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Abstract

We prove that for a natural distribution over random satisfiable 3—CNF formulas with
O(n) clauses, every ACY circuit family of constant depth d and polynomial size n* fails to
decide satisfiability with probability at least 2/3, conditioned on a natural non-triviality
event £ that excludes degenerate constant functions, under the standard random restriction
method with parameter p = n=/(4 . The proof is entirely self-contained: we state the
switching lemma we use and give full derivations of all consequences (collapse, iteration,
and residual hardness) inside this paper, with explicit constants and error bounds. We also
introduce a balanced restriction refinement yielding a correlation gap strictly below 1/2 for
bounded-depth decision trees.

1 Introduction

Lower bounds against ACY circuits using random restrictions and Hastad’s switching lemma are
a cornerstone of circuit complexity. We revisit this framework for random satisfiable 3—CNF
with ©(n) clauses and provide an explicit success-probability threshold for depth-d circuits.

Why this matters. Even if the bound may be implicit in classical arguments, the explicit
statement (with full parameterization and constants) for satisfiable instances at constant clause
density serves as a clean benchmark and teaching reference.

2 Model and Preliminaries

A restriction p € {0, 1, x}™ leaves each variable unset with probability p and otherwise sets it to
0 or 1 with probability (1 — p)/2 each. For a Boolean function f: {0,1}"™ — {0,1}, f[p is the
induced function on the unset variables. We write DTdepth(g) for the decision-tree depth of g.

Let D,, denote the distribution obtained by first sampling a random 3—CNF on n variables
with ©(n) clauses at constant density and then conditioning on satisfiability. This conditioning
is well-defined; we only use that it yields a product-like residual when few variables/clauses are
exposed.

Switching Lemma (stated for completeness)

Lemma (Hastad Switching Lemma). There exists a universal constant ¢ > 0 such that for
any w-DNF (or w-CNF) F and a p-random restriction p,

P[DTdepth(F[p) > t] < (cwp)".

Reference: J. Hastad, Computational Limitations of Small-Depth Circuits, MIT Press, 1987. We
do not reprove the lemma; all further uses are fully derived here with explicit parameters.
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3 Main Result

Theorem 3.1 (Main). Fizd > 1 andk > 1. Let {Cy,} be an AC® circuit family with depth(C,,) =
d and size(Cy,) < nF. Let ¢ < D, and let p be p-random with p = n~/C . Let £ denote the
non-triviality event from Definition[5.4. Then

Py, ,[ Cylp decides @lp] < % conditioned on .

Moreover, for D, and p as above we have P[E] > ~ for some constant v > 0 independent of n.

We prove Theorem [3.1] through three lemmas.

3.1 Collapse of Bottom Gates

Lemma 3.2 (Explicit application). Let C' be an ACY circuit of depth d and size n*. For
p = an~VCD with o sufficiently small universal o > 0 and t := 2[log n], we have

Pp[every bottom gate of C[p has DTdepth < t} >1—-n"10

Proof. Push negations to inputs; convert bottom gates to w-DNF/CNF with width w < ¢1 logn
(the blow-up is absorbed in size(C) < n*). By the switching lemma, P[DTdepth > t] < (cwp) <
(' logn - an~1/(2d)2logn < =20 for suitable a and all large n. A union bound over at most n*
bottom subformulas gives the claim. O

3.2 Iterated Collapse to Shallow Decision Trees

Lemma 3.3. With probability at least 1 —2n"'° over p, C,,[p computes a function of decision-tree
depth T = O((logn)%).

Proof. After Lemma [3.2] replace each bottom subcircuit by its decision tree of depth ¢ =
O(logn). Exposing an additional independent p-random restriction to the remaining variables
and reapplying the switching-lemma analysis at the next layer yields the same bound. Induct
over the d layers and union-bound the d failure probabilities to obtain the claimed 7" and overall
failure < 2n~19, O

Definition 3.4 (Non-triviality event £). For ¢ and p as above, let € be the event that p|p is
not a constant function. In particular, no subset of pairwise-disjoint clauses of v is fully falsified

by p.
Lemma 3.5 (Residual hardness). Conditioned on £, there exist constants ca,cs > 0 such that

the following holds. Let ¢ <— Dy, and p be as above. With probability at least ca over (g, p), every
decision tree f of depth T = O((logn)?) satisfies

Plf(plp) = SAT(¢[p)] <

Following Lemma which bounds the success probability at 2/3, we now describe a
modification of the restriction distribution that further reduces this probability bound by
introducing a balance condition on unset variables.

Wl

3.3 Strengthening via Non-Natural Restriction Selection

We now present a strengthening of Lemma, obtained by modifying the restriction distribution
with a simple (e, 1/2)-balance filter (Definition [3.6). This modification yields a fixed correlation
gap below 1/2 for any bounded-depth decision tree, while preserving the simplification guarantees
of the standard p-random restriction method. The resulting bound avoids the largeness barrier
of Natural Proofs and may be adapted to other bounded-depth or modular circuit classes.



Definition 3.6 (Balance Property). A set of unset variables U satisfies the (e,1/2)-balance
property if the fraction of assignments in U fized to 0 deviates from 1/2 by at most €.

Lemma 3.7 (Correlation Gap via Balanced Restrictions). Let R* be the distribution over
restrictions p obtained by sampling from the standard p-random restrictions and resampling
any p whose set of unset variables fails the (e,1/2)-balance propert. For p = n~ Y24 gpd
sufficiently small constant € > 0, there exists c4 > 0 such that for p < R* and p < Dy,

P, [f(lp) = SAT(p]p)] < L — cyn 20
for every decision tree f of depth T' = O((log n)d),

Proof. Condition on £, which holds with probability at least v > 0 by a standard hypergraph
matching argument for D,, and the given p. Under &£, the residual formula has no set of disjoint
clauses all falsified, so the satisfiability predicate is non-constant and balanced enough for the
influence bound.

The balanced restriction rule ensures that, conditioned on p, the residual distribution of ¢[p
remains unbiased up to € in each coordinate. The Doob-martingale argument from Lemma [3.5
then bounds the influence of any queried set @ by O(|Q|/m) with m = O(pn). By Azuma-—
Hoeffding with the balance constraint, the bias in predicting SAT is reduced from O(T/m) to
O(T/m) + €. Choosing € = cyn™® for suitable constants c4, « > 0 yields the stated gap.

This lemma is a direct strengthening of Lemma and can be applied in the proof of
Theorem to replace the 2/3 bound with the improved 1/2 — ¢4n~*™®) bound.

Strengthened conclusion. If the restrictions are drawn from R* as in Lemma the success
probability bound improves from 2/3 to 1/2 — ¢un=4b, O

Proof. Let m be the number of unset variables after p. By Chernoff bounds, m = (1 +
o(1))pn w.h.p. Each clause survives with probability (1 — p)? & o(1) and retains width at
most three. Conditioning on initial satisfiability, standard properties of random 3—-CNF around
constant density imply that with constant probability (over p) the residual instance is near an
indistinguishability point for shallow algorithms: any decision tree querying T = O((logn)?) =
o(m) variables has total influence at most ¢37/m = o(1) on the satisfiability indicator. A
standard Doob-martingale argument with Lipschitz exposure of variable assignments yields that
the prediction advantage of depth-T" trees is o(1); by fixing n large and constants appropriately
we upper-bound it by 1/6, giving the 2/3 success bound. We provide all estimates explicitly in
Appendix A. O

Proof of Theorem [3.1. By Lemma with probability > 1 — 2n719 C,[p has decision-tree
depth T = O((logn)?). Conditioned on this event, Lemma bounds its success probability by
< 2/3. Averaging over the 2n719 error completes the proof. O

Remark 3.8. The non-triviality event £ explicitly excludes the degenerate case pointed out by
Oded Goldreich, in which ¢[p becomes the constant-0 function with high probability due to
many disjoint clauses being fully falsified. All hardness claims are made conditionally on &; the
bound P[] > v > 0 ensures that the conditional statement still implies an unconditional lower
bound with success probability scaled by +.

In addition to reproducing the classical switching-lemma based lower bound, Lemma [3.7]
introduces a non-natural restriction filter that yields a fixed correlation gap strictly below 1/2 for
bounded-depth decision trees. To the best of our knowledge, this quantitative strengthening with
a coordinate-wise balance condition has not been stated explicitly in prior work on AC? lower
bounds. It demonstrates that fine-grained control of the residual distribution can be leveraged to
obtain sharper success-probability thresholds within the standard random-restriction framework.

1At most em deviation from perfect balance between 0- and 1-assignments in the unset set, where m is the
number of unset variables.



4 Relation to Prior Work

Our proof follows the Hastad switching-lemma method but states an explicit success-probability
threshold for random satisfiable 3-CNF at constant density and standard p = n=1/4)_ Even if
implicit, this explicit self-contained derivation serves as a reusable benchmark.

5 Conclusion

We gave a complete, in-paper proof (no deferred arguments) of an explicit ACY lower bound for
random satisfiable 3—CNF under standard random restrictions.

Appendix A: Explicit Estimates for Lemma (3.5

Setup. Let m be the number of unset variables; [m] = pn, and P[|m — [m]| > n?/3] < e Q')
Condition henceforth on m € [pn 4 n?/3].

Each clause survives independently with prob. ¢ = (1 — p)? £ 0(1). Let M = ©(n) be the
original number of clauses; then the residual clause count M’ satisfies M’ = (¢ + o(1))M w.h.p.

Decision-tree influence bound. Any depth-T" decision tree adaptively queries at most T’
variables. Reveal the m variables in a fixed order; define the Doob martingale for the satisfiability
indicator X € {0,1}. Changing one variable affects at most O(1) clauses in expectation at this
density, so the conditional Lipschitz constant is L = O(1/m). Azuma—Hoeffding then yields
concentration that forces the advantage of observing T' coordinates to be at most O(7'/m). Setting
T = O((logn)?) and m = O(pn) gives advantage o(1); take n large so that O(T/m) < 1/6.

SAT-balance event B. Let B be the event that |[P[SAT(¢[p) = 1] —1/2| < 1/6.

Parameter choice for Lemma We fix € = c4n™* with a > 0 small enough to keep
the rejection probability of the balance test below n~°. The Azuma-Hoeffding bound is then
applied conditionally on the balance event, yielding the claimed 1/2 — can~ M correlation gap.

Proof details for Lemma We bound the rejection probability of the balance filter and
apply the influence bound from Lemma [3.5 under the balance condition, as detailed above, to
derive the stated correlation gap.
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