
Asymptotically Optimal Inapproximability of
Ek-SAT Reconfiguration

Shuichi Hirahara
National Institute of Informatics, Japan

s_hirahara@nii.ac.jp

Naoto Ohsaka
CyberAgent, Inc., Japan

ohsaka_naoto@cyberagent.co.jp

Abstract

In the MAXMIN Ek-SAT RECONFIGURATION problem, we are given a satisfiable k-CNF formula
ϕ where each clause contains exactly k literals, along with a pair of its satisfying assignments. The
objective is transform one satisfying assignment into the other by repeatedly flipping the value of a
single variable, while maximizing the minimum fraction of satisfied clauses of ϕ throughout the trans-
formation. In this paper, we demonstrate that the optimal approximation factor for MAXMIN Ek-SAT
RECONFIGURATION is 1−Θ

(1
k

)
. On the algorithmic side, we develop a deterministic

(
1− 1

k−1 − 1
k

)
-

factor approximation algorithm for every k ⩾ 3. On the hardness side, we show that it is PSPACE-hard
to approximate this problem within a factor of 1− 1

10k for every sufficiently large k. Note that an “NP
analogue” of MAXMIN Ek-SAT RECONFIGURATION is MAX Ek-SAT, whose approximation threshold
is 1− 1

2k shown by Håstad (JACM 2001). To the best of our knowledge, this is the first reconfigura-
tion problem whose approximation threshold is (asymptotically) worse than that of its NP analogue.
To prove the hardness result, we introduce a new “non-monotone” test, which is specially tailored to
reconfiguration problems, despite not being helpful in the PCP regime.

1 Introduction

Ek-SAT RECONFIGURATION [GKMP09] is a canonical reconfiguration problem, defined as follows:
Let ϕ be a satisfiable Ek-CNF formula, where each clause contains exactly k literals, over n variables. A
sequence over assignments for ϕ , denoted by #»

α = (α(1), . . . ,α(T)), is called a reconfiguration sequence if
every adjacent pair of assignments α(t) and α(t+1) differ in a single variable. In the Ek-SAT RECONFIGU-
RATION problem, for a pair of satisfying assignments αstart and αend for ϕ , we are asked to decide if there
exists a reconfiguration sequence #»

α from αstart to αend consisting only of satisfying assignments for ϕ . In
other words, Ek-SAT RECONFIGURATION asks the st-connectivity question over the solution space of ϕ ,
which is the subgraph Gϕ of the n-dimensional Boolean hypercube induced by all satisfying assignments
for ϕ . Studying Ek-SAT RECONFIGURATION and its variants was originally motivated by the application
to analyze the structure of the solution space for Boolean formulas. For a random instance ϕ of Ek-SAT
(in a low-density regime), the solution space Gϕ breaks down into exponentially many “clusters” [ACR11,
MMZ05], providing insight into the (empirical) performance of SAT solvers, such as DPLL [ABM04] and
Survey Propagation [MPZ02]. To shed light on the structure of the solution space in the worst case scenario,
Gopalan, Kolaitis, Maneva, and Papadimitriou [GKMP09, Theorem 2.9] established a dichotomy theorem
that classifies the complexity of every reconfiguration problem over Boolean formulas as P or PSPACE-
complete; e.g., Ek-SAT RECONFIGURATION is in P if k ⩽ 2 and is PSPACE-complete for every k ⩾ 3.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 120 (2025)

mailto:s_hirahara@nii.ac.jp
mailto:ohsaka_naoto@cyberagent.co.jp

1110 1101 1011 0111

1111

α

α

1100 1010 0110 1001 00110101

0001001001001000

0000 start

end

Figure 1: The solution space of Example 1.1. Each assignment enclosed by a (blue) double line violates a
single clause of an E3-CNF formula ϕ , that enclosed by a (red) dashed line violates two clauses, and the
other assignments satisfy ϕ . Observe that we cannot transform αstart into αend without unsatisfying ϕ; i.e.,
this is a NO instance of E3-SAT RECONFIGURATION. As an instance of MAXMIN E3-SAT RECONFIGU-
RATION, an optimal reconfiguration sequence is (0000,1000,1100,1110,1111), whose objective value is 5

6 .

Moreover, the diameter of the connected components of Gϕ can be exponential in the PSPACE-complete
case while it is always linear in the P case [GKMP09, Theorem 2.10]. See Section 3 for related work on
other reconfiguration problems.

In this paper, we study approximability of Ek-SAT RECONFIGURATION. Recently, approximability
of reconfiguration problems has been studied from both hardness and algorithmic sides [HO24a, HO24b,
HO25, KM23, Ohs23, Ohs24a, Ohs24b, Ohs24c, Ohs25a, Ohs25b] (see also Section 3.3). In the ap-
proximate version of Ek-SAT RECONFIGURATION, called MAXMIN Ek-SAT RECONFIGURATION [IDH-
PSUU11], for a satisfiable Ek-CNF formula ϕ and a pair of its satisfying assignments αstart and αend, we
are asked to construct a reconfiguration sequence #»

α from αstart to αend consisting of any (not necessarily
satisfying) assignments for ϕ . The objective is to maximize the minimum fraction of satisfied clauses of ϕ ,
where the minimum is taken over all assignments in #»

α . Note that an “NP analogue” of MAXMIN Ek-SAT
RECONFIGURATION is MAX Ek-SAT.

MAXMIN Ek-SAT RECONFIGURATION

Input: a satisfiable Ek-CNF formula ϕ and a pair of its satisfying assignments αstart and αend.
Output: a reconfiguration sequence #»

α from αstart to αend.
Goal: maximize the minimum fraction of satisfied clauses of ϕ over all assignments in #»

α .

Solving this problem, we may be able to find a “reasonable” reconfiguration sequence consisting of almost-
satisfying assignments, so that we can mange NO instances of Ek-SAT RECONFIGURATION. An example
of MAXMIN E3-SAT RECONFIGURATION is described as follows.

Example 1.1 (MAXMIN E3-SAT RECONFIGURATION). Let ϕ be an E3-CNF formula consisting of

2

the following six clauses over four variables x1, x2, x3, and x4:

C1 := x1 ∨ x2 ∨ x3, C4 := x1 ∨ x2 ∨ x4,

C2 := x1 ∨ x2 ∨ x3, C5 := x2 ∨ x3 ∨ x4,

C3 := x1 ∨ x2 ∨ x3, C6 := x1 ∨ x3 ∨ x4.

(1.1)

Let αstart := 0000 and αend := 1111 be two satisfying assignments for ϕ . See Figure 1 for the so-
lution space of ϕ . Observe that (ϕ,αstart,αend) is a NO instance of Ek-SAT RECONFIGURATION

because any reconfiguration sequence from αstart to αend passes through an assignment with exactly
two 1’s, which must violate one of the six clauses of ϕ . As an instance of MAXMIN E3-SAT
RECONFIGURATION, any reconfiguration sequence from αstart to αend is considered feasible; e.g.,
#»
α := (0000,0001,0011,0111,1111) has the objective value 4

6 since the fourth assignment 0111 does
not satisfy C3 and C6. An optimal reconfiguration sequence is #»

α ∗ := (0000,1000,1100,1110,1111),
whose objective value is 5

6 .

We review known results on the complexity of MAXMIN Ek-SAT RECONFIGURATION. For every k ⩾ 3,
exactly solving MAXMIN Ek-SAT RECONFIGURATION is PSPACE-hard, which follows from that of Ek-
SAT RECONFIGURATION [GKMP09, Theorem 2.9]. Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara,
and Uno [IDHPSUU11, Theorem 5] showed that MAXMIN E5-SAT RECONFIGURATION is NP-hard to
approximate within a factor better than 15

16 . For PSPACE-hardness of approximation, the Probabilistically
Checkable Reconfiguration Proof (PCRP) theorem due to Hirahara and Ohsaka [HO24b, Theorem 1.5] and
Karthik C. S. and Manurangsi [KM23, Theorem 1], along with a series of gap-preserving reductions due to
Ohsaka [Ohs23], implies that MAXMIN E3-SAT RECONFIGURATION and MAXMIN E2-SAT RECONFIG-
URATION are PSPACE-hard to approximate within some constant factor. So far, the asymptotic behavior of
approximability for MAXMIN Ek-SAT RECONFIGURATION with respect to the clause width k is not well
understood.

1.1 Our Results

In this paper, we demonstrate that the approximation threshold of MAXMIN Ek-SAT RECONFIGURA-
TION is 1−Θ

(1
k

)
. On the algorithmic side, we develop a deterministic

(
1− 1

k−1 − 1
k

)
-factor approximation

algorithm for every k ⩾ 3.

Theorem 1.2 (informal; see Theorem 5.1). For an integer k ⩾ 3, a satisfiable Ek-CNF formula ϕ , and a
pair of its satisfying assignments αstart and αend, there exists a polynomial-length reconfiguration sequence
from αstart to αend in which every assignment satisfies at least

(
1− 1

k−1 − 1
k

)
-fraction of the clauses of ϕ .

Moreover, such a reconfiguration sequence can be found by a deterministic polynomial-time algorithm. In
particular, this algorithm approximates MAXMIN Ek-SAT RECONFIGURATION within a factor of 1− 1

k−1 −
1
k .

Theorem 1.2 implies a structural property of the solution space that every pair of satisfying assignments
for an Ek-CNF formula can be connected only by almost-satisfying assignments. For small k, the proposed
algorithm has an approximation factor much better than 1− 1

k−1 − 1
k , as shown in Table 1.

On the hardness side, we show the PSPACE-hardness of
(
1− 1

10k

)
-factor approximation for every suffi-

3

Table 1: Approximation factor of MAXMIN Ek-SAT RECONFIGURATION for 3 ⩽ k ⩽ 10.

k 3 4 5 6 7 8 9 10

approximation factor 0.572 0.631 0.679 0.718 0.749 0.775 0.796 0.814

ciently large k.1

Theorem 1.3 (informal; see Theorem 6.1). There exists an integer k0 ∈ N such that for any integer k ⩾ k0,
a satisfiable Ek-CNF formula ϕ , and a pair of its satisfying assignments αstart and αend, it is PSPACE-hard
to distinguish between the following two cases:

• (Completeness) There exists a reconfiguration sequence from αstart to αend consisting of satisfying
assignments for ϕ .2

• (Soundness) Every reconfiguration sequence from αstart to αend contains an assignment that violates
more than a 1

10k -fraction of the clauses of ϕ .

In particular, MAXMIN Ek-SAT RECONFIGURATION is PSPACE-hard to approximate within a factor of
1− 1

10k for every integer k ⩾ k0.

We found this to be surprising. For any Ek-CNF formula ϕ over n variables, a random assignment A uni-
formly chosen from {0,1}n satisfies a

(
1− 1

2k

)
-fraction of the clauses of ϕ in expectation. By a concentra-

tion inequality,3 this implies that only a 2−Ω(n)-fraction of assignments do not satisfy a
(
1− 1

10k

)
-fraction of

the clauses of ϕ . Theorem 1.3 shows the PSPACE-hardness of the st-connectivity question over the subgraph
of the n-dimensional Boolean hypercube obtained by deleting only a 2−Ω(n)-fraction of vertices.

As an immediate corollary of Theorem 1.3, we obtain the PSPACE-hardness of
(
1−Ω

(1
k

))
-factor ap-

proximation for every k ⩾ 3.

Corollary 1.4 (informal; see Corollary 6.2). There exists a universal constant δ0 > 0 such that MAXMIN

Ek-SAT RECONFIGURATION is PSPACE-hard to approximate within a factor of 1− δ0
k for every integer

k ⩾ 3.

Theorems 1.2 and 1.3 provide asymptotically tight lower and upper bounds for approximability of
MAXMIN Ek-SAT RECONFIGURATION. Note that the approximation threshold of its NP analogue, i.e.,
MAX Ek-SAT, is 1− 1

2k [Hås01, Theorems 6.5 and 6.14]. To the best of our knowledge, this is the first
reconfiguration problem whose approximation threshold is (asymptotically) worse than that of its NP ana-
logue.

Prior to this work, any reconfiguration problem has been shown to be at least as “easy” as its NP-
analogue in terms of approximability. For example, the approximation threshold of MINMAX SET COVER

RECONFIGURATION4 is 2 [HO24a, IDHPSUU11, KM23] while that of MIN SET COVER is lnN [Chv79,

1In Section 6, we show the PSPACE-hardness of
(
1− 3−ε

28k
)
-factor approximation, which is slightly better than 1− 1

10k .
2This is a YES instance of Ek-SAT RECONFIGURATION.
3We actually prove Theorem 1.3 even for formulas ϕ such that each variable is read o(|ϕ|) times, and thus the read-τ concen-

tration inequality is applicable.
4In the MINMAX SET COVER RECONFIGURATION problem, we are asked to transform a given cover of a set system into

another by repeatedly adding or removing a single set so as to minimize the maximum size of any covers during transformation.

4

Table 2: Approximation thresholds of reconfiguration problems and NP analogues. For the first three
maximization problems, the larger the better. For the last minimization problem, the smaller the better.

problem approx. threshold hardness refs.

MAXMIN Ek-SAT RECONF 1−Θ
(1

k

)
PSPACE-h. (this paper)

MAX Ek-SAT 1− 1
2k NP-h. [Hås01]

MAXMIN k-CUT RECONF 1−Θ
(1

k

)
PSPACE-h. [HO25]

MAX k-CUT 1−Θ
(1

k

)
NP-h. [AOTW14, FJ97, GS13, KKLP97]

MAXMIN 2-CSP RECONF Θ(1) PSPACE-h. [KM23, Ohs24b, Ohs25a]
MAX 2-CSP N− 1

3 to 2−(logN)1−o(1) † NP-h. [CHK11, Raz98]

MINMAX SET COVER RECONF 2 PSPACE-h. [HO24a, IDHPSUU11, KM23]
MIN SET COVER lnN ‡ NP-h. [Chv79, DS14, Fei98, Joh74, Lov75]
† N is the size of an instance of 2-CSP, which is equal to the number of variables times the alphabet size.
‡ N is the universe size of an instance of SET COVER.

DS14, Fei98, Joh74, Lov75], where N is the universe size. See also Table 2 and Section 3.3 for the approx-
imation threshold of other reconfiguration problems. This trend comes from the nature of reconfiguration
problems that a pair of feasible solutions are given as input: it is often the case that we can construct a trivial
reconfiguration sequence that passes through an “intermediate” solution between them. For example, for a
pair of covers, their union is also a cover at most twice as large, which implies a 2-factor approximation al-
gorithm for MINMAX SET COVER RECONFIGURATION [IDHPSUU11, Theorem 6]. Contrary to this trend,
MAXMIN Ek-SAT RECONFIGURATION exhibits a smaller approximation threshold than its NP analogue.
This indicates that the techniques from the PCP literature are not directly applicable to reconfiguration prob-
lems, which hence suggests the need to develop new techniques.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we present an overview of the proof of
Theorems 1.2 and 1.3. In Section 3, we review related work on reconfiguration problems, relatives of Ek-
SAT RECONFIGURATION, and approximability of reconfiguration problems and MAX k-SAT. In Section 4,
we formally define the MAXMIN Ek-SAT RECONFIGURATION problem and introduce the Probabilisti-
cally Checkable Reconfiguration Proof theorem [HO24b, KM23]. In Section 5, we develop a deterministic(
1− 1

k−1 − 1
k

)
-factor approximation algorithm for MAXMIN Ek-SAT RECONFIGURATION. In Section 6,

we prove the PSPACE-hardness of
(
1− 1

10k

)
-factor approximation for MAXMIN Ek-SAT RECONFIGURA-

TION. In Appendix A, we present a complementary result that MAXMIN Ek-SAT RECONFIGURATION is
NP-hard to approximate within a factor of 1− 1

8k . Some technical proofs are deferred to Appendix B.

2 Proof Overview

2.1 Deterministic
(
1− 1

k−1 − 1
k

)
-factor Approximation Algorithm (Section 5)

First, we give a highlight of the proof of Theorem 1.2, i.e., a deterministic
(
1− 1

k−1 − 1
k

)
-factor approxi-

mation algorithm for MAXMIN Ek-SAT RECONFIGURATION. Our algorithm uses a random reconfiguration
sequence passing through a random assignment. A similar strategy was used to approximate other recon-

5

figuration problems, e.g., [HO25, KM23, Ohs25a]. Let ϕ be a satisfiable Ek-CNF formula consisting of m
clauses C1, . . . ,Cm over n variables x1, . . . ,xn, and αstart,αend : {x1, . . . ,xn}→{0,1} be a pair of its satisfying
assignments. Let A : {x1, . . . ,xn}→ {0,1} be a random assignment for ϕ , which satisfies a

(
1− 1

2k

)
-fraction

of the clauses of ϕ in expectation. Consider the following two random reconfiguration sequences:

• a reconfiguration sequence # »
α1 from αstart to A obtained by flipping the assignment to variables at

which αstart and A differ in a random order, and

• a reconfiguration sequence # »
α2 from A to αend obtained by flipping the assignment to variables at

which A and αend differ in a random order.

Concatenation of # »
α1 and # »

α2 yields a reconfiguration sequence from αstart to αend that passes though A,
which is obtained by the following procedure.

Generating a random reconfiguration sequence # »
α1 ◦ # »

α2 from αstart to αend

1: sample a uniformly random assignment A : {x1, . . . ,xn}→ {0,1} for ϕ .
2: ▷ start with αstart. ◁
3: for each variable xi such that αstart(xi) ̸= A(xi) in a random order do
4: flip xi’s current assignment from αstart(xi) to A(xi).
5: ▷ obtain A. ◁
6: for each variable xi such that A(xi) ̸= αend(xi) in a random order do
7: flip xi’s current assignment from A(xi) to αend(xi).
8: ▷ end with αend. ◁

The main lemma is the following.

Lemma 2.1 (informal; see Lemma 5.2). For each clause C j of ϕ , all assignments in # »
α1 ◦ # »

α2 simultaneously
satisfy C j with probability at least 1− 1

k−1 − 1
k .

The key insight in the proof of Lemma 2.1 is that the probability of interest attains the minimum when both
αstart and αend make a single literal of C j true. Thus, it is sufficient to bound from below the probability
of interest only when αstart and αend make a single literal of C j true and (αstart ̸= αend or αstart = αend),
which can be exactly calculated by exhaustion. Derandomization can be done by a standard application of
the method of conditional expectations [AS16].

2.2 PSPACE-hardness of
(
1− 1

10k

)
-factor Approximation (Section 6)

Second, we present a proof overview of Theorem 1.3, i.e., PSPACE-hardness of
(
1− 1

10k

)
-factor ap-

proximation for MAXMIN Ek-SAT RECONFIGURATION. For a satisfiable Ek-CNF formula ϕ and a pair of
its satisfying assignments αstart and αend, let optϕ(αstart ↭ αend) denote the optimal value of MAXMIN

Ek-SAT RECONFIGURATION; namely, the maximum value among all possible reconfiguration sequences
from αstart to αend, where the value of a reconfiguration sequence #»

α is defined as the minimum fraction
of satisfied clauses of ϕ over all assignments in #»

α . For any reals 0 ⩽ s ⩽ c ⩽ 1, GAPc,s Ek-SAT RE-
CONFIGURATION is a promise problem that requires to determine whether optϕ(αstart ↭ αend) ⩾ c or
optϕ(αstart ↭ αend)< s. See Section 4.1 for the formal definition.

6

2.2.1 First Attempt: A Simple Proof of
(
1−Ω

(1
2k

))
-factor Inapproximability

For starters, we show the PSPACE-hardness of
(
1−Ω

(1
2k

))
-factor approximation for MAXMIN Ek-

SAT RECONFIGURATION. The proof is based on a simple gap-preserving reduction from MAXMIN E3-
SAT RECONFIGURATION to MAXMIN Ek-SAT RECONFIGURATION, which mimics that from MAX E3-
SAT to MAX Ek-SAT, e.g., [Hås01, Theorem 6.14]. Let ϕ be a satisfiable E3-CNF formula over n variables
x1, . . . ,xn and αstart,αend : {x1, . . . ,xn}→ {0,1} be a pair of its satisfying assignments. Create fresh K vari-
ables y1, . . . ,yK , where K := k− 3. Construct an Ek-CNF formula ψ by appending the 2K possible clauses
over y1, . . . ,yK to each clause of ϕ . Define two satisfying assignments βstart,βend : {x1, . . . ,xn,y1, . . . ,yK}→
{0,1} for ψ such that βstart|{x1,...,xn} :=αstart, βstart|{y1,...,yK} := 0K , βend|{x1,...,xn} :=αend, and βend|{y1,...,yK} :=
0K , which completes the description of the reduction. Observe easily that the following completeness and
soundness hold:

• (Completeness) If optϕ

(
αstart ↭ αend

)
= 1, then optψ

(
βstart ↭ βend

)
= 1.

• (Soundness) If optϕ

(
αstart ↭ αend

)
< 1− ε , then optψ

(
βstart ↭ βend

)
< 1− ε

2k−3 .

Since GAP1,1−ε E3-SAT RECONFIGURATION is PSPACE-hard for some real ε > 0 [HO24b, KM23, Ohs23],
so is GAP1,1− ε

2k−3
Ek-SAT RECONFIGURATION. In particular, MAXMIN Ek-SAT RECONFIGURATION is

PSPACE-hard to approximate within a factor of 1−Ω
(1

2k

)
. To improve the inapproximability factor to

1−Ω
(1

k

)
, we need to exploit some property that is possessed by MAXMIN Ek-SAT RECONFIGURATION

but not by MAX Ek-SAT. We achieve this by using a “non-monotone” test described next.

2.2.2 The Power of Non-monotone Tests:
(
1−Ω

(1
1.913k

))
-factor Inapproximability

We introduce the “non-monotone” test to prove the PSPACE-hardness of 1−Ω
(1

1.913k

)
-factor approxi-

mation for MAXMIN Ek-SAT RECONFIGURATION (for every k divisible by 3). Let ϕ be a satisfiable E3-
CNF formula consisting of m clauses C1, . . . ,Cm over n variables x1, . . . ,xn and αstart,αend : {x1, . . . ,xn} →
{0,1} be a pair of its satisfying assignments. Let λ ⩾ 2 be an integer and k := 3λ . The Horn verifierVHorn,
given oracle access to an assignment α : {x1, . . . ,xn} → {0,1}, selects λ clauses of ϕ randomly, denoted
by Ci1 , . . . ,Ciλ , and accepts if the Horn-like condition Ci1 ∨Ci2 ∨ ·· · ∨Ciλ is satisfied by α , as described
below.

3λ -query Horn verifierVHorn for an E3-CNF formula ϕ

Input: an E3-CNF formula ϕ =C1 ∧·· ·∧Cm over n variables x1, . . . ,xn and an integer λ ⩾ 2.
Oracle access: an assignment α : {x1, . . . ,xn}→ {0,1}.

1: sample i1, . . . , iλ ∼ [m] uniformly at random.
2: if Ci1 ∨Ci2 ∨·· ·∨Ciλ is satisfied by α then ▷ (at most) 3λ locations of α are queried.
3: return 1.
4: else
5: return 0.

Intuitively, VHorn thinks of each clause of ϕ as a new variable and creates a kind of Horn clause on the fly.
If α violates exactly ε-fraction of the clauses of ϕ , then VHorn rejects with probability ε(1− ε)λ−1, which
is “non-monotone” in ε and attains the maximum at ε = 1

λ
(see also Figure 2). Let optVHorn

(αstart ↭ αend)
denote the maximum value among all possible reconfiguration sequences from αstart to αend, where the value

7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
fraction ε of violated clauses

0.00

0.02

0.04

0.06

0.08

V H
or

n’
s

re
je

ct
io

n
pr

ob
ab

ili
ty maximized at ε = 1

λ

Figure 2: The rejection probability ε(1−ε)λ−1 ofVHorn parameterized by the fraction ε of violated clauses
of an E3-CNF formula ϕ (when λ = 5). Obviously, ε(1 − ε)λ−1 is not monotone in ε and attains the
maximum at ε = 1

λ
. On the other hand, if an assignment violates most of the clauses of ϕ (i.e., ε ≈ 1), then

VHorn rejects it with only a tiny probability.

of a reconfiguration sequence #»
α is defined asVHorn’s minimum acceptance probability over all assignments

in #»
α . The Horn verifierVHorn has the following completeness and soundness:

• (Completeness) If optϕ

(
αstart ↭ αend

)
= 1, then optVHorn

(
αstart ↭ αend

)
= 1. This is immediate

from the acceptance condition ofVHorn.

• (Soundness) If optϕ

(
αstart ↭ αend

)
< 1−ε , then optVHorn

(
αstart ↭ αend

)
< 1−Ω

(
ε

λ

)
. To see why

this is true, let #»
α be any reconfiguration sequence from αstart to αend. By the soundness assumption,

in order to transform αstart into αend, we must violate more than ε-fraction of the clauses of ϕ at some
point. With this fact, we can show that #»

α must contain some assignment α◦ that violates ≈ ε

λ
-fraction

of the clauses of ϕ .5 Such an assignment α◦ would be rejected byVHorn with probability

Ω

(
ε

λ
·
(
1− ε

λ

)λ−1
)
= Ω

(
ε

λ

)
. (2.1)

See also Figure 3 for illustration.

Subsequently, we representVHorn by an Ek-CNF formula. For this purpose, it is sufficient to “emulate”
VHorn by an OR-predicate verifierX, which is allowed to generate a query sequence I and a partial assignment
α̃ ∈ {0,1}I , and accepts if the local view α|I is not equal to α̃ . The acceptance condition of X is equivalent
to the following OR predicate:

∨
i∈I(α(i) ̸= α̃(i)). Recall that VHorn rejects if the Horn-like condition Ci1 ∨

Ci2 ∨·· ·∨Ciλ is unsatisfied by α; namely, its negation is satisfied:

Ci1 ∧Ci2 ∧·· ·∧Ciλ . (2.2)

There are 7λ−1 possible (partial) assignments over {0,1}I that satisfy Eq. (2.2), where I is the set of vari-
ables appearing in Ci1 , . . . ,Ciλ .6 Since X can reject only a single local view at a time, it samples a partial
assignment α̃ ∈ {0,1}I satisfying Eq. (2.2) uniformly at random and rejects if α|I = α̃ , as described be-
low.

5In fact, we use [Ohs23, Theorem 3.1] to ensure that each variable of ϕ appears in a constant number of the clauses.
6In order for I to contain exactly 3λ variables, the selected λ clauses Ci1 , . . . ,Ciλ should not share common variables. Such an

undesirable event occurs with negligible probability.

8

α(1)α(2) · · · · · · · · · α(T−1)α(T)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

α◦ α◦

maximum rejection probability

ε
λ

frac. of clauses violated by α(t)

VHorn’s rejection probability

Figure 3: An example of the transition of the fraction of violated clauses and VHorn’s rejection probability
(when λ = 5). Let ϕ be a satisfiable E3-CNF formula, αstart and αend be a pair of its satisfying assignments,
and (α(1), . . . ,α(T)) be a reconfiguration sequence from αstart to αend. The dotted (red) line represents the
fraction of clauses of ϕ violated by α(t), and the solid (blue) line represents the probability thatVHorn rejects
α(t). If optϕ(αstart ↭ αend)< 1− ε , any reconfiguration sequence must contain some assignment α◦ that
violates ≈ ε

λ
-fraction of clauses of ϕ , which would be rejected byVHorn with probability Ω

(
ε

λ

)
.

3λ -query OR-predicate verifier X emulatingVHorn

Input: an E3-CNF formula ϕ =C1 ∧·· ·∧Cm over n variables x1, . . . ,xn and an integer λ ⩾ 2.
Oracle access: an assignment α : {x1, . . . ,xn}→ {0,1}.

1: sample i1, . . . , iλ ∼ [m] uniformly at random.
2: let I be the set of variables appearing in Ci1 , . . . ,Ciλ .
3: sample a partial assignment α̃ ∈ {0,1}I that satisfies Eq. (2.2) uniformly at random.
4: if α|I ̸= α̃ then
5: return 1.
6: else
7: return 0.

The OR-predicate verifier X has the following completeness and soundness:

• (Completeness) If optϕ

(
αstart ↭ αend

)
= 1, then optX

(
αstart ↭ αend

)
= 1. This is immediate from

the definition of X.

• (Soundness) If optϕ

(
αstart ↭ αend

)
< 1− ε , then optX

(
αstart ↭ αend

)
< 1−Ω

(
ε

1.913k

)
. To see

why this is true, let #»
α be a reconfiguration sequence from αstart to αend. By the soundness property

of VHorn, there must be some assignment α◦ in #»
α that is rejected by VHorn with probability Ω

(
ε

λ

)
.

Suppose thatVHorn rejects α◦ when examining the condition Ci1 ∨Ci2 ∨·· ·∨Ciλ . Conditioned on this
event, we findX to reject α◦ with probability 1

7λ−1 since there are 7λ−1 partial assignments that satisfy
Eq. (2.2). Therefore, the overall rejection probability of X is

P
[X rejects α

◦]= P
[VHorn rejects α

◦]︸ ︷︷ ︸
=Ω(ε

λ)

· 1
7λ−1 = Ω

(
ε

k ·7 1
3 k

)
=︸︷︷︸

7
1
3 <1.913

Ω

(
ε

1.913k

)
. (2.3)

9

Consequently, GAP1,1−ε E3-SAT RECONFIGURATION is reduced to GAP
1,1−Ω

(
ε

1.913k

) Ek-SAT RECON-

FIGURATION for any real ε > 0. In particular, MAXMIN Ek-SAT RECONFIGURATION is PSPACE-hard to
approximate within a factor of 1−Ω

(1
1.913k

)
, which is an exponential improvement over 1−Ω

(1
2k

)
.

2.2.3 Getting
(
1−Ω

(1
k

))
-factor Inapproximability

To further reduce the inapproximability factor to 1−Ω
(1

k

)
as claimed in Theorem 1.3, we need to get rid

of the 7λ−1-factor appearing in Eq. (2.3), which is the number of partial assignments that satisfy Eq. (2.2),
i.e., Ci1 ∧Ci2 ∧·· ·∧Ciλ . For this purpose, we shall replace each of Ci2 , . . . ,Ciλ by a DNF term in the form of
ℓ1 ∧ ℓ2 ∧ ℓ3 instead of a CNF clause in the form of ℓ1 ∨ ℓ2 ∨ ℓ3, so that the number of partial assignments is
reduced from 7λ−1 to O(1), implying that for any assignment α : {x1, . . . ,xn}→ {0,1},

P
[X rejects α

]
= Ω

(
P
[VHorn rejects α

])
. (2.4)

If this is the case, optϕ(αstart ↭ αend)< 1− ε implies optX(αstart ↭ αend)< 1−Ω
(

ε

k

)
. We achieve this

improvement by redesigning the Horn verifierVHorn so as to execute a PCRP system for GAP1,1−ε E3-SAT
RECONFIGURATION and a dummy verifier A, which accepts only a single prescribed string, say 1n, with
a carefully chosen probability. Specifically, we develop the following three verifiers (see Section 6 for the
details):

• The first verifier is the 3-query combined verifierW . Given oracle access to a pair of an assignment
α : {x1, . . . ,xn}→ {0,1} for ϕ and a proof σ ∈ {0,1}n,W performs the following: (1) with probabil-
ity Θ

(1
k

)
, it selects a clause Ci of ϕ randomly and accepts if Ci is satisfied by α , and (2) with probabil-

ity 1−Θ
(1

k

)
, it runs the dummy verifierA on σ . The two proofs are defined as Πstart :=αstart◦1n and

Πend := αend ◦1n. Observe easily that if optϕ(αstart ↭ αend) = 1, then optW(Πstart ↭ Πend) = 1,
and if optϕ(αstart ↭ αend)< 1− ε , then optW(Πstart ↭ Πend)< 1−Ω

(
ε

k

)
.

• The second verifier is the (modified) k-query Horn verifierVHorn, which independently runsW once
and runs A λ − 1 times. Then, VHorn accepts if W accepts or any of the λ − 1 runs of A rejects.
Similarly to the discussion in the previous section, we can show that if optϕ(αstart ↭ αend) = 1, then
optVHorn

(Πstart ↭ Πend) = 1, and if optϕ(αstart ↭ αend) < 1− ε , then optVHorn
(Πstart ↭ Πend) <

1−Ω
(

ε

k

)
. Note that the number of rejecting local views ofVHorn is O(1).

• The final verifier is the (modified) k-query OR-predicate verifier X, which is used to “emulate”VHorn
as in the previous section. Owing to the changes made toVHorn, there is a linear relation between the
rejection probabilities of X andVHorn similar to Eq. (2.4), implying that GAP1,1−ε E3-SAT RECON-
FIGURATION can be reduced to GAP1,1−Ω(ε

k)
Ek-SAT RECONFIGURATION for any real ε > 0.

2.2.4 Perspective and Open Problem

In this study, we found that a reconfiguration problem may have a worse approximation threshold than
its NP analogue. In the hardness proof, we developed the Horn verifier to exemplify the usefulness of its
“non-monotone” behavior. Here, we clarify what monotone and non-monotone verifiers are and why the
non-monotonicity can be useful in the reconfiguration regime. Suppose that there are two verifiers V and
W , which have oracle access to the same proof π ∈ {0,1}n. For example, V is a 3-query verifier for
MAXMIN E3-SAT RECONFIGURATION andW is the 3λ -query Horn verifier, as we saw in the previous

10

sections. Suppose also thatW’s rejection probability is bounded from below by the value of some function
f : [0,1]→ [0,1] evaluated atV’s rejection probability; namely,

∀π ∈ {0,1}n, P
[W rejects π

]
⩾ f
(
P
[V rejects π

])
. (2.5)

For example, f (ε) = ε(1− ε)λ−1 in the case of the 3λ -query Horn verifier. We say thatW is monotone if
f is monotonically increasing. In the PCP regime, the soundness property typically requires the following
condition:

∀π ∈ {0,1}n, P
[V rejects π

]
⩾ ε,

=⇒∀π ∈ {0,1}n, P
[W rejects π

]
⩾ f (ε).

(2.6)

Since we are concerned with bounding from below the minimum rejection probability of the verifier, W
should be monotone in general; i.e., the non-monotonicity is not helpful in showing the (better) sound-
ness.

By contrast, in the reconfiguration regime,W does not need to be monotone in deriving the soundness.
Suppose that every reconfiguration sequence #»

π from πstart to πend contains a proof π◦ that is rejected
by V with probability (approximately) ε . Then, regardless of whether W is monotone or not, for every
reconfiguration sequence #»

π from πstart to πend, the maximum rejection probability ofW over all proofs in
#»
π is (approximately) greater than f (ε); namely,

∀ #»
π = (πstart, . . . ,πend), ∃π

◦ ∈ #»
π , P

[V rejects π
◦]≈ ε,

=⇒∀ #»
π = (πstart, . . . ,πend), max

all π◦∈ #»
π

{
P
[W rejects π

◦]}⪆ f (ε).
(2.7)

As a result, there are more possible choices for the verifierW that can be used in the reduction.

We believe that the concept of non-monotone verifiers will find further applications in PSPACE-hardness
of approximation for reconfiguration problems other than MAXMIN Ek-SAT RECONFIGURATION. An im-
mediate open problem is to elucidate for which NP problem its reconfiguration analogue becomes “harder”
in terms of approximability. Specifically, for what class of Boolean relations does MAXMIN SATISFIABIL-
ITY RECONFIGURATION have a worse approximation threshold than MAX SATISFIABILITY?

3 Related Work

3.1 Reconfiguration Problems

In the field of combinatorial reconfiguration, we study algorithmic problems and structural properties
over the space of feasible solutions. In the unified framework due to Ito, Demaine, Harvey, Papadimitriou,
Sideri, Uehara, and Uno [IDHPSUU11], a reconfiguration problem is defined with respect to a combinato-
rial problem Π called the source problem and a transformation rule R over the feasible solutions of Π. For
an instance I of Π and a pair of its feasible solutions Sstart and Send, the reconfiguration problem asks if
Sstart can be transformed into Send by repeatedly applying the transformation rule R while always preserving
the feasibility of any intermediate solution. Speaking differently, the reconfiguration problem concerns the
st-connectivity over the configuration graph, which is an (undirected) graph GI,R where each node cor-
responds to a feasible solution of the given instance I and each link represents that its endpoints can be
transformed into each other by applying R. A pair of Sstart and Send is a YES instance of the reconfiguration

11

problem if and only if there is an (undirected) path from Sstart to Send on GI,R. Such a sequence of feasible
solutions that forms a path on the configuration graph is called a reconfiguration sequence. Reconfiguration
problems may date back to motion planning [HSS84] and classical puzzles, including 15 puzzles [JS79] and
Rubik’s Cube. Over the past two decades, reconfiguration problems have been defined from many source
problems. For example, reconfiguration problems of 3-SAT [GKMP09], 4-COLORING [BC09], INDEPEN-
DENT SET [HD05, HD09, KMM12], and SHORTEST PATH [Bon13] are PSPACE-complete, whereas those
of 2-SAT [GKMP09], 3-COLORING [CvdHJ11], MATCHING [IDHPSUU11], and SPANNING TREE [IDH-
PSUU11] belong to P. We refer the reader to the surveys by Bousquet, Mouawad, Nishimura, and Siebertz
[BMNS24], Mynhardt and Nasserasr [MN19], Nishimura [Nis18], and van den Heuvel [vdHeu13] as well
as the Combinatorial Reconfiguration wiki [Hoa24] for more algorithmic, hardness, and structural results of
reconfiguration problems.

3.2 Relatives of Ek-SAT RECONFIGURATION

Gopalan, Kolaitis, Maneva, and Papadimitriou [GKMP09] initiated a systematic study on the recon-
figuration problem of Boolean satisfiability. By extending Schaefer’s dichotomy theorem [Sch78], which
classifies the complexity of every SATISFIABILITY problem as P or NP-complete, [GKMP09, Theorem
2.9] proved the following dichotomy theorem for every SATISFIABILITY RECONFIGURATION problem: the
reconfiguration problem for Boolean formulas is in P if the formulas are built from tight relations and is
PSPACE-complete otherwise. Schaefer relations are tight but not vice versa, and thus, the NP-hardness of a
particular SATISFIABILITY problem does not necessarily imply the PSPACE-hardness of the corresponding
SATISFIABILITY RECONFIGURATION problem; e.g., 1-IN-3 SAT RECONFIGURATION is in P, even though
1-IN-3 SAT is NP-complete.7

Other than st-connectivity problems, there are several types of reconfiguration problems [Mou15, Nis18,
vdHeu13]. One is connectivity problems [GKMP09, MTY10, MTY11], which ask if the configuration graph
is connected; i.e., every pair of satisfying assignments are reachable from each other. There exists a tri-
chotomy result that determines whether the connectivity problem of SATISFIABILITY is P, coNP-complete,
or PSPACE-complete [GKMP09, MTY10, Sch12]. Other algorithmic and structural problems related to
Ek-SAT RECONFIGURATION include finding the shortest reconfiguration sequence [MNPR17] and investi-
gating the diameter of the configuration graph [GKMP09].

3.3 Approximability of Reconfiguration Problems

For a reconfiguration problem, its approximate version allows to use infeasible solutions, but requires
to optimize the “worst” feasibility throughout the reconfiguration sequence. In the language of configura-
tion graphs, we would like to relax the feasibility until a given pair of feasible solutions become connected.
Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno [IDHPSUU11, Theorems 4 and 5] showed
that several reconfiguration problems are NP-hard to approximate. Since most reconfiguration problems are
PSPACE-complete [Nis18], NP-hardness results are not optimal. The significance of showing PSPACE-
hardness compared to NP-hardness is that it disproves the existence of a witness (in particular, a reconfigu-
ration sequence) of polynomial length assuming that NP ̸= PSPACE, and it rules out any polynomial-time
algorithm under the weak assumption that P ̸=PSPACE. [IDHPSUU11] posed the PSPACE-hardness of ap-
proximation for reconfiguration problems as an open problem. Ohsaka [Ohs23] postulated a reconfiguration

7In the 1-IN-3 SAT problem, each clause of an input formula contains three literals, and it is deemed satisfied if exactly one of
the three literals is true.

12

analogue of the PCP theorem [ALMSS98, AS98], called the Reconfiguration Inapproximability Hypoth-
esis (RIH), and proved that assuming RIH, approximate versions of several reconfiguration problems are
PSPACE-hard to approximate, including those of 3-SAT, INDEPENDENT SET, VERTEX COVER, CLIQUE,
and SET COVER. Hirahara and Ohsaka [HO24b, Theorem 1.5] and Karthik C. S. and Manurangsi [KM23,
Theorem 1] independently gave a proof of RIH by establishing the Probabilistically Checkable Reconfigura-
tion Proof (PCRP) theorem, which provides a PCP-type characterization of PSPACE. The PCRP theorem,
along with a series of gap-preserving reductions [HO24a, HO24b, Ohs23, Ohs24a, Ohs24b], implies uncon-
ditional PSPACE-hardness of approximation results for the reconfiguration problems listed above, thereby
resolving the open problem of [IDHPSUU11] affirmatively.

Since the PCRP theorem itself only implies PSPACE-hardness of approximation within some constant
factor, explicit factors of inapproximability have begun to be investigated for reconfiguration problems. In
the NP regime, the parallel repetition theorem of Raz [Raz98] can be used to derive many strong inap-
proximability results, e.g., [BGS98, Fei98, Hås01, Hås99, Zuc07]. However, for a reconfiguration analogue
of two-prover games, a naive parallel repetition does not reduce its soundness error [Ohs25a]. Ohsaka
[Ohs24b] adapted Dinur’s gap amplification [Din07, Rad06, RS07] to show that MAXMIN 2-CSP RECON-
FIGURATION and MINMAX SET COVER RECONFIGURATION are PSPACE-hard to approximate within a
factor of 0.9942 and 1.0029, respectively. Karthik C. S. and Manurangsi [KM23, Theorems 3 and 4] proved
the NP-hardness of

(1
2 + ε

)
-factor approximation for MAXMIN 2-CSP RECONFIGURATION and of (2−ε)-

factor approximation for MINMAX SET COVER RECONFIGURATION for any real ε > 0. These results
are numerically tight because MAXMIN 2-CSP RECONFIGURATION admits a

(1
2 − ε

)
-factor approxima-

tion [KM23, Theorem 6] and MINMAX SET COVER RECONFIGURATION admits a 2-factor approximation
[IDHPSUU11, Theorem 6]. Hirahara and Ohsaka [HO24a] proved that MINMAX SET COVER RECONFIG-
URATION is PSPACE-hard to approximate within a factor of 2− o(1), improving upon [KM23, Ohs24b].
This is the first optimal PSPACE-hardness result for approximability of any reconfiguration problem. Hira-
hara and Ohsaka [HO25] showed that the approximation threshold of MAXMIN k-CUT RECONFIGURATION

lies in 1−Θ
(1

k

)
. Other reconfiguration problems for which approximation algorithms were developed in-

clude SUBSET SUM RECONFIGURATION [ID14] and SUBMODULAR RECONFIGURATION [OM22]. Table 2
summarizes existing approximation thresholds for reconfiguration problems and their source problems. Ex-
cept for MAXMIN Ek-SAT RECONFIGURATION, every reconfiguration problem is at least as “easy” as its
source problem in terms of approximability.

3.4 Approximability of MAX Ek-SAT

The MAX Ek-SAT problem seeks an assignment for an Ek-CNF formula that satisfies the maximum
number of clauses. Observe easily that a random assignment makes a

(
1− 1

2k

)
-fraction of clauses satisfied

in expectation. Håstad [Hås99, Theorems 6.5 and 6.14] proved that this is tight; namely, for every k ⩾ 3, it
is NP-hard to approximate MAX Ek-SAT within a factor of 1− 1

2k + ε for any real ε > 0. For the special
case of k = 2, the best known approximation ratio of MAX 2-SAT is βLLZ ≈ 0.940 due to Lewin, Livnat,
and Zwick [LLZ02]. Under the Unique Games Conjecture [Kho02], MAX 2-SAT cannot be approximated
in polynomial time within a factor of βLLZ + ε for any real ε > 0 [Aus07, BHZ24].

4 Preliminaries

Let N := {0,1,2,3, . . .} denote the set of all nonnegative integers. For a nonnegative integer n ∈ N, let
[n] := {1,2,3, . . . ,n}. The base of logarithms is 2. For a (finite) set S and a nonnegative integer k ∈ N, we

13

write
(S

k

)
for the family of all size-k subsets of S. We use the Iverson bracket J·K; i.e., for a statement P,

we define JPK as 1 if P is true and 0 otherwise. A sequence of a finite number of elements a(1), . . . ,a(T) is
denoted by #»a = (a(1), . . . ,a(T)), and we write a ∈ #»a to indicate that a appears in #»a (at least once). The
symbol ◦ stands for a concatenation of two sequences or functions. For a set S, we write X ∼ S to mean
that X is a random variable uniformly drawn from S. For a function f : D → R over a finite domain D and
its subset I ⊂ D, we use f |I : I → R to denote the restriction of f to I. We write 0n for 0 · · ·0︸ ︷︷ ︸

n times

and 1n for

1 · · ·1︸ ︷︷ ︸
n times

.

4.1 Definition of MAXMIN Ek-SAT RECONFIGURATION

We define Ek-SAT RECONFIGURATION and its approximate version. We use the standard terminol-
ogy and notation of Boolean satisfiability. A Boolean formula ϕ consists of Boolean variables, denoted
by x1, . . . ,xn, and the logical operators, denoted by AND (∧), OR (∨), and NOT (¬). An assignment for
Boolean formula ϕ is defined as a mapping α : {x1, . . . ,xn} → {0,1} that assigns a truth value of {0,1}
to each variable xi of ϕ . We say that α satisfies ϕ if ϕ evaluates to 1 when each variable xi is assigned
the truth value specified by α(xi). We say that ϕ is satisfiable if there exists an assignment α that sat-
isfies ϕ . A literal is either a variable xi or its negation xi, and a clause is a disjunction of literals. A
Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses. By abuse of nota-
tion, for an assignment α : {x1, . . . ,xn}→ {0,1}, we write α(xi) := α(xi) for a negative literal xi, and write
α(ℓ1, . . . , ℓk) := (α(ℓ1), . . . ,α(ℓk)) for k literals ℓ1, . . . , ℓk. The width of a clause is defined as the number
of literals in it. A k-CNF formula is a CNF formula of width at most k, and an Ek-CNF formula is a CNF
formula of which every clause has width exactly k.

For a CNF formula ϕ over n variables x1, . . . ,xn and a pair of its assignments αstart,αend : {x1, . . . ,xn}→
{0,1}, a reconfiguration sequence from αstart to αend is defined as a sequence #»

α = (α(1), . . . ,α(T)) over
assignments for ϕ such that α(1) = αstart, α(T) = αend, and every adjacent pair of assignments differ in at
most one variable (i.e., α(t)(xi) = α(t+1)(xi) for all but at most one variable xi). We sometimes call αstart and
αend the starting and ending assignments. In the Ek-SAT RECONFIGURATION problem [GKMP09], for a
satisfiable Ek-CNF formula ϕ and a pair of its satisfying assignments αstart and αend, we are asked to decide
if there exists a reconfiguration sequence from αstart to αend consisting only of satisfying assignments for
ϕ . Note that Ek-SAT RECONFIGURATION is PSPACE-complete for every k ⩾ 3 [GKMP09].

We formulate an approximate version of Ek-SAT RECONFIGURATION. Let ϕ be a CNF formula consist-
ing of m clauses C1, . . . ,Cm over n variables x1, . . . ,xn. The value of an assignment α : {x1, . . . ,xn}→ {0,1}
for ϕ , denoted by valϕ(α), is defined as the fraction of clauses of ϕ satisfied by α; namely,

valϕ(α) :=
1
m
·
∣∣{ j ∈ [m]

∣∣ α satisfies C j
}∣∣= P

j∼[m]

[
α satisfies C j

]
. (4.1)

The value of a reconfiguration sequence #»
α = (α(1), . . . ,α(T)) for ϕ , denoted by valϕ(

#»
α), is defined as the

minimum fraction of satisfied clauses of ϕ over all assignments in #»
α ; namely,

valϕ(
#»
α) := min

1⩽t⩽T
valϕ

(
α
(t)). (4.2)

The MAXMIN Ek-SAT RECONFIGURATION problem is defined as follows.

14

Problem 4.1. For a satisfiable Ek-CNF formula ϕ and a pair of its satisfying assignments αstart and αend,
MAXMIN Ek-SAT RECONFIGURATION requires to find a reconfiguration sequence #»

α from αstart to αend

such that valϕ(
#»
α) is maximized.

Let optϕ(αstart ↭ αend) denote the optimal value of MAXMIN Ek-SAT RECONFIGURATION, which is the
maximum of valϕ(

#»
α) over all possible reconfiguration sequences #»

α from αstart to αend; namely,

optϕ

(
αstart ↭ αend

)
:= max

#»
α =(αstart,...,αend)

valϕ(
#»
α). (4.3)

The gap version of MAXMIN Ek-SAT RECONFIGURATION is defined as follows.

Problem 4.2. For any integer k ∈ N and any reals c and s with 0 ⩽ s ⩽ c ⩽ 1, GAPc,s Ek-SAT RECONFIG-
URATION requires to determine for a satisfiable Ek-CNF formula ϕ and a pair of its satisfying assignments
αstart and αend, whether optϕ(αstart ↭ αend)⩾ c or optϕ(αstart ↭ αend)< s.

In particular, the case of s = c = 1 reduces to Ek-SAT RECONFIGURATION.

4.2 Probabilistically Checkable Reconfiguration Proofs

First, we formalize the notion of verifier.

Definition 4.3. A verifier with randomness complexity r : N → N and query complexity q : N → N is a
probabilistic polynomial-time algorithm V that given an input x ∈ {0,1}∗, draws r := r(|x|) random bits
R∈ {0,1}r and uses R to generate a sequence of q := q(|x|) queries I = (i1, . . . , iq) and a circuit D : {0,1}q →
{0,1}. We write (I,D) ∼V(x) to denote the random variable for a pair of the query sequence and circuit
generated by V on input x ∈ {0,1}∗ and r random bits. Given an input x ∈ {0,1}∗ and oracle access
to a proof π ∈ {0,1}∗, we define V’s (randomized) output as a random variable Vπ(x) := D(π|I) for
(I,D)∼V(x) over the randomness of R. We say thatV(x) accepts π or simplyVπ(x) accepts ifVπ(x)= 1,
and thatVπ(x) rejects ifVπ(x) = 0.

Then, we introduce the Probabilistically Checkable Reconfiguration Proof (PCRP) theorem due to Hi-
rahara and Ohsaka [HO24b] and Karthik C. S. and Manurangsi [KM23], which offers a PCP-type character-
ization of PSPACE. A PCRP system is defined as a triplet of a verifierV and polynomial-time computable
proofs πstart,πend : {0,1}∗ → {0,1}∗. For a pair of starting and ending proofs πstart,πend ∈ {0,1}ℓ, a re-
configuration sequence from πstart to πend is defined as a sequence (π(1), . . . ,π(T)) over {0,1}ℓ such that
π(1) = πstart, π(T) = πend, and π(t) and π(t+1) differ in at most one bit for every t ∈ [T −1].

Theorem 4.4 (Probabilistically Checkable Reconfiguration Proof theorem [HO24b, KM23]). A language
L⊆{0,1}∗ is in PSPACE if and only if there exists a verifierV with randomness complexity r(n) =O(logn)
and query complexity q(n) = O(1), coupled with polynomial-time computable proofs πstart,πend : {0,1}∗ →
{0,1}∗, such that the following hold for every input x ∈ {0,1}∗:

• (Completeness) If x∈L, then there exists a reconfiguration sequence #»
π =(π(1), . . . ,π(T)) from πstart(x)

to πend(x) such thatV(x) accepts every proof in #»
π with probability 1; namely,

∀t ∈ [T], P
[
Vπ(t)

(x) = 1
]
= 1. (4.4)

• (Soundness) If x /∈ L, then every reconfiguration sequence #»
π = (π(1), . . . ,π(T)) from πstart(x) to

15

πend(x) contains some proof that is rejected byV(x) with probability more than 1
2 ; namely,

∃t ∈ [T], P
[
V π(t)

(x) = 1
]
<

1
2
. (4.5)

For a verifierV and a reconfiguration sequence #»
π = (π(1), . . . ,π(T)), let valV(#»

π) denote the minimum
acceptance probability ofV over all proofs in #»

π ; namely,

valV(#»
π) := min

1⩽t⩽T
P
[V accepts π

(t)]. (4.6)

For a verifierV and a pair of proofs πstart,πend ∈ {0,1}∗, let optV(πstart ↭ πend) denote the maximum of
valV(#»

π) over all possible reconfiguration sequences #»
π from πstart to πend; namely,

optV
(
πstart ↭ πend

)
:= max

#»
π =(πstart,...,πend)

valV(#»
π). (4.7)

We say that a PCRP system (V,πstart,πend) for a language L ⊆ {0,1}∗ has completeness c : N → N and
soundness s : N→ N if the following hold for every input x ∈ {0,1}∗:

• If x ∈ L, then optV(x)
(
πstart(x)↭ πend(x)

)
⩾ c(|x|).

• If x /∈ L, then optV(x)
(
πstart(x)↭ πend(x)

)
< s(|x|).

Note that the PCRP system of Theorem 4.4 has perfect completeness c(n) = 1 and soundness s(n) =
1
2 .

For a verifier V with randomness complexity r : N → N and an input x ∈ {0,1}∗, the degree of a
proof location i is defined as the number of random bit strings R ∈ {0,1}r(|x|) on which V(x) queries i;
namely,∣∣{R ∈ {0,1}r(|x|) ∣∣ i ∈ IR

}∣∣= P
(I,D)∼V(x)

[
i ∈ I

]
·2r(|x|), (4.8)

where IR is the query sequence generated by V(x) over randomness R. We say that V has the degree
∆ : N→ N if for every input x ∈ {0,1}∗, each proof location has degree at most ∆(|x|).

5 Deterministic
(
1− 1

k−1 − 1
k

)
-factor Approximation Algorithm for MAXMIN

Ek-SAT RECONFIGURATION

In this section, we prove Theorem 1.2; i.e., we develop a deterministic
(
1− 1

k−1 − 1
k

)
-factor approxima-

tion algorithm for MAXMIN Ek-SAT RECONFIGURATION for every k ⩾ 3.

Theorem 5.1. For an integer k ⩾ 3, a satisfiable Ek-CNF formula ϕ , and a pair of its satisfying assignments
αstart and αend, there exists a polynomial-length reconfiguration sequence #»

α from αstart to αend such that

valϕ(
#»
α)⩾ 1− 1

k−1
− 1

k
. (5.1)

Moreover, such #»
α can be found by a deterministic polynomial-time algorithm. In particular, this is a deter-

ministic
(
1− 1

k−1 − 1
k

)
-factor approximation algorithm for MAXMIN Ek-SAT RECONFIGURATION.

16

Some definitions are further introduced. Let ϕ be a CNF formula consisting of m clauses C1, . . . ,Cm

over n variables x1, . . . ,xn. For a reconfiguration sequence #»
α over assignments for ϕ , we say that #»

α satisfies
a clause C j of ϕ if every assignment in #»

α satisfies C j. For two assignments α,β : {x1, . . . ,xn} → {0,1} for
ϕ , let α△β denote the set of variables at which α and β differ; namely,

α△β :=
{

xi
∣∣ α(xi) ̸= β (xi)

}
. (5.2)

For a pair of assignments αstart,αend : {x1, . . . ,xn} → {0,1} for ϕ , we say that a reconfiguration sequence
#»
α = (α(1), . . . ,α(T)) from αstart to αend is irredundant if no adjacent pair of assignments in #»

α are identical,
and for each variable xi, there is an index ti ∈ [T] such that

α
(t)(xi) =

{
αstart(xi) if t ⩽ ti,
αend(xi) if t > ti.

(5.3)

In other words, #»
α is obtained by flipping the assignments to variables of αstart△αend exactly once in some

order. For two assignments α1,α2 : {x1, . . . ,xn} → {0,1}, let A(α1 ↭ α2) denote the set of all irredun-
dant reconfiguration sequences from α1 to α2. For three assignments α1,α2,α3 : {x1, . . . ,xn} → {0,1}, let
A(α1 ↭ α2 ↭ α3) denote the set of reconfiguration sequences from α1 to α3 obtained by concatenating
all possible pairs of irredundant reconfiguration sequences of A(α1 ↭ α2) and A(α2 ↭ α3).

The proof of Theorem 5.1 relies on the following lemma, which states that a random reconfiguration
sequence that passes through a random assignment satisfies each clause with probability 1− 1

k−1 − 1
k .

Lemma 5.2. Let k ⩾ 3 be an integer, x1, . . . ,xk be k variables, C = ℓ1 ∨ ·· · ∨ ℓk be a clause of width k
over x1, . . . ,xk, and αstart,αend : {x1, . . . ,xk} → {0,1} be a pair of satisfying assignments for C. Consider
a uniformly random assignment A : {x1, . . . ,xk} → {0,1} and a random reconfiguration sequence #»

α from
αstart to αend uniformly chosen from A(αstart ↭ A ↭ αend). Then, #»

α satisfies C with probability at least
1− 1

k−1 − 1
k ; namely,

P
A, #»

α

[
#»
α satisfies C

]
⩾ 1− 1

k−1
− 1

k
. (5.4)

By using Lemma 5.2, we can prove Theorem 5.1.

Proof of Theorem 5.1. Let ϕ be a satisfiable Ek-CNF formula consisting of m clauses C1, . . . ,Cm over n
variables x1, . . . ,xk, and αstart,αend : {x1, . . . ,xk} → {0,1} be a pair of satisfying assignments for ϕ . Let
A : {x1, . . . ,xk} → {0,1} be a uniformly random assignment and #»

α be a random reconfiguration sequence
uniformly chosen from A(αstart ↭ A ↭ αend). By linearity of expectation and Lemma 5.2, we derive

E
A, #»

α

[
valϕ(

#»
α)
]
⩾

1
m
· ∑

1⩽ j⩽m
P

A, #»
α

[
#»
α satisfies C j

]
⩾ 1− 1

k−1
− 1

k
. (5.5)

By a standard application of the method of conditional expectations [AS16], we can construct a reconfigu-
ration sequence #»

α ∗ from αstart to αend such that

valϕ(
#»
α

∗)⩾ 1− 1
k−1

− 1
k

(5.6)

in deterministic polynomial time, which accomplishes the proof.

17

The remainder of this section is devoted to the proof of Lemma 5.2. Hereafter, we fix the set of k
variables, denoted by V := {x1, . . . ,xk}, and fix a clause of width k, denoted by C = ℓ1 ∨ ·· · ∨ ℓk. For the
sake of simplicity, we assume that each literal ℓi is either xi or xi. We first show that the probability of
interest—the left-hand side of Eq. (5.4)—is monotone with respect to αstart and αend.

Claim 5.3. Let αstart,αend,α
′
start,α

′
end : V → {0,1} be satisfying assignments for C. Suppose that for each

literal ℓi of C, αstart(ℓi) = 1 implies α ′
start(ℓi) = 1 and αend(ℓi) = 1 implies α ′

end(ℓi) = 1; namely, αstart(ℓi)⩽
α ′
start(ℓi) and αend(ℓi) ⩽ α ′

end(ℓi). For a uniformly random assignment A : V → {0,1} and four random
irredundant reconfiguration sequences # »

α1 ∼A(αstart ↭ A), # »
α2 ∼A(A ↭ αend),

»
α1

′ ∼A(α ′
start ↭ A),

and # »
α2

′ ∼A(A ↭ α ′
end), it holds that

P
A, #»

α1,
#»
α2

[
»
α1 ◦ # »

α2 satisfies C
]
⩽ P

A, #»
α1

′, #»
α2

′

[
»
α1

′ ◦ # »
α2

′ satisfies C
]
. (5.7)

Proof. It is sufficient to show Eq. (5.7) when (αstart,α
′
start) and (αend,α

′
end) differ in a single variable.

Without loss of generality, we can assume that αstart ̸= α ′
start and αend = α ′

end. By reordering the k literals,
we can assume that αstart(ℓ1) = 0, α ′

start(ℓ1) = 1, and αstart(ℓi) = α ′
start(ℓi) for every i ̸= 1. Conditioned on

the random assignment A, we have

P
#»
α1,

#»
α2

[
»
α1 ◦ # »

α2 satisfies C
∣∣ A
]

= P
#»
α1

[
»
α1 satisfies C

∣∣ A
]
· P

#»
α2

[
»
α2 satisfies C

∣∣ A
]
, (5.8)

P
#»
α1 ′,

#»
α2 ′

[
»
α1

′ ◦ # »
α2

′ satisfies C
∣∣ A
]
= P

#»
α1 ′

[
»
α1

′ satisfies C
∣∣ A
]
· P

#»
α2 ′

[
»
α2

′ satisfies C
∣∣ A
]
. (5.9)

Since # »
α2 and # »

α2
′ follow the same distribution as A(αend ↭ A) =A(α ′

end ↭ A), it holds that

P
#»
α2

[
»
α2 satisfies C

∣∣ A
]
= P

#»
α2 ′

[
»
α2

′ satisfies C
∣∣ A
]
. (5.10)

Consider the following case analysis on A(ℓ1):

(Case 1) A(ℓ1) = 0.
Fix any irredundant reconfiguration sequence # »

α1
′ from α ′

start to A. There exists a unique order-
ing σ ′ over α ′

start△A such that starting from α ′
start, we obtain # »

α1
′ by flipping the assignments to

σ ′(1),σ ′(2), . . . , in this order. Letting σ be an ordering over αstart△A obtained by removing x1 from
σ ′, we define

#»

β1 as an (irredundant) reconfiguration sequence from αstart to A obtained by flipping the
assignments to σ(1),σ(2), . . . , in this order. By construction, if

#»

β1 satisfies C, then # »
α1

′ also satisfies
C. Moreover, if # »

α1
′ is uniformly distributed over A(α ′

start ↭ A), then
#»

β1 is uniformly distributed
over A(αstart ↭ A). Therefore, we derive

P
#»
α1

[
»
α1 satisfies C

∣∣ A
]
= P

#»

β1

[#»

β1 satisfies C
∣∣ A
]
⩽ P

#»
α1 ′

[
»
α1

′ satisfies C
∣∣ A
]
. (5.11)

(Case 2) A(ℓ1) = 1.
Since any irredundant reconfiguration sequence # »

α1
′ from α ′

start to A does not flip x1’s assignment, we
have

P
#»
α1 ′

[
»
α1

′ satisfies C
∣∣ A
]
= 1 ⩾ P

#»
α1

[
»
α1 satisfies C

∣∣ A
]
. (5.12)

18

In either case, it holds that

P
#»
α1

[
»
α1 satisfies C

∣∣ A
]
⩽ P

#»
α1 ′

[
»
α1

′ satisfies C
∣∣ A
]
. (5.13)

Consequently, we obtain

P
#»
α1,

#»
α2

[
»
α1 ◦ # »

α2 satisfies C
∣∣ A
]
⩽ P

#»
α1 ′,

#»
α2 ′

[
»
α1

′ ◦ # »
α2

′ satisfies C
∣∣ A
]
, (5.14)

which implies Eq. (5.7), as desired.

By Claim 5.3, it is sufficient to prove Eq. (5.4) only when both αstart and αend make a single literal of
C true. Thus, we shall bound the left-hand side of Eq. (5.4) in each case of αstart ̸= αend and αstart = αend.
Without loss of generality, we can safely assume that the clause C is positive; i.e., C = x1 ∨ ·· · ∨ xk. Here-
after, let A : V → {0,1} be a uniformly random assignment, and let # »

α1 and # »
α2 be two random irredundant

reconfiguration sequences uniformly chosen from A(αstart ↭ A) and A(A ↭ αend), respectively. We
will show the following two claims.

Claim 5.4. Suppose that αstart and αend make a single literal of C true and αstart ̸= αend. Then, it holds that

P
A, #»

α1,
#»
α2

[
»
α1 ◦ # »

α2 satisfies C
]
= ∑

0⩽ j⩽K

1
4
·
(K

j

)
2K ·

[(
j

j+1

)2

+
j+1
j+2

+
j+1
j+2

+1

]

⩾ 1− 1
k−1

− 1
k
,

(5.15)

where K := k−2.

Claim 5.5. Suppose that αstart and αend make a single literal of C true and αstart = αend. Then, it holds that

P
A, #»

α1,
#»
α2

[
»
α1 ◦ # »

α2 satisfies C
]
= ∑

0⩽ j⩽K

1
2
·
(K

j

)
2K ·

[(
j

j+1

)2

+1

]

⩾ 1− 2
k
,

(5.16)

where K := k−1.

Lemma 5.2 follows from Claims 5.3 to 5.5.

Remark 5.6. By numerically evaluating Eqs. (5.15) and (5.16), we obtain approximation factors better than
1− 1

k−1 − 1
k for small k, as shown by Table 1 in Section 1.1.

In the proof of Claims 5.4 and 5.5, we use the following equality for the sum of binomial coefficients,
whose proof is deferred to Appendix B.

Fact 5.7 (∗). For any integers k and n with 0 ⩽ k ⩽ n, it holds that

∑
0⩽k⩽n

(
n
k

)
1

k+1
=

2n+1 −1
n+1

, (5.17)

∑
0⩽k⩽n

(
n
k

)
1

k+2
=

2n+1 ·n+1
(n+1)(n+2)

. (5.18)

19

Proof of Claim 5.4. By reordering the k variables, we can assume that

αstart(xi) =

{
1 if i = k,
0 otherwise,

(5.19)

αend(xi) =

{
1 if i = k−1,
0 otherwise.

(5.20)

Define K := k− 2 and V⩽K := {x1, . . . ,xK}. Note that αstart|V⩽K = αend|V⩽K = 0K . Consider the following
case analysis on A(xk−1) and A(xk):

(Case 1) A(xk−1) = 0 and A(xk) = 0.

Condition on the number of 1’s in A|V⩽K , denoted by j, which occurs with probability
(K

j)
2K . Observe

that # »
α1 satisfies C if and only if it does not flip xk’s assignment at first, which happens with probability

1− 1
j+1 = j

j+1 . Similarly, # »
α2 satisfies C with probability j

j+1 . Therefore, # »
α1 ◦ # »

α2 satisfies C with

probability
(

j
j+1

)2
.

(Case 2) A(xk−1) = 1 and A(xk) = 0.
Condition on the number of 1’s in A|V⩽K , denoted by j. Then, # »

α1 satisfies C if and only if it does not flip
xk’s assignment at first, which occurs with probability 1− 1

j+2 =
j+1
j+2 . Since αend(xk−1)=A(xk−1)= 1,

»
α2 satisfies C with probability 1. Therefore, # »

α1 ◦ # »
α2 satisfies C with probability j+1

j+2 .

(Case 3) A(xk−1) = 0 and A(xk) = 1.
Similarly to (Case 2), # »

α1 ◦ # »
α2 satisfies C with probability j+1

j+2 , where j is the number of 1’s in A|V⩽K .

(Case 4) A(xk−1) = 1 and A(xk) = 1.
Since αstart(xk) = A(xk) = 1 and A(xk−1) = αend(xk−1) = 1, we find any irredundant reconfiguration
sequence of A(αstart ↭ A) and A(A ↭ αend) to satisfy C. Therefore, # »

α1 ◦ # »
α2 satisfies C with

probability 1.

Since each of the above four cases occurs with probability 1
4 , we derive

P
A, #»

α1,
#»
α2

[
»
α1 ◦ # »

α2 satisfies C
]
= ∑

0⩽ j⩽K

1
4
·
(K

j

)
2K ·

[(
j

j+1

)2

+
j+1
j+2

+
j+1
j+2

+1

]

= 2−K · ∑
0⩽ j⩽K

(
K
j

)
· 1

4
·
[

4− 2
j+1

− 2
j+2

+
1

(j+1)2

]
⩾ 2−K · ∑

0⩽ j⩽K

(
K
j

)
·
[

1− 1
2
· 1

j+1
− 1

2
· 1

j+2

]
=︸︷︷︸

Fact 5.7

2−K ·
[

2K − 1
2
· 2K+1 −1

K +1
− 1

2
· 2K+1 ·K +1
(K +1) · (K +2)

]

⩾ 2−K ·
[

2K − 2K

K +1
− 2K

K +2

]
=︸︷︷︸

K=k−2

1− 1
k−1

− 1
k
,

(5.21)

20

which completes the proof.

Proof of Claim 5.5. By reordering the k variables, we can assume that

αstart(xi) = αend(xi) =

{
1 if i = k,
0 otherwise.

(5.22)

Define K := k− 1 and V⩽K := {x1, . . . ,xK}. Note that αstart|V⩽K = αend|V⩽K = 0K . Consider the following
case analysis on A(xk):

(Case 1) A(xk) = 0.

Condition on the number of 1’s in A|V⩽K , denoted by j, which occurs with probability
(K

j)
2K . Observe

that # »
α1 satisfies C if and only if it does not flip xk’s assignment at first, which happens with probability

1− 1
j+1 = j

j+1 . Similarly, # »
α2 satisfies C with probability j

j+1 . Therefore, # »
α1 ◦ # »

α2 satisfies C with

probability
(

j
j+1

)2
.

(Case 2) A(xk) = 1.
Since αstart(xk) = A(xk) = 1 and A(xk) = αend(xk) = 1, we find any irredundant reconfiguration of
A(αstart ↭ A) and A(A ↭ αend) to satisfy C. Therefore, # »

α1 ◦ # »
α2 satisfies C with probability 1.

Since each of the above two cases occurs with probability 1
2 , we derive

P
A, #»

α1,
#»
α2

[
»
α1 ◦ # »

α2 satisfies C
]
= ∑

0⩽ j⩽K

1
2
·
(K

j

)
2K ·

[(
j

j+1

)2

+1

]

= 2−K · ∑
0⩽ j⩽K

(
K
j

)
· 1

2
·
[

2−2 · 1
j+1

+
1

(j+1)2

]
⩾ 2−K · ∑

0⩽ j⩽K

(
K
j

)
·
[

1− 1
j+1

]
=︸︷︷︸

Fact 5.7

2−K ·
[

2K − 2K+1 −1
K +1

]

⩾ 2−K ·
[

2K − 2K+1

K +1

]
=︸︷︷︸

K=k−1

1− 2
k
,

(5.23)

which completes the proof.

6 PSPACE-hardness of
(
1− 3−ε

28k

)
-factor Approximation of MAXMIN Ek-SAT

RECONFIGURATION for Large k

In this section, we prove Theorem 1.3; i.e., MAXMIN Ek-SAT RECONFIGURATION is PSPACE-hard to
approximate within a factor of 1− 3−ε

28k for every sufficiently large k.

21

Theorem 6.1. For any real ε > 0, there exists an integer k0(ε) ∈ N such that for any integer k ⩾ k0(ε),
GAP1,1− 3−ε

28k
Ek-SAT RECONFIGURATION is PSPACE-hard. In particular, MAXMIN Ek-SAT RECONFIG-

URATION is PSPACE-hard to approximate within a factor of 1− 3−ε

28k for every integer k ⩾ k0(ε).

An an immediate corollary of Theorem 6.1, we obtain the PSPACE-hardness of
(
1−Ω

(1
k

))
-factor

approximation for every k ⩾ 3, which is proved in Appendix B for the sake of completeness.

Corollary 6.2 (∗). There exists a universal constant δ0 > 0 such that for any integer k ⩾ 3, GAP
1,1− δ0

k
Ek-SAT RECONFIGURATION is PSPACE-hard. In particular, MAXMIN Ek-SAT RECONFIGURATION is
PSPACE-hard to approximate within a factor of 1− δ0

k for every integer k ⩾ 3.

6.1 Outline of the Proof of Theorem 6.1

We present an outline of the proof of Theorem 6.1. Starting from a PCRP system for PSPACE whose
query complexity is q, we reduce it to MAXMIN Ek-SAT RECONFIGURATION for any sufficiently large
integer k ⩾ q ·λ0, where λ0 depends only on the parameters of the PCRP system, with the following proper-
ties.

Lemma 6.3. Suppose that there exists a PCRP system (VL,πstart,πend) for a PSPACE-complete language
L ⊆ {0,1}∗, where VL is a verifier with randomness complexity r(n) = Θ(logn), query complexity q(n) =
q⩾ 3, perfect completeness c(n)= 1, soundness s(n)= s∈ (0,1), and degree ∆(n)=∆∈N, and πstart,πend :
{0,1}∗ →{0,1}∗ are polynomial-time computable proofs. Then, for any real ε ∈ (0,1), there exists an inte-
ger λ0(ε,s,q) ∈ N such that for any integer k ⩾ q ·λ0(ε,s,q), there exists a polynomial-time reduction that
takes an input x ∈ {0,1}∗ for L and returns an instance (ϕ,αstart,αend) of MAXMIN Ek-SAT RECONFIG-
URATION such that the following hold:

• (Completeness) If x ∈ L, then optϕ

(
αstart ↭ αend

)
= 1.

• (Soundness) If x /∈ L, then optϕ

(
αstart ↭ αend

)
< 1−ζ , where

ζ :=
1

(2q −1) · k ·
(q

4
− ε

)
. (6.1)

In particular, GAP1,1−ζ Ek-SAT RECONFIGURATION is PSPACE-hard.

By using Lemma 6.3, we can prove Theorem 6.1.

Proof of Theorem 6.1. By the PCRP theorem [HO24b, KM23] and gap-preserving reductions of [Ohs23,
Theorem 3.1], GAP1,s E3-SAT RECONFIGURATION is PSPACE-complete for some real s ∈ (0,1) even
when each variable appears in at most ∆ clauses for some integer ∆ ∈N. Let q := 3, and (V,πstart,πend) be a
PCRP system corresponding to GAP1,s E3-SAT RECONFIGURATION, whereV has randomness complexity
r(n) = Θ(logn), query complexity q(n) = q, perfect completeness c(n) = 1, soundness s(n) = s, and degree
∆(n) = ∆. For any real ε > 0, let

ε :=
ε

100
, (6.2)

k0(ε) := q ·λ0(ε,s,q), (6.3)

22

where λ0(ε,s,q) is as defined in Lemma 6.3. For any integer k ⩾ k0(ε), we apply Lemma 6.3 to V and
deduce that GAP1,1−ζ Ek-SAT RECONFIGURATION is PSPACE-hard, where ζ is calculated as

ζ :=
1

(2q −1) · k ·
(q

4
− ε

)
=︸︷︷︸

q=3

1
7 · k ·

(
3
4
− ε

)
. ⩾︸︷︷︸

ε= ε

100

3− ε

28 · k (6.4)

which accomplishes the proof.

The remainder of this section is devoted to the proof of Lemma 6.3.

6.2 Proof of Lemma 6.3

Let (VL,πstart,πend) be a PCRP system for a PSPACE-complete language L ⊆ {0,1}∗, where VL is a
verifier with randomness complexity r(n) = Θ(logn), query complexity q(n) = q ⩾ 3, perfect completeness
c(n) = 1, soundness s(n) = s ∈ (0,1), and degree ∆(n) = ∆ ∈ N, and πstart,πend : {0,1}∗ → {0,1}∗ are
polynomial-time computable proofs. We can safely assume that any possible query sequence generated by
VL contains exactly q locations. Let g := 1− s ∈ (0,1) and µ := q

2 . For any real ε ∈ (0,1), we define δ := ε

4
and

λ0(ε,s,q) :=
⌈

µ · (µ +δ)

δ
· 1

g ·q

⌉
, (6.5)

which depends only on ε , s, and q.8 For any integer k ⩾ q ·λ0(ε,s,q), we define λ :=
⌊

k
q

⌋
. By definition,

qλ ⩽ k ⩽ qλ +q−1. Let x ∈ {0,1}n be an input for L. The proof length forVL(x) is denoted by ℓ(n), which
is polynomially bounded in n. Let πstart := πstart(x) and πend := πend(x) be the starting and ending proofs in
{0,1}ℓ(n) associated withVL(x), respectively. Note thatVL(x) accepts both πstart and πend with probability
1. Moreover, the following hold:

• (Completeness) If x ∈ L, then optVL(x)
(
πstart ↭ πend

)
= 1.

• (Soundness) If x /∈ L, then optVL(x)
(
πstart ↭ πend

)
< 1−g.

Hereafter, we will assume without loss of generality that the input length n is sufficiently large so that9

∆

2r(n)
+

q
ℓ(n)

⩽
δ

k
,

q · (λ +1)2 ·
(

∆

2r(n)
+

q
ℓ(n)

)
⩽

δ

k
·
(

1− µ +δ

q

)
.

(6.6)

In the subsequent sections, we introduce several verifiers using VL and analyze their completeness and
soundness.

8The choice of λ0(ε,s,q) will be crucial in the proof of Lemma 6.6.
9Such an integer n always exists since the left-hand sides of Eq. (6.6) decrease as n increases, while the right-hand sides are

constants.

23

6.2.1 All-One Verifier

The first verifier is the all-one verifier Ap. Given an integer p ∈ N and oracle access to a proof σ ∈
{0,1}ℓ(n), Ap samples a query sequence I of p distinct locations from [ℓ(n)] and accepts if σ(i) = 1 for
every location i ∈ I (i.e., σ |I = 1p), as described below.

p-query all-one verifier Ap

Input: an integer p ∈ N.
Oracle access: a proof σ ∈ {0,1}ℓ(n).

1: sample a query sequence I from
(
[ℓ(n)]

p

)
.

2: if σ(i) = 1 for every i ∈ I then
3: return 1.
4: else
5: return 0.

Observe thatAp has the randomness complexity at most p · logℓ(n) = Θ(logn), andAp always generates a
fixed circuit D : {0,1}p →{0,1} that accepts only 1p (i.e., D(f) := J f = 1pK). Note also thatAp’s rejection
probability is monotonically increasing in p; namely,

P
[Ap+1 rejects σ

]
⩾ P

[Ap rejects σ
]
. (6.7)

6.2.2 Combined Verifier

The second verifier is the q-query combined verifierW . Given oracle access to a pair of proofs, denoted
by Π := π ◦σ ∈ {0,1}2ℓ(n), W calls VL(x) on π with probability µ

g·k and calls Aq on σ with probability
1− µ

g·k , as described below.

q-query combined verifierW
Input: the PCRP verifierVL, the all-one verifier Ap, and an input x ∈ {0,1}n.
Oracle access: a proof Π = π ◦σ ∈ {0,1}2ℓ(n).

1: uniformly sample a real r ∼ (0,1).
2: if r < µ

g·k then ▷ with probability µ

g·k
3: runVL(x) on π .
4: returnVL(x)’s return value.
5: else ▷ with probability 1− µ

g·k
6: run Aq on σ .
7: return Aq’s return value.

Since µ

g·k ∈ (0,1) due to Eq. (6.5), the probabilistic behavior ofW is well defined. Observe that the ran-
domness complexity ofW is bounded by those ofVL andAq; i.e., Θ(logn). The starting and ending proofs
Πstart,Πend ∈ {0,1}2ℓ(n) are defined as Πstart := πstart ◦ 1ℓ(n) and Πend := πend ◦ 1ℓ(n), respectively. Since
VL accepts πstart and πend with probability 1 and Aq accepts 1ℓ(n) with probability 1,W accepts Πstart and
Πend with probability 1. We show the following completeness and soundness.

Lemma 6.4. The following hold:

24

• (Completeness) If optVL(x)
(
πstart ↭ πend

)
= 1, then optW

(
Πstart ↭ Πend

)
= 1.

• (Soundness) If optVL(x)
(
πstart ↭ πend

)
< 1−g, then optW

(
Πstart ↭ Πend

)
< 1− µ

k . Moreover, for
any reconfiguration sequence

#»
Π = (Π(1), . . . ,Π(T)) from Πstart to Πend, there exists a proof Π(t) in

#»
Π

such that

1− µ

k
⩽ P

[W accepts Π
(t)]⩽ 1− µ −δ

k
. (6.8)

To prove Lemma 6.4, we use the following claim.

Claim 6.5. Each proof location σ(i) is queried by Ap with probability p
ℓ(n) . Each proof location Π(i) is

queried byW with probability at most

∆

2r(n)
+

q
ℓ(n)

. (6.9)

Proof. The former statement holds by the definition ofAp. Since π(i) is queried byW only ifVL is called,
we have

P
[W queries π(i)

]
⩽

1
g · k · ∆

2r(n)
⩽

∆

2r(n)
. (6.10)

Since σ(i) is queried byW only if Aq is called, we have

P
[W queries σ(i)

]
⩽

(
1− 1

g · k

)
· q
ℓ(n)

⩽
q

ℓ(n)
. (6.11)

Consequently, any location of Π is queried byW with probability at most

max
{

∆

2r(n)
,

q
ℓ(n)

}
⩽

∆

2r(n)
+

q
ℓ(n)

, (6.12)

as desired.

Proof of Lemma 6.4. We first show the completeness. Suppose that optVL(x)(πstart ↭ πend) = 1. Let #»
π =

(π(1), . . . ,π(T)) be a reconfiguration sequence from πstart to πend such that valVL(x)(
#»
π) = 1. Constructing

a reconfiguration sequence
#»
Π = (Π(1), . . . ,Π(T)) from Πstart to Πend such that Π(t) := π(t) ◦ 1ℓ(n) for every

t ∈ [T], we findW to accept every proof Π(t) with probability 1, implying that optW(Πstart ↭ Πend) = 1,
as desired.

We next show the soundness. Suppose that optVL(x)(πstart ↭ πend) < 1−g. Let
#»
Π = (π(1) ◦σ (1), . . . ,

π(T) ◦σ (T)) be any reconfiguration sequence from Πstart to Πend such that valW(
#»
Π) = optW(Πstart ↭

Πend). Since #»
π = (π(1), . . . ,π(T)) is a reconfiguration sequence from πstart to πend, we have valVL(x)(

#»
π)<

1− g by assumption; in particular, there exists a proof π(t) in #»
π such that P[VL(x) rejects π(t)] > g. Since

W callsVL(x) with probability µ

g·k , we have P[W rejects Π(t)]> µ

k , implying that optW(Πstart ↭Πend)<

1− µ

k , as desired.

We finally show the “moreover” part. Let
#»
Π be any reconfiguration sequence from Πstart to Πend.

By the soundness shown above,
#»
Π contains an adjacent pair of proofs, denoted by Π◦ and Π′, such that

25

valW(Π◦)⩾ 1− µ

k and valW(Π′)< 1− µ

k . Since Π◦ and Π′ differ in a single location, which is queried by
W with probability at most ∆

2r(n) +
q

ℓ(n) due to Claim 6.5, we have∣∣valW(Π◦)−valW(Π′)
∣∣⩽ ∆

2r(n)
+

q
ℓ(n)

, (6.13)

Consequently, we derive

valW(Π◦)⩽ valW(Π′)+
∆

2r(n)
+

q
ℓ(n)

⩽ 1− µ

k
+

∆

2r(n)
+

q
ℓ(n)

⩽︸︷︷︸
Eq. (6.6)

1− µ −δ

k
(6.14)

=⇒ 1− µ

k
⩽ P

[W accepts Π
◦]⩽ 1− µ −δ

k
, (6.15)

which completes the proof.

6.2.3 Horn Verifier

Consider now the k-query Horn verifier VHorn described below. Given oracle access to a proof Π ∈
{0,1}2ℓ(n),VHorn generates (I1,D1) fromW , (I2,D2), . . . ,(Iλ ,Dλ) fromAq, and (Iλ+1,Dλ+1) fromAk−qλ ,
and accepts if I1, . . . , Iλ+1 are not pairwise disjoint or the following Horn-like condition holds:(

D1(Π|I1) = 1
)
∨
(
D2(Π|I2) = 0

)
∨·· ·∨

(
Dλ+1(Π|Iλ+1) = 0

)
. (6.16)

k-query Horn verifierVHorn

Input: the all-one verifier Ap, the combined verifierW , and an input x ∈ {0,1}n.
Oracle access: a proof Π = π ◦σ ∈ {0,1}2ℓ(n).

1: sample a random bit string R1 ∼ {0,1}Θ(logn) used byW uniformly at random.
2: runW on R1 to generate a query sequence I1 and a circuit D1 : {0,1}q →{0,1}.
3: for each 2 ⩽ i ⩽ λ +1 do
4: if 2 ⩽ i ⩽ λ then
5: sample a random bit string Ri ∼ {0,1}Θ(logn) used by Aq uniformly at random.
6: run Aq on Ri to generate a query sequence I′i and a circuit Di : {0,1}q →{0,1}.
7: else
8: sample a random bit string Ri ∼ {0,1}Θ(logn) used by Ak−qλ uniformly at random.
9: run Ak−qλ on Ri to generate a query sequence I′i and a circuit Di : {0,1}k−qλ →{0,1}.

10: let Ii be a query sequence obtained by shifting I′i by ℓ(n) locations so that Π|Ii = σ |I′i .
11: ▷ this step is required since I′i ⊆ [ℓ(n)] while Π|[ℓ(n)] = π . ◁
12: if I1, . . . , Iλ+1 are not pairwise disjoint then
13: return 1.
14: else if (D1(Π|I1) = 1)∨ (D2(Π|I2) = 0)∨·· ·∨ (Dλ+1(Π|Iλ+1) = 0) then
15: return 1.
16: else
17: return 0.

The randomness complexity of VHorn is at most (λ + 1) ·Θ(logn) = Θ(logn), and VHorn queries exactly k
locations of Π whenever I1, . . . , Iλ+1 are pairwise disjoint because |I1|= · · ·= |Iλ |= q and |Iλ+1|= k−qλ .
We show the following completeness and soundness.

26

Lemma 6.6. The following hold:

• (Completeness) If optVL(x)
(
πstart ↭ πend

)
= 1, then optVHorn

(
Πstart ↭ Πend

)
= 1.

• (Soundness) If optVL(x)
(
πstart ↭ πend

)
< 1−g, then optVHorn

(
Πstart ↭ Πend

)
< 1− 1

k ·
(q

4 − ε
)
.

Proof. We first show the completeness. Suppose that optVL(x)(πstart ↭ πend) = 1. By Lemma 6.4, we have
optW(Πstart ↭ Πend) = 1. By the definition of VHorn, for any reconfiguration sequence

#»
Π from Πstart to

Πend, it holds that valVHorn(
#»
Π)⩾ valW(

#»
Π), which implies optVHorn

(Πstart ↭ Πend) = 1, as desired.

We next show the soundness. Suppose that optVL(x)(πstart ↭ πend) < 1− g. Let
#»
Π be any reconfigu-

ration sequence from Πstart to Πend such that valVHorn(
#»
Π) = optVHorn

(Πstart ↭ Πend). By Lemma 6.4,
#»
Π

contains a proof Π◦ = π◦ ◦σ◦ such that

1− µ

k
⩽ P

[W accepts Π
◦]⩽ 1− µ −δ

k
. (6.17)

We shall estimate VHorn’s rejection probability on Π◦. Since R1, . . . ,Rλ+1 are mutually independent, we
derive the probability that Eq. (6.16) does not hold as follows:

P
R1,...,Rλ+1

[(
D1(Π

◦|I1) = 1
)
∨
(
D2(Π

◦|I2) = 0
)
∨·· ·∨

(
Dλ+1(Π

◦|Iλ+1) = 0
)

is not true
]

= P
R1,...,Rλ+1

[(
D1(Π

◦|I1) = 0
)
∧
(
D2(Π

◦|I2) = 1
)
∧·· ·∧

(
Dλ+1(Π

◦|Iλ+1) = 1
)]

= P
R1

[
D1(Π

◦|I1) = 0
]
·
(

1− P
R2,...,Rλ+1

[(
D2(Π

◦|I2) = 0
)
∨·· ·∨

(
Dλ+1(Π

◦|Iλ+1) = 0
)])

⩾ P
R1

[
D1(Π

◦|I1) = 0
]
·
(

1− ∑
2⩽i⩽λ+1

P
Ri

[
Di(Π

◦|Ii) = 0
])

⩾ P
[W rejects Π

◦] ·(1−λ ·P
[Aq rejects σ

◦]),

(6.18)

where the last inequality used the fact that

P
Rλ+1

[
Dλ+1(Π

◦|Iλ+1) = 0
]
= P

[Ak−qλ rejects σ
◦] ⩽︸︷︷︸

k−qλ⩽q

P
[Aq rejects σ

◦]. (6.19)

In the last line of Eq. (6.18),W’s rejection probability is bounded from below by Eq. (6.17), whereas
Aq’s rejection probability is bounded from above by the following claim.

Claim 6.7. It holds that

P
[Aq rejects σ

◦]⩽ µ

k− µ

g
. (6.20)

27

Proof. Suppose that P[Aq rejects σ◦]> µ

k− µ

g
for contradiction. Then, we have

P
[W accepts Π

◦]= µ

g · k ·P
[VL(x) accepts π

◦]+(1− µ

g · k

)
·P
[Aq accepts σ

◦]
<

µ

g · k ·1+
(

1− µ

g · k

)
·
(

1− µ

k− µ

g

)

= 1−
(

1− µ

g · k

)
· µ

k− µ

g

= 1− µ

k
.

(6.21)

On the other hand, P[W accepts Π◦]⩾ 1− µ

k by Eq. (6.17), which is a contradiction.

By the definition of λ0(ε,s,q) in Eq. (6.5), we have

k ⩾ q ·λ0(ε,s,q) ⩾︸︷︷︸
Eq. (6.5)

µ · (µ +δ)

δ
· 1

g
(6.22)

=⇒ µ

k− µ

g
⩽

µ +δ

k
. (6.23)

Combining Eqs. (6.17), (6.18) and (6.23) and Claim 6.7, we obtain

P
R1,...,Rλ+1

[(
D1(Π

◦|I1) = 1
)
∨
(
D2(Π

◦|I2) = 0
)
∨·· ·∨

(
Dλ+1(Π

◦|Iλ+1) = 0
)]

= 1− P
R1,...,Rλ+1

[(
D1(Π

◦|I1) = 1
)
∨
(
D2(Π

◦|I2) = 0
)
∨·· ·∨

(
Dλ+1(Π

◦|Iλ+1) = 0
)

is not true
]

⩽ 1−P
[W rejects Π

◦]︸ ︷︷ ︸
⩾ µ−δ

k

·
(

1−λ ·P
[Aq rejects σ

◦]︸ ︷︷ ︸
⩽ µ

k− µ
g

)

⩽ 1− µ −δ

k
·
(

1−λ · µ

k− µ

g︸ ︷︷ ︸
⩽ µ+δ

k

)

⩽︸︷︷︸
k⩾qλ

1− µ −δ

k
·
(

1− µ +δ

q

)
.

(6.24)

28

Observe also that I1, . . . , Iλ+1 are not pairwise disjoint with probability

P
R1,...,Rλ+1

[
I1, . . . , Iλ+1 are not pairwise disjoint

]
⩽ ∑

i ̸= j
P

Ri,R j

[
Ii and I j are not disjoint

]
⩽ ∑

i ̸= j
q ·
(

∆

2r(n)
+

q
ℓ(n)

)
⩽ q · (λ +1)2 ·

(
∆

2r(n)
+

q
ℓ(n)

)
⩽︸︷︷︸

Eq. (6.6)

δ

k
·
(

1− µ +δ

q

)
,

(6.25)

where the second inequality holds because each proof location is queried by W , Aq, and Ak−qλ with
probability at most ∆

2r(n) +
q

ℓ(n) owing to Claim 6.5.

Consequently, we evaluateVHorn’s rejection probability on Π◦ as follows:

P
[VHorn rejects Π

◦]
⩾ 1− P

R1,...,Rλ+1

[
I1, . . . , Iλ+1 are not pairwise disjoint

]
− P

R1,...,Rλ+1

[(
D1(Π

◦|I1) = 1
)
∨
(
D2(Π

◦|I2) = 0
)
∨·· ·∨

(
Dλ+1(Π

◦|Iλ+1) = 0
)]

⩾ 1− δ

k
·
(

1− µ +δ

q

)
−
(

1− µ −δ

k
·
(

1− µ +δ

q

))
=

µ −2δ

k
·
(

1− µ +δ

q

)
>

1
k
·
(

4
q
− ε

)
,

(6.26)

where the last inequality can be shown as follows:

(µ −2δ) ·
(

1− µ +δ

q

)
=︸︷︷︸

µ= q
2 and δ= ε

4

(q
2
− ε

2

)
·
(

1
2
− ε

4q

)
=

q
4
− ε

4
− ε

8
+

ε2

8 ·q >
q
4
− ε, (6.27)

which completes the proof.

Remark 6.8. The choice of µ comes from the fact that assuming that δ = 0, the second-to-last line of
Eq. (6.26) is maximized when µ = q

2 ; namely,

∂

∂ µ

(
µ

k
·
(

1− µ

q

))
= 0 =⇒ µ =

q
2
. (6.28)

6.2.4 Emulating the Horn Verifier

Here, we emulate the Horn verifierVHorn by an Ek-CNF formula. Recall thatVHorn’s acceptance condi-
tion is the following:(

D1(Π|I1) = 1
)
∨
(
D2(Π|I2) = 0

)
∨·· ·∨

(
Dλ+1(Π|Iλ+1) = 0

)
. (6.29)

29

Consider first the following k-query OR-predicate verifier X obtained by modifyingVHorn.

k-query OR-predicate verifier X emulatingVHorn

Input: the k-query Horn verifierVHorn and an input x ∈ {0,1}n.
Oracle access: a proof Π ∈ {0,1}2ℓ(n).

1: runVHorn to generate λ +1 query sequences I1, . . . , Iλ+1 and λ +1 circuits D1, . . . ,Dλ+1.
2: if I1, . . . , Iλ+1 are not pairwise disjoint then
3: return 1.
4: let I :=

⋃
1⩽i⩽λ+1 Ii. ▷ |I|= k.

5: sample a partial proof Π̃ ∈ {0,1}I that violates Eq. (6.29) uniformly at random; namely,(
D1(Π̃|I1) = 0

)
∧
(
D2(Π̃|I2) = 1

)
∧·· ·∧

(
Dλ+1(Π̃|Iλ+1) = 1

)
. (6.30)

6: if Π|I ̸= Π̃ then
7: return 1.
8: else
9: return 0.

Note that X queries exactly k locations of the proof Π. Since D1 rejects at most 2q − 1 strings, D2, . . . ,Dλ

accept only 1q, and Dλ+1 accepts only 1k−qλ , the number of partial proofs Π̃ ∈ {0,1}I such that Eq. (6.30)
holds is∣∣D−1

1 (0)×D−1
2 (1)×·· ·×D−1

λ+1(1)
∣∣= ∣∣D−1

1 (0)
∣∣ ·1 · · ·1︸ ︷︷ ︸

λ times

⩽ 2q −1, (6.31)

where D−1(b) := { f ∈ {0,1}q | D(f) = b} for a circuit D : {0,1}q → {0,1}. Conditioned on the event that
Eq. (6.29) does not hold, X rejects Π with probability at least 1

2q−1 . One can emulate X by an Ek-CNF
formula ϕ generated by the following procedure.

Construction of an Ek-CNF formula ϕ emulating X
Input: the k-query Horn verifierVHorn and an input x ∈ {0,1}n.

1: let ϕ be an empty formula over 2ℓ(n) variables, denoted by x1, . . . ,x2ℓ(n).
2: for each random bit string R ∈ {0,1}Θ(logn) used byVHorn do
3: runVHorn on R to generate λ +1 query sequences I1, . . . , Iλ+1 and λ +1 circuits D1, . . . ,Dλ+1.
4: if I1, . . . , Iλ+1 are pairwise disjoint then
5: let I :=

⋃
1⩽i⩽λ+1 Ii. ▷ |I|= k.

6: for each partial proof Π̃ ∈ {0,1}I such that Eq. (6.30) holds do
7: ▷ there are at most 2q −1 partial proofs Π̃ in total. ◁
8: generate a clause C

Π̃
that enforces (xi)i∈I ̸= Π̃; namely,

C
Π̃

:=
∨
i∈I

q
xi ̸= Π̃(i)

y
, where

q
xi ̸= Π̃(i)

y
:=

{
xi if Π̃(i) = 0,
xi if Π̃(i) = 1.

(6.32)

9: add C
Π̃

into ϕ .
10: return ϕ .

The above construction of ϕ runs in polynomial time in n.

30

We are now ready to complete the proof of Lemma 6.3.

Proof of Lemma 6.3. We first show the completeness. Suppose that x ∈ L; i.e., optVL(x)(πstart ↭ πend) = 1.
By Lemma 6.6, we have optVHorn

(Πstart ↭ Πend) = 1, which implies that optϕ(Πstart ↭ Πend) = 1 due to
the construction of ϕ .

We next show the soundness. Suppose that x /∈ L; i.e., optVL(x)(πstart ↭ πend) < 1− g. Let
#»
Π be any

reconfiguration sequence from Πstart to Πend such that valϕ(
#»
Π) = optϕ(Πstart ↭ Πend). By Lemma 6.6,

#»
Π contains a proof Π◦ such that

P
[VHorn rejects Π

◦]> 1
k
·
(q

4
− ε

)
. (6.33)

Conditioned on I1, . . . , Iλ+1 and D1, . . . ,Dλ+1 such that Eq. (6.29) does not hold on Π◦, we have

P
Π̃

[
Π

◦|I = Π̃
∣∣ I1, . . . , Iλ+1,D1, . . . ,Dλ+1, and Eq. (6.29) does not hold

]
⩾

1
2q −1

. (6.34)

Therefore, exactly one of the (at most) 2q − 1 clauses generated in lines 6–9 of the construction of ϕ must
be violated by Π◦. Consequently, we derive

1−valϕ(Π
◦)⩾ P

[VHorn rejects Π
◦] · 1

2q −1
>

1
(2q −1) · k ·

(q
4
− ε

)
(6.35)

=⇒ optϕ

(
Πstart ↭ Πend

)
< 1− 1

(2q −1) · k ·
(q

4
− ε

)
, (6.36)

which accomplishes the proof.

A NP-hardness of
(
1− 1

8k

)
-factor Approximation

Here, we give a simple proof that MAXMIN Ek-SAT RECONFIGURATION is NP-hard to approximate
within a factor of 1− 1

8k for every k ⩾ 3.

Theorem A.1. For any integer k ⩾ 3, GAP1,1− 1
8k

Ek-SAT RECONFIGURATION is NP-hard. In particular,

MAXMIN Ek-SAT RECONFIGURATION is NP-hard to approximate within a factor of 1 − 1
8k for every

integer k ⩾ 3.

To prove Theorem A.1, we first present a gap-preserving reduction from MAX E3-SAT to MAXMIN

Ek-SAT RECONFIGURATION for every k ⩾ 5, which is based on [IDHPSUU11, Theorem 5].

Lemma A.2. For any integer k ⩾ 5 and any real δ > 0, there exists a polynomial-time reduction from
GAP1,1−δ E3-SAT to GAP1,1− δ

k−3
Ek-SAT RECONFIGURATION. Therefore, GAP1,1− 1−ε

8(k−3)
Ek-SAT RE-

CONFIGURATION is NP-hard for any real ε > 0.

Proof. Let k ⩾ 5 be an integer and ϕ be an E3-CNF formula consisting of m clauses C1, . . . ,Cm over n
variables x1, . . . ,xn. We construct an instance (ψ,αstart,αend) of MAXMIN Ek-SAT RECONFIGURATION as
follows. Define K := k− 3 ⩾ 2. Create K fresh variables y1, . . . ,yK . Let H1, . . . ,HK denote the K possible
Horn clauses (with a single positive literal) over y1, . . . ,yK ; namely,

Hi := y1 ∨·· ·∨ yi−1 ∨ yi ∨ yi+1 ∨·· ·∨ yK . (A.1)

31

Starting from an empty formula ψ over x1, . . . ,xn,y1, . . . ,yK , for each clause C j of ϕ and each Horn clause
Hi, we add C j ∨Hi to ψ . Note that ψ contains Km clauses. The starting and ending assignments are defined
as αstart := 1n+K and αend := 0n+K , respectively. Since every clause of ψ contains both positive and negative
literals, both αstart and αend satisfy ψ , completing the description of the reduction.

We first show the completeness; i.e., ∃α,valϕ(α) = 1 implies optψ(αstart ↭ αend) = 1. Consider a
reconfiguration sequence #»

α from αstart to αend obtained by the following procedure.

Reconfiguration sequence #»
α from αstart to αend

1: let α∗ : {x1, . . . ,xn}→ {0,1} be a satisfying assignment of ϕ .
2: ▷ start with αstart. ◁
3: for each variable xi do
4: if αstart(xi) ̸= α∗(xi) then
5: flip xi’s current assignment from αstart(xi) to α∗(xi).
6: ▷ the current assignment to {x1, . . . ,xn} is equal to α∗. ◁
7: for each variable yi do
8: flip yi’s current assignment from 1 to 0.
9: for each variable xi do

10: if α∗(xi) ̸= αend(xi) then
11: flip xi’s current assignment from α∗(xi) to αend(xi).
12: ▷ end with αend. ◁

For any intermediate assignment α◦ of #»
α , it holds that either α◦|{x1,...,xn} = α∗, α◦|{y1,...,yK} = 1K , or

α◦|{y1,...,yK} = 0K ; thus, α◦ satisfies ψ , implying that optψ(αstart ↭ αend)⩾ valψ(
#»
α) = 1, as desired.

We then show the soundness; i.e., ∀α,valϕ(α) < 1− δ implies optψ(αstart ↭ αend) < 1− δ

K . Let
#»
α = (α(1), . . . ,α(T)) be any reconfiguration sequence from αstart to αend. There must exist an assignment
α◦ in #»

α such that α◦|{y1,...,yK} contains a single 0. Let i⋆ ∈ [K] be a unique index such that α◦(yi⋆) = 0 and
α◦(yi) = 1 for every i ̸= i⋆. By construction, α◦ may not satisfy a clause C j ∨Hi⋆ whenever α◦|{x1,...,xn} does
not satisfy a clause C j. Consequently, α◦ violates more than δm clauses of ψ , implying that

valψ(
#»
α)⩽ valψ(α

◦)<
Km−δm

Km
= 1− δ

k−3
, (A.2)

as desired. The NP-hardness of GAP1,1− 1−ε

8(k−3)
Ek-SAT RECONFIGURATION follows from that of GAP1,1− 1−ε

8

E3-SAT for any real ε > 0 due to [Hås01, Theorem 6.5].

Since the above reduction does not work when k ⩽ 4, the subsequent lemmas separately give a gap-
preserving reduction from MAX E3-SAT to MAXMIN E3-SAT RECONFIGURATION and MAXMIN E4-
SAT RECONFIGURATION.

Lemma A.3. GAP1, 19
20+ε

E3-SAT RECONFIGURATION is NP-hard for any real ε > 0.

Lemma A.4. GAP1, 10
11+ε

E4-SAT RECONFIGURATION is NP-hard for any real ε > 0.

The proof of Theorem A.1 is now immediate from Lemmas A.2 to A.4.

Proof of Theorem A.1. The following hold, as desired:

32

• By Lemma A.3, GAP1,1− 1
8·3

E3-SAT RECONFIGURATION is NP-hard.

• By Lemma A.4, GAP1,1− 1
8·4

E4-SAT RECONFIGURATION is NP-hard.

• Substituting ε of Lemma A.2 by 3
k derives that GAP1,1− 1

8k
Ek-SAT RECONFIGURATION is NP-hard

for each integer k ⩾ 5.

Proof of Lemma A.3. We first demonstrate a gap-preserving reduction from GAP1,1−δ E3-SAT to GAP1, δ

1+2δ

{3,4}-SAT RECONFIGURATION, where “{3,4}-SAT” means that each clause has width 3 or 4. Let ϕ be
an E3-CNF formula consisting of m clauses C1, . . . ,Cm over n variables x1, . . . ,xn. We construct an instance
(ψ,αstart,αend) of MAXMIN {3,4}-SAT RECONFIGURATION as follows. Create a CNF formula ψ by the
following procedure, which is parameterized by m1 and m2.

Construction of ψ

1: introduce three fresh variables, denoted by y, z1, and z2.
2: let ψ be an empty formula over n+3 variables x1, . . . ,xn,y,z1,z2.
3: for each 1 ⩽ j ⩽ m do
4: add a new clause C j ∨ y to ψ .
5: add m1 copies of a clause y∨ z1 ∨ z2 to ψ .
6: add m2 copies of a clause y∨ z1 ∨ z2 to ψ .

Note that ψ consists of m+m1 +m2 clauses, each of which has width 3 or 4. The starting and ending
assignments, denoted by αstart,αend : {x1, . . . ,xn,y,z1,z2}→ {0,1}, are defined as follows:

• αstart(xi) := 1 for every i ∈ [n] and αstart(y,z1,z2) := (1,1,1);

• αend(xi) := 0 for every i ∈ [n] and αend(y,z1,z2) := (1,0,0).

Since αstart and αend satisfy ψ , this completes the description of the reduction.

We first show the completeness; i.e., ∃α,valϕ(α) = 1 implies optψ(αstart ↭ αend) = 1. Consider a
reconfiguration sequence #»

α from αstart to αend obtained by the following procedure.

Reconfiguration sequence #»
α from αstart to αend

1: let α∗ : {x1, . . . ,xn}→ {0,1} be a satisfying assignment of ϕ .
2: ▷ start with αstart. ◁
3: for each variable xi do
4: if αstart(xi) ̸= α∗(xi) then
5: flip xi’s current assignment from αstart(xi) to α∗(xi).
6: flip the assignment to y, z1, z2, and y in this order.
7: ▷ the above step gives rise to the following reconfiguration sequence of assignments to (y,z1,z2):

((1,1,1),(0,1,1),(0,0,1),(0,0,0),(1,0,0)). ◁
8: for each variable xi do
9: if α∗(xi) ̸= αend(xi) then

10: flip xi’s current assignment from α∗(xi) to αend(xi).
11: ▷ end with αend. ◁

33

For any intermediate assignment α◦ of #»
α , the following hold:

• Since α◦(y) = 1 or α◦|{x1,...,xn} = α∗, each clause C j ∨ y is satisfied.

• Since α◦(y,z1,z2) ̸= (1,0,1), a clause y∨ z1 ∨ z2 is satisfied.

• Since α◦(y,z1,z2) ̸= (1,1,0), a clause y∨ z1 ∨ z2 is satisfied.

Therefore, #»
α satisfies ψ; i.e., optψ(αstart ↭ αend) = 1.

We then show the soundness; i.e., ∀α,valϕ(α) ⩽ 1− δ implies optψ(αstart ↭ αend) ⩽ 1− δ

1+2δ
. Let

#»
α = (α(1), . . . ,α(T)) be any reconfiguration sequence from αstart to αend. We bound its value by the follow-
ing case analysis:

(Case 1) ∃t,α(t)(y) = 0.
Each clause C j∨y of ψ is satisfied by α(t) if and only if C j is satisfied by α(t)|{x1,...,xn}. By assumption,
at least δm clauses of ψ must be unsatisfied by such α(t).

(Case 2) ∀t,α(t)(y) = 1.
Since α(1)(y,z1,z2) = (1,1,1) and α(T)(y,z1,z2) = (1,0,0), there is some assignment α◦ in #»

α such
that α◦(y,z1,z2) is (1,0,1) or (1,1,0). In the former case, α◦ violates m1 clauses in the form of
y∨ z1 ∨ z2; in the latter case, α◦ violates m2 clauses in the form of y∨ z1 ∨ z2.

In either case, the maximum number of clauses violated by #»
α must be at least

min
{

δm,m1,m2
}
. (A.3)

Letting m1 := δm and m2 := δm, we have

valψ(
#»
α)⩽ 1− min

{
δm,m1,m2

}
m+m1 +m2

= 1− δ

1+2δ
, (A.4)

as desired.

Since GAP1,1− 1−ε

8
E3-SAT is NP-hard for any real ε > 0 [Hås01, Theorem 6.5], we let δ := 1−ε

8 to have

that GAP1,1− δ

1+2δ

{3,4}-SAT RECONFIGURATION is NP-hard, where 1− δ

1+2δ
is bounded as follows:

1− δ

1+2δ
= 1− 1− ε

10−2ε
⩽ 1− 1− ε

10
. (A.5)

By [Ohs23], GAP1,1− 1−ε

10
{3,4}-SAT RECONFIGURATION is further reduced to GAP1,1− 1−ε

20
E3-SAT RE-

CONFIGURATION in polynomial time, which completes the proof.

Proof of Lemma A.4. We demonstrate a gap-preserving reduction from GAP1,1−δ E3-SAT to GAP1, δ

1+3δ

E4-
SAT RECONFIGURATION. Let ϕ be an E3-CNF formula consisting of m clauses C1, . . . ,Cm over n variables
x1, . . . ,xn. We construct an instance (ψ,αstart,αend) of MAXMIN E4-SAT RECONFIGURATION as follows.
Create a CNF formula ψ by the following procedure, which is parameterized by m1, m2, and m3.

34

Construction of ψ

1: introduce four fresh variables, denoted by y, z1, z2, and z3.
2: let ψ be an empty formula over n+4 variables x1, . . . ,xn,y,z1,z2,z3.
3: for each 1 ⩽ j ⩽ m do
4: add a new clause C j ∨ y to ψ .
5: add m1 copies of a clause y∨ z1 ∨ z2 ∨ z3 to ψ .
6: add m2 copies of a clause y∨ z1 ∨ z2 ∨ z2 to ψ .
7: add m3 copies of a clause y∨ z1 ∨ z2 ∨ z3 to ψ .

Note that ψ consists of m+m1 +m2 +m3 clauses of width 4. The starting and ending assignments, denoted
by αstart,αend : {x1, . . . ,xn,y,z1,z2,z3}→ {0,1}, are defined as follows:

• αstart(xi) := 1 for every i ∈ [n] and αstart(y,z1,z2,z3) := (1,1,1,1);

• αend(xi) := 0 for every i ∈ [n] and αend(y,z1,z2,z3) := (1,0,0,0).

Since αstart and αend satisfy ψ , this completes the description of the reduction.

We first show the completeness; i.e., ∃α,valϕ(α) = 1 implies optψ(αstart ↭ αend) = 1. Consider a
reconfiguration sequence #»

α from αstart to αend obtained by the following procedure.

Reconfiguration sequence #»
α from αstart to αend

1: let α∗ : {x1, . . . ,xn}→ {0,1} be a satisfying assignment of ϕ .
2: ▷ start with αstart. ◁
3: for each variable xi do
4: if αstart(xi) ̸= α∗(xi) then
5: flip xi’s current assignment from αstart(xi) to α∗(xi).
6: flip the assignment to y, z1, z2, z3, and y in this order.
7: ▷ the above step gives rise to the following reconfiguration sequence of assignments to

(y,z1,z2,z3): ((1,1,1,1),(0,1,1,1),(0,0,1,1),(0,0,0,1),(0,0,0,0),(1,0,0,0)). ◁
8: for each variable xi do
9: if α∗(xi) ̸= αend(xi) then

10: flip xi’s current assignment from α∗(xi) to αend(xi).
11: ▷ end with αend. ◁

For any intermediate assignment α◦ of #»
α , the following hold:

• Since α◦(y) = 1 or α◦|{x1,...,xn} = α∗, each clause C j ∨ y is satisfied.

• Since α◦(y,z1,z2,z3) ̸= (1,0,1,1), a clause y∨ z1 ∨ z2 ∨ z3 is satisfied.

• Since α◦(y,z1,z2,z3) ̸= (1,1,0,1), a clause y∨ z1 ∨ z2 ∨ z3 is satisfied.

• Since α◦(y,z1,z2,z3) ̸= (1,1,1,0), a clause y∨ z1 ∨ z2 ∨ z3 is satisfied.

Therefore, #»
α satisfies ψ; i.e., optψ(αstart ↭ αend) = 1.

We then show the soundness; i.e., ∀α,valϕ(α) ⩽ 1− δ implies optψ(αstart ↭ αend) ⩽ 1− δ

1+3δ
. Let

35

#»
α = (α(1), . . . ,α(T)) be any reconfiguration sequence from αstart to αend. We bound its value by the follow-
ing case analysis:

(Case 1) ∃t,α(t)(y) = 0.
Each clause C j∨y of ψ is satisfied by α(t) if and only if C j is satisfied by α(t)|{x1,...,xn}. By assumption,
at least δm clauses of ψ must be unsatisfied by such α(t).

(Case 2) ∀t,α(t)(y) = 1.
Since α(1)(y,z1,z2,z3) = (1,1,1,1) and α(T)(y,z1,z2,z3) = (1,0,0,0), there is some assignment α◦

in #»
α such that α◦(y,z1,z2,z3) is (1,0,1,1), (1,1,0,1), or (1,1,1,0). In the first case, α◦ violates

m1 clauses in the form of y∨ z1 ∨ z2 ∨ z3; in the second case, α◦ violates m2 clauses in the form of
y∨ z1 ∨ z2 ∨ z3; in the third case, α◦ violates m3 clauses in the form of y∨ z1 ∨ z2 ∨ z3.

In either case, the maximum number of clauses violated by #»
α must be at least

min
{

δm,m1,m2,m3
}
. (A.6)

Letting m1 := δm, m2 := δm, and m3 := δm, we have

valψ(
#»
α)⩽ 1− min

{
δm,m1,m2,m3

}
m+m1 +m2 +m3

= 1− δ

1+3δ
, (A.7)

as desired.

Since GAP1,1− 1−ε

8
E3-SAT is NP-hard for any real ε > 0 [Hås01, Theorem 6.5], we let δ := 1−ε

8 to have

that GAP1,1− δ

1+3δ

E4-SAT RECONFIGURATION is NP-hard, where 1− δ

1+3δ
is bounded as follows:

1− δ

1+3δ
= 1− 1− ε

11−3ε
⩽ 1− 1− ε

11
, (A.8)

which completes the proof.

B Omitted Proofs

Proof of Fact 5.7. Using the fact that(
n+1
k+1

)
=

n+1
k+1

(
n
k

)
, (B.1)

we have

∑
0⩽k⩽n

(
n
k

)
1

k+1
= ∑

0⩽k⩽n

(
n+1
k+1

)
1

n+1
=

1
n+1 ∑

0⩽k⩽n

(
n+1

k

)
=

2n+1 −1
n+1

. (B.2)

36

Similarly, we have

∑
0⩽k⩽n

(
n
k

)
1

k+2
= ∑

0⩽k⩽n

(
n+1
k+1

)
k+1
n+1

1
k+2

=︸︷︷︸
replace k by k−1

1
n+1 ∑

1⩽k⩽n+1

(
n+1

k

)(
1− 1

k+1

)

=
1

n+1

[
∑

0⩽k⩽n+1

(
n+1

k

)
︸ ︷︷ ︸

=2n+1

− ∑
0⩽k⩽n+1

(
n+1

k

)
1

k+1︸ ︷︷ ︸
= 2n+2−1

n+2

]

=
2n+1 ·n+1

(n+1)(n+2)
,

(B.3)

as desired.

Proof of Corollary 6.2. To prove Corollary 6.2, we use the following claim, which will be proven later.

Claim B.1. For any integer k ⩾ 3, any real γ > 1 with γk ∈ N, and any real ε > 0, there exists a gap-
preserving reduction from GAP1,1−ε E(γk)-SAT RECONFIGURATION to GAP1,1− ε

Γ
Ek-SAT RECONFIGU-

RATION, where Γ :=
⌈

γk
k−2

⌉
.

Let ε := 0.2 and k0(ε)∈N be an integer as defined in Theorem 6.1. For any integer k ⩾ k0(ε), GAP1,1− 1
10k

Ek-SAT RECONFIGURATION is PSPACE-hard by Theorem 6.1. For any integer k with 3 ⩽ k < k0(ε), we
apply Claim B.1 to reduce GAP1,1− 1

10·k0(ε)
E(k0(ε))-SAT RECONFIGURATION to GAP1,1− 1

10·k0(ε)·Γ
Ek-SAT

RECONFIGURATION, where

Γ =

⌈
k0(ε)

k−2

⌉
⩽︸︷︷︸

k⩾3

k0(ε). (B.4)

Letting

δ0 :=
1

10 · k0(ε)2 , (B.5)

we derive that GAP
1,1− δ0

k
Ek-SAT RECONFIGURATION is PSPACE-hard for every integer k ⩾ 3, as desired.

Proof of Claim B.1. Let (ϕ,αstart,αend) be an instance of MAXMIN E(γk)-SAT RECONFIGURATION, where
ϕ is an E(γk)-CNF formula consisting of m clauses C1, . . . ,Cm over n variables x1, . . . ,xn, and αstart,αend are
satisfying assignments for ϕ . We construct an instance (ψ,βstart,βend) of MAXMIN Ek-SAT RECONFIGU-
RATION as follows. Let Γ :=

⌈
γk

k−2

⌉
. Starting from an empty clause ψ , for each clause C j = ℓ1 ∨·· ·∨ ℓγk of

ϕ , we add to ψ the Γ clauses of width k generated by the following procedure.

37

Construction of Γ clauses from a clause C j = ℓ1 ∨·· ·∨ ℓγk of ϕ

1: create Γ sets of literals, denoted by S1, . . . ,SΓ, such that the following hold:
• each set Si contains exactly k−2 literals of C j;
• S1, . . . ,SΓ cover the γk literals of C j; namely, S1 ∪·· ·∪SΓ = {ℓ1, . . . , ℓγk}.

2: ▷ such a family of Γ sets always exists because
γk

k−2
⩽ Γ. ◁

3: append a single literal of C j (say ℓ1) to each of S1 and SΓ, so that |S1|= |SΓ|= k−1 and |S2|=
· · ·= |SΓ−1|= k−2.

4: introduce Γ−1 fresh variables, denoted by y j,1, . . . ,y j,Γ−1.
5: generate Γ clauses of width k representing the following formulas:

y j,1 =⇒
(∨

ℓi∈S1

ℓi

)
,

y j,2 =⇒
(

y j,1 ∨
∨
ℓi∈S2

ℓi

)
,

...

y j,Γ−1 =⇒
(

y j,Γ−2 ∨
∨

ℓi∈SΓ−1

ℓi

)
,

1 =⇒
(

y j,Γ−1 ∨
∨

ℓi∈SΓ

ℓi

)
.

(B.6)

For a satisfying assignment α : {x1, . . . ,xn} → {0,1} for ϕ , we consider an assignment β : {x1, . . . ,xn,
y1,1, . . . ,ym,Γ−1} → {0,1} for ψ such that β |{x1,...,xn} = α{x1,...,xn} and β (y j,i) for each variable y j,i is de-
fined as follows:

β (y j,i) :=

{
0 if i ⩽ i j −1,
1 if i > i j −1,

(B.7)

where i j ∈ [Γ] is an index such that some literal of Si j is satisfied by α . Construct the starting assignment
βstart from αstart and the ending assignment βend from αend according to this procedure. Observe that
both βstart and βend satisfy ψ , which completes the description of the reduction. Similarly to [GKMP09,
Lemma 3.5] and [Ohs23, Claim 3.4], we have the following completeness and soundness, as desired:

• (Completeness) If optϕ

(
αstart ↭ αend

)
= 1, then optψ

(
βstart ↭ βend

)
= 1.

• (Soundness) If optϕ

(
αstart ↭ αend

)
< 1− ε , then optψ

(
βstart ↭ βend

)
< 1− ε

Γ
.

References
[ABM04] Dimitris Achlioptas, Paul Beame, and Michael Molloy. “Exponential Bounds for DPLL

Below the Satisfiability Threshold”. In: Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2004, pp. 139–140 (↰ p. 1).

[ACR11] Dimitris Achlioptas, Amin Coja-Oghlan, and Federico Ricci-Tersenghi. “On the solution-
space geometry of random constraint satisfaction problems”. In: Random Structures &
Algorithms 38.3 (2011), pp. 251–268. DOI: 10.1002/rsa.20323 (↰ p. 1).

38

https://doi.org/10.1002/rsa.20323

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof
Verification and the Hardness of Approximation Problems”. In: Journal of the ACM 45.3
(1998), pp. 501–555. DOI: 10.1145/278298.278306 (↰ p. 13).

[AOTW14] Per Austrin, Ryan O’Donnell, Li-Yang Tan, and John Wright. “New NP-Hardness Results
for 3-Coloring and 2-to-1 Label Cover”. In: ACM Transactions on Computation Theory
6.1 (2014), pp. 1–20. DOI: 10.1145/2537800 (↰ p. 5).

[AS16] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Series in Discrete Math-
ematics and Optimization. Wiley, 2016 (↰ pp. 6, 17).

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs: A New Characteriza-
tion of NP”. In: Journal of the ACM 45.1 (1998), pp. 70–122. DOI: 10.1145/273865.27
3901 (↰ p. 13).

[Aus07] Per Austrin. “Balanced Max 2-Sat Might Not be the Hardest”. In: Proceedings of the ACM
Symposium on Theory of Computing (STOC). 2007, pp. 189–197. DOI: 10.1145/125079
0.1250818 (↰ p. 13).

[BC09] Paul Bonsma and Luis Cereceda. “Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances”. In: Theoretical Computer Science 410.50
(2009), pp. 5215–5226. DOI: 10.1016/j.tcs.2009.08.023 (↰ p. 12).

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. “Free Bits, PCPs, and Nonapproxima-
bility — Towards Tight Results”. In: SIAM Journal on Computing 27.3 (1998), pp. 804–
915. DOI: 10.1137/S0097539796302531 (↰ p. 13).

[BHZ24] Joshua Brakensiek, Neng Huang, and Uri Zwick. “Tight approximability of MAX 2-SAT
and relatives, under UGC”. In: Proceedings of the ACM-SIAM Symposium on Discrete Al-
gorithms (SODA). 2024, pp. 1328–1344. DOI: 10.1137/1.9781611977912.53 (↰ p. 13).

[BMNS24] Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz. “A sur-
vey on the parameterized complexity of reconfiguration problems”. In: Computer Science
Review 53 (2024), p. 100663. DOI: 10.1016/j.cosrev.2024.100663 (↰ p. 12).

[Bon13] Paul Bonsma. “The Complexity of Rerouting Shortest Paths”. In: Theoretical Computer
Science 510 (2013), pp. 1–12. DOI: 10.1016/j.tcs.2013.09.012 (↰ p. 12).

[CHK11] Moses Charikar, MohammadTaghi Hajiaghayi, and Howard J. Karloff. “Improved Ap-
proximation Algorithms for Label Cover Problems”. In: Algorithmica 61.1 (2011),
pp. 190–206. DOI: 10.1007/978-3-642-04128-0_3 (↰ p. 5).

[Chv79] Vasek Chvátal. “A Greedy Heuristic for the Set-Covering Problem”. In: Mathematics of
Operations Research 4.3 (1979), pp. 233–235. DOI: 10.1287/moor.4.3.233 (↰ pp. 4, 5).

[CvdHJ11] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. “Finding paths between 3-
colorings”. In: Journal of Graph Theory 67.1 (2011), pp. 69–82. DOI: 10.1002/jgt.205
14 (↰ p. 12).

[Din07] Irit Dinur. “The PCP Theorem by Gap Amplification”. In: Journal of the ACM 54.3 (2007),
p. 12. DOI: 10.1145/1236457.1236459 (↰ p. 13).

[DS14] Irit Dinur and David Steurer. “Analytical approach to parallel repetition”. In: Proceedings
of the ACM Symposium on Theory of Computing (STOC). 2014, pp. 624–633. DOI: 10.11
45/2591796.2591884 (↰ p. 5).

[Fei98] Uriel Feige. “A Threshold of lnn for Approximating Set Cover”. In: Journal of the ACM
45.4 (1998), pp. 634–652. DOI: 10.1145/285055.285059 (↰ pp. 5, 13).

39

https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/2537800
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/1250790.1250818
https://doi.org/10.1145/1250790.1250818
https://doi.org/10.1016/j.tcs.2009.08.023
https://doi.org/10.1137/S0097539796302531
https://doi.org/10.1137/1.9781611977912.53
https://doi.org/10.1016/j.cosrev.2024.100663
https://doi.org/10.1016/j.tcs.2013.09.012
https://doi.org/10.1007/978-3-642-04128-0_3
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1002/jgt.20514
https://doi.org/10.1002/jgt.20514
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/285055.285059

[FJ97] Alan M. Frieze and Mark Jerrum. “Improved Approximation Algorithms for MAX k-CUT
and MAX BISECTION”. In: Algorithmica 18.1 (1997), pp. 67–81. DOI: 10.1007/BF025
23688 (↰ p. 5).

[GKMP09] Parikshit Gopalan, Phokion G. Kolaitis, Elitza Maneva, and Christos H. Papadimitriou.
“The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies”.
In: SIAM Journal on Computing 38.6 (2009), pp. 2330–2355. DOI: 10.1137/07070440X
(↰ pp. 1–3, 12, 14, 38).

[GS13] Venkatesan Guruswami and Ali Kemal Sinop. “Improved Inapproximability Results for
Maximum k-Colorable Subgraph”. In: Theory of Computing 9.11 (2013), pp. 413–435.
DOI: 10.4086/toc.2013.v009a011 (↰ p. 5).

[Hås01] Johan Håstad. “Some Optimal Inapproximability Results”. In: Journal of the ACM 48.4
(2001), pp. 798–859. DOI: 10.1145/502090.502098 (↰ pp. 4, 5, 7, 13, 32, 34, 36).

[Hås99] Johan Håstad. “Clique is hard to approximate within n1−ε”. In: Acta Mathematica 182
(1999), pp. 105–142. DOI: 10.1007/BF02392825 (↰ p. 13).

[HD05] Robert A. Hearn and Erik D. Demaine. “PSPACE-Completeness of Sliding-Block Puzzles
and Other Problems through the Nondeterministic Constraint Logic Model of Computa-
tion”. In: Theoretical Computer Science 343.1-2 (2005), pp. 72–96. DOI: 10.1016/j.tc
s.2005.05.008 (↰ p. 12).

[HD09] Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A K Peters,
Ltd., 2009 (↰ p. 12).

[HO24a] Shuichi Hirahara and Naoto Ohsaka. “Optimal PSPACE-hardness of Approximating Set
Cover Reconfiguration”. In: Proceedings of the International Colloquium on Automata,
Languages, and Programming (ICALP). 2024, 85:1–85:18. DOI: 10.4230/LIPIcs.ICAL
P.2024.85 (↰ pp. 2, 4, 5, 13).

[HO24b] Shuichi Hirahara and Naoto Ohsaka. “Probabilistically Checkable Reconfiguration Proofs
and Inapproximability of Reconfiguration Problems”. In: Proceedings of the ACM Sympo-
sium on Theory of Computing (STOC). 2024, pp. 1435–1445. DOI: 10.1145/3618260.3
649667 (↰ pp. 2, 3, 5, 7, 13, 15, 22).

[HO25] Shuichi Hirahara and Naoto Ohsaka. “Asymptotically Optimal Inapproximability of
Maxmin k-Cut Reconfiguration”. In: Proceedings of the International Colloquium on
Automata, Languages, and Programming (ICALP). 2025, 96:1–96:18. DOI: 10 . 4230
/LIPIcs.ICALP.2025.96 (↰ pp. 2, 5, 6, 13).

[Hoa24] Duc A. Hoang. Combinatorial Reconfiguration. 2024. URL: https://reconf.wikidot
.com/ (↰ p. 12).

[HSS84] John E. Hopcroft, Jacob Theodore Schwartz, and Micha Sharir. “On the Complexity
of Motion Planning for Multiple Independent Objects; PSPACE-Hardness of the “Ware-
houseman’s Problem””. In: International Journal of Robotics Research 3.4 (1984), pp. 76–
88. DOI: 10.1177/027836498400300405 (↰ p. 12).

[ID14] Takehiro Ito and Erik D. Demaine. “Approximability of the subset sum reconfiguration
problem”. In: Journal of Combinatorial Optimization 28.3 (2014), pp. 639–654. DOI: 10
.1007/s10878-012-9562-z (↰ p. 13).

[IDHPSUU11] Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. “On the Complexity of Reconfiguration Problems”.
In: Theoretical Computer Science 412.12-14 (2011), pp. 1054–1065. DOI: 10.1016/j.t
cs.2010.12.005 (↰ pp. 2–5, 11–13, 31).

40

https://doi.org/10.1007/BF02523688
https://doi.org/10.1007/BF02523688
https://doi.org/10.1137/07070440X
https://doi.org/10.4086/toc.2013.v009a011
https://doi.org/10.1145/502090.502098
https://doi.org/10.1007/BF02392825
https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.4230/LIPIcs.ICALP.2024.85
https://doi.org/10.4230/LIPIcs.ICALP.2024.85
https://doi.org/10.1145/3618260.3649667
https://doi.org/10.1145/3618260.3649667
https://doi.org/10.4230/LIPIcs.ICALP.2025.96
https://doi.org/10.4230/LIPIcs.ICALP.2025.96
https://reconf.wikidot.com/
https://reconf.wikidot.com/
https://doi.org/10.1177/027836498400300405
https://doi.org/10.1007/s10878-012-9562-z
https://doi.org/10.1007/s10878-012-9562-z
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.tcs.2010.12.005

[Joh74] David S. Johnson. “Approximation algorithms for combinatorial problems”. In: Journal of
Computer and System Sciences 9.3 (1974), pp. 256–278. DOI: 10.1016/S0022-0000(74
)80044-9 (↰ p. 5).

[JS79] Wm Woolsey Johnson and William Edward Story. “Notes on the “15” puzzle”. In: Ameri-
can Journal of Mathematics 2.4 (1879), pp. 397–404. DOI: 10.2307/2369492 (↰ p. 12).

[Kho02] Subhash Khot. “On the Power of Unique 2-Prover 1-Round Games”. In: Proceedings of
the ACM Symposium on Theory of Computing (STOC). 2002, pp. 767–775. DOI: 10.1145
/509907.510017 (↰ p. 13).

[KKLP97] Viggo Kann, Sanjeev Khanna, Jens Lagergren, and Alessandro Panconesi. “On the Hard-
ness of Approximating MAX k-CUT and its Dual”. In: Chicago Journal of Theoretical
Computer Science 1997 (1997). DOI: 10.4086/cjtcs.1997.002 (↰ p. 5).

[KM23] Karthik C. S. and Pasin Manurangsi. “On Inapproximability of Reconfiguration Problems:
PSPACE-Hardness and some Tight NP-Hardness Results”. In: Electronic Colloquium on
Computational Complexity TR24-007 (2023). URL: http://eccc.weizmann.ac.il/re
port/2024/007 (↰ pp. 2–7, 13, 15, 22).

[KMM12] Marcin Kamiński, Paul Medvedev, and Martin Milanič. “Complexity of Independent Set
Reconfigurability Problems”. In: Theoretical Computer Science 439 (2012), pp. 9–15. DOI:
10.1016/j.tcs.2012.03.004 (↰ p. 12).

[LLZ02] Michael Lewin, Dror Livnat, and Uri Zwick. “Improved Rounding Techniques for the
MAX 2-SAT and MAX DI-CUT Problems”. In: Proceedings of the 9th International Con-
ference on Integer Programming and Combinatorial Optimization (IPCO). 2002, pp. 67–
82. DOI: 10.1007/3-540-47867-1_6 (↰ p. 13).

[Lov75] László Lovász. “On the ratio of optimal integral and fractional covers”. In: Discrete Math-
ematics 13.4 (1975), pp. 383–390. DOI: 10.1016/0012-365X(75)90058-8 (↰ p. 5).

[MMZ05] Marc Mézard, Thierry Mora, and Riccardo Zecchina. “Clustering of Solutions in the Ran-
dom Satisfiability Problem”. In: Physical Review Letters 94.19 (2005), p. 197205. DOI:
10.1103/PhysRevLett.94.197205 (↰ p. 1).

[MN19] Christina M. Mynhardt and Shahla Nasserasr. “Reconfiguration of Colourings and Dom-
inating Sets in Graphs”. In: 50 years of Combinatorics, Graph Theory, and Computing.
Chapman and Hall/CRC, 2019. Chap. 10, pp. 171–191 (↰ p. 12).

[MNPR17] Amer E. Mouawad, Naomi Nishimura, Vinayak Pathak, and Venkatesh Raman. “Shortest
Reconfiguration Paths in the Solution Space of Boolean Formulas”. In: SIAM Journal on
Discrete Mathematics 31.3 (2017), pp. 2185–2200. DOI: 10.1137/16M1065288 (↰ p. 12).

[Mou15] Amer Mouawad. “On Reconfiguration Problems: Structure and Tractability”. PhD thesis.
University of Waterloo, 2015. URL: http://hdl.handle.net/10012/9183 (↰ p. 12).

[MPZ02] Marc Mézard, Giorgio Parisi, and Riccardo Zecchina. “Analytic and Algorithmic Solution
of Random Satisfiability Problems”. In: Science 297.5582 (2002), pp. 812–815. DOI: 10
.1126/science.1073287 (↰ p. 1).

[MTY10] Kazuhisa Makino, Suguru Tamaki, and Masaki Yamamoto. “On the Boolean connectivity
problem for Horn relations”. In: Discrete Applied Mathematics 158.18 (2010), pp. 2024–
2030. DOI: 10.1016/j.dam.2010.08.019 (↰ p. 12).

[MTY11] Kazuhisa Makino, Suguru Tamaki, and Masaki Yamamoto. “An Exact Algorithm for The
Boolean Connectivity Problem for k-CNF”. In: Theoretical Computer Science 412.35
(2011), pp. 4613–4618. DOI: 10.1016/j.tcs.2011.04.041 (↰ p. 12).

41

https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.2307/2369492
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/509907.510017
https://doi.org/10.4086/cjtcs.1997.002
http://eccc.weizmann.ac.il/report/2024/007
http://eccc.weizmann.ac.il/report/2024/007
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1007/3-540-47867-1_6
https://doi.org/10.1016/0012-365X(75)90058-8
https://doi.org/10.1103/PhysRevLett.94.197205
https://doi.org/10.1137/16M1065288
http://hdl.handle.net/10012/9183
https://doi.org/10.1126/science.1073287
https://doi.org/10.1126/science.1073287
https://doi.org/10.1016/j.dam.2010.08.019
https://doi.org/10.1016/j.tcs.2011.04.041

[Nis18] Naomi Nishimura. “Introduction to Reconfiguration”. In: Algorithms 11.4 (2018), p. 52.
DOI: 10.3390/a11040052 (↰ p. 12).

[Ohs23] Naoto Ohsaka. “Gap Preserving Reductions Between Reconfiguration Problems”. In: Pro-
ceedings of the International Symposium on Theoretical Aspects of Computer Science
(STACS). 2023, 49:1–49:18. DOI: 10.4230/LIPIcs.STACS.2023.49 (↰ pp. 2, 3, 7,
8, 12, 13, 22, 34, 38).

[Ohs24a] Naoto Ohsaka. “Alphabet Reduction for Reconfiguration Problems”. In: Proceedings of
the International Colloquium on Automata, Languages, and Programming (ICALP). 2024,
113:1–113:17. DOI: 10.4230/LIPIcs.ICALP.2024.113 (↰ pp. 2, 13).

[Ohs24b] Naoto Ohsaka. “Gap Amplification for Reconfiguration Problems”. In: Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA). 2024, pp. 1345–1366. DOI: 10.1
137/1.9781611977912.54 (↰ pp. 2, 5, 13).

[Ohs24c] Naoto Ohsaka. “Tight Inapproximability of Target Set Reconfiguration”. In: Computing
Research Repository abs/2402.15076 (2024). arXiv: 2402.15076. URL: https://arxiv
.org/abs/2402.15076 (↰ p. 2).

[Ohs25a] Naoto Ohsaka. “On Approximate Reconfigurability of Label Cover”. In: Information Pro-
cessing Letters 189 (2025), p. 106556. DOI: 10.1016/j.ipl.2024.106556 (↰ pp. 2, 5,
6, 13).

[Ohs25b] Naoto Ohsaka. “Yet Another Simple Proof of the PCRP Theorem”. In: Proceedings of the
International Colloquium on Automata, Languages, and Programming (ICALP). 2025,
122:1–122:18. DOI: 10.4230/LIPIcs.ICALP.2025.122 (↰ p. 2).

[OM22] Naoto Ohsaka and Tatsuya Matsuoka. “Reconfiguration Problems on Submodular Func-
tions”. In: Proceedings of the ACM International Conference on Web Search and Data
Mining (WSDM). 2022, pp. 764–774. DOI: 10.1145/3488560.3498382 (↰ p. 13).

[Rad06] Jaikumar Radhakrishnan. “Gap Amplification in PCPs Using Lazy Random Walks”. In:
Proceedings of the International Colloquium on Automata, Languages, and Programming
(ICALP). 2006, pp. 96–107. DOI: 10.1007/11786986_10 (↰ p. 13).

[Raz98] Ran Raz. “A Parallel Repetition Theorem”. In: SIAM Journal on Computing 27.3 (1998),
pp. 763–803. DOI: 10.1137/S0097539795280895 (↰ pp. 5, 13).

[RS07] Jaikumar Radhakrishnan and Madhu Sudan. “On Dinur’s Proof of the PCP Theorem”. In:
Bulletin of the American Mathematical Society 44.1 (2007), pp. 19–61. DOI: 10.1090/s0
273-0979-06-01143-8 (↰ p. 13).

[Sch12] Konrad W. Schwerdtfeger. “A Computational Trichotomy for Connectivity of Boolean
Satisfiability”. In: Journal on Satisfiability, Boolean Modelling and Computation 8.3-4
(2012), pp. 173–195. DOI: 10.3233/SAT190097 (↰ p. 12).

[Sch78] Thomas J. Schaefer. “The complexity of satisfiability problems”. In: Proceedings of the
ACM Symposium on Theory of Computing (STOC). 1978, pp. 216–226. DOI: 10.1145/8
00133.804350 (↰ p. 12).

[vdHeu13] Jan van den Heuvel. “The Complexity of Change”. In: Surveys in Combinatorics 2013.
Vol. 409. Cambridge University Press, 2013, pp. 127–160. DOI: 10.1017/CBO97811395
06748.005 (↰ p. 12).

[Zuc07] David Zuckerman. “Linear Degree Extractors and the Inapproximability of Max Clique
and Chromatic Number”. In: Theory of Computing 3 (2007), pp. 103–128. DOI: 10.4086
/toc.2007.v003a006 (↰ p. 13).

42

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.3390/a11040052
https://doi.org/10.4230/LIPIcs.STACS.2023.49
https://doi.org/10.4230/LIPIcs.ICALP.2024.113
https://doi.org/10.1137/1.9781611977912.54
https://doi.org/10.1137/1.9781611977912.54
https://arxiv.org/abs/2402.15076
https://arxiv.org/abs/2402.15076
https://arxiv.org/abs/2402.15076
https://doi.org/10.1016/j.ipl.2024.106556
https://doi.org/10.4230/LIPIcs.ICALP.2025.122
https://doi.org/10.1145/3488560.3498382
https://doi.org/10.1007/11786986_10
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1090/s0273-0979-06-01143-8
https://doi.org/10.1090/s0273-0979-06-01143-8
https://doi.org/10.3233/SAT190097
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006

