Electronic Colloquium on Computational Complexity, Report No. 120 (2025)

Asymptotically Optimal Inapproximability of
Ek-SAT Reconfiguration

Shuichi Hirahara Naoto Ohsaka
National Institute of Informatics, Japan CyberAgent, Inc., Japan
s_hirahara@nii.ac.jp ohsaka_naoto@cyberagent.co. jp
Abstract

In the MAXMIN Ek-SAT RECONFIGURATION problem, we are given a satisfiable k-CNF formula
¢ where each clause contains exactly k literals, along with a pair of its satisfying assignments. The
objective is transform one satisfying assignment into the other by repeatedly flipping the value of a
single variable, while maximizing the minimum fraction of satisfied clauses of ¢ throughout the trans-

formation. In this paper, we demonstrate that the optimal approximation factor for MAXMIN Ek-SAT

RECONFIGURATION is 1 — @( ) On the algorithmic side, we develop a deterministic (1 — kil — %)-

factor approximation algorithm for every k > 3. On the hardness side, we show that it is PSPACE-hard
to approximate this problem within a factor of 1 — 10k for every sufficiently large k. Note that an “NP
analogue” of MAXMIN Ek-SAT RECONFIGURATION is MAX Ek-S AT, whose approximation threshold
is 1 — ; shown by Hastad (JACM 2001). To the best of our knowledge, this is the first reconfigura-
tion problem whose approximation threshold is (asymptotically) worse than that of its NP analogue.
To prove the hardness result, we introduce a new “non-monotone” test, which is specially tailored to
reconfiguration problems, despite not being helpful in the PCP regime.

1 Introduction

Ek-SAT RECONFIGURATION [GKMPQ9] is a canonical reconfiguration problem, defined as follows:
Let ¢ be a satisfiable Ek-CNF formula, where each clause contains exactly k literals, over n variables. A
sequence over assignments for ¢, denoted by o = (a(l), ey Oc(T)), is called a reconfiguration sequence if
every adjacent pair of assignments o) and a1 differ in a single variable. In the Ek-SAT RECONFIGU-
RATION problem, for a pair of satisfying assignments Otart and Oleng for ¢, we are asked to decide if there
exists a reconfiguration sequence O from Oiart t0 Clenq consisting only of satisfying assignments for ¢. In
other words, Ek-SAT RECONFIGURATION asks the sf-connectivity question over the solution space of ¢,
which is the subgraph G, of the n-dimensional Boolean hypercube induced by all satisfying assignments
for @. Studying Ek-SAT RECONFIGURATION and its variants was originally motivated by the application
to analyze the structure of the solution space for Boolean formulas. For a random instance ¢ of Ek-SAT
(in a low-density regime), the solution space G breaks down into exponentially many “clusters” [ACR11,
MMZ05], providing insight into the (empirical) performance of SAT solvers, such as DPLL [ABMO04] and
Survey Propagation [MPZ02]. To shed light on the structure of the solution space in the worst case scenario,
Gopalan, Kolaitis, Maneva, and Papadimitriou [GKMP09, Theorem 2.9] established a dichotomy theorem
that classifies the complexity of every reconfiguration problem over Boolean formulas as P or PSPACE-
complete; e.g., Ek-SAT RECONFIGURATION is in P if k < 2 and is PSPACE-complete for every k > 3.
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Figure 1: The solution space of Example 1.1. Each assignment enclosed by a (blue) double line violates a
single clause of an E3-CNF formula ¢, that enclosed by a (red) dashed line violates two clauses, and the
other assignments satisfy ¢. Observe that we cannot transform Oftart Into teng Without unsatisfying @; i.e.,
this is a NO instance of E3-SAT RECONFIGURATION. As an instance of MAXMIN E3-SAT RECONFIGU-

RATION, an optimal reconfiguration sequence is (0000, 1000, 1100,1110, 1111), whose objective value is %.

Moreover, the diameter of the connected components of G, can be exponential in the PSPACE-complete
case while it is always linear in the P case [GKMPO09, Theorem 2.10]. See Section 3 for related work on
other reconfiguration problems.

In this paper, we study approximability of Ek-SAT RECONFIGURATION. Recently, approximability
of reconfiguration problems has been studied from both hardness and algorithmic sides [HO24a, HO24b,
HO25, KM23, Ohs23, Ohs24a, Ohs24b, Ohs24c, Ohs25a, Ohs25b] (see also Section 3.3). In the ap-
proximate version of Ek-SAT RECONFIGURATION, called MAXMIN Ek-SAT RECONFIGURATION [IDH-
PSUU11], for a satisfiable Ek-CNF formula ¢ and a pair of its satisfying assignments Ostart and Oteng, we
are asked to construct a reconfiguration sequence O from Ogart tO Clend consisting of any (not necessarily
satisfying) assignments for ¢. The objective is to maximize the minimum fraction of satisfied clauses of @,
where the minimum is taken over all assignments in &. Note that an “NP analogue” of MAXMIN Ek-SAT
RECONFIGURATION is MAX Ek-SAT.

MAXMIN Ek-SAT RECONFIGURATION

Input: a satisfiable Ek-CNF formula ¢ and a pair of its satisfying assignments Olstart and Oteng.
Output: areconfiguration sequence o from Olseart tO Clend.
Goal: maximize the minimum fraction of satisfied clauses of ¢ over all assignments in .

Solving this problem, we may be able to find a “reasonable” reconfiguration sequence consisting of almost-
satisfying assignments, so that we can mange NO instances of Ek-SAT RECONFIGURATION. An example
of MAXMIN E3-SAT RECONFIGURATION is described as follows.

Example 1.1 (MAXMIN E3-SAT RECONFIGURATION). Let ¢ be an E3-CNF formula consisting of



the following six clauses over four variables x, x,, x3, and x4:

Ci=x1Vx3Vxs, Cy:=Xx1Vx2VXxy,
Cy=Xx1Vx VX3, Cs ==X Vx3VXg, (1.1)
C3 =x1 VX VX3, Ce =x1VX3VXg.

Let Qstart := 0000 and Qeng := 1111 be two satisfying assignments for ¢. See Figure 1 for the so-
lution space of ¢@. Observe that (@, Ogtart, end) is @ NO instance of Ek-SAT RECONFIGURATION
because any reconfiguration sequence from Qstart t0 Qeng passes through an assignment with exactly
two 1’s, which must violate one of the six clauses of ¢. As an instance of MAXMIN E3-SAT
RECONFIGURATION, any reconfiguration sequence from Ogtart t0 Qeng 1S considered feasible; e.g.,
o= (0000,0001,0011,0111,1111) has the objective value % since the fourth assignment 0111 does
not satisfy C3 and Cs. An optimal reconfiguration sequence is a* := (0000, 1000,1100,1110,1111),
whose objective value is %.

We review known results on the complexity of MAXMIN Ek-S AT RECONFIGURATION. For every k > 3,
exactly solving MAXMIN Ek-SAT RECONFIGURATION is PSPACE-hard, which follows from that of Ek-
SAT RECONFIGURATION [GKMPQ9, Theorem 2.9]. Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara,
and Uno [IDHPSUUI11, Theorem 5] showed that MAXMIN E5-SAT RECONFIGURATION is NP-hard to
approximate within a factor better than {—2. For PSPACE-hardness of approximation, the Probabilistically
Checkable Reconfiguration Proof (PCRP) theorem due to Hirahara and Ohsaka [HO24b, Theorem 1.5] and
Karthik C. S. and Manurangsi [KM23, Theorem 1], along with a series of gap-preserving reductions due to
Ohsaka [Ohs23], implies that MAXMIN E3-SAT RECONFIGURATION and MAXMIN E2-SAT RECONFIG-
URATION are PSPACE-hard to approximate within some constant factor. So far, the asymptotic behavior of
approximability for MAXMIN Ek-SAT RECONFIGURATION with respect to the clause width k is not well
understood.

1.1 Our Results

In this paper, we demonstrate that the approximation threshold of MAXMIN Ek-SAT RECONFIGURA-
TION is 1 — @ (). On the algorithmic side, we develop a deterministic (1 — 7 — +)-factor approximation
algorithm for every k > 3.

Theorem 1.2 (informal; see Theorem 5.1). For an integer k > 3, a satisfiable Ek-CNF formula ¢, and a

pair of its satisfying assignments Ostart and Oend, there exists a polynomial-length reconfiguration sequence

from Ogtart 10 Qeng in Which every assignment satisfies at least (1 — kfll — %)-fmction of the clauses of ¢.

Moreover, such a reconfiguration sequence can be found by a deterministic polynomial-time algorithm. In

particular, this algorithm approximates MAXMIN Ek-S AT RECONFIGURATION within a factor of 1 — kl—l —
1

2
Theorem 1.2 implies a structural property of the solution space that every pair of satisfying assignments

for an Ek-CNF formula can be connected only by almost-satisfying assignments. For small &, the proposed

algorithm has an approximation factor much better than 1 — k_il — 1 as shown in Table 1.

On the hardness side, we show the PSPACE-hardness of (1 — ﬁ) -factor approximation for every suffi-



Table 1: Approximation factor of MAXMIN Ek-SAT RECONFIGURATION for 3 < k£ < 10.

k 3 4 5 6 7 8 9 10
approximation factor 0.572 0.631 0.679 0.718 0.749 0.775 0.796 0.814

ciently large k.'

Theorem 1.3 (informal; see Theorem 6.1). There exists an integer ko € N such that for any integer k > ko,
a satisfiable Ek-CNF formula @, and a pair of its satisfying assignments Qstary and Oeng, it is PSPACE-hard
to distinguish between the following two cases:

* (Completeness) There exists a reconfiguration sequence from Osiart 10 Oeng consisting of satisfying
assignments for ¢.>

* (Soundness) Every reconfiguration sequence from Ostart 10 Olend contains an assignment that violates
more than a l—(l)k-fraction of the clauses of ¢.

In particular, MAXMIN Ek-SAT RECONFIGURATION is PSPACE-hard to approximate within a factor of
1- ﬁfor every integer k = ky.

We found this to be surprising. For any Ek-CNF formula ¢ over n variables, a random assignment A uni-
formly chosen from {0, 1}" satisfies a (1 — %)—fraction of the clauses of ¢ in expectation. By a concentra-
tion inequality,’ this implies that only a 29" _fraction of assignments do not satisfy a (l — %()k) -fraction of
the clauses of ¢. Theorem 1.3 shows the PSPACE-hardness of the sz-connectivity question over the subgraph
of the n-dimensional Boolean hypercube obtained by deleting only a 29" _fraction of vertices.

As an immediate corollary of Theorem 1.3, we obtain the PSPACE-hardness of (1—Q(4))-factor ap-
proximation for every k > 3.

Corollary 1.4 (informal; see Corollary 6.2). There exists a universal constant & > 0 such that MAXMIN
Ek-SAT RECONFIGURATION is PSPACE-hard to approximate within a factor of 1 — % for every integer
k>3

Theorems 1.2 and 1.3 provide asymptotically tight lower and upper bounds for approximability of
MAXMIN Ek-SAT RECONFIGURATION. Note that the approximation threshold of its NP analogue, i.e.,
MaX Ek-SAT, is 1 — % [HasO1, Theorems 6.5 and 6.14]. To the best of our knowledge, this is the first
reconfiguration problem whose approximation threshold is (asymptotically) worse than that of its NP ana-
logue.

Prior to this work, any reconfiguration problem has been shown to be at least as “easy” as its NP-
analogue in terms of approximability. For example, the approximation threshold of MINMAX SET COVER
RECONFIGURATION? is 2 [HO24a, IDHPSUU1 1, KM23] while that of MIN SET COVER is InN [Chv79,

In Section 6, we show the PSPACE-hardness of (1 — %’Tf)—factor approximation, which is slightly better than 1 — %Ok.

2This is a YES instance of Ek-SAT RECONFIGURATION.

3We actually prove Theorem 1.3 even for formulas @ such that each variable is read o(|¢|) times, and thus the read-t concen-
tration inequality is applicable.

4In the MINMAX SET COVER RECONFIGURATION problem, we are asked to transform a given cover of a set system into
another by repeatedly adding or removing a single set so as to minimize the maximum size of any covers during transformation.



Table 2: Approximation thresholds of reconfiguration problems and NP analogues. For the first three
maximization problems, the larger the better. For the last minimization problem, the smaller the better.

problem | approx. threshold | hardness | refs.
MAXMIN Ek-SAT RECONF 1-0(}) PSPACE-h. | (this paper)
MAX Ek-SAT 1— NP-h. [Has01]
MAXMIN k-CUT RECONF 1-0(}) PSPACE-h. | [HO25]
MAX k-CUT 1-0(1) NP-h. [AOTW14, FJ97, GS13, KKLP97]
MAXMIN 2-CSP RECONF o(1) PSPACE-h. | [KM23, Ohs24b, Ohs25a]
MAX 2-CSP N~3 to 2~ (loeM) W 41 NP, [CHK11, Raz98]
MINMAX SET COVER RECONF | 2 PSPACE-h. | [HO24a, IDHPSUU11, KM23]
MIN SET COVER InN * NP-h. [Chv79, DS14, Fei98, Joh74, Lov75]

T N is the size of an instance of 2-CSP, which is equal to the number of variables times the alphabet size.
# N is the universe size of an instance of SET COVER.

DS14, Fei98, Joh74, Lov75], where N is the universe size. See also Table 2 and Section 3.3 for the approx-
imation threshold of other reconfiguration problems. This trend comes from the nature of reconfiguration
problems that a pair of feasible solutions are given as input: it is often the case that we can construct a trivial
reconfiguration sequence that passes through an “intermediate” solution between them. For example, for a
pair of covers, their union is also a cover at most twice as large, which implies a 2-factor approximation al-
gorithm for MINMAX SET COVER RECONFIGURATION [IDHPSUUI11, Theorem 6]. Contrary to this trend,
MAXMIN Ek-SAT RECONFIGURATION exhibits a smaller approximation threshold than its NP analogue.
This indicates that the techniques from the PCP literature are not directly applicable to reconfiguration prob-
lems, which hence suggests the need to develop new techniques.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we present an overview of the proof of
Theorems 1.2 and 1.3. In Section 3, we review related work on reconfiguration problems, relatives of Ek-
S AT RECONFIGURATION, and approximability of reconfiguration problems and MAX k-SAT. In Section 4,
we formally define the MAXMIN Ek-SAT RECONFIGURATION problem and introduce the Probabilisti-
cally Checkable Reconfiguration Proof theorem [HO24b, KM23]. In Section 5, we develop a deterministic

( 1— k%] — %)-factor approximation algorithm for MAXMIN Ek-SAT RECONFIGURATION. In Section 6,
we prove the PSPACE-hardness of (1 — %Ok)—factor approximation for MAXMIN Ek-SAT RECONFIGURA-

TION. In Appendix A, we present a complementary result that MAXMIN Ek-SAT RECONFIGURATION is
NP-hard to approximate within a factor of 1 — é Some technical proofs are deferred to Appendix B.

2 Proof Overview

2.1 Deterministic (1 — kl—l — %) factor Approximation Algorithm (Section 5)

First, we give a highlight of the proof of Theorem 1.2, i.e., a deterministic (1 — ﬁ — %) -factor approxi-

mation algorithm for MAXMIN Ek-S AT RECONFIGURATION. Our algorithm uses a random reconfiguration
sequence passing through a random assignment. A similar strategy was used to approximate other recon-



figuration problems, e.g., [HO25, KM23, Ohs25a]. Let ¢ be a satisfiable Ek-CNF formula consisting of m
clauses Cy,...,Cy, over n variables xi, ..., X,, and Gstart, Otend : {X1,-..,Xx} — {0, 1} be a pair of its satisfying
assignments. Let A: {xi,...,x,} — {0,1} be a random assignment for ¢, which satisfies a (1 — 2—1,()-fracti0n
of the clauses of ¢ in expectation. Consider the following two random reconfiguration sequences:

* a reconfiguration sequence 0 from Oar: to A obtained by flipping the assignment to variables at
which Q¢ and A differ in a random order, and

* a reconfiguration sequence @; from A to (eng Obtained by flipping the assignment to variables at
which A and oq differ in a random order.

Concatenation of o and @ yields a reconfiguration sequence from Ogiart 10 Oleng that passes though A,
which is obtained by the following procedure.

~ Generating a random reconfiguration sequence 0] 0 0 from Otart t0 Cleng ~

1: sample a uniformly random assignment A: {xi,...,x,} — {0, 1} for ¢.

2: D start with Olstart. <
3: for each variable x; such that Otart(x;) 7 A(x;) in a random order do

4: L flip x;’s current assignment from Qetart (x;) to A(x;).

5: > obtain A. N
6: for each variable x; such that A(x;) # Oeng(x;) in a random order do

7. | flip x;’s current assignment from A (x;) to Oend (X;).

8: > end with Olepg. N

- J

The main lemma is the following.

Lemma 2.1 (informal; see Lemma 5.2). For each clause C; of @, all assignments in ay o o simultaneously
1

satisfy C; with probability at least 1 — ﬁ —
The key insight in the proof of Lemma 2.1 is that the probability of interest attains the minimum when both
Ostart and Qeng make a single literal of C; true. Thus, it is sufficient to bound from below the probability
of interest only when Otare and Oeng make a single literal of C; true and (Ostart 7 Olend OF Olstart = Clend);
which can be exactly calculated by exhaustion. Derandomization can be done by a standard application of
the method of conditional expectations [AS16].

2.2 PSPACE-hardness of (1 — ﬁ) -factor Approximation (Section 6)

Second, we present a proof overview of Theorem 1.3, i.e., PSPACE-hardness of (l — %Ok)—factor ap-
proximation for MAXMIN Ek-S AT RECONFIGURATION. For a satisfiable Ek-CNF formula ¢ and a pair of
its satisfying assignments Oiart and Oleng, let optq,((xstart @~ Olend) denote the optimal value of MAXMIN
Ek-SAT RECONFIGURATION; namely, the maximum value among all possible reconfiguration sequences
from Ogeart t0 Olend, Where the value of a reconfiguration sequence o is defined as the minimum fraction
of satisfied clauses of ¢ over all assignments in &. For any reals 0 < s < ¢ < 1, GAP.; Ek-SAT RE-
CONFIGURATION is a promise problem that requires to determine whether opt(p(astart ers Olend) = € OF
optq,(astart e~ Oend) < . See Section 4.1 for the formal definition.



2.2.1 First Attempt: A Simple Proof of (1—Q(5;))-factor Inapproximability

For starters, we show the PSPACE-hardness of (1 —Q(%))—factor approximation for MAXMIN Ek-
SAT RECONFIGURATION. The proof is based on a simple gap-preserving reduction from MAXMIN E3-
SAT RECONFIGURATION to MAXMIN Ek-SAT RECONFIGURATION, which mimics that from MAX E3-
SAT to MAX Ek-SAT, e.g., [HasO1, Theorem 6.14]. Let ¢ be a satisfiable E3-CNF formula over n variables

X1,y Xy and Ostart, Oend © {X1,--.,X:} — {0, 1} be a pair of its satisfying assignments. Create fresh K vari-
ables yi,...,yk, where K := k — 3. Construct an Ek-CNF formula y by appending the 2X possible clauses
overyy,...,yk to each clause of ¢. Define two satisfying assignments PBstart, Bend : {X1,- -+ s%n, V15, VK } —

{0, 1} for y such that ﬁstart’{x, sookn} = Otstart, ﬁstart‘{y,,‘..,yk} = OKy Bend |{x1,.“,x,,} ‘= Olend, and ﬁend |{y1,‘..,y1(} =
0K, which completes the description of the reduction. Observe easily that the following completeness and
soundness hold:

 (Completeness) If opt(p(astart s aend) =1, then optw(ﬁstart s ﬁend) =1.
* (Soundness) If opt,, (Ozstart TN aend) < 1—g¢, then optw(ﬁstart NS ﬁend) <1- 2,;%

Since GAPj j_¢ E3-SAT RECONFIGURATION is PSPACE-hard for some real € > 0 [HO24b, KM23, Ohs23],

so is GAPM,% Ek-SAT RECONFIGURATION. In particular, MAXMIN Ek-SAT RECONFIGURATION is
=

PSPACE-hard to approximate within a factor of 1 — Q(%) To improve the inapproximability factor to

1 —Q(}), we need to exploit some property that is possessed by MAXMIN Ek-SAT RECONFIGURATION

but not by MAX Ek-SAT. We achieve this by using a “non-monotone” test described next.

2.2.2  The Power of Non-monotone Tests: (1 —Q( ))-factor Inapproximability

L
1.913¢

We introduce the “non-monotone” test to prove the PSPACE-hardness of 1 — Q(W) -factor approxi-
mation for MAXMIN Ek-SAT RECONFIGURATION (for every k divisible by 3). Let ¢ be a satisfiable E3-
CNF formula consisting of m clauses Cy,...,C,, over n variables xi,...,x, and Ostart, Qend : {X1,--.,%n} —
{0, 1} be a pair of its satisfying assignments. Let A > 2 be an integer and k := 3A. The Horn verifier Viom,
given oracle access to an assignment a: {xi,...,x,} — {0,1}, selects A clauses of ¢ randomly, denoted
by Ci,,...,C;,, and accepts if the Horn-like condition C; VC;, V --- \/CTl is satisfied by «, as described
below.

~ 3A-query Horn verifier Vi, for an E3-CNF formula ¢ ~
Input: an E3-CNF formula ¢ = C; A --- AC,, over n variables xi,...,x, and an integer A > 2.
Oracle access: an assignment o: {x,...,x,} — {0,1}.
1: sample iy,...,i) ~ [m] uniformly at random.
2: if C;, VG, V-V C,, is satisfied by o then > (at most) 3A locations of o are queried.
3: \ return 1.
4: else
5: _ return 0.
o J

Intuitively, Viom thinks of each clause of ¢ as a new variable and creates a kind of Horn clause on the fly.
If o violates exactly e-fraction of the clauses of ¢, then Viyom rejects with probability €(1 — 8)’l ~1, which
is “non-monotone” in € and attains the maximum at € = % (see also Figure 2). Let optq;, (Olstart “~ Qend)
denote the maximum value among all possible reconfiguration sequences from Ostart t0 Cend, Where the value



maximized at € =
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Figure 2: The rejection probability (1 — 6)1*1 of Vo parameterized by the fraction € of violated clauses
of an E3-CNF formula ¢ (when A = 5). Obviously, £(1 —&)*~! is not monotone in € and attains the
maximum at € = % On the other hand, if an assignment violates most of the clauses of ¢ (i.e., € = 1), then
“Viom rejects it with only a tiny probability.

of a reconfiguration sequence « is defined as Vijor,’s minimum acceptance probability over all assignments
in ¢. The Horn verifier Viiom has the following completeness and soundness:

* (Completeness) If optq,(ocstart s ocend) =1, then optq,, (Ocstart s OCend) = 1. This is immediate
from the acceptance condition of Vigor.

* (Soundness) If opt,, ( Ofstart «~> Ofend) < 1 —¢, then opty, (Otart «~ Oend) < 1 —Q(%). To see why
this is true, let & be any reconfiguration sequence from Qtart t0 Olend. By the soundness assumption,
in order to transform Otgeart INtO Oleng, We must violate more than e-fraction of the clauses of ¢ at some
point. With this fact, we can show that & must contain some assignment a° that violates ~ %-fraction
of the clauses of ¢.° Such an assignment «° would be rejected by Vijorm With probability

-1 €
Q(%-(l—%) ):Q(I). 2.1)
See also Figure 3 for illustration.

Subsequently, we represent Vo by an Ek-CNF formula. For this purpose, it is sufficient to “emulate”
Vo by an OR-predicate verifier X, which is allowed to generate a query sequence / and a partial assignment
a € {0,1}, and accepts if the local view /s is not equal to &. The acceptance condition of X is equivalent
to the following OR predicate: \/;c;(0t(i) # & (i)). Recall that Vijom rejects if the Horn-like condition C;, V
C;, V---VC;, is unsatisfied by o; namely, its negation is satisfied:

Ciy NCiy A+- NG, . (2.2)

There are 74! possible (partial) assignments over {0,1} that satisfy Eq. (2.2), where I is the set of vari-
ables appearing in C;,,. .. ,Cil.ﬁ Since X can reject only a single local view at a time, it samples a partial

assignment & € {0, 1} satisfying Eq. (2.2) uniformly at random and rejects if c|; = &, as described be-
low.

SIn fact, we use [Ohs23, Theorem 3.1] to ensure that each variable of ¢ appears in a constant number of the clauses.

6In order for I to contain exactly 3 variables, the selected A clauses Ci,,...,Cj, should not share common variables. Such an
undesirable event occurs with negligible probability.
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Figure 3: An example of the transition of the fraction of violated clauses and Viyom’s rejection probability
(when A =5). Let ¢ be a satisfiable E3-CNF formula, Otart and Qeng be a pair of its satisfying assignments,
and ((x(l), e oc(T)) be a reconfiguration sequence from Ogiart t0 Qend. The dotted (red) line represents the
fraction of clauses of @ violated by ("), and the solid (blue) line represents the probability that Vigor rejects
a . If optq,(ocstart e~ Oend) < 1 — €, any reconfiguration sequence must contain some assignment a° that
violates ~ -fraction of clauses of ¢, which would be rejected by Viiorm With probability Q(%)

~ 3A-query OR-predicate verifier X emulating Vijor, ~

Input: an E3-CNF formula ¢ = C; A --- AC,, over n variables xi,...,x, and an integer A > 2.
Oracle access: an assignment o: {xy,...,x,} — {0,1}.

1: sample ij,...,i) ~ [m] uniformly at random.

2: let I be the set of variables appearing in C;,,...,C;, .
3. sample a partial assignment & € {0, 1} that satisfies Eq. (2.2) uniformly at random.
4: if oo|; # a then
5: \ return 1.
6: else
7: _ return 0.

- J

The OR-predicate verifier X has the following completeness and soundness:

* (Completeness) If opt, (ocstart ns (xend) =1, then optx(astart ans OCend) = 1. This is immediate from
the definition of X.

* (Soundness) If Op’%(%tart TN OCend) < 1 — g, then optx(astart TN OCend) <1- Q(ﬁ) To see
why this is true, let o be a reconfiguration sequence from Ostart t0 Cend. By the soundness property
of Viom, there must be some assignment a° in o that is rejected by Vo With probability Q(%)
Suppose that Viom rejects @® when examining the condition C;, VG, V -+ -V C;, . Conditioned on this
event, we find X to reject o° with probability 71—171 since there are 74! partial assignments that satisfy
Eq. (2.2). Therefore, the overall rejection probability of X is

IP’[X rejects Oco] = ]P’[(VHom rejects ao] -7/11_1 = Q(k ilk> = Q(ﬁ) (2.3)
.73 . .

:Q(%) 73<1.913



Consequently, GAP; ;¢ E3-SAT RECONFIGURATION is reduced to GAP Ek-SAT RECON-

&
I’I_Q(l.tmk

FIGURATION for any real € > 0. In particular, MAXMIN Ek-SAT RECONFIGURATION is PSPACE-hard to

approximate within a factor of 1 — Q(ﬁ), which is an exponential improvement over 1 — Q (%)

2.2.3  Getting (1—Q(7))-factor Inapproximability

To further reduce the inapproximability factor to 1 — Q (%) as claimed in Theorem 1.3, we need to get rid

of the 74~ !-factor appearing in Eq. (2.3), which is the number of partial assignments that satisfy Eq. (2.2),
ie, Ciy ACy A--- A C;, . For this purpose, we shall replace each of Cj,,...,C;, by a DNF ferm in the form of
£1 N0y N\ 5 instead of a CNF clause in the form of ¢ V £, V ¢3, so that the number of partial assignments is
reduced from 7*~! to O(1), implying that for any assignment a: {xi,...,x,} — {0,1},

IP)[X rejects (x] = Q(IP’ [(VHom rejects Oc] ) 2.4)

If this is the case, opt(p(ocsta,t e~ Oeng) < 1 — € implies opty (Ostart “~ Otend) < 1 — Q(%) We achieve this
improvement by redesigning the Horn verifier Viom S0 as to execute a PCRP system for GAPy 1_¢ E3-SAT
RECONFIGURATION and a dummy verifier A, which accepts only a single prescribed string, say 1", with
a carefully chosen probability. Specifically, we develop the following three verifiers (see Section 6 for the
details):

* The first verifier is the 3-query combined verifier ‘W. Given oracle access to a pair of an assignment
o: {x1,...,x,} — {0, 1} for ¢ and a proof ¢ € {0, 1}", W performs the following: (1) with probabil-
ity @(%) , it selects a clause C; of @ randomly and accepts if C; is satisfied by o, and (2) with probabil-
ity 1 — @(%) , it runs the dummy verifier A on o. The two proofs are defined as I1giart := Ostart 0 1" and
Ieng = Oeng © 1". Observe easily that if opt(p(ozstart e~ Oend) = 1, then optqy (Mstart < Meng) = 1,
and if opt, (Gstart «~ Oend) < 1 — €, then optqy (Mstar +~ Mend) < 1— Q(%)

* The second verifier is the (modified) k-query Horn verifier Viiom, which independently runs ‘W once
and runs A A — 1 times. Then, Viyom accepts if ‘W accepts or any of the A — 1 runs of A rejects.
Similarly to the discussion in the previous section, we can show that if optq,((xstart @~ Oend) = 1, then
Opt(VHom (Hstart o~ I_Iend) =1, and if Opt(p(astart “ aend) < 1—g¢, then Opt(VHom (Hstart “ Iqund) <
1— Q(%) Note that the number of rejecting local views of Vigor is O(1).

* The final verifier is the (modified) k-query OR-predicate verifier X, which is used to “emulate” Viorm
as in the previous section. Owing to the changes made to Vyom, there is a linear relation between the
rejection probabilities of X and Vo similar to Eq. (2.4), implying that GAPy ;_¢ E3-SAT RECON-
FIGURATION can be reduced to GAPL]_Q(%) Ek-SAT RECONFIGURATION for any real € > 0.

2.2.4 Perspective and Open Problem

In this study, we found that a reconfiguration problem may have a worse approximation threshold than
its NP analogue. In the hardness proof, we developed the Horn verifier to exemplify the usefulness of its
“non-monotone” behavior. Here, we clarify what monotone and non-monotone verifiers are and why the
non-monotonicity can be useful in the reconfiguration regime. Suppose that there are two verifiers V and
W, which have oracle access to the same proof 7 € {0,1}". For example, V is a 3-query verifier for
MAXMIN E3-SAT RECONFIGURATION and ‘W is the 3A-query Horn verifier, as we saw in the previous
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sections. Suppose also that ‘W’s rejection probability is bounded from below by the value of some function
f:10,1] — [0, 1] evaluated at “V’s rejection probability; namely,

vre{0,1}", P[W rejects 7] > f<1P’ [V rejects 717]) (2.5)
For example, f(€) = £(1 —&)*~! in the case of the 3A-query Horn verifier. We say that ‘W is monotone if

f is monotonically increasing. In the PCP regime, the soundness property typically requires the following
condition:

vr e {0,1}", P[V rejects w| > &,

= Vr e{0,1}", P[W rejects x| > f(e). (2-6)

Since we are concerned with bounding from below the minimum rejection probability of the verifier, ‘W
should be monotone in general; i.e., the non-monotonicity is not helpful in showing the (better) sound-
ness.

By contrast, in the reconfiguration regime, ‘W does not need to be monotone in deriving the soundness.
Suppose that every reconfiguration sequence 7 from eart t0 Meng contains a proof 7° that is rejected
by V with probability (approximately) €. Then, regardless of whether W is monotone or not, for every
reconfiguration sequence T from Mstart tO Mend, the maximum rejection probability of ‘W over all proofs in
7 is (approximately) greater than f(€); namely,

VT = (Tstart,- -+ Mend), 3IT°E T, P[V rejects 1°] ~ ¢,

== V7 = (Astarts- - - » Tlend ), Hn;ggﬁ{l[”[w rejects no] } Z f(e).
a

2.7

As a result, there are more possible choices for the verifier ‘W that can be used in the reduction.

We believe that the concept of non-monotone verifiers will find further applications in PSPACE-hardness
of approximation for reconfiguration problems other than MAXMIN Ek-S AT RECONFIGURATION. An im-
mediate open problem is to elucidate for which NP problem its reconfiguration analogue becomes ‘“harder”
in terms of approximability. Specifically, for what class of Boolean relations does MAXMIN SATISFIABIL-
ITY RECONFIGURATION have a worse approximation threshold than MAX SATISFIABILITY?

3 Related Work

3.1 Reconfiguration Problems

In the field of combinatorial reconfiguration, we study algorithmic problems and structural properties
over the space of feasible solutions. In the unified framework due to Ito, Demaine, Harvey, Papadimitriou,
Sideri, Uehara, and Uno [IDHPSUU11], a reconfiguration problem is defined with respect to a combinato-
rial problem IT called the source problem and a transformation rule R over the feasible solutions of I1. For
an instance J of I and a pair of its feasible solutions Sstart and Seng, the reconfiguration problem asks if
Sstart can be transformed into Senq by repeatedly applying the transformation rule R while always preserving
the feasibility of any intermediate solution. Speaking differently, the reconfiguration problem concerns the
st-connectivity over the configuration graph, which is an (undirected) graph Gy z where each node cor-
responds to a feasible solution of the given instance 7 and each link represents that its endpoints can be
transformed into each other by applying R. A pair of Sstart and Seng is @ YES instance of the reconfiguration
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problem if and only if there is an (undirected) path from Ssiart t0 Seng On G g. Such a sequence of feasible
solutions that forms a path on the configuration graph is called a reconfiguration sequence. Reconfiguration
problems may date back to motion planning [HSS84] and classical puzzles, including 15 puzzles [JS79] and
Rubik’s Cube. Over the past two decades, reconfiguration problems have been defined from many source
problems. For example, reconfiguration problems of 3-SAT [GKMP09], 4-COLORING [BC09], INDEPEN-
DENT SET [HDO5, HD09, KMM12], and SHORTEST PATH [Bon13] are PSPACE-complete, whereas those
of 2-SAT [GKMPO09], 3-COLORING [CvdHIJ11], MATCHING [IDHPSUU11], and SPANNING TREE [IDH-
PSUU11] belong to P. We refer the reader to the surveys by Bousquet, Mouawad, Nishimura, and Siebertz
[BMNS24], Mynhardt and Nasserasr [MN19], Nishimura [Nis18], and van den Heuvel [vdHeu13] as well
as the Combinatorial Reconfiguration wiki [Hoa24] for more algorithmic, hardness, and structural results of
reconfiguration problems.

3.2 Relatives of Ek-SAT RECONFIGURATION

Gopalan, Kolaitis, Maneva, and Papadimitriou [GKMPO09] initiated a systematic study on the recon-
figuration problem of Boolean satisfiability. By extending Schaefer’s dichotomy theorem [Sch78], which
classifies the complexity of every SATISFIABILITY problem as P or NP-complete, [GKMPQ9, Theorem
2.9] proved the following dichotomy theorem for every SATISFIABILITY RECONFIGURATION problem: the
reconfiguration problem for Boolean formulas is in P if the formulas are built from tight relations and is
PSPACE-complete otherwise. Schaefer relations are tight but not vice versa, and thus, the NP-hardness of a
particular SATISFIABILITY problem does not necessarily imply the PSPACE-hardness of the corresponding
SATISFIABILITY RECONFIGURATION problem; e.g., 1-IN-3 SAT RECONFIGURATION is in P, even though
1-IN-3 SAT is NP-complete.’

Other than st-connectivity problems, there are several types of reconfiguration problems [Moul5, Nis18,
vdHeu13]. One is connectivity problems [GKMP09, MTY 10, MTY11], which ask if the configuration graph
is connected; i.e., every pair of satisfying assignments are reachable from each other. There exists a tri-
chotomy result that determines whether the connectivity problem of SATISFIABILITY is P, coNP-complete,
or PSPACE-complete [GKMP09, MTY 10, Sch12]. Other algorithmic and structural problems related to
Ek-S AT RECONFIGURATION include finding the shortest reconfiguration sequence [MNPR17] and investi-
gating the diameter of the configuration graph [GKMPO09].

3.3 Approximability of Reconfiguration Problems

For a reconfiguration problem, its approximate version allows to use infeasible solutions, but requires
to optimize the “worst” feasibility throughout the reconfiguration sequence. In the language of configura-
tion graphs, we would like to relax the feasibility until a given pair of feasible solutions become connected.
Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno [IDHPSUU11, Theorems 4 and 5] showed
that several reconfiguration problems are NP-hard to approximate. Since most reconfiguration problems are
PSPACE-complete [Nis18], NP-hardness results are not optimal. The significance of showing PSPACE-
hardness compared to NP-hardness is that it disproves the existence of a witness (in particular, a reconfigu-
ration sequence) of polynomial length assuming that NP # PSPACE, and it rules out any polynomial-time
algorithm under the weak assumption that P = PSPACE. [IDHPSUU11] posed the PSPACE-hardness of ap-
proximation for reconfiguration problems as an open problem. Ohsaka [Ohs23] postulated a reconfiguration

7In the 1-IN-3 SAT problem, each clause of an input formula contains three literals, and it is deemed satisfied if exactly one of
the three literals is true.
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analogue of the PCP theorem [ALMSS98, AS98], called the Reconfiguration Inapproximability Hypoth-
esis (RIH), and proved that assuming RIH, approximate versions of several reconfiguration problems are
PSPACE-hard to approximate, including those of 3-SAT, INDEPENDENT SET, VERTEX COVER, CLIQUE,
and SET COVER. Hirahara and Ohsaka [HO24b, Theorem 1.5] and Karthik C. S. and Manurangsi [KM23,
Theorem 1] independently gave a proof of RIH by establishing the Probabilistically Checkable Reconfigura-
tion Proof (PCRP) theorem, which provides a PCP-type characterization of PSPACE. The PCRP theorem,
along with a series of gap-preserving reductions [HO24a, HO24b, Ohs23, Ohs24a, Ohs24b], implies uncon-
ditional PSPACE-hardness of approximation results for the reconfiguration problems listed above, thereby
resolving the open problem of [[DHPSUU11] affirmatively.

Since the PCRP theorem itself only implies PSPACE-hardness of approximation within some constant
factor, explicit factors of inapproximability have begun to be investigated for reconfiguration problems. In
the NP regime, the parallel repetition theorem of Raz [Raz98] can be used to derive many strong inap-
proximability results, e.g., [BGS98, Fei98, Has01, Has99, Zuc07]. However, for a reconfiguration analogue
of two-prover games, a naive parallel repetition does not reduce its soundness error [Ohs25a]. Ohsaka
[Ohs24b] adapted Dinur’s gap amplification [Din07, Rad06, RS07] to show that MAXMIN 2-CSP RECON-
FIGURATION and MINMAX SET COVER RECONFIGURATION are PSPACE-hard to approximate within a
factor of 0.9942 and 1.0029, respectively. Karthik C. S. and Manurangsi [KM?23, Theorems 3 and 4] proved
the NP-hardness of (% + 8) -factor approximation for MAXMIN 2-CSP RECONFIGURATION and of (2 —¢€)-
factor approximation for MINMAX SET COVER RECONFIGURATION for any real € > 0. These results
are numerically tight because MAXMIN 2-CSP RECONFIGURATION admits a (% — 8)-factor approxima-
tion [KM23, Theorem 6] and MINMAX SET COVER RECONFIGURATION admits a 2-factor approximation
[IDHPSUU11, Theorem 6]. Hirahara and Ohsaka [HO24a] proved that MINMAX SET COVER RECONFIG-
URATION is PSPACE-hard to approximate within a factor of 2 — o(1), improving upon [KM23, Ohs24b].
This is the first optimal PSPACE-hardness result for approximability of any reconfiguration problem. Hira-
hara and Ohsaka [HO25] showed that the approximation threshold of MAXMIN k-CUT RECONFIGURATION
lies in 1 — ®(%) Other reconfiguration problems for which approximation algorithms were developed in-
clude SUBSET SUM RECONFIGURATION [ID14] and SUBMODULAR RECONFIGURATION [OM?22]. Table 2
summarizes existing approximation thresholds for reconfiguration problems and their source problems. Ex-
cept for MAXMIN Ek-SAT RECONFIGURATION, every reconfiguration problem is at least as “easy” as its
source problem in terms of approximability.

3.4 Approximability of MAX Ek-SAT

The MAX Ek-SAT problem seeks an assignment for an Ek-CNF formula that satisfies the maximum
number of clauses. Observe easily that a random assignment makes a (1 — 217)—fraction of clauses satisfied
in expectation. Hastad [Has99, Theorems 6.5 and 6.14] proved that this is tight; namely, for every k > 3, it
is NP-hard to approximate MAX Ek-SAT within a factor of 1 — % + € for any real € > 0. For the special
case of k = 2, the best known approximation ratio of MAX 2-SAT is Bz =~ 0.940 due to Lewin, Livnat,
and Zwick [LLZ02]. Under the Unique Games Conjecture [Kho02], MAX 2-SAT cannot be approximated
in polynomial time within a factor of Bz + € for any real € > 0 [Aus07, BHZ24].

4 Preliminaries

Let N:={0,1,2,3,...} denote the set of all nonnegative integers. For a nonnegative integer n € N, let
[n] :=={1,2,3,...,n}. The base of logarithms is 2. For a (finite) set S and a nonnegative integer k € N, we
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write (i) for the family of all size-k subsets of S. We use the Iverson bracket [-]; i.e., for a statement P,
we define [P] as 1 if P is true and O otherwise. A sequence of a finite number of elements a, . a7l s
denoted by @ = (aV),...,a")), and we write a € @ to indicate that a appears in @ (at least once). The
symbol o stands for a concatenation of two sequences or functions. For a set S, we write X ~ S to mean
that X is a random variable uniformly drawn from S. For a function f: D — R over a finite domain D and
its subset I C D, we use f|;: I — R to denote the restriction of f to I. We write 0" for U and 1" for

n times

~——

n times

4.1 Definition of MAXMIN Ek-SAT RECONFIGURATION

We define Ek-SAT RECONFIGURATION and its approximate version. We use the standard terminol-
ogy and notation of Boolean satisfiability. A Boolean formula ¢ consists of Boolean variables, denoted
by x1,...,x,, and the logical operators, denoted by AND (A), OR (V), and NOT (—). An assignment for
Boolean formula ¢ is defined as a mapping o: {xi,...,x,} — {0, 1} that assigns a truth value of {0,1}
to each variable x; of ¢. We say that a satisfies ¢ if ¢ evaluates to 1 when each variable x; is assigned
the truth value specified by o(x;). We say that ¢ is satisfiable if there exists an assignment o that sat-
isfies @. A literal is either a variable x; or its negation X;, and a clause is a disjunction of literals. A
Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses. By abuse of nota-
tion, for an assignment a: {x,...,x,} — {0,1}, we write a(X;) == a(x;) for a negative literal x;, and write
o(ly,... . b) = (a(€y),...,0(¢)) for k literals £y,...,¢. The width of a clause is defined as the number
of literals in it. A k-CNF formula is a CNF formula of width at most k, and an Ek-CNF formula is a CNF
formula of which every clause has width exactly k.

For a CNF formula ¢ over n variables xy, . .., x, and a pair of its assignments Ostart, Otend : {X1,- - -, Xn} —
{0,1}, a reconfiguration sequence from Qstart t0 Oleng is defined as a sequence o= (Ot(l), .. .,OC(T)) over
assignments for ¢ such that a(!) = agare, 00'7) = Oeng, and every adjacent pair of assignments differ in at
most one variable (i.e., o) (x;) = o'+ (x;) for all but at most one variable x;). We sometimes call Qitart and
Oend the starting and ending assignments. In the Ek-SAT RECONFIGURATION problem [GKMP09], for a
satisfiable Ek-CNF formula ¢ and a pair of its satisfying assignments Ostart and Cend, we are asked to decide
if there exists a reconfiguration sequence from Oftart t0 Qeng consisting only of satisfying assignments for

¢. Note that Ek-SAT RECONFIGURATION is PSPACE-complete for every k > 3 [GKMP09].

We formulate an approximate version of Ek-S AT RECONFIGURATION. Let ¢ be a CNF formula consist-
ing of m clauses Cy,...,C,, over n variables xi,...,x,. The value of an assignment a: {x,...,x,} — {0,1}
for ¢, denoted by valy (), is defined as the fraction of clauses of ¢ satisfied by «; namely,

valg(a) := % -|{j € [m] | o satisfies C; } | = jNIEE’m] [ satisfies C;]. 4.1)

The value of a reconfiguration sequence & = (a),..., (")) for @, denoted by valy (@), is defined as the
minimum fraction of satisfied clauses of ¢ over all assignments in ¢; namely,

valp(d) == 1glti<nTva|¢,(o¢<’>). 4.2)

The MAXMIN Ek-SAT RECONFIGURATION problem is defined as follows.
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Problem 4.1. For a satisfiable Ek-CNF formula ¢ and a pair of its satisfying assignments Otart and Clends,
MAXMIN Ek-SAT RECONFIGURATION requires to find a reconfiguration sequence O from Oart tO Clend
such that valy () is maximized.

Let opt(p((xStart “~s Oeng ) denote the optimal value of MAXMIN Ek-S AT RECONFIGURATION, which is the
maximum of val(p(ﬁf) over all possible reconfiguration sequences O from Ogtart tO Clepd: namely,

opt, (Ocstart NS OCend) =, max val(p(a'). 4.3)
a:(astartw“s(xend)

The gap version of MAXMIN Ek-S AT RECONFIGURATION is defined as follows.

Problem 4.2. For any integer k € N and any reals ¢ and s with 0 <s < ¢ < 1, GAP. ; Ek-SAT RECONFIG-
URATION requires to determine for a satisfiable Ek-CNF formula ¢ and a pair of its satisfying assignments
Ostart and Olend, Whether Opt(p(astart o aend) Zcor Opt(p(astart o aend) <.

In particular, the case of s = ¢ = 1 reduces to Ek-SAT RECONFIGURATION.

4.2 Probabilistically Checkable Reconfiguration Proofs
First, we formalize the notion of verifier.

Definition 4.3. A verifier with randomness complexity r: N — N and query complexity g: N — N is a
probabilistic polynomial-time algorithm <V that given an input x € {0,1}*, draws r := r(|x|) random bits
R € {0,1}" and uses R to generate a sequence of ¢ := ¢(|x|) queries I = (i,...,i,) and acircuit D: {0,1}4 —
{0,1}. We write (I,D) ~ V(x) to denote the random variable for a pair of the query sequence and circuit
generated by V on input x € {0,1}* and r random bits. Given an input x € {0,1}* and oracle access
to a proof m € {0,1}*, we define V’s (randomized) output as a random variable V”(x) := D(n|;) for
(I,D) ~V (x) over the randomness of R. We say that V' (x) accepts m or simply V”(x) accepts if V*(x) =1,
and that V*(x) rejects if V*(x) = 0.

Then, we introduce the Probabilistically Checkable Reconfiguration Proof (PCRP) theorem due to Hi-
rahara and Ohsaka [HO24b] and Karthik C. S. and Manurangsi [KM23], which offers a PCP-type character-
ization of PSPACE. A PCRP system is defined as a triplet of a verifier V and polynomial-time computable
Proofs Ttart, Tend : 10, 1}* — {0,1}*. For a pair of starting and ending proofs Ttart, Tend € {0,1}, a re-
configuration sequence from Tgap tO Teng is defined as a sequence (717(1), .. .,n(T)) over {0, l}f such that
1) = fgart, 1) = Meng, and £) and 7+ differ in at most one bit for every ¢ € [T — 1].

Theorem 4.4 (Probabilistically Checkable Reconfiguration Proof theorem [HO24b, KM23]). A language
L C{0,1}* is in PSPACE if and only if there exists a verifier 'V with randomness complexity r(n) = O(logn)
and query complexity q(n) = O(1), coupled with polynomial-time computable proofs Tstart, Trend : {0,1}* —
{0, 1}*, such that the following hold for every input x € {0,1}*:

« (Completeness) If x € L, then there exists a reconfiguration sequence & = (x(1), ..., 7)) from fgart (x)
10 Teend (x) such that V (x) accepts every proof in T with probability 1; namely,

viell], P [‘V ™ (x) = 1} =1L 4.4)

* (Soundness) If x ¢ L, then every reconfiguration sequence & = (x(),... . 7T)) from Mgeare(x) t0
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Tlend (X) contains some proof that is rejected by V (x) with probability more than %; namely,

‘ 1
3t e [T, P[V”()(x) - 1} <5 4.5)
For a verifier V and a reconfiguration sequence 7@ = (x'!),..., 7(T)), let valy (7) denote the minimum

acceptance probability of V over all proofs in 7; namely,

valy (7)) := min P[V accepts 7")]. 4.6
v(7) = min P| pts 7] (4.6)
For a verifier V and a pair of proofs gtart, Tend € {0, 1}*, let optq (Mstart “~* Mend) denote the maximum of
valq (75) over all possible reconfiguration sequences 7 from Tseart tO Mend: namely,

N
optq, (nstart s nend) = - (nmax : )valq;(n). 4.7
=\tstart;---s/tend

We say that a PCRP system (V, fstart, Tend) for a language L C {0, 1}* has completeness ¢: N — N and
soundness s: N — N if the following hold for every input x € {0,1}*:

e If x € L, then opt(v(x) (ﬂstart(x) > Tlend (x)) > C(’x‘)
o Ifx ¢ L, then opt(v(x) (ﬂstart(x) > Tlend (x)) < S(|x|)

Note that the PCRP system of Theorem 4.4 has perfect completeness ¢(n) = 1 and soundness s(n) =
1

5
For a verifier V' with randomness complexity r: N — N and an input x € {0,1}*, the degree of a

proof location i is defined as the number of random bit strings R € {0,1}"(*) on which V' (x) queries i;
namely,

{Re {0,171 |ie )| = (1,DE«V(X> [ie1]-27 )] (4.8)

where I is the query sequence generated by V(x) over randomness R. We say that V has the degree
A: N — Nif for every input x € {0, 1}*, each proof location has degree at most A(|x|).

5 Deterministic (1 — 1 — 7)-factor Approximation Algorithm for MAXMIN

Ek-SAT RECONFIGURATION

In this section, we prove Theorem 1.2; i.e., we develop a deterministic (l S l) -factor approxima-

=17 %
tion algorithm for MAXMIN Ek-SAT RECONFIGURATION for every k > 3.

Theorem 5.1. For an integer k > 3, a satisfiable Ek-CNF formula @, and a pair of its satisfying assignments
Olstart and Oeng, there exists a polynomial-length reconfiguration sequence O from Ostart 10 Oeng Such that
1 1

A e —— 5.1
valg(a) > 1 g (5.1

Moreover, such O can be found by a deterministic polynomial-time algorithm. In particular, this is a deter-

ministic (l - ﬁ — %)-factor approximation algorithm for MAXMIN Ek-S AT RECONFIGURATION.
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Some definitions are further introduced. Let ¢ be a CNF formula consisting of m clauses Ci,...,Cy,

over n variables x1, .. .,x,. For a reconfiguration sequence ¢ over assignments for @, we say that o satisfies
. . . —> . .
a clause C; of ¢ if every assignment in o satisfies C;. For two assignments o, 3 : {x1,...,x,} — {0,1} for
0, let a/AB denote the set of variables at which o and f differ; namely,
B = (x| alx) # B(x)}. (52)
For a pair of assignments Ostart, Qend : {X1,---,%,} — {0, 1} for ¢, we say that a reconfiguration sequence
o= (a (1) e, O (T>) from Olstart tO Qleng 18 irredundant if no adjacent pair of assignments in o are identical,
and for each variable x;, there is an index #; € [T'| such that
x;) ifr<y
a(z) (xi) _ astart( l) : X (53)
Oend(x;) ift >t
In other words, @ is obtained by flipping the assignments to variables of Ostart 2\ Qeng €xactly once in some
order. For two assignments o, {xi,...,x,} — {0,1}, let /() «~ o) denote the set of all irredun-
dant reconfiguration sequences from a; to o. For three assignments a;, 0, 03: {x1,...,x,} — {0,1}, let

d(a) «~ ap «~ o) denote the set of reconfiguration sequences from o to o obtained by concatenating
all possible pairs of irredundant reconfiguration sequences of & (@ «~ @) and & (Qp <~ O3).

The proof of Theorem 5.1 relies on the following lemma, which states that a random reconfiguration

sequence that passes through a random assignment satisfies each clause with probability 1 — ﬁ — %

Lemma 5.2. Let k > 3 be an integer, xi,...,x; be k variables, C = {1V ---V £ be a clause of width k
over Xi,...,Xx, and Ostart, Qend: {X1,...,%} — {0, 1} be a pair of satisfying assignments for C. Consider
a uniformly random assignment A: {xi,...,x;} — {0,1} and a random reconfiguration sequence o from
Otstart 10 Qeng uniformly chosen from of (Qstart «~> A <~ Olend ). Then, o satisfies C with probability at least
1— k%] — %; namely,

P, [56) satisfies C] =>1-
AT

1
k—1 &k (5.4)

By using Lemma 5.2, we can prove Theorem 5.1.

Proof of Theorem 5.1. Let @ be a satisfiable Ek-CNF formula consisting of m clauses Cy,...,C, over n
variables xi, ..., X, and Ostart, Oend : {X1,--.,X} — {0,1} be a pair of satisfying assignments for ¢. Let
A: {x1,...,x} — {0,1} be a uniformly random assignment and @ be a random reconfiguration sequence
uniformly chosen from of (Ostart <~ A @~ Qeng)- By linearity of expectation and Lemma 5.2, we derive

1 1 1

E [valp(d)] > —- Y, P [d satisfiesC;] >1— e (5.5)

A m 1<j<mA7a

By a standard application of the method of conditional expectations [AS16], we can construct a reconfigu-
ration sequence O from Ogart tO Oteng such that

- 1 1
(") 21— —o —— 5.6
valg(a®) —1 (5.6)
in deterministic polynomial time, which accomplishes the proof. O
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The remainder of this section is devoted to the proof of Lemma 5.2. Hereafter, we fix the set of k
variables, denoted by V = {xi,...,x}, and fix a clause of width k, denoted by C = ¢; VV --- V {;. For the
sake of simplicity, we assume that each literal ¢; is either x; or X;. We first show that the probability of
interest—the left-hand side of Eq. (5.4)—is monotone with respect to Oitart and Clend-

Claim 5.3. Let Otart, Gend; Odrart, Onng : V — {0, 1} be satisfying assignments for C. Suppose that for each
literal {; of C, Otstart (i) = 1 implies 0y, (¢i) = 1 and Qeng(4;) = 1 implies &l 4 (¢;) = 1; namely, Ostare(¢;) <
Oliart (6i) and Otend (i) < o 4(€;). For a uniformly random assignment A:'V — {0,1} and four random
irredundant reconfiguration sequences 0 ~ I (Ustary > A), 0 ~ A (A e~ Oeng), 01" ~ A (OLesre e~ A),

start
and o' ~ ol (A «~ o, ), it holds that

P [o_cl)o o5 satisfies C} < P [Ef’ o0 satisfies C] ) (5.7)
A0 Ao,

Proof. 1t is sufficient to show Eq. (5.7) when (Oistart, Oart) and (Otend, 0t,,4) differ in a single variable.
Without loss of generality, we can assume that Ostart # oy and Gleng = aénd‘ By reordering the k literals,
we can assume that Oseart(€1) =0, Ao (¢1) = 1, and Oseart (¢;) = Ay (i) for every i # 1. Conditioned on
the random assignment A, we have

P _[a7o0; satisfies C| A] =P [of satisfies C | A] - P[a satisfies C | A], (5.8)
oy ,00 o [2%]
P [a1’ o0y satisfies C | A] = P [of satisfies C | A] - P [y satisfies C | A]. (5.9)
ay’,00' ay’ (4

Since @ and @’ follow the same distribution as & (Qeng ~~ A) = & (], 4 «~ A), it holds that

P [ satisfies C ‘ A] = P [o’ satisfies C ‘ Al. (5.10)
062/

[25]
Consider the following case analysis on A(¢;):

(Case 1) A(¢;)=0.

Fix any irredundant reconfiguration sequence &)’ from o, to A. There exists a unique order-

ing o’ over o..,./AA such that starting from o.,,, we obtain &’ by flipping the assignments to
o'(1),0'(2),..., in this order. Letting o be an ordering over Otat/AA obtained by removing x; from
o', we define E as an (irredundant) reconfiguration sequence frorri) Ostart t0 A obtained by flipping the
assignments to 6(1),06(2),..., in this order. By construction, if 8 satisfies C, then o’ also satisfies
C. Moreover, if & is uniformly distributed over & (0, «~ A), then E is uniformly distributed
over of (Ostart «~ A). Therefore, we derive

}I_’i[o_tf satisfies C } A} = IE[E; satisfies C ‘ A] <P [ﬁf' satisfies C ‘ A]. 5.11)
o B o’ ’

(Case2) A(4))=1.
Since any irredundant reconfiguration sequence ;' from o,,,, to A does not flip x;’s assignment, we

have
P [af satisfies C | A] =1 > P [of satisfies C | A]. (5.12)
(X|l o
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In either case, it holds that

P o satisfies C | A] < P (o’ satisfies C | A]. (5.13)

o o

Consequently, we obtain

H]P;[o_cl’o o, satisfies C ‘ A} < _ P, [o_cf'o 0, satisfies C ‘ A], (5.14)
ap,0n OC|/,062/
which implies Eq. (5.7), as desired. O

By Claim 5.3, it is sufficient to prove Eq. (5.4) only when both 0Otart and Qeng make a single literal of
C true. Thus, we shall bound the left-hand side of Eq. (5.4) in each case of Ostart # Otend and Astart = Mend-
Without loss of generality, we can safely assume that the clause C is positive; i.e., C =x1 V-V x;. Here-
after, let A: V — {0,1} be a uniformly random assignment, and let & and @ be two random irredundant
reconfiguration sequences uniformly chosen from of (Otart <~ A) and &/ (A «~ Oenq), respectively. We
will show the following two claims.

Claim 5.4. Suppose that Ogiarr and Oeng make a single literal of C true and Oisiart 7 ®end. Then, it holds that
K . . .

4 2K j+1 j+2  j+2

1 1

k—1 Kk’

P [ofo; satisfies C| = )
;01,00 02k

A (5.15)

=

where K .=k — 2.

Claim 5.5. Suppose that Ostart and Oeng make a single literal of C true and Ogtart = Oleng. Then, it holds that

1 (%) i\
P [af oo satisfies C| = —. 12 ( > +1
A,o‘cf,az‘[] 2 satisies C] og’gz 28 \j+1 (5.16)
2
21_77
k

where K .=k —1.
Lemma 5.2 follows from Claims 5.3 to 5.5.

Remark 5.6. By numerically evaluating Eqs. (5.15) and (5.16), we obtain approximation factors better than
1— k%l — %for small k, as shown by Table 1 in Section 1.1.

In the proof of Claims 5.4 and 5.5, we use the following equality for the sum of binomial coefficients,
whose proof is deferred to Appendix B.

Fact 5.7 (x). For any integers k and n with 0 < k < n, it holds that

1 2n+171
y (”> - , (5.17)
oe k)1~ Tatd

1 2n+1. 1
y (”> - ntl (5.18)
0cren \k/) k+2 (n+1)(n+2)
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Proof of Claim 5.4. By reordering the k variables, we can assume that

(x) 1 ifi=k, (5.19)
) = .
Oistart i 0 otherwise,
1 ifi=k—1
Olend (X)) = ’ 5.20
end (%) {0 otherwise. ( )

Define K := k —2 and Vg := {x1,...,x¢}. Note that Ostart|vy = Qend|vx = 0K. Consider the following
case analysis on A(x;_1) and A (x;):

(Case1) A(x;_;) =0and A(xz) =0.

K
Condition on the number of 1’s in Aly_,, denoted by j, which occurs with probability (21<) . Observe
that Oc] satisfies C if and only if it does not flip x;’s a551gnment at first, which happens with probability

1-— Jﬁ = jjr—l Similarly, 0, satisfies C with probability 7 +1 Therefore, ] o 0 satisfies C with

N2
probability (Jﬁ) )

(Case2) A(x;—1)=1and A(x;) =
Condition on the number of 1’sin A|y_,, denoted by ;. Then aj satisfies C if and only if it does not flip
_ jtl1

xi’s assignment at first, which occurs with probability 1 — m et Since Qend (x—1) = A(x—1) =1,

05 satisfies C with probability 1. Therefore, i o 0 satisfies C with probablhty ]H

(Case 3) A(x;_;) =0and A(xk) =1

Similarly to (Case 2), a1 o o satisfies C with probablhty where j is the number of I’s in Aly_,.

+2’
(Case4) A(x;_;)=1and A(xy) = 1.
Since Ostart (xx) = A(xx) = 1 and A(xx—1) = Oend(xx—1) = 1, we find any irredundant reconfiguration

sequence of o (Otstare ~~ A) and of (A «~s (enq) to satisfy C. Therefore, o o o satisfies C with
probability 1.

Since each of the above four cases occurs with probability }L, we derive

1 (5) ( j )2+j+1+j+1+1

P [aloagsatlsﬁesC} Z Y [ 2 T

Aa0 0<j<K

2 1
= + —
0< <K < ) [ J+1 J+2 (J"‘l)z]
11
>2 2 +1 2 j+2
j
< (5.21)
B 1 2fv—1 1 2fthg4d
\7—/ 2 K+1 2 (K+1)-(K+2)
K K
K+1 K+2
B 11
~— k—1 Kk’
K=k—2
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which completes the proof. O

Proof of Claim 5.5. By reordering the k variables, we can assume that

1 ifi=k,

Olstart (xi) = Olend (xi) = . (5.22)
0 otherwise.

Define K := k — 1 and Vg := {x1,...,x¢}. Note that Ostart|v.y = Qend|vx = 0K. Consider the following

case analysis on A (x;):

(Case 1) A(x;) =0.
()

Condition on the number of 1’s in A|y_, denoted by j, which occurs with probability 2—,( Observe
that o satisfies C if and only if it does not flip x;’s assignment at first, which happens with probability
1— ]% = Jﬁ Similarly, o satisfies C with probability Jﬁ Therefore, ] o o satisfies C with

2
probability (/%) )

(Case 2) A(xx)=1.
Since Ostart(xx) = A(xx) = 1 and A(x;) = Qend(xx) = 1, we find any irredundant reconfiguration of
A (Ostart «~+ A) and & (A «~ Ueng) to satisfy C. Therefore, o o ; satisfies C with probability 1.

Since each of the above two cases occurs with probability %, we derive

HORIEAS
P [af ooy satisfies C| = —. L2 —L—) +1
A-,O_ll)s@[ : ? } ()gjg[(z 2 <J+1>
K\ 1 1 1
=27k, Z <.>“[2—2'.+.2]
0cek \J/ 2 j+1 o (j+1)
20 2 ()50
; J J
Ok (5.23)
2K+1_1
= 2 K. [pKk_
~—~ [ K+1 :|
Fact 5.7
2K+l
>0 K. |2k
K+1
2
= 1-Z,
~— k
K=k—1
which completes the proof. O

6 PSPACE-hardness of (1 — 32£)-factor Approximation of MAXMIN Ek-SAT
RECONFIGURATION for Large k

In this section, we prove Theorem 1.3; i.e., MAXMIN Ek-SAT RECONFIGURATION is PSPACE-hard to

approximate within a factor of 1 — 32%: for every sufficiently large k.
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Theorem 6.1. For any real € > 0, there exists an integer ko(€) € N such that for any integer k > ko(€),
GAP, | _ 1e Ek-SAT RECONFIGURATION is PSPACE-hard. In particular, MAXMIN Ek-SAT RECONFIG-

URATION is PSPACE-hard to approximate within a factor of 1 — %for every integer k > ko(€).

An an immediate corollary of Theorem 6.1, we obtain the PSPACE-hardness of (1 —Q(%))—factor
approximation for every k > 3, which is proved in Appendix B for the sake of completeness.
Corollary 6.2 (x). There exists a universal constant & > 0 such that for any integer k > 3, GAP L%

) k
Ek-SAT RECONFIGURATION is PSPACE-hard. In particular, MAXMIN Ek-SAT RECONFIGURATION is

PSPACE-hard to approximate within a factor of 1 — %for every integer k > 3.

6.1 Outline of the Proof of Theorem 6.1

We present an outline of the proof of Theorem 6.1. Starting from a PCRP system for PSPACE whose
query complexity is g, we reduce it to MAXMIN Ek-SAT RECONFIGURATION for any sufficiently large
integer k > g - A9, where Ay depends only on the parameters of the PCRP system, with the following proper-
ties.

Lemma 6.3. Suppose that there exists a PCRP system (Vp, start, Tlend ) for a PSPACE-complete language
L C{0,1}*, where V. is a verifier with randomness complexity r(n) = O(logn), query complexity q(n) =
q = 3, perfect completeness c(n) = 1, soundness s(n) =s € (0, 1), and degree A(n) = A € N, and Tstart, Tend :
{0,1}* — {0, 1}* are polynomial-time computable proofs. Then, for any real € € (0, 1), there exists an inte-
ger o(€,s,q) € N such that for any integer k > q - Ao (€,s,q), there exists a polynomial-time reduction that
takes an input x € {0,1}* for L and returns an instance (@, Ostart, dend) 0f MAXMIN Ek-S AT RECONFIG-
URATION such that the following hold:

* (Completeness) If x € L, then opt,, (Oﬂstart s OCend) =1

* (Soundness) If x ¢ L, then opt(p(astart T aend) <1-—{, where

g:zw-(z—e). (6.1)

In particular, GAP; ;_¢ Ek-SAT RECONFIGURATION is PSPACE-hard.

By using Lemma 6.3, we can prove Theorem 6.1.

Proof of Theorem 6.1. By the PCRP theorem [HO24b, KM23] and gap-preserving reductions of [Ohs23,
Theorem 3.1], GAP; ; E3-SAT RECONFIGURATION is PSPACE-complete for some real s € (0,1) even
when each variable appears in at most A clauses for some integer A € N. Let ¢ := 3, and (V, Tstart, enq ) be @
PCRP system corresponding to GAP ; E3-SAT RECONFIGURATION, where V has randomness complexity
r(n) = ©(logn), query complexity g(n) = g, perfect completeness ¢(n) = 1, soundness s(n) = s, and degree
A(n) = A. For any real € > 0, let

€

ko(€) = q-Ao(E,s,q), 6.3)
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where Ay(€,s,q) is as defined in Lemma 6.3. For any integer k > ko(€), we apply Lemma 6.3 to V and
deduce that GAP; ;_s Ek-SAT RECONFIGURATION is PSPACE-hard, where { is calculated as

L gy L (3 3
6= (29—1)-k (4 8)\73/7.1( <4 g>'\>/28- (6.4)
e

which accomplishes the proof. O

The remainder of this section is devoted to the proof of Lemma 6.3.

6.2 Proof of Lemma 6.3

Let (VL, Tstart, Tend) be @ PCRP system for a PSPACE-complete language L C {0,1}*, where V. is a
verifier with randomness complexity r(n) = @(logn), query complexity g(n) = g > 3, perfect completeness
c(n) =1, soundness s(n) = s € (0,1), and degree A(n) = A € N, and Tstart, Tend: {0,1}* — {0,1}* are
polynomial-time computable proofs. We can safely assume that any possible query sequence generated by
V. contains exactly g locations. Let g :=1—s € (0,1) and p := 4. For any real € € (0,1), we define § := £

and

Ao(€,58,q) = [“'(%m-;qw, (6.5)

which depends only on &, s, and ¢.® For any integer k > ¢- Ao(€,s,q), we define A := EJ By definition,

gh <k<gA+gq—1.Letx € {0,1}" be an input for L. The proof length for V;(x) is denoted by ¢(n), which
is polynomially bounded in n. Let Mstart = Tstart (x) and Tepg := Tend (X) be the starting and ending proofs in
{0,1}* (n) associated with V. (x), respectively. Note that V. (x) accepts both Tt and 7eng With probability
1. Moreover, the following hold:

* (Completeness) If x € L, then opt, () (Mstart &~ Tend) = 1.
* (Soundness) If x ¢ L, then Opty, (y) (nstart s nend) <l-g.
Hereafter, we will assume without loss of generality that the input length  is sufficiently large so that’

A q o

200 i) Sk

k
q'(lH)z'(er()W(q)) <i (l_uq+5>'

In the subsequent sections, we introduce several verifiers using V;, and analyze their completeness and
soundness.

(6.6)

8The choice of Ay (&, s,q) will be crucial in the proof of Lemma 6.6.
9Such an integer n always exists since the left-hand sides of Eq. (6.6) decrease as n increases, while the right-hand sides are
constants.
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6.2.1 All-One Verifier

The first verifier is the all-one verifier A,. Given an integer p € N and oracle access to a proof 6 €
{0,1}Y?"), A, samples a query sequence I of p distinct locations from [¢(n)] and accepts if (i) = 1 for
every location i € I (i.e., o|; = 17), as described below.

~ P-query all-one verifier A, ~

Input: an integer p € N.
Oracle access: a proof ¢ € {0,1}/(").
1: sample a query sequence I from ([K(If)]).
2: if o(i) = 1 for every i € I then
3: \ return 1.
4: else

5. | return 0.
. J

Observe that A, has the randomness complexity at most p -log/(n) = ®@(logn), and A, always generates a
fixed circuit D: {0,1}” — {0, 1} that accepts only 17 (i.e., D(f) = [f = 17]). Note also that A),’s rejection
probability is monotonically increasing in p; namely,

P[ﬂp+1 rejects 6] > ]P’[ﬂp rejects G]. 6.7)

6.2.2 Combined Verifier

The second verifier is the g-query combined verifier ‘W . Given oracle access to a pair of proofs, denoted

by I[1:=rmoo € {0,1}2(), W calls V;(x) on 7 with probability ﬁ and calls A, on ¢ with probability
1— ﬁ, as described below.

~ q-query combined verifier ‘W ~

Input: the PCRP verifier V., the all-one verifier A, and an input x € {0,1}".
Oracle access: a proof 1= rmoo € {0,1}%(),
1: uniformly sample a real r ~ (0,1).
2: ifr < ﬁ then > with probability g“—k
3: run V7 (x) on 7.
return V7 (x)’s return value.
. 7. u
else > with probability 1 — ok
run A, on o.
return A,’s return value.

- J

Since ﬁ € (0,1) due to Eq. (6.5), the probabilistic behavior of ‘W is well defined. Observe that the ran-
domness complexity of ‘W is bounded by those of V; and A; i.e., O(logn). The starting and ending proofs
gtart, [eng € {0, 1}23(") are defined as Igart := Mstart © 1) and Meng = Teng 0 1¢0Y, respectively. Since
Vi accepts Tstare and Teng With probability 1 and (A, accepts 14 with probability 1, W accepts Ilgta and
Ileng with probability 1. We show the following completeness and soundness.

A

Lemma 6.4. The following hold:
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* (Completeness) Ifopt(VL(x> (ﬂstart s 7'L'end) =1, then optqy, (Hstart e Hend) =1

* (Soundness) Ifoptq,L(x) (nstart s nend) < 1—g, then optyy, (Hstart s Hend) <l- % Moreover, for

any reconfiguration sequence o= (H(l), e ,H(T))from Istart to Ieng, there exists a proofH(’) in T
such that
-0
1— % < IP’[W accepts H(I)} <1- ‘uT (6.8)

To prove Lemma 6.4, we use the following claim.

Claim 6.5. Each proof location o (i) is queried by A, with probability ﬁ. Each proof location T1(i) is
queried by ‘W with probability at most
A q

20 T n) 6.9)

Proof. The former statement holds by the definition of A,,. Since 7(i) is queried by ‘W only if V; is called,
we have

1 A A
i N < —- < —. .
P[W queries 7(i)] < k2w S 2w (6.10)
Since o (i) is queried by ‘W only if A, is called, we have
. . 1 q q
P|‘W queries 6(i)| < <1 — ) < (6.11)
| < U=%) i < atw
Consequently, any location of IT is queried by ‘W with probability at most
A ¢ A q
<
max{ 2r(n)’ g(n)} S T U(n)’ (6.12)
as desired. O

Proof of Lemma 6.4. We first show the completeness. Suppose that optay, (x) (Tstart «~ Tend) = 1. Let T =
(ﬂ(l),...,nm) be a reconfiguration sequence from Tgiart t0 Teng such that valq;L(x)(Tf) = 1. Constructing

a reconfiguration sequence = (H(l), ... ,H(T)) from Igart t0 ITeng such that TI®) := () 6 14 for every
t € [T], we find ‘W to accept every proof I1(¥) with probability 1, implying that opt.yy (ITsgart «~ Heng) = 1,
as desired.

We next show the soundness. Suppose that opta, () (%start « Tend) < 1 — g. Let o= (zMocM ...

7T o 6(7)) be any reconfiguration sequence from Iyt to Ieng such that valw(ﬁ) = optqy (Mstart «~
eng). Since @ = (n(l), - E(T)) is a reconfiguration sequence from Tsapt tO Meng, We have vaI(VL(x)(i_f) <
1 — g by assumption; in particular, there exists a proof £(*) in 7 such that P[V; (x) rejects 7()] > g. Since
W calls V. (x) with probability ﬁ, we have P['W rejects I1)] > &, implying that optqy (TITsart <> Hend) <
1-— %, as desired.

We finally show the “moreover” part. Let i be any reconfiguration sequence from Ilgiart to Ileng.
—
By the soundness shown above, IT contains an adjacent pair of proofs, denoted by IT° and IT, such that

25



valay (I1°) > 1 — & and valqy (IT) < 1 — £. Since IT° and IT differ in a single location, which is queried by
W with probability at most ﬁ + ﬁ due to Claim 6.5, we have

A q
o !

|valqy (IT°) — valqy (TT') | < %0 +m, (6.13)

Consequently, we derive

A q p,oA q p—=o
lay (T1°) < valqy (IT — <-4+ —4+-— < 1-"— 6.14
valqy (IT°) < valgy (IT') + O o) v T 3w ) . (6.14)
Eq. (6.6)
-0

— 1—%<]P’[’W acceptsHO} <l—“T, (6.15)
which completes the proof. O

6.2.3 Horn Verifier

Consider now the k-query Horn verifier Vijom described below. Given oracle access to a proof I1 €
{0,132, Viyory generates (I, Dy) from W, (L, D2),..., (I, Dy) from Ay, and (I, 1, D; ) from Ay,

and accepts if /1, ...,I; . are not pairwise disjoint or the following Horn-like condition holds:
(Di(M|;,) =1) V (D2(T1|,) = 0) V-V (D (TT5,,,) = 0). (6.16)
~ k-query Horn verifier Vo, ~

Input: the all-one verifier A, the combined verifier ‘W, and an input x € {0, 1}".

Oracle access: a proof [1=rmoo € {0,1}2(),

: sample a random bit string Ry ~ {0, 1}©0°2") ysed by ‘W uniformly at random.

: run ‘W on R, to generate a query sequence /; and a circuit Dy : {0,1}7 — {0,1}.

. foreach2 <i<A+1do

if 2 <i <A then

sample a random bit string R; ~ {0, 1}®(l°g”) used by A, uniformly at random.
run A, on R; to generate a query sequence /; and a circuit D;: {0,1}7 — {0,1}.
else

L sample a random bit string R; ~ {0, 1}2(°2%) ysed by Ap_qz, uniformly at random.

1
2
3
4
5:
6
7
8
9

: run A;_,; on R; to generate a query sequence I, and a circuit D;: {0,1}¥9* — {0,1}.
10: let I; be a query sequence obtained by shifting Z; by £(n) locations so that IT|;, = o|;.

11: | > this step is required since I} C [{(n)] while 1|,y = 7. N
12: if Ih,...,I .1 are not pairwise disjoint then
13: \ return 1.
14: else if (D1 (I1|;) = 1)V (D2(I1|,) = 0) V---V (Dy 41 (IT]f,,,) = 0) then
15: ‘ return 1.
16: else
17: | return 0.
- J

The randomness complexity of Vo is at most (A + 1) - @(logn) = O(logn), and Viom queries exactly k
locations of IT whenever Ij,...,I) | are pairwise disjoint because |I,| =--- = |I;}| =g and |} ;|| =k —qgA.
We show the following completeness and soundness.
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Lemma 6.6. The following hold:
* (Completeness) Ifopt(VL(x) (nstart s n'end) =1, then optq,, (Hstart o~ Hend) =1.
* (Soundness) Ifoptq,L(x) (nstart s nend) < 1—g, then opty,, (Hstart s Hend) <1l- % . (% — 8).

Proof. We first show the completeness. Suppose that optay, (x) (Tstart «~* Meng) = 1. By Lemma 6.4, we have

optqy (Istart &~ Hepg) = 1;)By the deﬁ_)nition of Viom, for any reconfiguration sequence " from Ilgiapt to
Ieng, it holds that valqy,,,, (IT) > valqy (IT), which implies optq,,  (Ilstart «~ Ileng) = 1, as desired.

We next show the soundness. Suppose that Opt(VL(x)(n'start o TTend) < 1 —g. Let I be any reconfigu-

= —
ration sequence from Istart to Ileng such that valy, . (IT) = optq,  (Istart > Ieng). By Lemma 6.4, T1
contains a proof II° = 7° o 6° such that

-0
1= <P[W acceps 1] < 1- 52, (6.17)
We shall estimate “Viom’s rejection probability on I1°. Since Ry,...,R;, are mutually independent, we

derive the probability that Eq. (6.16) does not hold as follows:

P {(Dl (I1°];,) = 1) V (Do (I°|,) = 0) V-~V (D (I1°], ) = 0) is not true}

Ry R
= Rl,..?RlH [(DI(HO‘]I) = 0) A\ (D2<H°’12) _ 1) A A (Dl-i-l(HO‘IM_]) _ 1)}
= Ilfz [D] (I°) = 0} . (1 —sz}‘I,”RHI |:(D2(HO|12) = 0) VIR, (DXH(HOIIAH) _ O)]) 6.18)

>E[D1(Ho|h)=0}‘<l )y P[Di(no|1i):0]>

r<ica1 K

> P[W rejects IT°] - (1 — A -P[A, rejects 6°] >,
where the last inequality used the fact that

P [Dy1(IT°];,,,) = 0] =P[A;_,1 rejects 6°] < P[A, rejects 6°]. (6.19)
—qrq

In the last line of Eq. (6.18), “W’s rejection probability is bounded from below by Eq. (6.17), whereas
A,’s rejection probability is bounded from above by the following claim.

Claim 6.7. It holds that

U

P[ﬂq rejects GO] < T

(6.20)

o=
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Proof. Suppose that P[A, rejects 6°] > Z £ for contradiction. Then, we have

8

IP’[‘W accepts HO] = ﬁ -}P’[(VL(x) accepts 7750] + <1 — g‘uk) .P[ﬂq accepts Go]

<uk.1+(1_uk>.(l_kﬂu>
8 8 T 6.21)

On the other hand, P['W accepts I1°] > 1 — % by Eq. (6.17), which is a contradiction. 0
By the definition of Ay(¢€,s,q) in Eq. (6.5), we have
p-(u+d) 1
k>q-A(e,s, > 6.22
q-20(€,5,9) 5 P (6.22)
Eq. (6.5)
B u+é
< —. 6.23
— L . (6.23)
8
Combining Egs. (6.17), (6.18) and (6.23) and Claim 6.7, we obtain
o B [T ) = 1)V (D) = 0) v v (D TP, =0)]
EARES) +
== P [(DI(H°|1]) =1)V (D2(IT°|,) =0) V-V (D41 (IT°);, ) = 0) is not true}
Ly B84
<1=P[W rejects IT°] -(1 — A -P[A, rejects G°]>
e <ﬁ
(6.24)
<1— L_é d1=2- H
k k— %
~——
<i
< 1_;1—6 <1_u+6>
~~ k q
k>=gA
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Observe also that /1, ..., are not pairwise disjoint with probability

P [11 ,-..,1) 1 are not pairwise disjoint] < Z P [I,- and /; are not disjoint]
Ry, ;R4 l#]R R

i\
A q
Yo ()
;’j 2r(n) ~ f(n)

A q (6.25)
<qg- 2, i
< 5.(1_u+5>7
~~ k q
Eq. (6.6)

where the second inequality holds because each proof location is queried by ‘W, A,, and A;_,, with

probability at most -4 + 7(ey owing to Claim 6.5.

Consequently, we evaluate Viyor, s rejection probability on IT° as follows:

P [(VHom rejects HO]
>1- P [11, ...,1y ;1 are not pairwise disjoint]
Ri,...R) 41

- B[] = 1)V (Do) = 0) v (D (1T, ) = 0)|

R, Ry
21_5.(1_“+5>_<1_“—5.(1_M>) (6.26)
k q k q
u—20 u+6
k q

where the last inequality can be shown as follows:

(u—25)-<1—“:6> - (q—g).<1—8> =€—§—§+?>%—e, 6.27)

which completes the proof. 0

Remark 6.8. The choice of | comes from the fact that assuming that 6 = 0, the second-to-last line of
Eq. (6.26) is maximized when | = %; namely,

Jd (u HY\ _q
S (D)o net

6.2.4 Emulating the Horn Verifier

Here, we emulate the Horn verifier Vigorm by an Ek-CNF formula. Recall that Vo ’s acceptance condi-
tion is the following:

(D1 (0]y) = 1) V (D2(T0|,) =0) V-V (Dy 1 (M,,,) = 0). (6.29)
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Consider first the following k-query OR-predicate verifier X obtained by modifying Viorm.

~ k-query OR-predicate verifier X emulating Vijor ~

Input: the k-query Horn verifier Vijor, and an input x € {0, 1}".

Oracle access: a proof IT € {0, 1},

run Vigom to generate A + 1 query sequences Iy, ...,1; 1 and A + 1 circuits Dy,...,D; 1.
ifI;,...,I;  are not pairwise disjoint then

_ return 1.

let I := U cicas1 1 > |I| = k.
sample a partial proof IT € {0, 1}/ that violates Eq. (6.29) uniformly at random; namely,

AN e

(D1(I1,) = 0) A (Do (IT|,) = 1) A+~ A (D (T, = 1). (6.30)
6: if T1|; # I1 then
7: \ return 1.
8: else
9: | returnO.

- J

Note that X queries exactly k locations of the proof II. Since D; rejects at most 29 — 1 strings, D,...,D;
accept only 19, and D, | accepts only 1¥-4* the number of partial proofs IT € {0,1} such that Eq. (6.30)
holds is

Dy 1(0) x Dy (1) x -+ x Dy |

(D] = Do) L1 <291, (6.31)

——

A times

where D! (b) := {f € {0,1}4 | D(f) = b} for a circuit D: {0,1}¢ — {0,1}. Conditioned on the event that
Eq. (6.29) does not hold, X rejects IT with probability at least ﬁ One can emulate X by an Ek-CNF
formula ¢ generated by the following procedure.

~ Construction of an Ek-CNF formula ¢ emulating X ~
Input: the k-query Horn verifier Vijor and an input x € {0, 1}".
1: let ¢ be an empty formula over 2/(n) variables, denoted by x1,. .., Xp().
2: for each random bit string R € {0, l}G(log"> used by Vo do
3: run Vo On R to generate A + 1 query sequences I;,...,I, 1 and A + 1 circuits Dy,...,D; .
4: ifI;,...,I; , are pairwise disjoint then
5: let I:=U i<t - > || = k.
6 for each partial proof e {0, 1} such that Eq. (6.30) holds do
7 > there are at most 29 — 1 partial proofs I in total. N
8 generate a clause Cp; that enforces (x;);e; 7 II; namely,
L ) ~ . . ~ . L Xi if H(l) :07
Cq= i\e/l[[xl #I1(i)], where [x; Z11(i)] = {x () = 1 (6.32)
90 | | addCyinto @.
10: return @.
N J

The above construction of ¢ runs in polynomial time in 7.
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We are now ready to complete the proof of Lemma 6.3.

Proof of Lemma 6.3. We first show the completeness. Suppose that x € L; i.e., 0ptay, () (Tstart ¢~ Tend) = 1.
By Lemma 6.6, we have optq,  (Istart ¢ Ieng) = 1, which implies that opt(P(Hstart e [gng) = 1 due to
the construction of ¢.

We next show the soundness. Suppose that x ¢ L; i.e., OptrvL(x)(ﬂ?start s Tlond) < 1 —g. Let I be any

reconfiguration sequence from Ilgtat to I,y such that valq,(ﬁ) = opt(p(Hsta,rt e Tlgng). By Lemma 6.6,
T contains a proof IT° such that

I
P [Viom rejects IT°] > =+ (4 —¢). (6.33)

Conditioned on I1,...,I} .1 and Dy,...,Dj ., such that Eq. (6.29) does not hold on II°, we have

P[IT°|; = I | I,....I111,D1,....D; 41, and Eq. (6.29) does not hold] > (6.34)
I1

29 —1°

Therefore, exactly one of the (at most) 29 — 1 clauses generated in lines 6-9 of the construction of ¢ must
be violated by I1°. Consequently, we derive

o . o 1 1 q
1= valy () > P[Visom rejects 11 57 > (5o (4-e) (6.35)
1
— Optq, (Hstart o Hend) <1- m . (% — 8), (636)
which accomplishes the proof. O

A NP-hardness of (1 — %{) -factor Approximation

Here, we give a simple proof that MAXMIN Ek-SAT RECONFIGURATION is NP-hard to approximate
within a factor of 1 — é for every k > 3.
Theorem A.1. For any integer k > 3, GAP, . Ek-SAT RECONFIGURATION is NP-hard. In particular,
MAXMIN Ek-SAT RECONFIGURATION is NP-hard to approximate within a factor of 1 — 817< for every
integer k > 3.

To prove Theorem A.1, we first present a gap-preserving reduction from MAX E3-SAT to MAXMIN
Ek-S AT RECONFIGURATION for every k > 5, which is based on [IDHPSUU11, Theorem 5].

Lemma A.2. For any integer k > 5 and any real 6 > 0, there exists a polynomial-time reduction from
GAPy ;_s E3-SAT to GAP,,_ s Ek-SAT RECONFIGURATION. Therefore, GAP, |_ 1. Ek-SAT RE-
’ = ’

8(k—3)
CONFIGURATION is NP-hard for any real € > 0.

Proof. Let k > 5 be an integer and ¢ be an E3-CNF formula consisting of m clauses Ci,...,C, over n
variables xi, .. .,x,. We construct an instance (Y, Ostart, ®end) Of MAXMIN Ek-S AT RECONFIGURATION as
follows. Define K := k—3 > 2. Create K fresh variables yy,...,yx. Let Hy,...,Hk denote the K possible
Horn clauses (with a single positive literal) over yy,...,yg; namely,

Hi:=y1V--- VT Vyi VI V- VK. (A.1)

31



Starting from an empty formula y over xi,...,x,,y1,..., Yk, for each clause C; of ¢ and each Horn clause
H;, we add C; V H; to y. Note that y contains Km clauses. The starting and ending assignments are defined
as Osart := 1"K and Oenq := 0"*K, respectively. Since every clause of ¥ contains both positive and negative
literals, both Otstart and Oepg satisfy y, completing the description of the reduction.

We first show the completeness; i.e., Ja,valy(a) = 1 implies Optw(astart s Oend) = 1. Consider a
reconfiguration sequence O from Olgeart tO Cleng Obtained by the following procedure.

~ Reconfiguration sequence o from Otart t0 Oeng ~
1: let a*: {xq,...,x,} = {0, 1} be a satisfying assignment of ¢.
2: D start with Olsart. q
3: for each variable x; do
4: L if Qsiart (X,‘) 7é o* ()C,') then
5: flip x;’s current assignment from Qetart (x;) to o*(x;).
6: > the current assignment to {xy,...,x,} is equal to a*. q
7: for each variable y; do
8 | flip y;’s current assignment from 1 to 0.
9: for each variable x; do
10: L if Ot*(xl-) 75 Olend (Xl') then
11: flip x;’s current assignment from a*(x;) to Qend (X;)-
12: > end with Oleng. N
\ J

For any intermediate assignment o° of @, it holds that either aO\{xl7__,7xn} = ¥, aol{ylmy,(} = 1%, or
O‘O‘{yl,m,yx} = 0K, thus, «° satisfies v, implying that optv,(ocStart s Oend) = valw(a’) =1, as desired.

We then show the soundness; i.e., Va,valy(0t) < 1 — & implies opty, (Ostart “~ Gend) < 1 — % Let
o= (Oc(l), e, Oc(T)) be any reconfiguration sequence from Oftart t0 (end- There must exist an assignment

a° in @ such that a°|(,, . contains a single 0. Let i* € [K] be a unique index such that a°(y;+) = 0 and
a°(yi) = 1 for every i # i*. By construction, &° may not satisfy a clause C; V H; whenever o°|,, .1 does
not satisfy a clause C;. Consequently, o° violates more than ém clauses of y, implying that

Km—5m_1 1)

Km k=3’ (A-2)

valy (d) < valy(a®) <

8(k=3)

E3-SAT for any real € > 0 due to [Has01, Theorem 6.5]. O

as desired. The NP-hardness of GAP, , _ ie Ek-SAT RECONFIGURATION follows from that of GAP, | 1.

Since the above reduction does not work when &k < 4, the subsequent lemmas separately give a gap-
preserving reduction from MAX E3-SAT to MAXMIN E3-SAT RECONFIGURATION and MAXMIN E4-
SAT RECONFIGURATION.

Lemma A.3. GAP E3-SAT RECONFIGURATION is NP-hard for any real € > 0.

19
E"FS

Lemma A4. GAP E4-SAT RECONFIGURATION is NP-hard for any real € > 0.

10
ﬁ-l-e

The proof of Theorem A.1 is now immediate from Lemmas A.2 to A.4.

Proof of Theorem A.1. The following hold, as desired:
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* By Lemma A.3, GAPLH% E3-SAT RECONFIGURATION is NP-hard.

3

a

e By Lemma A.4, GAP, - E4-SAT RECONFIGURATION is NP-hard.

* Substituting € of Lemma A.2 by % derives that GAPl.l—ﬁ Ek-SAT RECONFIGURATION is NP-hard
for each integer k > 5. O

11428

{3,4}-SAT RECONFIGURATION, where “{3,4}-SAT” means that each clause has width 3 or 4. Let ¢ be
an E3-CNF formula consisting of m clauses Cy,...,C,, over n variables x,...,x,. We construct an instance
(W, Olstart; Otend) of MAXMIN {3,4}-SAT RECONFIGURATION as follows. Create a CNF formula y by the
following procedure, which is parameterized by m; and m,.

Proof of Lemma A.3. We first demonstrate a gap-preserving reduction from GAP ;_s E3-SAT to GAP, s

~ Construction of y ~

introduce three fresh variables, denoted by y, z;, and 25.

let ¥ be an empty formula over n + 3 variables xi,...,X,,¥,21,22.
foreach 1 < j<mdo

 add anew clause C; Vy to y.

add m; copies of a clause yVz; VZ; to Y.

add m; copies of a clause yVZy Vz; to Y.

- J

AN A B o S e

Note that y consists of m + m; 4+ my clauses, each of which has width 3 or 4. The starting and ending
assignments, denoted by Ostart, Oend : {X1,---,Xn,¥,21,22} — {0, 1}, are defined as follows:

* Ostart(x;) =1 for every i € [n] and Qstart(,21,22) == (1, 1,1);
* Olend(xi) =0 for every i € [n] and Oteng(y,21,22) == (1,0,0).
Since Ostart and Oeng satisfy y, this completes the description of the reduction.

We first show the completeness; i.e., 3a,valy(o) = 1 implies opty, (Ostart «~* Oeng) = 1. Consider a
reconfiguration sequence O from Olgeart tO Cleng Obtained by the following procedure.

~ Reconfiguration sequence o from Oiart t0 Oeng ~

let a*: {x1,...,x,} — {0, 1} be a satisfying assignment of ¢.
> start with Ostart. <
for each variable x; do
L if Olstart (x,') 7’5 o (xl-) then
flip x;’s current assignment from Qetart (x;) to o*(x;).
flip the assignment to y, z1, 22, and y in this order.
> the above step gives rise to the following reconfiguration sequence of assignments to (y,z1,22):
((1,1,1),(0,1,1),(0,0,1),(0,0,0),(1,0,0)). <
for each variable x; do
L if OC*()CZ‘) 75 Olend (xi) then
flip x;’s current assignment from ot*(x;) to Otend (X;).
11: > end with Oepg. <

NN R

o ®
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For any intermediate assignment ¢° of ¢, the following hold:
* Since a°(y) = L or &°|yy, . .} = &, each clause C; Vy is satisfied.
e Since a°(y,z1,22) # (1,0,1), aclause y V z; V77 is satisfied.
* Since a°(y,z1,22) # (1,1,0), a clause y\V z1 V 25 is satisfied.
Therefore, & satisfies y; i.e., opty (Astart &~ Qend) = 1.

We then show the soundness; i.e., Vot,valg(a) < 1 — 6 implies optq,(ocstar»c @~s Olend) < 1 — H%' Let

o= (05(1), ey OC(T)) be any reconfiguration sequence from Ogart t0 Qend. We bound its value by the follow-
ing case analysis:

(Case 1) 3r,al)(y)=0.
Each clause C; Vy of y is satisfied by a") if and only if C; is satisfied by a")| {x
at least 8m clauses of ¥ must be unsatisfied by such ot*).

(Case 2) Vr,al)(y) = 1.
Since a'V(y,z1,22) = (1,1,1) and a7 (y,z1,22) = (1,0,0), there is some assignment a° in & such
that a°(y,z1,z2) is (1,0,1) or (1,1,0). In the former case, o° violates m; clauses in the form of
¥V z1 V7z; in the latter case, a° violates m; clauses in the form of yV Z7 V z5.

x,}- By assumption,

ERREE:

In either case, the maximum number of clauses violated by & must be at least
min{6m,m1,m2}. (A.3)
Letting m; := dm and m; := dm, we have

min{5m,m1,m2} B é (Ad)
m+mi+my 1428 '

valy(a) < 1—

as desired.

Since GAP, 1l E3-SAT is NP-hard for any real € > 0 [Has01, Theorem 6.5], we let § := % to have

that GAP, , s {3,4}-SAT RECONFIGURATION is NP-hard, where 1 — 0
’ 1428

255 is bounded as follows:

1— 1—
S £ <1 £

1— =l-—<1-—. A5
1426 10 —2¢ 10 (&-3)

By [Ohs23], GAP; ;i {3,4}-SAT RECONFIGURATION is further reduced to GAP, ; _1_e E3-SAT RE-
CONFIGURATION in polynomial time, which completes the proof. O

Proof of Lemma A.4. We demonstrate a gap-preserving reduction from GAPy ;_5 E3-SAT to GAP, s E4-

' 1436
SAT RECONFIGURATION. Let ¢ be an E3-CNF formula consisting of m clauses C1, .. .,C,, over n variables

X1,...,X;. We construct an instance (Y, Ostart, Otend) Of MAXMIN E4-SAT RECONFIGURATION as follows.
Create a CNF formula y by the following procedure, which is parameterized by m, my, and ms3.
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~ Construction of y

introduce four fresh variables, denoted by y, z1, z2, and z3.

let ¥ be an empty formula over n+ 4 variables x1,...,x,,y,21,22,23-
foreach 1 < j<mdo

L add a new clause C; Vy to y.

add m; copies of a clause yVz; VZz VZ3 to V.

add m; copies of a clause yVZ1 Vzp VZy to Y.

add m3 copies of a clause yVZ1 VZzz Vz3 to Y.

A o s

-

J

Note that y consists of m +m; +my 4+ m3 clauses of width 4. The starting and ending assignments, denoted

by Qstart, Qend : {X1,---,%n,¥,21,22,23} — {0, 1}, are defined as follows:
* Ostart(x;) =1 forevery i € [n] and Qstart (¥, 21,22,23) == (1,1,1,1);
* aend(xi> =0foreveryic [I’l] and aend(Y7Z17Z27Z3) = (1707030)'

Since Otart and Oeng satisfy y, this completes the description of the reduction.

We first show the completeness; i.e., Ela,val(p(a) = 1 implies optw(ocst‘.,,r»c e~ Ofend) = 1. Consider a

reconfiguration sequence O from Olgeart tO Cleng Obtained by the following procedure.

~ Reconfiguration sequence o from Otart t0 Oeng

let a*: {x1,...,x,} — {0, 1} be a satisfying assignment of ¢.
> start with Ostart.
for each variable x; do
L if Olstart (x,') 7’5 o* (xl-) then
flip x;’s current assignment from Qetart (x;) to o*(x;).
flip the assignment to y, z1, 22, 23, and y in this order.
> the above step gives rise to the following reconfiguration sequence of assignments to
(y,21,22,23): ((1,1,1,1),(0,1,1,1),(0,0,1,1),(0,0,0,1),(0,0,0,0),(1,0,0,0)).
for each variable x; do
L if OC*()CZ‘) 75 Olend (xi) then
10: flip x;’s current assignment from ot*(x;) to Otend (X;).
11: > end with Ogpg.

NN R

o ®

-

~

For any intermediate assignment «° of o, the following hold:
* Since a°(y) = 1 or @°[(y, .. ,} = &, each clause C; Vy is satisfied.
* Since a°(y,z1,22,23) # (1,0,1,1), a clause yV z; VZ; V 73 is satisfied.
e Since a°(y,z1,22,23) # (1,1,0,1), a clause YV 71 V 22 V73 is satisfied.
e Since a°(y,z1,22,23) # (1,1,1,0), a clause yVZ1 V72 V z3 is satisfied.

Therefore, o satisfies v;ie., optw(astart e~ Oend) = 1.

We then show the soundness; i.e., Vor,valg(a) < 1 — 6 implies optl‘,(Ots,tar:c e~ Oend) < 1
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o= (a(l), ey OC(T)) be any reconfiguration sequence from Ogart t0 Qend. We bound its value by the follow-
ing case analysis:

(Case 1) 3r,a)(y)=0.
Each clause C; Vy of y is satisfied by a") if and only if C is satisfied by a*)| {x
at least 8m clauses of ¥ must be unsatisfied by such ot").

(Case 2) Vr,a)(y)=1.
Since alV) (y,z1,22,23) = (1,1,1,1) and a'")(y,z1,22,23) = (1,0,0,0), there is some assignment o°
in o such that a°(y,z1,22,23) is (1,0,1,1), (1,1,0,1), or (1,1,1,0). In the first case, a° violates
my clauses in the form of yV z; VZ; V Z3; in the second case, &° violates my clauses in the form of
yV7Z1Vz2 VZ3; in the third case, a° violates m3 clauses in the form of yVzZ1 VZ3 V z3.

x,}- By assumption,

ERREE:

In either case, the maximum number of clauses violated by ¢ must be at least

min{ 8m,my,my,ms}. (A.6)
Letting mq := dm, my := dm, and m3 := Om, we have
min{5m,m1,m2,m3} B 6

(A7)

Iy () < 1— -_°
valy (@) M+ my +mo+ ms 1+38

as desired.

Since GAP, 1ol E3-SAT is NP-hard for any real € > 0 [Has01, Theorem 6.5], we let § := 1%5 to have

o

535 is bounded as follows:

that GAP, ;s E4-SAT RECONFIGURATION is NP-hard, where 1 —

1+30

1— 1—
) ] € <1 £

1— =1—-—<1——, A8
1+36 11-—3¢ 11 (A8)
which completes the proof. O
B Omitted Proofs
Proof of Fact 5.7. Using the fact that
n+1 n+1/(n
= B.1
(i) =i () @D
we have
1 1\ 1 1 1 PR
y <”>: y <”+> _ y <”+ >: , (B.2)
0cren k) k+1 0Srgn k+1/n+1 n+1,5¢, k n+1
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Similarly, we have
y (n) 1 y <n—%1>k+—1 1
o, \k ) k+2 k+1)n+1k+2

0<k<n

1 1 1
w2 ()
~  n+l =\ k k+1

replace k by k—1
1 Z <n+1) Z <n—|—1> 1 (B.3)
nt1|ocig \ K ocienit \ k) k+1
—n+l o2
- ni2
_ 2n+1.n+1
(n+1)(n+2)’
as desired. O

Proof of Corollary 6.2. To prove Corollary 6.2, we use the following claim, which will be proven later.

Claim B.1. For any integer k > 3, any real ¥ > 1 with Yk € N, and any real € > 0, there exists a gap-
preserving reduction from GAPy,1—¢ E(Yk)-SAT RECONFIGURATION fo GAP; ;¢ Ek-SAT RECONFIGU-

RATION, where I := Ll—kz—‘

Let £:=0.2 and ko(&) € N be an integer as defined in Theorem 6.1. For any integer k > ko(€), GAP, -

Ek-SAT RECONFIGURATION is PSPACE-hard by Theorem 6.1. For any integer k with 3 < k < ko(€), we

apply Claim B.1 to reduce GAP, | i E(ko(€))-SAT RECONFIGURATION to GAP; | - Ek-SAT
RECONFIGURATION, where ’ ’
ko(€)
I'= < ko(E). B4
L{_z—‘ 0(€) (B.4)
k=3
Letting
1
=— B.5

we derive that GAP1 L% Ek-SAT RECONFIGURATION is PSPACE-hard for every integer k > 3, as desired.
O

k

Proof of Claim B.1. Let (@, Ostart, Clend ) be an instance of MAXMIN E(yk)-S AT RECONFIGURATION, where
¢ is an E(k)-CNF formula consisting of m clauses Cy, ... ,C,, over n variables xj, ..., X,, and Ostart, Otend are

satisfying assignments for ¢. We construct an instance (W, Bstart, Bend) Of MAXMIN Ek-SAT RECONFIGU-
RATION as follows. Let I := {%—‘ . Starting from an empty clause v, for each clause C; = {1V ---V £y of
¢, we add to y the I" clauses of width k generated by the following procedure.
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-~ Construction of I" clauses from a clause C; = /1 V- - -\ £y of ¢ ~

1: create I sets of literals, denoted by Sy, . ..,Sr, such that the following hold:
* each set §; contains exactly k — 2 literals of C;;
* S1,...,Sr cover the Yk literals of Cj; namely, S; U---USr = {{1,...,lyu}.

k
2: > such a family of I sets always exists because ky—z <T N

3: append a single literal of C; (say ¢;) to each of S| and Sr, so that |S;| = [Sp| =k— 1 and |S,| =
o= Sp_y| =k—2.

4: introduce I — 1 fresh variables, denoted by y; 1,...,y;r1.

5: generate I clauses of width k representing the following formulas:

Yil = <\/ fz‘>,

{;€Sy
Yia = ()’j,l\/ \ &'),
&ESZ
: (B.6)
yir-1 = <)’j71"2\/ \ fi),
4;eSr_y
1 = <yj71“1\/ \/ E,)
f,‘GSr
N J
For a satisfying assignment o: {x,...,x,} — {0,1} for ¢, we consider an assignment f: {xi,...,x,,

Yids---,Ymr—1} — {0,1} for y such that ﬁ|{x1,.“,xﬂ} = Q... x,} and B(yj,i) for each variable y;; is de-
fined as follows:

0 ifi<ij—1,

)= ] : B.7)
PO {1 ifi>ij—1,

where i; € [I'] is an index such that some literal of Si; is satisfied by a. Construct the starting assignment

Bstart from Oary and the ending assignment Be,g from oenq according to this procedure. Observe that

both Bstart and Peng satisfy y, which completes the description of the reduction. Similarly to [GKMP09,
Lemma 3.5] and [Ohs23, Claim 3.4], we have the following completeness and soundness, as desired:

* (Completeness) If opt(p(astart oy (xend) =1, then optw(ﬁstart oy ﬁend) =1.

* (Soundness) If opt,, (astart s OCend) < 1—g, then optw(ﬁstart vy ﬁend) <1-¢. O
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