
Proof Systems That Tightly Characterise Model
Counting Algorithms
Olaf Beyersdorff #

Friedrich Schiller University Jena, Germany

Tim Hoffmann #

Friedrich Schiller University Jena, Germany

Kaspar Kasche #

Friedrich Schiller University Jena, Germany

Abstract
Several proof systems for model counting have been introduced in recent years, mainly in an attempt
to model #SAT solving and to allow proof logging of solvers. We reexamine these different approaches
and show that: (i) with slight adaptations, the conceptually quite different proof models of the
dynamic system MICE [18] and the static system of annotated Decision-DNNFs [9] are equivalent
and (ii) they tightly characterise state-of-the-art #SAT solving. Thus, these proof systems provide
a precise and robust proof-theoretic underpinning of current model counting. We also propose new
strengthenings of these proof systems that might lead to stronger model counters.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases model counting, #SAT, proof complexity, proof systems, lower bounds,
knowledge compilation

Funding Olaf Beyersdorff : Carl-Zeiss Foundation and DFG grant BE 4209/3-1
Tim Hoffmann: Carl-Zeiss Foundation
Kaspar Kasche: Carl-Zeiss Foundation

1 Introduction

Given a propositional formula φ, the model counting problem #SAT asks how many satisfying
assignments exist for φ. This generalises the famous SAT problem, both in terms of
computational complexity – where we see a jump from NP [12] to #P, encompassing almost
all of the polynomial hierarchy [29] – and in terms of applications [1, 23, 27, 2, 32, 16]. For
SAT solving, the main breakthrough happened in the late 1990s with the introduction of
conflict-driven clause learning (CDCL) [24]. Since then, SAT solving has matured into a very
successful and in terms of applications extremely versatile technology [5]. Model counting
in comparison is in an earlier stage than SAT. There are two different problem settings:
exact counting, considered here, and approximate counting [10]. These admit fundamentally
different algorithmic approaches. Several state-of-the-art model counters, including D4 [22],
DSHARP [25] and sharpSAT [28], successfully count on a large variety of formulas and
regularly participate in the annual model counting competition [17].

One of the standard approaches as described by Capelli, Lagniez, and Marquis [9] is to
use the classical DPLL branching algorithm for SAT and optimise it for counting via formula
caching and decomposition into variable-disjoint subformulas.

From a theoretical point of view, the enormous success of SAT and #SAT solvers poses
an intricate problem: why are these algorithms so successful and where are their limitations?
Proof complexity provides one of the primary approaches towards this problem. For SAT,
seminal work of Pipatsrisawat and Darwiche [26] has tightly characterised CDCL (with
freely choosable heuristics) by propositional resolution. This implies that lower bounds for
resolution proof size translate to lower bounds for the running time of CDCL. Here we pursue

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 127 (2025)

mailto:olaf.beyersdorff@uni-jena.de
https://orcid.org/0000-0002-2870-1648
mailto:hoffmann.t@uni-jena.de
https://orcid.org/0009-0006-9734-9912
mailto:kaspar.kasche@uni-jena.de
https://orcid.org/0009-0002-6170-5736

2 Proof Systems That Tightly Characterise Model Counting Algorithms

a similar characterisation for the classical DPLL-based #SAT approach that we mentioned
above.

A second connection comes through proof logging whereby SAT runs for unsatisfiable
formulas are efficiently mapped to resolution or in fact optimised, stronger proof systems
[31]. Recently, this has also been studied for #SAT and a number of proof systems for proof
logging have been proposed, including MICE [18], CPOG [6], and a number of systems using
annotated Decision-DNNFs [8, 9].

For model counting, the connection to proof complexity was preceded by the discovery that
#SAT solvers are intricately linked to knowledge compilation and in fact, Decision-DNNFs –
the standard circuit format in knowledge compilation [19] – can be extracted from almost all
model counters [7]. However, the DNNFs themselves are not sufficient for certification as
it is hard to check whether a DNNF corresponds to the input CNF. This was realised by
Capelli [8] who introduced the first #SAT proof system kcps using annotated Decision-DNNFs,
and subsequent proof systems [9, 6] follow this approach. As these systems all use annotated
circuits, they are static proof systems. The only exception is the line-based proof system
MICE [18, 4], but this system also allows for efficient extraction of Decision-DNNFs [4]. The
relative strength of these different calculi was recently determined by Beyersdorff et al. [3].

Our contributions. We summarise our main findings.

A. Characterising solver running time by proof size. Our first contribution is a tight
characterisation of DPLL-style model counting in the framework of Capelli, Lagniez, and
Marquis [9] (called KCAlg

Syn here) by a new proof system that we call KCPS
Syn. This builds on

this prior work of Capelli et al. who constructed certifiable Decision-DNNFs from runs of
the solvers. While it is not clear if these Decision-DNNFs characterise runtime of solvers, we
show that this holds for our new proof system KCPS

Syn, a slightly adapted version of certifiable
Decision-DNNFs. This provides an analogue of the characterisation of CDCL by resolution
[26].

B. Equivalence to augmented MICE. We further show that our new proof system KCPS
Syn

is quite robust and natural as it is equivalent to a version of MICE augmented by one natural
rule for caching (or more formally, syntactic formula substitution). While the original system
MICE is exponentially weaker than KCPS

Syn (Theorem 4.3), MICE with this rule precisely
captures KCPS

Syn and therefore also the solving approach KCAlg
Syn (Theorem 4.6). This is quite

surprising as these systems use very different approaches.

C. Investigating stronger caching. Modern #SAT solvers apply formula caching in
a syntactical setting. We investigate semantic caching – checking formulas for semantic
equivalence – and show that the corresponding proof system KCPS

Sem characterises solving
with semantic caching (Theorem 5.3) and is also equivalent to MICE with a semantic
substitution rule (Theorem 5.4). Further, we show that KCPS

Sem proof size (neglecting the size
of propositional annotations) of a CNF φ is characterised by the Decision-DNNF representation
size of φ (cf. Proposition 5.7). This indicates that semantic caching is quite powerful and
may be worth investigating in a practical setting.

Organisation. In Section 2 we review notions from proof complexity and knowledge
representation. Sections 3, 4, and 5 contain our results described under A, B, and C above,
respectively. We conclude in Sections 6 and 7 with an overview of the emerging landscape of
#SAT proof systems (Figures 8 and 9) and outline questions for future research.

O. Beyersdorff, T. Hoffmann, and K. Kasche 3

2 Preliminaries

We review notions from propositional logic and knowledge compilation. For n ∈ N, let
[n] := {1, 2, . . . , n}.

In propositional logic, a variable v or its negation v is called a literal l. A clause is a
disjunction of literals. A conjunction of clauses is a conjunctive normal form (CNF). Using
Tseitin transformations [30], any formula can be efficiently translated into CNF.

The set of all variables in a formula F is denoted as vars(F). A (partial) assignment
for a set of variables V is a (partial) function α : V → {0, 1} mapping variables to Boolean
values. The set of all 2|V | complete assignments for V is denoted as ⟨V ⟩. Given V ⊆ vars(F)
and α ∈ ⟨V ⟩, F [α] represents the formula where all variables x ∈ V are replaced by α(x).
An assignment α satisfies F if F [α] = 1, denoted α |= F , and α falsifies F if F [α] = 0. A
formula F is satisfiable if there is some assignment α ∈ ⟨vars(F)⟩ with α |= F . Otherwise,
the formula is unsatisfiable.

Next, we introduce the model counting problem #SAT. Throughout the paper, we denote
the CNF we want to count on as φ. Given φ, #SAT asks to compute #φ := |Mod(φ)| with
Mod(φ) := {α ∈ ⟨vars(φ)⟩ | α |= φ}.

For a CNF F and set L of literals, we denote cc(F,L) as the smallest connected component.
Formally, it is the smallest set of clauses such that for every C ∈ F :

if vars(C) ∩ L ̸= ∅, then C ∈ cc(F,L), and
if there is some clause D ∈ cc(F,L) with vars(C) ∩ vars(D) ̸= ∅, then C ∈ cc(F,L).

We define semantic consequence. If for every assignment α ∈ ⟨vars(F)⟩ holds that α |= F

implies α |= G, we write F |= G. If F |= G and G |= F , we write F ≡ G.
Any assignment can be seen as a CNF only consisting of unit clauses enforcing the

assignment. Since a CNF is a set of clauses, set operations are well defined on CNFs and
assignments. Two assignments are called consistent if they agree on their intersection.

A proof system for a language L is a polynomial time computable function f with
range rng(f) = L [13]. In this paper L is always UNSAT or #SAT. We call π an f -proof for
x ∈ L if f(π) = x.

We use simulations to compare two proof systems P and Q for the same language. We
say that P p-simulates Q if every Q-proof can be transformed in polynomial time into a
P -proof of the same formula. If P and Q p-simulate each other, they are called p-equivalent,
denoted P ≡ Q.

The best-studied proof system for UNSAT is resolution. It is a line-based proof system
with clauses as proof lines. With the resolution rule we derive the clause C ∪D from previous
clauses C ∪ {x} and D ∪ {x}. A resolution refutation of a CNF is a derivation of the empty
clause □.

Knowledge compilation has been extensively studied [15, 20] and has a tight connec-
tions to model counting. Here we only need the notion of a Decision-DNNF.

A circuit C is a rooted directed acyclic graph with labelled nodes that we call gates. The
set of all variables appearing in C is denoted as vars(C). For any gate v ∈ C, we denote the
subcircuit with root v as Cv.

A Decision-DNNF, standing for decision decomposable negation normal form [14], is a
circuit D that has one unique gate with in-degree 0 which is its root and represents the
output of D. A simple Decision-DNNFs is illustrated in Figure 2. Any leaf of D, i.e. any gate
with out-degree 0, is a 0-gate labelled with 0 or a 1-gate labelled with 1. Every gate in D

that is not a leaf is either an And-gate or a Decision-gate.

4 Proof Systems That Tightly Characterise Model Counting Algorithms

An And-gate v is labelled with an ∧ and is decomposable which means that for any two
child gates vi and vj of v, we have vars(Dvi

) ∩ vars(Dvj
) = ∅ . For simplicity, we assume

w.l.o.g. that And-gates have exactly two child nodes. A Decision-gate is labelled with some
variable x that is decided in this gate, i.e. there are two outgoing edges corresponding to the
assignments x = 0 (dashed lines in our figures) and x = 1 (solid lines). Further, there must
not be a path in D from the root to a leaf that decides the same variable more than once.

The main motivation for compiling CNFs to Decision-DNNFs is that on Decision-DNNFs
various queries can be handled efficiently, in particular model counting and clause entailment:

▶ Theorem 2.1 ([15]). Let D be a Decision-DNNF and φ a CNF. Then:

we can compute the model count of D in time |D|O(1),
we can check D |= φ in time (|D| · |φ|)O(1).

3 KCPS
Syn proofs characterise #SAT solvers

3.1 Model counting algorithms
Many of the state-of-the-art knowledge compilers and model counters operate in a top-down
fashion and can be seen as natural generalisations of SAT solvers based on DPLL. Following
Capelli, Lagniez, and Marquis [9], we provide a high-level sketch of this solving approach
which we call KCAlg

Syn. The pseudocode in Algorithm 1 gives details.
The main idea of the solver is to build a decision tree that branches on variables until

the remaining formula is satisfied or unsatisfiable. Soundness of a decision on x holds due to
F ≡ (x ∧ F [x]) ∨ (x ∧ F [x]) and we observe that #F = #F [x] + #F [x]. As the algorithm
might visit the exact same formula multiple times we use a cache to keep track of formulas
already computed. A further improvement can be obtained by checking if the formula consists
of independent subformulas, i.e. if F = F1 ∧ F2 with vars(F1) ∩ vars(F2) = ∅. In this case,
we deal with the two formulas independently and have #F = #F1 ·#F2. Finally, in order
to check if the remaining formula is unsatisfiable, we use a SAT solver, typically based on
CDCL. Clauses that are learned during a SAT call are saved as they might be helpful for
subsequent SAT calls.

3.2 Certifiable Decision-DNNF circuits
The proof system certifiable Decision-DNNF circuits was proposed to certify KCAlg

Syn [9]. For
brevity, we refer to it as C-dec-DNNF. A C-dec-DNNF proof for a CNF φ is a restricted and
annotated Decision-DNNF D such that we can verify D ≡ φ efficiently. Conceptually, it is
very similar to the proof system KCPS

Syn which we define later in this section. In the following,
we provide the formal definition of C-dec-DNNF.

For that, let φ be a CNF and D be a Decision-DNNF with root r. Additionally, we need a
set R of clauses and a function e that assigns every gate v ∈ D \ {r} one of its parent gates.
We define lits(v) as the assignment of all literals decided on the unique path according to e
from r to v. Further, let v, w be nodes in D such that there is an edge e′ = (w, v) and let Fw

be some CNF that corresponds to w. We use the notation Fw|e′ which we define as follows:
If w is a Decision-gate that leads to v by setting x = 1 (resp. 0), then Fw|e′ := Fw[x] (resp.
Fw[x]). Otherwise, if w is an And-gate, then Fw|e′ := cc(Fw, vars(Dv)).

With that notation, we define Fv for every gate v ∈ D inductively in a top-down fashion.
For the root r, we define Fr = φ. Otherwise, for w = e(v) with edge e′ = (w, v), we set
Fv = Fw|e′ . With that, we can finally define the C-dec-DNNF proof system:

O. Beyersdorff, T. Hoffmann, and K. Kasche 5

Algorithm 1 Pseudocode for KCAlg
Syn [9]

1: procedure COMPILE(F , L = ∅, R = ∅)
2: Data: Input: CNF F

Input: set L of literals
Input: set R of learnt clauses with F |= R

3: Result: Decision-DNNF D ≡ F [L]
4: if F [L] has no clause then return new 1-gate
5: if F [L] has an empty clause then return new 0-gate
6: if R[L] has an empty clause then return new 0-gate
7: Call a SAT solver on F with literals in L blocked

Let R′ be the clauses learnt by this call
8: R← R ∪R′

9: if UNSAT(F) then return new 0-gate
10: if cache(F [L]) ̸= nil then return cache(F [L])
11: F ′ ← {C ∈ F | C[L] is not satisfied }
12: if F ′ = F1 ∧ · · · ∧ Fk with k≥2 and vars(Fi[L]) ∩ vars(Fj [L]) = ∅ then
13: v ← new And-gate
14: for i← 1 to k do
15: wi ← COMPILE(Fi, L,R)
16: connect v to wi

17: else
18: Choose x ∈ vars(F [L])
19: v ← new Decision-gate deciding x
20: for ℓ ∈ {x,¬x} do
21: w ← COMPILE(F,L ∪ {ℓ}, R)
22: connect v to w with label ℓ
23: cache(F [L])← v

24: return v

▶ Definition 3.1 ([9]). A C-dec-DNNF proof for a CNF φ is a 3-tuple (D, e,R) that satisfies
the following conditions:

(I) D |= φ,
(II) R = ∅ or for every gate v that is not a 0-gate, Fv is satisfiable,

(III) for every gate v ∈ D that is not a leaf and any edge e′ = (w, v), the formulas Fv and
Fw|e′ are syntactically equivalent,

(IV) R is a list of clauses that are each derived with a resolution step from φ or previous
clauses in R,

(V) for every 0-gate v ∈ D and any edge e′ = (w, v), either Fw|e′ contains the empty clause,
or w is a Decision-gate and R[lits(w) ∧ le′] contains the empty clause where le′ is the
literal that was decided for the edge e′.

As already pointed out when C-dec-DNNF was introduced [9], condition (II) seems
unnecessary, but it is required for the soundness of the system. We want to illustrate the
underlying problem with the following small example: Let F be an unsatisfiable formula and
φ = (y ∧ x ∧ F) ∨ (x ∧ y) encoded as some CNF. Then, if we would not require (II), the
Decision-DNNF in Figure 1 would be a valid C-dec-DNNF proof while D ≡ ⊥ ̸≡ φ.

6 Proof Systems That Tightly Characterise Model Counting Algorithms

y?

∧

F x?

0 0

Figure 1 After a Decision-gate, a dashed line corresponds to the assignment 0 and a solid line
to 1. Thick lines are in the labelling e. We see that condition (II) is necessary: This Decision-DNNF
D is unsatisfiable and thus not equivalent to φ = (y ∧ x ∧ F) ∨ (x ∧ y) as the red 0 should be a 1.
However, D satisfies all conditions except (II).

∧

a? b?

0 1

Figure 2 Algorithm KCAlg
Syn is not able to find this Decision-DNNF D for φ = a ∧ b ∧ (a ∨ c) ∧ (a ∨

c) ∧ (b ∨ c) ∧ (b ∨ c) although D ≡ φ.

The main motivation for the introduction of C-dec-DNNF is its tight connection to KCAlg
Syn

which is captured in Theorem 3.2:

▶ Theorem 3.2 ([9]). Let R be a run of KCAlg
Syn on a CNF φ. Then we can extract from R a

C-dec-DNNF proof of φ in time |R|.

This system was designed for certifying outputs of knowledge compilers. It is not obvious
whether it characterises the runtime of KCAlg

Syn, i.e. whether the converse of Theorem 3.2 holds.
The question is: can KCAlg

Syn compute a Decision-DNNF efficiently from a given C-dec-DNNF
proof? For the corresponding simulation, we want to illustrate the main problem. Consider
the formula φ = a∧ b∧ (a∨ c)∧ (a∨ c)∧ (b∨ c)∧ (b∨ c). This formula is represented by the
Decision-DNNF from Figure 2 and it is possible to construct a C-dec-DNNF proof based on
this Decision-DNNF. However, the KCAlg

Syn could never construct a circuit like this, as φ cannot
be divided into independent subformulas without deciding c first. Thus, the C-dec-DNNF
system seems to be slightly stronger than the KCAlg

Syn algorithm.

3.3 The new proof system KCPS
Syn

Now we introduce our new proof system KCPS
Syn which can be seen as a restricted version of

C-dec-DNNF such that the problem from Figure 2 disappears. In fact, we show that KCPS
Syn

characterises the runtime of KCAlg
Syn (Theorem 3.7).

▶ Definition 3.3 (KCPS
Syn). Let D be a Decision-DNNF, F be a labelling that assigns a CNF

F(v) to every gate v ∈ D and ρ be a set of resolution refutations. A KCPS
Syn proof for a CNF

φ is a 3-tuple (D,F , ρ) such that

(i) D |= φ,

O. Beyersdorff, T. Hoffmann, and K. Kasche 7

(ii) for any gate v ∈ D that is not a 0-gate, F(v) is satisfiable,
(iii) F(r) = φ for the root r ∈ D,
(iv) for any And-gate v ∈ D with children s and t, F(s) = cc(F(v), vars(Ds)) and analogously

for F(t). Further, vars(F(s)) ∩ vars(F(t)) = ∅,
(v) for any Decision-gate v ∈ D deciding variable x with children s if x = 0 and t if x = 1,
F(s) = F(v)[x] and F(t) = F(v)[x],

(vi) for any 0-gate v ∈ D there is a resolution refutation of F(v) in ρ.

We want to point out that a KCPS
Syn proof does not have to specify F explicitly as if it

exists, it is uniquely determined by D and φ. Further, we can observe that KCPS
Syn is very

similar to C-dec-DNNF. The main difference is that instead of defining the labelling e, we
label all gates directly with the corresponding CNF. As lits(v) is not defined any more, we
cannot derive clauses in R; instead we include a resolution refutation for every 0-gate which
proves that there are indeed no models we are missing. Potentially, we have to refute different
0-gates separately that could be handled with a single clause in R. However, the resulting
overhead is at most polynomial.

For the proofs of this section, we need the invariant for KCPS
Syn proofs from the following

lemma:

▶ Lemma 3.4. Let (D,F , ρ) be a KCPS
Syn proof for a CNF φ. Further, let v be an arbitrary

gate in D and P be any path from the root to v. Let βv denote the assignment that corresponds
to all decisions that are made on path P . Then, F(v) ⊆ φ[βv].

Note that the path P and thus the assignment βv does not have to be unique. However,
the claim holds for any βv, no matter which path P we choose.

Proof. Let v1, v2, . . . , vn with v1 = r and vn = v be the path P . We show the lemma by
induction over n. The base case is obvious as βr = ∅ and F(r) = φ as required by (iii). For
the induction step, we assume that F(vi) ⊆ φ[βvi

]. We distinguish what kind of gate vi is.
Case 1. vi is an And-gate. Then, βvi+1 = βvi

and F(vi+1) = cc(F(vi), vars(Dvi+1))) ⊆
F(vi) by (iv). Thus, F(vi+1) ⊆ F(vi) ⊆ φ[βvi] = φ[βvi+1].

Case 2. vi is a Decision-gate that w.l.o.g. sets x = 1 to get to vi+1. Then, βvi+1 = βvi
∧x

and F(vi+1) = F(vi)[x] by (v). Thus, F(vi+1) = F(vi)[x] ⊆ φ[βvi
∧ x] = φ[βvi+1]. ◀

Before we further analyse KCPS
Syn, we show that is indeed a proof system in the sense of

Cook and Reckhow [13]:

▶ Proposition 3.5. KCPS
Syn is a complete and sound proof system for #SAT.

Proof. We start with the soundness of the system. Let a KCPS
Syn proof (D,F , ρ) for a CNF φ

be given. We have to show that D ≡ φ. As (i) ensures D |= φ, we only have to prove φ |= D

or equivalently ¬D |= ¬φ. Let α be an arbitrary assignment that falsifies D. Then, there
has to be some path P from the root of D to some 0-gate v such that every decision on P

is consistent with α. Because of (vi), there is a resolution refutation ρ of F(v). Let βv be
the assignment corresponding to path P . Using Lemma 3.4, we obtain F(v) ⊆ φ[βv]. Thus,
ρ is also a refutation of φ[βv] implying that the assignment βv makes φ unsatisfiable. By
construction of βv, we have βv ⊆ α, i.e. α falsifies φ. With that, the soundness of KCPS

Syn is
shown.

The completeness of the system is easy to observe as we can construct a valid KCPS
Syn

proof for any CNF φ by choosing as Decision-DNNF a complete binary decision tree that
decides every variable in vars(φ) on every path.

8 Proof Systems That Tightly Characterise Model Counting Algorithms

Finally, in order to be a proof system in the sense of Cook-Reckhow, there has to be
some way to verify a proof efficiently, i.e. in polynomial time. Note that we can compute the
model count efficiently given a valid KCPS

Syn proof as D ≡ φ and we can count efficiently on
Decision-DNNFs as stated in Theorem 2.1. Further, condition (i), D |= φ, can be checked
efficiently as also shown in Theorem 2.1. All other requirements are straightforward to check
in polynomial time. ◀

In fact, the proof of Proposition 3.5 neither uses condition (ii) nor vars(F(s))∩vars(F(t)) =
∅ in (iv). Thus, KCPS

Syn would be a proof system even without these requirements. However, we
stick to these additional requirements as the first guarantees the natural invariant Dv ≡ F(v)
for any node v ∈ D (Proposition 3.6). The second one is needed to show the equivalence to
KCAlg

Syn (Theorem 3.7).

▶ Proposition 3.6. Let (D,F , ρ) be a KCPS
Syn proof. Then, for every gate v ∈ D, the circuit

Dv is equivalent to F(v).

Proof. Let v ∈ D be some fixed gate and v1, ..., vn be a path in D from the root v1 = r

to vn = v. We show inductively, that the proposition holds for every vi for i ∈ [n]. For
the base case, we have v1 = r and Fr = φ ≡ D as required by (iii) and the soundness of
KCPS

Syn (Proposition 3.5). Next, let i ∈ [n − 1] be given. By the induction hypothesis, we
have Dvi

≡ F(vi). We distinguish what kind of gate vi is.
Case 1. vi is a Decision-gate leading to vi+1 by w.l.o.g. setting x = 1. Because of (v),

we have Dvi+1 = Dvi
[x] ≡ F(vi)[x] = F(vi+1).

Case 2. vi is an And-gate with children vi+1 and v′ and variable partition vars(F(vi)) =
vars(F(vi+1))∪̇V ′. Let α′ ∈ ⟨V ′⟩ be a satisfying assignment of the formula cc(F(v), V ′).
Note that α′ has to exist as F(vi) would be unsatisfiable otherwise, which would contradict
(ii). Then, Dvi+1 = Dvi

[α] ≡ F(vi)[α] = F(vi+1). ◀

Next, we get to the result that provides the main motivation for the modifications of
C-dec-DNNF. That is, we can generate solver runs from KCPS

Syn proofs efficiently:

▶ Theorem 3.7. For each CNF φ, the minimal runtime of KCAlg
Syn on φ (with freely choosable

heuristics) is polynomially equivalent to the minimal KCPS
Syn proof size of φ.

Before we can prove Theorem 3.7, we start with some propositions and lemmas.

▶ Proposition 3.8. C-dec-DNNF p-simulates KCPS
Syn. Further, this simulation is linear-time.

Proof. Let π = (D,F , ρ) be a KCPS
Syn proof for a given CNF φ. Further, let e be an arbitrary

labelling according to a C-dec-DNNF proof, i.e. e assigns every gate v ∈ D a unique parent
gate e(v). We first show the following invariant:

Claim 1: For every gate v ∈ D the corresponding formulas F(v) in KCPS
Syn and Fv in

C-dec-DNNF are the same.
That is, we show Fv = F(v) for any node v ∈ D by induction in a top-down approach.

For that, r = v1, v2, . . . , vn−1, vn = v be the unique path from the root r to v according
to the labelling e. In the base case, Fr = φ = F(r) by using (iii) and the construction
of F . Thus, we can assume that Fvi

= F(vi) for some i ∈ [n] and we have to show that
Fvi+1 = F(vi+1). For that we distinguish what kind of gate vi is.

Case 1. vi is an And-gate. Then, Fvi+1 = cc(Fvi
, vars(Dvi+1)) = cc(F(vi), vars(Dvi+1)) =

F(vi+1) where we used the construction of F in C-dec-DNNF, the induction hypothesis and
(iv).

O. Beyersdorff, T. Hoffmann, and K. Kasche 9

Case 2. vi is a Decision-gate that leads to vi+1 by setting w.l.o.g. x = 1. Then,
Fvi+1 = Fvi

[x] = F(vi)[x] = F(vi+1) where we used the construction of F in C-dec-DNNF,
the induction hypothesis and (v).

Next, we show that D and e satisfy the requirements (I), (II) and (III) for C-dec-DNNF
proofs:

(I), D |= φ, is ensured by (i).
(II), F(v) is satisfiable for any non-0-gate v, is guaranteed by (ii).
For (III), let v, w ∈ D be any gates such that there is an edge e′ = (w, v). We have to
show that the formulas Fv and Fw|e′ are syntactically equivalent. Because of Claim 1
from above, we have Fv = F(v) and Fw = F(w). We can use the exact same argument
from the proof of Claim 1, i.e. if w is an And-gate, we use (iv) and if it is a Decision-gate,
we use (v).

Therefore, we only have to describe how we choose R in order to ensure that (IV) and
(V) are satisfied. For that, we do the following for any 0-gate v: Let βv be the assignment of
all literals decided on the path defined by e from v to the root of D. Because of (v), v is
labelled with some refutation ρv showing F(v) ⊢ □. With Lemma 3.4, we have F(v) ⊆ φ[βv],
i.e. ρv can also be used as derivation for φ[βv] ⊢ □. By weakening, we obtain a derivation
φ ⊢ βv. For any 0-gate v, we add the corresponding clause βv and its derivation to R. Like
that, we derive a clause for every 0-gate in order to satisfy (V). Further, we can add all
required clauses for the derivations to R and satisfy (IV). Note that for any 0-gate v, we add
|ρv| clauses to R, i.e. the resulting proof size does not increase.

As all requirements for C-dec-DNNF are satisfied, π′ = (D, e,R) is indeed a valid C-dec-
DNNF proof for φ. By construction, we have |π′| = |π|. ◀

As already pointed out in Figure 2, the algorithm KCAlg
Syn cannot construct arbitrary

Decision-DNNFs but only a restricted class of these circuits. In the following, we see that the
constructed Decision-DNNFs are formula-decomposable. And in fact, if we add this restriction
to C-dec-DNNF, the system becomes exactly as strong as KCPS

Syn.

▶ Definition 3.9. Let π be a C-dec-DNNF proof. We say that π is formula-decomposable if
every And-gate v satisfies: for its child nodes s and t we have vars(Fs) ∩ vars(Ft) = ∅.

Next, we show that formula-decomposable C-dec-DNNF is p-equivalent to KCPS
Syn. For

that, we show the two simulations separately.

▶ Lemma 3.10. Formula-decomposable C-dec-DNNF p-simulates KCPS
Syn.

Proof. We use the exact same construction as in the proof of Proposition 3.8. It is sufficient
to argue that the extracted C-dec-DNNF proof is formula-decomposable.

For that, we have a closer look at the proof of Proposition 3.8 and consider any And-gate v
with children s and t. With the second requirement in (iv), we have vars(F(s))∩vars(F(t)) = ∅.
The invariant we showed in Claim 1, we obtain Fs = F(s) and Fs = F(s). Putting these
two things together, we get vars(Fs) ∩ vars(Ft) = ∅. Thus, the extracted proof is indeed
formula-decomposable. ◀

Next, we show a helpful invariant for C-dec-DNNF proofs:

▶ Lemma 3.11. Let π = (D, e,R) be a formula-decomposable C-dec-DNNF proof for CNF φ.
Further, let v ∈ D be given. If there is a path r = v1, v2, . . . , vn = v from the root r of D to
v such that Fvi

is satisfiable for all i ∈ [n], then Fv ≡ Dv.

10 Proof Systems That Tightly Characterise Model Counting Algorithms

Proof. We show this by induction in a top-down fashion. In the base case, we have Fr = φ ≡
Dr by the soundness of the C-dec-DNNF proof system. Thus, we assume that vn−1 ≡ Dv−1.
We distinguish what kind of gate vi−1 is.

Case 1. vi−1 is a Decision-gate leading to vi by w.l.o.g. setting x = 1. Then, Fvi
=

Fvi−1 [x] ≡ Dvi−1 [x] = Dvi .
Case 2. vi−1 is an And-gate with children vi and v′. Then, we have Fvi−1 = Fvi

∧ Fv′ .
As π is formula-decomposable, the variables of these formulas are disjoint, i.e. there is a
partition of the variables V F = vars(Fvi−1) with V F = V F

vi
∪̇V F

v′ such that vars(Fvi
) ⊆ V F

vi

and vars(Fv′) ⊆ V F
v′ . Further, the And-gate vi−1 is decomposable, i.e. there is a partition

of the variables V D = vars(Dvi−1) with V D = V D
vi
∪̇V D

v′ such that vars(Dvi
) ⊆ V D

vi
and

vars(Dv′) ⊆ V D
v′ . Next we show, that we can partition V F ∪ V D as follows:

V F ∪ V D = (V F
vi
∪ V D

vi
)∪̇(V F

v′ ∪ V D
v′).

V F
vi

and V F
v′ are disjoint by construction. Thus, we only have to show that V F

vi
and V D

v′

do not share variables (the other cases are symmetric). For that, we assume that there
is some variable x that appears in both V F

vi
and V D

v′ . Then, x appears in Fvi
and also

in Fvi−1 as Fvi−1 = Fvi
∧ Fv′ . By definition of C-dec-DNNF condition (III), we have

Fv′ = cc(Fvi−1 , vars(Dv′)). x appears in both Fvi−1 and Dv′ , and thus also in Fv′ . With that,
we obtain x ∈ V F

v′ which is a contradiction to x ∈ V F
vi

. This shows that the partition above
is indeed valid.

Since Fvi−1 is satisfiable and Fvi−1 ≡ Dvi−1 , there is an assignment α ∈ ⟨vars(V F) ∪
vars(V D)⟩ that satisfies both Fvi−1 and Dvi−1 . We restrict this assignment to β := α|V F

v′ ∪V D
v′

.
Then,

Fvi
= Fvi

[β] ∧ Fv′ [β] = Fvi−1 [β] ≡ Dvi−1 [β] = Dvi
[β] ∧Dv′ [β] = Dvi

,

leading to the lemma. ◀

With this invariant, we can show the simulation in the other direction:

▶ Lemma 3.12. KCPS
Syn p-simulates formula-decomposable C-dec-DNNF.

Proof. Let π = (D, e,R) be a formula-decomposable C-dec-DNNF proof for CNF φ and
let D′ be the Decision-DNNF where we introduce additional 0-gates and 1-gates such that
every leaf of D has a unique parent gate. Further, we extend e to some e′ that also contains
the edges from any leaf of D′ to its unique parent. We define Fv and lits(v) for any leaf v
according to e′. Note that like that (III) does also hold for edges leading to leaves. It is
easy to observe that for any 0-gate v in D′ holds that either Fv contains the empty clause or
R[lits(v)] contains the empty clause.

D′ may contain a gate v which is not a leaf such that Fv is unsatisfiable. Let v′ be the
first gate on the path from r to v that has a formula Fv′ that is unsatisfiable. We replace v′

by a 0-gate. Let D′′ be the resulting Decision-DNNF which satisfies that for every inner gate
v, Fv is satisfiable. Note that D ≡ D′ ≡ D′′. The first equivalence is obvious, as copying
some 0-gates or 1-gates does not change the semantics of the circuit. The second equivalence
is due to Lemma 3.11.

For the KCPS
Syn proof we choose the Decision-DNNF D′′ and use F(v) = Fv as labels for

the nodes. Then, D′′ and F meet the conditions (i) - (v) for a KCPS
Syn proof:

(i), D′′ |= φ, is satisfied: (I) ensures that D |= φ and we have D ≡ D′′ by construction.
(ii), for any inner gate v, F(v) is satisfiable, is satisfied by the construction of D′′.

O. Beyersdorff, T. Hoffmann, and K. Kasche 11

(iii), F(r) = φ is satisfied: By construction, we set F(r) = Fr = φ where r is the root of
D′′.
(iv), the requirements for And-gates, are satisfied: Let v′′ be an And-gate in D′′ and
s′′ be a child of v′′. These gates corresponds to some gates v and s in D. Then, F(s) =
Fs = cc(F (v), vars(Ds)) = cc(F(v), vars(Ds)) where we used F(s) = Fs, F(v) = Fv by
construction and (III).
Further, we have to show that vars(F(s)) ∩ vars(F(t)) = ∅ where t is the second child of
v. For that, we need that the C-dec-DNNF proof π is formula-decomposable: With that,
we have ∅ = vars(Fs) ∩ vars(Ft) = vars(F(s)) ∩ vars(F(t)).
Thus, these properties do also hold for D′′.
(v), the requirements for Decision-gates, are satisfied: Let v′′ be a Decision-gate
leading to s′′ in D′′ by w.l.o.g. setting x = 1. Let v, s be the corresponding gates in D.
Then, F(s) = Fs = Fv[x] = F(v)[x]. where we again used F(s) = Fs, F(v) = Fv by
construction and (III). Thus, this property does also hold for D′′.

Therefore, we only have to construct the resolution refutations for the 0-gates to ensure
(vi). Let v be any 0-gate in D′′ and let w be its unique parent with edge e = (w, v). There
are three cases.

Case 1. If F(v) = Fv = Fw|e contains the empty clause, there is nothing to do.
Case 2. Otherwise, it could be the case, that v is not a 0-gate in D′ and we replaced

it because Fv is unsatisfiable. Then, because of (II), we have R = ∅. Further, because of
Lemma 3.11, we have Fv ≡ D′

v, i.e. D′
v has to be unsatisfiable as well. Thus, we can remove

one child for any And-gate in D′
v such that every leaf in D′

v is a 0-gate. The remaining
circuit D′

v has only Decision-gates and 0-gates. Since R = ∅, for every 0-gate v, Fv has
to contain the empty clause. Therefore, D′

v is a binary decision tree that refutes Fv. It is
well-known, that then also a resolution refutation of Fv = F(v) has to exist of size |(D′

v)|.
Case 3. Otherwise, R[lits(w) ∧ le] = R[lits(v)] has to contain the empty clause because of

(V). Let C be a clause in R that is falsified by the assignment α = lits(v), i.e. in R we derive
φ ⊢ C with resolution and C[α] = □. If we restrict every clause in this derivation to α, we
have a derivation ρv for φ[α] ⊢ □. Because of the construction (condition (iv)) of F , we have
φ[α] = Fv ∪X where X is some (potentially empty) set of clauses that is not contained in
Fv any more because of previous And-gates. Thus, vars(Fv) ∩ vars(X) = ∅. If X is empty,
then ρv is the derivation Fv ⊢ □ that we need for (v). Otherwise, v cannot be the root of
D′′ and on the path from r to v according to e, there has to be at least one And-gate. Let
w1, w2, . . . , wk−1 be the set of And-gates on this path. These And-gates partition the circuit
D′′ in subcircuits Dv1 , Dv2 , . . . , Dvk

such that vars(Dvi
) are pairwise disjoint because of

decomposability. W.l.o.g. let vars(Fv) ⊆ vars(D1) and vars(X) ⊆ vars(Dv2) ∪ · · · ∪ vars(Dvk
).

Since R ̸= ∅, (II) ensures that all inner gates are satisfiable, vi are all satisfiable and
in particular Dvi ≡ Fvi because of Lemma 3.11. Therefore, we obtain Fv ⊆ Fv1 and
X = Fv2 ∪ · · · ∪ Fvk

. As Fvi
are satisfiable, let αi ∈ ⟨vars(Fvi

)⟩ be a satisfying assignment of
Fvi

. Then, αX := α2 ∧ · · · ∧ αk is a satisfying assignment of X with vars(αX)∩ vars(Fv) = ∅.
Putting these things together, ρv[αX] is a refutation of φ[α ∧ αX] = Fv = F(v).

Let ρ be the set of ρv for all 0-gates v in D from cases 2 and 3. Since (v) is satisfied
as well, π′ = (D′′,F , ρ) is indeed a valid KCPS

Syn proof. By construction, |D′′| ≤ 2 · |D| and
|ρv| ≤ |D′| (in case 2) or |ρv| ≤ |R| (in case 3) for any 0-gate v. It may happen that we have
to derive very similar derivations ρv over and over again for different 0-gates v which are
handled with a single derivation in R. Thus, the proof size in this simulation is not linear
any more. We can estimate the proof size with |π′| ≤ |π|2. ◀

12 Proof Systems That Tightly Characterise Model Counting Algorithms

▶ Lemma 3.13. Let R be a run of KCAlg
Syn on some CNF φ. Then, the extracted C-dec-DNNF

proof is w.l.o.g. formula-decomposable.

Proof. We use the exact same C-dec-DNNF proof that is extracted in Capelli, Lagniez, and
Marquis [9] and show that this proof is formula-decomposable.

This proof extraction is straightforward, as we use the Decision-DNNFD that is constructed
by the algorithm. The labelling e corresponds to the path the algorithm takes, i.e. an edge
(w, v) is in e, exactly if the algorithm comes from gate w and occurs at gate v for the first
time. Also the set R of learnt clauses is in the proof the exact same from the algorithm.

To show that this extracted proof is formula-decomposable, we have a look at line 12
of KCAlg

Syn. We can observe that when we create an And-gate v, the formula Fv has to
syntactically decompose in formulas with disjoint variables. ◀

With that, we can finally put everything together and prove Theorem 3.7:

Proof of Theorem 3.7. We start by proving that we can extract KCPS
Syn proofs from a solver

run efficiently. For that, we only have to put the results from above together: We first
observe a C-dec-DNNF proof π according to Theorem 3.2. As shown in Lemma 3.13, π is
formula-decomposable. Further, with Lemma 3.12, we can can construct a KCPS

Syn proof from
π efficiently.

For the other direction, i.e. that we can generate solver runs from proofs efficiently, let a
KCPS

Syn proof π for a CNF φ be given. The solver goes through the proof from the top, with
the invariant that at every gate v, F [L] in the solver is F(v) in the proof. On Decision-gates,
it branches on the corresponding variable, and on And-gates it decomposes the formula. If
it hits an already visited gate, it uses a syntactic cache lookup. When we reach a 1-gate, the
corresponding formula has to be tautological, i.e. the empty CNF.

When we reach a 0-gate v, it is labelled with some resolution refutation ρv of the
corresponding formula F(v) = Fv. Let lits(v) be the term containing all literals corresponding
to the decisions that were made in order to get to v. By construction, we have φ[lits(v)] =
Fv ∪X for some formula X which may arises because of And-gates. Therefore, ρv is also a
derivation φ[lits(v)] ⊢ □. By weakening all clauses of ρv with lits(v), we obtain a derivation
φ ⊢ lits(v) =: C, i.e. the solver can learn this clause C and put it into the set R. It can
reproduce the 0-gate in line 9. ◀

A further insight from the proof is that saving learnt clauses in R can give at most
polynomial speed-up. Therefore, from a purely theoretical point of view and ignoring
polynomial overhead, clause saving does not help. For practical purposes, of course, it might
still help to improve performance.

4 KCPS
Syn vs MICE

Next, we compare KCPS
Syn to the existing MICE proof system [18, 4]. We briefly explain MICE

and show that it is weaker than KCPS
Syn. However, we can strengthen MICE by adding a

natural derivation rule. With that rule, the adapted MICE becomes as strong as KCPS
Syn.

4.1 The MICE proof system
The proof lines in MICE are called claims. A claim is a 3-tuple (F,A, c) consisting of a CNF
F , a partial assignment A of vars(F) (called assumption) and a count c. Semantically, in
our definition a claim (F,A, c) says that F [A] has c · 2|vars(F [A])| models. A MICE proof of a

O. Beyersdorff, T. Hoffmann, and K. Kasche 13

CNF φ is a sequence of claims I1, . . . , Ik that are derived with the inference rules in Figure 3
such that the final claim has the form (φ, ∅, c) for some count c. Thus, for the final claim
#φ = c · 2|vars(F)|. As the count c in a correct claim (F,A, c) is determined by F and A, we
sometimes omit it and write (F,A) instead.

Axiom.

(∅, ∅, 1) (Ax)

0-Axiom.

(F,A, 0) (0-Ax)

(A-1) there is a resolution refutation of F [A]

2-Composition.

(F,A ∧ {x = 0}, c1) (F,A ∧ {x = 1}, c2)
(F,A, c1 + c2) (2-Comp)

(C-1) x /∈ vars(A)

Join.

(F1, A1, c1) (F2, A2, c2)
(F1 ∪ F2, A1 ∪A2, c1 · c2) (Join)

(J-1) A1 and A2 are consistent,
(J-2) vars(F1) ∩ vars(F2) ⊆ vars(Ai) for i ∈ {1, 2}.

Extension.

(F1, A1, c1)
(F,A, c1) (Ext)

(E-1) F1 ⊆ F ,
(E-2) A|vars(F1) = A1,
(E-3) A satisfies F \ F1.

Figure 3 Adapted inference rules for MICE, following Beyersdorff, Hoffmann, and Spachmann [4].
Bullet points indicate the conditions under which the rule is applicable.

This is a slight change compared to the prior definition of MICE, but does not materially
impact the proof system. The rules become slightly easier as we get rid of the powers of 2 if
the number of variables in the formula changes. Another small modification in our definition
of MICE concerns the rules (0-Ax) and (2-Comp) which are special cases of a more general
composition derivation rule in Beyersdorff, Hoffmann, and Spachmann [4]. As we use this
slightly adapted version of MICE, we show in the following, that these adaptions do not
change the strength of MICE.

In our version, a MICE claim (F,A, c) states that F [A] has exactly c · 2|vars(F [A])| models,
while in the MICE version from Beyersdorff, Hoffmann, and Spachmann [4], the claim (F,A, c)
states that F [A] has exactly c models. Therefore, in the original (Ext) rule, we can derive

14 Proof Systems That Tightly Characterise Model Counting Algorithms

(F,A, c1 · 2|vars(F)\(vars(F1)∪vars(A))|) from (F1, A1, c1) while in our version, we get rid of the
power of two. It is easy to observe that this modification does not change the strength of the
system.

Further, the original MICE version allows Composition in a more general setting with
several claims while we only have the two restricted rules (0-Ax) and (2-Comp) instead.
Proposition 4.1 shows that also this second modification doesn’t change the system materially.

Composition.

(F,A1, c1) · · · (F,An, cn)
(F,A,

∑
i∈[n] ci)

(Comp)

(C-1) vars(A1) = · · · = vars(An) and Ai ̸= Aj for i ̸= j,
(C-2) A ⊆ Ai for all i ∈ [n]
(C-3) there exists a resolution refutation of A ∪ F ∪ {Ai | i ∈ [n]}. Such a refutation is
included into the trace and is called an absence of models statement.

Figure 4 The original (Comp) inference rule for MICE from Beyersdorff, Hoffmann, and Spach-
mann [4].

▶ Proposition 4.1. The proof system MICE where the derivation rule (Comp) is replaced by
(2-Comp) and (0-Ax) is p-equivalent to MICE.

Note, that a very similar result was already used to show that we can extract a Decision-
DNNF efficiently from a MICE proof [4].

Proof. The fact that the original MICE p-simulates the modified MICE is obvious, as both
(2-Comp) and (0-Ax) are special cases of (Comp).

For the other direction it is sufficient to argue how to simulate the (Comp) rule. For that,
we assume that in a MICE proof π some claim (F,A) is derived with (Comp) using previous
claims (F,A1), (F,A2), . . . , (F,An) and the absence of models statement ρ.

If n = 0, i.e. the (Comp) application does not use any other claims, we can derive (F,A)
with (0-Ax). For the required resolution refutation (A-1) we use ρ.

Otherwise let n ≥ 1. Remember that (C-1) ensures vars(A1) = vars(A2) = · · · = vars(An).
Let V = vars(A) \ vars(A1) and let T be a complete binary decision tree that decides all
variables in V , We associate every node v of T with claim (F,A ∧ αv) where αv is the
assignment corresponding to the path from the root of T to v.

With that, any leaf v of T corresponds to an assignment α ∈ ⟨V ⟩. Every claim from
Ii = (F,Ai) for i ∈ [n] that was used for the (Comp) step, corresponds to a claim (F,A ∧ αv)
for a unique leaf vi. We replace T by the its minimised version that contains only the nodes
vi and the decision nodes in order to get there.

We can estimate the size of the resulting tree T as follows: It has size at most depth
|V | ≤ vars(φ). Further, it has n non-zero leaves and as we removed the unnecessary 0-gates,
the resulting tree has at most n · vars(φ) nodes.

In order to simulate the (Comp) step, we use use exactly the claims from T , listed in a
bottom-up ordering. Next, we argue how to derive these claims from T :

For the claims corresponding to the leaves vi, we have already derived Ii = (F,Ai) as we
wanted to use it for the (Comp) step.

O. Beyersdorff, T. Hoffmann, and K. Kasche 15

For the claims corresponding to an other leaf v, the corresponding claim has to have the
form Iv = (F,A ∧ αv, 0). The count has to be zero, as otherwise, there would exist an
assignment satisfying F , A and none of the Ai. But then the absence of models statement
ρ, used for the (Comp) step, which is a refutation of A ∪ F ∪ {Ai | i ∈ [n]}, could not
exist. We can derive Iv with (0-Ax) by using ρ as proof that the count 0 is indeed correct.
For any other claim, it corresponds to an inner gate v that decides some variable x with
children Ix and Ix that are derived already. Then, we derive the corresponding claim
with (2-Comp) using Ix and Ix.

Therefore, we can simulate the (Comp) rule by using at most n · vars(φ) additional MICE
claims. Further, we may use additional resolution refutations for the applications of (0-Ax).
These cannot be larger than the refutation ρ used for the (Comp) step. Thus, the simulation
of one (Comp) application requires at most n · |vars(φ)| · |ρ| steps. As the π can apply (Comp)
a most n times, the simulation of all (Comp) steps increases the size of the proof at most by
n2 · |vars(φ)| · |ρ|.

◀

4.2 A weakness of MICE
It is already known that there exist formulas with polynomial-size Decision-DNNFs while
any MICE proof needs exponentially many steps [3]. However, it has remained open so
far whether MICE allows for efficient proof logging for current solving techniques. It is
conceivable that #SAT solvers produce Decision-DNNFs that are restricted enough to extract
MICE proofs efficiently. We show that this is not the case, i.e. there exist formulas without
short MICE proofs that state-of-the-art solvers can handle efficiently. This follows from our
results that KCPS

Syn characterises KCAlg
Syn solving (Theorem 3.7), while KCPS

Syn is stronger than
MICE (Theorem 4.3). For the separation we use a variant of the pebbling formulas, well
known in proof complexity:

▶ Definition 4.2 ([3]). Let n be an integer. The formula PEBn has variables wi,j and bi,j

for every i, j ∈ [n] with j ≤ i. PEBn is a CNF defined as follows:

For every i, j ∈ [n− 1], j ≤ i the formula requires that

(wi,j ∨ bi,j)↔ ((wi+1,j ∨ bi+1,j) ∧ (wi+1,j+1 ∨ bi+1,j+1)).

This is expressed using the clauses

C1
i,j = wi+1,j ∨ wi+1,j+1 ∨ wi,j ∨ bi,j ,

C2
i,j = wi+1,j ∨ bi+1,j+1 ∨ wi,j ∨ bi,j ,

C3
i,j = bi+1,j ∨ wi+1,j+1 ∨ wi,j ∨ bi,j ,

C4
i,j = bi+1,j ∨ bi+1,j+1 ∨ wi,j ∨ bi,j ,

C5
i,j = wi+1,j ∨ bi+1,j ∨ wi,j ,

C6
i,j = wi+1,j ∨ bi+1,j ∨ bi,j ,

C7
i,j = wi+1,j+1 ∨ bi+1,j+1 ∨ wi,j ,

C8
i,j = wi+1,j+1 ∨ bi+1,j+1 ∨ bi,j .

For every i, j ∈ [n], j ≤ i there is a clause C9
i,j = bi,j ∨ wi,j.

For every j ∈ [n] there is a clause wn,j ∨ bn,j.

16 Proof Systems That Tightly Characterise Model Counting Algorithms

Next, we provide some intuition for these PEBn formulas. They have nodes Pi,j forming
a pyramidal graph. For each node Pi,j there are two variables wi,j and bi,j . wi,j represents a
white pebble being placed on that node, while bi,j represents a black pebble. The formula
requires each source node to contain a pebble. Every other node needs to contain a pebble if
and only if both its parent nodes contain a pebble. No node can simultaneously contain a
black and a white pebble. Note that the commonly used pebbling formulas require the sink
node P1,1 to contain no pebbles, making the formula unsatisfiable. We omit this requirement
and obtain a formula that is satisfied if and only if each node contains exactly one pebble. It
has 2m models where m is the number of nodes.

Next, we show that these PEBn formulas separate KCPS
Syn and MICE:

▶ Theorem 4.3. The PEBn formulas have KCPS
Syn proofs of size O(n) while any MICE proof

has size at least 2Ω(n).

Before proving this theorem, we show the upper bound for KCPS
Syn:

▶ Lemma 4.4. There are KCPS
Syn proofs of PEBn of size O(n).

The construction we use is actually very similar to the small kcps+ proof of PEBn [3].

Proof. Let L = (N1,1, N2,1, N2,2, N3,1 . . .) be list of all nodes in a top-down sorting. We
construct a Decision-DNNF D as illustrated in Figure 5. In the root, we take the first node
of L and decide its two related variables first. If both variables are true or if both are false,
D leads to a 0-gate. Otherwise, if exactly one of both is true, it leads to some fresh gate v.
We can label v with Fv = PEBn[w1,1, b1,1] because of the symmetry of the pebbling formulas
PEBn[w1,1, b1,1] = PEBn[w1,1, b1,1]. Note that this symmetry holds for more generally, which
is essential for this KCPS

Syn proof: Let α and β be two complete assignments of all variables
belonging to the first k nodes in L such that in both assignments and for every node, exactly
one corresponding variable is set to true. Then, PEBn[α] = PEBn[β]. Thus, from v, we can
do the exact same procedure for the next node in L and continue like that until all nodes are
dealt with.

Next, we describe, how we choose the set ρ of resolution refutations that justifies the
0-gates for (vi). For that, assume that v is a 0-gate that sets wi,j = bi,j for some i, j ∈ [n]. If
both variables are set to 1, we immediately obtain a conflict to clause C9

i,j .
Thus, we only have to consider the case where both variables are assigned to 0, i.e.

(wi,j ∨ bi,j) = 0 meaning that no pebble is placed on node Ni,j . If we consider the subformula
of PEBn with the pyramidal graph with root Ni,j , we obtain a formula that is very similar
to the formula that is used to separate resolution from tree-like resolution for which the
existence of short resolution proofs is known. We construct the resolution proofs completely
analogously as follows: We know that the bottom layer has a pebble on every node. With the
invariant from clauses C1 − C8, we derive that every node on the layer above has a pebble
placed on it. We continue like that until we conclude that the node Ni,j contains a pebble
leading to a contradiction.

Note that for this argumentation it is essential that, on the path to v, we do not decide
any variable corresponding to a node that has a lower layer than Ni,j which is ensured by
the ordering of L. The whole derivation can be done with a resolution proof of size linear in
the number of nodes to consider. We let ρ be the set of all these resolution derivations for
every 0-gate.

We show that the resulting proof (D,F , ρ) is indeed a valid KCPS
Syn proof.

(i), D |= PEBn, is satisfied as it is easy to observe that D is equivalent to PEBn.

O. Beyersdorff, T. Hoffmann, and K. Kasche 17

w1,1 ̸= b1,1?

w2,1 ̸= b2,1? 0

. . . 0

wn,n ̸= bn,n? 0

1 0

Figure 5 Simplified Decision-DNNF representing PEBn that can be used for a KCPS
Syn proof. The

condition wi,j ≠ bi,j is a short notation for deciding both variables separately. Thick lines are used
if the condition is satisfied.

(ii), any gate v that is not a 0-gate cannot have assigned wi,j ≠ bi,j for any node Ni,j

with i, j ∈ [n]. Thus, it is still possible to put exactly one pebble on every node and the
formula F(v) is still satisfiable.
(iii), F(r) = PEBn, is true by construction.
(iv), validity of And-gates, is satisfied as D does not contain any And-gate.
(v), validity of Decision-gates, is satisfied by construction and the invariant of the PEBn

formulas mentioned above.
(vi), validity of 0-gates, is satisfied by construction of ρ.

Thus, the KCPS
Syn upper bound is shown. ◀

With that, we can show the separation:

Proof of Theorem 4.3. The upper bound for KCPS
Syn is shown in Lemma 4.4, while the MICE

lower bound is already known [3]. ◀

Therefore, KCAlg
Syn with perfectly chosen heuristics is able to handle these separating

formulas efficiently while any MICE proof has exponential size.

4.3 Increasing the strength of MICE
Next, we fix this weakness of MICE. As it turns out, this can be done with an additional
simple and natural rule. Recall that a MICE claim (F,A, c) states that the formula F [A] is
satisfied by exactly the fraction c of all models. Therefore, the following rule seems quite
natural: The Reform rule allows to derive claim (F1, A1) from (F,A) if F [A] and F1[A1]
are syntactically equivalent formulas. The formal definition of the (Ref) rule is displayed in
Figure 6. We refer to MICE with the additional (Ref) rule as MICERef. It is easy to verify
that MICERef is still a valid proof system:

▶ Proposition 4.5. MICERef is a sound and complete proof system for #SAT.

18 Proof Systems That Tightly Characterise Model Counting Algorithms

Proof. The completeness of MICERef follows directly from the completeness of MICE. To
show soundness it is sufficient to show that the (Ref) derivation rules is sound. For that, we
have to show that we can only derive correct claims, if we start with a correct one, i.e. let
(F1, A1, c1) be a correct claim and we derive (F,A, c1) from it by applying (Ref). Then, the
derived claim is correct, since c1 = |Mod(F [A])| ·2−|vars(F [A])| = |Mod(F1[A1])| ·2−|vars(F1[A1])|.
Finally, we can verify condition (R-1) efficiently. ◀

Note that for any MICE claim (F,A), we can derive the equivalent claim (F [A], ∅) with
(Ref) and vice versa.

Reform.

(F1, A1, c1)
(F,A, c1) (Ref)

(R-1) F1[A1] and F [A] are syntactically equivalent. That is, they are the exact same
set of clauses after removing weakened clauses.

Figure 6 Additional reform rule for MICE.

Next, we show that this augmented MICE system nicely fits into the bigger picture of
#SAT proof systems as it is equivalent to some other system we already know, namely KCPS

Syn.
Therefore, adding the (Ref) rule avoids the shortcoming of MICE illustrated in Theorem 4.3
and closes the gap between the two systems MICE and KCPS

Syn.

▶ Theorem 4.6. MICERef is p-equivalent to KCPS
Syn.

We prove the two directions in Lemmas 4.7 and 4.9.

▶ Lemma 4.7. MICERef p-simulates KCPS
Syn with only linear increase of size.

Proof. Let π = (D,F , ρ) be a KCPS
Syn proof of CNF φ and let v1, . . . , vn be a list of all gates

in D sorted topologically bottom-up. For every subcircuit Dvi , we define the associated
MICE claim Ii = (F(vi), ∅). We show by induction that we can derive Ik from I1, . . . , Ik−1
efficiently. For that we distinguish, what kind of gate vk is.

Case 1. vk is an 1-gate. Then, F(vk) has to be a tautology. Since it is also a CNF, it has
to be the empty CNF. We can derive Ik = (∅, ∅, 1) with (Ax).

Case 2. vk is a 0-gate. Then, F(vi) is unsatisfiable and we can derive Ik with a single
application of (Comp) without using other claims. The absence of models statement is the
resolution refutation of F(vk) which has to be in ρ.

Case 3. vk is an And-gate. Let vi and vj with i, j < k be its children. By the induction
hypothesis we have already derived claims (F(vi), ∅) and (F(vj), ∅). By construction of the
formulas F in (iv), vars(F(vi)) and vars(F(vj)) have to be disjoint, i.e. we can apply (Join)
to these two claims which results in (F(vi) ∪ F(vj), ∅) = (F(vk), ∅) by construction of the
connected component.

Case 4. vk is a Decision-gate that leads with literal l to gate vi and l to vj with i, j < k.
By the induction hypothesis we have already derived claims (F(vi), ∅) and (F(vj), ∅). By
construction F(vk)[l] = F(vi) and we can derive (F(vk), {l}) with (Ref) from (F(vi), ∅) and
similarly (F(vk), {l}) from (F(vj), ∅). We obtain Ivk

= (F(vk), ∅) by applying (Comp) to
these two claims with a trivial absence of model statement that performs a single resolution
step over l.

O. Beyersdorff, T. Hoffmann, and K. Kasche 19

This completes the induction. Since vn is the root of D, we have derived the claim
In = (F(vn), ∅) = (φ, ∅). The resulting MICE proof π′ has a claim for every gate in D and
some two additional claims for every decision gate that occurs. Thus, |π′| ≤ 3 · |π|. ◀

For the other simulation we first observe that the (Ref) rule is a generalisation of (Ext).
▶ Observation 4.8. Let π be a MICERef proof of some formula φ. Then, φ has a MICERef
proof π′ that does not use (Ext) and with |π′| = |π|.

Further, we want to point out, that Proposition 4.1 naturally also holds for MICERef, i.e.
we can assume that any MICERef proof does only use (0-Ax) and (2-Comp) instead of (Comp).

▶ Lemma 4.9. KCPS
Syn p-simulates MICERef.

Proof. Let π = I1, . . . , In with Ii = (Fi, Ai) be a MICERef proof of φ. Because of Pro-
position 4.1, we can assume that π does not use (Comp), but only (0-Ax) and (2-Comp)
instead. We inductively construct a circuit D out of labelled nodes ni, along with resolution
derivations ρi, so that the subtree of ni together with ρi is a valid KCPS

Syn proof of Fi[Ai]. We
start with ρ0 = ∅. We maintain the additional invariant I that a node deciding a variable x
cannot occur at or below a node v with x /∈ vars(Fi(v)).

When adding a node nk to the circuit, we distinguish how claim Ik is derived.
Case 1. Ik is derived with (Ax), i.e. Ik = (∅, ∅, 1). We let nk be a 1-gate and set F(nk) = ∅,

ρk = ρk−1. I is satisfied trivially.
Case 2. Ik is derived with (0-Ax) using some resolution refutation ρ, i.e. Fk[Ak] is

unsatisfiable. Then, nk is a 0-gate. We set F(nk) = Fk[Ak] and ρk = ρk−1 ∪ ρ. I is satisfied
trivially.

Case 3. Ik is derived with (2-Comp) using the two claims Ii = (Fk, Ak ∧ x) and
Ij = (Fk, Ak ∧ x) with i, j < k. By the induction hypothesis, we have already constructed
nodes ni, nj representing Fk[Ak∧x] and Fk[Ak∧x]. If x /∈ vars(Fk), then Fk[Ak] = Fk[Ak∧x]
and we can set nk = nj . This is equivalent to case 5. In the following, we assume that
x ∈ vars(Fk), satisfying I. We let nk be a Decision-gate that leads to ni if x = 0 and to nj

if x = 1. Note that this Decision-gate is indeed allowed in a Decision-DNNF: The variable x
cannot be decided later again due to invariant I, because neither Fk[Ak ∧ x] nor Fk[Ak ∧ x]
contain the variable x. We set F(nk) = Fk[Ak]. Further, ρk = ρk−1.

Case 4. Ik is derived with (Join) using claims Ii = (Fi, Ai) and Ij = (Fj , Aj) with i, j < k.
By the induction hypothesis, we have already constructed nodes ni, nj representing Fi[Ai] and
Fj [Aj]. We let nk be an And-gate with the two children ni and nj . First, we show that this
And-gate is indeed decomposable: By (J-2) of (Join), we have vars(Fi)∩vars(Fj) ⊆ vars(Ai)∩
vars(Aj) and therefore, vars(Fi[Ai]) ∩ vars(Fj [Aj]) = ∅. Since vars(Dni

) ⊆ vars(Fi[Ai]) and
vars(Dnj

) ⊆ vars(Fj [Aj]), we obtain vars(Dni
) ∩ vars(Dnj

) = ∅.
As in the previous case, we set F(nk) = Fk[Ak] and ρk = ρk−1. The invariant I is

unchanged.
Case 5. Ik is derived with (Ref) from Ii = (Fi, Ai) with i < k. By the induction

hypothesis, we have already constructed ni. Since Fk[Ak] = Fi[Ai], we can simply set
nk = ni. I is unchanged.

This completes the induction, as In = (φ, ∅), so π′ = (D,F , ρn) is a KCPS
Syn proof of φ. D

has at most one gate for every MICE claim, i.e. |π′| ≤ |π|. ◀

5 Semantic caching

With a closer look at algorithm KCAlg
Syn a natural optimisation springs to mind: improve

caching from a purely syntactic approach to a more semantic one. Although it is not obvious

20 Proof Systems That Tightly Characterise Model Counting Algorithms

how to do that efficiently in practice, we will investigate this question from a theoretical point
of view. That is, we can increase the strength of both KCPS

Syn and MICERef very naturally if
we allow semantic caching and reforming instead of requiring syntactic equivalence of the
formulas involved. However, we have to provide some kind of proof for this equivalence.

We start with the formal definitions of the systems.

▶ Definition 5.1 (KCPS
Sem). KCPS

Sem is a variant of KCPS
Syn where conditions (iii), (iv) and (v)

are relaxed: syntactic equality of formulas is replaced by semantic equivalence. For each case
where formulas F and G are equivalent, resolution refutations of F ∧G as well as G ∧ F are
additionally required.

Semantic Reform.

(F1, A1, c1)
(F,A, c1) (Ref-Sem)

(R-1) The MICE proof contains a proof that F1[A1] and F [A] are semantically equivalent.
That is, there is a resolution refutation of F1[A1∧C] for every C ∈ F [A] and of F [A∧C1]
for every C1 ∈ F1[A1].

Figure 7 Additional semantic reform rule for MICE.

Before investigating KCPS
Sem, we argue that it is indeed a proof system:

▶ Proposition 5.2. MICERef-Sem is a sound and complete proof system for #SAT.

Proof. The proof is analogously to the proof that KCPS
Syn is a proof system in Proposition 4.5.

The only difference is that in the syntactic version, the check F1[A1] = F [A] was trivial.
To verify that these two formulas are semantically equivalent is a hard problem in general.
However, the provided resolution refutations for (R-1) proving exactly this invariant. Thus,
we only have to verify that all required resolution refutations are given and correct. ◀

Algorithm KCAlg
Sem is defined similarly to KCAlg

Syn. The main difference is that the cache
lookup in Line 10 uses a semantic cache that can also return entries that are different from,
but semantically equivalent to F . Further, a formula F is considered decomposable if it is
semantically equivalent to

∧k
i=1 Fi with k ≥ 2 and variable-disjoint formulas Fi, which is

checked by line 12.
How to implement such a semantic cache efficiently is non-trivial and beyond the scope

of this paper. However, we assume that such an implementation would use a heuristic to
decide whether to check two formulas for equivalence using a SAT solver.

In the non-deterministic algorithm KCAlg
Sem we can therefore assume that the only costs

are for successful cache lookups. When looking up F and finding G, this cost is the length of
resolution refutations of both F ∧G and G ∧ F .

▶ Theorem 5.3. KCAlg
Sem is characterised by KCPS

Sem (in the same formal sense as in The-
orem 3.7).

Proof. This is nearly equivalent to Theorem 3.7. For extracting a KCPS
Sem proof from a

solver run, we observe that Theorem 3.2 and Lemmas 3.12 and 3.13 work equivalently in
the semantic case. We first extract a C-dec-DNNF proof π according to Theorem 3.2. We
use Lemma 3.13, to see that π is formula-decomposable, and use Lemma 3.12 to construct a
KCPS

Sem proof π′ efficiently.

O. Beyersdorff, T. Hoffmann, and K. Kasche 21

For generating solver runs from proofs, the solver goes through the proof from the top. On
Decision-gates, it branches on the corresponding variable, and on And-gates it decomposes
the formula. If it hits an already visited gate, it uses a semantic cache lookup. If the formula
F is changed to a semantically equivalent version G after a Decision-gate, the solver does
not mirror that change and continues with the old version until the next And-gate or 0-gate.
At this point, the solver has a formula F [α] and the proof has G[α], where α is the partial
assignment from the intermediate decision nodes. A resolution proof of F [α] ≡ G[α] can
be obtained by restricting the resolution proof of F ≡ G. At an And-gate, since G[α] is
decomposable, F [α] must also be semantically decomposable. At a 0-gate, F [α] ≡ G[α] and
G[α] |= ⊥ can be combined into a refutation of F [α]. ◀

We now strengthen MICE and define MICERef-Sem as MICE augmented by the rule (Ref-
Sem) in Figure 7. These semantic variants are natural generalisations of KCPS

Syn and MICERef.
As in Theorem 4.6, the two systems are of equal strength despite their different approaches:

▶ Theorem 5.4. MICERef-Sem and KCPS
Sem are p-equivalent.

Proof. Both simulations are very similar to the corresponding one of the syntactic variants
in Lemmas 4.7 and 4.9. Proposition 4.1 holds equivalently in the semantic case.

For the direction that KCPS
Sem p-simulates MICERef-Sem, we assume w.l.o.g. that no two

consecutive (Ref-Sem) steps occur in the MICERef-Sem proof. Each reform step from (F1, A1)
to (F2, A2) is not represented in the Decision-DNNF. Instead, the nodes on either side are
connected directly, and the proof that F1[A1] ≡ F2[A2] is used to justify the change of
formula.

For the other simulation, MICERef-Sem p-simulates KCPS
Sem, we only need to handle the

case when formulas are semantically, but not syntactically, equivalent. In this case, we add a
(Ref-Sem) step that converts one representation into the other. The required resolution proof
for this semantical equivalence has to be provided in the KCPS

Sem proof as well and we can
just copy it. ◀

To put some perspective on the strength of KCPS
Sem we compare it to the proof system

CPOGDecision-DNNF [6, 3]:

▶ Definition 5.5 (Bryant et al. [6], Beyersdorff et al. [3]). A CPOGDecision-DNNF proof of a CNF
φ is a pair (E(D), ρ) where

1. D is a Decision-DNNF with root R and E(D) a clausal encoding of D such that D ≡ φ,
2. ρ is a resolution refutation of φ ∧ E(D) ∧ (ϑR).

Conceptually, a CPOGDecision-DNNF proof for a CNF φ consists of a Decision-DNNF D

together with a resolution proof showing that φ |= D. The other entailment D |= φ is easy
to check by Theorem 2.1. In the following two propositions we show that KCPS

Sem is almost as
strong CPOGDecision-DNNF.

▶ Proposition 5.6. CPOGDecision-DNNF p-simulates KCPS
Sem.

Proof. Let π = (D,F , ρ) be a KCPS
Sem proof of some CNF φ. For the proof of the lemma we

construct a CPOGDecision-DNNF proof πCPOG with the exact same Decision-DNNF D and its
straightforward encoding E(D).

Thus, we only have to extract a resolution refutation of φ ∧ E(D) ∧ (vR) from π. Let
v1, v2, . . . , vn be a bottom-up listing of all gates in D. We inductively build resolution
refutations ψi for F(vi) ∧ E(Dvi

) ∧ (vi). For that, we distinguish what kind of a gate vi is.

22 Proof Systems That Tightly Characterise Model Counting Algorithms

Case 1. vi is an 1-gate. Then, E(Dvi) contains the clause (vi), and ψi can do a single
resolution step together with the clause (vi).

Case 2. vi is a 0-gate. By definition of the KCPS
Sem proof system, ρ has to contain a

resolution refutation of F(vi), which we can use as ψi.
Case 3. vi is a Decision-gate which leads to vs if x = 0 and vt if x = 1 with s, t < i. We

first consider the situation for x = 0. E(Dvi
) has to encode that if x, then vs = vi. For that,

it contains the clauses (x ∨ vs ∨ vi) and (x ∨ vs ∨ vi). By the induction hypothesis, we have
already a resolution refutation ψs of

F(vs) ∧ E(Dvs) ∧ (vs).

However, we know that F(vs) ≡ F(vi)[x] by rule (III), and the proof of equivalence contains
resolution refutations for F(vi)[x] ∧ C for every clause C ∈ F(vs). By weakening each of
these by C, we obtain a derivation of F(vs) from F(vi)[x] that we can combine with the
earlier refutation to obtain a refutation of

F(vi)[x] ∧ E(Dvs
) ∧ (vs) = F(vi)[x] ∧ E(Dvs

) ∧ (x ∨ vs)[x].

If we remove the restrictions x in this refutation, we can use it to derive the clause (x):

F(vi) ∧ E(Dvs) ∧ (x ∨ vs) ⊢ (x).

As we can derive (x ∨ vs) with a single resolution step over (x ∨ vs ∨ vi) and (vi), and since
E(Dvs

) ⊆ E(Dvi
), we can derive

F(vi) ∧ E(Dvi) ∧ (vi) ⊢ (x).

With the analogous procedure, we can also derive (x) using ψt. Finally, we do a resolution
step over (x) and (x) to obtain the empty clause. The whole resulting refutation ψi has size
|ψi| = |ψs|+ |ψt|+ 3.

Case 4. vi is an And-gate with children vs and vt with s, t < i. By definition, we
have E(Dvi) = E(Dvs) ∪ E(Dvt) ∪ {(vi ∨ vs), (vi ∨ vt), (vi ∨ vs ∨ vt)}. ψi has to refute
F(vi) ∧ E(Dvi

) ∧ (vi). However, we know that F(vi) ≡ F(vs) ∧ F(vt) by rule (III), and the
proof of equivalence contains resolution refutations for F(vs) ∧ F(vt) ∧ C for every clause
C ∈ F(vi). By weakening each of these by C, we obtain a derivation of F(vr) from F(vi)[x]
so we can derive

F(vi) ∧ E(Dvi
) ∧ (vi)

⊢ F(vs) ∧ F(vt) ∧ E(Dvi
) ∧ (vi)

= F(vs) ∧ F(vt) ∧ E(Dvs
) ∧ E(Dvt

) ∧ (vi ∨ vs) ∧ (vi ∨ vt) ∧ (vi ∨ vs ∨ vt) ∧ (vi).

By removing some unnecessary clauses and do a resolution step over the last two clauses, we
can derive

F(vi) ∧ E(Dvi
) ∧ (vi) ⊢ F(vs) ∧ F(vt) ∧ E(Dvs

) ∧ E(Dvt
) ∧ (vs ∨ vt).

By the induction hypothesis, we have ψs refuting F(vs) ∧ E(Dvs
) ∧ (vs) and ψt refuting

F(vt) ∧ E(Dvt
) ∧ (vt). Thus, we can apply ψs where we use the clause (vs ∨ vt) instead of

(vs) to derive (vt) instead of the empty clause. Finally, we can apply ψt to derive the empty
clause. The whole resulting refutation ψi has size |ψi| = |ψs|+ |ψt|+ 1. ◀

O. Beyersdorff, T. Hoffmann, and K. Kasche 23

The other direction remains open. The main problem seems to be that CPOGDecision-DNNF

can introduce helper variables that could potentially shorten proofs. For instance, it is
easy to show that PHP is hard for KCPS

Sem, but this appears to be a non-trivial result for
CPOGDecision-DNNF. However, if we replace the underlying proof system resolution by extended
resolution, we can prove the simulation.

In extended resolution (ER) we add an additional rule to resolution that allows us to
introduce fresh extension variables abbreviating arbitrary formulas [30, 13]. Its strength
is illustrated by the fact that ER is polynomially equivalent to very powerful systems like
extended Frege [21]. In particular, no exponential lower bounds are known for ER.

▶ Proposition 5.7. KCPS
Sem with extended resolution p-simulates CPOGDecision-DNNF.

Proof. Let (E(D), ρ) be a CPOGDecision-DNNF proof of a CNF φ. We call a gate v ∈ D

satisfiable if Dv is satisfiable. We first take the Decision-DNNF D and transform it into
an equivalent Decision-DNNF D′ where every inner gate is satisfiable, by replacing each
unsatisfiable inner gate with a 0-gate. We will use this Decision-DNNF D′ and build a formula
F (g) for each gate g. We will also build the necessary ER proofs for the equivalence of
formulas, as well as ER refutations for F (g) if g is a 0-gate.

For every non-root gate g in D′ we arbitrarily pick one ancestor a(g). We recursively
define F (g) and Fb(g) for any ancestor b of g, as follows:

For the root r, F (r) = φ.
For any other gate g, F (g) = Fa(g)(g).
If b is a Decision-gate that leads to g on x = b, then Fb(g) = F (b)[x = b].
If b is an And-gate with other child h, because it is an inner node, it has to be satisfiable,
so g and h are satisfiable. Pick a satisfying assignment α of h and extend it arbitrarily on
vars(F (b)) \ vars(Dg). Set Fb(g) = F (b)[α]; this way it only contains variables in vars(Dg).

This recursively guarantees that Fb(g) ≡ Dg. Next, we will build proofs for this. To prove
that F (g)→ Dg, we will build an ER refutation of F (g) ∧ E(Dg) ∧ g. (The other direction,
Dg → F (g), is trivial and always has a short resolution proof.)

We recursively build these refutations in a top-down fashion. For the root gate, the
refutation is already part of the CPOGDecision-DNNF proof. For a non-root gate g in D′ with
ancestor a and sibling h, we already have a refutation of F (a) ∧ E(Da) ∧ a.

If a is a Decision-gate leading to g if the literal x is satisfied, then E(Da) = E(Dg) ∧
E(Dh)∧ (x∨ g ∨ a)∧ (x∨ g ∨ a)∧ (x∨ h∨ a)∧ (x∨ h∨ a). We restrict the refutation to x∧ a
and obtain a refutation of F (a)[x]∧E(Da)[x, a] = Fa(g)∧E(Dg)∧ g∧E(Dh). By introducing
the variables of E(Dh) as auxiliary variables, this can be turned into an ER refutation of
Fa(g) ∧ E(Dg) ∧ g.

If a is an And-gate, then E(Da) = E(Dg)∧E(Dh)∧(a∨g∨h)∧(a∨g)∧(a∨h). We reuse the
assignment α satisfying Dh that was used to define Fa(g), so that Fa(g) = F (a)[α]. Let β be
the assignment to the variables in Dh, setting each auxiliary variable is set to the value implied
by α. Notably, β(h) = 1, and vars(β) ∪ vars(Dg) = ∅. We restrict the refutation to α ∧ β ∧ a
and obtain a refutation of F (a)[α]∧E(Da)[α, β, a] = Fa(g)∧E(Dg)[α, β, a]∧g∧E(Dh)[α, β] =
Fa(g) ∧ E(Dg) ∧ g.

Using these proofs, we can build a proof of equivalence for each F (g) and Fa(g). We
focus on F (g) → Fa(g), the other direction works analogously. From above, we have ER
refutations of F (g)∧E(Dg)∧g, as well as of C ∧E(Dg)∧ g for every C ∈ Fa(g). The first can
be turned into a derivation of F (g) ∧ E(Dg) ⊢ g. We introduce E(Dg) as auxiliary variables
and combine it with one of the other refutations to obtain an ER refutation of F (g) ∧ C for
every C ∈ Fa(g), which is precisely a proof of F (g)→ Fa(g).

24 Proof Systems That Tightly Characterise Model Counting Algorithms

Finally, if g′ is a 0-gate in G′ then the corresponding gate g in G is unsatisfiable. We have
a refutation of F (g)∧E(Dg)∧ g. However, since g is unsatisfiable, there is a trivial resolution
derivation of E(Dg) ⊢ g: a gate is unsatisfiable only it is either a 0-gate, a Decision-gate
with two unsatisfiable children, or an And-gate with at least one unsatisfiable child. The
resolution derivation can be built trivially from the bottom-up. Using this, we obtain an
ER refutation of F (g) ∧ E(Dg). By adding E(Dg) as auxiliary variables we obtain an ER
refutation of F (g). ◀

Thus, for a CNF φ and any Decision-DNNF D ≡ φ, we can use D for a KCPS
Sem proof,

i.e. KCPS
Sem is flexible enough to work with arbitrary Decision-DNNFs, a result that does not

necessarily hold for the weaker system KCPS
Syn.

6 Relations to other #SAT proof systems

So far, we investigated how the new proof systems KCPS
Syn and KCPS

Sem are related to MICE
and CPOGDecision-DNNF. In this section want to provide the bigger picture of all #SAT proof
systems that exist so far. The resulting simulation order is given in Figure 8 for which we
provide some more details in the remainder of this section.

CLIP

CPOG

CPOGDecision-DNNF

MICERef-Sem ≡ KCPS
Sem

MICERef ≡ KCPS
Syn

MICE

C-dec-DNNF kcps+

kcps/

/

/

Figure 8 Detailed simulation order of all current #SAT proof systems. A solid edge from A to B

indicates that A p-simulates B. If the edge is crossed, A is also exponentially separated from B.

We give some intuition and the definitions of the proof systems kcps and its improved
version kcps+ [8, 3]. The main idea is similar to CPOGDecision-DNNF: We want to provide a
Decision-DNNF D that represents exactly the CNF φ we want to count on. While D |= φ

can always be checked efficiently, φ |= D is in general NP-hard. Thus, kcps and kcps+ use
some restricted and annotated Decision-DNNFs where this check becomes easy.

For the formal definition, let S be a set of clauses. We call a Decision-DNNF D S-certified
[8] if every 0-gate N ∈ D is labelled by a certificate C ∈ S. Here, a clause is a certificate for
N if all assignments that reach N falsify C.

▶ Definition 6.1 ([8]). A kcps proof of a CNF φ is a φ-certified Decision-DNNF D where
D ≡ φ.

▶ Definition 6.2 ([8, 3]). A kcps+ proof of a CNF φ is a pair (σ,D) where

O. Beyersdorff, T. Hoffmann, and K. Kasche 25

1. σ is a resolution derivation starting from the clauses in φ and
2. D is a σ-certified Decision-DNNF (i.e. all clauses labelling the 0-gates in D are derived

in σ) such that D ≡ φ.

As C-dec-DNNF can be seen as an improved and stronger version of these systems, the
following result is not surprising:

▶ Proposition 6.3. KCPS
Sem p-simulates kcps+.

Proof. Let π = (σ,D) be a kcps+ proof for a CNF φ. We construct a KCPS
Sem proof from π

that uses the same Decision-DNNF D. We put an arbitrary spanning tree T on D and define
CNFs F in a top-down fashion according to T starting with F(r) = φ. By the correctness of
the kcps+ proof system we can w.l.o.g. assume that any node v ∈ D satisfies Dv ≡ F(v).

Further, we assume w.l.o.g. that for any inner gate v ∈ D, F(v) is satisfiable. If this
would not be the case, F(v) would be unsatisfiable and Dv would be a kcps+ proof that F(v)
is unsatisfiable. However, it is known that, on unsatisfiable formulas, kcps+ is p-equivalent
to resolution [3]. Thus, we can replace v by a 0-gate and can also efficiently derive a clause
that can be used as annotation for this 0-gate.

With that, condition (i) is satisfied as D ≡ φ by correctness of kcps+. (ii), inner gates
are satisfiable, is satisfied by the construction of D above. (iii), F(r) = φ, is satisfied by the
construction of F .

For (vi), we argue how to build the resolution refutations for the 0-gates: Let v ∈ D be
0-gate and let αv be the unique path from the root to v according to T . Further, let Cv be
the clause that v is annotated with and let ρv be the resolution derivation φ ⊢ Cv in σ. By
restricting ρv, we obtain a derivation φ[αv] ⊢ Cv[αv] = □ as αv falsifies Cv by the definition
of a kcps+ proof. With the same argumentation from the proof of Lemma 3.12, we have
φ[αv] = F(v) ∪Xv for some formula Xv with vars(F(v)) ∩ vars(Xv) = □ which is formed
by previous And-gates. Also, as in the other proof, there has to exist some assignment
αXv that satisfies Xv such that ρv[αv ∧ αXv] is a derivation F(v) ⊢ □. Let the set ρ of
resolution refutations for (vi) contain all these restricted refutations ρv[αv ∧ αXv

] for every
0-gate v ∈ D.

Finally, for (iv) and (v), we have to construct the resolution refutations to show the
semantical equivalences. For that, consider some gate v ∈ D and let Pv be the canonical path
from the root r to v according to T and let P ′

v be a different path from r to v. By construction,
if we compute F according to P , we obtain F(v). Let FP ′

v
be the formula that would result,

if we would have computed F according to P ′
v instead. Because of F(v) ≡ Dv ≡ FP ′

v
, F(v)

and FP ′
v

are indeed semantically equivalent. In fact, we can show this equivalence efficiently
with resolution by exploiting Theorem 2.1. This theorem states that we can verify both
Dv |= FP ′

v
and Dv |= F(v) efficiently and it is not too difficult to observe that this can be

done in resolution efficiently as well. These two statements together ensure F(v) ≡ FP ′
v
.

Additionally, for (iv), we have to make sure that for any And-gate v with children s and
t, we have to make sure that vars(F(s)) ∩ vars(F(t)) = ∅. This follows from the fact that v
has to be decomposable, i.e. vars(Ds) ∩ vars(Dt) = ∅ and F(s) ≡ Ds, F(t) ≡ Dt.

With that, (D,F , ρ) is indeed a valid KCPS
Sem proof for φ. ◀

Next, we give a brief introduction to CPOG [6] which is a more powerful variant of
CPOGDecision-DNNF where we do not restrict ourselves to Decision-DNNFs but allow Partitioned-
Operation Graphs (POGs) that are circuits with decomposable And-gates, deterministic
Or-gates and Not-gates. That is, POGs seems to be the most powerful generalisation of
Decision-DNNFs such that we can still count on them efficiently.

26 Proof Systems That Tightly Characterise Model Counting Algorithms

▶ Definition 6.4. A CPOG proof of a CNF φ is a 4-tuple (E(P), ρ, ψ,X) where

1. P is a POG with root R such that P ≡ φ and E(P) is a clausal encoding of P ,

2. ρ is a proof for φ |= P , i.e., ρ is a resolution refutation of E(P) ∧ φ ∧ (ϑR),

3. ψ is a proof for P |= φ, i.e., ψ contains a resolution refutation of E(P) ∧ (ϑR) ∧ C for
every clause C ∈ φ,

4. X is a set of proofs verifying that all Or-gates of P are deterministic, i.e., X is a set of
resolution refutations such that for any Or-gate N , X contains a resolution refutation of
E(P) ∧ (ϑN1) ∧ (ϑN2), where N1 and N2 are the two child gates of N .

Finally, the strongest system for #SAT we have so far is CLIP. While all other systems
are motivated from a practical point of view, CLIP is a system for purely theoretical interests.
For a formal definition, we refer to Chede, Chew, and Shukla [11], where it is also shown
that CLIP p-simulates CPOG which we used for Figures 8.

With that, we obtain the full picture of the current proof systems for #SAT displayed in
Figure 8.

7 Conclusion

While Figure 8 from the previous section gives an overview of the whole landscape of #SAT
proof system, we want to conclude by giving some perspectives on what, in our opinion, the
most relevant proof systems are.

We advocate the view that the right formulation of MICE is to include the (Ref) rule,
which was simply missing in the original definition. This is confirmed by (1) the fact that
MICERef is equivalent to KCPS

Syn, thus leading to a very robust characterisation of the strength
of this proof system and (2) its equivalence to state-of-the-art model counting, which was
the precise original motivation for the introduction of MICE [18].

All of kcps, kcps+ and C-dec-DNNF were suggested as #SAT proof systems close to solvers.
In view of Theorem 3.7, we believe that KCPS

Syn (which is conceptually close to all the three
systems mentioned) is the right answer, further confirmed by the equivalence to MICERef.
Aesthetically, however, kcps+ is more pleasing as its definition is simpler, hence kcps+ could
have theoretical interest.

Further, KCPS
Sem is almost as strong as CPOGDecision-DNNF. For both systems, we can use ar-

bitrary Decision-DNNFs to represent the formula on which we count. Should CPOGDecision-DNNF

be stronger, then only for propositional reasons, because when changing the underlying
proof system from resolution to extended resolution, they become equivalent. Thus, the two
systems appear to be quite close to each other (with KCPS

Sem potentially being the better
choice).

Finally, CLIP [11] is a theoretically elegant, but very powerful proof system, far beyond
current solving techniques or proof logging needs.

Thus, in our view, the emerging picture of the most relevant #SAT proof systems together
with their potential for solving can be displayed as in Figure 9.

O. Beyersdorff, T. Hoffmann, and K. Kasche 27

CLIP

CPOG

MICERef-Sem ≡ KCPS
Sem

MICERef ≡ KCPS
Syn

purely theoretical

proof logging

potentially interesting for solving: KCAlg
Sem

state-of-the-art for solving: KCAlg
Syn

Figure 9 The most relevant proof systems for #SAT (left) and their usage/potential for solving
(right).

All simulations from Figure 9 are proven, and we also conjecture that all systems can in
fact be separated.

The separation of KCPS
Syn and KCPS

Sem appears to be of particular interest, as this would
provide insights on whether semantic caching could potentially improve practical model
counting.

References

1 Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and complexity results
for #SAT and Bayesian inference. In FOCS 2003, pages 340–351. IEEE Computer Society,
2003.

2 Teodora Baluta, Zheng Leong Chua, Kuldeep S. Meel, and Prateek Saxena. Scalable quantit-
ative verification for deep neural networks. In ICSE 2021, pages 312–323. IEEE, 2021.

3 Olaf Beyersdorff, Johannes Klaus Fichte, Markus Hecher, Tim Hoffmann, and Kaspar Kasche.
The relative strength of #sat proof systems. In SAT ’24, volume 305 of LIPIcs, pages 5:1–5:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/
LIPIcs.SAT.2024.5, doi:10.4230/LIPICS.SAT.2024.5.

4 Olaf Beyersdorff, Tim Hoffmann, and Luc Nicolas Spachmann. Proof complexity of pro-
positional model counting. J. Satisf. Boolean Model. Comput., 15(1):27–59, 2024. URL:
https://doi.org/10.3233/sat-231507, doi:10.3233/SAT-231507.

5 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications. IOS Press, 2021.

6 Randal E. Bryant, Wojciech Nawrocki, Jeremy Avigad, and Marijn J. H. Heule. Certified
knowledge compilation with application to verified model counting. In SAT’23, volume 271,
pages 6:1–6:20, 2023. doi:10.4230/LIPIcs.SAT.2023.6.

7 Florent Capelli. Understanding the complexity of #sat using knowledge compilation. In
LICS’17, pages 1–10, 2017. doi:10.1109/LICS.2017.8005121.

8 Florent Capelli. Knowledge compilation languages as proof systems. In SAT’19, volume 11628,
pages 90–99, 2019. doi:10.1007/978-3-030-24258-9_6.

9 Florent Capelli, Jean-Marie Lagniez, and Pierre Marquis. Certifying top-down decision-dnnf
compilers. In AAAI ’21, pages 6244–6253, 2021. URL: https://doi.org/10.1609/aaai.
v35i7.16776, doi:10.1609/AAAI.V35I7.16776.

10 Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Approximate model counting.
In Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence
and Applications, pages 1015–1045. IOS Press, 2021. doi:10.3233/FAIA201010.

https://doi.org/10.4230/LIPIcs.SAT.2024.5
https://doi.org/10.4230/LIPIcs.SAT.2024.5
https://doi.org/10.4230/LIPICS.SAT.2024.5
https://doi.org/10.3233/sat-231507
https://doi.org/10.3233/SAT-231507
https://doi.org/10.4230/LIPIcs.SAT.2023.6
https://doi.org/10.1109/LICS.2017.8005121
https://doi.org/10.1007/978-3-030-24258-9_6
https://doi.org/10.1609/aaai.v35i7.16776
https://doi.org/10.1609/aaai.v35i7.16776
https://doi.org/10.1609/AAAI.V35I7.16776
https://doi.org/10.3233/FAIA201010

28 Proof Systems That Tightly Characterise Model Counting Algorithms

11 Sravanthi Chede, Leroy Chew, and Anil Shukla. Circuits, proofs and propositional model
counting. In FSTTCS ’24, volume 323 of LIPIcs, pages 18:1–18:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2024.18,
doi:10.4230/LIPICS.FSTTCS.2024.18.

12 Stephen A. Cook. The complexity of theorem proving procedures. In Proc. 3rd Annual ACM
Symposium on Theory of Computing, pages 151–158, 1971.

13 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

14 Adnan Darwiche. Compiling knowledge into decomposable negation normal form. In IJCAI’99,
pages 284–289, 1999. URL: http://ijcai.org/Proceedings/99-1/Papers/042.pdf.

15 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. JAIR, 17:229–264, 2002.
doi:10.1613/jair.989.

16 Leonardo Dueñas-Osorio, Kuldeep S. Meel, Roger Paredes, and Moshe Y. Vardi. Counting-
based reliability estimation for power-transmission grids. In AAAI 2017, pages 4488–4494.
AAAI Press, 2017.

17 Johannes K. Fichte, Markus Hecher, and Florim Hamiti. The model counting competition
2020. JEA, 26(1):1–26, 2021. doi:10.1145/3459080.

18 Johannes Klaus Fichte, Markus Hecher, and Valentin Roland. Proofs for propositional model
counting. In SAT’22, volume 236, pages 30:1–30:24, 2022. doi:10.4230/LIPIcs.SAT.2022.30.

19 Jinbo Huang and Adnan Darwiche. The language of search. J. Artif. Intell. Res., 29:191–219,
2007.

20 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27. 2012.
doi:10.1007/978-3-642-24508-4.

21 Jan Krajíček. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60 of
Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge,
1995.

22 Jean-Marie Lagniez and Pierre Marquis. An improved decision-dnnf compiler. In IJCAI
’17, pages 667–673. ijcai.org, 2017. URL: https://doi.org/10.24963/ijcai.2017/93, doi:
10.24963/IJCAI.2017/93.

23 Anna L. D. Latour, Behrouz Babaki, Anton Dries, Angelika Kimmig, Guy Van den Broeck, and
Siegfried Nijssen. Combining stochastic constraint optimization and probabilistic programming
- from knowledge compilation to constraint solving. In CP 2017, volume 10416, pages 495–511.
Springer, 2017.

24 João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, Frontiers in Artificial Intelligence and Applications. IOS Press, 2021.

25 Christian J. Muise, Sheila A. McIlraith, J. Christopher Beck, and Eric I. Hsu. Dsharp: Fast
d-dnnf compilation with sharpsat. In AI ’12, volume 7310 of Lecture Notes in Computer
Science, pages 356–361. Springer, 2012. doi:10.1007/978-3-642-30353-1_36.

26 Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell., 175(2):512–525, 2011.

27 Weijia Shi, Andy Shih, Adnan Darwiche, and Arthur Choi. On tractable representations of
binary neural networks. In KR 2020, pages 882–892, 2020.

28 Marc Thurley. sharpsat - counting models with advanced component caching and implicit
BCP. In SAT ’06, volume 4121 of Lecture Notes in Computer Science, pages 424–429. Springer,
2006. doi:10.1007/11814948_38.

29 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20:865–877, 1991.

30 G. C. Tseitin. On the complexity of derivations in propositional calculus. In A. O. Slisenko,
editor, Studies in Mathematics and Mathematical Logic, Part II, pages 115–125. 1968.

31 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. Drat-trim: Efficient checking and
trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory and

https://doi.org/10.4230/LIPIcs.FSTTCS.2024.18
https://doi.org/10.4230/LIPICS.FSTTCS.2024.18
http://ijcai.org/Proceedings/99-1/Papers/042.pdf
https://doi.org/10.1613/jair.989
https://doi.org/10.1145/3459080
https://doi.org/10.4230/LIPIcs.SAT.2022.30
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.24963/IJCAI.2017/93
https://doi.org/10.24963/IJCAI.2017/93
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/11814948_38

O. Beyersdorff, T. Hoffmann, and K. Kasche 29

Applications of Satisfiability Testing (SAT, volume 8561 of Lecture Notes in Computer Science,
pages 422–429. Springer, 2014.

32 Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakrishnan, Bingchuan Tian, Bo Song, and
Haoliang Zhang. Check before you change: Preventing correlated failures in service updates.
In NSDI 2020, pages 575–589. USENIX Association, 2020.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

