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Abstract

We consider the question of whether worst-case hardness of the time-bounded Kolmogorov
complexity problem, MINKpoly—that is, determining whether a string is time-bounded Kolmogorov
random (Kt-random) or not—suffices to imply the existence of one-way functions (OWF).

Roughly speaking, our main result shows that under a natural strengthening of standard-
type derandomization assumptions, worst-case hardness of the boundary version of this classic
problem characterizes OWFs. In more detail, let boundary-MINKt1,t2 denote the problem of,
given an instance x, deciding whether (a) Kt2(x) ≥ n − 1, or (b) Kt1(x) < n − 1 but Kt2 >
n − log n; that is, deciding whether x is Kt-random, or just “near” Kt-random. We say that
boundary-MINKpoly /∈ ioBPP if boundary-MINKt1,t2 /∈ ioBPP for all polynomials t1, t2.

We show that under a natural strengthening of standard derandomization assumptions (namely,
there exists a constant ε > 0 such that E 6⊆ ioNTIME[2kn]/2εn for every k ∈ N), OWF exist iff
boundary-MINKpoly /∈ ioBPP. Along the way, we also demonstrate that if we consider the proba-
bilistic version of Kolmogorov complexity (referred to as pKt) instead, then the characterization
holds unconditionally.

We finally observe that for most standard optimization problems, hardness “along boundary” is
equivalent to “plain” worst-case hardness, indicating that assuming hardness along the boundary
may be WLOG.
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1 Introduction

A one-way function [DH76] (OWF) is a function f that can be efficiently computed (in polynomial
time), yet no probabilistic polynomial-time (PPT) algorithm can invert f with inverse polynomial
probability for infinitely many input lengths n. Whether one-way functions exist is unequivocally
the most important open problem in Cryptography (and arguably the most important open prob-
lem in the theory of computation, see e.g., [Lev03]): OWFs are both necessary [IL89] and sufficient
for many of the most central cryptographic primitives and protocols (e.g., pseudorandom gener-
ators [BM84, HILL99], pseudorandom functions [GGM84], private-key encryption [GM84], digital
signatures [Rom90], commitment schemes [Nao91], identification protocols [FS90], coin-flipping pro-
tocols [Blu82], and more). These primitives and protocols are often referred to as private-key prim-
itives, or “Minicrypt” primitives [Imp95] as they exclude the notable task of public-key encryption
[DH76, RSA83]. Additionally, as observed by Impagliazzo [Gur89, Imp95], the existence of a OWF
is equivalent to the existence of polynomial-time method for sampling hard solved instances for an
NP language (i.e., hard instances together with their witnesses).

Complexity-Theoretic Characterizations of OWFs: Kolmogorov Complexity We here
focus on the question of whether there exists some “simple” complexity-theoretic characterizations
of the existence of OWFs. Recently, [LP20] presented an average-case characterization of OWFs
through a natural computational problem—the time-bounded Kolmogorov complexity problem [Kol68,
Sip83, Ko86, Har83]: Let the Kolmogorov complexity of a string x, denoted K(x), be defined as the
length of the shortest program that outputs x, and the t(·)-bounded version, Kt(x), be defined as the
length of the shortest program that outputs the string x within time t(|x|). While determining (or
deciding for some particular threshold s(·)) the Kolmogorov complexity of a string x is uncomputable,
as surveyed by Trakhtenbrot [Tra84], the problem of efficiently computing/deciding Kt-complexity
(when t is a polynomial) predates the theory of NP-completeness and was studied in the Soviet
Union since the 60s as a candidate for a problem that requires “brute-force search”. Indeed, so far
no non-trivial attacks are known in the uniform setting (and only very recently a non-trivial attack
of circuit size roughly 24n/5 was presented in the non-uniform setting [MP23, HIW24]).

The work of [LP20] showed that mild average-case hardness of computing Kt (or simply deciding
whether it is large or small) w.r.t. the uniform distribution over instances, characterizes the existence
of OWF. [LP23b], furthermore, show that if we consider a probabilistic analog of Kt, referred to as
probabilistic Kt or pKt [GKLO22]—where for some constant δ (think of δ = 2/3), pKt

δ(x) is defined
as the smallest ω such that with probability δ over the choice of a random string r, there exists a
program of length at most ω that generates x if being provided r—then mild average-case hardness
with respect to any a-priori polynomially time-bounded sampler over instances also characterizes
OWFs (i.e., not just the uniform distribution), and this results also extends to Kt under standard
derandomization assumptions.

Does Just Worst-case Hardness of Kt Suffice? These above results, however, only apply
in the setting of average-case hardness. We are here interested in the question of whether simply
worst-case hardness of computing/deciding Kt suffices to characterize or even just obtain OWFs.

Does worst-case hardness of deciding Kt(x) > s imply the existence of OWFs?

Beyond being interesting in its own right, this question is motivated by the fact that in recent years,
there has been great progress (see e.g. [Ila20, ILO20, Ila21, Ila22, LP22b, Hir22, Ila23]) towards
showing that the decisional Kt problem is NP-complete; in particular, the very recent work by
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Ilango [Ila23] shows NP-completeness in the random oracle model (and thus giving a heuristic NP-
completeness reduction). Notably, if OWF can be based on the worst-case hardness of this problem,
and the problem can be shown to be NP-complete, then we would base OWF on just the assumption
that NP 6⊆ BPP.

Intriguingly, a result by Hirahara [Hir18] shows that if we were to consider a “gap” version of the
Kt problem, where the goal is to distinguish between x such that Kt1(x) < s and Kt2(x) > s+ nε,
for all t2 = poly(t1), then worst-case hardness of this problem implies what is referred to as errorless
average-case hardness (w.r.t. deterministic algorithm).1 Unfortunately, to apply the result of [LP20],
we require the more standard notion of two-sided error average-case hardness.

Recently, however, worst-case characterizations of OWF were also obtained [LP23a, HN23],
considering some variants of the time-bounded Kolmogorov complexity problem. In particular,
[LP23a] characterize OWFs through the problem of determining whether Kt(x) is large or small,
but restricting attention to instances x with very large unbounded Kolmogorov complexity (i.e.,
K(x) > n−O(log n)), or alternatively to strings x whose so-called “computational depth”, cdt(x) =
Kt(x)−K(x) < O(log n), is small (whereby “restricting attention” means that we consider worst-case
hardness of a promise problem that only considers those instances; that is, any efficient algorithm
must fail on one of those instances in the promise). [HN23], in turn, provide a worst-case characteri-
zation of a variant of OWFs, referred to as infinitely-often OWF through the problem of “estimating
the probability that a random time-bounded program outputs a certain string” (which can be shown
to be related to the notion of probabilistic Kt), while restricting attention to instances satisfying an
analog of small computational depth (with respect to this complexity notion).2

The unappealing aspect of the above characterizations is that once we add the “conditioning”,
it becomes less clear what the intuitive interpretation of the problems is. On a technical level, the
property that we condition on (i.e., computational depth being small, or Kolmogorov complexity
being large) is not decidable. While it is not hard to modify the condition to become decidable in
exponential-time (by considering KEXP instead of K), we still end up with a promise problem where
the promise is outside of the polynomial hierarchy, so while “syntactically close” to the original Kt

problem, in terms of computational complexity, the problems appear very different.

Our Results in a Nutshell: Boundary Hardness Characterizes OWFs Roughly speaking,
the main result of this paper will be that under standard derandomization assumptions, it will suffice
to condition on instances having “not too small” time-bounded Kolmogorov complexity (as opposed
to them having high Kolmogorov complexity). Doing so enables us to obtain the following natural
statement: under appropriate derandomization assumptions, worst-case hardness of the problem of
deciding whether the time-bounded Kolmogorov complexity of a string x is “very large” or “interme-
diate” implies, and in fact, characterizes OWFs. We will refer to this as the boundary time-bounded
Kolmogorov complexity problem. Furthermore, the same characterization holds unconditionally once
we consider pKt instead of Kt.

1Roughly speaking, errorless average-case hardness refers to average-case hardness w.r.t. algorithms that either
provide the right answer or ⊥ (and ⊥ should only be output with small probability). In other words, hardness holds
w.r.t. algorithms that “know” when they fail. This is in contrast to the notion of two-sided error hardness where we
allow the attacker to fail (without knowing it) on some small set of inputs.

2An alternative type of worst-case characterization of OWFs was also obtained in [HN23], where it is shown that
OWFs exists iff NP 6⊆ BPP and a certain “distributional”-Kt problem is NP-complete w.r.t. a certain type of (restricted)
reductions. Note that simply worst-case hardness of the distributional Kt problem alone is not sufficient to get
OWFs Rather the characterization is in terms both a hardness assumption (NP 6⊆ BPP) combined with an feasibility
assumption (the existence of a certain type of NP-completeness reduction).
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1.1 Statement of Results

To state our results more formally, let us first recall the standard MINKpoly problem; the probabilistic
version of the problem, MINpKpoly, is defined analogously (see Section 3.1). For any polynomials
t1 < t2, let MINKt1,t2 denote the promise problem consisting of:

• YES: x ∈ {0, 1}n, Kt1(x) ≤ n− 2.

• NO: x ∈ {0, 1}n, Kt2(x) ≥ n− 1,

In essence, the goal is to distinguish between so-called time-bounded Kolmogorov-random strings (i.e.,
x s.t. Kt(x) ≥ n− 1) and those that are not. We say that MINKpoly 6∈ ioBPP if for all polynomials
t1, t2, t2(n) ≥ t1(n) ≥ 2n, MINKt1,t2 6∈ ioBPP.3

The boundary version (denoted by boundary-MINKt1,t2) is defined as the promise problem con-
sisting of:

• YES: x ∈ {0, 1}n, Kt1(x) ≤ n− 2 and Kt2(x) > n− log n.

• NO: x ∈ {0, 1}n, Kt2(x) ≥ n− 1.

and boundary-MINKpoly is analogously defined. In other words, the problem requires:

Deciding whether a string x is (a) time-bounded Kolmogorov random, or (b) just “near”
time-bounded Kolmogorov random (i.e., having “intermediate” time-bounded Kolmogorov
complexity.)

Let Derand denote the following derandomization assumptions (which is a stronger version of com-
monly used derandomization assumption: there exists a constant ε > 0 such that E 6⊆ ioNTIME[2kn]/
2εn for every k ∈ N. We are now ready to state our main theorem:

Theorem 1.1. Assuming Derand, OWFs exist if and only if boundary-MINKpoly 6∈ ioBPP.

As a warm-up and stepping stone towards this result, we show an unconditional characterization
of OWF through the worst-case hardness of boundary-MINpKpoly.

Theorem 1.2. OWFs exist if and only if boundary-MINpKpoly 6∈ ioBPP.

A Note on the Derandomization Assumption: Let us provide some context for our new
derandomization assumption. The most classic derandomization assumptions in the literature assert
the existence of a function f : {0, 1}n → {0, 1} computable in 2100n time that cannot be computed by
deterministic [IW97], or non-deterministic [KvM02, MV05, SU05], 20.01n-time algorithms with 20.01n

advice.4 (Prior works on the coding theorem—as we shall discuss shortly, this will be a key building
block for us—rely on the non-deterministic version (i.e., [GKLO22, LP23b]).)

Our Derand assumption is a natural strengthening of the assumption of [KvM02] where, in essence,
we require for every k, the existence of a function running in time 2100kn that is secure against
attackers with running time 20.01kn (but still only 20.01n advice). In other words, we allow the
attacker to run in time > 2n, but the hard function can be computed in time � 2n. (Note that,
just as for [IW97, KvM02], for each k, there is a poly(n)2kn-time complete hard function.) As for
intuition, Derand relies on exactly the same intuition as [IW97, KvM02]: non-determinism and short

3Recall that ioBPP denotes the class of promise problems that admit a probabilistic polynomial time algorithm on
infinitely many input lengths.

4There is nothing special about 100 and 0.01, they could be any constant; we just wrote 100 to make the assumption
more concrete, and to enable easier comparing the assumptions with other ones.
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advice should not enable polynomial speed-up for computations (and this should hold equally for
2n [IW97, KvM02] as 2kn time (this paper) computations).

As far as we know this assumption is new, but the idea of considering attackers with running
time > 2n was recently introduced by Chen and Tell [CT21] where a quantitatively stronger version
is used: for every k ≥ 1, exist a function computable in time 2100kn that cannot be computed by
299kn-time algorithms with 20.99n advice (i.e., they consider an almost-optimal hardness version). On
the other hand, [CT21] only make this assumption w.r.t. deterministic attackers, whereas we need
it w.r.t. non-deterministic ones. [CT23] considers a non-deterministic version of [CT21], but theirs
is again incomparable since they allow the function to be computable by a non-deterministic 2100kn

algorithm.

1.2 Is Hardness along the Boundary WLOG?

A natural question is whether the boundary-MINKpoly problem is equivalent to the MINKpoly problem
(which would resolve the above central question of whether worst-case hardness of MINKpoly suffices
to get OWFs, at least under derandomization assumption). Intuitively, instances on the “boundary”
seem to be the hardest to deal with (exactly because they are on the boundary) so one would expect
this to be the case. While we cannot prove this formally, we note that for most natural optimization
problems, hardness along the boundary is equivalent to simply standard hardness.

For simplicity, consider 3SAT : Is the “boundary-3SAT” problem easier than simply 3SAT ,
where in boundary-3SAT you only need to distinguish between (a) fully satisfiable instances, and
(b) unsatisfiable instances where we are guaranteed that at least n − log n clauses can be satisfied
(i.e., close to satisfiable clauses)? Indeed, as pointed out to us by Johan H̊astad, the answer is no.
To solve 3SAT using a boundary-3SAT oracle, simply run the decider for the boundary problem;
if it answers NO, output NO. Otherwise, iteratively replaces the last (non-dummy) clause with a
dummy clause that always is true, and again query the boundary oracle. Note that if we are given
a NO instance, this procedure will make sure that we eventually end up in the boundary region and
the decider will output NO. And if we are given a YES-instance, the decider will always output YES.

More generally, the above approach works for any optimization problem where we can “smoothly”
transform an instance x into an instance x′ whose value will eventually increase, but never more than
O(1), or even just O(log n) in any one step. As far as we know, most natural optimization prob-
lems indeed satisfy this property and as such their worst-case hardness of their boundary versions
is equivalent to worst-case hardness of their standard version.5 Indeed, this even is the case for the
boundary-MINKt1,t2 problem when restricting to the case that t1 = t2 (at least under appropriate de-
randomization assumptions). The reason for this is that we can smoothly increase the Kt-complexity
of a string x by replacing the last bit of it by a random string6 and we will finally end up with a
string that is required to have Kt-complexity n−O(log n) (with high probability).

Unfortunately, this argument does not work when we allow t2 > t1 (as we require for our result).
The issue is that there may be a gap between Kt1(x) and Kt2(x) so when we are gradually increasing
Kt2(x) to end up in the promise (i.e., in the “boundary region”), we may have accidentally pushed
Kt1(x) to become ≥ n− 1 and inadvertently transformed a YES-instance to a NO-instance!

Perhaps intriguingly, in the average-case characterization of OWF of [LP20] it actually suffices
to require hardness of the MINKt1,t2 for the case that t1 = t2 (i.e., deciding whether Kt(x) is small
or large). In contrast, as we shall discuss in more detail later on, our analysis is non-black box in
the attacker, and the parameter t2 needs to be larger than the running-time of the attacker, which

5Most but not all: as pointed out to us by Per Austrin, this may not be the case for the longest path problem.
6Arguing that this does not decrease the Kt complexity non-trivial and requires using a so-called a computational

“weak” symmetry-of-information theorem [Ila23], which holds unconditionally for pKt and also for Kt under appro-
priate derandomization assumptions [Ila23].
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is why we require hardness w.r.t. any t2 = poly(t1); this is similar to the worst-case to errorless
average-case reduction of Hirahara [Hir18].

1.3 Proof Overview

We proceed to a proof outline of our results. We focus on explaining how we obtain a OWF from
the worst-case hardness of boundary-MINKpoly (i.e., the “if” direction of Theorem 1.1). The converse
direction will follow mostly using the techniques from [LP23a], which passed through the notion of
an “entropy-preserving PRG” constructed in [LP20] (and later improved in [LP23a]).

Towards this, it is instructive to briefly review the worst-case characterization of OWFs in [LP23a]
(and how it is proved).

Earlier Approaches and the Key Obstacle As mentioned in the introduction, [LP23a] ob-
tained an initial worst-case characterization of OWFs: they showed that the worst-case hardness of
distinguishing whether Kt of an input x ∈ {0, 1}n is at most n− 2, given that the instance has time
unbounded Kolmogorov complexity at least n− log n, implies OWFs. (As mentioned before, a related
result, relying on similar intuitions, is also proved by [HN23], but for our purposes, the approach in
[LP23a] is more relevant.) Roughly speaking, the results of [LP23a] first rely on the result of [LP20]
showing that average-case hardness of MINKpoly implies the existence of OWFs. In more detail,
[LP20] presents a reduction for solving MINKpoly given a OWF inverter (for their specific OWF).
[LP23a] showed that this reduction, in fact, also solves the worst-case problem on all instances with
high unbounded Kolmogorov complexity. This follows from the simple observation that since the
average-case reduction fails only with small probability on the uniform distribution, the strings on
which it fails must have small (unbounded) Kolmogorov complexity, as they can be enumerated (so
we can encode each such string as the index in the enumeration).

We plan to rely on exactly the same reduction. However, to make it work in our setting, we need
to argue that if the reduction fails on some instance x, then the time-bounded Kolmogorov complexity
of x is small—in other words, we require so-called language compression with efficient decompression
[Sip83, GS85, BLM00, BLM05, Hir21] for the set of instances x on which the reduction fails. In fact,
for our purposes, it will suffice to require an efficient decompression algorithm having access to a
OWF inverter oracle (as our goal is to establish the existence of OWFs).

Unfortunately, it is an open problem to obtain language compression with efficient decompression
for languages in NP (even relative to a OWF inverter). A step towards such language compression
was recently taken by Hirahara et al [HIL+23], which shows that a notion of “average-case language
compression” can be achieved using a OWF inverter; this, notion, however, will not suffice for us—we
require all-input compression.

Our Approach: Language-Specific Instance Compression Rather than generically solving
the language compression problem, we will show that for the specific language of interest to us (i.e.,
the set of strings for which the decider fails), we can obtain a short representation of all instances, that
can be efficiently decompressed (i.e., their Kpoly-complexity) is (relatively) small—in more details
Kpoly(x) < n − log n. This will suffice to show that if the decider fails on some instance x, then
Kpoly(x) < n− log n, so the instance is not part of the promise of the boundary problem.

On a high-level, we prove the above through the following two steps:

• Step 1: Showing that elements on which the decider fails can be sampled with probability
≥ nc/2n for any c, by an algorithm running in time T = poly(nc).
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• Step 2: Relying on/Proving a so-called “Coding Theorem” [LOZ22] bounding the Kt (or pKt)
complexity of an element by, roughly, the logarithm of the inverse of the probability by which
it can be sampled.

Taken together, we get that elements on which the decider fails must have Kpoly-complexity (resp.
pKpoly-complexity) at most (roughly) log(2n/nc) = n− c log n.

To prove Theorem 1.2 (i.e., the characterization in terms of pKpoly), it will suffice to demonstrate
Step 2 w.r.t. pKpoly, and such a Coding Theorem is already known [LOZ22, San23]. (And as such, the
result on pKpoly can be viewed as a warm-up case for our result for Kpoly). In fact, [LOZ22, GKLO22]
also provide a Coding Theorem for Kpoly based on derandomization assumptions, but this Coding
Theorem loses O(log T ) in the bound where T is the running time of the sampler, and consequently
combined with Step 1 we do not get any non-trivial compressions. As an independent technical
contribution, we show how to get a tight Coding Theorem for Kpoly based on a derandomization
assumption; we note, however, that the derandomization assumption that we rely on is a stronger
than the one used in [LOZ22, GKLO22] (to prove the non-tight Coding Theorem), but of a similar
spirit.

We proceed to provide a more detailed outline of Steps 1 and 2.

Step 1: Recall that our goal is to show that elements on which the [LP20] decider fails can be
sampled with probability ≥ nc/2n for any c, by an algorithm running in time T = poly(nc). Towards
showing this, we proceed in two steps, letting bad, denote the set of instances on which the reductions
from [LP20] fail.

• Hitting bad through [LP20] Sampling: In the first step, we show that by the [LP20]
construction/reduction, it follows that there exists an efficient way to sample instances in bad.
Roughly speaking, the OWF construction samples strings x together with their Kt witness;
furthermore, for those instances x we can check whether the reduction fails (since the reduction
actually provides a witness when it succeeds).

Additionally, the one-way function distribution is point-wise multiplicatively close to the uni-
form distribution (i.e., it dominates the uniform distribution) so each x ∈ {0, 1}n is sampled
with probability at least 2−n/O(n) by the OWF construction. More precisely,

– Each string x ∈ {0, 1}n is sampled with probability at least 1
O(n) · 2

−n.

– The reduction fails (on instance x) only when the inverter fails to invert the [LP20] OWF
on x (which thus is efficiently checkable). Consequently, the probability we sample an
element on which the reduction fails is ε, where ε is the failure probability of the OWF
inverter.

It is important to note here that by Yao’s hardness amplification theorem [Yao82] (already
employed in [LP20]), ε can be made into an arbitrarily small polynomial—this point will be
crucial to us shortly.

As a consequence of the above two points, we have that the OWF sampler in this first step
samples elements in bad with probability at least 2−n/O(n), but the total weight of those
elements is ε.

• Boosting the Probabilities through Rejection Sampling: In the second step, we show
how to “boost” the probability of elements in bad. The idea is simple: As the algorithm in
step 1 enables checking whether the reduction failed (simply to find the appropriate length
Kt witness), we can just repeatedly run the sampler until we find an element on which the
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reduction fails. Since the total weight of elements in bad is ε, we have that sampling conditioned
on ending up in bad, the probability of each element in bad is 2−n/O(n) × 1/ε, which can be
lowerbounded by nc/2n for any choice of c by choosing an appropriately small ε (which as
mentioned above can be achieved by using Yao’s hardness amplification [Yao82]). Of course
the issue is that this sampler only runs in expected polynomial time and not strict polynomial
time, but by appropriately cutting off its running time we can make sure to not lose too much
in the probabilities (essentially by a union bound).

This concludes the argument that elements on which the decider fails can be sampled with high
probability.

Step 2: An Improved Coding Theorem for Kpoly We turn to discussing how all such element
(i.e., those on which the decider fails, and consequently by Step 1, that can be sampled with high
probability) can be compressed into n − log n bits (with efficient decompression). As previously
discussed, towards this, we will rely on a so-called Coding Theorem. As mentioned above, to prove
Theorem 1.2 (i.e., to upperbound pKpoly), we can directly combine Step 1 with the known Coding
Theorem of [LOZ22, San23], that shows exactly the desired probabilistic compression for elements
sampled with high probability.

Theorem 1.3 (Coding Theorem for pKpoly [LOZ22, San23]). There exists a (universal) constant d
such that for any (efficiently) samplable distribution ensemble D = {Dn}n∈N, there exists a polyno-
mial t(n) such that for all sufficiently large n ∈ N, all x ∈ supp(Dn),

pKt(x) ≤ dlog 1/pxe+ d log n

where px = Pr[Dn = x].

Additionally, as mentioned, [LOZ22, GKLO22] also provide a Coding Theorem for Kpoly based
on derandomization assumptions, but this Coding Theorem loses O(log T ) in the bound where T is
the running time of the sampler; this Coding Theorem will not suffice for us (since whatever gain we
get from Step 1 in terms of sampling probability, gets “eaten up” by the overhead in running-time
due to the rejection sampling condition on the event bad).

As an independent technical contribution (which we hope may be of independent interest), we
show how to get a tight Coding Theorem for Kt based on Derand:

Theorem 1.4 ((Improved) Coding Theorem for Kpoly). Assuming Derand, there exists a (universal)
constant d such that for any (efficiently) samplable distribution ensemble D = {Dn}n∈N, there exists
a polynomial t(n) such that for all sufficiently large n ∈ N, all x ∈ supp(Dn),

Kt(x) ≤ dlog 1/pxe+ d log n

where px = Pr[Dn = x].

We emphasize that compared to the existing Coding Theorem [LOZ22, GKLO22], the above
theorem only has a logarithmic overhead in terms of n, whereas in the earlier Coding Theorem, the
compression overhead is logarithmic in the runtime of the distribution D. (On the other hand, as
mentioned, we are using a slightly stronger derandomization assumption).

Towards proving Theorem 1.4, we will rely on the same approach as [LOZ22]; we rely on the
Coding Theorem for pKpoly (i.e., Theorem 1.3 above), and next show that, under derandomization
assumptions, Kpoly is no more than pKpoly with an additive logarithmic term. Our contribution
will be showing a tighter derandomization result (i.e. a tighter correspondence between Kpoly and
pKpoly) under a stronger derandomization assumption. We now proceed to show how this is done.

7



Recall that for any polynomial t, any x ∈ {0, 1}∗, pKt(x) is defined to be the smallest ω such
that for a 2/3 fraction of the choice of a random string r ∈ {0, 1}t(n), there exists a program M of
length ≤ ω that produces x given r within time t(n). In order to “derandomize” pKpoly into Kpoly,
it suffices to find a succinct description to any such string r, which together with the program M
(that exists for r) produces a Kpoly-witness for x. As observed by [GKLO22], we can obtain such a
succinct description of r by relying on a (complexity-theoretic) PRG (with a small seed length) that
fools the following non-deterministic circuit Cx,ω: Cx,ω takes a random-tape r ∈ {0, 1}t(n) as input,
guesses a program M of size ω, outputs 1 if M(r) generates x within t(n) steps (and 0 otherwise).7

We can use a seed of the PRG (that leads Cx,ω to output 1) as the succinct description we need (and
thus the seed itself will be our overhead).

Following the Hardness vs. Randomness paradigm [NW94], there has been an elegant line of
research [KvM02, MV05, SU05] on constructing such PRGs (in particular, those that enable the
derandomization of AM to NP). These constructions, however, have seed length that is at least
O(log t(n)) when derandomizing circuits of input size t(n) (which is the case for Cx,ω). This causes
an overhead of O(log t(n)) (as opposed to d log n for a universal constant d), and indeed, this is why
the Coding Theorem of [LOZ22, GKLO22] loses a term of O(log t(n)). We overcome this issue by
constructing a new PRG with near-optimal seed length (which also may be of independent interest).

(Non-Black-Box) PRGs with Near-Optimal Seed Length Thus, the question is whether we
can improve the seed length in these PRG constructions from O(log t(n)) to d log n. Unfortunately,
as noted in [SU05], constructions following the standard Hardness vs. Randomness paradigm cannot
have a seed length of o(log t(n))! (Roughly speaking, any “black-box” PRG construction from a hard
function can be viewed as an extractor [Tre01] and the above bound follows from bounds on the seed
length of extractors [NZ96, RTS00].) This barrier was very recently broken using a non-black-box
approach in the work of Chen and Tell [CT21], and is closely related to the question of whether
“super-efficient derandomization” [DMOZ22] is possible, but their work relies on the existence of
OWF and thus is of little help to us.8

We here present an alternative approach to overcome this barrier without the use of OWFs.
While the seed-length of our PRG will be small, its running-time will still be large, so it will not
solve the question of whether super-efficient derandomization is possible without OWFs, but it will
suffice for our purposes of derandomizing pKpoly.

We proceed to explain our approach. Towards this, let us first recall the standard NW paradigm
[NW94]: It provides a PRG construction G that transforms a hard-to-compute function f ∈ {0, 1}`
(i.e., the truth table of a hard function) into a PRG with output length m. The security reduction
shows how to use any attacker distinguishing Gf from random to compute f using poly(m) bits of
(non-uniform) advice.

To get a PRG with small seed length, our idea is to compose two NW-style PRGs: G(·) =
G1(G2(·)) where G2 : {0, 1}c1·logn → {0, 1}c2·log t(n), G1 : {0, 1}c2·log t(n) → {0, 1}t(n) (where c1 and c2

are universal constants independent of t). (In other words, use one PRG to expand the seed from
O(log n) to O(log t(n)), and next use another PRG on top of this “large” seed.) The key observation
is that while the security reduction of the outer PRG G1 requires Ω(t(n)) bits of advice, the advice
will not appear in the security game for the inner PRG G2; in fact, as we shall see, G2 only needs
to handle attackers with n+O(log n) bits of advice (as opposed to t(n)).

To see why this is the case, note that to prove that G is secure in the eyes of Cx,ω, we proceed

7We remark that Cx,ω has input length t(n) because the “probabilistic” program M runs in time t(n) and can use
up to t(n) bits of randomness.

8Roughly speaking, a PRG with a small seed enables small simulation overhead when performing derandomization
since we have less seed that we need to go over.
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by a hybrid argument showing that (a) G1(Uc2 log t(n)) and Ut(n) are indistinguishable in the eyes
of Cx,ω(·); and that (b) G2(Uc1 logn) and Uc2 log t(n) are indistinguishable in the eyes of Cx,ω(G1(·)).
The existence of G1 satisfying (a) follows from the standard Hardness vs. Randomness paradigm
(under standard derandomization assumptions, and in particular those implied by Derand) since the
seed of G1 is long enough. On the other hand, in (b), G2 only needs to fool Cx,ω(G1(·)), which
has advice size |x| + |ω| ≤ n + log n and input length c2 log t(n); so the seed length only needs to
depend logarithmically on n and log t(n) (which is tiny). The problem, however, is that the runtime
of G1 does contribute to the runtime of the attacker in the security game for G2 (which leads to an
attacker that runs in time polynomial in t(n)). This means that the hard function employed in G2,
denoted by f , needs to be hard against algorithms with advice size O(n, poly log t(n)), but running
time poly(t(n)), which follows from our derandomization assumption Derand. 9

A Note on the Non-Black-Box Nature of the Proof: Let us emphasize that the above use
of the Coding Theorem makes our security analysis non-black-box in the attacker, and furthermore
only works if the attacker is a uniform probabilistic polynomial-time algorithm. In more detail, to
apply the Coding Theorem (to compress the inputs x on which the decider fails), we require the
input x to be samplable in uniform polynomial time; as we described above in Step 1, this is shown
by applying rejection sampling on the attacker, so if the attacker is non-uniform then we can only
sample from the distribution in non-uniform polynomial time and we can no longer apply Step 2.

1.4 Overview of the Paper

In Section 2, we recall some standard definitions; Section 3 contains the formalization of problems
we consider and the statement of our main results. Section 4 considers Coding Theorems and
additionally abstracts out a more general version of them (including the above rejection sampling
step). Section 5 proves the forward direction of the main theorems, and Section 6 proves the backward
direction. Finally, in Section 7 we prove the new tighter correspondence between pKt and Kt (which
is used in Section 4); this section also includes the construction of our near-optimal seed-length PRG.

1.5 Open Problems

We briefly note a few open problems.

• Dealing with non-uniform attackers: As mentioned above, our results only characterize
OWFs secure w.r.t. uniform (i.e., PPT) attackers. While typically security w.r.t. uniform
attackers directly yield security w.r.t. non-uniform attacker (one we make non-uniform security
assumptions), this does not follow in our setting since our proof is non-black-box in the attacker.
We leave open the question of finding a natural problem characterizing OWFs secure also w.r.t.
non-uniform PPT attacker. (We note that the problem in [LP23a] works in both the uniform
and the non-uniform setting).

• Basing Security on a Search Problem: We note that in the average-case setting, the
construction of [LP20] can also be based on average-case hardness of the search version of
Kt complexity problem. Our reduction can also be modified to provide a witness for YES-
instances inside the promise (i.e., Kt is “intermediate”), but when Kt is “small” we may
no longer efficiently find the witness (we just prove that one exists); if one could prove a

9In the literature, a padding trick is typically used to resolve this type of issues (i.e., running f on a larger input
length), but this will blow up the seed length by too much for us. To overcome this issue, we here instead rely on a
stronger hardness assumption (namely, Derand), in which we decouple the advice size of the attacker from its running
time; that is, we assume that there exists ε > 0 such that E 6⊆ ioNTIME[2kn]/2εn for every k.
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Coding Theorem that also enables to efficiently perform the compression (as opposed to just
guaranteeing that it exists), then this issue would be resolved and one would have based security
on the general (i.e., non-boundary) version of the Kt problem (i.e, MKtP).

• Improving the “width” of the boundary: Our notion of a boundary problem considers
a boundary of width O(log n). We note that if the width would be improved to O(n/ log n),
that would yield a construction of OWFs starting from the worst-case hardness of the standard
MKtP problem w.r.t. adversaries running in time 2O(n/ logn) (and t = 2O(n/ logn)) (i.e., assuming
the uniform Perebor conjecture).

• Relativization barriers: We mention that while our proof is non-black-box in terms of the
attacker, the analysis relativizes and therefore is subject to the barriers in [Imp11, HN22a,
HN22b]. We leave open the problem of developing non-relativizing techniques that can go
beyond that barrier.

2 Preliminaries

2.1 One-Way Functions

We recall the definition of one-way functions [DH76]. Roughly speaking, a function f is one-way if
it is polynomial-time computable, but hard to invert for PPT attackers.

Definition 2.1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
a one-way function (OWF) if for every PPT algorithm A, there exists a negligible function µ such
that for all n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

We may also consider a weaker notion of a weak one-way function [Yao82], where we only require
all PPT attackers to fail with probability noticeably bounded away from 1:

Definition 2.2. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
an α-weak one-way function (α-weak OWF) if for every PPT algorithm A, for all sufficiently large
n ∈ N ,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < 1− α(n)

We say that f is simply a weak one-way function (weak OWF) if there exists some polynomial q > 0
such that f is a 1

q(·) -weak OWF.

Yao’s hardness amplification theorem [Yao82] shows that any weak OWF can be turned into a
(strong) OWF.

Theorem 2.3 ([Yao82]). Assume there exists a weak one-way function. Then there exists a one-way
function.

2.2 Time-bounded Kolmogorov Complexity

We introduce the notion of time-bounded conditional Kolmogorov complexity. Roughly speaking,
the t-time-bounded Kolmogorov complexity, Kt(x | z), of a string x ∈ {0, 1}∗ conditioned on a string
z ∈ {0, 1}∗ is the length of the shortest program Π = (M,y) such that Π(z) outputs x in t(|x|) steps.

10



Formally, fix some universal RAM machine U (with only polynomial overhead), and let t(·) be a
running time bound. For any string x, z ∈ {0, 1}∗, we define

Kt(x | z) = min{w ∈ N | ∃Π ∈ {0, 1}w, U(Π(z), 1t(|x|)) = x}

When z is an empty string, we simply denote the quantity by Kt(x). We consider RAM machines
(as in [LP22b, GKLO22]) since it allows z to be as long as the running time of the machine Π (or
even longer).

Very recently, Goldberg et al [GKLO22] introduced a probabilistic variant of time-bounded Kol-
mogorov complexity, denoted as pKt. Let us recall the notion here. Roughly speaking, in the
probabilistic version, the program is allowed to be picked after a uniform random string. And a
string will have small pKt-complexity if a short program exists over a large fraction of random
strings. We proceed to the formal definition. Let δ(n) be a probability threshold function. For any
string x ∈ {0, 1}∗, the δ-probabilistic t-bounded Kolmogorov complexity of x [GKLO22], pKt

δ(x), is
defined to be

pKt
δ(x) = min{w ∈ N | Pr[r ← {0, 1}t(|x|) : Kt(x | r) ≤ w] ≥ δ(n)}

The constant δ will be usually considered as being 2/3. We omit the subscript δ if δ = 2/3.
We refer the reader to Section 3.1 for the definitions of computational problems involving Kpoly

and pKpoly we needed in this work.

2.3 Distributions, Random Variables, and Entropy

Let D be a distribution. We let supp(D) denote the support of D. We say that D = {Dn}n∈N is an
ensemble if for all n ∈ N, Dn is a probability distribution over {0, 1}n. We say that an ensemble
D = {Dn}n∈N is (efficiently) samplable if there exists a probabilistic polynomial-time Turing machine
S such that S(1n) samples Dn.

For any two random variablesX and Y defined over some set V, we let SD(X,Y ) = 1
2

∑
v∈V |Pr[X =

v]− Pr[Y = v]| denote the statistical distance between X and Y .
For a random variable X, let H(X) = E[log 1

Pr[X=x] ] denote the (Shannon) entropy of X, and let

H∞(X) = minx∈Supp(X) log 1
Pr[X=x] denote the min-entropy of X.

The following lemma/fact will be useful for us.

Lemma 2.4 ([LP23a, Lemma 2.6]). Let X be a random variable distributed over S ⊆ {0, 1}n, E be
an set ⊆ S. It holds that

Pr[x← X : x ∈ E] ≤ log |S|+ 1−H(X)

log |S| − log |E|

3 Main Results

Before presenting the main results in this work, let us formally define the computational problems
needed in our results.

3.1 Problem Definitions

The Kpoly Problem and Its Boundary Version For any polynomials t1, t2, t1(n) ≤ t2(n), define
the time-bounded Kolmogorov complexity problem (denoted by MINKt1,t2) as the promise problem
consisting of

• YES: strings x ∈ {0, 1}n, Kt1(x) ≤ n− 2.
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• NO: strings x ∈ {0, 1}n, Kt2(x) ≥ n− 1.

In addition, we can define its boundary version (denoted by boundary-MINKt1,t2) as

• YES: strings x ∈ {0, 1}n, Kt1(x) ≤ n− 2 and Kt2(x) > n− log n.

• NO: strings x ∈ {0, 1}n, Kt2(x) ≥ n− 1.

pKpoly Problem and Its Boundary Version For any polynomials t1, t2, t1(n) ≤ t2(n), and a
parameter δ(n) > 0, define the time-bounded probabilistic Kolmogorov complexity problem (denoted
by MINpKt1,t2δ ) as the promise problem consisting of

• YES: strings x ∈ {0, 1}n, pKt1
δ (x) ≤ n− dlog(1/(1− δ))e − 2.

• NO: strings x ∈ {0, 1}n, pKt2
1−δ(x) ≥ n− dlog(1/(1− δ))e − 1.

We remark that the threshold (compared with the threshold in MINKt1,t2) is shifted from n − 2
to n− dlog(1/(1− δ))e − 2 to ensure that the NO instance set is not empty.

Analogously, we can also define the boundary version (denoted by boundary-MINpKt1,t2δ ) as

• YES: strings x ∈ {0, 1}n, pKt1
δ (x) ≤ n− dlog(1/(1− δ))e − 2 and pKt2

1−δ(x) > n− log n.

• NO: strings x ∈ {0, 1}n, pKt2
1−δ(x) ≥ n− dlog(1/(1− δ))e − 1.

We will consider δ = 2
3 and simply denote MINpKt1,t2δ (resp boundary-MINpKt1,t2δ ) by MINpKt1,t2 (resp

boundary-MINpKt1,t2) where δ = 2
3 .

Finally, for Kpoly (resp pKpoly), we say that MINKpoly 6∈ ioBPP (resp MINpKpoly 6∈ ioBPP) if for
all polynomials t1, t2, t2(n) ≥ t1(n) ≥ 2n, MINKt1,t2 6∈ ioBPP (resp MINpKt1,t2 6∈ ioBPP).

3.2 Main Theorems

We are ready to describe the main results in this work. Our first (and warm-up) result shows that
the existence of OWFs is equivalent to the worst-case hardness of the boundary version of MINpKpoly.

Theorem 3.1. OWFs exist if and only if boundary-MINpKpoly 6∈ ioBPP.

Proof: The theorem follows from (the first bullet of) Theorem 5.1 (which proves the “if” direction),
and Theorem 6.2 and Lemma 6.4 (that together prove the “only if” direction).

Our main result extends this theorem to obtain a characterization of OWFs based on the worst-
case hardness of the boundary version of MINKpoly; this time, however, we will rely on a standard
derandomization assumption.

Theorem 3.2. Assume that there exists a constant ε > 0 such that E 6⊆ ioNTIME[2kn]/2εn for every
k ∈ N. Then, OWFs exist if and only if boundary-MINKpoly 6∈ ioBPP.

Proof: The equivalence follows from (the second bullet of) Theorem 5.1 (which proves the “if”
direction), and Theorem 6.2 and Lemma 6.3 (that together prove the “only if” direction).
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4 Source Coding Theorems

In this section, we start by recall the Time-Bounded Coding Theorem for pKt of [LOZ22] (which in
turn is an efficient version of the classic Coding Theorem for unbounded Kolmogorov Complexity).
We next present a useful rejection sampling lemma which may be viewed as a generalization of the
Coding Theorem.

Finally, we show how to use appropriate PRGs (constructed in Section 7) to also establish a
tight Coding Theorem for Kt, and also establish the generalized version. We start by reviewing the
Coding Theorem for pKpoly, introduced in [LOZ22].10

Theorem 4.1 (Source Coding Theorem for pKpoly [LOZ22, San23]). For any (efficiently) samplable
distribution ensemble D = {Dn}n∈N, there exists a polynomial t(n) such that for all sufficiently large
n ∈ N, all x ∈ supp(Dn),

pKt(x) ≤ log 1/px + 4 log n

where px = Pr[Dn = x].

We turn to proving the following generalized version of the Coding Theorem obtained by relying
on rejection sampling.

Lemma 4.2. For any samplable distribution ensemble D = {Dn}n∈N, any polynomial q(n), there
exists a polynomial t(n) such that for any sufficiently large n ∈ N, if

Pr[Dn = ⊥] ≥ 1− 1

q(n)

then, for every x ∈ supp(Dn) such that x 6= ⊥, it holds that

pKt(x) ≤ log 1/px − log(q(n)/4) + 4 log n

where px = Pr[Dn = x].

Proof: Consider the distribution ensemble D′ = {D′n}n∈N sampled by the following algorithm. For
each n ∈ N, D′n draws q(n)/2 i.i.d. samples x1, . . . , xq(n)/2 from Dn. D′n simply output xi with the
smallest index i for which xi 6= ⊥. If all of xi are ⊥, D′n outputs ⊥.

We claim that for all sufficiently large n satisfying

Pr[x← Dn : Dn 6= ⊥] ≤ 1

q(n)

and for any x ∈ supp(Dn), x 6= ⊥, it holds that

p′x ≥ px · q(n)/4

where p′x = Pr[D′n = x] and px = Pr[Dn = x]. Let δ denote the probability that Dn does not output

10The original statement of this coding theorem has a slightly worse bound but the proof actually proved this stronger
statement. This was observed in [San23]
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⊥. Recall that due to our assumption, δ ≤ 1
q(n) . It follows from our construction of D′n that

p′x =

q(n)/2∑
i=1

Pr
x1,...,xi−1←Dn

[x1 = ⊥ ∧ . . . ∧ xi−1 = ⊥] · Pr
xi←Dn

[xi = x]

=

q(n)/2∑
i=1

(1− δ)i−1 · px

≥
q(n)/2∑
i=1

(1− δ)q(n)/2 · px

≥ q(n)/2 · (1− q(n)δ/2) · px
≥ px · q(n)/4

Finally, notice that the distribution ensemble D′ is efficiently samplable if the ensemble D is.
Thus, by applying Theorem 4.1 to the distribution D′ (and letting t be the polynomial guaranteed
to exist by Theorem 4.1), it follows that

pKt(x) ≤ log 1/p′x + 4 log n

≤ log 1/px − log(q(n)/4) + 4 log n

which concludes our proof.

We next show how to extend the above to also apply to Kt. We do this by relying on the following
tighter connection between pKt and Kt, the proof of which is postponed to Section 7:

Lemma 4.3 (Derandomizing pKpoly). Assume that there exists a constant ε > 0 such that E 6⊆
ioNTIME[2kn]/2εn for every k ∈ N. There exists a constant d such that the following holds. For
every polynomial t, there exists a polynomial t′ such that for every sufficiently long x ∈ {0, 1}∗,

Kt′(x) ≤ pKt(x) + d log |x|

Armed with this wemma, we show that Theorem 4.1 and Lemma 4.2 also hold for Kpoly under
the assumption Derand.

Theorem 4.4 (Source Coding Theorem for Kpoly). Assume that there exists a constant ε > 0 such
that E 6⊆ ioNTIME[2kn]/2εn for every k ∈ N. There exists a constant d such that the following holds.

For any (efficiently) sampleable distribution ensemble D = {Dn}n∈N, there exists a polynomial
t(n) such that for all sufficiently large n ∈ N, all x ∈ supp(Dn),

Kt(x) ≤ log 1/px + (d+ 4) log n

where px = Pr[Dn = x].

Proof: This theorem directly follows from Lemma 4.3 and Theorem 4.1.

Lemma 4.5. Assume that there exists a constant ε > 0 such that E 6⊆ ioNTIME[2kn]/2εn for every
k ∈ N. There exists a constant d such that the following holds.

For any samplable distribution ensemble D = {Dn}n∈N, any polynomial q(n), there exists a
polynomial t(n) such that for any sufficiently large n ∈ N, if

Pr[Dn = ⊥] ≥ 1− 1

q(n)
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then, for every x ∈ supp(Dn) such that x 6= ⊥, it holds that

Kt(x) ≤ log 1/px − log(q(n)/4) + (d+ 4) log n

where px = Pr[Dn = x].

Proof: This Lemma follows from the proof of Lemma 4.2 by replacing the use of Theorem 4.1 by
Theorem 4.4.

5 OWFs from Hardness of boundary-MINpKpoly

We turn to proving the forward direction of our main theorems.

Theorem 5.1. The following statements hold:

• If for all polynomials t1, t2, t1(n) ≤ t2(n),

boundary-MINpKt1,t2 6∈ ioBPP

Then, OWFs exist.

• Assume that E 6⊆ ioNTIME[2kn]/2Ω(n) for every k ∈ N. If for all polynomials t1, t2, t1(n) ≤
t2(n),

boundary-MINKt1,t2 6∈ ioBPP

Then, OWFs exist.

Proof: The first bullet follows by Lemma 5.2 and Theorem 5.3 (proven below), and Theorem 2.3.
The second bullet follows by Lemma 5.2 and Theorem 5.4 (proven below), and Theorem 2.3.

In fact, we will prove a slightly more general result from which the above theorem follows. Towards
this, we will introduce new promise problems regarding pKpoly (and Kpoly).

For any polynomials t1(n), t2(n), t1(n) ≤ t2(n), any threshold function s(n) > 0, and any constant
β > 0, define the promise problem Πt1,t2

pK,β[s] (for pKpoly) as

• YES instances: x ∈ {0, 1}∗, pKt1
2/3(x) ≤ s(|x|), pKt2

1/3(x) > pKt1
2/3(x)− β log |x|.

• NO instances: x ∈ {0, 1}∗, pKt1
1/3(x) > s(|x|).

We will also define Πt1,t2
K,β [s] for Kpoly, by replacing pK with K in the above definition (and simply

ignoring the threshold for pK). Roughly speaking, the problem Πt1,t2
K,β [s] (resp Πt1,t2

pK,β[s]) generalizes

boundary-MINKt1,t2 (resp boundary-MINpKt1,t2) in the following ways: (1) it considers an arbitrary
threshold function s (as opposed to being fixed to n − 2); (2) the “boundary” could be potentially
wider (β log |x| against log |x|); (3) the (Kolmogorov complexity) time bound for NO instances is t1
(as opposed to t2) (which allows the promise problem to consider more instances).

Thus, as it is a generalization of the boundary problem, the hardness of boundary-MINpKt1,t2 will
imply the hardness of Πt1,t2

pK,β[s] for β = 1 and s(n) = n − dlog 3e − 2. (The same statement (but

replacing s(n) with n− 2) also holds for Kpoly.)

Lemma 5.2. For any t1(n), t2(n), t1(n) ≤ t2(n). Let threshold s(n) = n− dlog 3e − 2, β = 1,

boundary-MINpKt1,t2 6∈ ioBPP⇒ Πt1,t2
pK,β[s] 6∈ ioBPP

In addition, the same statement also holds when pK is replaced by K and s(n) by s(n) = n− 2.
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Proof: Let ΠYES (resp ΠNO) denote the set of YES instances (resp NO instances) of the promise
problem Πt1,t2

pK,β[s]. We first show that boundary-MINpKt1,t2YES ⊆ ΠYES. For any x ∈ boundary-MINpKt1,t2YES ,
it holds that

pKt1
2/3(x) ≤ n− dlog 3e − 2 = s(n), pKt2

1/3(x) > s(n)− log n ≥ pKt
2/3(x)− β log n

Thus, x ∈ ΠYES. In addition, we claim that boundary-MINpKt1,t2NO ⊆ ΠNO. This follows from the fact

that for any x ∈ boundary-MINpKt1,t2NO ,

pKt1
1/3(x) ≥ pKt2

1/3(x) > n− dlog 3e − 2 = s(n)

since t1(n) ≤ t2(n). Finally, we remark that all the above still holds if we replace pK with K (and
s(n) by s(n) = n− 2).

We turn to proving that Πt1,t2
pK,β[s] 6∈ ioBPP implies OWFs.

Theorem 5.3. Assume that there exist a polynomial t1(n), a threshold 0 < s(n) < n − 1, and a
constant β > 0 such that for all sufficiently large polynomials t2(n), Πt1,t2

pK,β[s] 6∈ ioBPP. Then, weak
one-way functions exist.

Proof: Consider any polynomial t1(n), any threshold s(n), and any constant β. We consider the
function f : {0, 1}dlog(n)e+n+t1(n) → {0, 1}∗, which takes an input `||Π′||r where |`| = dlog(n)e,
|Π′| = n and |r| = t1(n), outputs

f(`||Π′||r) = `||U(Π(r), 1t1(n))||r

where Π is a prefix of Π′ and Π is of length ` (where the bit-string ` is interpreted as an integer
∈ [n]).

This function is only defined over some input lengths, but by an easy padding trick, it can be
transformed into a function f ′ defined over all input lengths, such that if f is weakly one-way (over
the restricted input lengths), then f ′ will be weakly one-way (over all input lengths): f ′(x′) simply
truncates its input x′ (as little as possible) so that the (truncated) input x now becomes of length
n′ = dlog(n)e + n + t1(n) for some n and outputs f(x). This will decrease the input length by a
polynomial factor (since t1 is a polynomial) so the padding trick can be applied here.

We now show that f is a weak OWF (over the restricted input length). Let q(n) = 90n5+2β. We
assume for contradiction that f is not 1

q -weak one-way. (In the proof below, although the input length
of f we consider is m = dlog(n)e+ n+ t1(n) for some n, we will view n as the “security parameter”
and analyze the one-wayness of f on input length m = m(n) (but computing the running time and
the inversion probability in terms of the security parameter n). Since n and m are polynomially
related, we can still conclude that f is weak one-way.) Then, there exists a PPT attacker A that
inverts f with probability at least 1− 1

q(n) for infinitely many n.

We will consider the distribution D = {Dn}n∈N, which helps us compress the instances on which
A fails to invert f . D proceeds as follows: for each n ∈ N, runs the function f on uniformly sampled
input← Udlog(n)e+n+t1(n). Denote the output of f by (`, y, r). Next, the distribution feeds the output
of f to the attacker A and checks whether A succeeds in inverting (`, y, r). If A succeeds, it simply
outputs ⊥. If A does not succeed, it will output the string y.

Notice that D will mostly output ⊥, and will output ⊥ with probability ≥ 1− 1
q(n) on “security

parameter” n for which A succeeds in inverting f . In addition, the ensemble D can be efficiently
sampled (since both f and A are efficient). Let t2 be the polynomial we obtain from Lemma 4.2
when plugging in the distribution D and the polynomial q.
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We turn to constructing a PPT algorithm M to decide the promise problem Πt1,t2
pK,β[s]. Our

algorithm M , on input z, samples a random string r ∈ {0, 1}t1(n). Then, it runs A(i||z||r) for every
i ∈ [n] where i is represented as a dlog(n)e-bit string, and outputs 1 if and only if the length of the
shortest program Π output by A, which on input r produces the string z within t1(n) steps, is at
most s(n). Since A runs in polynomial time, our algorithm will also terminate in polynomial time.

We next show that M is a worst-case algorithm (that succeeds infinitely often) for Πt1,t2
pK,β[s] (which

will be a contradiction and concludes the proof). Fix any sufficiently large n on which A succeeds
in inverting f .

We first show that M will output 1 with probability at least 3/5 on any YES instance of Πt1,t2
pK,β[s].

Assume for contradiction that M on input some YES instance of Πt1,t2
pK,β[s], z, outputs 1 with proba-

bility < 3/5. Notice that since z is a YES instance, we have that

pKt1
2/3(z) ≤ s(n) and pKt2

1/3(z) > pKt1
2/3(z)− β log n (1)

Let w = pKt1
2/3(z). It follows that for at least a 2/3 fraction of randomness r ∈ {0, 1}t1(n), the length

of the shortest program that on input r produces the string z, wr, will be at most w. We refer
to such r as being “good”, and let G denote the set of good randomness for z. Consider the set
S = {(wr, z, r) : r ∈ G}. Since M outputs 1 with probability < 3/5, A must fail to invert f with
probability at least

2

3
− 3

5
≥ 1

15
on uniformly random element ∈ S. However, each element in S will be sampled with probability at
least

1

n
· 1

2wr
· 1

2|r|
≥ 1

n
2−w−t1(n)

in the one-way function experiment. Thus, the probability that distribution Dn samples the string
z, pz, will be at least

1

n
2−w−t(n) · |S| · 1

15
≥ 2

45n
2−w

Now we can apply Lemma 4.2 to conclude that the pKt2
1/3-complexity of z is at most

pKt2
1/3(z) ≤ pKt2

2/3(z) ≤ log 1/pz − log(q(n)/4) + 4 log n

≤ w − log(q(n)/(90n5))

= pKt1
2/3(z)− 2β log n

which contradicts to Equation 1.
It remains to show that if z ∈ {0, 1}n is a NO instance, then M(z) will output 1 with probability

< 2/5. Notice that since z is a NO instance, pKt1
1/3 > s(n). Therefore, there exists no more than

1/3 fraction of random tapes r for which there is a program of length ≤ s(n) that taking r as input
produces z. Finally, note that M will output 1 only when it finds such a program. It follows that
M(z) outputs 1 with probability at most 1/3 < 2/5.

Finally, we show that the implication also holds if we consider Kpoly (instead of pKpoly). This is
not a direct consequence of Theorem 5.3 and Lemma 4.3 (which would prove a gap version of the
result). Nevertheless, it essentially follows from similar ideas, and we here provide a proof.

Theorem 5.4. Assume that there exists a constant ε > 0 such that E 6⊆ ioNTIME[2kn]/2εn for every
k ∈ N.

If there exist a polynomial t1(n), a threshold 0 < s(n) < n − 1, and a constant β > 0 such that
for all sufficiently large polynomials t2(n), Πt1,t2

K,β [s] 6∈ ioBPP, then, weak one-way functions exist.
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Proof: Consider the function f : {0, 1}n+dlog(n)e → {0, 1}∗, which given an input `||Π′ where
|`| = dlog(n)e and |Π′| = n, outputs

`||U(Π, 1t1(n))

where Π is the `-bit prefix of Π′. Note that U only has polynomial overhead, so f can be computed
in polynomial time.

This function is only defined over some input lengths, but by an easy padding trick, it can be
transformed into a function f ′ defined over all input lengths, such that if f is weak one-way (over
the restricted input lengths), then f ′ will be weak one-way (over all input lengths): f ′(x′) simply
truncates its input x′ (as little as possible) so that the (truncated) input x now becomes of length
n′ = n+ dlog(n)e for some n and outputs f(x).

Assume for contradiction that f is not 1
q(n) -weak one-way where q(n) = 12n5+2β+d (where d is

the universal constant in Lemma 4.5). Then, there exists PPT attacker A such that the attacker A
inverts the function f with probability at least 1 − 1

q(n) for infinitely many n. We will consider the

distribution D = {Dn}n∈N (that helps us compress instances on which the inverter A fails): For each
n ∈ N, Dn runs the function f on uniformly sampled input← Un+dlog(n)e. Denote the output of f by
(`, y). Next, Dn feeds the output of f to the attacker A and checks whether A succeeds in inverting
(`, y). If A succeeds, Dn simply outputs ⊥. If A does not succeed, Dn will output the string y.

Notice that Dn will mostly output ⊥, and will not output ⊥ with probability ≤ 1
q(n) on input

length n for which A succeeds in inverting f . In addition, the ensemble D can be efficiently sampled
(since both f and A are efficient). Let t2 be the polynomial we obtain from Lemma 4.5 when plugging
in the distribution D and the polynomial q.

We turn to constructing a PPT algorithm M to decide Πt1,t2
K,β [s] infinitely often. Our algorithm M ,

on input z, runs A(i||z) for every i ∈ [n] where i is represented as a dlog(n)e-bit string, and outputs
1 if and only if the length of the shortest program Π output by A, which produces the string z within
t1(n) steps, is at most s(n). Since A runs in polynomial time, our algorithm will also terminate in
polynomial time. Fix some sufficiently large n on which the inverter A succeeds in inverting f .

We next show that our algorithm will output 1 with probability at least 2/3 on input YES
instances of Πt1,t2

K,β [s] of length n. Assume for contradiction that M outputs 1 with probability < 2/3
on some YES instances z ∈ {0, 1}n. We have that

Kt1(z) ≤ s(n) and Kt2(z) > Kt1(z)− β log n (2)

Let w = Kt1(z). Note that there must exist a program of size w such that the program outputs z in
time t1(n). Therefore, (w, z) will be sampled with probability

1

n
2−w

in the one-way function experiment. In addition, since Pr[M(z) = 1] < 2/3, A must fail to invert f
on input (w||z) with probability at least 1/3. So, the probability that Dn samples the string z, pz,
is at least

1

3n
2−w

It follows from Lemma 4.5 that the Kt2 complexity of z is at most

log 1/pz − log(q(n)/4) + (d+ 4) log n

≤ w + log(3n)− log(q(n)/4) + (d+ 4) log n

= Kt1(z)− log(q(n)/(12nd+5))

= Kt1(z)− 2β log n
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which contradicts to Equation 2.
We finally prove that if z is a NO instance (and thus Kt1(z) > s(n)), M(z) will never output 1.

Note that M(z) will output 1 only when it finds a Kt1-witness of z with length no more than s(n),
and there is no such witness if Kt1(z) > s(n), which proves our claim and concludes the proof.

6 Hardness of boundary-MINKpoly from OWFs

We here prove the worst-case hardness of boundary-MINKpoly from the existence of OWFs. The proof
is very similar in nature to the proof from [LP20] (with some strengthenings from [LP23a]).

We start by recalling the notion of a conditionally-secure entropy-preserving pseudorandom gen-
erator [LP20] (and its strengthened version in [LP23a]), which will be an important tool in our
proof.

Definition 6.1. An efficiently computable function g : {0, 1}n × {0, 1}m(n) → {0, 1} is a ε(·)-
conditionally-secure α-entropy-preserving pseudorandom generator (ε-cond α-EP-PRG) if there exist
a sequence of events = {En}n∈N such that the following conditions hold:

• (pseudorandomness): For every PPT attacker A and sufficiently large n ∈ N,

|Pr[s← {0, 1}n : A(1n, g(Un)) = 1 | En]− Pr[r ← {0, 1}m(n) : A(1n,Um) = 1]| < ε(n), (3)

• (entropy-preserving): For all sufficiently large n ∈ N, H([g(Un | En)]n) ≥ n−α log n (where
[x]n denotes the n-bit prefix of the string x).

We refer to the constant α as the entropy-loss constant.

We say that g : {0, 1}n × {0, 1}m(n) → {0, 1} has rate-1 efficiency if its running time on input
length n is at most m+O(mε) for some constant ε < 1. Recall that a rate-1 efficient cond EP-PRG
can be constructed from OWFs [LP20, LP23a].

Theorem 6.2 (Cond EP-PRG from OWFs [LP21, LP23a]). Assume that OWFs exist. Then, for any
constant α > 0, γ > 0, there exists a rate-1 efficient 0.1-cond α-EP-PRG g : {0, 1}n → {0, 1}n+γ logn.

We remark that in [LP20], they only obtain a α-cond EP-PRG for some fix constant α; [LP23a]
improves the construction to show that this result holds for every constant α > 0.

We proceed to showing that cond EP-PRG implies the worst case hardness of boundary-MINKpoly.

Lemma 6.3. Assume that there exists a rate-1 efficient ε-cond α-EP-PRG g : {0, 1}n → {0, 1}n+γ logn

for ε = α = γ = 0.1. Then, for all polynomials t1, t2, t2(n) ≥ t1(n) ≥ 2n, boundary-MINKt1,t2 6∈
ioBPP.

Proof: Consider any polynomial t1, t2, t2(n) ≥ t1(n) ≥ 2n. Let m(n) = n + γ log n denote the
output length of g, and let {En} denote the sequence of events associated with g.

Suppose for contradiction that boundary-MINKt1,t2 ∈ ioBPP. It follows that there exists a PPT
algorithm M such that M decides boundary-MINKt1,t2 infinitely often. (In addition, we can assume
without loss of generality that M succeeds with probability ≥ 0.99.) Since m(n + 1) − m(n) ≤
1 + γ ≤ 2, there exists a constant 0 ≤ b ≤ 1 such that M succeeds on infinitely many m of the form
m = m(n)− b. We will consider the function g′ defined the same as g but truncating the last bit if
b = 1. Note that g′ is a also cond EP-PRG (trivially, since g is). For the ease of presentation, we
will present the proof for the case where b = 0 (and g′ is the same as g). (The proof below can be
naturally adapted to the case of b = 1.)
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We proceed to constructing a distinguisher A (using M) to break the cond EP-PRG g : {0, 1}n →
{0, 1}m(n). On input 1n and a string x ∈ {0, 1}m, our distinguisher A simply outputs M(x). M runs
in polynomial time, so A is a PPT algorithm. Fix some sufficiently large n and m = m(n). The
following two claims will show that A succeeds in breaking g on input length n with advantage 2ε,
and thus a contradiction.

Claim 1. A(1n,Um) will output 0 with probability at least 1
2 − 0.01.

Proof: Notice that (by a standard counting argument) a random string r ∈ {0, 1}m will have Kt2-
complexity at least m − 1. In addition, since M succeeds on input length m, M(r) outputs 0 with
probability at least 0.99 if Kt2(r) ≥ m− 1. Then, the claim follows from a Union bound.

Claim 2. A(1n, g(Un | En)) will output 0 with probability at most 0.2 + 0.01.

Proof: Since g : {0, 1}n → {0, 1}m(n) is a rate-1 efficient cond EP-PRG with seed length n, we have
that for any y ∈ {0, 1}n,

Kt1(g(y)) ≤ n+O(1) ≤ n+ γ log n− 2 = m− 2

(by considering the program hardwiring the code of g (of O(1) bits) and the seed y (of n bits), which
runs g on y and produces g(y) in time t2(m).) Let

X = g(Un | En), S = supp(X)

denote the random variable for the pseudorandom string (conditioned on En) and its support set.
Since g is entropy preserving, it holds that H(X) ≥ n − α log n. In addition, observe that 2H(X) ≤
|S| ≤ 2n. Let

Z = {x ∈ S : Kt2(x) ≤ m− logm}

be the set of strings ∈ S that violates the promise of boundary-MINKt1,t2 . By a standard counting
argument, |Z| ≤ 2m−logm+1. Notice that for any x ∈ S but x 6∈ Z, M(x) will output 1 with
probability ≥ 0.99. In addition, using Lemma 2.4, we can show that X ∈ Z with probability at most

log |S|+ 1−H(X)

log |S| − log |Z|

≤ n+ 1− (n− α log n)

n− α log n− (m− logm+ 1)

=
0.1 log n+ 1

logm− α log n− γ log n− 1

≤ 0.1 log n+ 1

0.8 log n− 1

≤ 0.2

Thus, M(X) outputs 0 with probability at most

Pr[M(X) = 0] = Pr[X ∈ Z] Pr[M(X) = 0 | X ∈ Z] + Pr[X 6∈ Z] Pr[M(X) = 0 | X 6∈ Z]

≤Pr[X ∈ Z] + Pr[M(X) = 0 | X 6∈ Z]

≤0.2 + 0.01

which concludes the claim.

We remark that the same implication also holds with respect to pKpoly.
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Lemma 6.4. Assume that there exists a rate-1 efficient ε-cond α-EP-PRG g : {0, 1}n → {0, 1}n+γ logn

for ε = α = γ = 0.1. Then, for all polynomials t1, t2, t2(n) ≥ t1(n) ≥ 2n, boundary-MINpKt1,t2 6∈
ioBPP.

Proof: The proof of Lemma 6.3 essentially also proves this lemma, we here simply clarify the
changes that have to be made when adapting the proof of Lemma 6.3 to proving this lemma. Let
A be the distinguisher constructed in the proof of Lemma 6.3. It suffices to prove the following two
claims.

Claim 3. A(1n,Um) will output 0 with probability at least 1
2 − 0.01.

Proof: By the probabilistic incompressibility lemma (c.f. [GKLO22, Lemma 20]), it follows that
with probability at least 1

2 , a random string r ∈ {0, 1}m will have pKt2
1/3-probability at least m −

dlog 1/(1/3)e−2. In addition, M(r) will output 0 with probability≥ 0.99 if pKt2
1/3(r) ≥ m−dlog 3e−2.

Claim 4. A(1n, g(Un | En)) will output 0 with probability at most 0.2 + 0.01.

Proof: Since g : {0, 1}n → {0, 1}m(n) is a rate-1 efficient cond EP-PRG with seed length n, we have
that for any y ∈ {0, 1}n,

pKt1
2/3(g(y)) ≤ Kt1(g(y)) ≤ m− 2

(where Kt1(g(y)) was bounded in the proof of Lemma 6.3). Define X,S in the same way as in
Claim 2. Define

Z = {x ∈ S : pKt2
1/3(x) ≤ m− logm}

with respect to pK-complexity. Again, by the probabilistic incompressibility lemma (c.f. [GKLO22,
Lemma 20]), it holds that |Z| ≤ 2m−logm+1 · 3. Therefore, the probability that X ∈ Z is at most

log |S|+ 1−H(X)

log |S| − log |Z|
≤ 0.1 log n+ 1

0.8 log n− 3
≤ 0.2

And the claim will follow from the (rest of the) proof of Claim 2.

7 Derandomizing pKpoly and Seed-Optimal PRGs

In this section, provide a proof of Lemma 4.3; that is, we show how to upperbound Kpoly by pKpoly

plus an additive logarithmic term, assuming derandomization assumptions. As described in the intro-
duction, we achieve this result by presenting a new construction of a PRG against non-deterministic
programs with near-optimal seed length.

7.1 Complexity-theoretic PRGs and Non-uniform Programs

Towards derandomizing pKpoly, let us recall the notion of a complexity-theoretic PRGs.

Definition 7.1 (Complexity-theoretic PRG). Let g : {0, 1}`(m) → {0, 1}m be a function computable
in polynomial time in its output length. We say that g is a complexity ε(·)-pseudorandom generator
(complexity ε-PRG) against complexity class C if for any distinguisher D ∈ C, all m ∈ N,

|Pr[D(g(U`(m))) = 1]− Pr[D(Um) = 1]| < ε(m)

We refer to ε as distinguishing gap. We simply say that g is a complexity-theoretic PRG if g is a
ε-PRG for ε = 1

6 .
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We will consider complexity-theoretic PRGs that fool non-adaptive non-uniform D-oracle pro-
grams, which we introduce here.

Definition 7.2 ((Non-adaptive) Non-uniform Programs). A non-adaptive non-uniform D-oracle
program A on n-bit inputs consists of a pair of non-uniform programs Apre and Apost. The program
Apre on input x ∈ {0, 1}n outputs queries q1, . . . , qk. The program Apost receives x together with
a1, . . . , ak (where ai = 1 if and only if qi ∈ D), and it outputs a single bit.

The running time (resp advice complexity) of A is defined to be the sum of the running time (resp
advice complexity) of Apre and Apost. We refer to k as the query complexity of A.

7.2 Constructing Complexity-Theoretic PRG with Seed Length O(log n)

Our start point is the “standard” complexity-theoretic PRG that can be used to derandomize AM.

Theorem 7.3 ([SU05]). Assume that E 6⊆ ioNSIZE[2Ω(n)], there exists a complexity-theoretic PRG
g : {0, 1}O(logn) → {0, 1}n against NSIZE[O(n)].

However, the above PRG falls short in its seed lengt: if we use it to directly derandomize pKt,
it incurs an O(log t(|x|)) overhead. Towards building the PRG we need, we first call the following
result from [SU06], which enables us to transform nondeterministic hardness to SAT-oracle hardness.

Theorem 7.4 ([SU06] (c.f. [CT23, Theorem 5.11])). There exists a universal constant cRC such that
the following holds. For any integer k ≥ 1, constant 0 < ε < 1/200, if E 6⊆ ioNTIME[22kn+2εcRCn]/22εn,
then E does not have an (infinitely-often) non-adaptive non-uniform SAT-oracle program with run-
ning time 2kn, advice complexity 2εn, and query complexity 2εn.

Proof: This Theorem is obtained by taking ε′ = 1/2, k′ = 22εn, T = 22kn+2εcRCn, α = 22εn into
[CT23, Theorem 5.11] (and due to collisions in the notations, we denote k (resp ε) in [CT23, Theorem
5.11] by k′ (resp ε′)). Also notice that E 6∈ ioNTIME[T ]/k′ implies that E does not have single-value
nondeterministic program with advice complexity k′ and running time T .

We rely on the notion of black-box PRG construction from a worst-case hard function f [STV01,
Vad12]. Roughly speaking, this notion of black-box PRG from a function f requires the existence
of an efficient oracle algorithm that given (a) some fixed advice string, and (b) black-box access to
any distinguisher for the PRG, is able to compute function f . We remark that we here only consider
deterministic reductions R that reconstruct each bit of f with probability 1 (whereas [Vad12] consid-
ered probabilistic reductions). Notice that probabilistic reductions can be made to be deterministic
at the price of requiring a longer advice string.

Definition 7.5 (Reconstructive PRG (c.f. [Vad12, Definition 7.65])). Let g : 1n × 1m × {0, 1}d →
{0, 1}m be a (deterministic) oracle algorithm, and let k(·) be functions. We say that g is a k-
reconstructive PRG construction if there exist a (deterministic) algorithm R such that for every
f : [n]→ {0, 1} and T : {0, 1}m → {0, 1}, if

|Pr[T (gf (1n, 1m,Ud)) = 1]− Pr[T (Um) = 1]| ≥ 1

6

then there exists a string z ∈ {0, 1}k(n,m) such that for all i ∈ [n],

RT (z, i) = f(i)

We next observe that the Sudan-Trevisan-Vadhan PRG [STV01] obtain by combining a locally
list-decodable error correcting code [STV01] and the Nisan-Wigderson PRG construction [NW94]
yields a strongly black-box construction of a PRG (as argued in [Vad12]).
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Theorem 7.6 ([STV01]; see also [Vad12, Theorem 7.67], [LP22a, Theorem 3.11]). There exists a
k-reconstructive PRG construction g : 1n×1m×{0, 1}d → {0, 1}m such that for every m ∈ N, n ≥ m,
f : [n]→ {0, 1} the following conditions are satisfied:

1. Explicitness: gf is computable in uniform time poly(m,n).

2. Seed length: d(n,m) = O(log2 n/ logm).

3. Reduction running time: t(n,m) = poly(m, log n).

4. Reduction advice complexity: k(n,m) ≤ t(n,m).

In addition, the reduction R only makes non-adaptive queries.

Now we are ready to construct the complexity-theoretic PRG we need.

Theorem 7.7. Assume that there exists a constant ε > 0 such that E 6⊆ ioNTIME[2kn]/2εn for every
k ∈ N. There exists an constant c such that the following holds. For every polynomial t, there exists
a complexity-theoretic PRG G : {0, 1}c logn → {0, 1}n against NTIME[t(n)]/n.

Proof: Notice that we start with the hardness of E against non-uniform nondeterministic programs,
whereas to use the reconstructive PRG construction, we need to rely on hardness against non-adaptive
non-uniform SAT-oracle programs. Thus, we first apply Theorem 7.4 to transform hardness. Let
ε′ = min{ε, 1/200}. And it follows that for every k ≥ 1, E does not have an (infinitely often)
non-adaptive non-uniform SAT-oracle program with running time 2kn, advice complexity and query
complexity 2ε

′·n.
Given the hardness assumption, we will be needing a (standard) padding argument (that works

for every k ≥ 1). Let θ ≤ ε′/c0 be a sufficiently small constant (where c0 is a universal constant that
will be fixed later). We will use (the truth table of) a hard function ∈ E on input log n to construct
a PRG with output length m = nθ.

Consider any polynomial t(m). We proceed to building our complexity-theoretic PRG secure
against NTIME[t(m)]/m. Let k be a (large enough) integer such that mk/4 ≥ t(m). By the argument
above, there exists a language Lk ∈ E such that Lk does not have an (infinitely often) non-adaptive
non-uniform SAT-oracle programs with running time 2kn, advice complexity and query complexity
2ε
′·n. Let fk,` ∈ {0, 1}2

`
denote the truth table of Lk on input length `. For any output length

m ∈ N, let n = m1/θ, and our PRG Gk is defined as

Gk
def
= gfk,logn(1n, 1m) : {0, 1}d → {0, 1}m

where g is the reconstructive PRG construction in Theorem 7.6.
Notice that gfk,logn can be computed in time polynomial in m since both the truth table fk,logn

and the oracle machine g have running time poly(n,m) = poly(m). In addition, the seed length
d = d(n,m) = O(log2 n/ logm) = O((1/θ)2 logm). Let c be a constant such that d(n,m) ≤ c logm
and we conclude that Gk has seed length c logm.

We turn to arguing the security of Gk. Assume (for contradiction) that for some m ∈ N, there
exists a nondeterministic non-uniform program D ∈ NTIME[t(m)]/m such that

|Pr[D(Gk(Ud)) = 1]− Pr[D(Um) = 1]| ≥ 1

6

Let R be the deterministic reduction for g as in Theorem 7.6, and let tR(n,m) be the running time
of R. Note that tR(n,m) = poly(m, log n) ≤ poly(m) and R also has advice complexity tR(n,m). By
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the reconstructive property of g, it follows that there exists an advice string zR ∈ {0, 1}tR(n,m) such
that for all i ∈ [n],

RD(zR, i) = f(i)

Therefore, RD with advice zR decides the hard language Lk on input length ` = log n.
In order to reach a contradiction, it remains to argue that RD(zR, ·) can be implemented by a

non-adaptive non-uniform SAT-oracle program. Recall that D is a nondeterministic non-uniform
program with running time t(m) and advice complexity m. Let zD denote the advice string that D
receives. Consider the following two programs Apre, Apost that act as follows.

• Apre receives zR and zD as advice. On input y ∈ [n], it uses zR to simulate the reduction R
on input y and obtains the queries x1, . . . , xtR that R makes to D. (Note that since R is also
non-adaptive, we can obtain those queries.) For each xi, notice that D(xi) can be transformed
to a SAT formula φi of length t(m) log t(m) such that φi ∈ SAT iff D(xi) = 1 in time t(m)2

(using the advice zD for D). Finally, Apre outputs φ1, . . . , φtR .

• Apre receives zR as advice. On input y ∈ [n] together with a1, . . . , atR , it simply simulates
RD(zR, y) but replacing the i-th answer obtained from D with ai, and outputs what the re-
duction outputs.

Notice that the attacker A = (Apre, Apost) decides Lk on input length `, and it has advice complexity

2|zR|+ |zD| ≤ 2tR(n,m) +m ≤ poly(m, log n) ≤ nO(1)θ = 2O(1)θ·`

running time

tR(n,m) · t(m)2 + tR(n,m) ≤ 2O(1)θ·` · t(m)2 ≤ 2O(1)θ·`mk/2 ≤ 2k·`

and query complexity
tR(n,m) ≤ 2O(1)θ·`

By picking θ < ε′/c0 for some sufficiently large constant c0, we have that both the advice complexity
and the query complexity are ≤ 2ε

′·`.

7.3 Derandomizing pKpoly

We are now ready to use the above-constructed PRG to derandomize pKt.

Lemma 7.8 (Derandomizing pKpoly, Lemma 4.3 restated). Assume that there exists a constant
ε > 0 such that E 6⊆ ioNTIME[2kn]/2εn for every k ∈ N. There exists a constant d such that the
following holds. For every polynomial t, there exists a polynomial t′ such that for every sufficiently
long x ∈ {0, 1}∗,

Kt′(x) ≤ pKt(x) + d log |x|

Proof: Consider any polynomial t, and some sufficiently long string x ∈ {0, 1}n. Let w denote the
pKt-complexity of x. Let g be the complexity-theoretic PRG guaranteed to exist in Theorem 7.3
(since that the assumption we make in this Lemma trivially implies the assumption needed in The-
orem 7.3). Also let c be the constant in Theorem 7.7.

We start with the nondeterministic non-uniform program D1 defined as follows. D1 takes a
“random tape” r ∈ {0, 1}t(n) as input, and guesses a pKt-witness Π of x (with respect to the random
tape r) of length no more than w. Finally, D1 outputs 1 if Π on input r produces the string x. (Let
T (n) be the polynomial that bounds the running time of D1.) Notice that the running time of D1,
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T = T (n), is at most O(t(n) log t(n)), and the advice complexity of D1, `, is |x| + |w|. It follows
from Theorem 7.3 that D1 cannot distinguish the output of g on a seed of length O(log T ) from the
uniform distribution with advantage 1/6.

However, the seed length of g, O(log T ), is still too long, and we need to apply another complexity-
theoretic PRG to further reduce the seed length. We next consider the nondeterministic non-uniform
program D2, which on input ∈ {0, 1}`, uses its first O(log T ) bits (denote the string by v), and
computes r = g(v). Finally, D2 outputs 1 if D1(r) outputs 1. Observe that D2 runs in time
T (n) ≤ T (`) and uses ≤ ` bits of advice. Let G be the complexity-theoretic PRG for the polynomial
T guaranteed to exists by Theorem 7.7. It follows that D2 cannot distinguish the output of G on
seed length c log ` from the uniform distribution with advantage 1/6.

Lastly, by the above argument, it holds that

Pr[D2(G(Uc log `)) = 1] ≥ Pr[D2(U`) = 1]− 1

6

= Pr[D1(g(UO(log T ))) = 1]− 1

6
≥ Pr[D1(Ut(n)) = 1]− 1

3

In addition, it follows from the definition of D1 (together with pKt(x) = w) that D1 will output 1
with probability at least 2/3 on the uniform distribution. Thus,

Pr[D2(G(Uc log `)) = 1] ≥ 1

3

Now we are ready to show that x also has small Kt′-complexity for some polynomial t′. Let s be a
seed of length c log ` such that D2(G(s)) = 1. Let r be the random tape obtained by running g on
the first O(log T )-bit of G(s). Since D2(G(s)) = 1, there exists a program Π such that Π on input
r will output x in time t(n). Consider the program M with the polynomial t, code of g and G, the
integer n, the seed s (of length ≤ 2c log n), and the program Π (of length ≤ w) hardcoded. M uses
s to obtain the string r and output the string obtained by running Π on r. Notice that the PRG G,
g, and the program Π all run in polynomial time in n, and let t′(n) be the polynomial such that M
runs in time t′(n). In addition, the program M has description length

log n+ 2 log n+ 4c log n+ w ≤ pKt(x) + d log n

for some constant d (that does not depend on t). Thus, we conclude that

Kt′(x) ≤ pKt(x) + d log n
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