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Abstract

We first extend the results of [CKSV22] by showing that the degree d elementary symmetric
polynomials in n variables have formula lower bounds of Ω(d(n − d)) over fields of positive
characteristic. Then, we show that the results of the universality of the symmetric model
from [Shp02] and the results about border fan-in two ΣΠΣ circuits from [Kum20] over zero
characteristic fields do not extend to fields of positive characteristic. In particular, we show
that

1. There are polynomials that cannot be represented as linear projections of the elementary
symmetric polynomials (in fact, we show that they cannot be represented as the sum of k
such projections for a fixed k) and

2. There are polynomials that cannot be computed by border depth-3 circuits of top fan-in
k, called Σ[k]ΠΣ, for k = o(n).

To prove the first result, we consider a geometric property of the elementary symmetric
polynomials, namely, the set of all points in which the polynomial and all of its first-order
partial derivatives vanish. It was shown in [MZ17] and [LMP19] that the dimension of this
space was exactly d − 2 for fields of zero characteristic. We extend this to fields of positive
characteristic by showing that this dimension must be between d − 2 and d − 1. In fact, we
show this bound is tight, in the sense that there are (infinitely many) polynomials where each
of these bounds is exact.

Then, to consider the border top fan-in of the symmetric model and depth-3 circuits (some-
times called border affine Chow rank), we show that it is sufficient to consider the border top
fan-in of the sum of linear projections of the elementary symmetric polynomials. This is done
by constructing an explicit metapolynomial to check the condition, meaning that this result also
applies in the border setting.

1 Introduction

Given n independent variables x1, . . . , xn and a degree d ≤ n, we define the elementary symmetric
polynomial of degree d (over an arbitrary field F of characteristic denoted by char(F)) to be the sum
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of all degree d multilinear monomials in these indeterminants, i.e.,

edn =
∑

S∈([n]
d )

∏
i∈S

xi.

This polynomial naturally appears in many problems, for instance, if we consider the product of
affine, constant-free polynomials, we can express such a product by

n∏
i=1

(xi + y) =

n∑
k=0

yn−kenk (x1, . . . , xn). (1)

We say that these polynomials are symmetric because they are invariant under permutations of
the variables, and we say that they are elementary because they are the basic building blocks of
symmetric polynomials, namely, the set of symmetric polynomials can be written by F[en0 , . . . , enn].
We include more fundamental properties in the appendix, Section A.

Motivation. In algebraic complexity, computation of the elementary symmetric polynomials ap-
pear very naturally in many contexts. Algebraically, we commonly define computation through
algebraic circuits, which we model using acyclic directed graphs, where certain nodes represent
operations, addition and multiplication, and other nodes represent inputs, which are given as in-
dependent variables and field constants. We can then restrict this to so-called algebraic formulas,
which require that the underlying graph be a tree. We can then further restrict the depth of a tree
and force layers to alternate in operations, creating, for example, depth-three ΣΠΣ formulas, where
the root node is an addition node. We may further restrict this model to Σ[k]ΠΣ formulas, where
the root node may only have at most k children.

The earliest-known motivation for studying the complexity of the elementary symmetric poly-
nomials came from boolean circuit complexity, where circuits compute boolean functions using a
graph labeled with and-gates, or-gates, and not-gates. When considering boolean formulas of con-
stant depth, it was shown in [FSS84] that the majority function had super-polynomial lower bounds,
where the majority function is given by

∨
I∈( [n]

n/2)
∧

i∈I xi. Clearly, en,n/2 looks like an algebraic ana-

logue of the majority function, so it was believed to be a good candidate for a polynomial that
would have constant-depth formulas with super-polynomial lower bounds. Unfortunately, due to a
construction of Ben-Or (see Theorem 3.1 of [Shp02]), en,d was shown to have ΣΠΣ formulas of size
O(n2) (but the problem of super-polynomial ΣΠΣ lower bounds has since been solved, see [LST24]).
In [SW01] and [Shp02], it was shown that this upper bound is tight for ΣΠΣ formulas of certain
elementary symmetric polynomials over fields of characteristic zero. This was further extended in
[CKSV22] to be tight over general algebraic formulas, also over fields of characteristic zero. We
further have that [HY11] found super-polynomial lower bounds for certain elementary symmetric
polynomials for homogeneous multilinear formulas, where each node computes a homogeneous mul-
tilinear polynomial (the result of which is independent of field characteristic).

Another motivation was explored in [LST24] and [FLST24], where we can view the computa-
tion of the elementary symmetric polynomials as naturally related to constant-depth arithmetic
formulas. For example, we can consider ΣΠΣ formulas and explore how they can be converted into
homogeneous ΣΠΣ formulas, where each node computes a homogeneous polynomial. One idea is to
apply (1) to each product gate and then compute each resulting elementary symmetric polynomial
using homogeneous circuits (for instance, we could use the upper bound of [SW01] for homogeneous

computation of end by ΠΣΠΣ of size n2O(
√
d), but this only works for characteristic zero fields). This

idea can be extended to work for deeper constant-depth circuits.
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In [Shp02], the elementary symmetric polynomials were used to define an algebraic computational
model, which was called the symmetric model. It was defined by taking a series of linear polynomials
L1, . . . , Lm ∈ F[x1, . . . , xn] and a degree d ≤ m and defining the computation by emd (L1, . . . , Lm).
[Shp02] then showed that the symmetric model is universal over fields of characteristic zero, meaning
that it can compute any (homogeneous) polynomial. This was done using Fischer’s identity (see
[Fis94] and [Shp02]), which tells us that we can write any degree d homogeneous polynomial f ∈
F[x1, . . . , xn] as f = Ld

1 + · · · + Ld
m, for some linear polynomials L1, . . . , Lm ∈ F[x1, . . . , xn], and it

was then shown that polynomials written in this form can be expressed in the symmetric model.
We observe that this only works over fields of characteristic zero, as there are many polynomials in
positive characteristic that cannot be written in this way, as, for example, (x+ y)p = xp + yp when
char(F) = p.

Then, in [Kum20], the results around the symmetric model were used to study the border “affine
Chow rank” of a polynomial, where this name selected based on [Dut25]. We say that the affine
Chow rank of a polynomial f ∈ F[x1, . . . , xn] is the smallest k such that f can be computed by a
Σ[k]ΠΣ circuit. We mention that there are polynomials with affine Chow rank that is Ω(n) over
any field. Recall that, given a complexity measure, we define its border complexity by extending the
underlying field to F(ϵ), for some new variable ϵ, and, instead of requiring our model to compute
f(x), we need only to compute ϵN ·f + ϵN+1 ·F (x, ϵ) for some N ≥ 0 and F ∈ F[x1, . . . , xn, ϵ] (where
we may sometimes write that ϵN · f + ϵN+1 · F (x, ϵ) ≃ f). Through the results of the symmetric
model, [Kum20] showed that, over fields of characteristic zero, every homogeneous polynomial has
border affine Chow rank of at most two.

In this paper, we will consider these results over fields of positive characterstic. This is an
interesting consideration, as, for algebraic complexity theory, the underlying field of our model “does
not matter,” in the sense that collapsing VP and VNP over any single field is enough to collapse the
polynomial hierarchy. There have been many recent results that attempt to take known results over
fields of certain characteristics and extend them to arbitrary fields (see [And20], [DIK+24], [For24],
[BLRS25], [BKR+25]).

Results. We have considered computation of the elementary symmetric polynomials using formu-
las over fields of positive characteristic. By the Ben-Or construction, we know that there is a ΣΠΣ
circuit computing end of size O(n2) over infinite fields (independent of characteristic). In this paper,
we extend the results of [CKSV22] and show that their results on fields of zero characteristic extend
to fields of positive characteristic, namely that this upper bound is tight for formulas for certain
elementary symmetric polynomials.

Theorem 1.1. For an arbitrary field, any algebraic formula computing end has size Ω(d(n− d)).

In the second part of the paper, we show that the results of [Shp02] and [Kum20] do not extend
to fields of positive characteristic. First, we show that the symmetric model is not universal over
such fields. In fact, we show something stronger; we show that there are some polynomials that
cannot be represented by k-linear combinations of projections of the symmetric model, even if we
extend to the border setting.

Theorem 1.2. If char(F) ̸= 0, then, for every fixed n, there exists a homogeneous polynomial

f ∈ F[x1, . . . , xn] of degree d such that, for every linear L
(1)
1 , . . . , L

(1)
m1 , L

(2)
1 , . . . , L

(k)
mk ∈ F[x1, . . . , xn]

and constants c1, . . . , ck ∈ F,

f ̸=
k∑

i=1

cied(L
(i)
1 , . . . , L(i)

m ). (2)

Further, this applies in the border setting.
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As we have previously mentioned, the symmetric model is intimately related to the models
studied in [Kum20], namely the Σ[k]ΠΣ model. Through this, as an immediate corollary of Theorem
1.2, we show that the results of [Kum20] also do not extend to fields of positive characteristic. In
fact, we prove, under such bounds, Ω(n) lower bounds for the border affine Chow rank of certain
polynomials.

Theorem 1.3. If char(F) ̸= 0, then, for a fixed n, there exists a polynomial in at most n variables

that is not in Σ[k]ΠΣ for k = o(n).

Proof techniques. We will first focus on proving Theorem 1.1 in Section 2. This proof will largely
rely on the proof for the case of characteristic zero from [CKSV22] but with a modification to the
step that relies on the field characteristic. Namely, the proof revolves around studying what we will
call the set of order-two zeros of a polynomial.

Algebraic complexity theory focuses on using the algebraic properties of polynomials to split them
into classes based on how “hard” they are to compute. One such property that has been utilized (see
[Gat87], [Kum19], [CKSV22], [KV22], [ABV17]) is what we will call the order-2 zero space, which
represents the zeros of a polynomial of order at least two. Given a polynomial f ∈ F[x1, . . . , xn],
we define its order-2 zero space, denoted V2(f), to be the points where it vanishes along with its
first-order partial derivatives, i.e.,

V2(f) = V

(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
=

{
a ∈ Fn | f(a) = ∂f

∂x1
(a) = · · · = ∂f

∂xn
(a) = 0

}
, (3)

where V (f1, . . . , fℓ) denotes the affine variety defining the zero set of some polynomials f1, . . . , fℓ.

Remark 1.4. This idea of the order-2 zero space is utilized in [Kum19] and [CKSV22] without a
name. Then, in [KV22], it is introduced as the “singular locus” of a polynomial, denoted sing(f),
which is a well-known object in algebraic geometry, in a nod to the notation of [Gat87]. For this
paper, we have decided to change this notation, as this definition of singular locus does not precisely
align with the algebraic geometric definition. Although it is true that, when f is square-free, this
definition exactly characterizes the singular locus (V2(f) = sing(f)), this is not true in general.
This follows from the fact that the singular locus of a polynomial is a property of its corresponding
hypersurface, a purely geometric object, while the order-2 zero space is a property of the polynomial,
itself. Specifically, if we consider the power polynomial pnd = xd

1 + · · · + xd
n, it is well-known that

sing(pnd ) = {0} (see Example 10.21 of [Gat21]), but, if we consider char(F) = q ̸= 0, we trivially
observe that V2(p

n
q ) = V (pnq ). We find that letting this definition differ from its natural geometric

definition is confusing, so we have, therefore, decided to change it.

In many of these recent results, this geometric object appears due to an important lemma that
relates its dimension to the size of a product decomposition of the polynomial.

Lemma 1.5 (See Lemma 1.7 of [Kum19] and Lemma 3.4 of [CKSV22]). Suppose F is algebraically
closed. Let f ∈ F[x1, . . . , xn] be homogeneous of degree d. If there are constant-free polynomials
f1, g1, . . . , fk, gk ∈ F[x1, . . . , xn] and a polynomial h ∈ F[x1, . . . , xn] such that deg(h) < d and

f =

k∑
i=1

figi + h,

then dimV2(f) ≥ n− 2k.
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Proof. The proof follows from the following inequality,

dimV2(f) ≥ dimV2(f − h) = dimV2

(
k∑

i=1

figi

)
≥ dimV (f1, g1, . . . , fk, gk) ≥ n− 2k,

where the first inequality comes from Lemma 5.8 of [CKSV22] and the last inequality is a basic fact
from algebraic geometry.

Note 1.6. Notice that the hypothesis of algebraic closure is necessary for the previous lemma. For
example, consider f = (x2

1 + · · · + x2
n)

2. We notice that V2(f) = V (f) = {0} over R, but we get a
lower bound of dimV2(f) ≥ n− 2 over C.

The key observation for the proof in [CKSV22] was that small formulas computed polynomials
with “many” order-2 zeros. Then, they prove an upper bound of the dimension of the set of order-
2 zeros of the elementary symmetric polynomials and utilize this to show an Ω(d(n − d)) lower
bounds on formulas that compute them over fields of zero characteristic (with n being the number
of variables and d being the degree). For certain selections of n and d, this bound is tight, as the
Ben-Or construction shows an O(n2) upper bound on the size of ΣΠΣ formulas computing end . This
was known to be tight for ΣΠΣ formulas over fields of characteristic zero from [Shp02].

It was shown in [MZ17], [LMP19], and [CKSV22] that dimV2(e
n
d ) = d− 2 over fields of charac-

teristic zero, where dimension is, of course, defined in terms of affine varieties. No such equivalent
statement was known (to the author’s knowledge) for fields of positive characteristic. In this paper,
we show that the dimension is slightly different over such fields, specifically, it can vary between
being d− 2 or d− 1.

Lemma 1.7. For char(F) = p ̸= 0, we have that d− 2 ≤ dimV2(e
n
d ) ≤ d− 1. In particular, for fixed

d ≥ 1, there are values of n such that dimV2(e
n
d ) = d− 2 and values such that dimV2(e

n
d ) = d− 1.

Then, for the rest of the proof in [CKSV22] to work, we need only that dimV2(e
n
d ) ≤ d, so this

lemma suffices for proving the main result.
Interestingly, Lemma 1.7 allows us to also extend the lower bound result in [Shp02] of end in

ΣΠΣ formulas of Ω(d(n − d)) to fields of positive characteristics. In [Shp02], they show that, over
fields of characteristic zero, for every vector space V ⊆ Fn such that end vanishes on V , we have that
dim(V ) < n+d

2 . For fields of positive characteristic, observe that if we combine Proposition 6 from

[GGIL22] with Lemma 1.7, we conclude that we have the upper bound of dim(V ) ≤ n+d−1
2

1.
We will now turn our attention to the proof of Theorem 1.2 (and hence Theorem 1.3 by extension),

which we prove in Section 3. Consider char(F) = p ̸= 0. From a basic application of (1), we will
show that Theorem 1.2 easily implies Theorem 1.3. We then show that a polynomial that can be
written in the form given by (2) can be rewritten as

f =

ℓ∑
i=1

gihi +

r∑
i=1

Ld
i ,

where gi, hi are homogeneous, Li are linear, d is the degree of f , and ℓ = O(p). Then, our goal will
be to carefully select a value of f that cannot be written in this form.

We will now give a brief explanation to why it makes sense that such an f exists. Suppose that we
select an f that is set-multilinear, meaning that we can split the variables into d groups where each
monomial consists of exactly one variable from each group. Then, we can take the set-multilinear

1Using the fact that we can represent a polynomial as a “strength” decomposition of size codim(V )
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part of the right-hand side of the equation, which means, namely, that we can ignore the
∑r

i=1 L
d
i

part of the expression due to the fact that (a + b)p = ap + bp (assuming that d ≥ p). Then, we
can split each gi, hi based on subsets of the set-multilinear groups each monomial falls in, so we can
write it as some form of

f =

ℓ·2d∑
i=1

g′ih
′
i.

Then, we clearly have a product decomposition, so we can use Lemma 1.5 to conclude that dimV2(f) ≥
n − ℓ · 2d+1. Then, if we select d to not depend on n, we conclude that ℓ ≥ Ω(n − dimV2(f)). We
should observe that this argument only works in the non-border case, and it would require a careful
argument to show that it works in the border setting.

While this explanation can provide some intuition behind the claim, the proof does not follow
this argument. Instead, we analyze the coefficients of f and construct a polynomial that “witnesses”
the condition. Specifically, it is used to show that if a certain set of multilinear monomials have
nonzero coefficients in f , then there must be another multilinear monomial that is nonzero. But
this approach is perhaps more ideal, in a sense, to the one described above, as it is then obvious
why this applies in the border setting. Recall that a property is called “closed,” meaning it being
satisfied in the non-border setting implies that it is satisfied in the border setting, if there is a
metapolynomial, meaning a polynomial whose variables are seen as the coefficients of an input
polynomial, that evaluates to zero if and only if the input polynomial satisfies the property. It is
thus often advantageous to explicitly give such a metapolynomial when showing that a property is
closed.

2 Order-2 zero space of the elementary symmetric polyno-
mials

In this section, we will focus on extending the results on the formula complexity of the elementary
symmetric polynomials from [CKSV22], as in we will prove Theorem 1.1 and Lemma 1.7. Specifically,
we will show that these results extend when we consider fields of positive characteristic, which we
do by analyzing the order-2 zero set of the elementary symmetric polynomials, as this is the only
part of the proof that uses the characteristic of the field. Upon careful inspection of [CKSV22], we
can state the main result we rely on in the following lemma. For the sake of completeness, we prove
this lemma in the appendix in Section B.

Lemma 2.1 ([CKSV22]). Suppose f ∈ F[x1, . . . , xn] is a polynomial of degree d ≥ 3 that can be
computed by a formula Φ of size s. Then,

s ≥ d

6
(n− dimV2(f))

Then, in [CKSV22], the proof is completed through the following claim.

Claim 2.2 ([MZ17], Lemma 12 of [LMP19], Lemma 5.2 of [CKSV22]). Let char(F) = 0. If d ≥ 2
and d ≤ n, then dimV2(e

n
d ) = d− 2.

In particular, we have that V2(e
n
d ) =

⋃
I∈( [n]

d−2)
V (xi | i ∈ I).

One should notice that a formula complexity lower bound of Ω(d(n−d)) on end when char(F) = 0
immediately follows from this. We will spend this section studying this result over fields of positive
characteristic.
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One may first ask whether the result from Claim 2.2 can be extended to fields of positive char-
acteristic. From the following example, we can see that this is not the case.

Example 2.3. Consider the field F2 = {0, 1} (or even its algebraic closure F2). We consider the
set V2(e

5
2), and we will show that {(α, α, α, α, α) | α ∈ F2} ⊆ V2(e

5
2), implying that dimV2(e

5
2) ≥ 1.

To see this, consider an arbitrary α ∈ F2, and notice that

e52(α, α, α, α, α) =

(
5

2

)
α2 = 10α2,

∂e52
∂xi

(α, α, α, α, α) = e41(α, α, α, α) = 4α.

Clearly, we cannot hope to get an upper bound of d−2 for arbitrary choices of field characteristic,
number of variables, and degree. But, if we instead turn our attention to an upper bound of d− 1,
this is possible. Luckily, for the sake of asymptotic bounds, the difference between d− 1 and d− 2
is not important.

Before getting to the proof of this result, we believe that it is useful to provide some motivation
for where the proof stems from. Specifically, we consider the case of V2(e

n
2 ) for some n ≥ 2. Observe

that we can write each
∂en2
∂xi

(a) =
∑

j ̸=i aj . Then, for i ̸= j,
∑

k ̸=i ak −
∑

k ̸=j ak = ai − aj . We
thus conclude that, if a ∈ V2(e

n
2 ), then a1 = · · · = an. As we repeat this strategy for increasing

values of d, we notice that this strategy allows us to reduce to smaller degrees, where we observe
that a ∈ V2(e

n
d ) if an only if the components of a can be separated into at most d− 1 groups, where

the values in each group are the same. We will now formalize this approach.

Lemma 2.4. Over any field, if 1 ≤ d ≤ n, then dimV2(e
n
d ) ≤ d− 1.

Proof. We will consider Sk = {(a1, . . . , an) ∈ Fn | |{a1, . . . , an}| ≤ k}, which is the set of all points
whose number of distinct coordinates is at most k. We will then show that V2(e

n
d ) ⊆ Sd−1. From

this, the claim immediately follows, as dimSk ≤ k.
To prove this result, we will inductively prove the following claim.

Claim 2.5. For d ≥ 0 and m > d, let α0, . . . , αd ∈ F be such that αd = 1. Then, we have that
a ∈ V implies that (a1, . . . , am) ∈ Sd, for

V = V

(
d∑

i=0

αie
m−1
i (xj | j ∈ I)

∣∣∣∣∣ I ∈
(

[m]

m− 1

))
.

We can apply the above claim for d− 1 and set αd−1 = 1 and αd−2 = · · · = α0 = 0 to prove the
lemma. We can now focus on proving the claim, which we will do by induction on d. Notice that
the case of d = 0 is obvious, as α0 = 1, so V = ∅. Now, consider the claim for d, using the inductive
hypotheses for d− 1. Let a = (a1, . . . , an) ∈ V . Observe that

0 =

d∑
i=0

αie
m−1
i (a1, . . . , am−1)−

d∑
i=0

αie
m−1
i (a2, . . . , am) =

d∑
i=0

αi(e
m−1
i (a1, . . . , am−1)− em−1

i (a2, . . . , am))

=

d∑
i=1

αi(a1e
m−2
i−1 (a2, . . . , am−1)− amem−2

i−1 (a2, . . . , am−1)) = (a1 − am)

d∑
i=1

αie
m−2
i−1 (a2, . . . , am−1).

Hence, we have that either a1 = am or
∑d

i=1 αiei−1(a2, . . . , am−1) = 0. Observe that we can easily
extend this argument to work for any ak, for k ∈ [m− 1].
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Now, let I = {k ∈ [m− 1] | ak = am}. Without loss of generality, assume that [m− 1] \ I = [ℓ].
Observe that if ℓ < d, then the claim trivially follows, so we assume that ℓ ≥ d. Consider some
k ∈ [ℓ], and, using the fact that ai = am for each i ∈ I, observe that

0 =

d−1∑
i=0

αi+1ei(aj | j ∈ [m− 1] \ {k}) =
d−1∑
i=0

αi+1

i∑
j=0

(
|I|
i− j

)
ai−j
m ej(ap | p ∈ [ℓ] \ {k})

=

d−1∑
j=0

d−1∑
i=j

αi+1

(
|I|
i− j

)
ai−j
m

 ej(ap | p ∈ [ℓ] \ {k}) =
d−1∑
j=0

α′
jej(xp | p ∈ [ℓ] \ {k}),

where α′
i ∈ F[xk+1, . . . , xn, ]. Observe that α′

d−1 = αd ·
(|I|

0

)
= 1. We then can use the inductive

hypothesis to conclude that (a1, . . . , aℓ) ∈ Sd−1. Because aℓ+1 = · · · = am, we conclude that
a ∈ Sd.

Although the following information is sufficient to extend the theorem to fields of arbitrary
characteristic, one may be interested in how tight this bound is. Specifically, suppose that we have
fixed some field characteristic and some number of variables, then what is the relationship between
the value of d and the dimension of the order-2 zeros. We have already shown a simple example
where the d− 1 bound is tight, but we will now show that there are more such examples where it is
tight (there are actually infinitely many of them).

Proposition 2.6. For char(F) = p ̸= 0 and d ≥ 1, there is an n ∈ Z≥1 such that dimV2(e
n
d ) ≥ d−1.

Proof. Suppose that we have already picked some n ≥ d. Consider arbitrary β1, . . . , βd−1 ∈ F. We
will consider the point α = (α1, . . . , αn) ∈ Fn defined by

αi =

{
βi i ≤ d− 2

βd−1 otherwise.

First, observe that

end (α) =

min(d,n−d+2)∑
i=2

(
n− d+ 2

i

) ∑
I∈([d−2]

d−i )

∏
j∈I

βj

βi
d−1.

Then, for k ∈ [d− 2], we have that

∂end
∂xk

(α) = en−1
d−1 (α1, . . . , αk−1, αk+1, . . . , αn)

=

min(d−1,n−d+2)∑
i=2

(
n− d+ 2

i

) ∑
I∈([d−2]\{k}

d−1−i )

∏
j∈I

βj

βi
d−1.

Further, for k ∈ [d− 1, n], we have that

∂end
∂xk

(α) = en−1
d−1 (α1, . . . , αk−1, αk+1 . . . , αn)

=

min(d−1,n−d+1)∑
i=1

(
n− d+ 1

i

) ∑
I∈( [d−2]

d−1−i)

∏
j∈I

βj

βi
d−1.
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It is thus sufficient to pick an n ≥ d such that
(
n−d+2

i

)
≡ 0 mod p for every i ∈ [2,min(d, n−d+2)]

and
(
n−d+1

i

)
≡ 0 mod p for every i ∈ [1,min(d− 1, n− d+ 1)].

To do this, we fix n so that n − d + 1 ≥ d − 1 and is a power of p. The proof will then be
completed using Lucas’s Theorem.

Theorem 2.7 (Lucas’s Theorem, see [Luc78], [Mes14]). Let p ∈ N be a prime and a, b ∈ N be

numbers. We then write a and b by their unique base-p expansion, namely, a =
∑k

i=0 ai · pi and

b =
∑k

i=0 bi · pi. Then, we have that (
a

b

)
≡

ℓ∏
i=0

(
ai
bi

)
mod p,

where we say
(
ai

bi

)
= 0 if ai < bi.

Observe that this shows that all of the above binomial coefficients are zero mod p, completing
the proof.

In the other direction, we would like to be able to adapt the proof from characteristic zero fields
to find some conditions where this proof works. Unfortunately, the original proof from [MZ17],
[LMP19], and [CKSV22] relies on the value n − d + 1 being nonzero over the field, which is not
necessarily preserved when using induction. Fortunately, if we combine this original proof with the
result of Lemma 2.4, we can show that d− 2 is sometimes tight.

Claim 2.8. Let char(F) = p and 2 ≤ d ≤ n. If p = 0 or n−d+1 ̸≡ 0 mod p, then dimV2(e
n
d ) = d−2.

Proof. We begin by partitioning V2(e
n
d ) into sets based on the locations of where coordinates are

zero. Specifically, given an index set I ⊆ [n], we set

SI = {a ∈ Fn | ai ̸= 0 ⇔ i ∈ S, ∀i ∈ [n]}.

Observe that Fn =
⋃

I⊆[n] SI . We will then show that, for each I ⊆ [n], we have that dim(SI ∩
V2(e

n
d )) ≤ d− 2 (where dimension is defined in terms of the Zariski topology), which will complete

the proof.
Consider an arbitrary I ⊆ [n]. First, observe that if |I| < d− 1, we have that dimSI ≤ d− 2, so

we get the desired result. Now, we can assume that |I| ≥ d− 1. Let a ∈ SI ∩ V2(e
n
d ). Then, we can

apply (6) and (7) to say

0 =

n∑
i=1

∂end
∂xi

(a) = n · end−1(a)−
n∑

i=1

ai
∂end−1

∂xi
(a) = (n− d+ 1)end−1(a).

Hence, we conclude that end−1(a) = 0. We further notice that, for every i ∈ [n],

end−1(a) =
∂end
∂xi

(a) + ai
∂end−1

∂xi
(a),

so we conclude that either ai = 0 or
∂end−1

∂xi
(a) = 0. Because, for every i ∈ I we know that ai ̸= 0,

we conclude that
∂end−1

∂xi
(a) = 0. Thus, we conclude that (ai | i ∈ I) ∈ V2(e

|I|
d−1). Hence, if we let νI :

F|I| → Fn naturally add zeros in the indices not in I, we conclude that V2(e
n
d ) ∩ SI ⊆ νI(V2(e

|I|
d−1)).

Noticing that νI does not change the dimension of the underlying variety,

dim(SI ∩ V2(e
n
d )) ≤ dim(νI(V2(e

|I|
d−1))) = dimV2(e

|I|
d−1) ≤ d− 2,

by Lemma 2.4. This completes the proof.
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3 The Symmetric Model

In this section, we will study a computational model defined from the elementary symmetric poly-
nomials. Specifically, we will define Sym to represent the set of homogeneous polynomials of some
degree, say d, that can be written as emd (L1, . . . , Lm), for some linear (homogeneous) polynomials
L1, . . . , Lm. We will then say that Σ[k]Sym are all polynomials that can be written as a linear

combination of k elements of Sym. We will use Sym and Σ[k]Sym to denote the border versions of
these classes. Later in the section, we will prove Theorem 3.9, from which we conclude that the fact

that some polynomials cannot be computed by Σ[k]Sym implies that they cannot be computed by

Σ[k]ΠΣ circuits.
This model of computation was introduced and studied in [Shp02], where it was shown that, in

fields of characteristic zero, every polynomial can be computed by Sym. This result used the fact
that, under such conditions, every polynomial has finite Waring rank (the smallest k such that a
polynomial can be written as Ld

1+ · · ·+Ld
k, for linear Li). This was proved in Lemma 2.4 of [Shp02],

but we provide here a slight variation of this lemma, which is slightly stronger and uses a slightly
different method.

Lemma 3.1. Assume that F is algebraically closed (or simply that zd + 1 is fully reducible in F).
If f ∈ F[x1, . . . , xn] is a degree d homogeneous polynomial that is in Sym and q ∈ F[x1, . . . , xn] is
linear, then f + qd is in Sym. This is also true in the border setting.

Proof. Let ω1, . . . , ωd ∈ F be all of the solutions to zd + 1 = 0 (counted with multiplicities). Then,
we know that edd(−ω1, . . . ,−ωd) = 1 and edk(−ω1, . . . ,−ωd) = 0 for every k ∈ [d− 1], as

zd + 1 =

d∏
i=1

(z − ωi) =

d∑
k=0

zd−kedk(−ω1, . . . ,−ωd).

Now, let L1, . . . , Lm ∈ F[x1, . . . , xn] be linear such that emd (L1, . . . , Lm) = f . Then, observe that,
using (5),

em+d
d (L1, . . . , Lm,−ω1q, . . . ,−ωdq) =

d∑
i=0

emi (L1, . . . , Lm)edd−i(−ω1q, . . . ,−ωdq) = f + qd.

We finally note that this also works in the border setting if we let L1, . . . , Lm be border polynomials
approximating f .

Unfortunately, the Waring rank model is known to be not universal in positive characteristic. If
char(F) = p ̸= 0, then we observe that, for every d ≥ p, monomials in Ld, where L ∈ F[x1, . . . , xn]
is linear, must be divisible by some xp

i . For example, we cannot represent multilinear polynomials

from this model. In this section, we will build on this fact to show that Sym and Σ[k]Sym are not
universal. Specifically, we will show that polynomials in these classes can be expressed as the sum of
a small number of reducible polynomials and an arbitrary number of powers of linear forms. Then,
if we consider the computation of a multilinear polynomial, we can ignore these linear powers and
only consider the reducible polynomials.

We will spend this section proving Theorem 1.2. Then, Theorem 1.3 will follow from Theorem
3.9. To begin with, we will restrict our attention to fields of characteristic two, as this will make the
proofs simpler. We will focus on how to extend them to higher field characteristics after this.
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3.1 The case of characteristic two

For this section, we assume that char(F) = 2. Before we can show that there is a polynomial
that cannot be computed by Sym, we must identify one such polynomial. We observe that the
polynomial x1x2 has infinite Waring rank over fields of characteristic two, so one may hope that this
polynomial (or a similar one) could be a good candidate. Unfortunately, our first discovery is that
all polynomials of degree two can be computed in Sym.

Claim 3.2. For every degree two homogeneous polynomial f ∈ F[x1, . . . , xn], there are linear
L1, . . . , Lm ∈ F[x1, . . . , xn] such that em2 (L1, . . . , Lm) = f and em1 (L1, . . . , Lm) = 0.

Proof. Without loss of generality, we assume that f =
∑n

i=1 xiyi (we can then make any polynomial
through a change of variables). Let ω ∈ F be the 3rd order primitive root of unity. Then, observe

e32(ωx+ ω2y, ω2x+ ωy, x+ y) = xy, e31(ωx+ ω2y, ω2x+ ωy, x+ y) = 0.

Hence, e3n2 (ωx1 + ω2y1, ω
2x1 + ωy1, x1 + y1, . . . , ωxn + ω2yn, ω

2xn + ωyn, xn + yn) =
∑n

i=1 xiyi and
e3n1 (ωx1 + ω2y1, ω

2x1 + ωy1, x1 + y1, . . . , ωxn + ω2yn, ω
2xn + ωyn, xn + yn) = 0.

We thusly turn our attention to polynomials of degree three. Our key observation is that, by
Lemma 3.1, we can compute linear powers “for free.” We then further observe that it is very easy to
compute reducible polynomials. Finally, with a trivial application of Newton’s identities, we observe
that this condition is not only sufficient but also necessary.

Claim 3.3. For every degree three homogeneous polynomial f ∈ F[x1, . . . , xn], f is in Sym if and only
if there is a reducible homogeneous degree three polynomial g ∈ F[x1, . . . , xn] and linear q1, . . . , qk ∈
F[x1, . . . , xn] such that

f = g + q31 + · · ·+ q3k.

Proof. First, suppose that f is in Sym. Let L1, . . . , Lm ∈ F[x1, . . . , xn] be linear such that em3 (L1, . . . , Lm) =
f . Then, by the Newton identities (8) and the fact that p2 = e21, we observe that

f = em2 (L1, . . . , Lm)pm1 (L1, . . . , Lm) + em1 (L1, . . . , Lm)pm2 (L1, . . . , Lm) + pm3 (L1, . . . , Lm)

= em2 (L1, . . . , Lm)em1 (L1, . . . , Lm) + (em1 (L1, . . . , Lm))3 + L3
1 + · · ·+ L3

m.

Now, let g be a reducible homogeneous degree three polynomial and q1, . . . , qk be linear. Let g1
be homogeneous degree two and g2 be linear such that g = g1g2. By Claim 3.2, let L1, . . . , Lm ∈
F[x1, . . . , xn] be linear such that g1 = em2 (L1, . . . , Lm) and 0 = em1 (L1, . . . , Lm). Then, observe that

em3 (L1, . . . , Lm, g2) = em2 (L1, . . . , Lm, g2)e
m
1 (L1, . . . , Lm, g2) + [em1 (L1, . . . , Lm, g2)]

3

+ L3
1 + · · ·+ L3

m + g32

= g1g2 + (em1 (L1, . . . , Lm, g2))
3 + L3

1 + · · ·+ L3
m + g32 .

Then, the proof is completed by Lemma 3.1.

As a simple corollary to this claim, we can use this to characterize elements of Σ[k]Sym.

Corollary 3.4. For every degree three homogeneous polynomial f ∈ F[x1, . . . , xn], f is in Σ[k]Sym
if and only if there are reducible homogeneous degree three polynomials g1, . . . , gk ∈ F[x1, . . . , xn] and
linear q1, . . . , qℓ ∈ F[x1, . . . , xn] such that

f = g1 + · · ·+ gk + q31 + · · ·+ q3ℓ .
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Utilizing this characterization, we will now focus on determining a counter-example. We will
focus our attention on multilinear polynomials, as, as we have previously described, they cannot
be computed by cubes of linear forms in characteristic two. In fact, cubes of linear forms cannot
contain any multilinear monomials, so we can ignore this part of the representation. Hence, it will
suffice to find a polynomial that cannot be written as the multilinear part of a reducible polynomial.
Specifically, we will focus on the polynomial x1x2x3 + x4x5x6.

The argument will follow by showing that, if the multilinear part of a reducible polynomial
has nonzero coefficients of x1x2x3 and x4x5x6, there must be another multilinear monomial with
a nonzero coefficient. We will do this by constructing a polynomial in the coefficients of a linear
and quadratic polynomial that relates the coefficients of the multilinear monomials in their product.
Then, the fact that this also works in the border case will follow from the polynomial identity.

Claim 3.5. The polynomial f = x1x2x3 + x4x5x6 ∈ F[x1, . . . , x6] is not in Sym. This is also true
in the border setting.

Proof. Suppose that f is in Sym. Let g be a reducible homogeneous degree three polynomial and
q1, . . . , qk be linear such that f = g+q31+· · ·+q3k. First, we observe that all monomials in q31+· · ·+q3k
are not multilinear. Thus, the coefficients of the multilinear monomials in f are given by g.

We will denote the coefficient of an arbitrary multilinear monomial (xixjxk) of g (and hence f)
by cijk. Because g is reducible, we will split it into a linear part, denoted g1, and a quadratic part,
denoted g2, given by

g1 =

6∑
i=1

aixi, g2 =

6∑
i=1

6∑
j=i

bijxixj ,

where g = g1g2. Notice that the multilinear coefficients are given by cijk = aibjk + ajbik + akbij .
Our goal will be to use the fact that c123 ̸= 0 and c456 ̸= 0 (meaning that c123c456 ̸= 0) to

show that some other cijk ̸= 0, a contradiction. We will consider these cijk values as polynomials
in the coefficients of g1 and g2. Notice that we can conclude that there is a term within c123c456
that is non-zero, say a1b23a4b56 ̸= 0. Observe that this is generated by exactly one other partition
of variables, namely c234c156, implying that this term is canceled when we take c123c456 + c234c156.
We can then apply the process repeatedly until we hit a point where the equation computes zero.
We then observe that this is a metapolynomial in the coefficients of f , so this also applies in the
border setting.

We will state this more formally to show that this indeed happens. Let P3[6] represent all of the
ways to partition [6] into two sets of size three. Then, we will show that∑

I∈P3[6]

∑
{i,j,k}∈I

cijk ≡ 0 mod 2. (4)

Observe that this equality proves the claim, as c123 = c456 = 1, implying that there is another
partition {i, j, k}, {i′, j′, k′} such that cijkci′j′k′ ̸= 0, which is a contradiction. We further observe
that this argument works in the border setting.

We now prove the equality. Consider (4) as a polynomial in the indeterminants given by ai and
bjk. Observe that the monomials in this equation can be written in the form aibjkai′bj′k′ , where
{i, j, k, i′, j′, k′} = [6]. But this monomial can only be generated by two partitions, {{i, j, k}, {i′, j′, k′}}
and {{i′, j, k}, {i, j′, k′}}, where the corresponding coefficient is one. This lets us conclude that∑

I∈P3[6]

∑
{i,j,k}∈I

cijk = 2
∑

{i,i′}⊆[6]

∑
{{j,k},{j′,k′}}∈P2([6]\{i,i′})

aiai′bjkbj′k′ .
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With a bit of carefulness, we can extend this argument to Σ[k]Sym. We will use a similar
polynomial to our counter-example, but we will, this time, add more monomials of the form xiyizi.
We will then use the same identity as the previous case, but we will instead take a sum over
partitions of the 3ℓ variables into groups of three. We can now consider this as a polynomial in the
coefficients in the decompositions of the reducible polynomials. Now, each monomial can be split
up into ℓ parts based on the reducible polynomial the variable comes from. Then, we can permute
the corresponding linear parts, as we did in the previous part, for those that came from the same
equation, and we conclude that the number of partitions that generate this monomial is given by
the product of factorials of the corresponding size of the groups. Thus, if ℓ is big enough, one of
these sizes must be at least two, and we conclude that the whole equation is zero.

Claim 3.6. The polynomial f =
∑ℓ

i=1 xiyizi is not in Σ[k]Sym for k ≤ ℓ − 1. This is also true in
the border setting.

Proof. For simplicity of proof, we will write f =
∑ℓ

i=1 x3i−2x3i−1x3i ∈ F[x1, . . . , xn] (with n = 3ℓ).
Let k ≤ ℓ− 1, and suppose that f is in Σ[k]Sym. Let g1, . . . , gk be reducible degree 3 homogeneous
polynomials and q1, . . . , qm be linear such that f = g1 + · · ·+ gk + q31 + · · ·+ q3m. For each gt, let g

′
t

be linear and g′′t be homogeneous degree two such that gt = g′tg
′′
t . We will write

g′t =

n∑
i=1

a
(t)
i xi, g′′i =

n∑
i=1

n∑
j=i

b
(t)
ij xixj .

We again notice that we can ignore the monomials in q31 + · · ·+ q3m.
In g1 + · · ·+ gk, the coefficient of xixjxr is given by

k∑
t=1

a
(t)
i b

(t)
jr + a

(t)
j b

(t)
ir + a(t)r b

(t)
ij ,

which we will write as cijr. Then, we claim that, setting P3[n] to be the set of all ways to partition
n into sets of size three, ∑

I∈P3[n]

∏
{i,j,r}∈I

cijr ≡ 0 mod 2.

To see this, consider one of the monomials formed by this formula, which can be written as

a
(t1)
i1

b
(t1)
j1k1

. . . a
(tℓ)
iℓ

b
(tℓ)
jℓkℓ

, where {i1, j1, k1, . . . , iℓ, jℓ, kℓ} = [n] and t1, . . . , tℓ ∈ [k]. The partitions that

feature these monomials are exactly characterized by permutations of the a
(t)
i with the same value

for t. Thus, let ni be the number of tj values such that tj = i. Then, the coefficient of this monomial
is n1! . . . nk!. Because ℓ ≥ k + 1, there is at least one ni ≥ 2. Thus, this coefficient is zero modulus
two.

Finally, we observe that this implies that there is another monomial that is non-zero and that
this works in the border setting for the same reasons as in the proof of Claim 3.5.

3.2 Higher characteristics

In this section, we will extend our previous arguments from fields of characteristic two to fields of
arbitrary, positive characteristic. To begin with, we will extend Claim 3.3 to the case of arbitrary
positive field characteristic.
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Claim 3.7. Let char(F) = p ̸= 0. If f ∈ F[x1, . . . , xn] is homogeneous degree p + 1 and is in Sym,
then there are reducible homogeneous degree p+1 polynomials g1, . . . , gp−1 ∈ F[x1, . . . , xn] and linear
q1, . . . , qℓ ∈ F[x1, . . . , xn] such that

f = g1 + · · ·+ gp−1 + qp+1
1 + · · ·+ qp+1

ℓ .

Proof. Let L1, . . . , Lm ∈ F[x1, . . . , xn] be such that emp+1(L1, . . . , Lm) = f . Then, by the Newton
identities, we have that

f =

p+1∑
i=1

(−1)i−1emp+1−i(L1, . . . , Lm)pmi (L1, . . . , Lm)

=

p−1∑
i=1

(−1)i−1emk−i(L1, . . . , Lm)pmi (L1, . . . , Lm) + (em1 (L1, . . . , Lm))p+1 + Lp+1
1 + · · ·+ Lp+1

m

Notice that this claim is not as strong as the claim for characteristic two. Currently, it is not
known how to extend it, but only one directions is necessary for the rest of the proofs. The biggest
part of the problem is that it is not clear how to extend Claim 3.2 to this case, even if the field
characteristic is three.

We will now focus on extending Claim 3.6 to fields of positive characteristic. The main difference
for the proof in this case is that it is not necessarily true that each reducible polynomial has a
linear factor. But, instead of choosing the linear factor for permutations, we can fix one of the two
polynomials to use. Then, the proof will follow similarly.

Claim 3.8. Let char(F) = p ̸= 0. The polynomial

f =

ℓ∑
i=1

(p+1)i∏
j=(p+1)(i−1)+1

xj ∈ F[x1, . . . , xn]

is not in Σ[k]Sym for ℓ > k · (p− 1). Further, this is true in the border setting.

Proof. Assume that ℓ > k · (p − 1) and let g1, . . . , gm ∈ F[x1, . . . , xn] be reducible homogeneous
degree p+ 1 polynomials and q1, . . . , qN ∈ F[x1, . . . , xn] be linear polynomials such that

f = g1 + · · ·+ gk + qp+1
1 + · · ·+ qp+1

N .

We will consider splitting each gi into the product of two polynomials. For each i ∈ [k], let di be
the lower of the degrees of the polynomials that we split gi into. Hence, letting Sd ⊆ Zn

≥0 be the set
of n-tuples summing to d, we can write gi as

gi =

 ∑
α∈Sdi

a(i)α xα

 ∑
α∈Sp+1−di

b(i)α xα

 .

Consider a fixed monomial xi1 . . . xip+1 , and let M = {i1, . . . , ip+1}. Observe that the coefficient of

this monomial is not influenced by the term qp+1
1 + · · ·+qp+1

N . We will abuse notation and sometimes

write, given a subset S ⊆ [n], a
(i)
S or b

(i)
S to represent the coefficient corresponding to the multilinear

monomial given by the set S. Thus, we have that the coefficient of this monomial in f is given by

k∑
i=1

∑
S∈(Mdi)

a
(i)
S b

(i)
M\S = cM .
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Assume that ℓ > k · (p− 1) for the sake of reaching a contradiction. We will now show that

F =
∑

I∈Pp+1[n]

∏
I∈I

cI ≡ 0 mod p.

Once we show this, the proof is clearly complete.

We will fix a monomial in F . Observe that it can be written as a
(j1)
S1

b
(j1)
S′
1

. . . a
(jℓ)
Sℓ

b
(jℓ)
S′
ℓ
, where

S1 ∪S′
1 ∪ · · · ∪Sℓ ∪S′

ℓ = [n] and t1, . . . , tℓ ∈ [k]. Notice that the coefficient of this monomial is equal
to the number of choices of I that could generate it. In fact, a choice of I is a valid selection if and
only if there is a bijection π : [ℓ] → [ℓ] such that I = {S1 ∪ S′

π(1), . . . , Sℓ ∪ S′
π(ℓ)} and ti = tπ(i). For

i ∈ [k], let ni be the number of tj values such that tj = i. Notice that n1 + · · · + nk = ℓ. Then,
the number of such selections of bijections is exactly equal to n1! · · ·nk!. Because ℓ > k · (p − 1),
there is a i ∈ [k] such that ni ≥ p. Thus, we have shown that the coefficient of this monomial is zero
modulus p. This then completes the proof by the same argument as the proof of Claim 3.5.

3.3 Border Depth-Three Formulas

Now, in this section, we will connect the border symmetric computational model to Σ[k]ΠΣ formulas.
In [Kum20], the main result came from observing we could convert a slightly restrictive extension

of the border symmetric model to Σ[2]ΠΣ formulas. Specifically, for a given homogeneous degree d
f ∈ F[x1, . . . , xn] such that there are linear L1, . . . , Lm ∈ F(ϵ)[x1, . . . , xn] where e

m
d (L1, . . . , Lm) ≃ f

and emk (L1, . . . , Lm) = 0 for every k < d, then we can write f as a Σ[2]ΠΣ formula, using (1),

n∏
i=1

(1 + ϵ · Li)− 1 = ϵd · end (L1, . . . , Lm) + ϵd+1
n∑

i=d+1

ϵi−d−1eni (L1, . . . , Lm).

In this section, we will analyze the opposite relationship; namely, if we know a polynomial can

be computed by a Σ[k]ΠΣ circuit, can we say anything about its computability in the symmetric

model? We then conclude that the Σ[k]ΠΣ model is weaker than sums of the border symmetric
model.

Theorem 3.9. If f ∈ F[x1, . . . , xn] is homogeneous degree d and can be represented using Σ[k]ΠΣ,

then we can represent f by Σ[k]Sym.

To prove this, let f
(1)
1 , . . . , f

(k)
mk ∈ F(ϵ)[x1, . . . , xn] be affine and c1, . . . , ck ∈ F(ϵ) be such that

f ≃
∑k

i=1 ci
∏mi

j=1 f
(i)
j . We claim that, if each f

(i)
j is not constant-free, then the result is obvious.

Notice that, in this case, we can assume that each f
(i)
j (0) = 1. Then, observe that

f = Hd[f ] ≃ Hd

 k∑
i=1

ci

mi∏
j=1

L
(i)
j

 =

k∑
i=1

ci ·Hd

mi∏
j=1

L
(i)
j

 =

k∑
i=1

ci · ed(L(i)
1 , . . . , L(i)

mi
).

Now, we only need to consider what happens if there is some f
(i)
j such that f

(i)
j (0) = 0. We

will show that we can modify this polynomial to make it have a constant part without changing the

polynomial we approximate. To do this, we merely need to add a constant part to f
(i)
j that will not

change that polynomial we approximate. The proof is then completed from the following lemma.

Lemma 3.10. Let F,G, ℓ ∈ F(ϵ)[x1, . . . , xn] be such that ℓ is linear (and hence constant-free). Then,
there is an α ∈ F(ϵ) such that, if F · ℓ+G ≃ f for f ∈ F[x1, . . . , xn], then F · (ℓ+ α) +G ≃ f .

15



Proof. To prove this, imagine that α is a new independent variable. Then, consider F · (ℓ+ α) +G
as a polynomial over x1, . . . , xn, α. Notice that the coefficients of monomials in x1, . . . , xn are in
F[ϵ]. Then, observe that there are only a finite number of coefficients in monomials that include α.
Therefore, it is obvious that we can select α to make all of these coefficients polynomials (multiplying
the denominators) and, by multiplying by ϵN (for some large enough N), we ensure that this does
not change the approximation.

This completes the proof of Theorem 1.1.

4 Future Directions

We end by pondering some open problems.

• In Lemma 1.7, we observe that there are cases where dimV2(e
n
d ) = d − 2 and other cases

where dimV2(e
n
d ) = d− 1, but these cases do not cover all possible ones. Can we determine a

characterization for, given a char(F), d, and n, which case end falls under?

• When considering Theorem 1.2, we, motivated by [Shp02], force the inputs to the elementary
symmetric polynomials to be linear. We could then, just as easily, allow the inputs to be
affine and then increase the degree of the elementary symmetric polynomial. Of course, we
can easily homogenize this case by introducing a new independent variable x0, so this case can
be considered as an extension of the case with linear inputs. Unfortunately, due to limitations
with Newton’s identities, our current strategy only lets us consider degrees of char(F) + 1. Is
there a way to show that a particular polynomial cannot be computed by this inhomogeneous
model?

• To prove Theorem 1.2 in the case of char(F) = 2, we use Corollary 3.4, which provides a
necessary and sufficient condition for being computable by Σ[k]Sym. For fields such that
char(F) > 2, we are only able to provide a necessary condition. Is this condition also sufficient
for these other fields?

• If we further consider the necessary and sufficient condition given in Corollary 3.4, we can
naturally ask if this condition is easily “computable.” In a sense, if provided a degree three
polynomial, could we determine in polynomial time if it can be represented in the Σ[k]Sym
model?
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[Luc78] Edouard Lucas. Théorie des Fonctions Numériques Simplement Périodiques. American
Journal of Mathematics, 1(2):184–196, 1878.
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A The Elementary Symmetric Polynomials

In this section, we will describe some of the basic properties of the elementary symmetric polynomials,
which are used throughout the paper. Due to their simplicity, these polynomials possess many nice
properties that we will use to simplify them and relate them to each other. For example, given
a1, . . . , an, b1, . . . , bm ∈ F, we observe that

en+m
d (a1, . . . , an, b1, . . . , bm) =

d∑
k=0

enk (a1, . . . , an)e
m
d−k(b1, . . . , bm). (5)

We can also study their partial derivatives and observe that

∂end
∂xi

(x) = end−1(x)− xi

∂end−1

∂xi
(x) = en−1

d−1 (x1, . . . , xi−1, xi+1, . . . , xn). (6)

We can then use this fact and a well-known property of homogeneous polynomials to conclude that

n∑
i=1

xi
∂end
∂xi

(x) = d · end (x). (7)
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Another important property of the elementary symmetric polynomials are Newton’s identities.
We will denote pnd (x1, . . . , xn) = xd

1 + · · ·+ xd
n. Then, Newton’s identities are given by

dend (x1, . . . , xn) =

d∑
k=1

(−1)k+1pnk (x1, . . . , xn)e
n
d−k(x1, . . . , xn). (8)

B Formula Lower Bounds

In this section, we will focus on proving the results of [CKSV22], specifically, we will prove Lemma
2.1. This is done for the sake of completeness and because the statement that we use, while not
difficult to see from the proof in the original paper, is slightly different. Further, we provide a minor
simplification to the original proof.

We will briefly recall the formal degree of a formula. The formal degree of a leaf node is defined
by the degree of the polynomial that the leaf node is labeled with. The formal degree of a sum gate
is defined as the maximum of the formal degrees of its children, and the formal degree of a product
gate is defined by the sum of the formal degrees of its children. Observe that the formal degree of a
formula upper bounds the degree of the polynomial it computes.

Instead of the typical definition, we will define the size of a formula to be the number of leaves
whose label is not constant. Observe that this is linearly related to the number of leaves in a formula
and its size (noting that we can “collapse” a node where both children are constants). We do this
to help simplify the proofs.

The idea behind the following proof will be to iteratively find large sub-trees in our formula whose
formal degree is strictly less than the degree of the polynomial we compute. We will then “peel”
these sub-trees from our formula and replace them with the constant part of the polynomial our
sub-tree computes, where we will continue our process. We will observe that each step in this process
only adds an error term that can be represented as the product of two constant-free polynomials.
Finally, we will combine our sub-trees of low formal degree to represent our polynomial by a sum
of products of constant-free polynomials summed to a low-degree polynomial. Our conclusion will
then follow using Lemma 1.5.

To begin, we will state a simple fact about algebraic circuits, which merely states that every
formula has a node with formal degree in the range [t, 2t− 1].

Proposition B.1 (See Lemma 5.11 of [CKSV22]). Let Φ be a formula of formal degree d. Then
for each t ∈ [1, d/2], there is a vertex v in Φ such that Φv has formal degree at least t and at most
2t− 1.

Further, there exists polynomials h, f ∈ F[X] such that Φ = hΦv+f and, for every γ ∈ F, hγ+f
can be computed by a formula of size at most |Φ| − |Φv|.

Proof. First notice that the formal degree of a formula monotonically increases as one goes from a
leaf to the root. The leaves of the formula have formal degree at most one and the root has formal
degree d. Then, we observe that the formula degree of an internal node is at most the sum of the
formal degrees of its children. It is, therefore, impossible for a parent node to have formal degree
above 2t− 1 with children of formal degree strictly less than t.

Now, let v be a vertex in Φ that satisfies the previous hypotheses. Notice that Φ is linear in Φv,
so there are h, f ∈ F[X] be such that Φ = hΦv + f . Notice that, for any γ ∈ F, we could replace Φv

with a leaf node labeled with γ, and it would have size |Φ| − |Φv|.

In the next proposition, we represent our process of converting our polynomial to the form we
would like. Specifically, we suppose that we have some d′, and we want to represent a polynomial by
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a formula of formal degree strictly less than d′ with some error, represented by the sum of products of
constant-free polynomials. We will repeatedly apply Proposition B.1 to complete this simplification.

Proposition B.2 (See Lemma 5.12 of [CKSV22]). Let Φ be a formula of size s and formal degree
d. For every d′ ≥ 3, there is a formula Φ′ and polynomials f1, . . . , fk, g1, . . . , gk ∈ F[X] such that

• Φ = Φ′ +
∑k

i=1 figi,

• Φ′ has formal degree less than d′,

• f1, . . . , fk, g1, . . . , gk are constant-free polynomials, and

• k d′

3 ≤ s.

Proof. We will prove this inductively on the size of the formula s. We first observe that the claim
is trivial if d < d′ (which certainly happens when the circuit is sufficiently small), as we can set
Φ′ = Φ. Thus, if s is small enough such that d < d′, the claim is obvious.

Now, assume the hypothesis is true for all circuit of size strictly smaller than s. We assume that
d ≥ d′ ≥ 3. Then, we apply Proposition B.1 so that v is a vertex in Φ such that Φv has formal
degree between d′/3 and 2d′/3 and let h, f ∈ F[X] satisfy the rest of the proposition. We will write
h = h′ + α and Φv = g′ + β, where h′, g′ ∈ F[X] are constant-free polynomials and α, β ∈ F. Then,

Φ = hΦv + f = (h′ + α)(g′ + β) + f = h′g′ + αg′ + (hβ + f).

Notice that αg′ can be computed by a formula of size at most |Φv| and formal degree at most 2d′/3
and, by Proposition B.1, hβ+f can be computed by a formula of size at most |Φ|−|Φv|. We can thus
apply the inductive hypothesis to hα+f and let Φ′ be a formula and f1, . . . , fk, g1, . . . , gk ∈ F[X] be
polynomials that satisfy the hypotheses. We have that h′, g′ are constant-free, so we let fk+1 = h′

and gk+1 = g′. We define Φ′′ to be the circuit resulting from summing αg′ and Φ′, so that Φ′′ has
size at most s and formula degree at most d′. Then,

Φ = Φ′′ +

k+1∑
i=1

figi.

Further notice that (observing that |Φv| ≥ d′/3)

(k + 1)
d′

3
≤ |Φ| − |Φv|+

d′

3
≤ |Φ|.

We can now use this to conclude the main result of this section.

Proof of Lemma 2.1. Suppose Φ has formal degree D. Then, we apply Proposition B.2 to obtain
polynomials h, f1, . . . , fk, g1, . . . , gk ∈ F[X] such that

• f = p+
∑k

i=1 figi,

• deg(p) < d,

• f1, . . . , fk, g1, . . . , gk are constant-free, and

• k d
3 ≤ s.
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Then, if we consider Φ as a formula over the algebraic closure of F, we can apply Proposition 1.5
to conclude that

dimV2(f) ≥ n− 2k ≥ n− 2s
3

d
.

Therefore,

s ≥ d

6
(n− dimV2(f)).
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