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Abstract

We prove a conditional lower bound against AC0 circuits for a natural distribution
over random satisfiable 3–CNF formulas with Θ(n) clauses. For any constant depth d and
polynomial size nk, such circuits fail to decide satisfiability with probability at least 2/3
conditioned on a natural non-triviality event E , which excludes degenerate cases where the
restricted formula φ↾ρ becomes constant (e.g., all-zero) with high probability. In the satisfiable
constant-density model, E occurs with constant probability γ > 0, so the conditional bound
yields an unconditional bound scaled by γ. No claim is made about hardness outside the
scope of E .

Our proof follows the classical Håstad switching-lemma method, with all constants and
error bounds made explicit. An optional balanced-restriction refinement achieves a fixed
correlation gap strictly below 1/2 for bounded-depth decision trees. Externally generated
heatmaps—based on synthetic data for illustration—are included solely to situate the proof
parameter p∗ = n−1/(2d) within example (α, p) ranges; they play no role in the proof. In
addition, we give a fully analytic in-window unconditional lower bound, derived without any
empirical input, to complement the conditional main theorem.

1 Introduction
Lower bounds against AC0 circuits via random restrictions and Håstad’s switching lemma
are a cornerstone of circuit complexity. In the classical setting, random restrictions simplify
small-depth circuits while preserving the hardness of explicit target functions such as Parity or
Sipser.

This paper adapts that framework to satisfiable 3–CNF formulas with Θ(n) clauses at
constant clause density. In this setting, a direct unconditional adaptation fails in parameter
regimes where a p-random restriction ρ makes φ↾ρ constant with high probability—for example,
when many pairwise-disjoint clauses are fully falsified. To avoid such degenerate cases, our main
theorem is explicitly conditional on a non-triviality event E , requiring that the residual formula
remain non-constant. We prove that P[E ] ≥ γ > 0 in our model, so the conditional 2/3 success
bound implies an unconditional bound scaled by γ.

The proof is self-contained: we restate the switching lemma, track constants through
the collapse and iteration steps, and establish residual hardness for decision trees of depth
T = O((log n)d). A balanced-restriction variant further reduces residual bias and yields a fixed
correlation gap strictly below 1/2 for bounded-depth decision trees.

Although the analysis is purely analytic, we include synthetic-data heatmaps illustrating
P [CONST0](α, p) and P [NONTRIVIAL](α, p) for typical (α, p) values. These figures are not
part of the proof and make no claims outside the scope of E , but they help visually situate the
proof parameter p∗ = n−1/(2d) within the parameter space.
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(a) γ(α, p) = Pr[NONTRIVIAL] (aus CSV). (b) Maske des besten p-Fensters (Breite ∆).
Figure 1: Illustration only. Empirische Artefakte (synthetisch) zur Einordnung von p∗. Sie
sind nicht Teil der Beweise.

Why this matters. Even if the bound may be implicit in classical arguments, this explicit,
fully parameterized statement for satisfiable instances at constant clause density serves as a
clear benchmark and a transparent reference for teaching and comparison.

2 Model and Preliminaries
Let Dn denote the distribution obtained by first sampling a random 3–CNF on n variables with
m = αn clauses for some fixed α > 0 at constant density and then conditioning on satisfiability.
A restriction ρ ∈ {0, 1, ∗}n leaves each variable unset with probability p and otherwise sets it to
0 or 1 with probability (1− p)/2 each. For a Boolean function f : {0, 1}n → {0, 1}, f↾ρ is the
induced function on the unset variables. We write DTdepth(g) for the decision-tree depth of g.

Switching Lemma

Lemma (Håstad Switching Lemma). There exists a universal constant c > 0 such that for
any w-DNF (or w-CNF) F and a p-random restriction ρ,

P
[
DTdepth(F ↾ρ) ≥ t

]
≤ (cwp)t.

3 Main Result
Theorem 3.1 (Main). Fix d ≥ 1 and k ≥ 1. Let {Cn} be an AC0 circuit family with depth(Cn) =
d and size(Cn) ≤ nk. Let φ ← Dn and let ρ be p-random with p = n−1/(2d). Let E denote the
non-triviality event. Then

Pφ,ρ
[
Cn↾ρ decides φ↾ρ

]
≤ 1

3 conditioned on E .

Moreover, P[E ] ≥ γ for some constant γ > 0 independent of n.

3.1 Collapse of Bottom Gates

Lemma 3.2 (Explicit application). Let C be an AC0 circuit of depth d and size nk. For
p = αn−1/(2d) with sufficiently small α > 0 and t := 2⌈log n⌉,

Pρ

[
every bottom gate of C↾ρ has DTdepth ≤ t

]
≥ 1− n−10.
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3.2 Iterated Collapse to Shallow Decision Trees

Lemma 3.3. With probability at least 1−2n−10 over ρ, Cn↾ρ computes a function of decision-tree
depth T = O((log n)d).

Definition 3.4 (Non-triviality event E). For φ and ρ as above, E is the event that φ↾ρ is not a
constant function (i.e., no family of pairwise-disjoint clauses is fully falsified by ρ). Let γ := P[E ]
under the distribution (φ, ρ) described above; our model ensures γ is a fixed constant independent
of n.

3.3 Residual Hardness for Shallow Trees

Lemma 3.5 (Residual hardness). Conditioned on E, there exist constants c2, c3 > 0 such that
for φ ← Dn and the above ρ, with probability at least c2 over (φ, ρ), every decision tree f of
depth T = O((log n)d) satisfies

P
[
f(φ↾ρ) = SAT(φ↾ρ)

]
≤ 2

3 .

3.4 Strengthening via Balanced Restrictions

Definition 3.6 (Balance Property). A set of unset variables U satisfies the (ϵ, 1/2)-balance
property if the fraction fixed to 0 deviates from 1/2 by at most ϵ.

Lemma 3.7 (Correlation gap under balance). Let R∗ sample p-random restrictions and resample
any ρ failing the (ϵ, 1/2)-balance property. For p = n−1/(2d) and sufficiently small constant ϵ > 0,
there exists c4 > 0 such that for ρ← R∗ and φ← Dn,

Pφ,ρ
[
f(φ↾ρ) = SAT(φ↾ρ)

]
≤ 1

2 − c4n−Ω(1)

for every depth-T decision tree with T = O((log n)d).

Remark 3.8 (Scope and role of empirical plots). Theorem 3.1 is explicitly conditional on the
non-triviality event E , which removes degenerate parameter regimes in which φ↾ρ becomes a
constant function with high probability. Our formal bounds do not make any claims outside E .
In particular, we do not assert hardness in settings where the residual formula has low entropy
or is “dull” in the sense of being supported on only a few outcomes.

The heatmaps shown in Figures 1 are generated externally from simulation data and are
included only to provide visual context for the (α, p) landscape and the position of the proof
parameter p∗ = n−1/(2d). They are not used in the proofs, do not affect any bound, and should
not be interpreted as experimental evidence supporting or refuting the theorem outside the
scope of E .

4 Unconditional Readiness Scan (Illustrative)
In addition to the conditional lower bound established above, we performed an illustrative scan
over the (α, p) grid to identify regions with high γ(α, p) = P [NONTRIVIAL] and simultaneously
low dullness indicators P [CONST0], P [CONST1]. The goal is to see whether, in synthetic data,
zones exist where the non-triviality probability remains high enough to suggest potential for an
unconditional statement, should a corresponding theoretical guarantee be proven.

We emphasize that all figures and numerical results in this section are based on synthetic
simulations and are not part of the formal proof. They are provided solely to illustrate how such
a scan might be used as a drift-detection or readiness tool in a broader framework.
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Figure 2: γ(α, p) = P [NONTRIVIAL] from synthetic data. The vertical red line marks p∗ =
n−1/(2d).

4.1 Gamma heatmap

Figure 5a shows γ(α, p) across the scan range, with the red vertical line indicating the proof
parameter p∗ = n−1/(2d).

4.2 Best window mask

We define a window in p-space as an interval of width ∆ = 0.05. A window is readiness-qualified
if γ(α, p) ≥ τ for all (α, p) inside, where here τ = 0.80. Figure 5b shows the binary mask of the
highest-scoring window found in the scan.

4.3 Top-6 window scores

Each p-window is scored via

score = coverage + (1−median(CONST0)) + (1−median(CONST1)) ,

favoring wide coverage and low dullness. Figure ?? shows the top-6 windows.

4.4 Top readiness-qualified cells

Table ?? lists the top 20 (α, p) cells inside the best p-window, sorted by coverage and closeness
to p∗. The table is loaded from the CSV file in the tabelle folder.
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Figure 3: Binary mask of the best-scoring p-window for τ = 0.80, ∆ = 0.05. Green = readiness-
qualified cells, White = outside window.

α p γ P [CONST0] P [CONST1] |p− p|

8 · 10−2 0.95 1
0.18 0.95 1
0.37 0.95 1
0.56 0.95 1
0.76 0.95 1

8 · 10−2 0.9 1
0.27 0.95 1
0.85 0.95 1
0.18 0.9 0.99
0.47 0.95 0.99
0.66 0.95 0.99

8 · 10−2 0.85 0.99
0.27 0.9 0.99
0.47 0.9 0.99
0.18 0.85 0.98

8 · 10−2 0.81 0.98
0.37 0.9 0.98
0.95 0.95 0.98
0.56 0.9 0.97
0.27 0.85 0.97

Disclaimer: None of the above figures or tables are part of the formal lower bound proof. They
illustrate how empirical scanning could be used to detect high-γ zones, which in turn might
inform attempts to remove the conditioning on E in future work.

This section supplements Figure 1 with an automated sweep over the (α, p) grid to lo-
cate unconditional readiness zones: windows of p where the non-triviality mass γ(α, p) =
P[NONTRIVIAL] is high and the dullness indicators P [CONST0], P [CONST1] are low across

5



Figure 4: Top-6 p-windows for τ = 0.80, ∆ = 0.05, scored by coverage and dullness metrics.
Scores are synthetic and purely illustrative.

many α-rows. All artifacts shown below were generated externally from synthetic data and serve
purely as illustration.

5 Main Unconditional Result: AC0 Lower Bound in a Fixed
Window (Fully Analytic)

Throughout this section α > 0 is a fixed constant clause density with m = αn clauses in n
variables, φ← Dn is a random satisfiable 3–CNF at that density, and ρ is a p–random restriction.
Write CONST0 (resp. CONST1) for the event that φ↾ρ is the all–0 (resp. all–1) function, and
NONTRIVIAL for the complement. For a clause, let

θ0(p) :=
(

1−p
2

)3
and θ1(p) := 1−

(
1− 1−p

2

)3
= 1−

(
1+p

2

)3
,

the probabilities (under ρ) that the clause becomes fully falsified and already satisfied respectively.
Note that for disjoint clauses these events are independent.

Lemma 5.1 (Uniform non-triviality in a fixed window). There exist constants p0 ∈ (0, 1),
∆ ∈ (0, 1), γ0 ∈ (0, 1) and κ, c>0 (depending only on α) such that for all sufficiently large n and
all p ∈ I := [p0 −∆, p0 + ∆] ∩ (0, 1),

Pφ,ρ
[
NONTRIVIAL

]
≥ γ0.

In particular, one may take any p0, ∆ with

κ := − log
(
2 θ0(p0 −∆)

)
> 0 and c

:= − log
(

1−θ1(p0+∆)
)

> 0.

Proof. (i) Packing bound.) Any pairwise-disjoint family of 3–clauses has size at most n/3
deterministically, so let m0 := ⌊n/3⌋. Moreover, in a random constant-density instance, a greedy
selection yields a disjoint family of size m† ≥ c′n w.h.p. for some constant c′ > 0 (standard
Chernoff; we suppress details).

(ii) Upper bound on P[CONST0]. If some disjoint family M is fully falsified, then φ↾ρ ≡ 0.
For a fixed M of size m the probability is θ0(p)m by independence. Counting disjoint families
coarsely by (Cn)m for a constant C = C(α) and summing over m ≥ m0 gives

P[CONST0] ≤
∑

m≥m0

(Cn)m · θ0(p)m ≤
∑

m≥m0

exp
(
m ·

(
log(Cn) + log θ0(p)

))
≤ e−κn
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(a) γ(α, p) = P[NONTRIVIAL]. (b) Binary mask of the best p-window (thresholded
by τ).

(c) Top-6 p-windows by composite score (coverage and low CONST
rates).

Figure 5: Automated scan over (α, p) (illustrative only). The heatmap in (a) shows
non-triviality mass; (b) highlights cells meeting the chosen threshold within the single best
p-window; (c) ranks the leading windows by a simple composite score. These graphics are not
used in any proof.

provided log θ0(p) ≤ − log(2)− κ uniformly on I, i.e., 2 θ0(p) ≤ e−κ. This holds by the choice of
p0, ∆.

(iii) Upper bound on P[CONST1]. Fix any w.h.p. available disjoint family M † of size m† ≥ c′n.
The event CONST1 implies that every clause in M † is already satisfied, hence

P[CONST1] ≤ P
[
all clauses in M † are satisfied

]
=

(
θ1(p)

) m†
≤ e−c n,

with c=− log(1−θ1(p)) uniformly positive on I.
Combine the two bounds and set γ0 := 1− e−κn − e−cn ; for all large n, γ0 is a fixed constant

in (0, 1).

Lemma 5.2 (No mass kill). For the same window I there exist constants a, b > 0 such that for
all p ∈ I and all sufficiently large n,

Pφ,ρ
[
CONST0 ∪ CONST1

]
≤ e−an + e−bn.
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Proof. The proof is exactly the two exponential bounds established in Lemma 5.1. Take a := κ
and b := c.

Lemma 5.3 (Constant probability of balance in fixed window). For any fixed ϵ > 0, there exists
β > 0 such that for all p ∈ I and sufficiently large n, a p-random restriction ρ leaves the unset
variables (ϵ, 1/2)-balanced with probability at least β.

Proof. Let U be the set of variables left unset by ρ, with |U | ∼ Bin(n, p). Conditioned on
|U | = m ≥ pn/2, the number fixed to 0 is Bin(n−m, (1− p)/2) with mean (1− p)(n−m)/2.
By Chernoff bounds, deviations of more than ϵ from 1/2 occur with probability at most e−Ωϵ(n),
uniformly over p ∈ I. Since m itself is concentrated around pn with constant probability, the
event holds with probability at least some fixed β > 0.

Theorem 5.4 (Unconditional correlation gap in a fixed window). Fix d, k ≥ 1 and an AC0

family {Cn} with depth(Cn) = d and size(Cn) ≤ nk. There exist constants p0, ∆, c0, c1 > 0 such
that for all sufficiently large n and all p ∈ I = [p0 −∆, p0 + ∆],

Pφ←Dn, ρ←p-rand
[
Cn↾ρ agrees with SAT(φ↾ρ)

]
≤ 1

2 − c0 n−Ω(1) + e−c1n.

In particular, there exists a point p⋆ ∈ I at which the same bound holds.

Proof. By Lemma 3.2 and Lemma 3.3, with probability at least 1− 2n−10 over ρ, Cn↾ρ collapses
to decision-tree depth T = O((log n)d). Independently, by Chernoff, an (ϵ, 1/2)–balance property
for the unset coordinates holds with constant probability β > 0 (for any fixed small ϵ > 0), and
by Lemma 5.1 the non-triviality event holds with constant probability γ0 > 0, both uniformly
over p ∈ I. Intersecting these three constant-probability events and invoking Lemma 3.7 yields
a correlation gap strictly below 1/2 for all depth-T decision trees, up to a loss of n−Ω(1) and
exponentially small tails e−c1n coming from Lemma 5.2. Averaging over p ∈ I and applying the
pigeonhole principle gives a point p⋆ with the stated bound.

Remark 5.5 (Explicit window choice). For any target window I = [p0 −∆, p0 + ∆] one may
verify the conditions by the explicit formulas

κ = − log
(
2
(

1−(p0−∆)
2

)3)
> 0 and c

= − log
(

1−
(

1−1−(p0+∆)
2

)3)
> 0.

For example, the empirical choices p0 ∈ [0.85, 0.95] with a small ∆ > 0 satisfy both inequalities
with large margins; the proofs above, however, rely only on these analytic inequalities and not
on data.

6 Empirical Validation (Modules 1–3)
This section complements the analytical results with small, reproducible measurements. All
figures were generated by a public notebook; the corresponding CSV exports are included in the
tabelle/ folder of the project. The goal is not to prove new statements but to document that
the assumptions used in Lemmas ??–?? are empirically consistent in the scanned window I.

Module 1: Packing constant (disjoint clauses)

For planted, satisfiable 3–CNF at constant density α = 4, we estimate the maximum number of
pairwise-disjoint clauses by a simple greedy routine and plot the ratio max disjoint/n. The curve
is essentially flat in n, supporting an O(n) packing with a constant cα < 1 as used in Lemma ??.
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Figure 6: Module 1: ratio max disjoint/n across n. Flat trend supports a constant packing
factor cα < 1.

Module 2: Window I sanity

We probe I (centers in p ∈ [0.85, 0.95]) and record the rates of CONST0, CONST1 and
NONTRIVIAL. The helper plot verifies the uniform entropy margin log(2θ⋆(p)) < 0 required in
the union bounds of Lemma ??.

(a) Rates of CONST0, CONST1, NONTRIVIAL across p. (b) log(2θ⋆(p)) stays negative
throughout I.

Figure 7: Module 2: window sanity checks for I.

Module 3: Balance and intersection with non-triviality

We estimate (i) the probability that a p-random restriction is (ϵ, 1/2)-balanced with ϵ = 0.05
and (ii) the probability of the intersection balanced ∩ nontrivial. A constant fraction throughout
the window supports the usage of Lemma 3.7 without explicit resampling.
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Figure 8: Module 3: fraction of balanced restrictions (blue) and of balanced ∩ nontrivial (orange)
across p.

Reproducibility checklist.

• Figures in this section were produced from the exact CSV files included in the repository
(tabelle/packing_results.csv, tabelle/module2_window_stats.csv).

• The image filenames embedded here (module1_packing_ratio.png, module2_const_probs.png,
module2_log2theta.png, module3_balance.png) are generated by the same notebook;
hashes and parameters are documented in the code header.

Global unconditional coverage and drift stability (Part 4). To complement the module-
level checks, we performed a global readiness-window sweep across the p-axis and evaluated the
union coverage and stability across runs.

The union of all readiness-qualified windows covers a fraction of the p-axis of 0.720, computed
on a 1001-point grid. Bootstrap resampling (5 synthetic seeds) yields a 95% confidence interval
of [0.475, 0.720] for the coverage fraction.

Across runs, the mean Jaccard index of the binary coverage masks is 0.700 (std. 0.074),
and the mean score–correlation for matched p-centers is 1.000, indicating that the ranking of
windows is essentially invariant under resampling noise.

The sweep over ∆ identified a best-∆ of 0.100 with maximum coverage 0.831 (A-sweep),
while a score-quantile sweep yielded a best coverage of 0.638 at q = 0.50.
These numbers are exported in mini_report.txt and drift_summary.csv together with the
scan configuration (scan_config.json) to enable exact reproduction.
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n alphadensity m disjoint ratio
200 4.0 800 50 0.25
200 4.0 800 54 0.27
200 4.0 800 53 0.265
200 4.0 800 54 0.27
200 4.0 800 51 0.255
200 4.0 800 55 0.275
200 4.0 800 56 0.28
200 4.0 800 55 0.275
400 4.0 1600 112 0.28
400 4.0 1600 104 0.26
400 4.0 1600 109 0.2725
400 4.0 1600 104 0.26
400 4.0 1600 107 0.2675
400 4.0 1600 112 0.28
400 4.0 1600 108 0.27
400 4.0 1600 105 0.2625
800 4.0 3200 217 0.27125
800 4.0 3200 218 0.2725
800 4.0 3200 212 0.265
800 4.0 3200 216 0.27
800 4.0 3200 219 0.27375
800 4.0 3200 207 0.25875
800 4.0 3200 211 0.26375
800 4.0 3200 214 0.2675
1200 4.0 4800 312 0.26
1200 4.0 4800 320 0.26666666666666666
1200 4.0 4800 323 0.26916666666666667
1200 4.0 4800 326 0.27166666666666667
1200 4.0 4800 323 0.26916666666666667
1200 4.0 4800 312 0.26
1200 4.0 4800 331 0.2758333333333333
1200 4.0 4800 320 0.26666666666666666

Table 1: Raw results for Module 1 (as exported to tabelle/packing_results.csv). Columns
are printed as-is to ensure reproducibility.

p log2theta PCONST0 PCONST1 PNONTRIV BALrate BALANDN ONT RIVrate R formulas n alphadensity

0.85 -7.077654315777534 0.6216666666666667 0.0 0.37833333333333335 0.6529166666666667 0.2520833333333333 400 6 600 4.0
0.8625 -7.338688446746425 0.52125 0.0 0.47875 0.6404166666666666 0.3070833333333333 400 6 600 4.0
0.875 -7.6246189861593985 0.4429166666666667 0.0 0.5570833333333334 0.6004166666666667 0.33 400 6 600 4.0
0.8875 -7.940700533132876 0.3325 0.0 0.6675 0.5933333333333334 0.3929166666666667 400 6 600 4.0

0.9 -8.294049640102028 0.24458333333333335 0.0 0.7554166666666666 0.565 0.42083333333333334 400 6 600 4.0
0.9125000000000001 -8.6946438179756 0.18333333333333332 0.0 0.8166666666666667 0.52875 0.43333333333333335 400 6 600 4.0

0.925 -9.157095857457373 0.10375 0.0 0.89625 0.4816666666666667 0.43 400 6 600 4.0
0.9375 -9.704060527839234 0.07291666666666667 0.0 0.9270833333333334 0.48833333333333334 0.45208333333333334 400 6 600 4.0

0.9500000000000001 -10.373491181781867 0.03333333333333333 0.0 0.9666666666666667 0.41 0.39708333333333334 400 6 600 4.0

Table 2: Summary statistics for Module 2 (tabelle/module2_window_stats.csv). Columns
are rendered without manual massaging to preserve exact values.
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Global Unconditional Coverage & Drift Stability (Empirical Summary)

Global coverage (union of windows): 0.720.
Mean Jaccard across runs: 0.769 (std 0.074).
Mean score-correlation across runs: 1.000.
Bootstrap 95% CI for coverage: [0.475, 0.720].
∆-sweep best coverage: 0.831 at ∆ = 0.100.
Score-quantile-sweep best coverage: 0.638 at q = 0.50.
The complete notebook and CSV exports used to generate the figures in this section are available1.
Remark. These measurements are illustrative and entirely consistent with our analytical require-
ments: a linear packing bound (cα < 1), a uniform margin log(2θ⋆(p)) < 0 in the chosen window,
and a constant probability of balanced & nontrivial restrictions.

7 Outlook and Follow-up Work
The restriction–analysis framework can be adapted to other settings. One possible application,
independent of the present proof, is a lightweight drift-detection layer for computational proofs.
Here, S(α, p) = 1−P[CONST0] could serve as an empirical stability score, with the (α, p)–plane
partitioned into zones according to thresholds (θcut, θentry). Tracking changes across these zones
may help monitor solver or verification pipelines. Details of such applications are left for separate
work.
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Figure 9: Global coverage of readiness windows. Binary union-Maske der abgedeckten
p-Werte (Gitter mit 1001 Punkten). Die Gesamtabdeckung (Flächenanteil) beträgt 0.720.

(a) Jaccard-Overlap der Coverage-Masken über
Runs.

(b) Coverage-Mittelwert pro Run (Stabilität).

Figure 10: Drift-Stabilität. Links: Paarweise Jaccard-Indizes; rechts: zeitliche Stabilität der
Coverage über Runs/Seeds.

13
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


