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Abstract

We prove a conditional lower bound against AC0 circuits for a natural distribution
over random satisfiable 3–CNF formulas with Θ(n) clauses. For any constant depth d and
polynomial size nk, such circuits fail to decide satisfiability with probability at least 2/3
conditioned on a natural non-triviality event E , which excludes degenerate cases where the
restricted formula φ↾ρ becomes constant (e.g., all-zero) with high probability. In the satisfiable
constant-density model, E occurs with constant probability γ > 0, so the conditional bound
yields an unconditional bound scaled by γ. No claim is made about hardness outside the
scope of E .

Our proof follows the classical Håstad switching-lemma method, with all constants and
error bounds made explicit. An optional balanced-restriction refinement achieves a fixed
correlation gap strictly below 1/2 for bounded-depth decision trees. Externally generated
heatmaps—based on synthetic data for illustration—are included solely to situate the proof
parameter p∗ = n−1/(2d) within example (α, p) ranges; they play no role in the proof.

1 Introduction
Lower bounds against AC0 circuits via random restrictions and Håstad’s switching lemma
are a cornerstone of circuit complexity. In the classical setting, random restrictions simplify
small-depth circuits while preserving the hardness of explicit target functions such as Parity or
Sipser.

This paper adapts that framework to satisfiable 3–CNF formulas with Θ(n) clauses at
constant clause density. In this setting, a direct unconditional adaptation fails in parameter
regimes where a p-random restriction ρ makes φ↾ρ constant with high probability—for example,
when many pairwise-disjoint clauses are fully falsified. To avoid such degenerate cases, our main
theorem is explicitly conditional on a non-triviality event E , requiring that the residual formula
remain non-constant. We prove that P[E ] ≥ γ > 0 in our model, so the conditional 2/3 success
bound implies an unconditional bound scaled by γ.

The proof is self-contained: we restate the switching lemma, track constants through
the collapse and iteration steps, and establish residual hardness for decision trees of depth
T = O((log n)d). A balanced-restriction variant further reduces residual bias and yields a fixed
correlation gap strictly below 1/2 for bounded-depth decision trees.

Although the analysis is purely analytic, we include synthetic-data heatmaps illustrating
P [CONST0](α, p) and P [NONTRIVIAL](α, p) for typical (α, p) values. These figures are not
part of the proof and make no claims outside the scope of E , but they help visually situate the
proof parameter p∗ = n−1/(2d) within the parameter space.
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(a) P [CONST0](α, p) (b) P [NONTRIVIAL](α, p)

Figure 1: Illustration only. Heatmaps exported from Colab using simulated data. The red
reference line p=n−1/(2d) is generated externally. These plots are not part of the proofs and carry
no formal weight.

Why this matters. Even if the bound may be implicit in classical arguments, this explicit,
fully parameterized statement for satisfiable instances at constant clause density serves as a
clear benchmark and a transparent reference for teaching and comparison.

2 Model and Preliminaries
A restriction ρ ∈ {0, 1, ∗}n leaves each variable unset with probability p and otherwise sets it to
0 or 1 with probability (1− p)/2 each. For a Boolean function f : {0, 1}n → {0, 1}, f↾ρ is the
induced function on the unset variables. We write DTdepth(g) for the decision-tree depth of g.

Let Dn denote the distribution obtained by first sampling a random 3–CNF on n variables
with Θ(n) clauses at constant density and then conditioning on satisfiability.

Switching Lemma

Lemma (Håstad Switching Lemma). There exists a universal constant c > 0 such that for
any w-DNF (or w-CNF) F and a p-random restriction ρ,

P
[
DTdepth(F ↾ρ) ≥ t

]
≤ (cwp)t.

3 Main Result
Theorem 3.1 (Main). Fix d ≥ 1 and k ≥ 1. Let {Cn} be an AC0 circuit family with depth(Cn) =
d and size(Cn) ≤ nk. Let φ ← Dn and let ρ be p-random with p = n−1/(2d). Let E denote the
non-triviality event. Then

Pφ,ρ
[
Cn↾ρ decides φ↾ρ

]
≤ 1

3 conditioned on E .

Moreover, P[E ] ≥ γ for some constant γ > 0 independent of n.
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3.1 Collapse of Bottom Gates

Lemma 3.2 (Explicit application). Let C be an AC0 circuit of depth d and size nk. For
p = αn−1/(2d) with sufficiently small α > 0 and t := 2⌈log n⌉,

Pρ

[
every bottom gate of C↾ρ has DTdepth ≤ t

]
≥ 1− n−10.

3.2 Iterated Collapse to Shallow Decision Trees

Lemma 3.3. With probability at least 1−2n−10 over ρ, Cn↾ρ computes a function of decision-tree
depth T = O((log n)d).
Definition 3.4 (Non-triviality event E). For φ and ρ as above, E is the event that φ↾ρ is not a
constant function (i.e., no family of pairwise-disjoint clauses is fully falsified by ρ). Let γ := P[E ]
under the distribution (φ, ρ) described above; our model ensures γ is a fixed constant independent
of n.

3.3 Residual Hardness for Shallow Trees

Lemma 3.5 (Residual hardness). Conditioned on E, there exist constants c2, c3 > 0 such that
for φ ← Dn and the above ρ, with probability at least c2 over (φ, ρ), every decision tree f of
depth T = O((log n)d) satisfies

P
[
f(φ↾ρ) = SAT(φ↾ρ)

]
≤ 2

3 .

3.4 Strengthening via Balanced Restrictions

Definition 3.6 (Balance Property). A set of unset variables U satisfies the (ϵ, 1/2)-balance
property if the fraction fixed to 0 deviates from 1/2 by at most ϵ.
Lemma 3.7 (Correlation gap under balance). Let R∗ sample p-random restrictions and resample
any ρ failing the (ϵ, 1/2)-balance property. For p = n−1/(2d) and sufficiently small constant ϵ > 0,
there exists c4 > 0 such that for ρ← R∗ and φ← Dn,

Pφ,ρ
[
f(φ↾ρ) = SAT(φ↾ρ)

]
≤ 1

2 − c4n−Ω(1)

for every depth-T decision tree with T = O((log n)d).
Remark 3.8 (Scope and role of empirical plots). Theorem 3.1 is explicitly conditional on the
non-triviality event E , which removes degenerate parameter regimes in which φ↾ρ becomes a
constant function with high probability. Our formal bounds do not make any claims outside E .
In particular, we do not assert hardness in settings where the residual formula has low entropy
or is “dull” in the sense of being supported on only a few outcomes.

The heatmaps shown in Figures 1 are generated externally from simulation data and are
included only to provide visual context for the (α, p) landscape and the position of the proof
parameter p∗ = n−1/(2d). They are not used in the proofs, do not affect any bound, and should
not be interpreted as experimental evidence supporting or refuting the theorem outside the
scope of E .

4 Outlook and Follow-up Work
Beyond the lower bound itself, the restriction–analysis framework can be adapted to other settings.
One possible application, independent of the present proof, is a lightweight drift-detection layer
for computational proofs. Here, S(α, p) = 1− P[CONST0] could serve as an empirical stability
score, with the (α, p)–plane partitioned into zones according to thresholds (θcut, θentry). Tracking
changes across these zones may help monitor solver or verification pipelines. Details of such
applications are left for separate work.
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