random variable where x is chosen uniformly from {0, 1}n. Define

dn(w) = E[f(x) | w ⊑ x]
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for all w ∈ {0, 1}≤n. For all w ∈ {0, 1}>n, we let dn(w) = dn(w ↾n) take the value of its length-n
prefix. Then

dn(λ) = E[f(x)],

and
dn(x) = f(x)

for all x ∈ {0, 1}n. See Figure 1.2 for an example with n = 4. The green nodes are the x ∈ {0, 1}n
that have f(x) > 0.

We think of Construction 4.3 as covering the sequences that have a prefix x with f(x) > 0.
Depending on the counting complexity of f , we have a uniform family of exact counting martingales.

Lemma 4.4. 1. If f ∈ #P, then Construction 4.3 produces a uniform family of exact #P-
martingales.

2. If f ∈ SpanP, then Construction 4.3 produces a uniform family of exact SpanP-martingales.

3. If f ∈ GapP, then Construction 4.3 produces a uniform family of exact GapP-martingales.

Proof. Let ext(w, n) = {x ∈ {0, 1}n | w ⊑ x}. Then

dn(w) =

∑
x∈ext(w,n)

f(x)

2n−|w| (4.2)

for all w ∈ {0, 1}≤n. We have

dn(w0) + dn(w1) =

∑
x∈ext(w0,n)

f(x)

2n−|w0| +

∑
x∈ext(w1,n)

f(x)

2n−|w1|

=

∑
x∈ext(w,n)

f(x)

2n−(|w|+1)

= 2d(w),

for all w ∈ {0, 1}<n and dn(w0) + dn(w1) = 2dn(w ↾ n) = 2dn(w) for all w ∈ {0, 1}≥n, so dn is a
martingale.

Suppose f ∈ #P. We compute the numerator of dn(w) in (4.2) by the PTM M(0n, w) that
guesses an extension x ∈ ext(w, n) and then runs the #P algorithm for f on x. If f(x) accepts,
then M accepts. If f(x) rejects, then M rejects.

Suppose f ∈ SpanP. We compute the numerator of dn(w) in (4.2) by the PTM N(0n, w) that
guesses an extension x ∈ ext(w, n) and then runs the SpanP algorithm for f on x. If f(x) has an
output v, then N prints ⟨x, v⟩.

Suppose f ∈ GapP. We compute the numerator of dn(w) in (4.2) by the PTM G(0n, w) that
guesses an extension x ∈ ext(w, n) and then runs the GapP algorithm for f on x. If f(x) accepts,
then G accepts. If f(x) rejects, then G rejects.

We will use Construction 4.3 in Section 5.2 to develop tools relating counting measures and
dimensions to Kolmogorov Complexity, with applications to circuit complexity in Section 6.
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Figure 4.1: Subset Martingale Construction (Construction 4.5)

4.3 Subset Martingale Construction

Next, we present a construction that builds upon Construction 4.1. For a language B ⊆ {0, 1}∗,
the census function of B is defined by cB(n) = |B ∩ [s0, sn)| for all n ≥ 0. For a string w ∈ {0, 1}∗,
let

L(w) = {si | w[i] = 1}

be the language with characteristic string w.

Construction 4.5. (Subset Martingale) Let B ⊆ {0, 1}∗ and define the cover

A = {w ∈ {0, 1}∗ | L(w) ⊆ B}
= {w ∈ {0, 1}∗ | (∀i < |w|) w[i] = 1 ⇒ si ∈ B}.

Then apply Construction 4.1. We have |A=n| = 2cB(n), so

dn(λ) = Pr[x ∈ A=n] = 2cB(n)−n.

For all w ∈ {0, 1}n,

dn(w) =

{
1 if L(w) ⊆ B

0 otherwise.

See Figure 4.1 for an example with n = 4 and B ∩ [s0, s3] = {s1, s3}. The nodes w ∈ {0, 1}≤4

that are colored green in the tree are those with L(w) ⊆ B.

In the following lemma, UE is the exponential (2O(n) time) version of UP, NE is the exponential
version of NP, and SPE is the exponential version of SPP.

Lemma 4.6. 1. If B ∈ UE, then Construction 4.5 produces a uniform family of #P-martingales.

2. If B ∈ NE, then Construction 4.5 produces a uniform family of SpanP-martingales.

3. If B ∈ SPE, then Construction 4.5 produces a uniform family of GapP-martingales.

Proof. If B ∈ UE, then we claim A ∈ UP. Given w ∈ {0, 1}n, for each i < n, if w[i] = 1, guess a
witness for si ∈ B. If all witnesses are found, accept w. Because A has unique witnesses, B also
has unique witnesses. Because the si’s have length logarithmic in the length of w, the total length
of the witness for w ∈ B is at most |w|2O(log |w|) = |w|O(1). Therefore Construction 4.1 produces a
uniform family of #P-martingales.

The other two cases follow similarly.

21



Lemma 4.7. Let B ⊆ {0, 1}∗ and assume the series
∞∑
n=0

2cB(n)−n is P-convergent.

1. If B ∈ UE, then the class of all infinite subsets of B has #P-measure 0.

2. If B ∈ NE, then the class of all infinite subsets of B has SpanP-measure 0.

3. If B ∈ SPE, then the class of all infinite subsets of B has GapP-measure 0.

Proof. Combine Lemma 4.6 and the Counting Measure Borel-Cantelli Lemma (Lemma 3.8).

We now apply the subset construction along with the law of large numbers for P-random
languages to conclude that counting random languages do not belong to particular complexity
classes.

Corollary 4.8. 1. Every #P-random language is not in UE.

2. Every SpanP-random language is not in NE.

3. Every GapP-random language is not in SPE.

Proof. Let R be #P-random. Since R is also P-random, it satisfies the law of large numbers [56]
and cR(n) ≤ (12 + ϵ)n for any ϵ > 0 and all sufficiently large n. The previous lemma applies to
contradict the #P-randomness of R. The proofs for SpanP-random and GapP-random languages
are analogous.

4.4 Acceptance Probability Construction

Determining the P-measure of BPP is an open problem. Van Melkebeek [85] used the weak deran-
domization of BPP from the uniform hardness assumption BPP ̸= EXP [41] to prove a zero-one law
for the P-measure of BPP: either µP(BPP) = 0 or BPP = EXP. Since BPP = EXP is equivalent to
µ(BPP | EXP) = 1 [74], it follows that determining the P-measure of BPP is equivalent to resolving
the BPP versus EXP problem. However, in this section we will show that BPP has #P-measure 0.
We will also show that BQP has GapP-measure 0 by building on the work of Fortnow and Rogers
[24, 25] that BQP ⊆ AWPP. Both of these results will be proved using the following martingale
construction that tracks acceptance probabilities of classical or quantum machines.

Construction 4.9. (Acceptance Probability Martingale) Let f : {0, 1}∗×{0, 1} → N be a function
such that for some function q(n) and all x ∈ {0, 1}∗,

f(x, 0) + f(x, 1) = 2q(|x|).

For each w ∈ {0, 1}∗, let n = |w| and define

M(w) =
n−1∏
i=0

2f(si, w[i]) = 2n
n−1∏
i=0

f(si, w[i]),

N(w) =
n−1∏
i=0

2q(|si|) = 2

n−1∑
i=0

q(|si|)
,

and

d(w) =
M(w)

N(w)
= 2n

n−1∏
i=0

f(si, w[i])

2q(|si|)
.
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Figure 4.2: Acceptance Probability Martingale Construction (Construction 4.9)

Then d is a martingale with d(λ) = 1. See Figure 4.2 for an example with n = 4, A ∩ [s0, s3] =
{s1, s3}, and correctness probability 3

4 . The green path highlights the prefix 0101 of the character-
istic sequence of A.

For example, the function f in Construction 4.9 could be the #P function where f(x, 0) is the
number of rejecting paths and f(x, 1) is the number of accepting paths in a PTM Q on input x.
Let q(n) be the random seed length of Q. Then

f(x, 0)

2q(|x|)
= Pr[Q rejects x] = Pr[Q(x) = 0],

f(x, 1)

2q(|x|)
= Pr[Q accepts x] = Pr[Q(x) = 1],

and

d(w) = 2n
n−1∏
i=0

Pr[Q(si) = w[i]].

In particular, if A ∈ BPE = BPTIME(2O(n)), then for some c ≥ 1, there exists a 2cn-time PTM Q
that decides A with error probability at most 2−2n, where the random seed length is q(n) = 2cn.

Lemma 4.10. If A ∈ BPE, then the martingale d produced by Construction 4.9 is a #P-martingale
that 0-strongly succeeds on A.

Proof. Let t(n) = 2cn and p(n) = 2n. Then M(w) is #P-computable with run time on the order of

n−1∑
i=0

t(|si|) ≤ n · t(|sn|) ≤ n2c logn = nc+1.

Similarly, N(w) is computable in O(nc+1) time. Therefore d is a #P-martingale. We have

d(A↾n) =
M(A↾n)
N(A↾n)

= 2n
n−1∏
i=0

Pr[M(si) = A[i]] ≥ 2n
n−1∏
i=0

(1− 2−p(|si|))

Using 1− x ≈ e−x, we have d(A↾n) = Ω(2n) because

2n
n−1∏
i=0

e−2−p(|si|) = 2ne
−

n−1∑
i=0

2−p(|si|)

= Ω(2n).
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The last line holds because
∞∑
i=0

2−p(|si|) =
∞∑
n=0

2n · 2−2n

converges. Therefore d 0-strongly succeeds on A.

Analogously, one can handle BQE = BQTIME(2O(n)) [7, 18] with GapP functions. For this, we
need the class AWPP that was introduced by Fenner, Fortnow, Kurtz, and Li [21]. The following
definition is due to Fenner [22]. See [20, 22, 24] for more details.

Definition. The class AWPP (almost-wide probabilistic polynomial-time) consists of the languages
L such that for all polynomials r, there is a polynomial t and a GapP function g such that, for all
n, for all x ∈ {0, 1}n,

• if x ∈ L, then 1− 2−r(n) ≤ g(x)

2t(n) ≤ 1, and

• if x ̸∈ L, then 0 ≤ g(x)

2t(n) ≤ 2−r(n).

We define an exponential version AWPE by allowing g to be computable in time 2O(n) in the
definition above. The class GapE is defined just like GapP but using PTMs that run in 2O(n) time.

Definition. The class AWPE (almost-wide probabilistic exponential-time) consists of the languages
L such that for all r(n) = 2O(n), there is t(n) = 2O(n) and a GapE function g such that, for all n,
for all x ∈ {0, 1}n,

• if x ∈ L, then 1− 2−r(n) ≤ g(x)

2t(n) ≤ 1, and

• if x ̸∈ L, then 0 ≤ g(x)

2t(n) ≤ 2−r(n).

Theorem 4.11. If A ∈ AWPE, then Construction 4.9 is a GapP-martingale that 0-strongly succeeds
on A.

Proof. Assume A ∈ AWPE, pick r(n) = 2n, and let t(n) = 2cn and g ∈ GapE be the corresponding
functions from the definition of AWPE such that for all n and for all x ∈ {0, 1}n,

• if x ∈ A, then 1− 2−r(n) ≤ g(x)

2t(n) ≤ 1,

• if x /∈ A, then 0 ≤ g(x)

2t(n) ≤ 2−r(n).

To adapt the acceptance probability construction, define f(x, 0) = 2t(n) − g(x) and f(x, 1) = g(x),
and define

M(w) =

n−1∏
i=0

2f(si, w[i]) = 2n
n−1∏
i=0

f(si, w[i]).

An argument similar to the proof of Lemma 4.10 together with the closure properties of GapP [20]
shows that M computes a GapP function. Also define

N(w) =
n−1∏
i=0

2t(|wi|)

Now we have

d(A↾n) =
M(A↾n)
N(A↾n)

= 2n
n−1∏
i=0

f(si, w[i])

2t(|wi|)
≥ 2n

n−1∏
i=0

(1− 2−r(|si|))
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Using 1− x ≈ e−x, this yields d(A↾n) = Ω(2n) because

2n
n−1∏
i=0

e−2−r(|si|) = 2ne
−

n−1∑
i=0

2−r(|si|)

= Ω(2n).

Therefore d 0-strongly succeeds on A.

A straightforward extension of Fortnow and Rogers’ proof that BQP ⊆ AWPP to exponential-
time classes shows that BQE ⊆ AWPE. Combining this with Theorem 4.11 gives us the following
result.

Theorem 4.12. If A ∈ BQE, then there is a GapP-martingale that 0-strongly succeeds on A.

Athreya et al. [9] showed that DTIME(2cn) has P-strong dimension 0 for all c ≥ 1. Using the
above results and the Counting Measure Union lemma 3.6, we can extend this result to BPTIME
and BQTIME under #P and GapP strong dimensions.

Corollary 4.13. For all c ≥ 1,

1. BPTIME(2cn) has #P-strong dimension 0.

2. BQTIME(2cn) has GapP-strong dimension 0.

Corollary 4.14. 1. BPP has #P-strong dimension 0.

2. BQP has GapP-strong dimension 0.

We have the following Corollary to this section as a companion to Corollary 4.8.

Corollary 4.15. 1. Every #P-random oracle is not in BPE.

2. Every GapP-random oracle is not in BQE.

4.5 Bi-immunity Martingale Construction

Mayordomo [65] showed that P-random languages are E-bi-immune. We extend her construction to
show that #P-random languages are UE∩coUE-immune. The same construction also shows SpanP-
random languages are NE ∩ coNE-bi-immune and GapP-random languages are SPE-bi-immune.

Construction 4.16. (Bi-immunity Martingale) Let A ⊆ {0, 1}∗. Define a martingale d by d(λ) = 1
and for all w ∈ {0, 1}∗,

d(w1) =

{
2d(w) if s|w| ∈ A

d(w) if s|w| ̸∈ A

and

d(w0) =

{
0 if s|w| ∈ A

d(w) if s|w| ̸∈ A.

For all w ∈ {0, 1}∗, again writing L(w) = {si | w[i] = 1}, we have

d(w) =

{
2#1(A↾n) if A ⊆ L(w)

0 otherwise.

See Figure 4.3 for an example with n = 4 and A ∩ [s0, s3] = {s1, s3}. The nodes w ∈ {0, 1}≤4

that are colored green in the tree are those with A ⊆ L(w).
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Figure 4.3: Bi-immunity Martingale Construction (Construction 4.16)

Mayordomo [65] showed that if A ∈ E, then Construction 4.16 is a P-martingale and if A ∈
ESPACE, then Construction 4.16 is a PSPACE-martingale. For any infinite language A, Mayordomo
showed Construction 4.16 succeeds on all languages that contain A.

Lemma 4.17. (Mayordomo [65]) If A is infinite, then Construction 4.16 has S∞[d] = {B | A ⊆ B}.

We generalize Mayordomo’s construction to counting martingales.

Lemma 4.18. 1. If A ∈ UE ∩ coUE, then Construction 4.16 is an exact #P-martingale.

2. If A ∈ NE ∩ coNE, then Construction 4.16 is an exact SpanP-martingale.

3. If A ∈ SPE, then Construction 4.16 is an exact GapP-martingale.

Proof. For parts 1 and 2, on input w, for each i < |w|, guess whether si ∈ A or si ̸∈ A and a witness
that proves this. Note that the witnesses have total length 2O(n) which is polynomial in |w|. If
witnesses are found for all si and prove that A ↾ |w| ⊆ L(w), output d(w) = 2|A↾ |w||; otherwise
output 0.

1. If A ∈ UE ∩ coUE, then d is a UPSV function which may be implemented in #P.

2. If A ∈ NE ∩ coNE, then d is an NPSV function which may be implemented in SpanP.

For part 3, let g ∈ GapE such that g(x) = 1 if x ∈ A and g(x) = 0 if x ̸∈ A. Define

f(w, 1) = 1 + g(s|w|)

f(w, 0) = 1− g(s|w|)

for all w ∈ {0, 1}∗. Then f ∈ GapP and

d(wb) = f(w, b)d(w)

for all w ∈ {0, 1}∗ and b ∈ {0, 1}. Therefore

d(w) =

|w|−1∏
i=0

f(w ↾ i, w[i])

is a GapP function.

We can now conclude bi-immunity results for counting random languages. Part 3 of the following
corollary improves part 3 of Corollary 4.8.
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Corollary 4.19. 1. Every #P-random language is UE ∩ coUE-bi-immune.

2. Every SpanP-random language is NE ∩ coNE-bi-immune.

3. Every GapP-random language is SPE-bi-immune.

Proof. Let R be GapP-random and let A ∈ SPE. By the previous two lemmas, R is A-immune.
Since SPE is closed under complement, Rc is also A-immune. The other two parts are analogous.

Since SPP contains the counting classes UP, FewP, and Few, GapP-random languages are also
immune to these classes.

5 Entropy Rates and Kolmogorov Complexity

We will use the Cover Martingale and Conditional Expectation Martingale Constructions (Con-
structions 4.1 and 4.3) to develop a few tools for working with counting measures and dimensions.
First, we extend the entropy rates used by Hitchcock and Vinodchandran [40] to our setting. Then
we extend Lutz’s results on Kolmogorov complexity and PSPACE-measure to counting measure.

5.1 Entropy Rates

We will show in this section that the Cover Martingale Construction (Construction 4.1) may be
combined with the concept of entropy rates to build counting martingales.

Definition. The entropy rate of a language A ⊆ {0, 1}∗ is

HA = lim sup
n→∞

log |A=n|
n

.

Intuitively, HA gives an asymptotic measurement of the amount by which every string in A=n

is compressed in an optimal code [48].

Definition. Let A ⊆ {0, 1}∗. The i.o.-class of A is

Ai.o. = {S ∈ C | (∃∞n) S ↾n ∈ A}.

The a.e.-class of A is
Aa.e. = {S ∈ C | (∀∞n) S ↾n ∈ A}.

That is, Ai.o. is the class of sequences that have infinitely many prefixes in A and Aa.e. is the class
of sequences that have all but finitely many prefixes in A.

Definition. (Hitchcock [31, 33]) Let C be a class of languages and X ⊆ C. The C-entropy rate of
X is

HC(X) = inf{HA | A ∈ C and X ⊆ Ai.o.}.

The C-strong entropy rate of X is

Hstr
C (X) = inf{HA | A ∈ C and X ⊆ Aa.e.}.
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Informally, HC(X) is the lowest entropy rate with which every element of X can be covered in-
finitely often by a language in C. We may also interpret HC(X) as a notion of dimension. For all
X ⊆ C, it is known that dimH(X) = HALL(X), where ALL is the class of all languages and dimH

is Hausdorff dimension (see [75, 79]). Hitchcock [31, 33] showed that Dimpack(X) = Hstr
ALL(X)

and using other classes gives equivalent definitions of the constructive dimension (cdim(X) =
HCE(X) and cDim(X) = Hstr

CE), computable dimension (dimcomp(X) = HDEC(X) and Dimcomp(X) =
Hstr

DEC(X)), and polynomial-space dimension (dimPSPACE(X) = HPSPACE(X) and DimPSPACE(X) =
Hstr

PSPACE(X)). For time-bounded dimension, no analogous result is known. However, the following
upper bounds are true [31, 33]: for all X ⊆ C, HP(X) ≤ dimP(X) and Hstr

P (x) ≤ DimP(X), where
dimP is the polynomial-time dimension and DimP is the polynomial-time strong dimension.

The NP-entropy rate is an upper bound for ∆P
3 -dimension.

Theorem 5.1. (Hitchcock and Vinodchandran [40]) For all X ⊆ C,

dim∆P
3
(X) ≤ HNP(X).

The strong dimension analogue of Theorem 5.1 also holds:

Dim∆P
3
(X) ≤ Hstr

NP(X)

for all X ⊆ C.
We now show that the NP-entropy rate upper bounds SpanP-dimension. Analogously, the UP-

entropy rate upper bounds #P-dimension and the SPP-entropy rate upper bounds GapP-dimension.
The proof uses Construction 4.1 and Lemma 4.2.

Theorem 5.2. For all X ⊆ C,

1. dim#P(X) ≤ HUP(X) ≤ HP(X)

2. dimSpanP(X) ≤ HNP(X).

3. dimGapP(X) ≤ HSPP(X).

4. Dim#P(X) ≤ Hstr
UP(X) ≤ Hstr

P (X)

5. DimSpanP(X) ≤ Hstr
NP(X).

6. DimGapP(X) ≤ Hstr
SPP(X).

Proof. We prove the second inequality, the proofs of the other inequalities are analogous.
Let α > HNP(X) and ϵ > 0 such that 2α and 2ϵ are rational. Let A ∈ NP such thatX ⊆ Ai.o. and

HA < α. We can assume that |A=n| ≤ 2αn for all n. It suffices to show that dimSpanP(X) ≤ α+ ϵ.
We use Construction 4.1 and Lemma 4.2 to obtain a uniform family (dn | n ≥ 0) of SpanP

martingales with

dn(λ) =
|A=n|
2n

≤ 2(α−1)n

and dn(v) = 1 for all v ∈ A=n. We now apply the Counting Dimension Borel-Cantelli Lemma
(Lemma 3.9) to complete the proof.

We note that combining Theorems 5.2 and 3.12 gives a new proof of Theorem 5.1.
We will next extend Theorem 5.2 to the measure setting. First, we define an entropy rate version

of measure 0. The idea in this definition is to extend the entropy rate HC to define a measure MC .
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Definition. (Entropy Rate Measure) Let X ⊆ C and let C be a complexity class. If there exist
A ∈ C and f ∈ FP such that

1. X ⊆ Ai.o.,

2. log |A=n| < n− f(n) for sufficiently large n, and

3.
∞∑
n=0

2−f(n) is P-convergent,

then X has MC-measure 0 and we write MC(X) = 0.

We observe that MC-measure has many of the standard measure properties. When using
C = ALL, the class of all languages, it refines Lebesgue measure: if MALL(X) = 0, then X has
Lebesgue measure 0. Using C = PSPACE, we have if MPSPACE(X) = 0, then µPSPACE(X) = 0.

Proposition 5.3. Let C,D be classes of languages and X,Y ⊆ C.

1. If C ⊆ D, MC(X) = 0 implies MD(X) = 0.

2. If X ⊆ Y , then MC(Y ) = 0 implies MC(X) = 0.

3. If C is closed under union, then MC(X) = 0 and MC(Y ) = 0 implies MC(X ∪ Y ) = 0.

4. If HC(X) < 1, then MC(X) = 0.

We now establish our measure-theoretic extension of Theorem 5.2. This proof also uses Con-
struction 4.1 and Lemma 4.2.

Theorem 5.4. Let X ⊆ C.

1. If MUP(X) = 0, then µ#P(X) = 0.

2. If MNP(X) = 0, then µSpanP(X) = 0.

3. If MSPP(X) = 0, then µGapP(X) = 0.

Proof. Assume MNP(X) = 0 and obtain the cover A ∈ NP and the function f ∈ FP satisfying the
definition of MNP(X) = 0. We use Construction 4.1 and Lemma 4.2 to obtain a uniform family of
exact SpanP martingales (dn | n ≥ 0) with

dn(λ) =
|A=n|
2n

≤ 2n−f(n)

2n
= 2−f(n)

and dn(w) = 1 for all w ∈ A=n. The Counting Measure Borel-Cantelli lemma (Lemma 3.8)
completes the proof. The proofs of the other items are analogous.

5.2 Kolmogorov Complexity

Lutz [55] showed that the space-bounded Kolmogorov complexity class

{S | (∃∞n)KSp(S ↾n) < n− f(n)}

has PSPACE-measure 0 where p is a polynomial, and
∞∑
n=0

2−f(n) is P-convergent. In other words, if

S is PSPACE-random, then KSp(S ↾n) ≥ n− f(n) a.e. For P-random sequences, Lutz proved that
the time-bounded Kolmogorov complexity Kp(S ↾n) ≥ c log n a.e. for any polynomial p.

We use the Conditional Expectation Martingale Construction (Construction 4.3) to obtain an
intermediate result for time-bounded Kolmogorov complexity and #P-measure.
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Theorem 5.5. Suppose f ∈ FP and the series
∞∑
n=0

2−f(n) is P-convergent. Let p be a polynomial

and
X = {S | (∃∞n)Kp(S ↾n) < n− f(n)}.

Then X has #P-measure 0.

Proof. For each n, let
Xn = {x ∈ {0, 1}n | Kp(x) < n− f(n)}.

For w ∈ {0, 1}≤n, let

dn(w) = Pr(Xn | w) = |{x ∈ Xn | w ⊑ x}|
2n−|w| .

This martingale satisfies

dn(λ) ≤
|Xn|
2n

≤ 2n−f(n)

2n
= 2−f(n)

and dn(x) = 1 for all x ∈ Xn. However, dn does not appear to be a #P martingale because
its numerator is a SpanP function. We will upper bound the SpanP-martingale dn by another
martingale d′n that is #P-computable and still satisfies d′n(λ) ≤ 2−f(n).

Let U be a universal Turing machine and define

C =

{
⟨0n, w, x, π⟩

∣∣∣∣ w ∈ {0, 1}≤n, x ∈ {0, 1}n, π ∈ {0, 1}<n−f(n),
w ⊑ x, and U(π) = x in ≤ p(n) time

}
.

Then C ∈ P, so the function

g(0n, w) =

∣∣∣∣{⟨x, π⟩ ∣∣∣∣ x ∈ {0, 1}n, π ∈ {0, 1}<n−f(n), w ⊑ x
and U(π) = x in ≤ p(n) time

}∣∣∣∣ .
is in #P. We use Construction 4.3. Define the #P-martingale

d′n(w) =
g(0n, w)

2n−|w|

for all w ∈ {0, 1}≤n and d′n(y) = d′n(y ↾ n) for y ∈ {0, 1}>n. Notice that g(0n, w) ≤ 2n−f(n), so
d′n(λ) ≤ 2−f(n). Also, d′n(x) ≥ dn(x) for all x ∈ {0, 1}∗. If x ∈ Xn, then

g(0n, x) =

∣∣∣∣{π

∣∣∣∣ x ∈ {0, 1}n, π ∈ {0, 1}<n−f(n),
and U(π) = x in ≤ p(n) time

}∣∣∣∣ ≥ 1.

and d′n(x) ≥ 1 = dn(x). Therefore Xn ⊆ S1[d′n]. Also, (d
′
n | n ∈ N) is exactly and uniformly #P-

computable by Lemma 4.4. We apply the Counting Measure Borel-Cantelli Lemma (Lemma 3.8)
to conclude that

X ⊆
∞⋂
i=0

∞⋃
j≥i

S1[d′n]

has #P-measure 0.

Corollary 5.6. Suppose f ∈ FP and the series
∞∑
n=0

2−f(n) is P-convergent. If S is #P-random,

then Kp(S ↾n) ≥ n− f(n) a.e.

The following Theorem is a variation of Theorem 5.5 which will be used in Section 6.
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Theorem 5.7. Suppose f ∈ FP and the series
∞∑
n=0

2−f(n) is P-convergent. Let p be a polynomial

and
X = {A | (∃∞n)Kp(A=n) < 2n − f(2n)}.

Then X has #P-measure 0.

Proof. If Kp(A=n) < 2n − f(2n) then we have

Kp(A≤n) ≤ Kp(A<n) +Kp(A=n) +O(n)

≤ 2n + 2n − f(2n) +O(n)

= 2n+1 − f(2n) +O(n).

It follows from Theorem 5.5 that X has #P-measure 0.

We next consider Kolmogorov complexity rates, which leads to an interesting connection with
one-way functions.

Definition. ([31, 40]) Let X ⊆ C.

1. The polynomial-time Kolmogorov complexity rate of X is

Kpoly(X) = inf
p∈poly

sup
S∈X

lim inf
n→∞

Kp(S ↾n)
n

.

2. The polynomial-time strong Kolmogorov complexity rate of X is

Kstr
poly(X) = inf

p∈poly
sup
S∈X

lim sup
n→∞

Kp(S ↾n)
n

.

1. The polynomial-space Kolmogorov complexity rate of X is

KSpoly(X) = inf
p∈poly

sup
S∈X

lim inf
n→∞

KSp(S ↾n)
n

.

2. The polynomial-space strong Kolmogorov complexity rate of X is

KSstr
poly(X) = inf

p∈poly
sup
S∈X

lim sup
n→∞

KSp(S ↾n)
n

.

Hitchcock and Vinodchandran [40] showed that for all X ⊆ C,
dimPSPACE(X)

=
HPSPACE(X)

=

KSpoly(X)

 ≤ dim∆P
3
(X) ≤ HNP(X) ≤

{
HP(X),
Kpoly(X)

}
≤ dimP(X). (5.1)

At the polynomial-space level, PSPACE-dimension, the PSPACE-entropy rate, and the Kolmogorov
complexity rate all coincide. At the polynomial-time level, the P-dimension, P-entropy rate, and
time-bounded Kolmogorov complexity rate are not known to be equal. No relationship is known
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dimPSPACE dimP#P dim∆P
3

dimSpanP dim#P HUP HP dimP

HNP Kpoly

HSPPdimGapP

KSpoly

HPSPACE

Figure 5.1: Relationships between Dimensions, Entropy Rates, and Kolmogorov Complexity Rates

between HP(X) and Kpoly(X). Analogous inequalities hold for the strong dimension versions of the
quantities in (5.1): for all X ⊆ C,

DimPSPACE(X)
=

Hstr
PSPACE(X)

=
KSstr

poly(X)

 ≤ Dim∆P
3
(X) ≤ Hstr

NP(X) ≤
{

Hstr
P (X),

Kstr
poly(X)

}
≤ DimP(X). (5.2)

Each quantity in (5.2) is greater than or equal to the corresponding quantity in 5.1.
We now show that the polynomial-time Kolmogorov complexity rates upper bound the #P-

dimensions.

Theorem 5.8. For all X ⊆ C,
dim#P(X) ≤ Kpoly(X)

and
Dim#P(X) ≤ Kstr

poly(X).

Proof. Let s > Kpoly(X) be rational. For each n, let

Xn = {x ∈ {0, 1}n | Kp(x) ≤ s|x|}.

Then use Construction 4.3 as in the proof of Theorem 5.5 to obtain a #P-martingale dn for each
n where dn(λ) ≥ 2(s−1)n for all x ∈ Xn. We then apply the Counting Dimension Borel-Cantelli
Lemma (Lemma 3.9). This shows dim#P(X) ≤ s. The proof of the lower bounds dim#P(X) ≥ s
follows from [36]. The proof for strong dimension is analogous.

Combining Theorem 5.2, Theorem 5.8, Corollary 3.16, and the inequalities in (5.1), we have the
refined picture in Figure 5.1. An arrow denotes that the dimension notion on the left is at most the
dimension notion on the right. A double arrow denotes that the two dimension notions are equal.
Analogous inequalities hold for the strong dimension versions of the quantities in Figure 5.1

Nandakumar, Pulari, Akhil S, and Sarma [72] showed that if one-way functions exist, then for
all ϵ > 0, there exists X ⊆ C with dimP(X) − Kstr

poly(X) ≥ 1 − ϵ. In fact, X may be taken as a
singleton. Combining this result with Theorem 5.8 and the inequalities Kpoly(X) ≤ dimP(X) and
Kstr

poly ≤ DimP(X) from (5.1) and (5.2), we obtain the following corollaries.

Corollary 5.9. If one-way functions exist, then for all ϵ > 0, there exists S ∈ C with dimP(S) −
dim#P(S) ≥ 1− ϵ and DimP(S)− Dim#P(S) ≥ 1− ϵ.

In other words: if one-way functions exist, then P-dimension is different from #P-dimension
and strong P-dimension is different from strong #P-dimension.
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Corollary 5.10. 1. If dim#P(S) = dimP(S) for all S ∈ C, then one-way functions do not exist.

2. If Dim#P(S) = DimP(S) for all S ∈ C, then one-way functions do not exist.

6 Applications

This section contains our main applications. We start with classical circuit complexity, then move
on to quantum circuit complexity, and lastly the density of hard sets.

6.1 Classical Circuit Complexity

Lutz [55] showed that for all α < 1, the class

Xα = SIZEi.o.

(
2n

n

(
1 +

α log n

n

))
has PSPACE-measure 0. Additionally, Lutz showed that for any c ≥ 1 and k ≥ 1, the classes P/cn
and SIZE(nk) have polynomial-time measure 0 and quasipolynomial-time measure 0, respectively.
Mayordomo [66] used Stockmeyer’s approximate counting of #P functions [80] to show that P/poly
has measure 0 in the third level of the exponential hierarchy.

We begin by extending Lutz’s PSPACE-measure result to MNP-measure, in order to improve
the theorem to SpanP-measure. The proof uses the Minimum Circuit Size Problem (MCSP) [44]
to form a cover. In MCSP, we are given the full 2n-length truth-table of a Boolean function
f : {0, 1}n → {0, 1} and a number s ≥ 1 and asked to decide whether there is a circuit of size at
most s computing f . The MCSP problem is in NP and not known to be NP-complete [39, 44, 71].
The MCSP problem fits perfectly into the MNP framework to help improve Lutz’s result, that Xα

has PSPACE-measure 0.

Theorem 6.1. For all α < 1,

SIZEi.o.

(
2n

n

(
1 +

α log n

n

))
has MNP-measure 0.

Proof. Let s(n) = 2n

n

(
1 + α logn

n

)
where α < 1 and let X = SIZEi.o.(s(n)).

Define

A = {B≤n |⟨B=n, s(n)⟩ ∈ MCSP}
= {B≤n |B=n has a circuit of size at most s(n)} .

Then A ∈ NP, X ⊆ Ai.o., and we need to show that log |A=N | < N − f(N), where N = 2n+1 − 1,
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for some f ∈ FP such that
∑∞

n=0 2
−f(n) is P-convergent. Using the bound in [55], we have:

log |A=N | <
n−1∑
m=0

2m + log (48es (n))s(n)

= 2n − 1 + s(n) (log(48e) + log (s (n)))

= 2n − 1 +
2n

n

(
1 +

α log n

n

)(
log (48e) + n− log n+ log

(
1 +

α log n

n

))
< 2n − 1 +

2n

n
(n+ α log n− log n+ 6)

< 2n+1 − 1− 2n

n

(
1− α

2

)
log n

= N − 2n

n

(
1− α

2

)
log n.

As a result, set

f(N) =
(
1− α

2

) 2n

n
log n

=
(
1− α

2

) N + 1

2(log (N + 1)− 1)
log (log (N + 1)− 1) .

It is easy to see that f ∈ FP and
∑∞

n=0 2
−f(n) is P-convergent.

Corollary 6.2. For all α < 1, SIZEi.o.
(
2n

n

(
1 + α logn

n

))
has SpanP-measure 0.

Proof. This is immediate from Theorem 6.1 and Theorem 5.4.

Corollary 6.3. For all α < 1, SIZEi.o.
(
2n

n

(
1 + α logn

n

))
has ∆P

3 -measure 0 and measure 0 in ∆E
3 .

Proof. This is immediate from Corollary 6.2 and Theorem 3.12.

Under a derandomization hypothesis, Corollary 6.3 improves by one level in the exponential
hierarchy to ∆E

2 = ENP. This yields a stronger lower bound than other conditional approaches for
obtaining lower bounds in ENP [1, 10].

Corollary 6.4. If Derandomization Hypothesis 2.2 is true, then for all α < 1, SIZEi.o.
(
2n

n

(
1 + α logn

n

))
has ∆P

2 -measure 0 and measure 0 in ∆E
2 .

Proof. This is immediate from Corollary 6.2 and Theorem 3.14.

Lutz [57] showed that for all α ∈ [0, 1], the class

Dα = SIZE

(
α
2n

n

)
has PSPACE-dimension α. Athreya et al. [9] showed that Dα also has strong PSPACE-dimension
α. Hitchcock and Vinodchandran [40] showed that HNP(Dα) = α, yielding the improvement that
Dα has ∆P

3 -dimension α. It is immediate from this and Theorem 5.2 that Dα has SpanP-dimension
α. We improve this to #P-dimension by using a Kolmogorov complexity argument.

Theorem 6.5. For all α ∈ [0, 1], dim#P

(
SIZE

(
α2n

n

))
= Dim#P

(
SIZE

(
α2n

n

))
= α.
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Proof. Let Xα =
(
SIZE

(
α2n

n

))
and let B ∈ Xα. For all sufficiently large n, ⟨B=n, s⟩ ∈ MCSP for

s = α2n

n . Let C be a circuit of size s on n inputs. Frandsen and Miltersen [26] showed that there
exists a stack program of size at most (s+ 1)(c+ log(n+ s)) that constructs C. Let γ > β > α be
arbitrarily close rationals. Let p(n) = n3 and q(n) = n4. For all n larger than some n0,

Kp(2n)(B=n) ≤ (s+ 1)(c+ log(n+ s)) +O(log n)

≤
(
α
2n

n
+ 1

)(
c+ log

(
α
2n

n
+ n

))
+O(log n)

≤
(
β
2n

n

)(
c+ log

(
β
2n

n

))
≤

(
β
2n

n

)
(c+ log β + n− log n)

≤
(
β
2n

n

)
n

≤ β2n.

Let N = 2n+1 − 1. We have

Kq(N)(B≤n) ≤
n∑

k=n0

Kp(2k)(B=k) +O(n)

≤ βN +O(n)

≤ γN,

so
Kq(N)(B ↾N)

N
≤ γ

for all sufficiently large N of the form 2n+1 − 1. Therefore Dim#P(Xα) ≤ γ by Theorem 5.8. The
dimension lower bound holds because dim#P(Xα) ≥ dimH(Xα) = α [57]. The theorem follows
because α and γ are arbitrarily close.

Corollary 6.6. P/poly has #P-strong dimension 0.

Regarding infinitely-often classes, Hitchcock and Vinodchandran [40] showed that the class
SIZEi.o.

(
α2n

n

)
has NP-entropy rate and ∆P

3 -dimension 1+α
2 . This extends to #P-dimension, with a

proof similar to Theorem 6.5.

Theorem 6.7. For all α ∈ [0, 1], dim#P

(
SIZEi.o.

(
α2n

n

))
= 1+α

2 .

Proof. Let Xα =
(
SIZEi.o.

(
α2n

n

))
and let B ∈ Xα. For all infinitely many n, ⟨B=n, s⟩ ∈ MCSP for

s = α2n

n . Let γ > β > α be arbitrarily close rationals, and let p(n) = n3 and q(n) = n4. As in the
proof of Theorem 6.5,

Kp(2n)(B=n) ≤ β2n

for infinitely many n. Let N = 2n+1 − 1. We have

Kq(N)(B≤n) ≤ Kp(B<n) +Kp(B=n) +O(n)

≤ 2n − 1 + β2n +O(n)

≤ 1 + β

2
N +O(n)

≤ 1 + γ

2
N,
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so
Kq(N)(B ↾N)

N
≤ 1 + γ

2

for infinitely many N of the form 2n+1 − 1. Therefore Dim#P(Xα) ≤ 1+γ
2 by Theorem 5.8. The

dimension lower bound holds because dim#P(Xα) ≥ dimH(Xα) = 1+α
2 [40]. The theorem follows

because α and γ are arbitrarily close.

We note that any infinitely-often defined class like SIZEi.o.
(
α2n

n

)
in Theorem 6.5 always has its

packing dimension and resource-bounded strong dimensions equal to 1 [28]:

Dim#P

(
SIZEi.o.

(
α
2n

n

))
= Dimpack

(
SIZEi.o.

(
α
2n

n

))
= 1.

Li [51], building on work of Korten [47] and Chen, Hirahara, and Ren [16], showed that the
symmetric exponential-time class SE2 requires exponential-size circuits.

Theorem 6.8. (Li [51]) SE2 ̸⊆ SIZEi.o.
(
2n

n

)
.

Using Lutz’s counting argument [55] as in the proof of Theorem 6.1, we improve this lower-bound

to SIZEi.o.
(
2n

n

(
1 + α logn

n

))
for any α < 1.

Theorem 6.9. For all α < 1, SE2 ̸⊆ SIZEi.o.
(
2n

n

(
1 + α logn

n

))
.

Proof. Li [51] showed there is a single-valued FSP2 function that given any polynomial-size circuit
C : {0, 1}n → {0, 1}n+1 outputs a nonimage of C. Li applies this algorithm to the truth-table
generator circuit TTn,s for s = 2n

n and uses its 2n-length output to define as the characteristic

string of the SE2 language at length n. We observe that this proof works with s = 2n

n

(
1 + α logn

n

)
by Lutz’s counting argument [55].

6.2 Quantum Circuit Complexity

Recent work has also studied circuit-size complexity within quantum models. For instance, Basu
and Parida [11] showed that the number of distinct Boolean functions on n variables that can
be computed by quantum circuits of size at most c2

n

n is bounded by 22
n−1

, where 0 ≤ c ≤ 1 is a
constant that depends only on the maximum number of inputs of the gates. They proved this bound
in a general setting in which the set of quantum gates is uncountably infinite. Using universal gate
sets with constant fan-in, Chia et al. [17, 18] showed that the fraction of Boolean functions on n

variables that require quantum circuits of size at least 2n

(c+1)n is at least 1−2−
2n

c+1 . We extend these
quantum circuit-size bounds to a counting dimension result. In the following result, the BQSIZE
class is independent of the choice of gate set because of the o

(
2n

n

)
size bound.

Theorem 6.10. dimGapP

(
BQSIZE

(
o
(
2n

n

)))
= DimGapP

(
BQSIZE

(
o
(
2n

n

)))
= 0.

Proof. Let A be a language with quantum circuits of size o(2
n

n ). We will use the Acceptance
Probability Construction (Construction 4.9) technique to construct a GapP-martingale. Let b ≥ 1
and let s(n) = 2n

bn . There exists n0 such that for all n ≥ n0, the quantum circuit for A=n has a size

of at most s(n). Let C⃗ = (Cn0 , Cn0+1, . . .) be these quantum circuits. We assume that the circuits
are amplified so that Ck has error probability at most 2−2k.

Let dC⃗ be a martingale that on input x if 2n0 − 1 ≤ |x| ≤ 2n+1 − 1 (i.e., we are betting on a
string of length between n0 and n), runs the Acceptance Probability Construction with circuit Cn0
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starting from length n0 on the bits of x corresponding to length n0. We bet on length n0 using
Cn0 , length n0 + 1 using Cn0+1, and so on, up to length n using Cn. If |x| < 2n0 − 1, dC⃗(x) = 1.
Note that dC⃗(λ) = 1 and dC⃗ is a GapP martingale.

For any length k where n0 ≤ k ≤ n, dC⃗ wins Ω(22
k
) by the analysis in Section 4.4. Therefore

dC⃗(A≤n) = Ω(22
n+1

). Let γ > 0 be a constant so that dC⃗(A≤n) ≥ γ22
n+1

for all sufficiently large n.

Define gn0,n on input x ∈ {0, 1}≤2n+1−1 to guess an extension w ∈ {0, 1}2n+1−1 with x ⊑ w and

guess a vector of quantum circuits C⃗ = (Cn0 , . . . , Cn) where size(Ci) ≤ s(i) for all i from n0 to n.
Then gn0,n computes dC⃗(w). Thus,

gn0,n(x) =
∑

C⃗ : (∀i∈[n0,n]) size(Ci)≤s(i)

dC⃗(x).

By [18], there is a constant c ≥ 1 depending on the universal gate set so that there are at most

2cs(n) log s(n) ≤ 2
c

b(c+1)
2n

quantum circuits of size s(n) for all sufficiently large n. Let δ = c
b(c+1) and

let ϵ > δ be a dyadic rational.
Define hn(x) to be 2ϵ2

n+1
. Then

dn0,n(x) =
gn0,n(x)

hn(x)

is an exact GapP-martingale. We have

dn0,n(λ) ≤
∏n

m=n0
2δ2

m

2ϵ2n+1 =
2
∑n

m=n0
δ2m

2ϵ2n+1 = 2δ(2
n+1−2n0 )−ϵ2n+1

= 2(δ−ϵ)2n+1−δ2n0
.

For m ≥ 0, define

fm(x) =
m∑

n0=0

m∑
n=n0

dn0,n(x).

This is a uniform family of exact GapP-martingales. We have

fm(λ) =

m∑
n0=0

m∑
n=n0

dn0,n(λ) ≤
m∑

n0=0

m∑
n=n0

2(δ−ϵ)2n+1
.

There are (m+ 1)2 terms in the double sum, each at most 2(δ−ϵ)2m+1
, so

fm(λ) ≤ (m+ 1)2 · 2(δ−ϵ)2m+1
= 2(δ−ϵ)2m+1+2 log(m+1).

This makes
∞∑

m=0
fm(λ) P-convergent because ϵ > δ. Let

f(x) =
∞∑

m=0

fm(x).

By the Summation Lemma (Lemma 3.5), f is a GapP-martingale.
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Let B ∈ BQSIZE(o(2
n

n )) be arbitrary with small quantum circuits starting at some n0 ≥ 0. Let
ϵ′ > ϵ. We have

f(B≤n) ≥ fn(B≤n)

≥ dn0,n(B≤n)

≥ γ22
n+1

2ϵ2n+1

= γ2(1−ϵ)2n+1

≥ γ2(1−ϵ)(2n+1−1)

≥ 2(1−ϵ′)(2n+1−1)

for sufficiently large n. Therefore f ϵ′-strongly succeeds on B. Since B ∈ BQSIZE(o(2
n

n )) and ϵ′ > ϵ
are arbitrary, BQSIZE(o(2

n

n )) has GapP-strong dimension at most ϵ. Since this holds for all ϵ > δ,
the class has GapP-strong dimension at most δ = c

b(c+1) . Since b ≥ 1 is arbitrary, the class has
GapP-strong dimension 0.

Corollary 6.11. BQP/poly has GapP-strong dimension 0.

Lutz [57] showed that SIZE(α2n

n ) has PSPACE-dimension α and we improved this to #P-
dimension α in Theorem 6.5. It remains open whether a similar result holds for quantum circuits
in either PSPACE-dimension or GapP-dimension (or even Hausdorff dimension). Achieving this
would refine the current dimension zero statement into an exact dimension classification for small
quantum circuits, but it would apparently depend on the choice of universal quantum gate set.

Another interesting direction is determining the measure or dimension of BQP/qpoly. While we
know BQP/poly has GapP-dimension 0, extending this to quantum advice remains open. We note
that Aaronson [2] has shown that E#P ̸⊆ BQP/qpoly, so it would be consistent with Theorem 3.10
to show that BQP/qpoly has GapP-dimension 0.

A similar and simpler proof shows an infinitely-often version of Theorem 6.10, analogous to
Theorem 6.7.

Theorem 6.12. dimGapP(BQSIZE
i.o.(o(2

n

n ))) = 1
2 .

6.3 Density of Hard Sets

Investigations of the density of hard sets for complexity classes began with motivation from the
Berman-Hartmanis Isomorphism Conjecture [12]. A language S is sparse if |S≤n| ≤ p(n) for some
polynomial p and all n. A language S is dense if |S≤n| > 2n

ϵ
for some ϵ > 0 and almost all n.

Let SPARSE be the class of all sparse languages and DENSE be the class of all dense languages.
Meyer [69] showed that every hard set for E is dense. A problem is in P/poly if and only if it
is in PT(SPARSE), the polynomial-time Turing closure of SPARSE [12, 45]. A line of subsequent
work strengthened these results in multiple directions [14, 15, 27, 29, 34, 59, 63, 64, 73, 87]. The
current best result for E is that the polynomial-time bounded-query Turing reduction closures
Pnα−T(DENSE

c) and Po(n/ logn)−T(SPARSE) both have P-dimension 0, implying every hard language
for E is dense or sparse, respectively, under these reductions [34]. Wilson [88] showed that there
is an oracle relative to which E has sparse hard sets under O(n)-truth-table reductions. We now
show that counting measure can handle polynomial-time Turing reductions to nondense sets, even
if they are computed by P/poly circuits. Note that the following theorem extends Corollary 6.6.

Theorem 6.13. The class (P/poly)T(DENSE
c) of problems that P/poly-Turing reduce to nondense

sets has #P-dimension 0.
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Proof. Let A ∈ (P/poly)T(DENSE
c) be in the class. Composing the reduction with a lookup table

for the nondense set shows that for all ϵ > 0 and infinitely many n, the polynomial-time bounded
Kolmogorov of A≤n is at most 2n

ϵ
. We then apply Theorem 5.8.

Corollary 6.14. Every problem that is P/poly-Turing hard for ∆E
3 is dense.

Proof. This follows from Theorem 6.13, Proposition 3.2, and Corollary 3.13.

7 Conclusion

We have introduced #P, GapP, and SpanP counting measures and dimensions. These are inter-
mediate in power between polynomial-time measure and dimension and polynomial-space measure
and dimension. We have shown that counting measures and dimensions are useful for classes where
the space-bounded measure or dimension is known but the time-bounded measure or dimension is
not known. This is the primary way to use counting measures and dimensions and we expect more
results in this form.

1. If µPSPACE(X) = 0 and µP(X) is unknown, investigate the counting measures µ#P(X),
µSpanP(X), and µGapP(X).

2. If dimPSPACE(X) = α is known and dimP(X) is unknown, investigate the counting dimensions
dim#P(X), dimSpanP(X), and dimGapP(X).

3. If DimPSPACE(X) = α is known and DimP(X) is unknown, investigate the counting strong
dimensions Dim#P(X), DimSpanP(X), and DimGapP(X).

We strengthened Lutz’s PSPACE-measure result by showing that the class of languages with
circuit size 2n

n (1 + α logn
n ) has SpanP-measure zero for all α < 1. This improvement utilizes the

Minimum Circuit Size Problem (MCSP) to bridge the gap between PSPACE-measure and SpanP-
measure. As a consequence, we showed that this measure-theoretic circuit size lower bound holds in
the third level of the exponential-time hierarchy, ∆E

3 = EΣP
2 . Previously this was only known to hold

in the exponential-space class ESPACE. We also noted that recent work [51] on exponential circuit
lower bounds for the symmetric alternation class SE

2 extends to this tighter 2n

n (1 + α logn
n ) bound.

Under derandomization assumptions, our results further improve to the second level, ∆E
2 = ENP.

We showed that BQP and more generally, the class of problems with o
(
2n

n

)
-size quantum circuits,

has GapP-strong dimension 0. This is the first work in resource-bounded measure or dimension to
address quantum complexity. Our results on circuit-size complexity are summarized in Figure 1.3.

We conclude with several open questions. The relationships between counting dimensions and
other dimension notions, entropy rates, and Kolmogorov complexity rates are summarized in Figure
5.1.

Question 7.1. Can any of the relationships in Figure 5.1 be improved?

Arvind and Köbler [8] showed that for each C ∈ {⊕P,PP}, µP(C) ̸= 0 implies PH ⊆ C. Hitchcock
[32] showed that if SPP does not have P-measure 0, then PH ⊆ SPP. All of these classes have
PSPACE-measure 0 and their P-measures are unknown, so the above paradigm applies:

Question 7.2. What are the counting measures and dimensions of counting complexity classes
including PP, ⊕P, and SPP?
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In particular, we know from Corollary 4.8 that GapP-random languages are not in SPP. It is
known that SPP is low for GapP [20], meaning that an SPP oracle provides no additional power
to GapP: GapPSPP = GapP. We do not know if SPP languages can be shown to uniformly have
GapP-measure 0.

Question 7.3. Does SPP have GapP-measure 0?

We showed in Theorem 3.12 that SpanP-measure is dominated by ∆P
3 -measure, which implies

∆E
3 does not have SpanP-measure 0 or #P-measure 0. For GapP-measure, we only know that

EGapP = E#P does not have GapP-measure 0.

Question 7.4. What is the smallest complexity class that does not have GapP-measure 0?

We also know that NP and UP have PSPACE-measure 0, but we do not know their P-measures.
From Corollary 4.8, we know that SpanP-random languages are not in NP and #P-random languages
are not in UP. As with SPP, it is not clear how to extend these proofs to show that the classes NP
or UP have counting measure 0.

Question 7.5. Does NP have SpanP-measure 0?

Question 7.6. Does UP have #P-measure 0?

The measure hypothesis µP(NP) ̸= 0 is known to have many plausible consequences [38, 56, 60,
61]. Hypotheses that complexity classes do not have counting measure 0 could be interesting to
study. For example:

µSpanP(NP) ̸= 0 ⇒ µ#P(NP) ̸= 0 ⇒ µP(NP) ̸= 0
⇓ ⇓ ⇓

µSpanP(PP) ̸= 0 ⇒ µ#P(PP) ̸= 0 ⇒ µP(PP) ̸= 0.

Our results imply that if µ#P(NP) ̸= 0, then strong consequences hold for NP:

1. NP has problems with circuit-size complexity at least 2n

n (Theorem 6.5).

2. The ≤P/poly
T -hard languages for NP are dense (Theorem 6.13).

Question 7.7. What else does µ#P(NP) ̸= 0 imply? How does it compare with the standard
measure hypothesis µP(NP) ̸= 0?

We were able to show in Theorem 6.5 that SIZE
(
α2n

n

)
has #P-dimension α, but in Theorem

6.10 we only showed that BQSIZE
(
o
(
2n

n

))
has GapP-strong dimension 0.

Question 7.8. Is it possible to determine the GapP-dimension for the class of problems with α2n

n -
size quantum circuits, for an appropriate choice of universal gate set?

While BQP/poly has GapP-strong dimension 0, we do not know if this can be extended to
quantum advice, even for GapP-measure.

Question 7.9. Does BQP/qpoly have GapP-measure 0?

Aaronson [2] has shown that E#P ̸⊆ BQP/qpoly, so a positive answer to Question 7.9 is consistent
with Theorem 3.10.
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[8] V. Arvind and J. Köbler. On pseudorandomness and resource-bounded measure. Theoretical
Computer Science, 255(1–2):205–221, 2001. doi:10.1016/s0304-3975(99)00164-4. 39

[9] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimen-
sion in algorithmic information and computational complexity. SIAM Journal on Computing,
37(3):671–705, 2007. arXiv:cs.CC/0211025, doi:10.1137/s0097539703446912. 3, 4, 5, 9,
13, 25, 34

[10] B. Aydinlioglu, D. Gutfreund, J. M. Hitchcock, and A. Kawachi. Derandomizing Arthur-
Merlin games and approximate counting implies exponential-size lower bounds. Computational
Complexity, 20(2):329–366, 2011. doi:10.1007/s00037-011-0010-8. 34

[11] Saugata Basu and Laxmi Parida. Quantum analog of Shannon’s lower bound theorem. Tech-
nical Report 2308.13091, arXiv, 2023. arXiv:2308.13091. 36

[12] L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete sets.
SIAM Journal on Computing, 6(2):305–322, 1977. doi:10.1137/0206023. 38, 45

[13] R. V. Book. Tally languages and complexity classes. Information and Control, 26:186–193,
1974. doi:10.1016/s0019-9958(74)90473-2. 16

[14] H. Buhrman, L. Fortnow, J. M. Hitchcock, and B. Loff. Learning reductions to sparse sets. In
Proceedings of the 38th International Symposium on Mathematical Foundations of Computer
Science, pages 243–253. Springer-Verlag, 2013. doi:10.1007/978-3-642-40313-2_23. 38

41

https://arxiv.org/abs/0504048
https://doi.org/10.1109/CCC.2006.32
https://doi.org/10.1137/0217075
https://doi.org/10.1201/9780429187490-1
https://doi.org/10.1016/0304-3975(96)89424-2
https://doi.org/10.1109/FOCS52979.2021.00062
https://doi.org/10.1016/s0304-3975(99)00164-4
https://arxiv.org/abs/cs.CC/0211025
https://doi.org/10.1137/s0097539703446912
https://doi.org/10.1007/s00037-011-0010-8
https://arxiv.org/abs/2308.13091
https://doi.org/10.1137/0206023
https://doi.org/10.1016/s0019-9958(74)90473-2
https://doi.org/10.1007/978-3-642-40313-2_23


[15] H. Buhrman and S. Homer. Superpolynomial circuits, almost sparse oracles and the expo-
nential hierarchy. In Proceedings of the 12th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, pages 116–127. Springer, 1992. doi:10.1007/

3-540-56287-7_99. 38

[16] Lijie Chen, Shuichi Hirahara, and Hanlin Ren. Symmetric exponential time requires near-
maximum circuit size. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, STOC 2024, page 1990–1999, New York, NY, USA, 2024. Association for Com-
puting Machinery. doi:10.1145/3618260.3649624. 7, 36

[17] Nai-Hui Chia, Chi-Ning Chou, Jiayu Zhang, and Ruizhe Zhang. Quantum meets the minimum
circuit size problem. Technical Report 2108.03171, arXiv, 2021. arXiv:2108.03171. 36

[18] Nai-Hui Chia, Chi-Ning Chou, Jiayu Zhang, and Ruizhe Zhang. Quantum Meets the Minimum
Circuit Size Problem. In Mark Braverman, editor, 13th Innovations in Theoretical Computer
Science Conference (ITCS 2022), volume 215 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 47:1–47:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ITCS.2022.47. 24, 36, 37

[19] R. Downey and D. Hirschfeldt. Algorithmic Randomness and Complexity. Springer-Verlag,
2010. doi:10.1007/978-0-387-68441-3. 4

[20] S. A. Fenner, L. Fortnow, and S. A. Kurtz. Gap-definable counting classes. Journal of Com-
puter and System Sciences, 48(1):116–148, 1994. doi:10.1016/s0022-0000(05)80024-8. 3,
6, 11, 24, 40

[21] Stephen Fenner, Lance Fortnow, Stuart A Kurtz, and Lide Li. An oracle builder’s toolkit.
Information and Computation, 182(2):95–136, 2003. doi:10.1016/S0890-5401(03)00018-X.
24

[22] Stephen A. Fenner. PP-lowness and a simple definition of AWPP. Theory of Computing
Systems, 36(3):199–212, 2003. doi:10.1007/s00224-002-1089-8. 24

[23] L. Fortnow. Counting complexity. In L. A. Hemaspaandra and A. L. Selman, editors,
Complexity Theory Retrospective II, pages 81–107. Springer-Verlag, 1997. doi:10.1007/

978-1-4612-1872-2_4. 3

[24] L. Fortnow and J. Rogers. Complexity limitations on quantum computation. Journal of
Computer and System Sciences, 59(2):240–252, 1999. doi:10.1006/jcss.1999.1651. 22, 24

[25] Lance Fortnow. One complexity theorist’s view of quantum computing. Theoretical Computer
Science, 292(3):597–610, 2003. doi:10.1016/S0304-3975(01)00377-2. 22

[26] Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the circuit
size of the hardest functions. Information Processing Letters, 95(2):354–357, 2005. doi:

10.1016/j.ipl.2005.03.009. 7, 35

[27] B. Fu. With quasilinear queries EXP is not polynomial time Turing reducible to sparse sets.
SIAM Journal on Computing, 24(5):1082–1090, 1995. doi:10.1137/s0097539792237188. 8,
38

[28] X. Gu. A note on dimensions of polynomial size circuits. Theoretical Computer Science,
359(1–3):176–187, 2006. doi:10.1016/j.tcs.2006.02.022. 36

42

https://doi.org/10.1007/3-540-56287-7_99
https://doi.org/10.1007/3-540-56287-7_99
https://doi.org/10.1145/3618260.3649624
https://arxiv.org/abs/2108.03171
https://doi.org/10.4230/LIPIcs.ITCS.2022.47
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1016/s0022-0000(05)80024-8
https://doi.org/10.1016/S0890-5401(03)00018-X
https://doi.org/10.1007/s00224-002-1089-8
https://doi.org/10.1007/978-1-4612-1872-2_4
https://doi.org/10.1007/978-1-4612-1872-2_4
https://doi.org/10.1006/jcss.1999.1651
https://doi.org/10.1016/S0304-3975(01)00377-2
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1137/s0097539792237188
https://doi.org/10.1016/j.tcs.2006.02.022


[29] Ryan C. Harkins and John M. Hitchcock. Dimension, halfspaces, and the density of hard sets.
Theory of Computing Systems, 49(3):601–614, 2011. doi:10.1007/S00224-010-9288-1. 38
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[49] Henri Lebesgue. Intégrale, longueur, aire. Annali di Matematica Pura ed Applicata, 7(1):231–
359, 1902. doi:10.1007/BF02420592. 4, 12

[50] Lide Li. On the counting functions. PhD thesis, University of Chicago, 1993. URL:
https://www.proquest.com/dissertations-theses/on-counting-functions/docview/

304080357/se-2. 3, 11

[51] Zeyong Li. Symmetric exponential time requires near-maximum circuit size: Simplified, truly
uniform. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC
2024, page 2000–2007, New York, NY, USA, 2024. Association for Computing Machinery.
doi:10.1145/3618260.3649615. 7, 36, 39

[52] O. B. Lupanov. On the synthesis of contact networks. Doklady Akademii Nauk SSSR,
119(1):23–26, 1958. 3, 7

[53] J. H. Lutz. Resource-Bounded Category and Measure in Exponential Complexity Classes. PhD
thesis, California Institute of Technology, 1987. doi:10.7907/qny92-v6h14. 3

[54] J. H. Lutz. Category and measure in complexity classes. SIAM Journal on Computing,
19(6):1100–1131, 1990. doi:10.1137/0219076.

[55] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System
Sciences, 44(2):220–258, 1992. doi:10.1016/0022-0000(92)90020-j. 3, 4, 5, 7, 9, 12, 15, 16,
29, 33, 34, 36

[56] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and A. L.
Selman, editors, Complexity Theory Retrospective II, pages 225–254. Springer-Verlag, 1997.
doi:10.1007/978-1-4612-1872-2_10. 3, 4, 9, 22, 40

[57] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236–1259,
2003. arXiv:cs/0203016, doi:10.1137/S0097539701417723. 3, 4, 5, 8, 9, 12, 13, 15, 34, 35,
38

[58] J. H. Lutz. Effective fractal dimensions. Mathematical Logic Quarterly, 51(1):62–72, 2005.
doi:10.1002/malq.200310127. 4, 9

44

https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.5169/seals-52237
https://doi.org/10.1007/BF00276023
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1016/s0019-9958(70)90105-1
https://doi.org/10.1007/BF02420592
https://www.proquest.com/dissertations-theses/on-counting-functions/docview/304080357/se-2
https://www.proquest.com/dissertations-theses/on-counting-functions/docview/304080357/se-2
https://doi.org/10.1145/3618260.3649615
https://doi.org/10.7907/qny92-v6h14
https://doi.org/10.1137/0219076
https://doi.org/10.1016/0022-0000(92)90020-j
https://doi.org/10.1007/978-1-4612-1872-2_10
https://arxiv.org/abs/cs/0203016
https://doi.org/10.1137/S0097539701417723
https://doi.org/10.1002/malq.200310127


[59] J. H. Lutz and E. Mayordomo. Measure, stochasticity, and the density of hard languages.
SIAM Journal on Computing, 23(4):762–779, 1994. doi:10.1137/s0097539792237498. 8, 38

[60] J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness notions
if NP is not small. Theoretical Computer Science, 164(1–2):141–163, 1996. doi:10.1016/

0304-3975(95)00189-1. 40

[61] J. H. Lutz and E. Mayordomo. Twelve problems in resource-bounded measure. Bulletin of the
European Association for Theoretical Computer Science, 68:64–80, 1999. Also appears as [62].
3, 4, 9, 40

[62] J. H. Lutz and E. Mayordomo. Twelve problems in resource-bounded measure. In G. Păun,
G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical Computer Science:
Entering the 21st Century, pages 83–101. World Scientific Publishing, 2001. doi:10.1142/

9789812810403_0001. 45

[63] J. H. Lutz and Y. Zhao. The density of weakly complete problems under adaptive reductions.
SIAM Journal on Computing, 30(4):1197–1210, 2000. doi:10.1137/s0097539797321547. 8,
38

[64] S. R. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis.
Journal of Computer and System Sciences, 25(2):130–143, 1982. doi:10.1016/0022-0000(82)
90002-2. 38

[65] E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical Computer
Science, 136(2):487–506, 1994. doi:10.1016/0304-3975(94)00023-c. 7, 25, 26

[66] E. Mayordomo. Contributions to the study of resource-bounded measure. PhD thesis, Univer-
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