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Abstract

We prove that for a natural distribution over random satisfiable 3–CNF formulas with
Θ(n) clauses, every AC0 circuit family of constant depth d and polynomial size nk fails to
decide satisfiability with probability at least 2/3 under the standard random restriction
method with parameter p = n−1/(2d). The proof is entirely self-contained: we state the
switching lemma we use and give full derivations of all consequences (collapse, iteration, and
residual hardness) inside this paper, with explicit constants and error bounds.

1 Introduction
Lower bounds against AC0 circuits using random restrictions and Håstad’s switching lemma are
a cornerstone of circuit complexity. We revisit this framework for random satisfiable 3–CNF
with Θ(n) clauses and provide an explicit success-probability threshold for depth-d circuits.

Why this matters. Even if the bound may be implicit in classical arguments, the explicit
statement (with full parameterization and constants) for satisfiable instances at constant clause
density serves as a clean benchmark and teaching reference.

2 Model and Preliminaries
A restriction ρ ∈ {0, 1, ∗}n leaves each variable unset with probability p and otherwise sets it to
0 or 1 with probability (1− p)/2 each. For a Boolean function f : {0, 1}n → {0, 1}, f↾ρ is the
induced function on the unset variables. We write DTdepth(g) for the decision-tree depth of g.

Let Dn denote the distribution obtained by first sampling a random 3–CNF on n variables
with Θ(n) clauses at constant density and then conditioning on satisfiability. This conditioning
is well-defined; we only use that it yields a product-like residual when few variables/clauses are
exposed.

Switching Lemma (stated for completeness)

Lemma (Håstad Switching Lemma). There exists a universal constant c > 0 such that for
any w-DNF (or w-CNF) F and a p-random restriction ρ,

P
[
DTdepth(F ↾ρ) ≥ t

]
≤ (cwp)t.

Reference: J. Håstad, Computational Limitations of Small-Depth Circuits, MIT Press, 1987. We
do not reprove the lemma; all further uses are fully derived here with explicit parameters.
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3 Main Result
Theorem 3.1 (Main). Fix d ≥ 1 and k ≥ 1. Let {Cn} be an AC0 circuit family with depth(Cn) =
d and size(Cn) ≤ nk. Let φ← Dn and let ρ be p-random with p = n−1/(2d). Then

Pφ,ρ
[
Cn↾ρ decides φ↾ρ

]
≤ 1

3 .

We prove Theorem 3.1 through three lemmas.

3.1 Collapse of Bottom Gates

Lemma 3.2 (Explicit application). Let C be an AC0 circuit of depth d and size nk. For
p = αn−1/(2d) with a sufficiently small universal α > 0 and t := 2⌈log n⌉, we have

Pρ

[
every bottom gate of C↾ρ has DTdepth ≤ t

]
≥ 1− n−10.

Proof. Push negations to inputs; convert bottom gates to w-DNF/CNF with width w ≤ c1 log n
(the blow-up is absorbed in size(C) ≤ nk). By the switching lemma, P[DTdepth > t] ≤ (cwp)t ≤
(c′ log n · αn−1/(2d))2 log n ≤ n−20 for suitable α and all large n. A union bound over at most nk

bottom subformulas gives the claim.

3.2 Iterated Collapse to Shallow Decision Trees

Lemma 3.3. With probability at least 1−2n−10 over ρ, Cn↾ρ computes a function of decision-tree
depth T = O((log n)d).

Proof. After Lemma 3.2, replace each bottom subcircuit by its decision tree of depth t =
O(log n). Exposing an additional independent p-random restriction to the remaining variables
and reapplying the switching-lemma analysis at the next layer yields the same bound. Induct
over the d layers and union-bound the d failure probabilities to obtain the claimed T and overall
failure ≤ 2n−10.

3.3 Residual Hardness for Shallow Trees

Lemma 3.4 (Residual hardness). There exist constants c2, c3 > 0 such that the following holds.
Let φ← Dn and ρ be as above. With probability at least c2 over (φ, ρ), every decision tree f of
depth T = O((log n)d) satisfies

P
[
f(φ↾ρ) = SAT(φ↾ρ)

]
≤ 2

3 .

Following Lemma 3.4, which bounds the success probability at 2/3, we now describe a
modification of the restriction distribution that further reduces this probability bound by
introducing a balance condition on unset variables.

3.4 Strengthening via Non-Natural Restriction Selection

We now present a strengthening of Lemma 3.4, obtained by modifying the restriction distribution
with a simple (ϵ, 1/2)-balance filter (Definition 3.5). This modification yields a fixed correlation
gap below 1/2 for any bounded-depth decision tree, while preserving the simplification guarantees
of the standard p-random restriction method. The resulting bound avoids the largeness barrier
of Natural Proofs and may be adapted to other bounded-depth or modular circuit classes.

Definition 3.5 (Balance Property). A set of unset variables U satisfies the (ϵ, 1/2)-balance
property if the fraction of assignments in U fixed to 0 deviates from 1/2 by at most ϵ.
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Lemma 3.6 (Correlation Gap via Balanced Restrictions). Let R∗ be the distribution over
restrictions ρ obtained by sampling from the standard p-random restrictions and resampling
any ρ whose set of unset variables fails the (ϵ, 1/2)-balance property1. For p = n−1/(2d) and
sufficiently small constant ϵ > 0, there exists c4 > 0 such that for ρ← R∗ and φ← Dn,

Pφ,ρ
[
f(φ↾ρ) = SAT(φ↾ρ)

]
≤ 1

2 − c4n−Ω(1)

for every decision tree f of depth T = O((log n)d).

Proof. The balanced restriction rule ensures that, conditioned on ρ, the residual distribution
of φ↾ρ remains unbiased up to ϵ in each coordinate. The Doob-martingale argument from
Lemma 3.4 then bounds the influence of any queried set Q by O(|Q|/m) with m = Θ(pn). By
Azuma–Hoeffding with the balance constraint, the bias in predicting SAT is reduced from
O(T/m) to O(T/m) + ϵ. Choosing ϵ = c4n−α for suitable constants c4, α > 0 yields the stated
gap.

This lemma is a direct strengthening of Lemma 3.4 and can be applied in the proof of
Theorem 3.1 to replace the 2/3 bound with the improved 1/2− c4n−Ω(1) bound.
Strengthened conclusion. If the restrictions are drawn from R∗ as in Lemma 3.6, the success
probability bound improves from 2/3 to 1/2− c4n−Ω(1).

Proof. Let m be the number of unset variables after ρ. By Chernoff bounds, m = (1 ±
o(1))pn w.h.p. Each clause survives with probability (1 − p)3 ± o(1) and retains width at
most three. Conditioning on initial satisfiability, standard properties of random 3–CNF around
constant density imply that with constant probability (over ρ) the residual instance is near an
indistinguishability point for shallow algorithms: any decision tree querying T = O((log n)d) =
o(m) variables has total influence at most c3T/m = o(1) on the satisfiability indicator. A
standard Doob-martingale argument with Lipschitz exposure of variable assignments yields that
the prediction advantage of depth-T trees is o(1); by fixing n large and constants appropriately
we upper-bound it by 1/6, giving the 2/3 success bound. We provide all estimates explicitly in
Appendix A.

Proof of Theorem 3.1. By Lemma 3.3, with probability ≥ 1 − 2n−10, Cn↾ρ has decision-tree
depth T = O((log n)d). Conditioned on this event, Lemma 3.4 bounds its success probability by
≤ 2/3. Averaging over the 2n−10 error completes the proof.

Remark 3.7. The parameter p = n−1/(2d) is a proof parameter rather than part of the theorem
statement. It is chosen together with the balance filter to preserve the switching lemma collapse
while providing coordinate-wise control of the residual distribution in Lemma 3.6. Adjusting
only the clause threshold in Dn would not provide the same guarantee.

In addition to reproducing the classical switching-lemma based lower bound, Lemma 3.6
introduces a non-natural restriction filter that yields a fixed correlation gap strictly below 1/2 for
bounded-depth decision trees. To the best of our knowledge, this quantitative strengthening with
a coordinate-wise balance condition has not been stated explicitly in prior work on AC0 lower
bounds. It demonstrates that fine-grained control of the residual distribution can be leveraged to
obtain sharper success-probability thresholds within the standard random-restriction framework.

4 Relation to Prior Work
Our proof follows the Håstad switching-lemma method but states an explicit success-probability
threshold for random satisfiable 3–CNF at constant density and standard p = n−1/(2d). Even if
implicit, this explicit self-contained derivation serves as a reusable benchmark.

1At most ϵm deviation from perfect balance between 0- and 1-assignments in the unset set, where m is the
number of unset variables.
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5 Conclusion
We gave a complete, in-paper proof (no deferred arguments) of an explicit AC0 lower bound for
random satisfiable 3–CNF under standard random restrictions.

Appendix A: Explicit Estimates for Lemma 3.4

Setup. Let m be the number of unset variables; [m] = pn, and P[|m− [m]| > n2/3] ≤ e−Ω(n1/3).
Condition henceforth on m ∈ [pn± n2/3].

Each clause survives independently with prob. q = (1− p)3 ± o(1). Let M = Θ(n) be the
original number of clauses; then the residual clause count M ′ satisfies M ′ = (q ± o(1))M w.h.p.

Decision-tree influence bound. Any depth-T decision tree adaptively queries at most T
variables. Reveal the m variables in a fixed order; define the Doob martingale for the satisfiability
indicator X ∈ {0, 1}. Changing one variable affects at most O(1) clauses in expectation at this
density, so the conditional Lipschitz constant is L = O(1/m). Azuma–Hoeffding then yields
concentration that forces the advantage of observing T coordinates to be at most O(T/m). Setting
T = O((log n)d) and m = Θ(pn) gives advantage o(1); take n large so that O(T/m) ≤ 1/6.

Balancing event. Let E be the event that
big|P[
mathbfSAT (
varphi
restrict
rho) = 1]− 1/2
big|
le1/6. Standard second-moment bounds for random 3–CNF at constant density (conditioned on
satisfiability) imply P[E ] ≥ c2 for some constant c2 > 0. Under E and the influence bound, any
depth-T decision tree has success probability at most 2/3.

Parameter choice for Lemma 3.6. We fix ϵ = c4n−α with α > 0 small enough to keep
the rejection probability of the balance test below n−5. The Azuma–Hoeffding bound is then
applied conditionally on the balance event, yielding the claimed 1/2− c4n−Ω(1) correlation gap.

Proof details for Lemma 3.6. We bound the rejection probability of the balance filter and
apply the influence bound from Lemma 3.4 under the balance condition, as detailed above, to
derive the stated correlation gap.
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