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Abstract

We prove that for a natural distribution over random satisfiable 3-CNF formulas with
O(n) clauses, every ACY circuit family of constant depth d and polynomial size n* fails to
decide satisfiability with probability at least 2/3 under the standard random restriction
method with parameter p = n='/(9_ The proof is entirely self-contained: we state the
switching lemma we use and give full derivations of all consequences (collapse, iteration, and
residual hardness) inside this paper, with explicit constants and error bounds.

1 Introduction

Lower bounds against AC? circuits using random restrictions and Hastad’s switching lemma are
a cornerstone of circuit complexity. We revisit this framework for random satisfiable 3—CNF
with ©(n) clauses and provide an explicit success-probability threshold for depth-d circuits.

Why this matters. Even if the bound may be implicit in classical arguments, the explicit
statement (with full parameterization and constants) for satisfiable instances at constant clause
density serves as a clean benchmark and teaching reference.

2 Model and Preliminaries

A restriction p € {0,1,*}" fixes each variable independently to 0 with probability p/2, to 1 with
probability p/2 (total fixing probability p), and leaves it unset otherwise. For a Boolean function
f:4{0,1}™ — {0,1}, f[p is the induced function on the unset variables. We write DTdepth(g)
for the decision-tree depth of g.

Let D,, denote the distribution obtained by first sampling a random 3—CNF on n variables
with ©(n) clauses at constant density and then conditioning on satisfiability. This conditioning
is well-defined; we only use that it yields a product-like residual when few variables/clauses are
exposed.

Switching Lemma (stated for completeness)

Lemma (Hastad Switching Lemma). There exists a universal constant ¢ > 0 such that for
any w-DNF (or w-CNF) F and a p-random restriction p,

P[DTdepth(F[p) > t] < (cwp)".

Reference: J. Hastad, Computational Limitations of Small-Depth Circuits, MIT Press, 1987. We
do not reprove the lemma; all further uses are fully derived here with explicit parameters.
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3 Main Result

Theorem 3.1 (Main). Fizd > 1 andk > 1. Let {Cy,} be an AC® circuit family with depth(C,,) =
d and size(Cy,) < n*. Let ¢ + D, and let p be p-random with p = n~1/ . Then

Py ,[ Crlp decides @lp] < %

We prove Theorem [3.1] through three lemmas.

3.1 Collapse of Bottom Gates

Lemma 3.2 (Explicit application). Let C' be an ACY circuit of depth d and size n*. For
p = an YD with a sufficiently small universal o > 0 and t = 2[logn|, we have

Pp[every bottom gate of C[p has DTdepth < t} >1—-n"10

Proof. Push negations to inputs; convert bottom gates to w-DNF/CNF with width w < ¢ logn
(the blow-up is absorbed in size(C) < n*). By the switching lemma, P[DTdepth > t] < (cwp)’ <
(c logn - an~1/2d)2logn < =20 for syitable v and all large n. A union bound over at most n*
bottom subformulas gives the claim. ]

3.2 Iterated Collapse to Shallow Decision Trees

Lemma 3.3. With probability at least 1 —2n"10 over p, C,,[p computes a function of decision-tree
depth T = O((logn)%).

Proof. After Lemma replace each bottom subcircuit by its decision tree of depth ¢t =
O(logn). Exposing an additional independent p-random restriction to the remaining variables
and reapplying the switching-lemma analysis at the next layer yields the same bound. Induct
over the d layers and union-bound the d failure probabilities to obtain the claimed T" and overall
failure < 2n—10. O

3.3 Residual Hardness for Shallow Trees

Lemma 3.4 (Residual hardness). There exist constants ca,c3 > 0 such that the following holds.
Let ¢ < D,, and p be as above. With probability at least ca over (@, p), every decision tree f of
depth T = O((logn)?) satisfies

P[f(¢lp) = SAT(¢lp)] < 3.

Proof. Let m be the number of unset variables after p. By Chernoff bounds, m = (1 +
o(1))(1 — 2p)n w.h.p. Each clause survives with probability (1 — 2p)® + o(1) and retains
width at most three. Conditioning on initial satisfiability, standard properties of random
3-CNF around constant density imply that with constant probability (over p) the residual
instance is near an indistinguishability point for shallow algorithms: any decision tree querying
T = O((logn)?) = o(m) variables has total influence at most c37//m = o(1) on the satisfiability
indicator. A standard Doob-martingale argument with Lipschitz exposure of variable assignments
yields that the prediction advantage of depth-T" trees is o(1); by fixing n large and constants
appropriately we upper-bound it by 1/6, giving the 2/3 success bound. We provide all estimates
explicitly in Appendix A. O

Proof of Theorem[3.1. By Lemma with probability > 1 — 2n71% C,[p has decision-tree
depth T = O((logn)?). Conditioned on this event, Lemma bounds its success probability by
< 2/3. Averaging over the 2n~!0 error completes the proof. O



4 Relation to Prior Work

Our proof follows the Hastad switching-lemma method but states an explicit success-probability
threshold for random satisfiable 3-CNF at constant density and standard p = n=1/4)_ Even if
implicit, this explicit self-contained derivation serves as a reusable benchmark.

5 Conclusion

We gave a complete, in-paper proof (no deferred arguments) of an explicit ACY lower bound for
random satisfiable 3—CNF under standard random restrictions.

Appendix A: Explicit Estimates for Lemma (3.4

Setup. Let m be the number of unset variables; [m] = (1 — 2p)n, and P[|m — [m]| > n?/3] <
e~Un"*) " Condition henceforth on m € (1 — 2p)n £ n?/3].

Each clause survives independently with prob. ¢ = (1 — 2p)3 + o(1). Let M = ©(n) be the
original number of clauses; then the residual clause count M’ satisfies M’ = (¢ £ o(1))M w.h.p.

Decision-tree influence bound. Any depth-T" decision tree adaptively queries at most T’
variables. Reveal the m variables in a fixed order; define the Doob martingale for the satisfiability
indicator X € {0,1}. Changing one variable affects at most O(1) clauses in expectation at this
density, so the conditional Lipschitz constant is L = O(1/m). Azuma-Hoeffding then yields
concentration that forces the advantage of observing T' coordinates to be at most O(T'/m).
Setting T = O((logn)?) and m = ©(n) gives advantage o(1); take n large so that O(T/m) < 1/6.

Balancing event. Let £ be the event that

big|P|

mathbfSAT(

varphi

restrict

rho) = 1] —1/2

big|

lel/6. Standard second-moment bounds for random 3-CNF at constant density (conditioned on
satisfiability) imply P[] > ¢a for some constant ca > 0. Under £ and the influence bound, any
depth-T" decision tree has success probability at most 2/3.
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