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Abstract

In this work, we give an optimal analysis of the plane versus plane test of Raz and Safra
(STOC’97). More specifically, consider a table T that assigns every plane P from Fm

q a bivari-
ate degree d polynomial. The goal is to check if these polynomials are restrictions of a global
degree d polynomial f : Fm

q → Fq. Raz and Safra introduced the following natural test: sample
two random planes P,P′ intersecting in a line ℓ and check if T (P)|ℓ = T (P′)|ℓ, i.e., the two table
entries agree on the points on ℓ.

We show that if the test passes with probability at least ε = Ω(d/q), then there is a global degree
d polynomial f such that for at least Ω(ε) fraction of the planes P, T (P) = f |P. This improves
on the previous best analysis of the test by Moshkovitz and Raz (STOC’06), where they proved
the soundness of the test is at least (poly(d)/q)1/8. With Ω(1/q) as a natural lower bound on the
soundness of this test, our result gets the optimal dependence on the field size, while also working
for large degree parameters d = Ω(q). Our proof combines algebraic aspects from prior work on
the lines vs lines test, with combinatorial aspects of recent works on the cubes vs cubes test.

1 Introduction
The main objects of study in this paper are low-degree tests, which check whether a given function
f : Fm

q → Fq is a degree d polynomial or is far from the set of degree d polynomials, by querying f at
a few random (but correlated) points. In other words, if f is a low-degree function, then the test should
accept with probability 1, and if f is far from every low-degree function, then the test should reject
with high probability. Such local tests were used in constructing Probabilistically Checkable Proofs
(PCPs), and the original proofs of the PCP Theorem [ALM+98, AS98, FGL+96] relied on the query
complexity and the soundness parameter of such tests. The query complexity is the number of locations
queried from the truth table T of f . The soundness parameter of the test is the minimal quantity ε > 0
such that if the test passes with probability at least ε, then it is necessarily the case that f is close to
some degree d polynomial.

Low-degree tests were introduced by Rubinfeld and Sudan [RS92], and they gave an O(d2)-query
test with soundness 1 − Ω(1/d). Arora, Lund, Motwani, Sudan, and Szegedy [ALM+98], building on
the work of Arora and Safra [AS98], improved the soundness parameter of the tests to 1 − Ω(1), and
this was a crucial ingredient in getting PCPs with O(1)-query complexity.

To get PCPs with smaller query complexity, the truth table representation of the function f is not
sufficient − if f has degree d, the test must query T on at least d+2 points. If we want a test that makes
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fewer queries while keeping the error small, it is useful to move to a more redundant representation of
f . The most basic example is when the test has access to the “lines table” of f rather than the truth
table. In this setting, the test is given a table T that maps every line ℓ in Fm

q to a degree d univariate
polynomial T (ℓ), and the question is to test whether these univariate polynomials are the restrictions
of a “global” m-variate degree d polynomial f : Fm

q → Fq. The following agreement test is one natural
test that has access to such a table.

• Select two random lines ℓ and ℓ′ intersecting at a point x ∈ Fm
q .

• Accept if T (ℓ)|x = T (ℓ′)|x, i.e., if the polynomials T (ℓ) and T (ℓ′) agree at x.

Certainly, if the table T is coming from restrictions of a fixed global degree d function, then the test
passes with probability 1. The main question is the soundness of this test, which is stated as follows.
For which value of ε > 0 is this following statement true: if the test passes with probability ε, then
there is a global degree d function f : Fm → F such that on a considerable (say, Ω(ε)) fraction of the
lines ℓ, T (ℓ) = f |ℓ.

This all generalizes naturally to tables and tests of higher dimension. For t ∈ N with t < m, we
say T is a t-planes table if, for every affine t-plane H ⊂ Fm, the entry T (H) is a t-variate degree
d polynomial, which we think of as being defined on H. Given a t-planes table T , a natural test
samples two random t-planes H,H′ ⊂ Fm whose intersection has dimension t − 1 and accepts if
T (H)|H∩H′ = T (H′)|H∩H′ . The soundness question in this context is for which values of ε > 0 is it true
that if the test passes with probability ε, then there is a global degree d polynomial f : Fm → F such
that T (H) = f |H for an Ω(ε)-fraction of the t-planes H.

Early work on low-degree testing [GLR+91, RS92, FS95, RS96, ALM+98, AS98] focused on the
high agreement regime where the soundness parameter ε is close to 1. As the soundness parameter
plays a key “bottleneck” role in efficient constructions of PCPs, it is important to establish soundness
guarantees for these tests with ε as close to zero as possible. Two beautiful works of Arora and Su-
dan [AS98] and Raz and Safra [RS97] kicked off the study of these tests in the low agreement regime,
where ε = o(1) as a function of the other parameters − an area of study which remains active today.

1.1 Prior Work on Proving Soundness in the Low Agreement Regime
We now review the known results and key conceptual techniques which have been developed over the
years for proving soundness of low-degree tests in the low agreement regime. We note that ε = Ω(1/q)
is a natural lower bound, since one can construct tables on which the test passes with probability
Θ(1/q), but all degree d-functions agree with at most o(1/q) fraction of the entries (see, e.g., the
introduction of [MZ23]).

The Line vs Line Test. Arora and Sudan [AS98] gave the first proof of soundness for the line vs
line test with ε = (poly(d)/q)τ , for a small constant τ > 0. Their analysis used an algebraic argument,
based on the polynomial method, to prove a soundness theorem for the bivariate case, i.e., when m = 2,
and then a combinatorial “bootstrapping” argument to extend the bivariate theorem to larger m. The
algebraic part of their analysis used the heavy machinery of Hilbert irreducibility in a black-box way.
Recently, Harsha, Kumar, Saptharishi and Sudan [HKSS24] improved and simplified the algebraic
argument and were able to prove soundness of the line vs line test with ε = (d/q)τ for τ = 1/48.
Replacing the poly(d) in the numerator with simply d is significant as it means the soundness theorem
is meaningful even for large degrees d = Ω(q).
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The Plane vs Plane Test. Raz and Safra [RS97] gave the first proof of soundness for the plane vs
plane test with ε = (m · poly(d)/q)τ , for a small constant τ > 0.1 Their analysis used a combinatorial
argument for the trivariate case, i.e. when m = 3, and then an inductive bootstrapping argument to
extend the trivariate result to larger m. Their combinatorial trivariate theorem is extremely elegant and
uses the observation that when T (P) and T (P′) do not agree on the line P ∩ P′, they must disagree
at almost every point on this line, i.e., test failure implies distance. This observation has been crucial
to all subsequent work in the area (except work on the line vs line test where intersections consist of
a single point). Motivated by issues related to PCP size, Moshkovitz and Raz [MR08] considered a
derandomized planes vs planes test, and gave an improved proof of soundness with ε = (poly(d)/q)τ ,
where τ = 1/8.

The Cube vs Cube Test. Bhangale, Dinur, and Livni Navon [BDN17] gave the first proof of sound-
ness for the cube vs cube test (by cube, we mean an affine 3-plane) with ε = (poly(d)/q)τ for τ = 1/2.
Their work was the first to deviate from the “prove soundness for low dimensions, then bootstrap”
model, instead following the blueprint of [IKW12] for proving soundness theorems for direct product
tests. Our argument uses this blueprint as well so we will overview it in Section 1.3 below. Recently,
using this same blueprint, Minzer and Zheng [MZ23] proved a striking result: soundness for the cube
vs cube test with ε = Ω(poly(d)/q), i.e., optimal dependence on the field size.

1.2 Our Result
In this work we prove soundness of the plane vs plane test with ε = Ω(d/q).

Theorem 1. There is an absolute constant c such that the following holds. If T is a degree d planes
table such that the plane vs plane test for T accepts with probability ε ≥ cd

q
, then there exists a global

m-variate polynomial f(X) ∈ F[X] of degree at most d such that T (P) = f |P holds for at least an
ε/10-fraction of the planes P ⊂ Fm.

That is, we obtain a soundness parameter for the planes vs planes test which is optimal in terms of the
field size, while at the same time providing a non-trivial guarantee for large degrees d = Ω(q). Thus,
we directly improve upon [RS97, MR08] by obtaining a significantly smaller soundness parameter.
Moreover, we conceptually improve upon [BDN17, MZ23] by getting the blueprint of [IKW12] to
work for planes, rather than requiring cubes. We believe that our techniques will be helpful in the
future towards obtaining an optimal soundness proof for the most stringent line versus line tests. This
is an interesting and important open problem for further research.

1.3 Our Techniques
In order to describe our technical contributions, we will need to discuss some of the techniques from
prior work in more detail.

The Blueprint of [IKW12]. At a high level, the IKW-blueprint as adopted to low-degree testing
by [BDN17] works as follows. First, the argument “zooms in” to a set of cubes which contain a point
x ∈ Fm and whose polynomials agree with each other at x. Specifically, for (x, α) ∈ Fm × F, let
C(x,α) denote the set of cubes C ⊂ Fm which contain x and for which T (C)|x = α. The polynomials

1The works [AS98, RS97] came out around the same time and were independent of one another.
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of the cubes in C(x,α) already agree at x and so they are more likely to agree at other points where their
domains intersect. Raz and Safra’s observation that “test failure implies distance” is used to show that,
for many pairs (x, α), when two cubes C and C′ which intersect in a 2-plane are chosen from C(x,α), the
polynomials T (C) and T (C′) will agree on the entire intersection C∩C′ with high probability. We call
the pairs (x, α) with this property excellent (following [IKW12]). The agreement theorem of Rubinfeld
and Sudan [RS96] which works in the high agreement regime is invoked to obtain a global degree d
polynomial whose restrictions agree with T on most cubes in C(x,α) (note we are not done as C(x,α)
contains a tiny fraction of all cubes in Fm). Finally, a consistency argument is used to show that the
same global polynomial is common to many zoom-ins, from which the soundness theorem follows. The
IKW-blueprint makes extensive use of the expansion properties of various bipartite inclusion graphs
(e.g., the inclusion graph between lines and cubes which contain a fixed x ∈ Fm). And in fact, the
reason that prior works have used the blueprint to prove soundness only for the cube vs cube test (rather
than for the plane vs plane test) is that the extra degree of freedom afforded by working with cubes was
needed to ensure that all of the inclusion graphs encountered in the argument are good expanders.
Indeed, the technical challenges we faced in this work all had to do with making the IKW-blueprint
work despite the fact that several of our inclusion graphs are not good expanders.

Technical Contribution #1− Mixing in Algebraic Methods. The most glaring “expansion failure”
we encounter when trying to implement the IKW-blueprint in the planes vs planes setting comes up
when attempting to invoke the high agreement theorem of [RS96]. Roughly speaking, this theorem
says that for any degree d lines table which passes the line vs line test with probability close to 1, there
exists a global degree d polynomial which agrees with almost all of the lines. In order to invoke this
theorem, we need to convert our planes table restricted to the zoom-in set into a lines table. Recall that
the zoom-in sets of interest are P(x,α) for an excellent pair (x, α) ∈ Fm×F. In the cube vs cube setting
this is easy: given any line ℓ, simply choose C ∼ C(x,α) such that C contains ℓ, and set the lines table
polynomial to T (C)|ℓ. The expansion of the “lines vs cubes through x” inclusion graph implies that the
resulting lines table passes the lines vs lines test with high probability. In the planes vs planes setting,
we cannot argue in this way as the “lines vs planes through x” inclusion graph is not an expander.
Indeed, for any x ∈ Fm and line ℓ ⊂ Fm (which does not contain x) there is a unique plane in Fm

which contains both x and ℓ, and this plane might not be in P(x,α) at all.
So, in order to invoke the high agreement theorem, we need to work harder to convert our planes

table restricted to P(x,α) into a lines table which passes the lines vs lines test with high probability.
We argue as follows given a line ℓ ⊂ Fm. First, we choose a uniform C ∼ Cx which contains ℓ. The
expansion of the “lines vs cubes through x” graph implies that with high probability, a non-negligible
fraction of the planes P ⊂ Fm such that x ∈ P ⊂ C belong to P(x,α). Now a polynomial-method-based
argument (similar to the ones in [AS98, HKSS24]) is used to obtain a trivariate polynomial, say g(x,α),C,
defined on C, whose restriction to almost all of the P ∈ P(x,α) with P ⊂ C equals T (P). Finally, the
lines table polynomial is set to g(x,α),C|ℓ. Relatively standard combinatorial arguments are then used
to show that both 1) this lines table passes the lines vs lines test with probability close to 1; and 2)
the global polynomial (obtained by invoking the high agreement theorem of [RS96]) agrees with most
planes in the zoom-in set.

The interface between the IKW-blueprint and the algebraic argument of [AS98, HKSS24] is very
clean and we expand here a bit on it. At a high level, the algebraic argument works in three stages.
First, an interpolation lemma is established which says that given any set S ⊂ P(x,α) which is not too
big, there exists a non-zero low-degree 4-variate polynomial AS(X, Z) ∈ F[X, Z] which vanishes on
the planes in S and their bivariate polynomials from T . When we say that AS vanishes on P ∈ S, we

3



mean that the bivariate polynomial which maps x′ ∈ P to AS

(
x′, T (P)|x′

)
, is identically zero. The

interpolation theorem is proved via a dimension counting argument which imposes an upper bound on
the size of S. Next, a “vanishing amplification” lemma is proved which says that if the small set S
is properly chosen, then the interpolation polynomial AS(X, Z) will actually vanish at almost all of
the planes in P(x,α). Finally, it is shown that such an extensive vanishing requirement means that AS

must have a “trivariate root”, i.e., it must be divisible by a polynomial of the form Z − f(X) where
f(X) ∈ F[X] is the trivariate, degree d polynomial that we are looking for: its restrictions agree with
T (P) at almost every P ∈ P(x,α).

The first and third steps are very similar to the corresponding steps in [HKSS24], but the vanishing
amplification step is noteworthy as it works particularly nicely in our setting. Roughly speaking, in
order to show that AS vanishes on almost every P ∈ P(x,α), we consider the lines of intersection P∩P′

for the planes P′ ∈ S (the planes all intersect in lines because we are working inside a fixed cube). Note
that for any x′ ∈ P ∩ P′, we expect to have

A
(
x′, T (P)|x′

)
= A

(
x′, T (P′)|x′

)
= 0,

where the first equality holds because we expect T (P) and T (P′) to agree on P∩P′ (since they are both
in P(x,α) and (x, α) is excellent), and where the second equality holds because AS was interpolated to
vanish on the planes in S. Thus, most P ∈ P(x,α) will contain roughly |S| lines on which AS vanishes,
from which it follows by Schwartz-Zippel that AS vanishes on P. This part of our argument appears in
Section 4.

An Idea “In the Air”. The high agreement theorem of Rubinfeld and Sudan [RS96] requires start-
ing with a lines table which passes the lines vs lines test with probability 1 − 1

poly(d)
, due to its proof

which uses a union-bound-type argument. The improved high agreement theorem of Friedl and Su-
dan [FS95] uses a more sophisticated polynomial-method-type argument and works starting with a
lines table which passes the test with probability 1−Ω(1). It was noted in [HKSS24] that using [FS95]
instead of [RS96] for the high agreement component of the IKW-blueprint would have been a better
choice as it would have allowed replacing the poly(d) terms with simply d in the soundness parameters
obtained in [BDN17, MZ23]. We implement this change and take the improvement to our soundness
parameter, but we do not consider this to be one of our contributions.

The Analysis of [MZ23]. Minzer and Zheng [MZ23] obtained a surprisingly sharp soundness pa-
rameter for the cubes vs cubes test by carefully refining the analysis of [BDN17] in several key places.
As our work builds on theirs, we identify here what we feel were the main parts of their argument.
However, to make it as relevant to our work as possible, we use planes for the context of this discus-
sion, even though [MZ23] worked with cubes. Broadly speaking, the main insight of [MZ23] is that
if one considers an experiment which includes drawing two uniform planes, say P,P′ ⊂ Fm, which
intersect in a line, then the “agreement event” T (P)|P∩P′ = T (P′)|P∩P′ correlates strongly with other,
extremely structured behavior. Specifically, [MZ23] consider the distribution which draws uniform
planes P,P′ ⊂ Fm which intersect in a line, and then draws x,x′ ∼ P ∩ P′, and they prove that condi-
tioned on the agreement event, all of the following also occurs with constant probability: 1) both (x, α)
and (x′, α′) are excellent, where (α, α′) =

(
T (P)|x, T (P)|x′

)
(meaning that the zoom-in sets P(x,α) and

P(x′,α′) are both amenable to the IKW-blueprint); 2) the global degree d polynomials f(x,α) and f(x′,α′)

obtained from implementing the IKW-blueprint on P(x,α) and P(x′,α′), when restricted to P and P′ both
agree with T (P) and T (P′); and 3) f(x,α) = f(x′,α′). In other words, conditioned on the agreement
event occurring, everything else good that can possibly happen, happens with constant probability.
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This is almost good enough to derive the soundness theorem. Indeed, having f(x,α)|P = T (P) and
f(x,α) = f(x′,α′) for a pair (x′, α′) which is completely uncorrelated from (x, α) would mean that the
global polynomial f = f(x′,α′) agrees with T on a non-negligible fraction of the planes in Px for a
non-negligible fraction of the x ∈ Fm, i.e., it agrees with T on a non-negligible fraction of all planes
in Fm. The problem is that it is not immediately clear whether x and x′ are uncorrelated enough, given
that they both are drawn from the intersection P ∩ P′. Minzer and Zheng show that, indeed, x and x′

drawn in this way are uncorrelated enough, albeit via somewhat ad hoc means, using a dyadic partition
argument. Working in the stringent planes vs planes setting, we encounter this type of situation several
times, and our second technical contribution is the development of a somewhat more principled method
for handling it.

Technical Contribution #2 − Analyzing Intersection Distributions. In order to isolate the core
problem, consider the following simplified setting. Let x ∈ Fm be fixed and let P ′

x ⊂ Px be a subset of
density Ω(ε). Consider the distribution on Fm which draws P,P′ ∼ P ′

x such that P ∩ P′ is a line, and
then draws x′ ∼ P ∩ P′ and outputs x′. Is this distribution close to the uniform distribution on Fm? A
similar, but incompatible situation was considered in [BDN17] (see Lemma 2.5). In [BDN17], the set
C ′
x ⊂ Cx has much larger density (since their ε is much larger than ours), and their inclusion graph is a

much better expander than ours (since they work with cubes not planes), and so they are able to show
that the intersection distribution is Ω(q−1/2)-close to uniform.

In our setting, this cannot possibly be the case. Indeed, take m = 3, choose lines ℓ1, . . . , ℓd through
x, and let P ′

x be the set of planes which contain at least one of the ℓi. Note P ′
x ⊂ Px has density

Ω(d/q) = Ω(ε). However, if two planes P,P′ ∼ P ′
x are drawn, they will both contain the same

ℓi with probability roughly 1/d, in which case the intersection distribution outputs a point from ℓi.
Thus, the intersection distribution cannot be much closer than 1

d
to the uniform distribution in statistical

distance. Notice however that, at least in this case, when P and P′ do not contain the same ℓi, then the
intersection distribution output is uniform. And indeed, we show in general (i.e., for arbitrary P ′

x ⊂ Px

of density Ω(ε) and for larger m) that the intersection distribution is within statistical distance Ω(d−1/2)
of uniform. See Section 6 for more discussion.

2 Preliminaries
Let F be a finite field of size |F| = q, let d ∈ N with d < q be a degree parameter, and let m ∈ N be a
dimension parameter.

Low Degree Polynomials. Given an m-variate polynomial f(X) ∈ F[X], the degree of f refers to
the maximum total degree of any monomial of f . We will make heavy use of the Schwartz-Zippel
Lemma, i.e., Prx∼Fm [f(x) = 0] ≤ d/q for all non-zero polynomials f(X) ∈ F[X] of degree d. We
will also use “Schwartz-Zippel variants” such as that a non-zero bivariate polynomial of degree d can
vanish on at most d lines in the plane. Given an (m+ 1)-variate A(X, Z) ∈ F[X, Z], the (1, . . . , 1, d)-
degree of A is the maximum degree of all univariate polynomials of the form A

(
ℓ⃗(T ), φ(T )

)
∈ F[T ]

where ℓ⃗ : F → Fm is a parametrization of a line and where φ(T ) ∈ F[T ] is a univariate polynomial of
degree at most d. Given an affine 2-plane P ⊂ Fm and a bivariate polynomial Φ defined on P, we write
A(P,Φ) for the bivariate polynomial which maps x ∈ P to A

(
x,Φ(x)

)
. Note that if Φ has degree d,

then the degree of A(P,Φ) is at most the (1, . . . , 1, d)-degree of A.
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The Discriminant. If A(Z) = adZ
d + ad−1Z

d−1 + · · · + a1Z + a0 ∈ F[Z] is a degree d univariate
polynomial over F, then the discriminant of A, denoted Disc(A), is the quantity

Disc(A) := a2d−2
d

∏
i<j

(ri − rj)
2,

where {r1, . . . , rd} are the (not necessarily distinct) roots of A in an algebraic closure of F. The two
important facts about the discriminant for this work are first that Disc(A) = 0 iff A has a repeated
root, and second that Disc(A) can be represented as a degree 2d − 2 polynomial in the coefficients
of A, so in particular Disc(A) ∈ F. If A(X, Z) ∈ F[X, Z] is an (m + 1)-variate polynomial, then
DiscZ(A)(X) ∈ F[X] is the m-variate polynomial such that for x ∈ Fm, DiscZ(A)(x) is the discrimi-
nant of the univariate polynomial A(x, Z) ∈ F[Z]. The degree of DiscZ(A) is at most 2ddZ , where d
and dZ are, respectively, the degree and Z-degree of A.

Planes Tables, the Grassmannian Graph and Agreement Tests. Let P denote the set of affine 2-
planes in Fm. We denote by G the uniform edge distribution of the affine Grassmannian graph whose
vertex set is P and where (P,P′) is an edge iff P and P′ intersect in a line. So G outputs a uniform
pair of planes whose intersection is a line. A degree d, planes table T assigns to every P ∈ P , a
degree d bivariate polynomial, denoted T (P), which we think of as being defined on P. We denote by
TEST2,m(T ) the experiment which draws (P,P′) ∼ G, and accepts iff T (P)|P∩P′ = T (P′)|P∩P′ , i.e., if
the bivariate polynomials T (P) and T (P′) agree on the line P ∩ P′.

Expansion Facts. Our proof uses several facts which are derived from the expansion of various bi-
partite inclusion graphs or Grassmannian graphs. In order to clarify how the non-expansion-related
ideas of our argument fit together, we remove essentially all discussion of graph expansion from the
main body of the proof in Sections 3, 4 and 5. Throughout the main proof we will state the expansion
facts we need, and we will prove them all in Section 6. Many of the expansion facts assert that two dis-
tributions are close in statistical distance, and we will use the following concise notation to implicitly
state such facts. If D and D′ are two distributions and EVENT is some event, we will write

PrD
[
EVENT

]
(ExpFact.X)

≈δ
PrD′

[
EVENT

]
to indicate that we are invoking Expansion Fact X which states that D and D′ are within statistical
distance δ of each other. Then in Section 6, the expander fact will be stated and proved.

3 Our Main Result
Theorem 1 (Restated). Let F be a finite field of size |F | = q, let c,m, d ∈ N be integers such that
d < q, and let ε > 0 be such that ε ≥ cd

q
. Assume, furthermore, that c ≥ 107, cd ≥ 109, and d

q
≤ 10−7

all hold. If T is a degree d planes table such that TEST2,m(T ) passes with probability ε, then there is
an m-variate, degree d polynomial f(X) ∈ F[X] such that PrP∼P

[
T (P) = f |P

]
≥ ε/10.

3.1 Proof Setup and the Key Lemmas
In this section we define excellence and we reduce the proof of Theorem 1 to two lemmas which we
will prove in the next sections.
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Notation. Let γ > 0 be an absolute constant (γ = 10−12 works). For x ∈ Fm, denote by Px the planes
in P which contain x, i.e., Px =

{
P ∈ P : x ∈ P

}
. Let Gx be the distribution which outputs a uniform

pair of planes in Px which intersect in a line. For (x, α) ∈ Fm×F, let P(x,α) =
{
P ∈ Px : T (P)|x = α

}
be the set of planes which contain x and which are such that the polynomial given by T evaluates at x
to α. We write µx

(
P(x,α)

)
for the density of P(x,α) in Px.

Definition 1 (Excellent). We say that (x, α) ∈ Fm × F is excellent if µx

(
P(x,α)

)
≥ ε/8 and

Pr(P,P′)∼Gx

[
T (P)|P∩P′ = T (P′)|P∩P′

∣∣∣P,P′ ∈ P(x,α)

]
≥ 1− γ.

Lemma 1 (Global Polynomials From Excellent Points). If (x, α) ∈ Fm × F is excellent, then there
is an m-variate, degree d polynomial f(x,α)(X) ∈ F[X] such that PrP∼P(x,α)

[
T (P) = f(x,α)|P

]
≥ 9/10.

Lemma 2 (Excellent Points Come in Bunches). There exists an excellent (x, α) ∈ Fm × F such that
PrP∼P(x,α),x

′∼P

[
(x′, α′) excellent & f(x,α) = f(x′,α′)

]
≥ 1/6 holds, where α′ = T (P)|x′ .

Proof of Theorem 1. We need to show the existence of an m-variate polynomial f(X) ∈ F[X] of degree
at most d such that PrP∼P

[
T (P) = f |P

]
≥ ε/10. For f(X) ∈ F[X], define

Sf :=
{
x′ ∈ Fm : ∃ α′ ∈ F s.t. (x′, α′) excellent & f(x′,α′) = f

}
.

For any x′ ∈ Sf and α′ ∈ F such that (x′, α′) is excellent and f(x′,α′) = f , we have

PrP∼Px′

[
T (P) = f |P

]
= µx′(P(x′,α′)) · PrP∼P(x′,α′)

[
T (P) = f(x′,α′)|P

]
≥ ε

8
· 9

10
>

ε

9
,

using Lemma 1 and µx′(P(x′,α′)) ≥ ε/8 since (x′, α′) is excellent. If there exists an f such that
µ(Sf ) ≥ 1

7
, then we are done since

ε

9
≤ Prx′∼Sf

P∼Px′

[
T (P) = f |P

](ExpFact.3)
≈ 3

q
PrP∼P

[
T (P) = f |P

]
.

We show that µ(Sf ) ≥ 1
7

when f = f(x,α) for the excellent (x, α) promised by Lemma 2. So let
(x, α) ∈ Fm×F be this point, and let f(x,α)(X) ∈ F[X] be the m-variate degree d polynomial promised
by Lemma 1, and write f instead of f(x,α) and S instead of Sf(x,α)

. We have

1

6
≤ PrP∼P(x,α)

x′∼P
α′=T (P)|x′

[
(x′, α′) exc & f(x′,α′) = f

]
≤ PrP∼P(x,α)

x′∼P

[
x′ ∈ S

](ExpFact.4)
≈ 1

100
Prx′∼Fm

[
x′ ∈ S

]
,

where the first inequality is Lemma 2. Rearranging gives µ(S) ≥ 1
7
, as desired.

4 Excellent Pairs to Global Polynomials
In this section we prove Lemma 1.

Lemma 1 (Restated). Let (x, α) ∈ Fm×F be an excellent pair (see Definition 1). There exists an m-
variate polynomial f(x,α)(X) ∈ F[X] of degree at most d such that PrP∼P(x,α)

[
T (P) = f(x,α)|P

]
≥ 9

10
.

Our proof goes in two stages. First, we give a “bootstrapping” argument which reduces Lemma 1 to
the trivariate case (i.e., m = 3). This part uses an agreement theorem of Friedl and Sudan [FS95] for a
lines table which passes the lines vs lines test in Fm with high probability. We then handle the trivariate
case using a polynomial-method argument following the one in [HKSS24].
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Notation. In this section we will need to reason about lines and cubes (i.e., affine 3-planes), in addi-
tion to planes. We let L and C denote the sets of affine lines and cubes in Fm. Just as Px, for x ∈ Fm, is
the set of planes which contain x, so we let Lx and Cx denote the sets of lines and cubes which contain
x. For C ∈ C, we let LC and PC be the sets of lines and planes which are contained in C. For x,x′ ∈ Fm,
α ∈ F, ℓ ∈ L, C ∈ C, we write Lx,C, Px,C, Cx,ℓ, P(x,α),x′ , and P(x,α),C for the intersections Lx ∩ LC,
Px ∩PC, Cx ∩Cℓ, P(x,α) ∩Px′ and P(x,α) ∩PC. For (x, α) ∈ Fm×F and C ∈ Cx, we write µx,C(P(x,α))
for the density of P(x,α),C inside Px,C. Given a degree d lines table D which assigns a univariate de-
gree d polynomial to every ℓ ∈ L, we denote by TEST1,m(D), the experiment which draws x′ ∼ Fm,
ℓ, ℓ′ ∼ Lx′ and outputs 1 iff the polynomials D(ℓ) and D(ℓ′) agree at x′, i.e., if D(ℓ)|x′ = D(ℓ′)|x′ . Let
γ′ = 3000γ.

Definition 2 (An Excellent Pair for a Cube). We say that (x, α) ∈ Fm × F is excellent for C ∈ Cx if
µx,C(P(x,α)) ≥ 8

9
· µx(P(x,α)) and PrP,P′∼P(x,α),C

[
T (P)|P∩P′ = T (P′)|P∩P′

]
≥ (1− γ′).

Expansion Fact 1. If (x, α) ∈ Fm × F is excellent, then PrC∼Cx
[
(x, α) excellent for C

]
≥ 499

500
.

We prove the following trivariate version of Lemma 1 in the next section.

Lemma 3 (The Trivariate Version). If (x, α) ∈ Fm × F is excellent for C ∈ Cx, then there exists a
trivariate, degree d polynomial g(x,α),C, defined on C, such that PrP∼P(x,α),C

[
T (P) = g(x,α),C|P

]
≥ 499

500
.

Of course when m = 3, Lemma 3 directly implies Lemma 1. When m > 3, however, we still need to
show how to recover a global degree d polynomial which agrees with most planes in P(x,α). For this,
we use the following result of Friedl and Sudan [FS95].

Lemma 4 (Implied by [FS95], Theorem 13). Let D be a randomized degree d lines table, so that
for every ℓ ∈ L, D(ℓ) is a distribution which outputs a univariate polynomial of degree at most d. If
TEST1,m(D) passes with probability at least 49

50
, then there exists an m-variate f(X) ∈ F[X] of degree

at most d such that Prℓ∼L
[
D(ℓ) = f |ℓ

]
≥ 19

20
.

Proof of Lemma 1. Let (x, α) ∈ Fm × F be excellent. Let D be the randomized lines table where for
ℓ ∈ L, D(ℓ) is the distribution which:

1. draws C ∼ Cx,ℓ; if (x, α) is not excellent for C, D aborts, giving no output;

2. outputs g(x,α),C|ℓ, where g(x,α),C is a trivariate, degree d polynomial g(x,α),C, defined on C, such
that PrP∼P(x,α),C

[
T (P) = g(x,α),C|P

]
≥ 499

500
(exists when (x, α) is excellent for C by Lemma 3).

Note that we have

Pr C∼Cx
P∼P(x,α),C

[
g(x,α),C|P = T (P)

]
≥ Pr C∼Cx

P∼P(x,α),C

[
(x, α) exc for C & g(x,α),C|P = T (P)

]
≥ 249

250
,

by Expansion Fact 1 and Lemma 3. We prove Lemma 1 by showing two things. First, we show that
TEST1,m(D) passes with probability at least 49

50
. Thus, by invoking Lemma 4, we obtain an m-variate

degree d polynomial f(x,α)(X) ∈ F[X] such that Prℓ∼L
[
f(x,α)|ℓ = D(ℓ)

]
≥ 19

20
. Next, we show that this

f(x,α)(X) agrees with a 9
10

-fraction of the planes in P(x,α), and so completes the proof of Lemma 1.
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Lower Bounding the Test-Passing Probability. Let q := Pr
[
TEST1,m(D) passes

]
be shorthand for

the probability we want to bound. We have

q = Pr x′∼Fm

ℓ,ℓ′∼Lx′

[
D(ℓ)|x′ = D(ℓ′)|x′

]
= Pr x′∼Fm

C,C′∼Cx,x′

[
g(x,α),C(x

′) = g(x,α),C′(x′)
]

(ExpFact.7)
≈ 1

2000
Pr x′∼Fm

P,P′∼P(x,α),x′

C∼CP,C′∼CP′

[
g(x,α),C(x

′) = g(x,α),C′(x′)
]

≥ Pr x′∼Fm

P,P′∼P(x,α),x′

C∼CP,C′∼CP′

[
g(x,α),C|P = T (P) & g(x,α),C′|P′ = T (P′) & T (P)|x′ = T (P′)|x′

]
≥ Pr x′∼Fm

P,P′∼P(x,α),x′

[
T (P)|x′ = T (P′)|x′

]
− 2 · Pr x′∼Fm

P∼P(x,α),x′
C∼CP

[
g(x,α),C|P ̸= T (P)

]
(ExpFact.5)

≈ 1
2000

Pr x′∼Fm

P,P′∼P(x,α),x′

[
T (P)|x′ = T (P′)|x′

]
− 2 · Pr C∼Cx

P∼P(x,α),C

[
g(x,α),C|P ̸= T (P)

]
≥ Pr x′∼Fm

P,P′∼P(x,α),x′

[
T (P)|x′ = T (P′)|x′

]
− 1

125

(ExpFact.9)
≈ 1

100
Pr(P,P′)∼Gx

[
T (P)|P∩P′ = T (P′)|P∩P′

∣∣∣P,P′ ∈ P(x,α)

]
− 1

125
≥ 1− γ − 1

125

which rearranges to give q ≥ 49
50

. The inequality on the second to last line has used the bound derived
above for Pr C∼Cx

P∼P(x,α),C

[
g(x,α),C|P ̸= T (P)

]
. The final inequality holds because (x, α) is excellent.

Agreement with Lines Implies Agreement with Planes. Let f(x,α)(X) ∈ F[X] be an m-variate
degree d polynomial such that Prℓ∼L

[
f(x,α)|ℓ = D(ℓ)

]
≥ 19

20
. It follows that

19

20
≤ Pr ℓ∼L

C∼Cx,ℓ

[
g(x,α),C|ℓ = f(x,α)|ℓ

]
≤ PrC∼Cx

[
g(x,α),C = f(x,α)|C

]
+

d

q

≤ Pr C∼Cx
P∼P(x,α),C

[
g(x,α),C = f(x,α)|C & g(x,α),C|P = T (P)

]
+ Pr C∼Cx

P∼P(x,α),C

[
g(x,α),C|P ̸= T (P)

]
+

d

q

≤ Pr C∼Cx
P∼P(x,α),C

[
f(x,α)|P = T (P)

]
+

1

250
+

d

q
(ExpFact.6)

≈ 1
100

PrP∼P(x,α)

[
f(x,α)|P = T (P)

]
+

1

250
+

d

q
,

which rearranges to give PrP∼P(x,α)

[
f(x,α)|P = T (P)

]
≥ 9

10
, proving Lemma 1.

4.1 Proving the Trivariate Agreement Theorem
Notation. In this section, we fix C ∈ Cx such that (x, α) is excellent for C, we identify C with F3 and
drop C everywhere from the syntax. This will greatly simplify our expressions. The assumption that
(x, α) is excellent for C implies µx(P(x,α)) ≥ ε

9
, and PrP,P′∼P(x,α)

[
T (P)|P∩P′ = T (P′)|P∩P′

]
≥ 1− γ′,

using the fact that any two distinct planes in 3-space who intersect, must intersect in a line.

We prove Lemma 3 using the polynomial-method, following the argument from [HKSS24] (which
itself, follows and improves upon [AS03]). At a high level, this proceeds in three stages.

1. Interpolation: First, a set S ⊂ P(x,α) is specified, and a non-zero, 4-variate low degree polynomial
A(X, Z) ∈ F[X, Z] is chosen so that A

(
P, T (P)

)
≡ 0 for all P ∈ S. The ability to interpolate
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such an A is proved using a dimension counting argument which imposes an upper bound on the
size of S.

2. Amplifying the Vanishing: Next, the fact that (x, α) is excellent is used to show that A necessarily
vanishes on a much larger set than just S.

3. Global Agreement via Low-Degree Roots: Algebraic methods are used to argue that the extensive
vanishing implies A has a factor of the form

(
Z − f(x,α)(X)

)
, where f(x,α)(X) is the trivariate

polynomial we are looking for. In particular, it is low-degree and its restriction to most planes in
P(x,α) agrees with T .

We now state three lemmas, one for each stage mentioned above, and then use them to prove Lemma 3.
The interpolation lemma is very similar to lemmas proved in prior work so we include its proof in
Appendix A. The proof of the amplification lemma is relatively short, we include it in this section
directly after the proof of Lemma 3. The third lemma is proved in the next section.

Additional Parameters. The arguments in this section involve two additional integer parameters
D, r ∈ N, which are both O(d). We use D as an additional degree parameter, and r is an interpolation
set size. The argument in this section will require 1

1−
√
γ′ <

r
D

< s
60

, where s = D/d. We will choose
D = 64d and r = 65d (so s = 64 for our choice of D). We also let ζ > 0 hold the value ζ = 1

4000
;

writing s and ζ instead of 64 and 1
4000

will clarify how the argument fits together. The arguments in this
section will use

√
γ′ ≤ 1

8000
, d
q
≤ 1

2000s2
, 9r
εq

≤ 1
8000

(implied by our choice of c ≥ 107), and 20
ζ2ηq

< 1
2

(implied by cd ≥ 109).

Lemma 5 (Interpolation). For any S ⊂ P(x,α) of size |S| = r, there exists a 4-variate polynomial
AS(X, Z) ∈ F[X, Z] of (1, 1, 1, d)-degree at most D, such that DiscZ(AS) ̸≡ 0, and AS

(
P, T (P)

)
≡ 0

for all P ∈ S.

Lemma 6 (Amplifying the Vanishing). There exists a set S ⊂ P(x,α) of size |S| = r such that
PrP∼P(x,α)

[
AS

(
P, T (P)

)
≡ 0

]
≥ 1 − ζ , where AS(X, Z) ∈ F[X, Z] is the polynomial guaranteed by

Lemma 5.

Lemma 7 (Amplified Vanishing to Global List Agreement). Let the set S ⊂ P(x,α) of size |S| = r
and the 4-variate AS(X, Z) ∈ F[X, Z] of (1, 1, 1, d)-degree at most D with non-vanishing discriminant
be the set and polynomial from Lemma 6. So in particular, PrP∼P(x,α)

[
A(P, T (P)) ≡ 0

]
≥ 1− ζ holds.

Then there exists a set U ⊂ F[X] of trivariate, degree d polynomials such that |U| ≤ s and such that
PrP∼P(x,α)

[
T (P) ∈ {f |P : f ∈ U}

]
≥ 1− 2ζ .

Proof of Lemma 3. By Lemmas 5, 6, and 7, there exists a set U ⊂ F[X] of trivariate, degree d polyno-
mials such that |U| ≤ s, and PrP∼P(x,α)

[
T (P) ∈ {f |P : f ∈ U}

]
≥ 1 − 2ζ . We complete the proof by

showing that when T (P) and T (P′) agree on P ∩ P′, they are almost surely the restrictions to P and P′

of the same f ∈ U. For this purpose, let

q := PrP,P′∼P(x,α)

[
T (P)|P∩P′ = T (P′)|P∩P′ &

(
T (P), T (P′)

)
∈
{
(f |P, f ′|P′) : f, f ′ ∈ U

}]
be shorthand. We give lower and upper bounds for q which will combine to prove Lemma 1. We have

q ≥ PrP,P′∼P(x,α)

[
T (P)|P∩P′ = T (P′)|P∩P′

]
− 4ζ ≥ 1− γ′ − 4ζ,
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where the first inequality has used Lemma 7 and second has used the definition of (x, α) being excellent.
On the other hand, we have

q ≤ PrP,P′∼P(x,α)

[
T (P)|P∩P′ = T (P′)|P∩P′ & ∃ f ∈ U s.t.

(
T (P), T (P′)

)
= (f |P, f |P′)

]
+

+ PrP,P′∼P(x,α)

[
∃ f, f ′ ∈ U s.t. f ̸= f ′ & f |P∩P′ = f ′|P∩P′

]
≤ PrP,P′∼P(x,α)

[
∃ f ∈ U s.t.

(
T (P), T (P′)

)
= (f |P, f |P′)

]
+

(
|U|
2

)
·
(
d

q
+

1

1000s2

)
≤ max

f∈U

{
PrP∼P(x,α)

[
T (P) = f |P

]}
+

s2

2
· d
q
+

1

2000
,

which combines with the lower bound to ensure an f ∈ U such that

PrP∼P(x,α)

[
T (P) = f |P

]
≥ 1− γ′ − 4ζ − s2

2
· d
q
− 1

2000
≥ 499

500
,

using γ = 1
4000

and γ′, s
2

2
· d
q
≤ 1

4000
. The inequality on the third line of the upper bound for q holds

because for all distinct trivariate f(X), f ′(X) ∈ F[X] of degree at most d,

PrP,P′∼P(x,α)

x′∼P∩P′

[
f(x′) = f ′(x′)

](ExpFact.8)
≈ 1

1000s2
Prx′∼F3

[
f(x′) = f ′(x′)

]
≤ d

q
,

by Schwartz-Zippel.

Proof of Lemma 6. Since (x, α) excellent implies PrP,P′∼P(x,α)

[
T (P)|P∩P′ = T (P′)|P∩P′

]
≥ 1− γ′, by

linearity of expectation, ES,P

[
NS(P)

]
≥ (1− γ′)r holds, where the expectation is over P ∼ P(x,α) and

a random set S = {P1, . . . ,Pr} ⊂ P(x,α), and where NS(P) :=
#
{
Pi ∈ S : T (P)|Pi∩P = T (Pi)Pi∩P

}
.

By averaging,

1−
√

γ′ ≤ PrS,P

[
NS(P) ≥ (1−

√
γ′)r

]
≤ max

S

{
PrP∼P(x,α)

[
NS(P) ≥ (1−

√
γ′)r

]}
.

Let S be such that the probability is maximized, let AS(X, Z) ∈ F[X, Z] be the polynomial guaranteed
by Lemma 5, and let P ′

(x,α) ⊂ P(x,α) be the set of P ∈ P(x,α) such that NS(P) ≥ (1 −
√
γ′)r and

so that the r lines of intersection between P and the Pi ∈ S are all unique. Since for any ℓ ∈ Lx,
PrP∼P(x,α)

[
ℓ ⊂ P

]
≤ |Pℓ|

|P(x,α)|
≤ 9|Pℓ|

ε|Px| ≤
9
εq

(using µx(P(x,α)) ≥ ε
9

since (x, α) is excellent), we see that

PrP∼P(x,α)

[
P ∈ P ′

(x,α)

]
≥ 1−

√
γ′ − 9r

εq
≥ 1− ζ , since ζ = 1

4000
and

√
γ′, 9r

εq
≤ 1

8000
. We complete the

proof by showing that for every P ∈ P ′
(x,α), the bivariate polynomial AS

(
P, T (P)

)
vanishes.

Fix any P ∈ P ′
(x,α) and consider the r lines

{
P ∩ Pi : Pi ∈ S

}
. For NS(P) of these lines, we have

T (P)|P∩Pi
= T (Pi)|P∩Pi

, and any time this happens AS

(
P, T (P)

)
vanishes on P ∩ Pi since

AS

(
P ∩ Pi, T (P)|P∩Pi

)
≡ AS

(
P ∩ Pi, T (Pi)|P∩Pi

)
≡ 0,

since AS

(
Pi, T (Pi)

)
≡ 0. Thus, the bivariate polynomial AS

(
P, T (P)

)
has degree at most D, but

vanishes on NS(P) ≥ (1−
√
γ′)r > D lines in P. By Schwartz-Zippel, AS

(
P, T (P)

)
≡ 0.

4.2 Proof of Lemma 7
Finally, in this section we complete the proof of Lemma 1 by proving Lemma 7.
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Notation. Let (x, α) ∈ F3 × F be excellent. Let A(X, Z) ∈ F[X, Z] be a 4-variate polynomial of
(1, 1, 1, d)-degree at most D = sd, with DiscZ(A) ̸≡ 0. Let ROOTS(A) be the set of trivariate, degree
d polynomials f(X) ∈ F[X] such that

(
Z−f(X)

)
is a factor of A(X, Z). Note |ROOTS(A)| ≤ s. Let

P ′
(x,α) ⊂ P(x,α) be a subset of density µx(P ′

(x,α)) = η ≥ (1− ζ) · µx(P(x,α)), where ζ = 1
4000

, such that
A
(
P, T (P)

)
≡ 0 for all P ∈ P ′

(x,α). Given (x′, α′) ∈ F3 × F, we write P ′
(x,α),(x′,α′) for the intersection

P ′
(x,α) ∩ P ′

(x′,α′), and we write µx,x′
(
P ′

(x,α),(x′,α′)

)
for the density of P ′

(x,α),(x′,α′) inside Px,x′ .

Lemma 8 (Sufficient for Lemma 7). Assuming the above setup,

PrP∼P ′
(x,α)

[
∃ f ∈ ROOTS(A) s.t. f |P = T (P)

]
≥ 1− ζ.

Our proof will invoke the following lemma which is very similar to a lemma proved in [HKSS24]. For
completeness, we include a proof in Appendix A.

Lemma 9 (Similar to [HKSS24], Lemma 3.1). Let the pair (x′, α′) ∈ F3 × F be such that all of the
following hold:

1) µx,x′(P ′
(x,α),(x′,α′)) ≥

ζη
4s
; 2) DiscZ(A)(x

′) ̸= 0; 3) A
(
P, T (P)

)
≡ 0 ∀ P ∈ P ′

(x,α),(x′,α′).

Then there exists a trivariate polynomial f(X) ∈ F[X] of degree at most d such that A
(
X, f(X)

)
≡ 0,

and so that f |P = T (P) for all P ∈ P ′
(x,α),(x′,α′).

We will need an expander fact.

Expansion Fact 2. Let µ, δ > 0. Let Σx ⊂ Px be any set of density µx(Σx) = µ. Then

Prx′∼F3

[∣∣µx,x′(Σx)− µ
∣∣ > δ

]
≤ µ

δ2q
.

Proof of Lemma 8. Let E ⊂ P ′
(x,α) be the set of planes which are “explained by A”; more specifically,

E :=
{
P ∈ P ′

(x,α) : T (P) ∈ {f |P : f ∈ ROOTS(A)}
}

. We will show that µx(E) ≥ (1− ζ) · η, which

proves the lemma as it gives PrP∼P ′
(x,α)

[
P ∈ E

]
= µx(E)

η
≥ 1 − ζ , as desired. Towards this end, let

G :=
{
x′ ∈ F3 : µx,x′(P ′

(x,α),x′) ≥ (1 − ζ/2) · η & DiscZ(A)(x
′) ̸= 0

}
. The crux of the proof is the

following claim that we prove below, outside the current proof.

Claim 1. For any x′ ∈ G, µx,x′(E) ≥
(
1− 3ζ

4

)
· η.

We prove the lemma by giving contradictory upper and lower bounds for µ(G) under the assumption
that µx(E) < (1 − ζ) · η. Indeed, under this assumption, Claim 1 gives us the following upper bound
for µ(G):

µ(G) ≤ Prx′∼F3

[∣∣µx,x′(E)− µx(E)
∣∣ > ζη/4

]
≤ 16

ζ2ηq
,

using Expander Fact 2. On the other hand, we can lower bound µ(G) directly since there are two ways
that x′ ∈ F3 could fail to belong to G. It could either be that 1) µx,x′(P ′

(x,α),x′) <
(
1 − ζ

2

)
· η, or 2)

DiscZ(A)(x
′) = 0. By Expansion Fact 2, the first type of failure occurs with probability at most

Prx′∼F3

[∣∣µx,x′(P ′
(x,α),x′)− η

∣∣ > ζη/2
]
≤ 4

ζ2ηq
.

Moreover, since DiscZ(A) is a non-zero trivariate polynomial of degree at most 2s2d, the second failure
occurs with probability at most 2s2d

q
over x′ ∼ F3. Thus, µ(G) ≥ 1− 2s2d

q
− 4

ζ2ηq
. However, this gives:

1− 2s2d
q

− 4
ζ2ηq

≤ 16
ζ2ηq

which rearranges to 1 ≤ 2s2d
q

+ 20
ζ2ηq

, which is a contradiction since 2s2d
q
, 20
ζ2ηq

< 1
2
.

Thus, we conclude that µx(E) ≥
(
1− ζ

)
· η, as needed.
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Proof of Claim 1. Let us say that the pair (x′, α′) ∈ F3×F is good if conditions are such that Lemma 9
can be invoked. So in particular, (x′, α′) is good if

µx,x′(P ′
(x,α),(x′,α′)) ≥

ζη
4s
; DiscZ(A)(x

′) ̸= 0; A
(
P, T (P)

)
≡ 0 ∀ P ∈ P ′

(x,α),(x′,α′)

all hold. Note that the third condition automatically holds since A
(
P, T (P)

)
≡ 0 for all P ∈ P ′

(x,α).
Moreover, since for any x′ ∈ F3 and P ∈ P ′

(x,α),x′ A
(
x′, T (P)|x′

)
= 0 holds, T (P)|x′ must be a root of

the univariate polynomial A(x′, Z) ∈ F[Z] which has degree at most s (and hence has at most s roots).
Thus, for any x′ ∈ F3, there are at most s values of α′ such that P ′

(x,α),(x′,α′) is not empty, and so

∑
α′:µx,x′ (P ′

(x,α),(x′,α′))<
ζη
4s

µx,x′(P ′
(x,α),(x′,α′)) <

ζη

4
.

Thus, for any x′ ∈ G,(
1− ζ/2

)
· η ≤ µx,x′(P ′

(x,α),x′) =
∑
α′

µx,x′(P ′
(x,α),(x′,α′)) ≤

∑
α′:(x′,α′) good

µx,x′(P ′
(x,α),(x′,α′)) +

ζη

4
,

and so
∑

α′:(x′,α′) good µx,x′(P ′
(x,α),(x′,α′)) ≥

(
1− 3ζ

4

)
· η. By Lemma 9, for any good (x′, α′) there exists

a trivariate degree d polynomial f(x′,α′)(X) such that A
(
X, f(x′,α′)(X)

)
≡ 0 and f(x′,α′)|P = T (P) for

all P ∈ P ′
(x,α),(x′,α′). In other words, when (x′, α′) is good, P ′

(x,α),(x′,α′) ⊂ E holds, and thus we have
µx,x′(E) ≥

(
1− 3ζ

4

)
· η for every x′ ∈ G, and we are done.

5 Excellent Points Come in Bunches
In this section we prove Lemma 2.

Lemma 2 (Restated). There exists (x, α) ∈ Fm × F which is excellent, and is moreover such that

PrP∼P(x,α)

x′∼P

[
(x′, α′) excellent & f(x,α) = f(x′,α′)

]
≥ 1

6
. (5.1)

Proof of Lemma 2. Let Π be the distribution which draws (P,P′) ∼ G, x,x′ ∼ P ∩ P′ and outputs
(P,P′,x,x′, α, α′) where (α, α′) =

(
T (P)|x, T (P)|x′

)
, and let AGR be shorthand for the “agreement

event” T (P)|P∩P′ = T (P′)|P∩P′ . We will show

PrΠ

[
AGR & (x, α), (x′, α′) exc. & f(x,α) = f(x′,α′)

]
≥ ε

4
. (5.2)

Deriving the Lemma from (5.2). Let Ψ be the distribution on Fm × F which draws a sample
(P,P′,x,x′, α, α′) ∼ Π conditioned on T (P)|x = T (P′)|x holding, and outputs (x, α). Given an
excellent pair (x, α) ∈ Fm × F, let

q(x,α) := Pr(P,P′)∼Gx

x′∼P∩P′

[
(x′, α′) excellent & f(x,α) = f(x′,α′)

∣∣∣P,P′ ∈ P(x,α)

]
,

13



where α′ = T (P)|x′ . With these shorthands in place, we start with (5.2) and obtain:

ε

4
≤ PrΠ

[
T (P)|x = T (P′)|x & (x, α), (x′, α′) exc. & f(x,α) = f(x′,α′)

]
= PrΠ

[
T (P)|x = T (P′)|x

]
· E(x,α)∼Ψ

[
11(x,α) exc · q(x,α)

]
≤

(
ε+

d

q

)
· E(x,α)∼Ψ

[
11(x,α) exc · q(x,α)

]
≤ 5ε

4
· E(x,α)∼Ψ

[
11(x,α) exc · q(x,α)

]
,

where the first inequality on the final line holds because there are two ways that T (P)|x = T (P′)|x
can occur: either T (P) and T (P′) agree on the entire line P ∩ P′ (occurs with probability ε), or they
disagree on the line but agree at x (occurs with probability at most d

q
by Schwartz-Zippel). It follows

that there exists an excellent (x, α) ∈ Fm × F such that q(x,α) ≥ 1
5
, which implies (5.1):

1

5
≤ q(x,α) = Pr(P,P′)∼Gx

x′∼P∩P′

[
(x′, α′) excellent & f(x,α) = f(x′,α′)

∣∣∣P,P′ ∈ P(x,α)

]
(ExpFact.10)

≈ 1
100

PrP∼P(x,α)

x′∼P

[
(x′, α′) excellent & f(x,α) = f(x′,α′)

]
.

Establishing (5.2). We establish (5.2) by showing that all of the other “nice behavior” specified in
(5.2) correlates heavily with AGR. For this purpose, we set some shorthand for the nice behavior we
are interested in. Given a sample from Π, let EXC and POLYS denote the events:

− EXC: (x, α) and (x′, α′) are both excellent; and

− POLYS: EXC & f(x,α)|P = T (P) = f(x′,α′)|P and f(x,α)|P′ = T (P′) = f(x′,α′)|P′ ,

where f(x,α) and f(x′,α′) are the polynomials guaranteed by Lemma 1. The following two claims are
very similar to claims proved in [MZ23]. We include proofs in Appendix A.

Claim 2. PrΠ
[
AGR & (x, α) not excellent

]
< ε

7
.

Claim 3. PrΠ
[
AGR & (x, α) excellent & T (P) ̸= f(x,α)|P

]
< 11ε

100
.

Claims 2 and 3 imply PrΠ
[
AGR & EXC & POLYS

]
≥ PrΠ

[
AGR

]
− 2 · ε

7
− 4 · 11ε

100
≥ ε

4
+ d

q
, from which

(5.2) follows:

ε

4
+

d

q
≤ PrΠ

[
AGR & EXC & f(x,α) = f(x′,α′)

]
+ PrΠ

[
AGR & EXC & POLYS & f(x,α) ̸= f(x′,α′)

]
and the second term is at most E P∼P

x,x′∼P

[
11EXC · 11f(x,α) ̸=f(x′,α′)

·PrP′∼Px,x′

[
f(x,α)|P′ = f(x′,α′)|P′

]]
≤ d

q
, by

Schwartz-Zippel.

6 Proving the Expansion Facts
Finally, in this section we complete the proof by establishing all of the expansion facts we used.
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6.1 Bipartite Inclusion Graph Expansion
Definition 3 (Bipartite Expansion). Let λ > 0. We say a biregular bipartite graph is a λ-expander if

λ ≥ max
v⊥1

{
∥Mv∥
∥v∥

}
,

where M is the normalized adjacency matrix of the graph, where v ⊥ 1 means that v is perpendicular
to the all 1’s vector, and where ∥ · ∥ is the ℓ2-norm.

The following claim is proved in [BDN17].

Claim 4 ([BDN17], Lemma 2.3). Let µ, λ > 0. Let (A ∪ B,E) be a biregular bipartite graph which
is a λ-expander, and let B′ ⊂ B be a subset of density µ. Then{

(a, b) :
b ∼ B′

a ∼ A(b)

}
≈ λ√

µ

{
(a, b) :

a ∼ A
b ∼ B(a) ∩B′

}
,

where A(b) and B(a) denote the neighborhoods of b in A and a in B, respectively.

Proving Our First Batch of Expansion Facts. Several of the expansion facts used in the body follow
immediately from Claim 4, invoked on various bipartite inclusion graphs whose expansions are well
known. We simplify the discussion by ignoring lower order terms in the expansion formulas, so for
example if a graph is a λ-expander for λ = q−1 ·

(
1 ± o(1)

)
, we will just say that the graph is a

q−1-expander.

Expansion Fact 3. Let S ⊂ Fm be a subset of density at least µ(S) ≥ 1
7
. Then{

P :
x ∼ S
P ∼ Px

}
≈ 3

q
Unif(P).

Proof. Invoke Claim 4 on the bipartite graph A = P , B = Fm, which is a q−1-expander.

Expansion Fact 4. Let x ∈ Fm and let P ′
x ⊂ Px be a subset of density at least µx(P ′

x) ≥ ε
8
. Then{

x′ :
P ∼ P ′

x

x′ ∼ P

}
≈ 1

100
Unif(Fm).

Proof. Invoke Claim 4 on the bipartite graph A = Fm, B = Px, which is a q−1/2-expander.

Expansion Fact 5. Let x ∈ Fm and let P ′
x ⊂ Px be a subset of density at least µx(P ′

x) ≥ ε
8
. Then(P,C) :

x′ ∼ Fm

P ∼ P ′
x,x′

C ∼ CP

 ≈ 1
4000

{
(P,C) :

C ∼ Cx
P ∼ P ′

x,C

}
,

where P ′
x,x′ and P ′

x,C are shorthands for the intersections P ′
x ∩ Px′ and P ′

x ∩ PC.

Proof. We have(P,C) :
x′ ∼ Fm

P ∼ P ′
x,x′

C ∼ CP

 ≈ 1
8000

{
(P,C) :

P ∼ P ′
x

C ∼ CP

}
≈ 1

8000

{
(P,C) :

C ∼ Cx
P ∼ P ′

x,C

}
,

by invoking Claim 4 on the bipartite graphs A = Fm, B = Px and Â = Cx, B̂ = Px, both of which are
q−1/2-expanders.
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Expansion Fact 6. Let x ∈ Fm and let P ′
x ⊂ Px be a subset of density at least µx(P ′

x) ≥ ε
8
. Then{

P :
C ∼ Cx
P ∼ P ′

x,C

}
≈ 1

100
Unif(P ′

x).

Proof. Invoke Claim 4 on the bipartite graph A = Cx, B = Px, which is a q−1/2-expander.

6.2 Expansion in Grassmannian Graphs
It is well known that, for any x ∈ Fm, the Grassmannian graph whose vertices are Px and whose edges
connect planes which intersect in a line is a q−1-expander. The following useful claim is the expander
mixing lemma.

Claim 5 (Expander Mixing Lemma for the Grassmannian Graph). For any x ∈ Fm, and subsets
P1

x,P2
x ⊂ Px, we have ∣∣∣Pr(P,P′)∼Gx

[
P ∈ P1

x & P′ ∈ P2
x

]
− µ1µ2

∣∣∣ ≤ 1

q
·
√
µ1µ2,

where µi := µx(P i
x) for i = 1, 2.

The following tail bounds (which includes Expansion Fact 2) follow from Claim 5.

Claim 6 (Expansion Based Tail Bounds). Let µ, δ > 0. Let x ∈ Fm and let P ′
x ⊂ Px be a subset of

density µx(P ′
x) = µ. Then

• Expansion Fact 2: Prx′∼Fm

[∣∣µx,x′(P ′
x)− µ

∣∣ > δ
]
≤ µ

δ2q
.

• PrC∼Cx

[∣∣µx,C(P ′
x)− µ

∣∣ > δ
]
≤ µ

δ2q
.

Proof. Let q := Prx′∼Fm

[∣∣µx,x′(P ′
x) − µ

∣∣ > δ
]

and q′ := PrC∼Cx

[∣∣µx,C(P ′
x) − µ

∣∣ > δ
]

be the
probabilities we want to bound. By Markov’s inequality, we have

q ≤ Prx′∼Fm

[(
µx,x′(P ′

x)− µ
)2

> δ2
]
≤ δ−2 ·

[
Ex′∼Fm

[
µx,x′(P ′

x)
2
]
− µ2

]
,

and similarly, q′ ≤ δ−2 ·
[
EC∼Cx [µx,C(P ′

x)
2] − µ2

]
. Note, Ex′∼Fm

[
µx,x′(P ′

x)
2
]

and EC∼Cx
[
µx,C(P ′

x)
2
]

are both equal to

Pr x′∼Fm

P,P′∼Px,x′

[
P,P′ ∈ P ′

x

]
= Pr(P,P′)∼Gx

[
P,P′ ∈ P ′

x

]
= Pr C∼Cx

P,P′∼Px,C

[
P,P′ ∈ P ′

x

]
,

and so the result follows from Claim 5.

Expander Fact 7 follows immediately from Claims 6 and 4.

Expansion Fact 7. If x ∈ Fm and P ′
x ⊂ Px is a subset of density µx(P ′

x) ≥ ε
8
, then

{
(x′,C,C′) :

x′ ∼ Fm

C,C′ ∼ Cx,x′

}
≈ 1

2000

(x′,C,C′) :
x′ ∼ Fm

P,P′ ∼ P ′
x,x′

(C,C′) ∼ CP × CP′

 .
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Proof. Let ∆ be the statistical distance we are trying to bound, and for x′ ∈ Fm, let ∆(x′) be the
statistical distance between Unif(Cx,x′) and the distribution which draws P ∼ P ′

x,x′ , C ∼ CP, and
outputs C. Note that ∆ ≤ Ex′∼Fm

[
2∆(x′)

]
. Also note that if µx,x′(P ′

x) ≥ ε
16

, then ∆(x′) ≤ 1
5000

. This
is seen by invoking Claim 4 on the graph A = Cx,x′ , B = Px,x′ , which is a q−1/2-expander. Therefore,
Expansion Fact 2 gives

∆ ≤ Prx′∼Fm

[
µx,x′(P ′

x) < ε/16
]
+

1

2500
≤ 32

εq
+

1

2500
≤ 1

2000
.

6.3 Excellent Pairs are Excellent for Most Cubes
In this section we prove Expander Fact 1 which was a critical element of the “bootstrapping” part of
the proof of Lemma 1 from Section 4. Recall that (x, α) ∈ Fm × F is excellent if µx(P(x,α)) ≥ ε

8

and if Pr(P,P′)∼Gx

[
AGR

∣∣P,P′ ∈ P(x,α)

]
≥ 1 − γ, where AGR is shrothand for the “agreement event”

T (P)|P∩P′ = T (P′)|P∩P′ . Similarly, (x, α) is excellent for C ∈ Cx if µx,C(P(x,α)) ≥ 8
9
· µx(P(x,α)) and

if PrP,P′∼P(x,α),C

[
AGR

]
≥ 1− γ′, where γ′ = 3000γ.

Expansion Fact 1 (Restated). If (x, α) ∈ Fm×F is excellent, PrC∼Cx
[
(x, α) excellent for C

]
≥ 499

500
.

Proof. One way that (x, α) could fail to be excellent for C is if µx,C(P(x,α),C) <
8
9
· µx(P(x,α)). But if

µx(P(x,α)) ≥ ε
8

(which is the case when (x, α) is excellent), then the second point of Claim 6 says that
this occurs with probability at most

PrC∼Cx

[∣∣∣µx,C(P(x,α))− µx(P(x,α))
∣∣∣ > µx(P(x,α))

9

]
≤ 328

εq
≤ 1

1000

The other way that (x, α) could fail to be excellent for C is if PrP,P′∼P(x,α),C

[
AGR

]
< 1 − γ′. Let

us say that C ∈ B(x,α) if this is the case and if µx,C(P(x,α)) ≥ 8
9
· µx(P(x,α)). So C ∈ B(x,α) if

(x, α) fails to be excellent for C only because of the second reason. We will show that when (x, α)
is excellent, PrC∼Cx

[
C ∈ B(x,α)

]
≤ 1

1000
, from which the result follows. We set some shorthand. For

C ∈ Cx, let X(x,α)(C) := PrP,P′∼Px,C

[
AGR & P,P′ ∈ P(x,α)

]
. Note that C ∈ B(x,α) exactly when 1)

X(x,α)(C) < (1− γ′) ·µx,C(P(x,α))
2 and; 2) µx,C(P(x,α)) ≥ 8

9
·µx(P(x,α)) both hold. We now give upper

and lower bounds on the quantity E := EC∼Cx
[
X(x,α)(C)

]
, from which the result will follow. When

(x, α) is excellent, we get a lower bound for E as follows:

E = Pr C∼Cx
P,P′∼Px,C

[
AGR & P,P′ ∈ P(x,α)

]
= Pr(P,P′)∼Gx

[
AGR & P,P′ ∈ P(x,α)

]
≥ (1− γ) · Pr(P,P′)∼Gx

[
P,P′ ∈ P(x,α)

]
= (1− γ) · EC∼Cx

[
µx,C(P(x,α))

2
]
.

On the other hand, we can upper bound E using the definition of B(x,α) as follows:

E = EC∼Cx
[
11C∈B(x,α)

· X(x,α)(C)
]
+ EC∼Cx

[
11C/∈B(x,α)

· X(x,α)(C)
]

< (1− γ′) · EC∼Cx
[
11C∈B(x,α)

· µx,C(P(x,α))
2
]
+ EC∼Cx

[
11C/∈B(x,α)

· µx,C(P(x,α))
2
]

= EC∼Cx
[
µx,C(P(x,α))

2
]
− γ′ · EC∼Cx

[
11C∈B(x,α)

· µx,C(P(x,α))
2
]

≤ EC∼Cx
[
µx,C(P(x,α))

2
]
− 64γ′

81
· µx(P(x,α))

2 · PrC∼Cx
[
C ∈ B(x,α)

]
17



We can now complete the proof:

2µx(P(x,α))
2 ≥ µx(P(x,α))

2 +
1

q
· µx(P(x,α)) ≥ Pr(P,P′)∼Gx

[
P,P′ ∈ P(x,α)

]
= EC∼Cx

[
µx,C(P(x,α))

2
]
>

64 · 3000
81

· µx(P(x,α))
2 · PrC∼Cx

[
C ∈ B(x,α)

]
,

which rearranges to give PrC∼Cx
[
C ∈ B(x,α)

]
< 1

1000
, as desired. The second inequality on the first line

has used Claim 5, and the inequality on the second line comes from putting the upper and lower bounds
for E together and rearranging (and using γ′ = 3000γ).

6.4 Intersection Distributions
In this section we prove the remaining three expansion facts, which all have to do with understanding
the distribution of the line of intersection between two planes which are drawn from a subset. We begin
by proving Expansion Fact 8 which addresses the trivariate case (i.e., when m = 3).

Expansion Fact 8. Let µ > 0, x ∈ F3 and let P ′
x ⊂ Px be a subset of density µ. Then{

x′ :
P,P′ ∼ P ′

x

x′ ∼ P ∩ P′

}
≈ 3√

µq
Unif(F3).

First, however, we work out a useful calculation.

Claim 7. Define q : F3 → R via q(x′) := PrP∼P ′
x

[
x′ ∈ P

]
. Then we have∑

x′∈F3

q(x′) = q2; and
∑
x′∈F3

q(x′)2 ≤ µ−1 + q

Proof. Since q(x′) = EP∼P ′
x

[
11x′∈P

]
, we have

∑
x′∈F3 q(x′) = EP∼P ′

x

[
|P|

]
= q2 by linearity of expec-

tation. For the other sum, we compute∑
x′∈F3

q(x′)2 = EP,P′∼P ′
x

[
|P ∩ P′|

]
≤ q2

|P ′
x|

+ q ≤ µ−1 + q.

The first inequality holds because P = P′ occurs with probability 1
|P ′

x|
and results in |P ∩ P′| = q2,

while whenever P ̸= P′ then |P ∩ P′| = q (since we are in 3-space). The final inequality holds because
|P ′

x| = µ · |Px| ≥ µ · q2, as there are q2 + q + 1 planes through any point in 3-space.

Proof of Expansion Fact 8. Let D′ be the distribution which draws P ∼ Px and x′ ∼ P and outputs
x′. By Claim 4, we have ∆

(
D′,Unif(F3)

)
≤ 1√

µq
, since the bipartite graph with A = F3 and B = Px

is a q−1/2-expander. Thus, it suffices to show that ∆(D,D′) ≤ 2√
µq

, where D is the distribution from
Expansion Fact 8. Note, for all x′ ∈ F3,

Pr
[
D = x′] = PrP,P′∼P ′

x

[
x′ ∈ P ∩ P′ & P ̸= P′] · q−1 + PrP,P′∼P ′

x

[
x′ ∈ P ∩ P′ & P = P′] · q−2

= PrP,P′∼P ′
x

[
x′ ∈ P ∩ P′] · q−1 − PrP,P′∼P ′

x

[
x′ ∈ P ∩ P′ & P = P′] · (q−1 − q−2

)
= q(x′)2 · 1

q
− 1

|P ′
x|

· q(x′) · q − 1

q2
,
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while Pr
[
D′ = x′] = q(x′) · 1

q2
. Therefore,

∆(D,D′) ≤ 1

q
·
∑
x′∈F3

q(x′) ·
∣∣q(x′)− q−1

∣∣+ 1

q|P ′
x|

·
∑
x′∈F3

q(x′).

The second term is at most 1
µq

using Claim 7 and |P ′
x| ≥ µq2. By Cauchy-Schwarz, the first term is at

most √
1

q
·
∑
x′∈F3

q(x′)2 ·
√

1

q
·
∑
x′∈F3

(
q(x′)− q−1

)2 ≤ √
1

qµ
+ 1 ·

√
1

µq
≤

√
2

√
µq

,

using Claim 7. The result follows.

Our final two expansion facts will follow relatively easily from an m-variate version of Expansion
Fact 8 which we now state.

Claim 8. Let µ > 0, x ∈ Fm and let P ′
x ⊂ Px be a subset of density µ. Then{

x′ :
(P,P′) ∼ Gx|P ′

x

x′ ∼ P ∩ P′

}
≈ 8√

µq
Unif(Fm),

where Gx|P ′
x is the distribution which draws (P,P′) ∼ Gx conditioned on P,P′ ∈ P ′

x.

Expansion Fact 9. Let µ > 0, x ∈ Fm and let P ′
x ⊂ Px be a subset of density µ. Then{

(P,P′) :
x′ ∼ Fm

P,P′ ∼ P ′
x,x′

}
≈ 8√

µq
Gx|P ′

x.

Proof. Consider the following procedures to generate a pair (P,P′):{
x′ ∼ Fm

P,P′ ∼ P ′
x,x′

}
≈ 8√

µq


(P̂, P̂′) ∼ Gx|P ′

x

x′ ∼ P̂ ∩ P̂′

P,P′ ∼ P ′
x,x′

 ≡


(P,P′) ∼ Gx|P ′

x

x′ ∼ P ∩ P′

P̂, P̂′ ∼ P ′
x,x′

 .

The first two procedures are within statistical distance 8√
µq

of each other by Claim 8, the next two are

identical since the marginal distributions on (P,P′) and (P̂, P̂′) are the same. But this final distribution
is just Gx|P ′

x since the x′ and (P̂, P̂′) which are generated after (P,P′) is chosen do not affect the
output.

Expansion Fact 10. Let µ > 0, x ∈ Fm and P ′
x ⊂ Px be a subset of density µ. Then{

(P,x′) :
(P,P′) ∼ Gx|P ′

x

x′ ∼ P ∩ P′

}
≈ 9√

µq

{
(P,x′) :

P ∼ P ′
x

x′ ∼ P

}
.

Proof. Consider the following procedures to generate a pair (P,x′):

{
(P,P′) ∼ Gx|P ′

x

x′ ∼ P ∩ P′

}
≈ 8√

µq


x̂′ ∼ Fm

P,P′ ∼ Px,x̂′

x′ ∼ P ∩ P′

 ≡


x′ ∼ Fm

P,P′ ∼ Px,x′

x̂′ ∼ P ∩ P′

 ≈ 1√
µq


P ∼ P ′

x

x′ ∼ P
P′ ∼ Px,x′

x̂′ ∼ P ∩ P′

 .

The first two procedures are within statistical distance 8√
µq

of each other by Expansion Fact 9. The
next two are identical because x′ and x̂′ are identically distributed. The final two are within statistical
distance 1√

µq
by Claim 4 using the bipartite graph A = Fm, B = Px which is a q−1/2-expander.
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We now prove Claim 8, making use of the following additional claim which we will prove below.

Claim 9. Let µ > 0, x ∈ Fm and let P ′
x ⊂ Px be a subset of density µ. Then ∆

(
D,Unif(Cx)

)
≤ 3√

µq
,

where D is the distribution which draws (P,P′) ∼ Gx conditioned on P,P′ ∈ P ′
x, and then outputs the

unique cube C ∈ Cx which contains both P and P′.

Proof of Claim 8. For starters, consider the following three procedures for generating x′ ∈ Fm:

{
(P,P′) ∼ Gx|P ′

x

x′ ∼ P ∩ P′

}
≡


(P̂, P̂′) ∼ Gx|P ′

x

⇒ C ∈ CP̂,P̂′

P,P′ ∼ P ′
x,C

x′ ∼ P ∩ P′

 ≈ 3√
µq


C ∼ Cx

P,P′ ∼ P ′
x,C

x′ ∼ P ∩ P′

 .

The first two are identical because (P̂, P̂′) and (P,P′) are identically distributed in the second distri-
bution, and the third is within standard deviation 3√

µq
of the second by Claim 9. However, consider

the third distribution. By Claim 6 (second bullet), the probability that C is such that µx,C(P ′
x) ≤ µ/2

is at most 4
µq

. Moreover, whenever µx,C(P ′
x) ≥ µ/2 holds, by Expansion Fact 8, we have that the

distribution which draws P,P′ ∼ P ′
x,C and x′ ∼ P ∩ P′ and outputs x′ is within statistical distance

3
√
2√

µq
of Unif(C). Thus, the third distribution above is within statistical distance 4

µq
+ 3

√
2√

µq
≤ 5√

µq
of the

distribution which draws C ∼ Cx and then outputs x′ ∼ C, i.e., Unif(Fm).

Proof of Claim 9. Let D be the probability which draws (P,P′) ∼ Gx|P ′
x and outputs the unique

C ∈ Cx which contains P and P′. For any C ∈ Cx, we have

Pr
[
D = C

]
= Pr(P,P′)∼Gx

[
P,P′ ∈ Px,C

∣∣P,P′ ∈ P ′
x

]
=

1

|Cx|
· µx,C(P ′

x)
2

Pr(P,P′)∼Gx [P,P
′ ∈ P ′

x]
,

by using Bayes’ law to switch the probabilities. It follows that

∆
(
D,Unif(Cx)

)
= EC∼Cx

[∣∣∣∣µx,C(P ′
x)

2 − Pr(P,P′)∼Gx [P,P
′ ∈ P ′

x]

Pr(P,P′)∼Gx [P,P
′ ∈ P ′

x]

∣∣∣∣
]

≤ µ−2 · EC∼Cx

[∣∣µx,C(P ′
x)

2 − µ2
∣∣]+ µ−2 · µ

q
,

where the inequality follows from Claim 5 and Pr(P,P′)∼Gx

[
P,P′ ∈ P ′

x

]
≥ µ2, which is Jensen:

µ2 = Ex′∼Fm

[
PrP∼Px,x′

[
P ∈ P ′

x

]]2
≤ Ex′∼Fm

[
PrP∼Px,x′

[
P ∈ P ′

x

]2]
= Pr(P,P′)∼Gx

[
P,P′ ∈ P ′

x

]
.

Finally, using Cauchy-Schwarz, we get

EC∼Cx

[∣∣µx,C(P ′
x)

2 − µ2
∣∣] = EC∼Cx

[∣∣µx,C(P ′
x)− µ

∣∣ · (µx,C(P ′
x) + µ

)]
≤

√
EC∼Cx

[(
µx,C(P ′

x)− µ
)2] ·√EC∼Cx

[(
µx,C(P ′

x) + µ
)2]

=

√[
EC∼Cx

[
µx,C(P ′

x)
2)
]
− µ2

]
·
√[

EC∼Cx
[
µx,C(P ′

x)
2)
]
+ 3µ2

]
≤

√
µ

q
·
√

4µ2 +
µ

q
≤

√
5µ2

√
µq

,

20



where the final inequality has used Claim 5. Putting everything together gives

∆
(
D,Unif(Cx)

)
≤

√
5

√
µq

+
1

µq
≤ 3

√
µq

.
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A Omitted Proofs
In this section we prove the claims which were omitted from the body of the paper.

A.1 Claims Used to Show that Excellent Points Come in Bunches
In this section we prove the claims which we used in the proof of Lemma 2. For convenience, recall
that a pair (x, α) ∈ Fm × F is excellent if µx(P(x,α)) ≥ ε

8
and if

Pr(P,P′)∼Gx

[
T (P)|P∩P′ = T (P′)|P∩P′

∣∣∣P,P′ ∈ P(x,α)

]
≥ 1− γ.

Claim 2 (Restated). PrΠ
[
AGR & (x, α) not excellent

]
< ε

7
.

Proof. Let q := PrΠ
[
AGR & (x, α) not excellent

]
be the probability that we are trying to bound. Using

Claim 5, we get

q ≤ Ex∼Fm

[ ∑
α:(x,α) not exc

Pr(P,P′)∼Gx

[
P,P′ ∈ P(x,α)

]]

≤ Ex∼Fm

[ ∑
α:(x,α) not exc

(
µx(P(x,α))

2 +
1

q
· µx(P(x,α))

)]
=

1

q
+ Ex∼Fm

[ ∑
α:(x,α) not exc

µx(P(x,α))
2

]
.

There are two ways (x, α) could fail to be excellent. The first is if µx(P(x,α)) < ε/8; note that

Ex∼Fm

[ ∑
α:µx(P(x,α))<ε/8

µx(P(x,α))
2

]
<

ε

8
· Ex∼Fm

[∑
α∈F

µx(P(x,α))

]
=

ε

8
.

The second way that (x, α) could fail to be excellent is if

γ · Pr(P,P′)∼Gx

[
P,P′ ∈ P(x,α)

]
< Pr(P,P′)∼Gx

[
T (P)|P∩P′ ̸= T (P′)|P∩P′ & T (P)|x = T (P′)|x = α

]
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holds. Say (x, α) ∈ B in this case. We have

EB := Ex∼Fm

[ ∑
α:(x,α)∈B

µx(P(x,α))
2

]
≤ Ex∼Fm

[ ∑
α:(x,α)∈B

Pr(P,P′)∼Gx

[
P,P′ ∈ P(x,α)

]]

<
1

γ
· Ex∼Fm

[∑
α∈F

Pr(P,P′)∼Gx

[
T (P)|P∩P′ ̸= T (P′)|P∩P′ & T (P)|x = T (P′)|x = α

]]

=
1

γ
· Pr x∼Fm

(P,P′)∼Gx

[
T (P)|P∩P′ ̸= T (P′)|P∩P′ & T (P)|x = T (P′)|x

]
≤ 1

γ
· E(P,P′)∼G

[
11T (P)|P∩P′ ̸=T (P′)|P∩P′

· Prx∼P∩P′
[
T (P)|x = T (P′)|x

]]
≤ d

γq
.

The last inequality is Schwartz-Zippel; the first inequality is Jensen. Putting everything together proves
the claim: q ≤ 1

q
+ ε

8
+ d

γq
≤ ε

7
.

Claim 3 (Restated). PrΠ
[
AGR & (x, α) excellent & T (P) ̸= f(x,α)|P

]
< 11ε

100
.

Proof. Let q := PrΠ
[
AGR & (x, α) excellent & T (P) ̸= f(x,α)|P

]
be the probability we are trying to

bound, and for an excellent (x, α) ∈ Fm × F, let P ′
(x,α) :=

{
P ∈ P(x,α) : T (P) ̸= f(x,α)|P

}
. We have

q ≤ Ex∼Fm

[ ∑
α:(x,α) exc

Pr(P,P′)∼Gx

[
P ∈ P ′

(x,α) & P′ ∈ P(x,α)

]]

≤ Ex∼Fm

[ ∑
α:(x,α) exc

1

10
· µx(P(x,α))

2 +
1

q
· µx(P(x,α))

]
≤ 1

10
· Ex∼Fm

[∑
α∈F

µx(P(x,α))
2

]
+

1

q

≤ 1

10
· Pr x∼Fm

(P,P′)∼Gx

[
T (P)|x = T (P′)|x

]
+

1

q
≤ 1

10
·
(
ε+ d/q

)
+

1

q
≤ 11ε

100
,

and the claim follows. The first inequality on the second line follows from Claim 5, plugging in
µx(P ′

(x,α)) ≤
1
10

· µx(P(x,α)), which holds by Lemma 1. The first and second inequalities on the third
line are Jensen, and Schwartz-Zippel, respectively.

A.2 The Interpolation Lemma
Let F be a finite field of size |F| = q, let P denote the set of 2-planes in F3, let d ∈ N with d < q
be a degree parameter, and let T be a planes table which assigns to each P ∈ P a bivariate degree d
polynomial. Let r,D ∈ N be additional integer parameters such that d|D, we write s = D/d ∈ N.

Lemma 5 (Restated). Assume D ≥ 5, s ≥ 10, and r < Ds/60. For any S ⊂ P of size |S| = r, there
exists a non-zero 4-variate A(X, Z) ∈ F[X, Z] of (1, 1, 1, d)-degree at most D, such that DiscZ(A) ̸≡ 0,
and A

(
P, T (P)

)
≡ 0 for all P ∈ S.

The idea of the proof is to show that the number of degrees of freedom available to a 4-variate poly-
nomial of (1, 1, 1, d)-degree at most D is large enough to ensure that a non-zero solution exists to the
linear constraints imposed by requiring that the polynomial vanish at every P ∈ S. A complication
is introduced by demanding also that the polynomial has non-vanishing discriminant. The following
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lemma from [HKSS24] allows incorporating this extra requirement into the dimension counting proof
framework. Let ΓS ⊂ F[X, Z] be the set of 4-variate polynomials A(X, Z) of (1, 1, 1, d)-degree at
most D such that A

(
P, T (P)

)
≡ 0 for all P ∈ S.

Lemma 10 ([HKSS24], Lemma 2.9). If there exists A ∈ ΓS such that ∂Z(A) ̸≡ 0, then there exists a
(possibly different) A′ ∈ ΓS such that DiscZ(A′) ̸≡ 0. Here ∂Z(A) denotes the formal partial derivative
of A with respect to Z (also known as the Hasse derivative).

Proof of Lemma 5. Let p ∈ N be the characteristic of F, and let

Td,D,p :=
#
{
(i1, i2, i3, j) ∈ Z4

≥0 : i1 + i2 + i3 + dj ≤ D & j ̸≡ 0 mod p
}

be the number of 4-variate monomials in F[X, Z] of (1, 1, 1, d)-degree at most D whose Z-partial
derivative does not vanish. Any non-zero polynomial in the Td,D,p-dimensional vector space spanned
by these monomials has (1, 1, 1, d)-degree at most D and has non-vanishing Z-partial derivative. Note
that, for each P ∈ S, the requirement that A

(
P, T (P)

)
≡ 0 imposes at most

(
D+2
2

)
linear constraints on

the coefficients of A. Therefore, the following claim, which says that Td,D,p−r ·
(
D+2
2

)
> 0, implies that

there exists a polynomial in ΓS whose Z-partial derivative does not vanish. By Lemma 10, there exists
a (possibly different) polynomial in ΓS whose discriminant does not vanish. The lemma follows.

Claim 10. Continuing under the assumptions that p ≥ 2, D ≥ 5, and s ≥ 10, we have

Td,D,p ≥
Ds

60
·
(
D + 2

2

)
.

Proof. For k ∈ {0, . . . , s}, let

Xd,D,k :=
#
{
(i1, i2, i3) ∈ Z3

≥0 : i1 + i2 + i3 ≤ D − dk
}
.

Since Xd,D,k decreases as k increases,

Td,D,p =
s∑

k=1

11p∤k ·Xd,D,k ≥
(
1− 1

p

)
·

s∑
k=1

Xd,D,k ≥
1

2
·

s∑
k=1

Xd,D,k,

using p ≥ 2. Since Xd,D,k =
(
D−dk+3

3

)
,

Td,D,p

/(
D + 2

2

)
≥ 1

2
·

s∑
k=1

Xd,D,k

/(
D + 2

2

)
=

1

2
·

s∑
k=1

(
D − dk + 3

3

)/(
D + 2

2

)

≥ 1

6
·

s∑
k=1

(D − dk)3

(D + 2)2
≥ 1

6
· d3

2D2
·

s∑
k=1

(s− k)3 =
d3

12D2
·
s−1∑
k=0

k3

=
d3

12D2
· s

2(s− 1)2

4
≥ d3

12D2
· s

4

5
=

Ds

60
,

as desired. We have used (D + 2)2 ≤ 2D2 which holds because D ≥ 5; we have used the formula∑s−1
k=0 k

3 = s2(s−1)2

4
; and we have used (s−1)2

4
≥ s2

5
, which holds because s ≥ 10.
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A.3 Low-Degree Roots on Restrictions to Global Low-Degree Roots
In this section, we prove Lemma 9 following the argument from [HKSS24].

Lemma 9 (Restated). Let d,D ∈ N be degree parameters. Fix a pair (x, α) ∈ F3 × F, a subset
P ′

x ⊂ Px of size |P ′
x| > D, such that T (P)|x = α for all P ∈ P ′

x, and a 4-variate polynomial
A(X, Z) ∈ F[X, Z] of (1, 1, 1, d)-degree at most D, such that α is a simple zero of the univariate
polynomial A(x, Z) ∈ F[Z]. If A

(
P, T (P)

)
≡ 0 for all P ∈ P ′

x, then there exists a trivariate, degree d
polynomial f(X) ∈ F[X] such that A

(
X, f(X)

)
≡ 0 and such that f |P = T (P) for all P ∈ P ′

x.

The global root is built using the following procedure based on Newton’s method.

Claim 11 (Newton Iteration). Let m ∈ N be a dimension parameter. Let (x̂, α̂) ∈ Fm × F. Suppose
Â(X, Z) ∈ F[X, Z] is an (m + 1)-variate polynomial such that the univariate Â(x̂, Z) ∈ F[Z] has a
simple zero at α̂. Then there exists a unique family of m-variate polynomials {Φk(X)}k∈N such that for
all k ∈ N, the following all hold:

(1) deg(Φk) ≤ k; (2) Φk(x̂) = α̂; (3) Â
(
X,Φk(X)

)
≡ 0 mod (X)k+1.

Proof of Lemma 9. Invoke Claim 11 on the polynomial A(X, Z) and point (x, α) ∈ F3 × F to get a
family {Φk(X)}k∈N of trivariate polynomials such that for all k ∈ N: deg(Φk) ≤ k, Φk(x) = α,
and A

(
X,Φk(X)

)
≡ 0 mod (X)k+1 all hold. Additionally, consider for some P ∈ P ′

x, the trivariate
polynomial AP which is the restriction of A to P. Specifically, AP(Y, Z) ∈ F[Y, Z] uses the two-
variables in Y to parametrize P and obtain an assignment to the three-variables of X via the embedding
P ↪→ F3. If y ∈ F2 is the point which parametrizes x ∈ P, then note that the univariate polynomial
AP(y, Z) is precisely A(x, Z), and so has a simple zero at α. We invoke Claim 11 on AP(y, Z) to obtain
another batch of (this time bivariate) polynomials {ΨP,k}k∈N such that for all k ∈ N, deg(ΨP,k) ≤ k,
ΨP,k(y) = α, and AP

(
Y,ΨP,k(Y)

)
≡ 0 mod (Y)k+1.

Now, consider the three bivariate polynomials ΨP,d, Φd|P, and T (P), all defined on P. They all have
degree at most d; they satisfy ΨP,d(y) = Φd(x) = T (P)|x = α; and finally,

A
(
Y,ΨP,d(Y)

)
≡ A

(
P,Φd|P

)
≡ A

(
P, T (P)

)
≡ 0 mod (Y)d+1.

By the uniqueness of the polynomials guaranteed by Claim 11, it must be that ΨP,d ≡ Φd|P ≡ T (P),
so in particular, Φd|P ≡ T (P) holds for all P ∈ P ′

x. Finally, consider the trivariate polynomial
A
(
X,Φd(X)

)
. It has degree at most D, but vanishes on every P ∈ P ′

x. Since |P ′
x| > D, Schwartz-

Zippel implies that A
(
X,Φd(X)

)
≡ 0.
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