
Hierarchies within TFNP: building blocks and collapses

Surendra Ghentiyala∗ Zeyong Li†

Abstract

We initiate the study of complexity classes AB where A and B are both TFNP subclasses. For
example, we consider complexity classes of the form PPPPPP, PPADPPA, and PPAPLS. We define
complete problems for such classes, and show that they belong in TFNP. These definitions
require some care, since unlike a class like PPANP, where the NP oracle defines a function,
in PPAPPP, the oracle is for a search problem with many possible solutions. Intuitively, the
definitions we introduce quantify over all possible instantiations of the PPP oracle.

With these notions in place, we then show that several TFNP subclasses are self-low. In
particular, PPAPPA = PPA, PLSPLS = PLS, and LOSSYLOSSY = LOSSY. These ideas introduce
a novel approach for classifying computational problems within TFNP, such as the problem of
deterministically generating large primes.

∗Cornell University. Email: sg974@cornell.edu. This work is supported in part by the NSF under Grants Nos. CCF-
2122230 and CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google.

†National University of Singapore. Email: li.zeyong@u.nus.edu. Supported by NRF grant NRF-NRFI09-0005.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 123 (2025)

mailto:sg974@cornell.edu
mailto:li.zeyong@u.nus.edu

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Related Work . 3
1.3 Open questions . 4

2 Preliminaries 4
2.1 TFNP . 4
2.2 Some TFNP subclasses . 5

3 Definition 7
3.1 Oracle gates . 7
3.2 Evaluating oracle circuit with auxiliary oracle answers: C∗ 7
3.3 The full definition . 9
3.4 Another helpful evaluation: C∗ . 10

4 Robustness of Definition 11

5 PPA Self-lowness 13

6 PLS Self-lowness 15

7 LOSSY Self-lowness 17

8 Further Applications 19

9 Acknowledgements 19

ii

1 Introduction

Oracles and oracle classes are an indispensable tool in complexity theory. For example, the poly-
nomial hierarchy PH, which can be defined in terms of oracles (ΣP

0 = P,ΣP
i+1 = NPΣP

i), is related
to a wide variety of complexity classes and important problems. Just to name a few, the Sipser-
Lautemann theorem [Lau83] states that BPP ⊆ ΣP

2 ∩ ΠP
2 , and the circuit minimization problem is

known to be in ΣP
2 but not known to be in NP.

Furthermore, the assumption that the polynomial hierarchy does not collapse—that ΣP
i ̸= ΣP

i+1

for any integer i > 0—is now a standard assumption in complexity theory. For example, the original
proof that the graph isomorphism problem is not NP-complete is based on the assumption that the
polynomial hierarchy does not collapse to ΣP

2 [BHZ87].
Oracles are also useful as evidence that two complexity classes A and A′ are not equal. Since

unconditional separations between complexity classes are often challenging, oracle separations,
the existence of an oracle O such that AO ̸= A′O, are often viewed as (weak) evidence that two
complexity classes are indeed separate.

While oracles and oracle classes have been a mainstay of theoretical computer science since
their introduction in [Tur39], one class of problems has only recently begun to be explored through
oracles: TFNP (total function nondeterministic polynomial time).

Informally, TFNP is the class of efficiently verifiable search problems for which a solution always
exists. One should have in mind a problem like Pigeon and its associated complexity class, PPP
(Polynomial Pigeonhole Principle).

Definition 1.1. The search problem Pigeon is defined as follows. Given a poly(n) size circuit
C : {0, 1}n → {0, 1}n, output one of the following.

1. x s.t. C(x) = 0n;

2. distinct x1, x2 s.t. C(x1) = C(x2).

PPP is defined as all search problems which are many-to-one reducible to Pigeon.

Notice that a solution to Pigeon always exists since if C is surjective, then a type 1 solution
exists, and if C is not surjective, a type 2 solution exists by the pigeonhole principle. Pigeon
therefore always has a solution and is what we refer to as a total function. Furthermore, any
solution to Pigeon is clearly efficiently verifiable since it simply requires evaluating C at most
twice followed by some polynomial time computation. Observe that the names Pigeon and the
polynomial pigeonhole principle are fitting, since Pigeon can be viewed as the search problem
analogue of the pigeonhole principle.

PPP is only one of many TFNP subclasses, some others include PPA, PPAD, PPADS, and PLS.
Just as PPP can be viewed as the algorithmization of the pigeonhole principle, each of these TFNP
subclasses can be viewed as the algorithmization of a distinct mathematical principle (e.g. parity
arguments for PPA). Since TFNP is believed to not have any complete problems [Pud15], our
understanding of TFNP is primarily advanced by understanding the complexity of these TFNP
subclasses, each of which is defined with respect to some complete problems.

While oracle separations between TFNP subclasses have been well studied [BCE+95, Mor,
BOM04, GHJ+24, JLRX24], the idea of raising TFNP subclasses to oracles and studying the result

complexity classes in its own right is relatively new. [KKMP21] introduced TFNPΣP
i as a total

1

function analogue of PH. They also considered complexity classes like PPPΣP
i , where the input

circuit C in Definition 1.1 is allowed to have ΣP
i oracle gates.

While complexity classes like PPPNP are natural to define and easy to reason about, verifying
a solution requires an NP oracle (assuming NP ̸= coNP). In particular, we do not know how to
efficiently verify when an NP oracle query is a NO instance. One natural attempt to get around
this issue is to switch the NP oracle into a complete problem for some subclasses in TFNP such
as Pigeon. Now that every oracle query has an efficiently verifiable solution, one can efficiently
evaluate a CPigeon circuit when given solutions to the oracle queries as auxiliary inputs. As such,
these complexity classes like PPPPPP now also stay in TFNP!

In this work, we introduce TFNP subclasses which have oracle access to some TFNP problem.
For example, PPPPPP would have as its complete problem PigeonPigeon which is the same as
Pigeon except that the input circuit C is allowed to have Pigeon oracle gates. Such a notion
is somewhat more difficult to define and work with since unlike a ΣP

i oracle gate, which encodes
a decision problem with exactly one output, a Pigeon instance may have an exponential number
of possible outputs, which defines a relation rather than a function. The behavior of the Pigeon
oracle gate is therefore underspecified. Hence, it is somewhat unclear exactly how one should think
of the oracle gates unless the oracle problem is a search problem with unique solutions (like finding
all prime factors of an integer). Informally, we will resolve this issue by quantifying over all possible
functions consistent with the relation defined by the oracle problem.

Under the definition above, one can naturally define hierarchies of subclasses of TFNP, such

as the PPA hierarchy defined as PPA1 = PPA,PPAi = PPAPPAi−1

for i > 0, and ask about the
complexity of these hierarchies. We will show that, under our definition, several classic TFNP
subclasses are self-low. In other words, their corresponding hierarchies collapse to the first level.

1.1 Our Results

Definitions. We begin by defining AB when A is a TFNP circuit problem (Definition 3.1) and B
is any TFNP problem (Definition 3.5, Definition 4.2). Informally, a circuit problem is one where the
input consists of a circuit C and some other input a, and an answer to the problem can be verified
using black-box queries to C. AB takes as input a poly(n) size circuit CB with oracle gates for B
and some other input a, and outputs a solution y, w1,1, . . . , wpoly(n),poly(n). Informally, one should

view y as a solution to A on input (CB, a). However, verifying y as a solution requires evaluating
CB, which requires evaluating B oracle gates. This is where w1,1, . . . , wpoly(n),poly(n) come in. We

use wi,j as the solution to the jth B oracle gate query on the ith time the verifier for A makes a
query to CB. In some sense, the solution to AB on input (CB, a) has the same form as the solution
to A but also includes the auxiliary information required to evaluate CB to verify a solution.

Robustness of Definition. We then go on to show some desirable properties of our definition,
indicating that we have indeed arrived at the “correct” definition of AB. Assume A is a TFNP
circuit problem (Definition 3.1) and B is any TFNP problem, and A and B are the set of total search
problems reducible to A and B respectively. By defining AB as the set of total search problems
reducible to AB under many-to-one FPB reductions, we observe that AB is in TFNP (Theorem 4.1)
and that AB is robust to the choice of complete problem for A or B (Theorem 4.4, Theorem 4.7).

Main Theorems. Our main technical contributions are as follows.

2

Theorem 5.4. PPAPPA = PPA.

Theorem 6.5. PLSPLS = PLS.

Theorem 7.2. LOSSYLOSSY = LOSSY.

Further Applications. In Section 8, we show how to apply our new TFNP subclasses to study
the complexity of well known problems. One of the consequences of the fact that PPA is self-low
and that factoring is (likely) in PPA means that one can generally assume access to a factoring
oracle when reducing a problem to a PPA-complete problem (assuming the generalized Riemann
hypothesis). As an instantiation of this technique we show Theorem 8.5. Let Factor be the
problem of finding a non-trivial prime factor of an integer (or declaring none exist) and let Weak-
Bertrand be the problem of generating a prime between 2n and 232n given 1n as input. The
following two theorems may provide a new way of attacking the longstanding open problem of
pinpointing the complexity of Weak-Bertrand in TFNP.

Theorem 8.5. If Weak-Bertrand is in PPAFactor, then the generalized Riemann hypothesis
implies that Weak-Bertrand is in PPA.

Theorem 8.4. Under the generalized Riemann hypothesis, Weak-Bertrand is in LOSSYPPA,
LOSSYPPP, PPADSPPA, and PPADSPPP.

1.2 Related Work

The idea of taking a complete circuit problem for a TFNP subclass, letting the input circuit have
oracle gates, and then studying the resulting complexity class was first introduced by [KKMP21].
They consider PPPNP for which the complete problem is finding a collision in a circuit CNP :
[2n]→ [2n− 1]. They also define an algorithmic variant of the Sauer-Shelah lemma which they call
Shattering, and show that it is in PPPNP.

[Kor22] also considered TFNP problems assuming access to an oracle. In particular, they con-
sider Lossy with access to an MCSP (minimum circuit size problem) oracle and showed that
solving LossyMCSP allows one to generate hard truth tables. This is closely related to our work,
except MCSP is not a TFNP problem. [Kor22] also considered Lossy with a factoring oracle. They
showed that if one can solve LossyFactor, then one can deterministically generate large primes, a
longstanding open problem. We note, however, that [Kor22] merely assumes the existence of such
oracles. They did not consider if the search problem associated to the oracle is in TFNP or what
the complexity of solving LossyFactor may be.

[LLR24] studied the TFNP class in the decision tree model coined as rwPHP(PLS), which are
problems reducible to the retraction weak pigeonhole principle where the retraction function is in
PLS. To a certain extent one could interpret this class as LOSSYPLS in our language, but in the
decision tree model, or in the fully black-box setting. [LLR24] showed that this class captures the
problem of proving certain restricted lower bounds for Resolution proofs.

Turing-closure is arguably the concept most closely related to self-lowness. We say that a
TFNP subclass A is Turing closed if FPA = A, or equivalently, the existence of a Turing reduction
to A implies the existence of a many-to-one reduction to A. Recall that we define AB as the set
of problems reducible to AB under many-to-one FPB reductions, where A and B are complete
problems for A and B respectively. Proving self-lowness AA = A implicitly requires A to be Turing

3

closed in the first place, since we are allowing FPA reductions. In other words, self-lowness is a
stronger property than Turing-closure under our definition.

The Turing-closure of PLS, PPA, PPAD, and PPADS was shown in [BJ12]. LOSSY was shown to
be Turing-closed in [LPT24]. On the other hand, [FGPR24] showed that PPP is not Turing-closed
under black-box reductions.

1.3 Open questions

1. Are PPAD, PPADS, CLS, and UEOPL self-low?

2. The newly defined complexity class PLC (polynomial long choice) is meant to capture the
combinatorial principle of the iterated pigeonhole principle [PYP22]. [PYP22] ask if PLC ⊆
FPPPP? We believe one should also ask more general question like is PLC ⊆ PPPPPP or
PPPPPP ⊆ PLC or if the two classes are incomparable.

2 Preliminaries

2.1 TFNP

We begin by formally defining a search problem and TFNP search problems.

Definition 2.1. A search problem is a binary relation R ⊆ {0, 1}∗ × {0, 1}∗ where we say that y
is a solution to x iff (x, y) ∈ R.

Definition 2.2 (TFNP). A total NP search (TFNP) problem is a relation R ⊆ {0, 1}∗ × {0, 1}∗
such that the following properties hold.

• Polynomial: For all (x, y) ∈ R, |y| ≤ poly(|x|).

• Totality: For all inputs x, there is a solution o such that (x, o) ∈ R.

• FNP membership: There exists a poly(|x|, |o|) time algorithm V such that V (x, o) = 1 if and
only if (x, o) ∈ R.

When dealing with TFNP problems, we are generally concerned with many-to-one reductions.
One should think of these as reductions with a single oracle call.

Definition 2.3. Let R,Q be TFNP problems. A many-to-one reduction from R to Q is defined
as two polynomial time computable functions f, g such that for all x ∈ {0, 1}∗, y ∈ {0, 1}∗, the
following holds.

(x, g(y)) ∈ R ⇐= (f(x), y) ∈ Q

Alternatively, there is the notion of a Turing reduction, where one can make multiple oracle
calls. Informally, we say that a class is Turing-closed if Turing reductions give us no more power
than many-to-one reductions.

Definition 2.4 ([FGPR24]). We say that a search problem R is Turing-closed if any problem
which is polynomial time reducible to R via multiple calls to an oracle for a problem in R is also
polynomial time reducible to R using a single call to an oracle for a problem in R. We say a
complexity class with a complete problem is Turing-closed if its complete problem is Turing closed.

4

Quite crucially for us, a variety of important TFNP subclasses are known to be Turing-closed.

Lemma 2.5 ([BJ12]). PPA, PPAD, PPADS, and PLS are Turing-closed.

Lemma 2.6 ([LPT24]). LOSSY is Turing-closed.

2.2 Some TFNP subclasses

Here we review some TFNP subclasses and give some informal intuition regarding their structures.
All of these classes of interest will involve a polynomial size circuit implicitly encoding an exponen-
tial size object. The goal will be to find (an efficiently verifiable) structure which must exist in this
exponential size object. We note that we will freely switch between a binary string or set ({0, 1}n)
and its integer representation ([2n]). We encourage the reader to not be overly concerned with this
technical detail.

Definition 2.7 (PPA and Bipartite-mod-2). The problem Bipartite-mod-2 is defined as fol-
lows. Given a circuit C : {0, 1} × {0, 1}n → Set≤2({0, 1} × {0, 1}n) (where Set≤2(S) denotes some
encoding of subsets of S with size at most 2), representing a bipartite graph on the vertex set
({0} × {0, 1}n, {1} × {0, 1}n) with |C(00n)| = 1 find either of the following.

1. x ̸= 00n such that |C(x)| = 1

2. x, y such that y ∈ C(x) but x /∈ C(y)

PPA is defined as all TFNP problems which are many-to-one reducible to the problem Bipartite-
mod-2.

The circuit for Bipartite-mod-2 should be viewed as implicitly encoding a bipartite graph on
vertices {0, 1} × {0, 1}n. We think of all vertices in 0 × {0, 1}n as being on the left of this graph
and all vertices in 1 × {0, 1}n as being on the right of this graph. C(x) outputs a set of size at
most 2 which is the set of vertices connected to x. We can ensure syntactically that edges on the
vertices on the left are only connected to vertices on the right and vice versa by modifying the
circuit C. We elide this minor technical detail and assume that the circuit C satisfies this property.
A solution to Bipartite-mod-2 is a vertex which does not have exactly 1 neighbor (a type 1
solution). Alternatively it is a witness that the circuit does not encode a graph since y ∈ C(x)
implies (x, y) is an edge in the implicitly defined graph, which should imply that (y, x) is also an
edge in that graph and therefore that x ∈ C(y) (a type 2 solution). To see that Bipartite-mod-2
is total assume that C encodes a bipartite graph (otherwise, a type 2 solution to Bipartite-mod-2
exists), consider the sum of the degrees of all vertices 0× {0, 1}n, call it a. Similarly, call the sum
of the degrees of all nodes 1 × {0, 1}n b. Notice a = b. If all vertices except 00n have degree 0
mod 2, then a = |C(00n)| ̸= 0 (mod 2), and b = 0 (mod 2), which contradicts the fact that a = b.
Therefore, there must be some x ̸= 00n such that |C(x)| = 1.

Definition 2.8 (PPAD and EndOfLine). The problem EndOfLine is defined as follows. Given
S : {0, 1}n → {0, 1}n, P : {0, 1}n → {0, 1}n such that S(0) ̸= 0 and P (0) = 0, output x such that
P (S(x)) ̸= x or x ̸= 0 such that S(P (x)) ̸= x. PPAD is defined as all TFNP problems which are
many-to-one reducible to EndOfLine.

5

The circuit for EndOfLine should be viewed as specifying a directed graph. The input gives
us a successor circuit S and a predecessor circuit P . We say that the graph implicitly defined by
S, P has an edge from x to y if S(x) = y and P (y) = x. Notice that there is no edge leading to 0
in any such graph since P (0) = 0. Therefore, there must be a node x which has no outgoing edges,
which implies P (S(x)) ̸= x. This can be thought of as a sink of a line in the graph defined by
S, P . Notice that EndOfLine also allows for a solution x such that S(P (x)) ̸= x. This should be
interpreted as the beginning of a new line in the graph implicitly encoded by S, P (one other than
the one starting at 0), a node which has an edge out but no incoming edges.

Definition 2.9 (PPADS and SinkOfLine). The problem SinkOfLine is defined as follows. Given
S : {0, 1}n → {0, 1}n, P : {0, 1}n → {0, 1}n such that S(0) ̸= 0 and P (0) = 0, output x such
that P (S(x)) ̸= x. PPADS is defined as all TFNP problems which are many-to-one reducible to
SinkOfLine.

SinkOfLine is almost the same as EndOfLine except that we only allow one type of solution:
a sink in the graph implicitly defined by S, P . Beginnings of a new line are no longer solutions. One
can also define the following useful PPADS-complete problem (under blackbox reductions) which
we will use in Section 8.

Definition 2.10. The problem Injective-Pigeon is defined as follows. Given C : [2n] → [2n −
1], D : [2n − 1]→ [2n], output x such that D(C(x)) ̸= x.

Definition 2.11 (PLS and Sink-of-DAG). The Sink-of-DAG problem is defined as follows.
Given a poly(n) size circuits S : [2n] → [2n] and V : [2n] → [2n] such that S(0) ̸= 0, find v such
that S(v) ̸= v and either S(S(v)) = S(v) or V (S(v)) ≤ V (v). PLS is the set of all TFNP problems
which are many-to-one reducible to Sink-of-DAG.

Sink-of-DAG should be viewed as encoding a gradient ascent problem. There are two circuits,
a successor circuit and a value circuit. At every point v in the space, we hope that the successor
function S leads us to a (different) point which has a higher value, (V (S(v)) > V (v)). A solution
to Sink-of-DAG is a point such that this condition is violated (S(v) ̸= v but V (S(v)) ≤ V (v)),
or one which acts as a sink in the gradient ascent process (S(v) ̸= v but S(S(v)) = S(v)).

Definition 2.12 (PWPP and Weak-Pigeon). The Weak-Pigeon problem is defined as follows.
Given a poly(n) size circuits C : {0, 1}n → {0, 1}n−1, output distinct x1, x2 ∈ {0, 1}n such that
C(x1) = C(x2). PWPP is the set of all TFNP problems which are many-to-one reducible to Weak-
Pigeon.

PWPP should be considered the algorithmic analogue of the weak pigeonhole principle. We
know that a collision exists in C since C is compressing, Weak-Pigeon asks us to find a collision.

Definition 2.13. The problem f(n)-Lossy is defined as follows. Given C : {0, 1}n → {0, 1}f(n)
and D : {0, 1}n → {0, 1}f(n), output x ∈ {0, 1}n such that D(C(x)) ̸= x. We refer to (n/2)-Lossy
simply as Lossy. LOSSY is defined as all TFNP problems which are many-to-one reducible to
Lossy.

[Kor22] defined Lossy (which they call Lossy Code), but did not define the complexity class
LOSSY. We believe this is the correct and natural definition for LOSSY. One should view the
inputs to f(n)-Lossy as consisting of a compressor circuit C and a decompressor circuit D. The

6

goal is to find a string that is not compressible by this compression scheme. Such a string must
exist since the compression scheme is lossy. The following lemma shows that the compression factor
of C and D does not matter (up to a polynomial factor)

Lemma 2.14 ([Kor22]). f(n)-Lossy is many-one equivlent to Lossy for any efficiently computable
f(n) < n and f(n) = poly(n).

Definition 2.15 (Factor). Factor is defined as follows. Given an n bit integer x, output 0n−1

if x is prime. Otherwise, output y ∈ {0, 1}n−1 such that y divides x.

Notice that an n bit composite number has an n− 1 bit non-trivial divisor. Therefore, the size
of the solution to Factor on an n bit input is bounded above by n−1. Furthermore, as was shown
in [AKS04], testing if x is prime can be done in polynomial time.

3 Definition

3.1 Oracle gates

We will be considering some TFNP problem A given access to an oracle for a TFNP problem B.
However, this notion will only make sense (at least as we define it) when A is what we term a
“circuit problem”.

Definition 3.1. We say A is a circuit problem if the input to A is a poly(n) size circuit C :
{0, 1}n → {0, 1}poly(n) and possibly some other poly(n) size input a ∈ {0, 1}poly(n).

We note that the complete problems for all the major TFNP problems are in fact circuit problems
(Section 2.2). There is a minor subtlety that some problems, like Sink-of-DAG, take as input
more than one circuit S, V . In these cases, we treat the circuits as a single circuit SV , where
SV (x) = S(x)∥V (x). As an example, Sink-of-DAG is a circuit problem since it has as input
circuits S and V (which we treat as a single circuit). We assume a canonical gate evaluation order
over circuits. Since B is a TFNP problem, the length of any solution on input x is bounded by
some polynomial p(|x|). We will insist that all B oracle gates G in CB have the form G : {0, 1}z →
{0, 1}p(|z|). This is to ensure that a valid solution always fits within the number of output wires of
G.

Example 3.2. To illustrate some of the concepts around TFNP classes with oracles, we will re-
view concepts by instantiating them with the Weak-PigeonFactor instance of Figure 1. For the
remainder of this section, we refer to the circuit defined in Figure 1 as T : {0, 1}6 → {0, 1}5.

3.2 Evaluating oracle circuit with auxiliary oracle answers: C∗

We now reiterate why defining AB for TFNP problems A and B, is more challenging than defining
AB when B is a decision problem, like SAT. When the oracle gates in CSAT are SAT gates, the
behavior of the circuit on any input x is well-defined since every input to an oracle gate has a
unique output (0 or 1). However, when the oracle gates in CPigeon are gates for a search problem
(e.g., Pigeon), the behavior of the circuit CPigeon on an input x may not be well-defined, since
the evaluation of the oracle gates could have many possible solutions. If the oracle gates of C are
for a problem with unique solutions (e.g., finding all prime factors of a number), this problem does

7

x1 x2 x3 x4 x5 x6

FACTOR FACTOR

¬

∧ ∧ ∧ ∧ ∧

Figure 1: A Weak-PigeonFactor instance

not occur, but we want to work with full generality. Towards addressing this issue, we define C∗

which simulates CB with auxiliary inputs that serve as solutions to its oracle gates.

Definition 3.3. Let CO : {0, 1}n → {0, 1}m be an oracle circuit where O is a TFNP problem, CO

contains t oracle gates, and the ith oracle gate of CO has an si-bit output. We now define

C∗ : {0, 1}n ×
t∏

i=1

{0, 1}si → {0, 1}m .

C∗ on input (x,w1, . . . , wt) simulates the evaluation of CO on x. At the ith instance when CO

must evaluate an oracle gate, say on input u, we check if wi has a suffix that is a valid solution to O
on input u. If it is not, then C∗(x,w1, . . . , wt) = ⊥ and the simulation terminates; otherwise, the
simulation of CO continues by using wi as the output of oracle gate i. If the simulation does not
terminate prematurely and obtains a simulated m-bit output of CO(x), C∗(x,w1, . . . , wt) returns
that output.

C∗(x,w1, . . . , wt) is the evaluation of CO on x given that the output of oracle gate i is wi. In
other words, (x,w1, . . . , wt) contains all the information necessary to lock in an evaluation of CO

on x.
We note that wi may not itself be a solution to the query made to oracle gate i during the

evaluation of CO(x), but some suffix of wi is a valid solution. We do this because oracle gates have
a fixed number of output wires but we still wish to allow for variable length solutions to queries to
oracle gates. This is without loss of generality, as the circuit can determine for itself which suffix
is a solution to the query it made to the oracle gate. Also for the rest of the presentation, when
we say wi is a solution for some oracle query u, we mean that some suffix w′

i where wi = r∥w′
i is a

solution to u. Moreover, for some circuit Cu defined on {0, 1}|w′
i|, we abuse the notation and define

Cu(w) := r∥Cu(w
′
i) for simplicity.

Example 3.4 (Continuation of Example 3.2). We now provide some intuition for what T ∗ does by
probing it on a few values. We assume that the gates of T are evaluated from left to right. In the
following examples, we freely switch between integers and their binary representations. Consider
the evaluation of T ∗(10, 2, 17). We begin by simulating T on the input integer 10, which is 001010

8

in binary. This leads us to query 001010 at the left Factor gate. We see that 2 is indeed a factor
of 10, so we continue the simulation of T by assuming that the Left oracle gate outputs 2 (00010
in binary). The simulation then queries 101010 (42 in binary) at the right Factor gate. We see
that 17 is not a factor of 42, so T ∗(10, 2, 17) = ⊥.

Consider the evaluation of T ∗(10, 2, 21). Again, we begin by simulating T on the input integer
10, which is 001010 in binary. This leads us to query 001010 at the left Factor gate. We see that
2 is indeed a factor of 10, so we continue the simulation of T by assuming that the Left oracle
gate output 2 (00010 in binary). The simulation next queries 101010 (42 in binary) at the right
Factor gate. We see that 21 is indeed a factor of 42, so the right Factor gate outputs 21 (10101
in binary). Therefore, T ∗(10, 2, 21) = 00010 ∧ 10101 = 00000.

3.3 The full definition

We are now ready to define what a solution to AB looks like.

Definition 3.5. Let A and B be TFNP problems and A be a circuit problem with a black-box
verifier V : {0, 1}n×{0, 1}poly(n) → {0, 1}, one which only queries the circuit input to A in a black-
box manner. The input to AB is defined the same as A except the circuit input CB of A contains
t B oracle gates. The verifier for AB, V ′ : {0, 1}n × {0, 1}poly(n) → {0, 1} is defined as follows. V ′

takes as input (CB, a), (y, w1,1, . . . , wpoly(n),t). V
′ simulates the computation of V ((CB, a), y) and on

the ith evaluation of CB, say on input x, the black-box verifier V ′ receives C∗(x,wi,1, wi,2, . . . , wi,t).
If at any point, C∗(x,wi,1, wi,2, . . . , wi,t) = ⊥ or V ′ finds the sub-witnesses wi,j to not be internally
consistent (which we define below), V ′ outputs 0. Otherwise, V ′ outputs the result of V after the
simulation of V terminates.

We say that the w1,1, . . . , wpoly(n),t are not internally consistent (with respect to the simulation)
if in the execution of V ′, there exist two oracle queries made on the same input u and the simulation
uses answer wa,b to the first oracle gate query and wa′,b′ as the answer to the second oracle gate
query and wa,b ̸= wa′,b′ .

Internal Consistency A crucial feature in Definition 3.5 above is the internal consistency re-
quirement. Informally, it enforces that the oracle B behaves consistently on the inputs observed by
V ′. Ultimately we wish CB to define a function (at least from the perspective of the verifier V ′).
This is because the proof of totality of many classic TFNP subclasses relies on the circuit being a
function! For example, it only makes sense to instantiate the pigeonhole principle in Pigeon if the
underlying circuit defines a function. While the definition of C∗ allows the verifier V ′ to lock in one
evaluation of CB, it does not guarantee that CB behaves consistently across multiple evaluations
done by V ′. By requiring the oracle B to behave consistently across multiple evaluations in V ′, we
also obtain consistent behaviors of CB as desired. One may of course consider the possibility of
enforcing consistency only on CB but not on B. But we will see in Section 4 that our definition
enjoys many other nice properties, indicating that it is more likely to be the “correct” definition.

Remark 3.6. If we only enforce the consistency only on CB but not on B, reduction algorithm might
break in the following scenario: Suppose that we are reducing AB to CB in a black-box manner.
We construct a circuit for CB consisting of AB-gates. Since we only enforce consistency on CB, a
solution for CB could lead to inconsistent evaluations of the AB-gates on the same input, which
could cause the reduction to break.

9

In particular, a solution to AB is a solution to A along with all the answers to the B oracle gate
queries that are made when verifying such a solution. We allow any input/output of the B gates as
long as it is actually a solution to B and the behavior is consistent across multiple evaluations of
B. In some sense, we are quantifying over all instantiations (i.e. all functions consistent with the
relation defined by B) of a B oracle. Under Definition 3.5, a reduction from some problem C to
AB should work for all instantiations of the oracle gates for B. An alternative perspective is that
we are delegating the work of fixing the B oracle to the solution y, w1,1, . . . , wpoly(n),t, particularly
the w1,1, . . . , wpoly(n),t.

Example 3.7 (Continuation of Example 3.4). Using Definition 3.5, we see that a solution to
Weak-PigeonFactor on input T would be distinct x1, x2 and internally consistent w1, w2, w3, w4

such that T ∗(x1, w1, w2) ̸= ⊥ and T ∗(x1, w1, w2) = T ∗(x2, w3, w4). We will now try to find so-
lutions to our Weak-PigeonFactor instance T . One seemingly obvious solution is (x1, x2) =
(0, 32), (w1, w2) = (0, 2), (w3, w4) = (8, 0). This appears to be a solution since T ∗(0, 0, 2) = 0 and
T ∗(32, 8, 0) = 0. However, observe that this solution is not internally consistent. In particular,
when evaluating T ∗(0, 0, 2), we assume that Factor on input 32 evaluates to 2, but when evaluat-
ing T ∗(32, 8, 0), we assume that Factor on input 32 evaluates to 8.

An actual solution for Weak-PigeonFactor on instance T (which we leave to the reader to
confirm) is (x1, x2) = (0, 32), (w1, w2) = (0, 2), (w3, w4) = (2, 0).

3.4 Another helpful evaluation: C∗

We now define an alternative way to evaluate CO on x that is significantly different from C∗.
While C∗ may be easier to reason about, C∗ will be useful in enforcing internal consistency of our
solutions.

Definition 3.8. Let CO : {0, 1}n → {0, 1}m be an oracle circuit where O is a TFNP problem, CO

contains t oracle gates, and the ith oracle gate of CO has an si-bit output. We now define

C∗ : {0, 1}n ×
t∏

i=1

{0, 1}si → {0, 1}m .

We maintain an ongoing set M , initially empty. C∗ on input (x,w1, . . . , wt) simulate the eval-
uation of CO on x. At the ith instance when CO must evaluate an oracle gate Gi, say on input u,
if 0 is a valid solution to Gi on u, we continue simulating CO using 0 as the output of oracle gate
Gi. Otherwise, we find the minimum j such that wj is a solution for O on input u and update
M ←M ∪ {j}. We refer to this as the ith witness used to evaluate C∗(x,w1, . . . , wt). If no such j
exists when evaluating oracle gate i, let m be the smallest index such that m /∈M and we output
(m,u). We refer to this as an error output. Otherwise, we continue simulating CO by using wj as
the output of oracle gate i. If the simulation does not terminate prematurely and obtains a sim-
ulated m-bit output of CO(x), C∗(x,w1, . . . , wt) returns that output. We refer to this as a result
output. We say wj was used in the evaluation of C∗(x,w1, . . . , wt) if j ∈ M when the procedure
for C∗ terminates.

The key difference between C∗ and C∗ is that instead of using the subsequent wi as the solution
to an oracle gate query in the simulation of CO as we did in C∗, we find the first wi which is
sufficient to answer the oracle gate query and use that in the simulation of CO. We refer to this as

10

evaluation by first witnesses since we use the first solution possible whenever evaluating an oracle
gate. We note that such evaluation naturally enforces internal consistency.

Example 3.9 (Continuation of Example 3.7). To understand how T∗ is evaluated, consider
T∗(10, 2, 21). We begin by simulating M on the input 10, or 001010 in binary. We query the
left Factor gate on 10 and find that 2 is indeed a factor of 10 (and in particular, the first value
which is a factor among 2, 21), so we assume that the left Factor gate outputs 00010. We next
evaluate the right Factor gate on 42 and find that 2 is a factor of 42 (and in particular, the first
value which is a factor among 2, 21), so we continue the evaluation assuming that the right Factor
gate outputs 2. This leads the simulation of C to output 00010 ∧ 00010 = 00010, or 2. Therefore
T∗(10, 2, 21) = 2. The observant reader will note that this is a different result from is the same
result as in Section 3.2, where T ∗(10, 2, 21) = 0.

Finally, let us consider an example where T∗ outputs a err result. Consider T∗(14, 7, 9). We
query the left Factor gate on 14 and find that 7 is indeed a factor of 14 (and in particular, the
first value which is a factor among 7, 9), so we assume that the left Factor gate outputs 00111.
We also add 1 to our set M . We next evaluate the right Factor gate on 46 and find that neither
7 nor 9 are factors of 46. We therefore terminate and T∗(14, 7, 9) = (2, 46), indicating that w2 is
the next unused witnesses.

4 Robustness of Definition

Having defined AB for TFNP problems, we critique our definitions and show that they have several
desirable properties. We first show that AB is in TFNP.

Theorem 4.1. If A and B are TFNP problems and A is a circuit problem with a black-box verifier,
then AB ∈ TFNP.

Proof. The efficiency of the verifier for AB and the fact that AB has polynomially bounded solutions
are inherited from the efficiency of the verifier for A. To show totality, let us consider a problem B′

defined as {(x, y) : y is the lexicographically first solution to B on input x}. Notice then that AB′

is total since A is total. But of course, any solution to AB′
is a solution to AB. Therefore, AB is

total.

Definition 4.2. Let A,B ∈ TFNP, let A and B be canonical complete problems for A and B
respectively, and let A be a circuit problem with a black-box verifier. AB is then defined as all
problems which are many-to-one reducible to AB under FPB reductions.

Observation 4.3. Let A,B ∈ TFNP, let A and B be canonical complete problems for A and B
respectively, and let A be a circuit problem with a black-box verifier. AB ⊆ TFNP.

To justify our definition, we now show that our choice for the complete problem for A does not
matter as long as there exists a black-box reduction to/from that problem from/to the canonical
complete problem for A. We note that Theorem 4.4 relies crucially on the fact that solutions to
AB are internally consistent.

Theorem 4.4. Let A1,A2 and B be TFNP problems and A1,A2 are circuit problems. If A1 is
black-box many-one reducible to A2, then A1

B is black-box many-one reducible to A2
B under FPB

reduction.

11

Proof. Let (f, g) be a pair of polynomial-time reduction algorithms such that on an A1 instance
C1, f(C1) = C2 generates an A2 instance C2. And given solution π2 for C2, g(C2, π2) = π1 outputs
a solution π1 for C1. In particular, we emphasize that (f, g) are black-box reduction algorithms.
I.e., they evaluate C1 on polynomially many inputs and construct C2 as a circuit with C1-gates.

We define a pair of FPB reduction algorithms (fB
1 , g

B
1). In particular, the reduction algorithms

maintain a polynomial-sized table T containing query-answer pairs to B.
On an AB

1 instance CB
1 , f

B
1 starts by instantiating an empty lookup table T . Next, it simulates

f : whenever f would evaluate CB
1 and hence query the oracle B on some input x, it checks if T

contains the query-answer pair. If yes, it returns the answer stored in T . Otherwise, it uses its
B oracle to obtain a query-answer pair, stores it in T and returns the answer. At the end of its
simulation of f , it constructs a circuit C ′ (with CB

1 -gates). It further modifies C ′ as follows: the
table T is hardwired into C ′ and any B gate in C ′ is modified to always look for an answer from T
if available. The modified circuit CB

2 would be the output of fB
1 .

Given a solution (π2, w2) to CB
2 , g

B
1 starts by simulating the verifier for AB

2 and adding the
query-answer pairs from w2 to the table T . Note that due to the additional modification in CB

2 ,
there will be no inconsistency between w2 and T . Next, it simulates g and similarly maintains the
table T in the same manner as fB

1 . At the end of the simulation, it outputs π1 and oracle answers
w1 for verifying the solution.

Internal consistency follows from the use of table T and it remains to show the correctness of
the reduction.

Consider any function b that is a restriction of B and is consistent with T . Since b is a function,
we may view Cb

1 as a vanilla circuit by hardwiring the truth table of b. Let Cb
2 := f(Cb

1). Since fB
1

simulates f and b is consistent with T , Cb
2 is the same as CB

2 with the oracle gates switched and
hence π2 is a solution to Cb

2. Since gB1 simulates g and by correctness of (f, g), π1 is a solution to
Cb
1. Therefore, π1 with the associated oracle answers w1 must be a solution for CB

1 since Cb
1 and

CB
1 have the same behavior with respect to the verifier.

Corollary 4.5. Let A1,A2, B, and C be TFNP problems. If all the following hold, then AB
1 reduces

to C under many-one reductions.

1. A1 is black-box many-one reducible to A2.

2. AB
2 has a Turing reduction to C.

3. B has a Turing reduction to C

4. C is Turing-closed.

Proof. By Theorem 4.4, AB
1 reduces to AB

2 under FPB reductions. Since B has a Turing reduction
to C, AB

1 reduces to A2
B under FPC reductions. This combined with the fact that AB

2 has a Turing
reduction to C implies AB

1 reduces to C under FPC reductions. Since C is Turing-closed, this implies
that AB

1 reduces to C under many-one reductions.

Observation 4.6. We note that FPB reductions are allowed in Definition 4.2. As PPP is not
believed to be Turing-closed [FGPR24], i.e. FPPPP ̸= PPP, it indicates that PPP is likely not
self-low.

We now show that our choice for the complete problem for B also does not matter as long as
there exists a reduction to/from that problem from/to the canonical complete problem for B.

12

Theorem 4.7. Let B1,B2 and A be TFNP problems. If B1 is many-one reducible to B2, then AB1

is many-one reducible to AB2.

Proof. Let (f, g) be the many-to-one reduction from B1 to B2. We now show a reduction from AB1

to AB2 . Let CB1 be the input to AB1 . Let G be a circuit with a B2 oracle gate defined as follows.
G on input x, computes f(x), feeds f(x) into a B2-gate, and applies g to the output of its B2-gate.

On an input CB1
1 , the reduction from AB1 to AB2 simply replaces each B1 gate with G and

outputs the resulting circuit CB2
2 . Given (π,w1, . . . , wt) as a solution for CB2

2 , the reduction outputs
(π, g(w1), . . . , g(wt)) as a solution.

By the correctness of the reduction (f, g), g(wi) are proper solutions to the B1 oracle queries.
Furthermore, by our construction of CB2

2 , any evaluation on CB1
1 assisted by g(wi) would be exactly

the same as evaluation on CB2
2 assisted by wi. As such, (π, g(w1), . . . , g(wt)) is a valid solution to

CB1
1 .
It remains to verify that internal consistency is preserved. Assume towards contradiction that

g(wi) ̸= g(wj) are solutions to the same B1 query x and hence wi ̸= wj . However, wi and wj

are solutions to the same B1 query f(x) in CB2
2 . This contradicts the internal consistency of the

solution (π,w1, . . . , wt).

5 PPA Self-lowness

We show that PPA is self-low. To do so, we make use of the following PPA-complete problem.

Definition 5.1. The problem Lonely is defined as follows. The input is a circuit C : {0, 1}n →
{0, 1}n. If C(0) ̸= 0 (0 is not unpaired) output anything. Otherwise, find w ̸= 0 such that either
C(w) = w (a type 1 solution) or C(C(w)) ̸= w (a type 2 solution) and output w.

Definition 5.2. The problem Lonely+ is defined as follows. Given a circuit C : {0, 1}n → {0, 1}n,
we say a, b ∈ {0, 1}n are matched if C(a) = b and C(b) = a. The input is C and u ∈ {0, 1}n. If
C(u) ̸= u (u is not unpaired) output 0n. Otherwise, find w ̸= u such that either C(w) = w or
C(C(w)) ̸= w and output w.

Lemma 5.3. LonelyLonely reduces to Lonely+ under black-box Turing reductions..

Proof. We show the reduction from LonelyLonely to Lonely+. Let C : {0, 1}n → {0, 1}n be the
input circuit to the reduction. We assume that C has t oracle gates, where the ith oracle gate has
an output of size si.

We now define

C ′ : {0, 1}n ×
t∏

i=1

{0, 1}si ×
t∏

i=1

{0, 1}si × {0, 1} → {0, 1}n ×
t∏

i=1

{0, 1}si ×
t∏

i=1

{0, 1}si × {0, 1} .

The reduction first computes a1, . . . , at such that a1, . . . , at are consistent for C∗(0, a1, . . . , at)
and C∗(0, a1, . . . , at) ̸= ⊥ by calling its Lonely+ oracle. If C∗(0, a1, . . . , at) ̸= 0, the reduction
outputs (0, a1, . . . , at).

We define C ′(0, a1, . . . , at, 0, . . . , 0, 0) = (0, a1, . . . , at, 0, . . . , 0, 0). C ′ on any other in-
put (x1, w1, . . . , w2t, b) behaves as follows: Let x2 = C∗(x1, w1, . . . , wt) and let x3 =
C∗(x2, wt+1, . . . , w2t). If any of the bad events:

13

• x1 = 0;

• x2 = ⊥;

• x3 = ⊥;

• Internal consistency is violated with respect to the three evaluations C∗(0, a1, . . . , at) = 0,
C∗(x1, w1, . . . , wt) = x2, C

∗(x2, wt+1, . . . , w2t) = x3. I.e. different solutions are used for the
same oracle query across the three evaluations,

occurs, C ′ outputs (x1, w1, . . . , w2t, b ⊕ 1) and we call this type 1 output. Otherwise, C ′ outputs
(x2, wt+1, . . . , w2t, w1, . . . , wt, b) and we call this type 2 output.

The reduction then calls its Lonely+ oracle on C ′, u = (0, a1, . . . , at, 0, . . . , 0, 0), gets back an
answer (v1, w1, . . . , w2t, b). Let v2 = C∗(v1, w1, . . . , wt) and v3 = C∗(v2, wt+1, . . . , w2t). If v1 = v2,
the reduction outputs v1, w1, . . . , wt. If v2 = 0, the reduction outputs v1, w1, . . . , wt, a1, . . . , at. If
v1 ̸= v3, the reduction outputs v1, w1, . . . , w2t.

The reduction is clearly many-to-one and runs in polynomial time. To see correctness, suppose
v = (v1, w1, . . . , w2t, b) is a solution to C ′. We start by noting that if v falls into any of the bad
events, C ′(v) ̸= v and C ′(C ′(v)) = v by construction, and could not be a solution. In other
words, we have v1 ̸= 0, v2 = C∗(v1, w1, . . . , wt), v3 = C∗(v2, wt+1, . . . , w2t) and internal consistency
satisfied.

We consider the following scenarios:

1. 0 ̸= v1 = v2. In this case, v1, w1, . . . , wt is a desired solution as C∗(v1, w1, . . . , wt) = v1. We
further note that C ′(v) = v must fall in this case, and we only need to consider C ′(C ′(v)) ̸= v
for the rest of the cases.

2. v2 = 0. We have v2 = C∗(v1, w1, . . . , wt) = 0 and v1 ̸= 0 = C∗(0, a1, . . . , at). Hence,
v1, w1, . . . , wt, a1, . . . , at is a desired solution.

3. v1 ̸= v3. In this case, v1, w1, . . . , w2t is a desired solution. One can verify that
C∗(C∗(v1, w1, . . . , wt), wt+1, . . . , w2t) = v3 ̸= v1.

4. Finally we show that the remaining scenario where v2 ̸= 0, v1 = v3 and C ′(C ′(v)) ̸= v is
impossible. In particular, if v1 = v3, then the evaluation C ′(v2, wt+1, . . . , w2t, w1, . . . , wt)
would not fall into bad events, since we know that C∗(v3, w1, . . . , wt) is valid and internally
consistent. As such, C ′(v2, wt+1, . . . , w2t, w1, . . . , wt) = (v3, w1, . . . , w2t) = (v1, w1, . . . , w2t).
This contradicts that C ′(C ′(v)) ̸= v.

Theorem 5.4. PPAPPA = PPA.

Proof. Bipartite-Mod-2 trivially reduces to Bipartite-Mod-2Bipartite-Mod-2.
We now show the other direction. Note that all the following conditions are satisfied.

1. Bipartite-Mod-2 has a black-box many-one reduction to Lonely.

2. LonelyLonely has a Turing reduction to Lonely+ by Lemma 5.3.

14

3. Lonely is many-one reducible to Lonely+.

4. Lonely+ is Turing-closed since PPA is Turing-closed.

Therefore, Corollary 4.5 tells us Bipartite-Mod-2Lonely has a many-one reduction to Lonely+,
which has a many-one reduction to Bipartite-Mod-2. Finally, Theorem 4.7 tells us
Bipartite-Mod-2Bipartite-Mod-2 reduces to Bipartite-Mod-2Lonely. Chaining these reduction
lets us conclude Bipartite-Mod-2Bipartite-Mod-2 reduces to Bipartite-Mod-2, as desired.

6 PLS Self-lowness

We now show that PLS is self-low. To do so, we work with the PLS-complete problems Iter and
Iter2. We observe (without proof) that Iter is PLS-complete under black-box reductions.

Definition 6.1. The problem Iter is defined as follows. The input is S : [2n]→ [2n]. If S(0) = 0,
output 0. Otherwise, output x s.t. S(x) > x and S(S(x)) ≤ S(x).

Definition 6.2. The problem Iter2 is defined as follows. The input is S : [2n]→ [2n]. If S(0) = 0,
output 0. Otherwise, output any of the following solutions.

1. x s.t. S(x) < x,

2. x s.t. S(x) > x and S(S(x)) ≤ S(x).

Lemma 6.3. Iter2 is PLS-complete.

Proof. We first reduce Iter to Iter2. Given an instance S of Iter, we let S′(x) be x if S(x) < x
and S(x) otherwise. We feed S′ to our Iter2 to get back a solution y which we output. Notice
that the solution we get back must be a type 2 solution, y s.t. S′(y) > y and S′(S′(y)) ≤ S′(y). If
S′(y) > y, then S(y) = S′(y). Therefore, since S′(S′(y)) ≤ S′(y), S′(S(y)) ≤ S(y). This implies
that S(S(y)) ≤ S(y), since by construction S′ ≥ S for all inputs. Therefore, y is a type 2 solution
to Iter.

We now reduce Iter2 to Iter. Given an instance S of Iter2, the reduction calls its Iter
oracle on S to get back an answer y which it outputs. Since y is the output of the oracle call,
S(y) > y, S(S(y)) ≤ S(y). Therefore, y is a type 2 solution to Iter2.

Lemma 6.4. IterIter2 reduces to Iter under black-box Turing reductions.

Proof. We show the reduction from IterIter2 to Iter. Let S be the input to the reduction. We
assume that S has t oracle gates, where the ith oracle gate has an output of size si. Let S

2 be the
circuit which simply composes S with itself. Note that S2 has 2t oracle gates.

The reduction first computes a1, . . . , at such that a1, . . . , at are consistent for S∗(0, a1, . . . , at)
and S∗(0, a1, . . . , at) ̸= ⊥ by calling its Iter oracle. If S∗(0, a1, . . . , at) = 0, the reduction outputs
(0, a1, . . . , at).

The reduction then constructs

S′ : {0, 1}n ×
t∏

j=1

{0, 1}sj ×
t∏

j=1

{0, 1}sj → {0, 1}n ×
t∏

j=1

{0, 1}sj ×
t∏

j=1

{0, 1}sj .

Let y = S∗(x,w1, . . . , wt) and if y is a result output, let z = S∗(y, wt+1, . . . , w2t). We now define
S′ whose behavior is split into four cases.

15

1. If y = ⊥ or internal consistency is violated in S∗(x,w1, . . . , wt), output (x,w1, . . . , w2t).

2. If y ̸= ⊥, the evaluation of S∗(x,w1, . . . , wt) is internally consistent, and y ≤ x, output
(x,w1, . . . , w2t).

3. Consider when y ̸= ⊥, the evaluation of S∗(x,w1, . . . , wt) is internally consistent, y > x, and
one of the following occurs: z = ⊥ or the evaluation of S2∗(x,w1, . . . , w2t) violates internal
consistency. Letm be the smallest index in {t+1, . . . , 2t} such that wm is not a solution to ora-
cle gate query m in the evaluation of S2∗(x,w1, . . . , w2t) or wm violates internal consistency in
the evaluation of S2∗(x,w1, . . . , w2t) becuase gate querym is the same as gate query i for some
i < m and wm ̸= wi. If wm violates internal consistency, output (x,w1, . . . , wm−1, wi, 0, . . . , 0).
Otherwise wm is not a valid solution to an oracle gate query u which encodes a Iter2 query
H : {0, 1}q → {0, 1}q, output (x,w1, . . . , wm−1, H(wm), 0, . . . , 0).

4. Say y ̸= ⊥, y > x, z ̸= ⊥, and the evaluation of S2∗(x,w1, . . . , w2t) is internally consistent.
Output (y, wt+1, . . . , w2t, 0, . . . , 0).

The reduction calls its Iter oracle on S′ to get back an answer (x,w1, . . . , w2t) which would be
the output of our reduction.

The reduction clearly runs in polynomial time since S′ translates to a polynomial size circuit and
all other operations run in polynomial time. We now show the correctness. Let v = (x,w1, . . . , w2t)
be the answer the oracle returned. The following two equations must hold.

S′(v) > v (1)

S′(S′(v)) ≤ S′(v) (2)

We will divide our proof of correctness by which cases are used to evaluate S′(v) and S′(S′(v)).
Before we dive into the case analysis, we note that S′ evaluated as case 1 and case 2 is the identity
and could not satisfy Equation (1). Hence S′(v) has to be evaluated using either case 3 or case 4.
S′ evaluated as case 4 is strictly increasing. Hence S′(S′(v)) could not be evaluated as case 4.

1. S′(v) is evaluated using case 3 and S′(S′(v)) is evaluated using case 1 or case 2. This case
cannot happen. Since S′(x,w1, . . . , w2t) was evaluated using case 3, S∗(x,w1, . . . , wt) ̸= ⊥
and its evaluation is internally consistent. Let S′(x,w1, . . . , w2t) = (x,w′

1, . . . , w
′
2t). Notice

that wi = w′
i for all i in [1, t]. Therefore, S∗(x,w′

1, . . . , w
′
t) ̸= ⊥ and its evaluation is internally

consistent. Therefore, S′(x,w′
1, . . . , w

′
2t) will not be evaluated using case 1 or case 2.

2. S′(v) is evaluated using case 3 and S′(S′(v)) is evaluated using case 3. This
case cannot happen. Let m be the identified index in S′(x,w1, . . . , w2t) and m′

be the identified index in S′(S′(x,w1, . . . , w2t)). Note that m ≤ m′. Consider
first when m < m′. Then S′(x,w1, . . . , w2t) = (x,w1, . . . , wm−1, ŵm, 0, . . . , 0) and
S′(x,w1, . . . , wm−1, ŵm, 0, . . . , 0) = (x,w1, . . . , wm−1, ŵm, 0, . . . , 0, ŵm′ , 0, . . . , 0) for some ŵm

and ŵm′ ̸= 0. Therefore, S′(S′(x,w1, . . . , w2t)) > S′(x,w1, . . . , w2t), violating Equa-
tion (2). If m = m′, this can only happen when wm and H(wm) are not solutions
to u. S′(x,w1, . . . , w2t) = (x,w1, . . . , wm−1, H(wm), 0, . . . , 0) and S′(S′(x,w1, . . . , w2t)) =
(x,w1, . . . , wm−1, H(H(wm)), 0, . . . , 0). But since w′

m was not a solution to Iter2 on in-
stance H, either H(w′

m) = w′
m or H(H(w′

m)) > H(w′
m). But we know from the Equation (1)

that H(w′
m) > w′

m, therefore H(H(w′
m)) > H(w′

m). Which implies S′(S′(x,w1, . . . , w2t)) >
S′(x,w1, . . . , w2t), contradicting Equation (2).

16

3. S′(v) is evaluated using case 4 and S′(S′(v)) is evaluated using case 1. This case can-
not happen. In particular, since S′(x,w1, . . . , w2t) is evaluated using case 4, we know
S∗(y, wt+1, . . . , w2t) ̸= ⊥ and is internally consistent.

4. S′(v) is evaluated using case 4 and S′(S′(v)) is evaluated using case 2. Notice that
S′(x,w1, . . . , w2t) = (y, wt+1, . . . , w2t, 0, . . . , 0) where S∗(y, wt+1, . . . , w2t) = z. Therefore,
S′(S′(x,w1, . . . , w2t)) being evaluated using case 2 means that z ≤ y. The reduction there-
fore outputs a valid solution in this case.

5. S′(v) is evaluated using case 4 and S′(S′(v)) is evaluated using case 3. Let S′(x,w1, . . . , w2t) =
(y, wt+1, . . . , w2t, 0, . . . , 0). Evaluation by case 3 implies that S′(y, wt+1, . . . , w2t, 0, . . . , 0) =
(y, wt+1, . . . , w2t, 0, . . . , 0, ŵm, 0, . . .). As such, S′(S′(x,w1, . . . , w2t)) > S′(x,w1, . . . , w2t),
contradicting Equation (2).

Theorem 6.5. PLSPLS = PLS.

Proof. Sink-of-DAG trivially reduces to Sink-of-DAGSink-of-DAG.
We now show the other direction. Note that all the following conditions are satisfied.

1. Sink-of-DAG has a black-box many-one reduction to Iter.

2. IterIter2 has a Turing reduction to Iter by Lemma 6.4.

3. Iter2 is many-one reducible to Iter.

4. Iter is Turing-closed since PLS is Turing-closed.

Therefore, Corollary 4.5 tells us Sink-of-DAGIter2 has a many-one reduction to Iter, which has
a many-one reduction to Sink-of-DAG. Finally, by Theorem 4.7, Sink-of-DAGSink-of-DAG has
a many-one reduction to Sink-of-DAGIter2. Chaining these reductions gives us a reduction from
Sink-of-DAGSink-of-DAG to Sink-of-DAG.

7 LOSSY Self-lowness

In this section, we show LOSSY is self-low.

Lemma 7.1. LossyLossy reduces to (n− 1)-Lossy under many-one reductions.

Proof. Let C : {0, 1}n → {0, 1}n/2, D : {0, 1}n/2 → {0, 1}n be the circuits that act as input to our
LossyLossy problem. Say that C,D collectively have t Lossy gates, where the ith gate has a si
bit output.We further assume without loss of generality that any input c : {0, 1}q → {0, 1}q/2, d :
{0, 1}q/2 → {0, 1}q to a Lossy oracle gate has the form q ≥ 100 log(t+ 100). This can be achieved
by padding and applying Lemma 2.14.

We now construct
C ′ : {0, 1}n ×

∏
i

{0, 1}si → {0, 1}n+
∑

si−1,

17

D′ : {0, 1}n+
∑

si−1 → {0, 1}n ×
∏
i

{0, 1}si .

Let N := n+
∑t

i=1 si. Let D ◦ C : {0, 1}n → {0, 1}n be the composed circuit which consists of
C followed by D. Let x2 = C∗(x1, w1, . . . , wt) and x3 = (D ◦ C)∗(x1, w1, . . . , wt).

C ′(x1, w1, . . . , wt) computes x3 = (D ◦ C)∗(x1, w1, . . . , wt). If x3 is an error output (m, z)
where z encodes a Lossy instance c : {0, 1}q → {0, 1}q/2, d : {0, 1}q/2 → {0, 1}q, C ′

outputs (1,m, x1, . . . , wm−1, c(wm), wm+1 . . . , wt, 0, . . . , 0) ∈ {0, 1}N−1. Otherwise, C ′ outputs
(0, x2, w1, . . . , wt, 0, . . . , 0) ∈ {0, 1}N−1 where x2 = C∗(x1, w1, . . . , wt).

Next we now define D′. We first consider the case when input to D′ has the form
(0, x2, w1, . . . , wt, 0, . . . , 0). D

′ computes x3 = D∗(x2, w1, . . . , wt). If x3 is an err output, D′ outputs
0. Otherwise, D′ outputs (x3, w1, . . . , wt).

When input to D′ has the form (1,m, x1, . . . , wt, 0, . . . , 0). D′ computes
(D ◦ C)∗(x1, w1, . . . , wm−1, 0

sm , wm+1, . . . , wt). If this results in a result output, D′ out-
puts 0. Say it results in an error output (m′, z) where z encodes a Lossy instance
c : {0, 1}q → {0, 1}q/2, d : {0, 1}q/2 → {0, 1}q. D′ outputs (x1, . . . , wm−1, d(wm), wm+1, . . . , wt).

The reduction feeds C ′, D′ to its Lossy oracle to get back (v1, w1, . . . , wt). The reduction
outputs v1 as well as witnesses used to evaluate (D ◦ C)∗(v1, w1, . . . , wt) in order.

The reduction clearly runs in polynomial time. Notice also that since c compresses by at least
q/2 ≥ 50 log(t+100) bits and m requires exactly log2(t) bits to specify, C ′ compresses by at least 1
bit. To show correctness, let v2 = C∗(v1, w1, . . . , wt) and v3 = (D◦C)∗(v1, w1, . . . , wt). We consider
two cases.

1. v3 is a result output. Then C ′(v1, w1, . . . , wt) = (0, v2, w1, . . . , wt, 0, . . . , 0). Notice that by
construction, D′(0, v2, w1, . . . , wt) = (v3, w1, . . . , wt). By assumption, v1 ̸= v3. Therefore, v1
as well as the witnesses among w1, . . . , wt used to evaluate D(C(v1)) are a solution to our
LossyLossy instance. The witnesses are all consistent since the first valid wi among w1, . . . , wt

is used to evaluate the oracle gates at every step.

2. v3 is an error output (m, z). This cannot happen. Say z encodes a Lossy in-
stance c : {0, 1}q → {0, 1}q/2, d : {0, 1}q/2 → {0, 1}q. Then C ′(v1, w1, . . . , wt) =
(1,m, x1, . . . , c(wm), . . . , wt, 0, . . . , 0). Notice that since m /∈ M for the evaluation of
v3 = (D ◦ C)∗(v1, w1, . . . , wt), (D ◦ C)∗(v1, w1, . . . , wm−1, 0

sm , wm+1, . . . , wt) should have the
exact same behaviour as (D ◦ C)∗(v1, w1, . . . , wt) and output (m, z) and w′

m is not a solu-
tion to Lossy on c, d. This is because C∗ always tries 0 as a solution to an oracle gate. As
such, D′(1,m, v1, w1, . . . , c(wm), . . . , wt, 0, . . . , 0) evaluates to (v1, w1, . . . , d(c(wm)), . . . , wt) =
(v1, w1, . . . , wt). Therefore, (v1, w1, . . . , wm, . . . , wt) is not a solution to our oracle call to
Lossy on C ′, D′.

Theorem 7.2. LOSSYLOSSY = LOSSY.

Proof. Lossy trivially reduces to LossyLossy.
LossyLossy has a many-one reduction to (n−1)-Lossy by Lemma 7.1, which reduces to Lossy

by Lemma 2.14. Chaining the reductions tells us LossyLossy reduces to Lossy.

18

8 Further Applications

In this section, we demonstrate the potential of our new definitions of TFNP subclasses with TFNP
oracles for developing better understanding of important computational problems.

Notably, our result that PPA is self-low provides a potential way to classify the problem of
deterministically generating large primes inside TFNP. We first define the necessary problems.

Definition 8.1 (Weak-Bertrand). Given a string 1n, output a 32n bit prime p such that p > 2n.

We refer to this problem as Weak-Bertrand since Bertrand’s postulate tells us that there
always exists a prime between 2n and 2n+1. The problem Bertrand would ask us to find such
a prime. In Weak-Bertrand, we are asking for a prime between 2n and 232n. We now review
relevant results.

Lemma 8.2 ([Jeř16]). Under the generalized Riemann hypothesis, Factor is in PPA and PPP.

Lemma 8.3 ([Kor22]). Weak-Bertrand reduces to LossyFactor 1.

We are able to leverage Lemma 8.2 and Lemma 8.3 to give a classification of Weak-Bertrand
into our newly defined classes. Furthermore, the fact that PPA is self-low and Factor is in PPA
(under the generalized Riemann hypothesis) suggests that Weak-Bertrand (or even Bertrand)
may be easily reducible to a PPA-complete problem.

Theorem 8.4. Under the generalized Riemann hypothesis, Weak-Bertrand is in LOSSYPPA,
LOSSYPPP, PPADSPPA, and PPADSPPP.

Proof. Both the fact that Weak-Bertrand is in LOSSYPPA and LOSSYPPP follow directly by
combining Lemma 8.3 with Lemma 8.2. Observing that Lossy has a trivial relativizing reduction to
the PPADS-complete problem Injective-Pigeon then implies Weak-Bertrand is in PPADSPPA

and PPADSPPP.

Theorem 8.5. If Weak-Bertrand is in PPAFactor, then the generalized Riemann hypothesis
implies that Weak-Bertrand is in PPA.

Proof. Apply Lemma 8.2 and Theorem 5.4.

One interpretation of the above theorem is as follows: if PPA is sufficiently powerful to capture
or ‘derandomize’ LOSSY, then it also captures Weak-Bertrand.

9 Acknowledgements

The authors would like to thank Karthik Gajulapalli, Sidhant Saraogi, and Noah Stephens-
Davidowitz for many helpful discussions and feedback on an earlier draft of this manuscript. The
authors would also like to thank the anonymous referees for useful comments.

1Technically, [Kor22] showed this for Lossy given access to an oracle which outputs all prime factors of a number
rather than one non-trivial factor. We observe that one can obtain all factors of a number by simply applying Factor
multiple times.

19

References

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of mathe-
matics, pages 781–793, 2004. 7

[BCE+95] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi.
The relative complexity of np search problems. In Proceedings of the twenty-seventh
annual ACM symposium on Theory of computing, pages 303–314, 1995. 1

[BHZ87] Ravi B Boppana, Johan Hastad, and Stathis Zachos. Does co-np have short interactive
proofs? Information Processing Letters, 25(2):127–132, 1987. 1

[BJ12] Samuel R Buss and Alan S Johnson. Propositional proofs and reductions between np
search problems. Annals of Pure and Applied Logic, 163(9):1163–1182, 2012. 4, 5

[BOM04] Josh Buresh-Oppenheim and Tsuyoshi Morioka. Relativized np search problems and
propositional proof systems. In Proceedings. 19th IEEE Annual Conference on Com-
putational Complexity, 2004., pages 54–67. IEEE, 2004. 1

[FGPR24] Noah Fleming, Stefan Grosser, Toniann Pitassi, and Robert Robere. Black-box ppp is
not turing-closed. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, pages 1405–1414, 2024. 4, 12

[GHJ+24] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires,
Robert Robere, and Ran Tao. Separations in proof complexity and tfnp. Journal of
the ACM, 71(4):1–45, 2024. 1

[Jeř16] Emil Jeřábek. Integer factoring and modular square roots. Journal of Computer and
System Sciences, 82(2):380–394, 2016. 19

[JLRX24] Siddhartha Jain, Jiawei Li, Robert Robere, and Zhiyang Xun. On pigeonhole principles
and ramsey in tfnp. In 2024 IEEE 65th Annual Symposium on Foundations of Computer
Science (FOCS), pages 406–428. IEEE, 2024. 1

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou. To-
tal functions in the polynomial hierarchy. In 12th Innovations in Theoretical Computer
Science Conference (ITCS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2021. 1, 3

[Kor22] Oliver Korten. Derandomization from time-space tradeoffs. In 37th Computational
Complexity Conference (CCC 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2022. 3, 6, 7, 19

[Lau83] Clemens Lautemann. Bpp and the polynomial hierarchy. Information Processing Let-
ters, 17(4):215–217, 1983. 1

[LLR24] Jiawei Li, Yuhao Li, and Hanlin Ren. Metamathematics of resolution lower bounds: A
tfnp perspective, 2024. 3

20

[LPT24] Jiatu Li, Edward Pyne, and Roei Tell. Distinguishing, predicting, and certifying: On
the long reach of partial notions of pseudorandomness. In 2024 IEEE 65th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1–13, 2024. 4, 5

[Mor] T Morioka. Classification of search problems and their definability in bounded arith-
metic, master’s thesis, university of toronto, toronto, canada, 2001. 1

[Pud15] Pavel Pudlák. On the complexity of finding falsifying assignments for herbrand dis-
junctions. Archive for Mathematical Logic, 54(7):769–783, 2015. 1

[PYP22] Amol Pasarkar, Mihalis Yannakakis, and Christos Papadimitriou. Extremal combi-
natorics, iterated pigeonhole arguments, and generalizations of ppp. arXiv preprint
arXiv:2209.07625, 2022. 4

[Tur39] Alan Mathison Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, Series 2, 45:161–228, 1939. 1

21

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

