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Abstract

Quantum computational pseudorandomness has emerged as a fundamental notion that
spans connections to complexity theory, cryptography and fundamental physics. However, all
known constructions of efficient quantum-secure pseudorandom objects rely on complexity
theoretic assumptions.

In this work, we establish the first unconditionally secure efficient pseudorandom construc-
tions against shallow-depth quantum circuit classes. We prove that:

• Any quantum state 2-design yields unconditional pseudorandomness against both QNC0

circuits with arbitrarily many ancillae and AC0 ◦QNC0 circuits with nearly linear ancillae.

• Random phased subspace states, where the phases are picked using a 4-wise independent
function, are unconditionally pseudoentangled against the above circuit classes.

• Any unitary 2-design yields unconditionally secure parallel-query pseudorandom uni-
taries against geometrically local QNC0 adversaries, even with limited AC0 postprocessing.

Our indistinguishability results for 2-designs stand in stark contrast to the standard setting of
quantum pseudorandomness against BQP circuits, wherein they can be distinguishable from
Haar random ensembles using more than two copies or queries. Our work demonstrates that
quantum computational pseudorandomness can be achieved unconditionally for natural classes
of restricted adversaries, opening new directions in quantum complexity theory.
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1 Introduction

Randomness is fundamental to both classical and quantum computation, particularly in cryp-
tography and algorithm design. However, true randomness is often scarce or computationally
impractical. The theory of pseudorandomness studies deterministic objects that appear random to
resource-bounded observers. For example, classical pseudorandom generators (PRGs) produce bit
strings indistinguishable from random strings for computationally limited observers. A rich theory
connects hardness to pseudorandomness for complexity classes such as BPP [Nis91; INW94].

Quantum pseudorandomness extends these ideas to quantum states and unitaries. Truly
random quantum objects, described by the Haar measure over the unitary group [Mel24], require
exponential resources to generate. Two approaches have emerged for more efficient alternatives.
First, the information-theoretic or statistical notion of efficient quantum t-designs: ensembles of
states or unitaries that match the first t moments of the Haar measure, and can be prepared or
implemented efficiently [BHH16b; BHH16a]. Second, the more recent computational approach:
ensembles of quantum pseudorandom states (PRS) or unitaries (PRU) that appear Haar-random to
computationally bounded quantum observers [JLS18].

Classically, unconditional pseudorandomness has been successfully constructed against several
restricted computational models such as constant-depth circuits [Nis91; Bra08; DET+10], read-once
branching programs [Nis92; INW94; NZ96], and low-degree polynomials [Vio09; BV10]. These
results bypass the need for complexity theoretic assumptions, and have profound implications for
cryptography [Lub94], derandomization [SZ99; Hoz21], and lower bounds [HVV06; GMR+12].1

In contrast, all existing quantum pseudorandom constructions target powerful adversaries such
as polynomial-sized quantum circuits (BQP), and rely on cryptographic assumptions such as the
existence of quantum-secure one-way functions.

Our contributions. We establish the first unconditional efficient quantum pseudorandomness
results against shallow-depth circuit classes. Such circuits model near-term quantum devices
with limited coherence times and gate counts. We show that efficient pseudorandom objects,
including PRS, pseudoentanglement, and PRU secure against parallel queries, can be constructed
unconditionally for shallow quantum circuits. Our key insight is that due to the depth constraints,
each output qubit of shallow quantum circuits locally depends only on a subset of input qubits,
thus fundamentally limiting the ability of such circuits to distinguish certain structured quantum
objects from Haar-random ones.

A notable aspect of our results is that the only property needed for our constructions is that
of being an (approximate) 2-design. A priori, the design property only imposes conditions on
the behavior of the object when few (in this case exactly two) copies of the objects are present,
while pseudorandomness is a property that concerns an arbitrary polynomial number of copies.
Rather surprisingly, our results bridge this gap, showing that when the power of the adversaries
is restricted, information-theoretic indistinguishability on two copies is strong enough to imply
computational indistinguishability on polynomially many copies.

Our work raises several open questions, ranging from constructing new classes of uncondi-
tionally pseudorandom objects against other shallow circuit classes, to applying these results to
quantum cryptography and complexity theory. We discuss some of these directions in Section 5,
providing new perspectives for analyzing near-term quantum devices.

1 Readers may refer to the survey by Hatami and Hoza [HH24] for a comprehensive review of the more recent
developments on classical unconditional pseudorandomness.
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1.1 Main results

In this article we construct unconditionally secure efficient pseudorandom objects against two
important shallow-depth quantum circuit classes—QNC0 and AC0 ◦QNC0.

PRS from state designs. We first demonstrate that unconditional pseudorandomness can be
derived from state designs, whose security holds against circuits up to AC0 ◦QNC0.

Theorem 1.1 (Informal; See Corollary 3.5). Every 2-design state ensemble is an unconditionally
secure PRS against QNC0 circuits with arbitrarily many ancillae and almost linearly many bits of
output.

Theorem 1.2 (Informal; See Corollary 3.12). Every 2-design state ensemble is an unconditionally
secure PRS against AC0 ◦QNC0 circuits with almost linearly many ancillae.

Observe that this stands in stark contrast to the case of BQP adversaries. Consider an ensemble
that forms at most a t-design, for some t = poly(n). Then, there are cases—for instance, in the
case of random stabilizer states—where a BQP adversary can distinguish between a state from this
ensemble and a Haar random state [AD25; GNW21] using more than t copies.

Pseudoentanglement refers to the phenomenon whereby states having very low entanglement
are indistinguishable from states having very low entanglement. We also prove that unconditional
pseudoentanglement can be achieved against the above shallow quantum circuits.

Theorem 1.3 (Informal; See Corollary 3.13). There exists efficiently constructible, unconditionally
secure pseudoentanglement against QNC0 circuits, and against AC0 ◦ QNC0 circuits with poly-
logarithmically many ancillae.

PRU from unitary designs. Similarly, we also prove that unitary t-designs are unconditionally
pseudorandom against geometrically local shallow quantum circuits when queried only in parallel
(i.e. non-adaptively).

Theorem 1.4 (Informal; See Theorem 4.6). Every unitary 2-design is an unconditionally non-
adaptive secure PRU against 1-dimensional geometrically local QNC0 circuits with arbitrarily many
ancillae, and almost linear depth 1-dimensional geometrically local QNC pre-processing.

We also extend this PRU construction to QNC0 circuits with AC0 post-processing, with the caveat
that it must be weakened slightly since we do not have a natural means to deal with ancillae in the
post-processing phase.

Theorem 1.5 (Informal; See Theorem 4.7). Every unitary 2-design on n-qubits is an unconditionally
non-adaptive secure PRU against a subclass of AC0 ◦QNC0 circuits on a multiple of n qubits, and
the pre-processing QNC0 circuit before the queries is 1-dimensional geometrically local.

Proof techniques. A recurring tool that we use in our proofs is that, over any subsystem, the
reduced states of a Haar random state are close to maximally mixed with high probability (see
Corollary 3.2). Our PRU results require the analogue of this observation for the output of non-
adaptive queries to a Haar random unitary (see Corollary 4.4). For this, we bound the expected
norm of partial traces of off-diagonal terms |v⟩⟨w| conjugated by a Haar random unitary (see
Lemma 4.3).

To prove our results for QNC0 with AC0 post-processing, we observe that when the number
of ancillae in the pre-processing QNC0 circuit is small, the resulting output distribution has high
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entropy, although the output distributions are no longer k-wise independent. To deal with this, we
prove a generalization of Braverman’s result [Bra08] that AC0 circuits cannot distinguish k-wise
independent distributions from uniform, showing that AC0 circuits also fail to distinguish k-wise
indistinguishable distributions with high min-entropy (see Lemma 3.10).

We achieve our pseudoentanglement construction using random phased subspace states, which
are superpositions over the orthonormal basis vectors of a subspace with equal amplitudes and
random ±1 phases. We show that such states, when instantiated with a 4-wise independent
function for the random phase, are indistinguishable from Haar random by shallow circuits, and
have low von Neumann entropy across any cut (see Corollary 3.13).

We believe these technical developments may be of independent interest.

1.2 Related work

Quantum computational notions of pseudorandomness were introduced in [JLS18] and have been
studied in a variety of recent works. For instance, many types of pseudoentangled states have
been constructed against BQP distinguishers in recent work (for examples, see [ABF+24; BFG+23;
BZZ24; ABC+24; GB23; JMW24; FI24]). These notions have found a wide range of applications,
from cryptography [AQY22; GE24; AGQ+23] to physics [YE23; GLG+24; FI25; BFG+23; CCG+25].
A number of recent works have also considered the problem of constructing highly efficient
pseudorandom unitaries that are implementable in extremely low depth [SHH25; CSB+25].

However, all these constructions rely on complexity theoretic assumptions to obtain pseudo-
randomness against polynomial-sized quantum circuits. Usually, the assumption has to do with
the existence of quantum-secure one way functions [Zha21], based on computational hardness
assumptions like the quantum hardness of the learning with errors (LWE) problem [Reg24].

In contrast to this line of work, in our work the adversary is a class of shallow-depth quantum
circuits against which we would like our pseudorandom constructions to be secure, and our
contribution lies in showing that pseudorandomness against such circuit classes can be obtained
without making any complexity theoretic assumptions.

2 Preliminaries

We first define some commonly used notations. We use [n] to denote the set {1, . . . , n}. For two
distributions D and D′ over a set X we use |D −D′|1 to denote their total variation distance. We
denote a random sample x drawn according to D by x ∼ D, and we abuse the notation to denote x
drawn uniformly from a set X by x ∼ X. The identity operator on n qubits is denoted as In.

We use ∥·∥p to denote the Schatten-p norms of Hermitian operators. Specifically, ∥·∥1, ∥·∥2 and
∥·∥∞ respectively refers to the trace norm, Frobenius norm and operator norm.

We use the following shorthands for asymptotic growth: poly(n) = nO(1), polylog(n) =

logO(1) n and negl(n) = n−ω(1).
We assume the readers are familiar with the definitions of the following polynomial-sized circuit

classes: QNC for quantum bounded fan-in circuits, AC for classical circuits with unbounded fan-in
AND gates, and QAC for quantum circuits with unbounded size CZ gates (but without unbounded
fan-out gates). We use QNC0, AC0 and QAC0 to denote their constant-depth subclasses respectively.
Without loss of generality, we assume the bounded fan-in is at most 2 (otherwise the constants in
some of our results will be changed). For the purpose of this paper, we do not require the quantum
circuits to compute cleanly: the ancillae could start with any specified state and also could end up
in arbitrary states.
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Following [Slo24], we also consider the hybrid circuits with quantum pre-processing and
classical post-processing:

Definition 2.1. For a class of classical circuits F and a class of quantum circuits C, the circuit
class F ◦ C consist of all circuits F ◦ C that are composed of a quantum circuit C ∈ C, followed by
computational basis measurements on all output qubits of C, and then with some F ∈ F applied
on the measurement outcomes. The output distribution of F ◦ C with the input state ρ is F(C(ρ)).

The class that we are specifically interested in is AC0 ◦QNC0, which is justified in Section 3.2. It
is shown in [Slo24] that parity is hard to compute in this class, assuming either no ancillae or linear
size of the AC0 circuit. It worth noting that we do not know yet whether AC0 ◦QNC0 is comparable
with QAC0.

Quantum Pseudorandom Primitives

Below we generalize the commonly used definitions of quantum pseudorandom primitives to those
with respect to specific classes of adversaries, rather than simply polynomial-time adversaries. The
state and unitary ensembles are all discrete distributions, which we denote by their supports for
succinctness.

Definition 2.2. The state ensemble {|ψi⟩} on n qubits is a pseudorandom state ensemble (PRS) against
a class of quantum circuits C, if for the n-qubit Haar random state |ψHaar⟩, every t = poly(n) and
every circuit C ∈ C, we have∣∣∣∣Ei [C (|ψi⟩⟨ψi|⊗t)]− E

[
C
(
|ψHaar⟩⟨ψHaar|⊗t)]∣∣∣∣

1
= negl(n).

Here C(ρ) represents the output distribution with input state ρ.

Definition 2.3. We say two state ensembles {|ψi⟩} and {|ψj⟩} on n qubits demonstrate pseudoen-
tanglement against a class of quantum circuits C, if every for every t = poly(n) and every circuit
C ∈ C, we have ∣∣∣∣Ei [C (|ψi⟩⟨ψi|⊗t)]− E

j

[
C
(
|ψ′

j⟩⟨ψ′
j|⊗t
)]∣∣∣∣

1
= negl(n),

while across the same bipartition or cut of the qubits, the expected entanglement entropies of {|ψi⟩}
and {|ψ′

j⟩} are asymptotically different.

Definition 2.4. The unitary ensemble {Ui} on n qubits is a pseudorandom unitary ensemble (PRU)
against a class of quantum circuits C, if for the n-qubit Haar random unitary UHaar and every circuit
CU ∈ CU on t = poly(n) input qubits, we have∣∣∣∣Ei [CUi(|0t⟩⟨0t|)

]
− E

[
CUHaar(|0t⟩⟨0t|)

]∣∣∣∣
1
= negl(n). (1)

Here CU stands for a circuit C which uses U as oracle gates.
In this work we are concerned with the notion of PRU when U is guaranteed to be applied in

parallel, that is, (1) is only required to hold for circuits CU that apply all their U gates in a single
layer. In this case, we say {Ui} on n qubits is a parallel-query (or non-adaptive-query, as defined in
[MPS+24]) secure PRU against C. We refer to the part of the circuit CU before the layer of U gates as
pre-processing, and the part after as post-processing.
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We will also discuss some potential constructions of unconditional pseudorandom generators
against shallow quantum circuits, defined as follows.

Definition 2.5. The boolean function G : {0, 1}ℓ → {0, 1}n is a t-copy pseudorandom generator (PRG)
against a class of quantum circuits C, if for every circuit C ∈ C, we have∣∣∣∣ E

x∼{0,1}ℓ

[
C
(
|G(x)⟩⟨G(x)|⊗t)]− E

x∼{0,1}n

[
C
(
|x⟩⟨x|⊗t)]∣∣∣∣

1
= negl(n).

In particular, G is a pseudorandom generator against C if it is a t-copy pseudorandom generator for
every t = poly(n).

State and Unitary Designs

Here we recall the definitions and properties of exact and approximate designs, which are statistical
notions of pseudorandomness.

Definition 2.6 (State t-design). The state ensemble {|ψi⟩} on n qubits is a t-design, if for the n-qubit
Haar random unitary |ψHaar⟩, we have

E
i

[
|ψi⟩⟨ψi|⊗t] = E

[
|ψHaar⟩⟨ψHaar|⊗t] .

We say that {|ψi⟩} is an ε-approximate t-design, if instead we have∥∥∥∥E
i

[
|ψi⟩⟨ψi|⊗t]− E

[
|ψHaar⟩⟨ψHaar|⊗t]∥∥∥∥

1
≤ ε.

Lemma 2.7. Let {|ψi⟩} be an ϵ-approximate state 2-design on n qubits, and let B be a subsystem of
containing n − k qubits. We have

E
i

[
∥TrB[|ψi⟩⟨ψi|]∥2

2

]
≤ E

[
∥TrB[|ψHaar⟩⟨ψHaar|]∥2

2

]
+ ε.

Proof. Denote the complementary subsystem to B by A, which contains k qubits. Define the swap
operator R by the identity

Tr[TrB ρ1 · TrB ρ2] = Tr [(ρ1 ⊗ ρ2) · R] ,

where one can check that
R = ∑

x,y∈{0,1}k

|x⟩⟨y|A|y⟩⟨x|A′ ⊗ IBB′ .

Here A′ and B′ are identical copies of A and B respectively.
Since R is a permutation matrix, the operator norm of R is exactly 1. As a result, by Hölder’s

inequality we have

E
i

[
∥TrB[|ψi⟩⟨ψi|]∥2

2

]
− E

[
∥TrB[|ψHaar⟩⟨ψHaar|]∥2

2

]
= Tr

[(
E
i

[
|ψi⟩⟨ψi|⊗2]− E

[
|ψHaar⟩⟨ψHaar|⊗2]) · R

]
=

∥∥∥∥E
i

[
|ψi⟩⟨ψi|⊗t]− E

[
|ψHaar⟩⟨ψHaar|⊗t]∥∥∥∥

1
· ∥R∥∞ ≤ ε.
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Definition 2.8 (Unitary t-design). Let D = {Ui} be an ensemble of n-qubit unitaries. The unitary
ensemble D is a unitary t-design if, for the n-qubit Haar-random unitary UHaar, we have

E
i

[
U⊗t

i ⊗ (U†
i )

⊗t
]
= E

[
U⊗t

Haar ⊗ (U†
Haar)

⊗t
]

.

Define the t-th moment channels as

Φ(t)
D (ρ) = E

i

[
U⊗t

i · ρ · (U†
i )

⊗t
]

, Φ(t)
Haar(ρ) = E

[
U⊗t

Haar · ρ · (U†
Haar)

⊗t
]

,

we say that D is an ε-approximate unitary t-design, if for all operators ρ with ∥ρ∥1 ≤ 1 we have∥∥∥Φ(t)
D (ρ)− Φ(t)

Haar(ρ)
∥∥∥

1
≤ ε.

Lemma 2.9. Let {Ui} be an ϵ-approximate unitary 2-design on n qubits, and let B be a subsystem
of the n qubits. For every two n-qubit states |v⟩ and |w⟩, we have

E
i

[∥∥∥TrB[Ui|v⟩⟨w|U†
i ]
∥∥∥2

2

]
≤ E

[∥∥∥TrB[UHaar|v⟩⟨w|U†
Haar]

∥∥∥2

2

]
+ ε.

Proof. Denote the complementary subsystem to B by A, and assume that A contains k qubits.
Define the operator R the same way as the proof above for Lemma 2.7, and we have∥∥∥TrB(U|v⟩⟨w|U†)

∥∥∥2

2
= Tr

[
(U|v⟩⟨w|U†)⊗2 · R

]
.

Similarly, since ∥R∥∞ = 1 and
∥∥|v⟩⟨w|⊗2

∥∥
1 = 1, by Hölder’s inequality we have

E
i

[∥∥∥TrB[Ui|v⟩⟨w|U†
i ]
∥∥∥2

2

]
− E

[∥∥∥TrB[UHaar|v⟩⟨w|U†
Haar]

∥∥∥2

2

]
= Tr

[(
Φ(t)

D (|v⟩⟨w|⊗2)− Φ(t)
Haar(|v⟩⟨w|⊗2)

)
· R
]

=
∥∥∥Φ(t)

D (|v⟩⟨w|⊗2)− Φ(t)
Haar(|v⟩⟨w|⊗2)

∥∥∥
1
· ∥R∥∞ ≤ ε.

Schmidt Decomposition

We will need several facts about the Schmidt decomposition (listed below), whose proofs can be
found in e.g. [NC10].

Definition 2.10. Let H1,H2 be two Hilbert spaces, and let x ∈ H1 ⊗H2. If we write

x =
r

∑
i=1

αi · vi ⊗ wi, (2)

where αi ∈ C, vi ∈ H1 and wi ∈ H2, we call (2) a tensor product decomposition of x. Furthermore, if
both {vi} and {wi} are orthonormal and each αi is non-zero, we call (2) a Schmidt decomposition and
r the Schmidt rank of x with respect to H1 and H2.

Lemma 2.11. Let H1,H2 be two Hilbert spaces, and let x ∈ H1 ⊗H2. Then:

• In any tensor product decomposition of x as in (2), the number of terms r is at least the
Schmidt rank of x;
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• Let {vi} and {wj} be two orthonormal basis for H1 and H2, respectively. If we write

x = ∑
i,j

αij · vi ⊗ wj,

then the Schmidt rank of x is exactly the rank of the matrix with entry αij at the i-th row and
j-th column.

• The von Neumann entanglement entropy of x, with respect to the subsystems H1 and H2, is
at most log2 r where r is the Schmidt rank of x.

3 Unconditional pseudorandomness from 2-designs

In this section, we focus on state designs which exploit the locality properties of shallow circuits
in order to achieve unconditional pseudorandomness. At a high level, this resembles a quantum
analog of small bias distributions (e.g. [NN93]), which can fool low-degree polynomials. We will
begin with some facts about Haar random states, which relate the size of the subsystem with
entanglement entropy, and allow us to approximate small subsystems with maximally mixed
states.

Lemma 3.1 ([Lub78; LLZ+18]). Let |ψHaar⟩ be an n-qubit Haar random state, and let ρA be the
reduced density matrix of |ψHaar⟩⟨ψHaar| on the subsystem A with |A| = k qubits. Then

E[Tr(ρ2
A)] =

2k + 2n−k

2n + 1
.

Corollary 3.2. Let |ψHaar⟩ be an n-qubit Haar random state. For any t ≥ 1, let ρA be the reduced
density matrix of |ψHaar⟩⟨ψHaar|⊗t over a subsystem A. Then for every δ > 0, with probability at
least 1 − nO(k) · 2−n/2 · δ−1 over |ψHaar⟩, it holds for all A with |A| = k qubits that∥∥∥∥ρA − 1

2k Ik

∥∥∥∥
1
≤ δ.

Proof. First consider the case when A is fully contained in one copy of the Haar random state. In
this case from Lemma 3.1 we have

E

[∥∥∥∥ρA − 1
2k Ik

∥∥∥∥
1

]
≤ 2k/2 · E

[∥∥∥∥ρA − 1
2k Ik

∥∥∥∥
2

]

≤ 2k/2 · E

[∥∥∥∥ρA − 1
2k Ik

∥∥∥∥2

2

]1/2

= 2k/2 · E
[
Tr(ρ2

A)− 2−k
]1/2

= 2k/2 ·
(

2k − 2−k

2n + 1

)1/2

≤ 2k−n/2.

By Markov’s inequality, we know that
∥∥∥ρA − 1

2k Ik

∥∥∥
1
≤ δ/k holds with probability at least 1 −

k · 2k−n/2 · δ−1. By a union bound, this holds for all A with |A| ≤ k with probability at least
1 − nO(k) · 2−n/2 · δ−1.
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When A consists qubits from at most k different copies, we denote the subsystems as A =
A1 ⊔ A2 ⊔ · · · with |Ai| = ki. Since the copies are unentangled with each other, we have ρA =
ρA1 ⊗ ρA2 ⊗ · · · , and thus∥∥∥∥ρA − 1

2k Ik

∥∥∥∥
1
≤ ∑

i

∥∥∥∥ρA1 ⊗ · · · ⊗ ρAi − ρA1 ⊗ · · · ⊗ ρAi−1 ⊗
1

2ki
Iki

∥∥∥∥
1

= ∑
i

∥∥∥∥ρAi −
1

2ki
Iki

∥∥∥∥
1

≤ δ

with probability at least 1 − nO(k) · 2−n/2 · δ−1.

Notice that the proof of Corollary 3.2 only uses the second moment properties of |ψHaar⟩, and
therefore the conclusions immediately hold for approximate 2-designs with negligible error as well.

Corollary 3.3. Let {|ψi⟩} be an ε-approximate 2-design on n qubits. For any t ≥ 1, let ρA be the
reduced density matrix of |ψi⟩⟨ψi|⊗t over a subsystem A. Then for every δ > 0, with probability at
least 1 − nO(k) · (ε + 2−n)1/2 · δ−1 over i, it holds for all A with |A| = k qubits that∥∥∥∥ρA − 1

2k Ik

∥∥∥∥
1
≤ δ.

Proof. By Lemma 2.7, the approximate design property implies that

E
[
Tr(ρ2

A)− 2−k
]1/2

≤ (ε + 2k−n)1/2,

and thus

E

[∥∥∥∥ρA − 1
2k Ik

∥∥∥∥
1

]
≤ 2k · (ε + 2−n)1/2.

The rest of the proof follows the same arguments from Corollary 3.2.

3.1 Pseudorandomness against QNC0

As a warm-up, we will use Corollary 3.2 and Corollary 3.3 to show that any 2-design is indistin-
guishable to a Haar random state, with respect to any QNC0 distinguisher.

Theorem 3.4. Let {|ψi⟩} be an ε-approximate 2-design on n qubits for some ε = negl(n). Then
{|ψi⟩} is a PRS against QNC circuits with depth

d = min(log log(1/ε), log n)− log log n − ω(1)

and a single-bit output. In particular, when ε ≤ 2−Ω(n), {|ψi⟩} is PRS against QNC circuits up to
depth d = log n − log log n − ω(1).

Proof. The output bit of the depth-d QNC circuit depends on at most k = 2d input qubits and
ancillae. Let A be the subsystem of the input state on these qubits, and let m be the number of
ancillae touched. Denote the reduced density matrix, over the subsystem A, of the Haar random
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state to be ρHaarA and that of the state picked from {|ψi⟩} to be ρA. Then for the channel ΦC that
maps the subsystem A to the output qubit, we have∥∥∥ΦC

(
ρHaarA

)
− ΦC (ρA)

∥∥∥
1
≤
∥∥∥ρHaarA − ρA

∥∥∥
1
= negl(n),

with probability at least 1 − negl(n) over the choice of the states. This follows from Corollary 3.2
and Corollary 3.3, and the observation that

nO(k) · (ε + 2−n)1/2 ≤ negl(n)

is equivalent to

O(k) ≤ log(1/(ε + 2−n))

2 log n
− ω(1),

which is satisfied for every d = log k such that

d ≤ min(log log(1/ε), log n)− log log n − ω(1).

The above theorem can be strengthened to work for the case when multiple output qubits are
measured.

Corollary 3.5. Let {|ψi⟩} be an ε-approximate 2-design on n qubits for some ε = 2−Ω(n). Then |ψi⟩
is a PRS against QNC circuits with depth d and k ≤ 2−d · o(n/ log n) bits of output.

Proof. The backward lightcone of the k output qubits is of at most

k · 2d = o(n/ log n)

in size. The proof then follows from the same argument as Theorem 3.4.

3.2 Pseudorandomness against AC0 ◦QNC0

The lightcone argument in the previous section renders most parts of a QNC0 circuit and most
input qubits unrelated. Naturally, it is more desirable to prove the statement against QNC0 circuits
where all the output qubits are measured, that is, the output distribution is indistinguishable in
total variation distance between t-designs and Haar random states. However, our example below
shows that this is too much to ask for, even when the QNC0 circuit does nothing and the input
states get measured immediately.

Definition 3.6 (Random phased subspace states). A d-dimensional random phased subspace state on
n qubits is the following state:

|ψS, f ⟩ =
1

2d/2 ∑
x∈S

(−1) f (x)|x⟩,

where S ∈ Fn
2 is a random d-dimensional linear subspace, and f : S → {0, 1} is a random function.

Theorem 3.7. For every n > d > t, {|ψS, f ⟩} is an O(2t−d)-approximate t-design, but |ψS, f ⟩⊗(d+1)

and |ψHaar⟩⊗(d+1) are distinguishable when measured in the computational basis, with total varia-
tion distance 1 − O(2d)/2n.
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Proof. The proof that {|ψS, f ⟩} is an approximate design is deferred to Appendix A. To distinguish
d + 1 copies of {|ψS, f ⟩} from Haar random, notice that the measurement outcome in each copy is a
random x ∈ S, and thus the d + 1 outcomes must be linearly dependent. On the other hand, the
measurement outcomes from d + 1 copies of a Haar random state, when all distinct, form a random
(d + 1)-element subset of {0, 1}n because of symmetry, and therefore are linearly dependent with
probability at most

1
2n +

1
2n−1 + · · ·+ 1

2n−d ≤ 1
2n−d−1 .

We also know that the collision probability for a Haar random state is 2/(2n + 1) [DHB22], and
thus the probability for the outcomes not being all distinct is at most d(d + 1)/2n by the union
bound. As a result, the total variation distance between the measurement outcomes of |ψS, f ⟩⊗(d+1)

and |ψHaar⟩⊗(d+1) is at least 1 − 1/2n−d−1 − d(d + 1)/2n = 1 − O(2d)/2n.

Notice that not only the distinguisher in Theorem 3.7 applies no quantum gates, the classical
post-processing on the measurement outcomes are also quite simple. It checks linear dependence
whose complexity is captured by DET, a complexity class between NC1 and NC2 containing all
problems reducible to determinant. This motivates us to examine the case when the classical
post-processing is restricted to some provably weaker class than DET. It turns out that for AC0,
2-designs are indeed still pseudorandom in this case. We crucially make use of the follow result,
first proved by Braverman [Bra08], subsequentially improved by [Tal17] and Harsha and Srinivasan
[HS19], that almost k-wise uniform distributions fools AC0:

Lemma 3.8. For every δ-almost k-wise independent distribution on m bits, any AC circuits with
size s and depth d cannot distinguish it from the uniform distribution with advantage ε + mkδ, for
certain k = (log s)O(d) · log(1/ε).

We start out with the simple case, when no ancilla is allowed for the QNC0 circuit.

Theorem 3.9. Let {|ψi⟩} be an ε-approximate 2-design on n qubits for some ε = 2− logω(1) n. Then
|ψi⟩ is a PRS against AC0 ◦QNC0 circuits with no ancilla.

Proof. Suppose the circuit has size s and depth d. Fix some k = (log s)O(d) · log2 n = logO(1) n
according to Lemma 3.8.

The output of the QNC0 circuit, when all qubits are measured, is a distribution D|ψ⟩ over
m = poly(n) bits that depends on the input state |ψ⟩. By Corollary 3.3, for both D|ψi⟩ and D|ψHaar⟩,
with probability 1 − negl(n), the marginal distribution on every k bits are δ-indistinguishable from
the case when the input states are maximally mixed, for every δ > 0 such that nO(k) · (ε + 2−n)1/2 ·
δ−1 = negl(n).

Since there is no ancilla, the output distribution when the inputs are maximally mixed is
the uniform distribution. Therefore both D|ψi⟩ and D|ψHaar⟩ are δ-almost k-wise independent. By
Lemma 3.8 both distributions are indistinguishable from the uniform distribution against the AC0

post-processing, as long as mkδ = nO(k)δ is negligible. This is satisfied by our choice of ε, as

nO(k) · (ε + 2−n)1/2 = 2logO(1) n−logω(1) n = negl(n).

Notice that for exact 2-designs, that is when ε = 0, we only need k = o(n/ log n), and thus
Theorem 3.9 can be strengthened to work against AC ◦QNC circuits of polynomial size, QNC depth
up to o(log n) and AC depth up to o(log n/ log log n).

The situation becomes more complicated when ancillae are allowed. In this case, although D|ψi⟩
and D|ψHaar⟩ are still almost k-wise indistinguishable (that the marginal distribution on every k bits
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are close in total variation distance), they are no longer k-wise independent and are not guaranteed
to fool AC0 circuits when k is small [BIV+16]. This happens because we have no knowledge of the
output distribution of the QNC0 circuit with ancillae even when the inputs are maximally mixed.
The saving grace is that, when the number of ancillae is small, the output distribution has high
entropy and we can modify Braverman’s proof in [Bra08] to suit such distributions:

Lemma 3.10. For every two δ-almost k-wise indistinguishable distributions D1,D2 on m bits, such
that D1 has min-entropy at least m − r, any AC circuits with size s and depth d cannot distinguish
the two distributions with advantage ε + 4mkδ, for certain k = (log s)O(d) · (r + log(1/ε)).

Proof. We first consider the case when δ = 0. Suppose the AC0 circuit with size s and depth d
computes a boolean function F, Braverman showed that [Bra08, Lemma 11] there exists a boolean
function F′ and polynomial f ′ of degree k = (log s)O(d) · log(1/ε′), such that:

• PD′
2
[F ̸= F′] < ε′,

• PU [F ̸= F′] < ε′,

• F′ ≥ f ′ on {0, 1}m and EU [F′ − f ′] < ε′.

Here U stands for the uniform distribution over {0, 1}m. Since D1 has min-entropy at least m − r,
we have PD1 [F ̸= F′] < 2rε and ED1 [F

′ − f ′] < 2rε. As a result,

E
D2

[F] > E
D2

[
F′]− ε′ ≥ E

D2

[
f ′
]
− ε′

= E
D1

[
f ′
]
− ε′ > E

D1

[
F′]− (2r + 1)ε′

> E
D1

[F]− (2r+1 + 1)ε′.

The bound in the reverse direction also holds by considering 1 − F. Taking ε′ = ε/(2r+1 + 1) gives
us |ED1 [F]− ED2 [F]| < ε.

For δ > 0, we can assume that mkδ < 1, as otherwise the lemma is trivial. By [BIV+16], there
exists two k-wise indistinguishable distributions D′

1,D′
2 on m bits such that |D1 −D′

1|1 ≤ 2mkδ and
|D2 −D′

2|1 ≤ 2mkδ. Furthermore, the construction ensures that ∥D′
1∥∞ ≤ ∥D1∥∞ + 2mkδ · 2−m, and

thus D′
1 still has min-entropy at least m − O(r). Applying the previous claim on D′

1,D′
2 we have∣∣∣ED′

1
[F]− ED′

2
[F]
∣∣∣ < ε, and thus |ED1 [F]− ED2 [F]| < ε + 4mkδ.

Theorem 3.11. Let {|ψi⟩} be an ε-approximate 2-design on n qubits for some ε = 2− logω(1) n. Then
|ψi⟩ is a PRS against AC0 ◦QNC0 circuits with a = polylog(n) ancillae.

Proof. The forward lightcone of the ancillae touches at most r = 2da = logO(1) n output qubits. We
called the these qubits corrupted, denoted as the subsystem R. We define R as the distribution
over {0, 1}r following the measurement outcome on the corrupted qubits when the input states are
maximally mixed.

Similar to the proof of Theorem 3.9, suppose the circuit has size s and depth d, and we fix some
k = (log s)O(d) · (r + log2 n) = logO(1) n according to Lemma 3.10. Denote the output distribution
of the QNC0 circuit as D|ψ⟩ with the input state |ψ⟩. Let δ > 0 satisfies nO(k) · (ε + 2−n)1/2 · δ−1 =
negl(n). We claim that with probability 1 − negl(n), both D|ψi⟩ and D|ψHaar⟩ are δ-almost k-wise
indistinguishable from U ⊗R, where U is the uniform distribution over the uncorrupted output
bits.
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𝑈𝑅𝑈𝐵

input states ȁ ۧ𝜓
⊗poly(𝑛)

𝑘 output qubits 𝐾

corrupted qubits 𝑅

Figure 1: An illustration of the proof of Theorem 3.11, with partial systems and unitary lightcones
in an QNC0 circuit.

To prove the claim, let A be the ancilla qubits, and ρA be the initial state of the ancillae. Let
the unitary operator UR consist of all gates in the QNC0 circuit that belongs to the lightcone of the
ancillae. Fixing any k output qubits K, we extending K to K ∪ R so that it contains all the corrupted
qubits, and denote UB as the unitary operator that consists of all gates in the backward lightcone
of K but outside UR. Notice that we can think of UR as being applied after UB. At the input, the
backward lightcone of K touches the set of non-ancillae qubits B with |B| = b, and we let ρB be the
state of B when the input states are copies of |ψ⟩.

Now the output state on K is a partial trace of

(IA∪B\R ⊗ UR)(UBρBU†
B ⊗ ρA)(IA∪B\R ⊗ U†

R), (3)

and it suffices to show that no matter if |ϕ⟩ is drawn from {|ψi⟩} or |ψHaar⟩, with high probability
the above state is close to the case when ρB is maximally mixed. Indeed, by Corollary 3.2 and
Corollary 3.3, in both former cases with probability 1 − negl(n) we have

∥∥∥ρB − 2−(k−a)IB

∥∥∥
1
≤ δ.

This means that the state in (3) if δ-close in trace distance to

(IA∪B\R ⊗ UR)(2−bIB ⊗ ρA)(IA∪B\R ⊗ U†
R) = 2−(a+b−r)IA∪B\R ⊗ 2−(r−a)UR(IR\A ⊗ ρA)U†

R.

Notice that 2−(r−a)UR(IR\A ⊗ ρA)U†
R is exactly the output state on R when the input states are

maximally mixed, and therefore the measurement outcome has the distribution R. Meanwhile
2−(a+b−r)IA∪B\R is maximally mixed and will be measured to the uniform distribution. Thus we
conclude that the output distributions on the k bits are δ-close to U ⊗R, for both D|ψi⟩ and D|ψHaar⟩.

Now we use the fact that U ⊗R, as a distribution over {0, 1}m, has min-entropy at least m − r.
By Lemma 3.10, both D|ψi⟩ and D|ψHaar⟩ are indistinguishable from U ⊗ R against the AC0 post-
processing, as long as mkδ = nO(k)δ is negligible. Similar to the proof of Theorem 3.9, this is satisfied
by our choice of ε.

Similar to the case of Theorem 3.9, for exact 2-designs, Theorem 3.11 can be strengthened to
work against AC ◦QNC circuits of polynomial size, QNC depth up to o(log n) and AC depth up to
o(log n/ log log n). On the other hand, for constant depth circuits the number of ancillae can be
strengthened close to linear.
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Corollary 3.12. Let {|ψi⟩} be an exact 2-design on n qubits. Then |ψi⟩ is a PRS against AC0 ◦QNC0

circuits with a = n/ logω(1) n ancillae.

Proof. In the proof of Theorem 3.11, when ε = 0 we can take δ = 2−n/4, and thus to have mkδ =
negl(n) for any m = poly(n) we only need k = o(n/ log n). When d = O(1), this is satisfies by any
a = 2−dr = n/ logω(1) n.

3.3 Pseudoentanglement against AC0 ◦QNC0

In contrast to prior works that constructed pseudoentanglement from quantum secure one-way
functions, here we prove that unconditional pseudoentanglement is possible against shallow
circuits, using random phased subspace states (see Definition 3.6). We will show that such states
form good enough approximate t-designs, even when the phases are picked using a 2t-wise
independent function, and thus yield pseudorandomness by our previous results.

Corollary 3.13. Let {|ψS, f ⟩} be the ensemble of d-dimensional random phased subspace states,
instantiated with a 4-wise independent function f : {0, 1}n → {0, 1}. Then the following properties
hold:

• The ensemble is indistinguishable from a Haar random ensemble against:

– QNC0 circuits, when d = ω(log n);

– AC0 ◦QNC0 circuits with polylog(n) ancillae, when d = logω(1) n;

• The von Neumann entanglement entropy across any cut is at most d.

Proof. First notice that even when f is 4-wise independent (or in general, 2t-wise independent)
instead of truly random, the proof of the design property of {|ψS, f ⟩} in Appendix A still holds.
Specifically, in Equation (9):

E
f

[
|ψS, f ⟩⟨ψS, f |⊗t] = 1

2dt ∑
x1,...,xt∈S
y1,...,yt∈S

E
f

[
(−1) f (x1)+...+ f (xt)+ f (y1)+...+ f (yt)

]
|x1 · · · xt⟩⟨y1 · · · yt|,

When f is 2t-wise independent, the expectation of (−1) f (x1)+...+ f (xt)+ f (y1)+...+ f (yt) is the same as if
f is truly random. As a result, |x1 · · · xt⟩⟨y1 · · · yt| still has non-zero coefficient out only when each
element of S appears even number of times in (x1, . . . , xt, y1, . . . , yt). The rest of the proof is exactly
the same as in Appendix A. Specifically for t = 2, since {|ψS, f ⟩} is an O(2−d)-approximate 2-design,
the indistinguishability from Haar random states follows from Theorem 3.4 and Theorem 3.11.

On the other hand, note that the states are given by

1
2d/2 ∑

x∈S
(−1) f (x)|x⟩, (4)

where d is the dimension of the subspace. For any cut of the qubits, (4) gives a tensor product
decomposition of the state with at most 2d terms. Hence, by Lemma 2.11, the Schmidt rank of the
state is at most 2d and the corresponding von Neumann entanglement entropy is at most d.

Preparing phased subspace states. Subspace states are known to be efficiently preparable with
O(nd) gates [KP22]. The 4-wise independent function f : {0, 1}n → {0, 1} can be constructed from
seeds of length O(n) in poly(n) time (see e.g. [Vad12, Section 3.5]). The phases are put into the
state using an efficient controlled operation.
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4 Parallel-query secure PRU against local QNC0

In previous sections we examined the pseudorandom properties of state designs against shallow
quantum circuits. In this section we turn to unitary designs and show that they are also pseudoran-
dom when queried in parallel, but against the more restricted class of circuits that are geometrically
local. Specifically, we consider the distinguisher to be a circuit C′ · (U⊗t ⊗ I) · C, where C, C′ are
both 1-dimensional geometrically local QNC0 circuits, and U is either a unitary 2-design or a Haar
random unitary applied on n consecutive qubits. The following folklore fact about geometrically
local QNC0 circuits is crucial for us:

Lemma 4.1. Let C be an 1-dimensional local QNC circuit of depth d on n qubits. Then for every
k ∈ [n − 1], the Schmidt rank of the state C|0n⟩ between the first k qubits and the remaining (n − k)
qubits is at most 4d.

Proof. We prove this by an induction over d, and the base case when d = 0 is trivial. Suppose that
after the first d layer of gates we have the Schmidt decomposition ∑4d

i=1 αi|vi⟩|wi⟩, where |vi⟩ is on k
qubits and |wi⟩ is on (n − k) qubits. In layer d + 1, only the gate U (if it exists) that acts on the k-th
and the (k + 1)-th qubits would affect the Schmidt rank. We can write U with an arbitrary tensor
product decomposition U = ∑4

j=1 Aj ⊗ Bj where Aj, Bj ∈ C2×2, so that the state after applying U
becomes

4d

∑
i=1

4

∑
j=1

αi(Aj|vi⟩)⊗ (Bj|wi⟩).

By Lemma 2.11 we know that the above state has Schmidt rank at most 4d+1, and it is not affected
by the remaining gates in the same layer.

We will make use of a stronger statement that allows us to perform the Schmidt decomposition
recursively on the t blocks of n qubits (a notion that we borrow from [GK12]):

Lemma 4.2 (Recursive Schmidt Decomposition). Let C be a 1-dimensional local QNC circuit of
depth d on tn qubits. Then we can write the state C|0tn⟩ as

C|0tn⟩ =
r

∑
i1,...,it=1

αi1,...,it · |v1,i1⟩ ⊗ |v2,i1,i2⟩ ⊗ · · · ⊗ |vt,i1,...,it⟩ (5)

where the Schmidt rank r ≤ 4d, and |vτ,i1,...,iτ
⟩ is an n-qubit state. For every τ ∈ [t], i1, . . . , iτ ∈ [r]

and i′τ ̸= iτ, we have the orthogonality condition

⟨vτ,i1,...,iτ−1,iτ
|vτ,i1,...,iτ−1,i′τ ⟩ = 0,

and the complex numbers αi1,...,it satisfy ∑ |αi1,...,it |2 = 1.

Proof. Let r be the maximum Schmidt rank between the first τn and the remaining (t − τ)n
qubits, for any τ ∈ [t]. By Lemma 4.1 we have r ≤ 4d. The recursive application of the Schmidt
decomposition starts with the cut between the first n qubits and the remaining (t − 1)n qubits:

C|0tn⟩ =
r

∑
i1=1

αi1 · |v1,i1⟩ ⊗ |w1,i1⟩.
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The next step is to perform a Schmidt decomposition over each |w1,i1⟩, for which we need an
upper bound on the Schmidt rank. We can also write |w1,i1⟩ in the computational basis to get

C|0tn⟩ =
r

∑
i1=1

∑
x∈{0,1}n

∑
y∈{0,1}(t−2)n

αi1 βi1,x,y · |v1,i1⟩|x⟩|y⟩.

Since {|v1,i1⟩} can be expanded into an orthonormal basis on the first n qubits, so can {|v1,i1⟩|x⟩}
on the first 2n qubits. As a result, the Schmidt rank of C|0tn⟩ between the first 2n and the remaining
(t − 2)n qubits is exactly the rank of the 2nr × 2(t−2)n matrix M, where

M((i1, x), y) = αi1 βi1,x,y.

On the other hand, whenever αi1 ̸= 0, the Schmidt rank of |w1,i1⟩ on the same cut is the rank of the
submatrix of α−1

i1
M, with the row index i1 fixed, and thus is at most r. Therefore we get

C|0tn⟩ =
r

∑
i1,i2=1

αi1,i2 · |v1,i1⟩ ⊗ |v2,i1,i2⟩ ⊗ |w2,i1,i2⟩.

Continuing the process for every τ ∈ [t] results in a tree-like structure as in (5), and the sum of
squares of the coefficients is guaranteed to be 1 by the orthogonality of the states.

We also need the following lemma in analogy to Lemma 3.1, but on cross (off-diagonal) terms
conjugated with Haar random unitaries.

Lemma 4.3. Let U be an n-qubit Haar random unitary, and let A be a subsystem with |A| = k
qubits and B = [n] \ A. For every two n-qubit states |v⟩ and |w⟩ such that ⟨v|w⟩ = 0, we have

E

[∥∥∥TrB[U|v⟩⟨w|U†]
∥∥∥2

2

]
≤ 2k−n.

Proof. Without loss of generality, we can assume that U|w⟩ = |0n⟩, and U|v⟩ = |u⟩ is a uniformly
random state orthogonal to |0n⟩. In this case, we can write

TrB[U|v⟩⟨w|U†] = ∑
x∈{0,1}n−k

(IA ⊗ |x⟩⟨x|B)|u⟩⟨0n|(IA ⊗ |x⟩⟨x|B)

= (IA ⊗ |0n−k⟩⟨0n−k|B)|u⟩⟨0n|.

And thus,∥∥∥TrB[U|v⟩⟨w|U†]
∥∥∥2

2
= Tr

[
(IA ⊗ |0n−k⟩⟨0n−k|B)|u⟩⟨0n|0n⟩⟨u|(IA ⊗ |0n−k⟩⟨0n−k|B)

]
= Tr

[
(IA ⊗ |0n−k⟩⟨0n−k|B)|u⟩⟨u|

]
= ∑

x∈{0,1}k

∣∣∣⟨xA0n−k
B |u⟩

∣∣∣2 .

As a side note, this directly implies that∥∥∥TrB[U|v⟩⟨w|U†]
∥∥∥

2
≤ 1 (6)

regardless of the choice of |v⟩, |w⟩ or U, which will be useful later on.
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Since |u⟩ is a uniformly random state orthogonal to |0n⟩, for every x ∈ {0, 1}n \ {0n}, ⟨x|u⟩ has
the same distribution. Therefore every term in the summation above, except |⟨0n|u⟩|2, has the same
expectation which is 1/(2n − 1). Therefore we conclude that

E

[∥∥∥TrB[U|v⟩⟨w|U†]
∥∥∥2

2

]
=

2k − 1
2n − 1

< 2k−n.

The above result allows us to show that the output of non-adaptive queries of a Haar random
unitary has the property that every subsystem of k qubits are almost maximally mixed, similar to
Corollary 3.2, when the input state admits the recursive Schmidt decomposition.

Corollary 4.4. Let U be an n-qubit Haar random unitary. For t ≥ 1, let |ψ⟩ be a tn-qubit state that
admits the recursive Schmidt decomposition with rank r as in Lemma 4.2. Let ρA be the reduced
density matrix of U⊗t|ψ⟩⟨ψ|U†⊗t over a subsystem A with |A| = k qubits. Then for every δ > 0,
with probability at least 1 − O(r) · 2k−n/2 · δ−1 over U, it holds that∥∥∥∥ρA − 1

2k Ik

∥∥∥∥
1
≤ δ.

Proof. To take the partial trace for subsystem A, we assume that A consists of k1, . . . , kt qubits in
each block of n qubits respectively, and let Bτ be the part outside A in the τ-th block. With the
recursive Schmidt decomposition (5) we can write

U⊗t|ψ⟩⟨ψ|U†⊗t =
r

∑
i1,...,it,

j1,...,jt=1

αi1,...,it αj1,...,jt · U|v1,i1⟩⟨v1,j1 |U
† ⊗ · · · ⊗ U|vt,i1,...,it⟩⟨vt,j1,...,jt |U†. (7)

In addition, we can also write the decomposition (5) only to a certain level τ < t to get

|ψ⟩ =
r

∑
i1,...,iτ=1

αi1,...,iτ
· |v1,i1⟩ ⊗ |v2,i1,i2⟩ ⊗ · · · ⊗ |vτ,i1,...,iτ

⟩ ⊗ |wτ,i1,...,iτ
⟩,

where |wτ,i1,...,iτ
⟩ is a state on (t − τ)n qubits such that

αi1,...,iτ
|wτ,i1,...,iτ

⟩ =
r

∑
iτ+1,...,it=1

αi1,...,it · |vτ+1,i1,...,iτ+1⟩ ⊗ · · · ⊗ |vt,i1,...,it⟩.

Notice that it also implies

|αi1,...,iτ
|2 =

r

∑
iτ+1,...,it=1

|αi1,...,it |2.

This way, we can group the summands in (7) depending on the smallest coordinate τ such that
iτ ̸= jτ (when τ = t + 1, it means that (i1, . . . , it) is identical to (j1, . . . , jt)), and have

U⊗t|ψ⟩⟨ψ|U†⊗t =
t+1

∑
τ=1

r

∑
i1,...,iτ=1

∑
jτ ̸=iτ

αi1,...,iτ
αi1,...,iτ−1,jτ · U|v1,i1⟩⟨v1,i1 |U

† ⊗ · · ·

⊗ U|vτ,i1,...,iτ
⟩⟨vτ,i1,...,iτ−1,jτ |U† ⊗ U⊗(t−τ)|wτ,i1,...,iτ

⟩⟨wτ,i1,...,iτ−1,jτ |U†⊗(t−τ). (8)

Now consider each summand in (8) with τ ≤ t. By Lemma 4.3, we have

E

[∥∥∥TrBτ [U|vτ,i1,...,iτ
⟩⟨vτ,i1,...,iτ−1,jτ |U†]

∥∥∥2

2

]
≤ 2kτ−n.
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Therefore, after taking the partial trace, with the bound (6) on the Frobenius norms of the other
blocks, we can bound the expected Frobenius norm of the entire summand by

∣∣αi1,...,iτ
αi1,...,iτ−1,jτ

∣∣ ·
2(kτ−n)/2. Thus by linearity of expectation and triangular inequality, these summands in total has
expected Frobenius norm of at most

t

∑
τ=1

r

∑
i1,...,iτ=1

∑
jτ ̸=iτ

∣∣αi1,...,iτ
αi1,...,iτ−1,jτ

∣∣ · 2(kτ−n)/2

=
t

∑
τ=1

r

∑
i1,...,iτ−1=1

(
r

∑
iτ=1

|αi1,...,iτ |
)2

· 2(kτ−n)/2

≤
t

∑
τ=1

r

∑
i1,...,iτ=1

|αi1,...,iτ |
2 · r · 2(kτ−n)/2

≤ r · 2(k−n)/2.

The remaining summands are those with (i1, . . . , it) = (j1, . . . , jt), and their sum is exactly
r

∑
i1,...,it=1

|αi1,...,it |
2 · U|v1,i1⟩⟨v1,i1 |U

† ⊗ · · · ⊗ U|vt,i1,...,it⟩⟨vt,i1,...,it |U†.

By Lemma 3.1, similarly to the deduction in Corollary 3.2, we know that the partial trace in each
block, denoted by Mτ = TrBτ [U|vτ,i1,...,iτ

⟩⟨vτ,i1,...,iτ
|U†],satisfies that

E

[∥∥∥∥Mτ −
1

2kτ
Ikτ

∥∥∥∥
2

]
≤ 2(kτ−n)/2.

Thus by a hybrid argument, we have

E

[∥∥∥∥M1 ⊗ · · · ⊗ Mt −
1
2k Ik

∥∥∥∥
2

]
≤

t

∑
τ=1

E

[∥∥∥∥M1 ⊗ · · · ⊗ Mτ−1 ⊗
(

Mτ −
1

2kτ
Ikτ

)∥∥∥∥
2

]
≤

t

∑
τ=1

2(kτ−n)/2 ≤ 2(k−n)/2.

Since ∑ |αi1,...,it |
2 = 1, we conclude that

E

[∥∥∥∥ρA − 1
2k Ik

∥∥∥∥
1

]
≤ 2k/2 · E

[∥∥∥∥ρA − 1
2k Ik

∥∥∥∥
2

]
≤ (r + 1) · 2k−n/2.

By Markov’s inequality, we know that
∥∥∥ρA − 1

2k Ik

∥∥∥
1
≤ δ holds with probability at least 1 − (r + 1) ·

2k−n/2 · δ−1.

Since the proof of Corollary 4.4 only uses the second moment properties of U (Lemma 3.1 and
Lemma 4.3 to be exact), using Lemma 2.9 we can also conclude the following for approximate
unitary 2-designs.

Corollary 4.5. Let {Ui} be an ε-approximate unitary 2-design on n qubits. For t ≥ 1, let |ψ⟩ be a
tn-qubit state that admits the recursive Schmidt decomposition with rank r as in Lemma 4.2. Let
ρA be the reduced density matrix of U⊗t

i |ψ⟩⟨ψ|U†⊗t
i over a subsystem A with |A| = k qubits. Then

for every δ > 0, with probability at least 1 − 2O(k) · r · (ε + 2−n)1/2 · δ−1 over i, it holds that∥∥∥∥ρA − 1
2k Ik

∥∥∥∥
1
≤ δ.
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Combining the above corollaries together, we obtain the desired pseudorandomness against
geometrically local QNC0 circuits.

Theorem 4.6. Let {Ui} be an ε-approximate unitary 2-design on n qubits for ε = 2−Ω(n). Then
{Ui} is non-adaptive secure PRU against 1-dimensional geometrically local QNC circuits of depth
d = log n − ω(1). Moreover, the pre-processing part of the QNC circuit (before applying Ui) could
have depth up to o(n).

Proof. The proof follows from that of Theorem 3.4. Since the output of the QNC circuit depends
on only k = 2d = o(n) qubits from the output of U⊗t, by Corollary 4.4 and Corollary 4.5 we know
that the outputs have negl(n) trace distance between the Haar random U and unitary design {Ui},
with probability 1 − negl(n) over the choice of the unitaries. This is because

2O(k) · r · (ε + 2−n)1/2 ≤ negl(n)

when k = o(n) and ε = 2−Ω(n), and r ≤ 2d from Lemma 4.2. In addition, the circuit depth d used to
bound the Schmidt rank r only concerns the depth of the pre-processing part of the circuit, which
can be raised up to o(n).

Although Corollary 4.4 and Corollary 4.5 have virtually the same form as Corollary 3.2 and
Corollary 3.3, we cannot use the techniques in Section 3.2 to directly obtain the similar security of
PRU against QNC0 circuits with AC0 post-processing. The reason is that in Section 3.2 we have to
limit the number of ancillae, and here they correspond to the qubits that U is not applied to, which
we cannot put any natural restrictions on. However, in the artificial scenario where we force the the
unitary to be applied in parallel on all qubits (and therefore allow no ancillae for the post-processing
AC0 ◦QNC0 circuit), we can obtain the following statement in analogy to Theorem 3.9:

Theorem 4.7. Let {Ui} be an ε-approximate unitary 2-design on n qubits for ε = 2− logω(1) n. Then
{Ui} is PRU against a subclass of AC0 ◦QNC0 circuits on a multiple of n qubits, where Ui is applied
non-adaptively over all the qubits used by the circuit, and the pre-processing QNC0 circuit before
applying Ui is 1-dimensional geometrically local.

5 Discussion and outlook

Our work initiates the study of unconditionally fooling shallow quantum circuits. In general,
statistical and computational notions of quantum pseudorandomness—such as t-designs and
PRS—are incomparable. Our work shows that in the low-complexity regime, the two notions can
in fact overlap and illustrate rich connections to computational complexity theory, reminiscent
of the intimate relation between hardness and randomness in classical computation. Our work
leaves a number of interesting questions regarding the connections between hardness and quantum
pseudorandomness. We discuss a few of these below.

Fooling stronger circuits. What are the strongest class of quantum circuits that t-designs, or in
particular 2-designs, can fool? We conjecture that 2-designs are computationally secure against
QAC0 circuits as well. To prove this, it suffices to show a QAC analogy of Braverman’s result on
almost k-wise maximally mixed input states. These states have the property that every subsystem on
k qubits is close to being maximally mixed, and we conjecture that they cannot be distinguished
from the true maximally mixed state by QAC circuits of small depths.
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A more immediate improvement on our results would be the removal of the constraints on
ancillae in Theorem 3.11 and Corollary 3.12. The reason we require a bounded number of ancillae
is purely technical: we need this to argue that the output distribution has high min-entropy, as
otherwise the k-wise indistinguishability would not guarantee that we can fool AC0 circuits. We
note that a similar techinical issue occured in the AC0 ◦QNC0 lower bound lower bound result of
[Slo24].

Stronger security for PRU. The unconditional security we proved for PRU is quite limited.
Specifically, in Theorem 4.6 we could only show security when the unitaries are queried non-
adaptively, while the adversaries are 1-dimensional geometrically local QNC circuits. Can we lift
the requirement of non-adaptivity or geometric locality?

We conjecture that new constructions are necessary in order to achieve security against adaptive
queries. In other words, there exist (approximate) t-designs that are not PRU against QNC0 circuits
with adaptive queries. Such an example that works for arbitrary t ≤ poly(n) would also give a
separation between non-adaptive and adaptive PRU.

Optimal pseudoentanglement. It is known that the optimal entanglement entropy gap for
pseudoentanglement is ω(log n) versus O(n), which is achievable across every cut when assuming
the existence of post-quantum one way functions [ABF+24]. In Corollary 3.13 we showed explicit
examples of unconditional pseudoentanglement, which is optimal across every cut against QNC0

distinguishers, but only logω(1) n versus O(n) against an AC0 ◦ QNC0 adversary. Can we also
construct unconditional optimal pseudoentanglement against AC0 ◦QNC0, or even stronger circuits?

PRG against shallow circuits. In this work we did not consider classical pseudorandom prim-
itives, such as PRGs. One of the reasons is that we need to be careful about the definition when
the adversaries are shallow quantum circuits, since it makes a difference whether or not we allow
access to multiple copies of the PRG output. In fact, if the adversary could only access a single copy,
then the classical Nisan-Wigderson generator [Nis92; NW94] instantiated by the parity function
would directly give an unconditional PRG with polylog(n) seed length against QAC0 circuits with
bounded number of ancillae, using the recently results on the hardness of parity against QAC0

[NPV+24; ADO+24]. However, the hardness proofs in these works, which examine the Pauli
spectrum of the QAC0 circuit, break down when allowing multi-copy access to the input, as even a
single classical fan-out gate could significantly increase the Pauli weight of the overall circuit.

As a result, designing unconditional multi-copy secure PRG against QAC0 circuits remains
to be an intriguing open problem. A follow-up direction is to use such PRG to construct other
pseudorandom primitives such as pseudorandom functions or even PRS and PRU. Notice that we
have recipes for these constructions against polynomial-sized adversaries, but in order to work
against bounded adversaries, the construction needs to be super-efficient and such constructions
are largely unknown.

Fooling other models. Finally, an open-ended question is to find unconditional pseudorandom
objects against other restricted models of quantum computation, with or without our constructions
and techniques. It was shown in [GR22] that the INW generator [INW94] is secure against space-
bounded quantum computation. To study PRS or PRU against such models, the first challenge lies
in finding the most relevant and useful definition, which we leave for future work.
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A Design properties of random phased subspace states

Here we show that the random phased subspace states |ψS, f ⟩, defined in Definition 3.6, form an
approximate design. Fixing the subspace S and taking the average over the random function
f : S → {0, 1}, we have

E
f

[
|ψS, f ⟩⟨ψS, f |⊗t] = 1

2dt ∑
x1,...,xt∈S
y1,...,yt∈S

E
f

[
(−1) f (x1)+...+ f (xt)+ f (y1)+...+ f (yt)

]
|x1 · · · xt⟩⟨y1 · · · yt|, (9)

where the term |x1 · · · xt⟩⟨y1 · · · yt| has non-zero coefficient only when each element of S appears
an even number of times in (x1, . . . , xt, y1, . . . , yt). Among those let us consider the ones such that
x1, . . . , xt are all distinct (so that y1, . . . , yt is a permutation of x1, . . . , xt); the partial summation
over these terms is

1
2dt ∑

x1,...,xt∈S
xi ̸=xj,∀i<j

π∈St

|x1 · · · xt⟩⟨xπ(1) · · · xπ(t)|

=
1

2dt ∑
{x1,...,xt}⊂S

(
∑

π∈St

|xπ(1) · · · xπ(t)⟩
)(

∑
π∈St

⟨xπ(1) · · · xπ(t)|
)

=
t!

2dt ∑
X⊂S,|X|=t

|SymX⟩⟨SymX|.

Here St is the symmetric group on [t], and |SymX⟩ = 1√
t! ∑π∈St

|xπ(1) · · · xπ(t)⟩ for X = {x1, . . . , xt}.
As a result, the above partial sum has trace

t!
2dt ·

(
2d

t

)
=

2d · (2d − 1) · · · · · (2d − t + 1)
2dt ≥ 1 − t2

2d .

Also notice that the partial sum can be thought as the projection of E f
[
|ψS, f ⟩⟨ψS, f |⊗t] onto the

subspace spanned by {|SymX⟩}X⊂S,|X|=t, implying that the remaining part is still positive-definite.
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This allows us to bound the trace distance:∥∥∥∥∥E
f

[
|ψS, f ⟩⟨ψS, f |⊗t]−(2d

t

)−1

∑
X⊂S,|X|=t

|SymX⟩⟨SymX|
∥∥∥∥∥

1

≤
∥∥∥∥∥E

f

[
|ψS, f ⟩⟨ψS, f |⊗t]− t!

2dt ∑
X⊂S,|X|=t

|SymX⟩⟨SymX|
∥∥∥∥∥

1

+

∣∣∣∣ t!
2dt ·

(
2d

t

)
− 1
∣∣∣∣ ≤ 2t2

2d .

Now we think of S as a uniformly random d-dimensional subspace of {0, 1}n. For a uniformly
random X ⊂ S with |X| = t, the elements in X are linearly dependent with probability at most

1
2d +

1
2d−1 + · · ·+ 1

2d−t+1 <
1

2d−t .

Similarly, when X is a uniformly random size-t subset of {0, 1}n, the elements in X are linearly de-
pendent with probability at most 2t−n. When conditioned on linear independence, the distributions
of X in both cases are the same, and thus∥∥∥∥∥E

S

[(
2d

t

)−1

∑
X⊂S,|X|=t

|SymX⟩⟨SymX|
]
−
(

2n

t

)−1

∑
X⊂{0,1}n,|X|=t

|SymX⟩⟨SymX|
∥∥∥∥∥

1

≤ 2t−d + 2t−n.

Hence we conclude that∥∥∥∥∥E
S, f

[
|ψS, f ⟩⟨ψS, f |⊗t]−(2n

t

)−1

∑
X⊂{0,1}n,|X|=t

|SymX⟩⟨SymX|
∥∥∥∥∥

1

≤ 2t2

2d + 2t−d + 2t−n = O(2t−d).

On the other hand, for the Haar random state |ψHaar⟩, it is well known that (see e.g. [Mel24])

E
[
|ψHaar⟩⟨ψHaar|⊗t] = (2n + t − 1

t

)−1

Π(t,2n)
sym ,

where Π(t,2n)
sym is the projection onto the symmetric subspace of (C2n

)⊗t. Since all the |SymX⟩ take up
(2n

t ) dimensions in the subspace, their weight in Π(t,2n)
sym is at least(

2n

t

)/(2n + t − 1
t

)
=

2n · (2n − 1) · · · · · (2n − t + 1)
2n · (2n + 1) · · · · · (2n + t − 1)

≥ 1 − t2

2n .

This means that∥∥∥∥∥E
[
|ψHaar⟩⟨ψHaar|⊗t]−(2n

t

)−1

∑
X⊂{0,1}n,|X|=t

|SymX⟩⟨SymX|
∥∥∥∥∥

1

≤ 2t2

2n ,

and we can finally obtain that∥∥∥∥E
S, f

[
|ψS, f ⟩⟨ψS, f |⊗t]− E

[
|ψHaar⟩⟨ψHaar|⊗t]∥∥∥∥

1
≤ 2t2

2n + O(2t−d) ≤ O(2t−d).
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