
Expansion without Connectivity: A Property Testing Perspective

Irit Dinur Oded Goldreich

September 7, 2025

Abstract

We consider the query complexity of testing whether a bounded-degree graph is expanding,
regardless of whether or not it is connected.

Whereas prior work studied testing the property of being an expander (equiv., testing the
set of expander graphs), here we study testing the set of graphs that consist of connected
components that are each an expander. Within the context of simplicial complexes, such graphs
are called coboundary expanders. Loosely speaking, we show that testing expansion of n-vertex
graphs requires Ω(n1/2) queries and can be done using O(n0.667) queries. Recall that testing

whether a n-vertex graph is an expander has query complexity Θ̃(n1/2).
Our upper bound combines a distribution tester for generalized uniformity (i.e., uniformity

over an unspecified subset of the domain) with a tester for expander graphs.
We also consider the problem of testing the girth of a graph. We prove that, as long as

the girth of the (not necessarily connected) graph is at most logarithmic in its size, the query
complexity must be exponential in the girth. This matches the upper bound established by the
straightforward tester.

Keywords: Property Testing, Graph Properties, Bounded-Degree Graphs, Expander Graphs,
Coboundary Expansion, Girth, Distribution Testing

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 129 (2025)



Contents

1 Introduction 1
1.1 Expansion without connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Testing girth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries: Testing in the Bounded-Degree Graph Model 5

3 On the query complexity of testing expansion (i.e., Ξ) 6
3.1 Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 On the exponential dependence on g in testing Γg+1 18

Acknowledgments 19

References 19

i



1 Introduction

The study of testing graph properties is one of the main subareas within property testing (see
textbook [4]). Within this sub-area, the bounded-degree graph model (introduced by Goldreich
and Ron [6] and reviewed in [4, Chap. 9]) is one of the two main models (the other being the dense
graph model, introduced by Goldreich, Goldwasser and Ron [5] and reviewed in [4, Chap. 8]).

Loosely speaking, in the bounded-degree graph model, for a fixed degree bound d ∈ N, we
represent n-vertex graphs by an incidence function of the form g : [n] × [d] → [n] ∪ {⊥} such that
g(v, i) is the ith neighbor of v (and g(v, i) = ⊥ if v has less than i neighbors). Distance between
n-vertex graphs is defined as the fraction of entries on which their (mutually closest) incidence
functions differ. The tester (for a fixed graph property) is given oracle access to such an incidence
function and has to distinguish between the case that the graph has the property and the case that
it is ϵ-far from the property, where ϵ > 0 is called the proximity parameter.

A detailed definition of the model is presented in Section 2. At this point we stress that d will
always denote the constant degree bound of this model, and so all graphs we considered will have
maximal degree at most d. In contrast (to this constant d), the number of vertices, denoted n, is
the main varying parameter. Another varying parameter is the proximity parameter ϵ; actually,
in lower bounds we shall set it to some small positive constant, whereas in upper bounds we shall
state its effect on the complexity.

The main focus of this paper is on the query complexity of testing expansion. We also consider
the query complexity of testing girth. Both these properties are very natural graph properties,
which we consider independent of the connectivity property.

1.1 Expansion without connectivity

The common and naive notion of expansion views it as a property of connected graphs. For example,
a connected graph has edge expansion c if the number of edges that cross a cut over the size of
the smaller vertex set (in the cut) is at least c. We say that such a graph is an expander. Clearly,
an unconnected graph cannot be an expander, since no edge goes out of each of its connected
component (i.e., the corresponding cut has no edges). Yet, intuitively, a graph that consists of
connected components that are each an expander (w.r.t., the same constant c) is “expanding”.

Hence, we distinguish between being an expander and having the property of expansion. The
property of expansion postulates that each of the connected components of the graph is an expander
(with the same expansion parameter), whereas the property of being an expander augments this
requirement by insisting that the graph itself is connected. The latter augmentation is not inherent
to the expansion property.

Definition 1.1 (the expansion property): For a constant c > 0, we let Ξc(n) denote the set of
n-vertex graphs that consist of connected components that are each expanding in the sense of having
edge expansion at least c. Let Ξc = {Ξc(n)}n∈N.

We stress that the graphs in Ξc (as well as those in Γg below) are not necessarily connected. We
mention that expansion without connectivity arises naturally in the context of high dimensional
expansion of the homological kind; namely, coboundary expansion [14, 10]. Indeed, Ξc equals the set
of all c-coboundary expanders.1 Expansion without connectivity also arises naturally in a striking

1The coboundary expansion of a graph may be defined by viewing it as a system of 2-variable equalities, where

1



result of Oppenheim [15] that states that if all links of a graph G (i.e., the subgraphs of a graph
G that are induced by the neighbors of each vertex of G) are sufficiently strong expanders, then G
itself is expanding (albeit not necessarily connected).

One of the graph properties studied by Goldreich and Ron, when introducing the bounded-
degree graph model, is the property of being an expander [6, Sec. 7.2]. They showed that testing
whether an n-vertex graph is an expander requires Ω(n1/2) queries. Their proof is pivoted on the
fact that an n-vertex graph consisting of two n/2-vertex expanders is far from being an n-vertex
expander. Arguably, this is a violation of the connectivity condition and not of the intuitive notion
of graph expansion, which may be applied meaningfully to each connected component.

Hence, rather than testing whether a graph is an expander, one may wish to test whether a
graph consists of connected components that are each an expander (i.e., the foregoing property Ξc).
We first prove that the Ω(n0.5) query lower bound extends also to this case.

Theorem 1.2 (a lower bound on the query complexity of testing expansion): For every d ≥ 3,
there exists c > 0 such that testing Ξc(n) requires Ω(

√
n) queries.

As usual, our proof uses the indistinguishability method [4, Sec. 7.2]; that is, we present two
distributions of d-regular n-vertex graphs such that, on the one hand, these two distributions cannot
be distinguished by a o(

√
n)-query algorithm, while, on the other hand, a tester for Ξc(n) must

distinguish them (because the first distribution is concentrated on expanders, whereas the second
distribution is far from graphs that are expanding). Both distributions are based on a distribution
of 3-regular m-vertex graphs that consist of an m-cycle and a random perfect matching. In the
first distribution three such 3-regular n/3-vertex graphs are connected by three perfect matchings,
whereas in the second distribution, for a large but constant ℓ, we connect ℓ graphs (in a cycle) by
ℓ perfect matchings. (Lastly, we perform degree reduction.)

We stress that, while it is not a priori clear whether the lower bound on n-vertex expanders
extends to Ξc(n), it is also unclear whether the upper bound extends. (Indeed, like deciding, testing
may become either easier or harder when the property is extended.) Actually, the known upper
bound of [11], which asserts an n0.501-time algorithm, applies to distinguishing c-expanders from
graphs that are far from being c′-expanders, where c′ = Ω(c2). Both the lower bound of [6] and
the lower bound of Theorem 1.2 apply also to this case (see Theorem 3.1), hereafter referred to as
pseudo-testing.

We do not know whether the known upper bound of n0.501 queries on pseudo-testing expander
graphs [11] extends to pseudo-testing expansion, but rather prove the following result.

Theorem 1.3 (an upper bound on the query complexity of pseudo-testing expansion): For every
d ≥ 3 and c > 0, there exists an poly(1/ϵ) · n0.667-query pseudo-tester that distinguishes between
graphs in Ξc(n) and n-vertex graphs that are ϵ-far from Ξc′(n), where c′ = Ω(c2).

The algorithm combines the distribution tester of generalized uniformity (i.e., uniformity over an
unspecified subset of the domain) of Batu and Canonne [2] with the pseudo-tester of expanders of

vertices are replaced and edges are replaced by equality constraints. In these terms, the coboundary expansion is the
robustness of the system as a local characterization of satisfiable assignments (cf. [17]); that is, it is the minimum
ratio between the number of equalities that is unsatisfied by an assignment and the distance of this assignment from
any satisfying assignment. Note that this formulation makes no explicit reference to the connected components of
the graph, although such a reference is implicit in the notion of a satisfying assignment (i.e., satisfying assignments
are functions that are constant on each connected component).

2



Kale and Seshadhri [11], which in turn is based on a strategy of Goldreich and Ron [7]. Specifically,
combining the ideas of [7] and [2], we first select a few random vertices and estimate the size of
the “tightly connected” components in which these vertices reside by estimating the pairwise and
3-way collision probabilities of the endpoints of (lazy) random walks (of logarithmic length) from
each of these sampled vertices. Next, using the expander pseudo-tester of [11], we test whether
these (tightly connected) components are expanders, while using their estimated sizes as obtained
in the first step.

Essentially, the tightly connected component of a vertex s, defined by the first step, is the set
of vertices that are reached with approximately the same probability in a random walk that starts
at s, where the size of this set is inversely proportional to that probability. Recall that the pseudo-
tester of [11] selects a few random vertices in the graph and estimates the collision probability of
random walks from each of these vertices. While this main (“test vertex”) subroutine of [11, Sec. 2]
is invoked in [7, 11] on few uniformly selected vertices, here (in the second step) we invoke it on
vertices reached via few (logarithmically long) random walks from each vertex that was (uniformly)
selected in the first step. We note that the query complexity of our entire algorithm is dominated
by the estimation of the 3-way collision probabilities (performed in the first step).

In our analysis, we heavily rely on [11], but cope with the fact that the (tightly connected)
components are not perfectly isolated from one another. This is a problem because random walks
in one (tightly connected) component can (rarely) enter another component, whereas the analysis
of [11] refers to connected graphs (i.e., the random walk never exists the relevant subgraph). Nev-
ertheless, using a very fine estimate of collision probability (and combining [2] and [11]) we can
show that if the test accepts (w.h.p.), then almost all these (potentially overlapping) components
are expanders. The challenging part of the analysis is showing that a subset of these expanders are
both disjoint and cover almost all the vertices of the graph.

Specifically, assuming that the endpoint of a (logarithmically long) random walk starting at s
is distributed almost uniformly on a vertex-set denoted Ws, we identify in Ws a relatively large
induced subgraph that is close to being an expander and has relatively few edges going out of it.
We stress that this subset, denoted W ′

s, contains almost all of Ws (but not necessarily all of it).
Hence, we show that for almost all vertices s in the graph, the corresponding set W ′

s induces a
subgraph that is close to being an expander and there are relatively few edges between W ′

s and the
rest of the graph. Furthermore, we show that every two such sets (i.e., the W ′

s’s) are either disjoint
or almost equal. Lastly, we identify a subset of theses vertices (i.e., s’s) such that the corresponding
sets (i.e., the W ′

s’s) are disjoint and cover almost all the vertices of the graph.

An open problem. While our results establish non-trivial lower and upper bounds on the query
complexity of pseudo-testing expansion (i.e., Ω(n1/2) vs O(nα) for every constant α > 2/3), they
leave a significant gap. Note that obtaining an o(n2/3)-query pseudo-tester for expansion requires
bypassing the lower bound on the sample complexity of generalized uniformity testing (established
by [2]). On the other hand, an n0.5+Ω(1)-query lower bound on pseudo-testing expansion would
separate this task from pseudo-testing the set of expander graphs.

1.2 Testing girth

While one often focuses on the girth of connected graphs, there is absolutely no reason to restrict
the notion of a girth to connected graphs.

3



Recall that the girth of a graph is the length of the shortest simple cycle in it; hence, the girth
of an n-vertex graph G that is not cycle-free ranges between 3 (in case G contains a triangle)
and n (in case G is a n-cycle). In particular, d-regular graphs have at most logarithmic girth
(see [1, 19]), assuming d ≥ 3, and random d-regular graphs are close to having logarithmic girth
(see [13, p. 2]). Although logarithmic girth is not really related to expansion, high girth does have
a flavor of expansion. In any case, we consider testing the following property.

Definition 1.4 (the high girth property): For a function g : N→ N such that g(n) ∈ [3, log n], we
let Γg(n) denote the set of n-vertex graphs that have girth at least g(n), and let Γg = {Γg(n)}n∈N.

A straightforward algorithm that picks a few random vertices and performs a BFS to depth ⌈g/2⌉
from each of them yields a tester for Γg+1 (i.e., the set of graphs that have girth greater than g).

Theorem 1.5 (a straightforward tester of girth): For every g : N → N and d ∈ N, the property
Γg+1 can be tested using O(d⌈g/2⌉/ϵ) queries. Furthermore, Γg+1 has a O(d⌈g/2⌉)-time proximity-
oblivious tester of linear detection probability.2

We comment that an exponential dependence of the query complexity on the girth is unavoidable
(see Theorem 1.6).

Proof: We rely on the fact that Γg+1 can be characterized in terms of subgraph-freeness; that is,
a graph is in Γg+1 if and only if it is Cℓ-free for every ℓ ∈ {3, .., g}, where Cℓ denotes the ℓ-vertex
cycle. The furthermore clause follows by using the straightforward proximity-oblivious tester for
subgraph-freeness (see [8, Sec. 5] and [4, Sec. 9.2.1]).

Theorem 1.6 (lower bound on testing girth): For every d ≥ 3 and g : N → N such that g(n) ∈
[3, 0.499 · log2 n], the query complexity of testing Γg is exp(Ω(g)).

The proof is based on the fact that a random 3-regular k-vertex graph is extremely close to having
girth greater than 0.499 · log2 k but is far from having girth at least 2.001 · log2 k. In contrast, a
o(
√
k)-query algorithm that explores a random 3-regular k-vertex graph is unlikely to see a cycle.

This means that an algorithm that makes o(
√
h) queries cannot distinguish between a random 3-

regular k-vertex graph and a k-vertex graph consisting of k/h connected components each being a
random 3-regular h-vertex graph. The theorem follows by setting k = 2g(n)/0.499 and h = 2g(n)/2.001.

Open problems. We mention two related open problems. The first is determining the query
complexity of testing whether a graph is Cℓ-free (i.e., contains no simple cycle of length ℓ). The
second open problem is determining the query complexity of testing whether a graph contains no
simple path of length ℓ. Both properties have straightforward O(d⌈ℓ/2⌉/ϵ)-time testers, but the
question is whether one can do significantly better. (Initial studies of the second problem appeared
in [16, 18].)3

2See [8, Sec. 2] and [4, Sec. 1.3.3].
3In particular, combining [18] with [12], one can obtain a poly(dℓ/ϵ)-query tester for both problems, in case the

input graph is promised to belong to a minor-free class.

4



1.3 Organization

In Section 2 we briefly review the definitions that underlie the study of testing graph properties
in the bounded-degree graph model. As stated upfront, the main focus of this work is on the
query complexity of testing expansion. In Section 3 we prove both the lower bound claimed in
Theorem 1.2 and the upper bound (i.e., tester) claimed in Theorem 1.3. In Section 4 we study
the query complexity of testing girth and prove Theorem 1.6. These two sections can be read
independently of one another.

2 Preliminaries: Testing in the Bounded-Degree Graph Model

(Testing graph properties in the bounded-degree graph model was initiated in [6]. An extensive
introduction to this line of research can be found in [4, Chap. 9].)

The bounded-degree graph model refers to a fixed (constant) degree bound, denoted d ≥ 2.
In this model, a graph G = (V,E) of maximum degree d is represented by the incidence function
g : V × [d]→ V ∪ {⊥} such that g(v, j) = u ∈ V if u is the jth neighbor of v and g(v, j) = ⊥ ̸∈ V
if v has less than j neighbors.4 Distance between graphs is measured in terms of their foregoing
representation; that is, as the fraction of (the number of) different array entries (over d · |V |).

The tester is given oracle access to the representation of the input graph (i.e., to the incidence
function g), where for simplicity we assume that V = [n] for n ∈ N. In addition, the tester is also
given a proximity parameter ϵ and a size parameter (i.e., n). Recall that graph properties are sets
of graphs that are closed under isomorphism.

Definition 2.1 (property testing in the bounded-degree graph model): For a fixed d ∈ N, a tester
for the graph property Π is a probabilistic oracle machine T that, on input a proximity parameter
ϵ > 0 and size parameter n ∈ N, and when given oracle access to an incidence function g : [n]×[d]→
[n] ∪ {⊥}, outputs a binary verdict that satisfies the following two conditions:

1. The tester accepts each graph G = ([n], E) in Π with probability at least 2/3; that is, for
every g : [n] × [d] → [n] ∪ {⊥} representing a graph in Π (and every ϵ > 0), it holds that
Pr[T g(n, ϵ)=1] ≥ 2/3.

2. Given ϵ > 0 and oracle access to any graph G that is ϵ-far from Π, the tester rejects with
probability at least 2/3; that is, for every g : [n]× [d]→ [n]∪{⊥} that represents a graph that
is ϵ-far from Π, it holds that Pr[T g(n, ϵ)=0] ≥ 2/3, where the graph represented by g is ϵ-far
from Π if for every g′ : [n]× [d]→ [n] ∪ {⊥} that represents a graph in Π it holds that

δ(g, g′)
def
=
|{(v, j) ∈ V × [d] : g(v, j) ̸= g′(v, j)}|

dn
> ϵ. (1)

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for every
g : [n]×[d]→ [n]∪{⊥} representing a graph in Π (and every ϵ > 0), it holds that Pr[T g(n, ϵ)=1] = 1.

The query complexity of a tester for Π is a function (of the parameters d, n and ϵ) that represents the
number of queries made by the tester on the worst-case n-vertex graph of maximum degree d, when

4For simplicity, we adopt the standard convention by which the neighbors of v appear in arbitrary order in the

sequence (g(v, 1), ..., g(v,deg(v))), where deg(v)
def
= |{j ∈ [d] : g(v, j) ̸= ⊥}|.

5



given the proximity parameter ϵ. Fixing d, we typically ignore its effect on the complexity (equiv.,
treat d as a hidden constant); that is, we say that the tester has query complexity q : N× [0, 1]→ N
if on input parameters n and ϵ it makes q(n, ϵ) queries (on the worst-case n-vertex graph).

3 On the query complexity of testing expansion (i.e., Ξ)

In this section we study the query complexity of testing expansion, proving both the lower bound
claimed in Theorem 1.2 and the upper bound (i.e., tester) claimed in Theorem 1.3. The following
two proofs (equiv., subsections) can be read independently of one another.

3.1 Proof of Theorem 1.2

We start by restating Theorem 1.2 in a more general form.

Theorem 3.1 (a lower bound on the query complexity of pseudo-testing expansion): For every
d ≥ 3 there exists b > 0 such that the following holds. For every c ∈ (0, b] there exists ϵ > 0 such
that no o(n1/2)-query algorithm can distinguish between connected n-vertex graphs in Ξb(n) and
n-vertex graphs that are ϵ-far from Ξc(n).

Overview of the proof. We first prove the result for d = 5. Once this is achieved, we perform
degree reduction to support the case of d = 3 (which is optimal [9]). The constant b > 0 is
determined such that, with probability at least 0.999, a random n-cycle augmented by a random
perfect matching is a connected graph with edge-expansion at least 10b (see [4, Clm. 9.18.1]).5 The
constant ϵ is proportional to c (e.g., ϵ = c/100 would do).

As stated in the introduction, our proof uses the indistinguishability method [4, Sec. 7.2];
that is, we present two distributions of d-regular n-vertex graphs such that, on the one hand,
these two distributions cannot be distinguished by a o(

√
n)-query algorithm, while, on the other

hand, a pseudo-tester for expansion must distinguish them. Specifically, the first distribution is
concentrated on expanders (with edge-expansion at least b), whereas the second distribution is
far from graphs that are expanding (i.e., Ω(c)-far from Ξc). Both distributions are based on the
aforementioned basic distribution of 3-regular m-vertex graphs, obtained by augmenting an m-cycle
with a random perfect matching.

In the first distribution three 3-regular n/3-vertex basic graphs are connected by three perfect
matchings, whereas in the second distribution, for a large but constant ℓ, we connect ℓ graphs (in a
cycle) by ℓ perfect matchings. On the one hand, the first distribution is concentrated on expander
graphs (i.e., on connected graphs that are b-edge expanding), whereas the second distribution is far
from Ξc. (The first fact follows easily from [4, Clm. 9.18.1], whereas the second fact is proved in
Claim 3.2.) On the other hand, as shown in Claim 3.3, a o(

√
n-query algorithm cannot distinguish

these two distributions. The latter fact is proved by relying on [6, Lem. 7.4], which shows that
any q-query algorithm that explores an m-vertex graph selected from the basic distribution sees a
(simple) cycle with probability at most O(q2/m).

5For sake of simplicity, like in [6, Sec. 7] and [4, Sec 9.3], we do not disallow matching-edges that are parallel to
the cycle edges. With constant probability, this may yield a non-simple graph (having parallel edges). We can regain
a result regarding simple graphs by conditioning on the event in which no parallel edges were created. This event
occurs with probability at least (1/3) − o(1), since each matching-edge is parallel to a cycle-edge with probability
n/

(
n
2

)
, whereas the events are almost three-wise independent (and one can use the inclusion-exclusion principle).

6



The actual proof. For a sufficiently large ℓ = O(1/c), we consider two distributions that are
based on 3-regular m-vertex graphs that are selected from the basic distribution (i.e., each graph
consists of an m-cycle augmented by a random perfect matching). For any n that is an integer
multiple of 3ℓ, we consider the following two distributions on 5-regular n-vertex graphs.

Distribution 1: Three basic graphs connected by three perfect matchings.

Pick three n/3-vertex graphs from the basic distribution and connect the vertices of each
graph to the vertices of each of the other two graphs using a random perfect matching.

Note that, with high probability, the resulting graph is an expander. To see this consider
any vertex-set of size at most n/2. If this vertex-set occupies less than 90% of each of the
three parts, then this set is expanding by virtue of the expansion of the individual parts. On
the other hand, if the vertex-set occupies at least 90% of one of the three parts, then the
matching edges provide sufficient expansion (to the other two parts).

Figure 1: Illustration of Distribution 2 with ℓ = 6.

Distribution 2: ℓ basic graphs connected (in a cycle) by ℓ perfect matchings.

Pick ℓ graphs (each with n/ℓ vertices) from the basic distribution, arrange them in an ℓ-cycle,
and connect the vertices of each graph to the vertices of each of the two neighboring graphs
using a random perfect matching (see Figure 1). Indeed, Distribution 1 is a special case that
corresponds to ℓ = 3, but here we focus on larger (constant) ℓ.

In other words, each graph in this distribution is obtained by starting from an ℓ-cycle, re-
placing each vertex by a random graph drawn from the basic distribution, and replacing each
edge by a random n/ℓ-edge matching.

We shall show (see Claim 3.2) that the resulting graph is Ω(1/ℓ)-far from being expanding
(regardless of connectivity). For starters, note that the graph itself is far from being an
expander (i.e., a connected expanding graph); this can be seen by considering a cut that
places ℓ/2 consecutive parts (i.e., n/ℓ-vertex graphs) on one side.

On the other hand, we shall show (see Claim 3.3) that an q-query algorithm exploring a random n-
vertex graph drawn for any of the two distributions sees a (simple) cycle with probability O(q2/n).
It follows that a o(

√
n)-query algorithm, cannot distinguish the two distributions.

We mention that the specific structure of the basic distribution will be used in the proof of
Claim 3.3, which relies on [6, Lem. 7.4], which in turn refers to the basic distribution. In contrast,

7



Claim 3.2 holds regardless of the structure of the graphs in the basic distribution and only relies
on the fact that (whp) these graphs are expanders.

Claim 3.2 (the support of Distribution 2): Let G0, ..., Gℓ−1 be n/ℓ-vertex graphs drawn from the
basic distribution, and let G be a graph that consists of these graphs that are connected as in

Distribution 2; that is, for every i ∈ Zℓ
def
= {0, 1, ..., ℓ − 1}, the vertices of Gi are connected to the

vertices of Gi+1 mod ℓ by a perfect matching. Then, for every constant c > 0 and sufficiently large
ℓ and n, the graph G is Ω(1)-far from Ξc(n).

Proof: Recall that we have already seen that G is far from being an expander graph. This can
be seen by considering the set of n/2 vertices in

⋃
i∈[ℓ/2]Gi. This set neighbors only 2n/ℓ vertices

that are not in it (i.e., the vertices in G(ℓ/2)+1 and G0). In order to show that G is far from being
expanding (regardless of connectivity), we show that each set of vertices S is either far from being
isolated in G (i.e., there are Ω(|S|) edges going out of S) or is far from inducing an expander (i.e.,
the subgraph of G induced by S is far from being an expander).

Let S be an arbitrary vertex-set representing a potential connected component in an expanding
graph that is supposedly close to G, and let Si denote the subset of S that reside in Gi.

The easy case is when |Si| ≤ n/2ℓ for every i ∈ Zℓ. In this case, by virtue of the expansion
of the Gi’s, there are Ω(|Si|) edges of Gi that go out of Si, which implies that S is Ω(1)-far from
being isolated in G. The same reasoning applies if only a majority of the vertices in S reside in i’s
such that |Si| ≤ n/2ℓ.

Hence, we may assume that a majority of the vertices in S reside in i’s such that |Si| > n/2ℓ.
Let I denote the set of such i’s (i.e., I = {i ∈ Zℓ : |Si| > n/2ℓ}), and consider a partition of I into
maximal consecutive sequences. Intuitively, long sequences contribute relatively too little to the
expansion of the subgraph G induced by S, whereas short sequences contribute relatively too much
to the (disallowed) connectivity of this subgraph from the rest of G. Hence, either this subgraph is
far from being an expander or it is far from being isolated from the rest of G. Details follow.

Consider a generic sequence, (i+1 mod ℓ, ..., i+k mod ℓ), such that i+1 mod ℓ, ..., i+k mod ℓ ∈ I
but i, i+ k+1 mod ℓ ̸∈ I. On the one hand, the number of edges between

⋃
j∈[k] Si+j mod ℓ and the

rest of S is at most 2n/ℓ, and the same holds for any set
⋃

j∈[k′,k′′] Si+j mod ℓ such that k′, k′′ ∈ [k].

In contrast, the size of the former set is at least k · n/2ℓ (resp., (k′′ − k′ + 1) · n/2ℓ), so if k (resp.,
k′′ − k′) is large, then this contribution to expansion is too small. On the other hand, the number
of edges between

⋃
j∈[k] Si+j mod ℓ and the rest of G (i.e., [n] \ S) is at least

max(Ω((n/ℓ)− |Si+k mod ℓ|) , |Si+k mod ℓ| − (n/2ℓ)) = Ω(n/ℓ)

where the first term is due to the expansion of Gi+k mod ℓ and the second term is due to the matching
edges (between Gi+k mod ℓ and Gi+k+1 mod ℓ).

6 To finish the argument, suppose that the vertices of⋃
i∈I Si reside in t consecutive sequences. Then, the following holds.

� There exists a set S′ ⊆ S of size approximately |S|/2 such that the cut between S′ and
S \ S′ has at most 2t · n/ℓ edges. Indeed, this set S′ consists of all the vertices that reside in
some of the consecutive sequences and potentially approximately half the vertices that reside

6Recall that |Si+k mod ℓ| > n/2ℓ and |Si+k+1 mod ℓ| ≤ n/2ℓ.

8



in one additional sequence.7 It follows that the subgraph of G induced by S has relative
edge-expansion at most 2t·n/ℓ

|S′| = O(t/|I|), where the last inequality uses |S′| > |S|/3 and

|S| > |I| · n/2ℓ.

� The number of edges between S and the rest of G (i.e., [n] \ S) is at least Ω(t · n/ℓ) =
Ω(t/|I|) · |S|, where the last inequality uses |S| > 2 · |I| · n/ℓ. So the relative contribution to
the violation of the isolation of the subgraph induced by S is at least Ω(t/|I|).

Hence, for every constant c > 0, representing a possible edge-expansion of the graph G, either the
subgraph of G induced by S is far from that level of edge-expansion (in case t is sufficiently small
w.r.t c · |I|) or this subgraph is far from being isolated in G (in case t is sufficiently large w.r.t |I|).

Claim 3.3 (the indistinguishability claim): For a fixed ℓ and variable n and q, consider an ar-
bitrary q-query algorithm that is given oracle access to an n-vertex graph, and let pi denote the
probability that this algorithm outputs 1 when given access to a graph selected from Distribution i.
Then, |p1 − p2| = O(q2/n).

Proof: Following the strategy of [6, Thm. 7.1], we may think of the algorithm as exploring the
input graph, and refers to the subgraph that it sees during that exploration. We shall show that,
when the graph is selected from either Distribution 1 or from Distribution 2, with probability at
least 1 − O(q2/n), the q-query explored sees a subgraph that is a forest. Clearly, conditioned on
this event, the explorer cannot distinguish Distribution 1 from Distribution 2.

It was shown in [6, Lem. 7.4] that, with probability at least 1 − O(q2/n), an algorithm that
makes q queries to a graph selected from the basic distribution sees a forest. Furthermore, it was
actually shown that none of its queries is answered by a vertex seen before (unless the edge was
traversed in the opposite direction).8

Rather than extending the proof of [6, Lem. 7.4] to Distribution i, for both i ∈ {1, 2}, we reduce
the analysis of the exploration of Distribution i to the analysis of the exploration of the basic
distribution. For simplicity, we augment the model such that the five edges incident at each vertex
are ordered so that the edges of the basic 3-regular graphs appear as the first three edges and an
edge connecting a vertex of Gi to a vertex of Gi+1 mod ℓ appears as the 4th (resp., 5th) edge of the
first (resp., second) vertex. We may also assume that the vertices of Gi are labeled ⟨i, ·⟩. Clearly,
these conventions may only make the task of the explorer easier, whereas we may now assume that
the explorer never tries to traverse an edge in both directions (see Footnote 8). We may also focus
on Distribution 2, since Distribution 1 is a special case (i.e., ℓ = 3).

We first reduce the analysis of an exploration of G, which is selected from Distribution 2, to
the exploration of the graph G′ that is obtained from G by removing all matching edges (i.e., the
edges between Gi and Gi+1 mod ℓ for all i’s). In other words, G′ is generated by taking ℓ samples
of the basic distribution (of n/ℓ-vertex graphs) and considering the graph that consists of these ℓ

7Suppose that, for every j ∈ [t], the jth sequence contains mj > n/2ℓ vertices and recall that
∑

j∈[t] mj > |S|/2.
Then, there exists t′ ∈ [t] such that

∑
j∈[t′] mj > |S|/2 but

∑
j∈[t′−1] mj ≤ |S|/2. Note that the requirement is

satisfied by either the t′ first sequences or the first t′ − 1 sequences or the first t′ − 1 sequences augmented by half of
the t′

th
sequence.

8In fact, assuming that the edges incident at each vertex are ordered such that the clockwise (resp., anti-clockwise)
cycle-edge appears as the first (resp., second) edge, we can avoid traversing an edge in both directions. We note that [6,
Lem. 7.4] is proved in this model, which provides the explorer with additional information (for free).

9



isolated graphs. The key observation is that exploring the 4th (resp., 5th) edge of a vertex of G that
resides in Gi is equivalent to selecting a random vertex in Gi+1 mod ℓ (resp., Gi−1 mod ℓ). The point
is that the latter operation can be emulated in G′. Hence, the probability that a q-query explorer
encounters a vertex for the second time when exploring G is upper-bounded by the corresponding
probability that refers to G′, where G is selected from Distribution 2 and G′ is obtained from G as
defined above.

Lastly, the probability of that a q-query explorer encounters a vertex for the second time when
exploring G′ (distributed as above) is upper-bounded by the probability of this happening when a
q-query algorithm explores a single graph taken from the basic distribution (on n/ℓ-vertex graphs).9

Hence, we get an upper bound of O(q2/(n/ℓ)) = O(q2/n).

Conclusion: Recalling that Distribution 1 is concentrated on expander graphs and using Claim 3.2,
we conclude that a tester for Ξc must distinguish between Distribution 1 and Distribution 2 with
gap at least 0.66 − 0.34 > 0.3; that is, in terms of Claim 3.3, we must have |p1 − p2| ≥ 0.3. On
the other hand, Claim 3.3 asserts that |p1 − p2| = O(q2/n), where q is the query complexity of the
tester. Hence, q = Ω(

√
n) must hold.

Degree reduction: As stated upfront, the result was proved for d = 5, which falls short of the
stated theorem, which asserts the same lower bound for any d ≥ 3. Using a local reduction (cf. [4,
Sec. 7.4]), we derive the result for d = 3 (and the claim for any constant d ≥ 3 follows triviality).
Specifically, we capitalized on the fact that the lower bound was established for 5-regular graphs
and that expansion is preserved under a standard degree reduction (which replaces each vertex by
a 5-cycle and uses a single edge of each new vertex in order to connect to some other 5-cycle).
That is, given oracle access to a 5-regular n-vertex graph G, we emulate oracle access to a 3-regular
5n-vertex graph G′ such that each vertex v of G is replaced by a 5-cycle Cv in G′ and the ith edge
of v (in G) is replaced by an edge that is incident at the ith vertex of the 5-cycle Cv. Note that this
transformation preserves expansion and connectivity as well as a constant factor of the distance
from being expanding (where the specific (constant) level of expansion may vary).

3.2 Proof of Theorem 1.3

We start by restating Theorem 1.3 in a more accurate form.

Theorem 3.4 (an upper bound on the complexity of pseudo-testing expansion): For every d ≥ 3,
c > 0 and α > 2/3, there exist c′ = Ω(c2) and an poly(1/ϵ) · nα-query algorithm that distinguishes
between n-vertex graphs in Ξc(n) and n-vertex graphs that are ϵ-far from Ξc′(n). Furthermore, the
time complexity of this algorithm is linear in its query complexity.

We start with an overview of the proof. It will be followed by a presentation of the actual algorithm.
The actual analysis of the algorithm copes with issues that are hardly mentioned in the overview;
see the second part of the analysis (following Definition 3.4.3).

9Letting qi denotes the number of queries made to Gi (when exploring G′), we get a probability bound of∑
i O(q2i /(n/ℓ)) ≤ O((

∑
i qi)

2ℓ/n).

10



Overview. We follow the strategy of Goldreich and Ron [7], which reduces testing whether an
n-vertex graph is an expander to testing whether an O(log n)-step lazy random walk that starts
at a fixed (random) vertex ends in a distribution that is almost uniform over the vertices of the
graph. (Using lazy random walks implies that the stationary distribution is uniform on the vertices
of each connected component, also in case the graph is not regular.)10 Recall that testing the
uniform distribution is performed by approximating the collision probability using O(

√
n) samples

and comparing it to the value 1/n (i.e., the collision probability of the uniform distribution over n
elements).

The problem we face is that we also have to accept n-vertex graphs that consists of connected
components (of unknown sizes) that are each an expander. Hence, selecting a random start vertex,
we would like to test whether the endpoint of a random walk starting at this vertex is distributed
uniformly over the vertices of the connected component to which this start vertex belongs. That is,
testing expansion is reduced to testing generalized uniformity (i.e., uniformity over an unspecified
subset). Fortunately, a study of the latter testing problem was initiated by Batu and Canonne [2],
and its sample complexity was shown to be Θ(n2/3) · poly(1/ϵ). Specifically, the tester consists of
comparing the pairwise collision probability to the 3-way collision probability (and accepting iff the
square of the first value approximately equals the second value).11

The latter reduction also provides us with a very good estimate of the “effective size” of the
relevant connected component; that is, a number m such that there are at least (1−ϵ) ·m vertices in
this connected component that are each reached by the random walk with probability (1± ϵ)/m.12

For simplicity, let us assume that we get an 1± ϵ factor estimate of the actual size of the connected
component. As we shall see, such an estimate is extremely valuable towards invoking the expander
pseudo-tester of Kale and Seshadhri [11]. Specifically, while [11, Thm. 3.4] is stated for a known
graph size, little changes if this size is known up to a factor of 1 ± σ, where σ = m−Ω(1) is a key
parameter that reflects the distance between the distribution of the endpoint of a random walk and
uniform distribution.13 This means that we have to invoke the generalized uniformity tester of [2]
with proximity parameter set to σ (or rather min(ϵ, σ)), which implies that our query complexity
will be O(n2/3) · poly(1/σ).

Unfortunately, the reduction to testing generalized uniformity does not provide an approxima-
tion to the size of the connected component but rather to its the “effective size” (as defined above).
Yet, as shown below (see Claim 3.4.1), the number of edges in the cut between the counted vertices
(i.e., those counted in the “effective size”) and the uncounted ones is very small. Hence, using
random walks that start at a random vertex chosen among the counted vertices, the distribution of
walks that avoid the cut edges is very close to the real distribution, and so we can apply the result
of [11, Thm. 3.4].

This may be a good time to explicitly (re)state [11, Thm. 3.4]. Loosely speaking, it asserts
that, for ℓ′ = O(logm), if for at least 1 − γ fraction of the vertices v in a m-vertex graph it holds
that the collision probability of the endpoint of an ℓ′-step random walk starting at v does not exceed

10By a lazy random walk we mean that at at each step, the edge leading to each neighbor is traversed with
probability 1/2d, and otherwise the walk stays in the current vertex.

11For simplicity, we do not use the subsequent tester of [3], which achieves optimal dependence on ϵ.
12Loosely speaking, m equals the reciprocal of the collision probability of the random walk. Indeed, it is not a

priori clear that there exists a set of at least (1 − ϵ) · m vertices that are each reached with probability (1 ± ϵ)/m,
but this can be easily proved (see the proof of Claim 3.4.1).

13In [11], σ has the form n−µ/4, where n denotes the size of the graph, the query complexity is essentially n(1+µ)/2

and c′ = µ · c2/400.

11



τ = (1+m−Ω(1))/m, then the graph is O(γ)-close to being a c′-edge expander. Needless to say, the
hidden constants in ℓ′ and τ are related to the constants c and c′. Most importantly, the hidden
constant in τ , hereafter denoted β (i.e, τ = (1 +m−β)/m), is proportional to the ratio c′/c2. (The
constant in ℓ′ = O(logm) is set such that if the graph is a c-edge expander, then an ℓ-step random
walk on the graph ends at a vertex that is 1/m2-close to the uniform distribution.)

The actual algorithm. Let β = Θ(α − (2/3)), where α > 2/3 is the constant claimed in
Theorem 3.4. On input a size parameter n and proximity parameter ϵ > 0, and given oracle access
to an n-vertex graph G (of maximal degree d), we perform the following steps O(1/ϵ2) times.

Step 1: Testing generalized uniformity of the distribution generated by a random walk.

Select a vertex s ∈ [n] uniformly at random, and invoke the generalized uniformity tester
of [2], while setting its proximity parameter to ϵ′ = ϵ2 ·n−3β and providing it with poly(1/ϵ′) ·
n2/3 samples, each generated by taking an O(log n)-step (lazy) random walk starting at s.
Specifically, at each step of the random walk, the edge leading to each neighbor is traversed
with probability 1/2d, and otherwise the walk stays in the current vertex; the generated
sample is the vertex reached at the end of the walk.

(Recall that the generalized uniformity tester distinguishes between distributions that are
uniform over some subset of [n] and distributions that are ϵ′-far from the class of generalized
uniform distributions, where the distance here is the total variation distance.)

Using error reduction (for the same start vertex s), we may assume that the error probability
of the generalized uniformity tester is o(ϵ2) (rather than at most 1/3).

If the generalized uniformity tester rejects, then we reject. Otherwise, let m denote the re-
ciprocal of the (empirical) collision probability of the tested distribution; that is, the sampled
distribution was deemed ϵ′-close to the uniform distribution over a set of m elements.

Step 2: Pseudo-testing the expansion of a subgraph reached from s.

Invoke the expander pseudo-tester of [11, Sec. 2], on the graph G (or rather on the connected
component of s), while setting the size (of the graph) parameter to m, setting the proximity

parameter to ϵ′′
def
=
√
ϵ′, and selecting the O(1/ϵ′′) starting vertices by taking O(log n)-step

random walks from s. If this pseudo-tester rejects, then we reject.

Recall that (when using proximity parameter ϵ′′) the expander pseudo-tester consists of
O(1/ϵ′′) invocations of a “vertex tester” (see [11, Sec. 2]), where in [11, Sec. 2] each in-
vocation is provided with a uniformly selected vertex (as its explicit input). Here, each of
these O(1/ϵ′′) invocations is provided with the endpoint of an O(log n)-step random walk
starting at s. (This pseudo-tester distinguishes c-edge expanders from graphs that are ϵ′′-far
from being c′-edge expanders.)

We set the deviation parameter (denoted σ = n−µ/4 in [11, Sec. 2]) to δ = O(ϵ′′); recall that
the “vertex tester” estimates the collision probability of the (endpoints) of random walks and
accepts if the estimated value does not exceed (1 + δ)/m. Recall that the query complexity
of the “vertex tester” (of [11, Sec. 2]) is poly(1/δ) · Õ(n1/2), which is dominated by the query
complexity of Step 1, which in turn is poly(1/ϵ′′) · n2/3.

Using error reduction, we may assume that the error probability of the expander pseudo-tester
is o(ϵ2) (rather than at most 1/3).

12



If none of the steps rejected, then we accept.

Comment: Step 2 vs [11]. When seeking to pseudo-test whether a graph G is an expander,
Kale and Seshadhri invoke the “vertex tester” of [11, Sec. 2] for t = O(1/ϵ) times at t uniformly
and independent selected vertices of G, where ϵ is the proximity parameter of this tester. Instead,
Step 2 invokes this “vertex tester” for t′′ = O(1/ϵ′′) times at t′′ vertices that are each generated
by a O(log n)-step random walk starting at s, where our aim is to pseudo-test the expansion of an
“effective connected component” (denoted Ws below) in which s resides. This pseudo-tester uses
proximity parameter ϵ′′ = ϵ · n−3β/2, where ϵ is the proximity parameter of the entire algorithm.

The analysis. The query complexity of the foregoing algorithm is poly(1/ϵ′) ·n2/3 = poly(nβ/ϵ) ·
n2/3, which is poly(1/ϵ)·nα. (Hence we may obtain any constant α > 2/3, but this comes at the cost
of decreasing the ratio c′/c2 (by a factor of α− (2/3)).) Next, observe that if G is expanding (i.e.,
G ∈ Ξc), then the foregoing algorithm accepts (w.h.p). Specifically, in this case, each invocation of
Step 1 provides the generalized uniformity tester with samples that are distributed almost uniformly
in the relevant connected component, and (w.h.p.) the tester will accept while providing us with a
1± ϵ′ factor approximation of the size of the connected component. Hence, in Step 2, the expander
pseudo-tester will accept (w.h.p).

As usual, the challenging part is the analysis of graphs that are ϵ-far from Ξc′ . Typically, one
proves the contrapositive; that is, if the tester accepts G with high probability, then G is ϵ-close
to Ξc′ . We focus on showing that if, for at least 1 − γ fraction of the choices of a vertex s in a
connected component C, with high probability Steps 1–2 do not reject, then C is O(γ)-close to Ξc′ .
(The rest of the argument is quite standard.)14 Note that if Step 1 returned a very good estimate
of the actual size of C, then [11, Thm. 3.4] would imply that C is O(γ)-close to a c′-edge expander
(which is obviously in Ξc′).

Unfortunately, we are only guaranteed that if Step 1 rejects with small probability, then it
returns the size of am arbitrary set Ws ⊆ C such that the distribution of the endpoint of a random
walk on C that starts in s is close to the uniform distribution on Ws. Specifically, the distribution
of the endpoint of a random walk that starts in s, denoted Xs, is ϵ

′-close to the uniform distribution
on Ws, since Step 1 invokes the generalized uniformity tester with proximity parameter ϵ′. A key
observation is that the relative size of the cut between Ws and C\Ws is related to the total variation
distance between Xs and the uniform distribution on Ws. We actually prove the following.

Claim 3.4.1 (the cut E(Ws, C \ Ws) is relatively small): Let ℓ = O(log n) and Xs denote the
distribution of the endpoint of an ℓ-step random walk on C that starts in s. If Xs is η-close to
being uniform over the vertex set Ws, then there exists W ′

s ⊆Ws such that Pr[Xs ∈W ′
s] ≥ 1−2η1/2

and the number of edges between W ′
s and the rest of C is O(η1/2 · |W ′

s|). Furthermore, for each
v∈W ′

s it holds that Pr[Xs=v] = (1±O(η1/2))/|Ws|.

It follows that, for any ℓ′, an ℓ′-step random walk starting at a vertex selected uniformly in Ws

(alternatively, starting at Xs) stays in W ′
s with probability 1−O(ℓ′ · η1/2).

14Specifically, for γ = ϵ/O(1), at most γ2 of the vertices s of G lead Steps 1–2 to reject with non-small probability.
Hence, at most a γ fraction of the vertices reside in connected components C such that at most γ fraction of the
vertices s ∈ C lead Steps 1–2 to reject with non-small probability.

13



Proof: Letting W ′
s
def
= {v∈Ws :Pr[Xs=v] = (1±η1/2)/|Ws|}, we observe that Pr[Xs ̸∈W ′

s] < 2η1/2,
because otherwise at least η1/2 of the probability mass resides on vertices that are either each
reached with probability larger than (1 + η1/2)/|Ws| or each reached with probability smaller than
(1−η1/2)/|Ws|. It follows that |W ′

s| > (1−3η1/2)·|Ws|, because Pr[Xs∈W ′
s] ≤ |W ′

s|·(1+η1/2)/|Ws|.
Observe that each of the vertices in W ′

s is reached by an (ℓ − 1)-step (lazy) random walk (from
s) with probability at least p = (1 − o(1)) · (1 − η1/2)/|Ws| > 0.9/|Ws|, since ℓ-step lazy random
walks stay in place (at each step) with probability at least 1/2. Hence, each cut edge (i.e., an edge
in E(W ′

s, C \W ′
s)) is traversed in the ℓth step with probability at least p/2d = Ω(1/|W ′

s|), and it
follows that the walk ends outside of W ′

s with probability Ω(|E(W ′
s, C \W ′

s)|/|W ′
s|). Recalling that

Pr[Xs ̸∈W ′
s] ≤ 2η1/2, the claim follows (i.e., |E(W ′

s, C \W ′
s)| = O(η1/2 · |W ′

s|)).

Definition 3.4.2 (good vertices): A vertex s ∈ C is called good if performing Step 1 starting at s
makes the generalized uniformity tester accept with probability 1− o(ϵ).

Recall that (given that the test accepted w.h.p.) we shall assume that a 1−γ fraction of the vertices
in C are good, and that every good vertex s defines a set of vertices Ws such that the distribution
of the endpoint of an O(log n)-step random walk on C that starts in s is ϵ′-close to being uniform
over the vertex set Ws.

Using Claim 3.4.1, we observe that a random O(log n)-step walk starting at a random vertex
w in Ws is extremely unlikely to leave W ′

s, and the expander pseudo-tester (applied in Step 2
with proximity parameter ϵ′′) can be viewed as taking place on the subgraph of C induced by W ′

s.
Specifically, applying Claim 3.4.1 to a good vertex s with η = n−3β, it follows that the collision
probability of random walks starting at Xs and not leaving W ′

s at least a (1 − o(n−β)) factor of
the value estimated in Step 2. Recall that Step 2 estimates the collision probability from O(1/ϵ′′)
vertices drawn from Xs, which implies that if Step 2 does not reject (w.h.p.), then for at least 1−ϵ′′

fraction of the vertices w in W ′
s the collision probability of a random walk on W ′

s that starts in w
is at most (1 + o(|W ′

s|−β))/|W ′
s|. Applying [11, Thm. 1.1], it follows that in this case the subgraph

of C induced by W ′
s is O(ϵ′′)-close to a c′-edge expander. Furthermore, we can afford to omit the

edges of the cut E(W ′
s, C \W ′

s), and proceed with the rest of C \W ′
s. Unfortunately, we have to

do this carefully due to the affect on C \W ′
s (see below). But let us first summarize the foregoing

discussion.

Definition 3.4.3 (excellent vertices): A good vertex s ∈ C is called excellent if performing Step 2
starting at s makes the expander pseudo-tester accept with probability 1− o(ϵ).

The foregoing discussion asserts that if s is excellent, then the subgraph induced by W ′
s is O(ϵ′′)-

close to a c′-edge expander, whereas |E(W ′
s, C \W ′

s)| = O(ϵ′′ · |W ′
s|), where ϵ′′ =

√
ϵ′ ≤ n−3β/2 =

o(n−β/ log n). As stated, we can afford to omit the edges of E(W ′
s, C \W ′

s), and proceed with the
rest of C \W ′

s, but this may cause a problem later on.
The problem is that the edges that we omitted (i.e., E(W ′

s, C \W ′
s)) still appear in the graph,

and so random walks from other vertices of C \W ′
s may traverse these edges. That is, the set W ′

s′

defined for some excellent s′ ∈ C \W ′
s may include both endpoint of an edge in E(W ′

s, C \W ′
s);

in this case, the omitted edge may contribute to the edge-expansion of the subgraph induced by
W ′

s′ (and so omitting it in service of W ′
s may harm W ′

s′). Hence, we need to avoid this situation.
For starters, we claim that if W ′

s′ contains an edge in E(W ′
s, C \W ′

s), it holds that W ′
s′ and W ′

s

are either almost disjoint or almost overlapping. Actually, this dichotomy holds for any excellent

14



pair of vertices (regardless of whether the cut defined by one excellent vertex is contained in the
subgraph induced by the other).

Claim 3.4.4 (W ′
s′ and W ′

s are either disjoint or overlapping): Let s and s′ be two excellent vertices
in C. Then, min(|W ′

s ∩W ′
s′ |, |W ′

s \W ′
s′ |) = O(ϵ′′ ·max(|W ′

s|, |W ′
s′ |)), where ϵ′′ =

√
ϵ′. Furthermore,

if |W ′
s ∩W ′

s′ | = ω(ϵ′′ ·max(|W ′
s|, |W ′

s′ |)), then |W ′
s ∩W ′

s′ | ≥ (1−O(ϵ′′)) ·max(|W ′
s, |W ′

s′ |).

Proof: We start with the main claim. The key observation is that by Claim 3.4.1 (applied to Xs′

with η = ϵ′ ≤ n−3β), the cut between W ′
s ∩W ′

s′ and W ′
s \W ′

s′ contains at most |E(W ′
s′ , C \W ′

s′)| =
O(η1/2 · |W ′

s′ |) edges, whereas by the fact that the subgraph induced by W ′
s is O(ϵ′′)-close to a c′-

edge expander it follows that this cut has size at least c′ ·min(|W ′
s ∩W ′

s′ |, |W ′
s \W ′

s′ |)−O(ϵ′′) · |W ′
s|.

Recalling that η1/2 = ϵ′′ and c′ = Ω(1), it follows that

min(|W ′
s ∩W ′

s′ |, |W ′
s \W ′

s′ |) = O(ϵ′′ · |W ′
s′ |) +O(ϵ′′ · |W ′

s|).

Turning to the furthermore claim, observe that the hypothesis (combined with the main claim)
implies that |W ′

s \W ′
s′ | = O(ϵ′′) ·max(|W ′

s|, |W ′
s′ |). Likewise, |W ′

s′ \W ′
s| = O(ϵ′′) ·max(|W ′

s|, |W ′
s′ |).

The furthermore claim follows.

We actually need a more general claim.

Claim 3.4.5 (a generalization of Claim 3.4.4): Let s1, ..., st and s′ be t+ 1 excellent vertices in C
such that the W ′

s1 , ...,W
′
st are pairwise disjoint. Let Dsi be a set of O(ϵ′′ · |W ′

si |) vertex-pairs such
that the subgraph induced by W ′

si differs from a c′-edge expander only on Dsi. Then, either for
some i ∈ [t] it holds that |W ′

s′ ∩W ′
si | ≥ |W

′
si | − O(ϵ′′) · max(|W ′

si |, |W
′
s′ |) or |W ′

s′ ∩
⋃

i∈[t]W
′
si | =

O(ϵ′′ · |W ′
s′ |+ |D′ ∩W ′

s′ |), where D′ is the set of vertices incident to
⋃

i∈[t]Dsi.

Figure 2: The cut between W ′ ∩W ′
s′ and W ′ \W ′

s′ is marked.

Proof: Letting W ′ =
⋃

i∈[t]W
′
si , we consider the cut between W ′∩W ′

s′ and W ′\W ′
s′ (see illustration

in Figure 2). On the one hand, applying Claim 3.4.1 to W ′
s′ , it follows that this cut contains at

most |E(W ′
s′ , C \W ′

s′)| = O(ϵ′′ · |W ′
s′ |) edges. On the other hand, using the hypothesis that the

15



subgraph induced by each W ′
si differs from a c′-edge expander only on Dsi , it follows that this cut

(i.e., E(W ′ ∩W ′
s′ ,W

′ \W ′
s′) has size at least∑

i∈[t]

(
c′ ·min(|W ′

si ∩W ′
s′ |, |W ′

si \W
′
s′ |)− |Dsi ∩ E(W ′

si ∩W ′
s′ ,W

′
si \W

′
s′)|

)
,

where we use the hypothesis that W ′
s1 , ...,W

′
st are disjoint. Letting D′

si denote the set of vertices
incident to Dsi , we have

|Dsi ∩ E(W ′
si ∩W ′

s′ ,W
′
si \W

′
s′)| = O(|D′

si ∩W ′
s′ |).

Hence, ∑
i∈[t]

(
c′ ·min(|W ′

si ∩W ′
s′ |, |W ′

si \W
′
s′ |)−O(|D′

si ∩W ′
s′ |)

)
= O(ϵ′′ · |W ′

s′ |).

We now consider two cases.

Case 1: |W ′
si ∩W ′

s′ | ≤ |W ′
si \W

′
s′ | holds for each i ∈ [t]. In this case, it follows that∑

i∈[t]

(
|W ′

si ∩W ′
s′ | −O(|D′

si ∩W ′
s′ |)

)
= O(ϵ′′ · |W ′

s′ |).

Recalling that D′
s1 , ..., D

′
st are disjoint, we get |W ′

s′ ∩ W ′| = O(ϵ′′ · |W ′
s′ | + |D′ ∩ W ′

s′ |) as
claimed, where D′ =

⋃
i∈[t]D

′
si .

Case 2: |W ′
si ∩W ′

s′ | > |W ′
si \W

′
s′ | holds for some i ∈ [t]. In this case (by Claim 3.4.4) it holds

that |W ′
si \W

′
s′ | = O(ϵ′′ ·max(|W ′

si |, |W
′
s′ |)), and |W ′

s′ ∩W ′
si | ≥ |W

′
si |−O(ϵ′′) ·max(|W ′

si |, |W
′
s′ |)

follows.

The claim follows.

With Claims 3.4.1 and 3.4.5 at our disposal, we can cover most of the vertices of the connected
component C by disjoint sets such that the subgraph induced by each set is close to being an
expander and there are few edges between these sets. These sets will be based on the sets W ′

s

that correspond to excellent vertices s ∈ C. Specifically, we use an iterative process. In the ith

iteration, having previously determined the sets W ′′
s1 , ...,W

′′
si−1

, we seek an excellent vertex si such
that |W ′

si∩
⋃

j∈[i−1]W
′′
sj | = O(ϵ′′ ·|W ′

si |). If no such vertex exists, then we halt, and otherwise we pick

such a vertex si and define W ′′
si ←W ′

si \
⋃

j∈[i−1]W
′′
sj . Specifically, among the legitimate candidates

for si, we pick the one that maximizes |W ′
si |. This guarantees that |W ′

si | ≤ |W
′
sj | ≤

|W ′′
sj
|

1−O(ϵ′′) for

all j ∈ [i − 1]. We stress that the subgraph of C induced by W ′′
si is O(ϵ′′)-close to being a c′-edge

expander and that |E[W ′′
si , C \W

′′
sj )| = O(ϵ′′ · |W ′′

si |).
We shall show that when this iterative process terminates (after t iterations) almost all the

vertices of C are covered (i.e., are included in one of the sets W ′′
s1 , ...,W

′′
st). That is, as long as

there are significantly many uncovered vertices, there exists an excellent vertex s′ such that W ′
s′ has

small intersection with the previous i− 1 sets W ′′
s1 , ...,W

′′
si−1

. Intuitively, this holds because, for a
random excellent vertex s′, the expected intersection of W ′

s′ with any subset of C is linearly related
to the density of this subset. This will allow us to lower-bound the intersection of W ′

s′ with the set
of uncovered vertices as well as upper-bound the intersection of W ′

s′ with the set
⋃

j∈[i−1]D
′
sj .

16



Claim 3.4.6 (the sampling features of excellent vertices): For η ≤ σ/3 < 1/3, suppose that
(1− η) · |C| of the vertices in the connected component C are excellent, and let S and T be subsets
of C having densities σ and τ respectively. Then, there exists a excellent vertex s ∈ C such that
both Pr[Xs ∈ S] ≥ σ/3 and Pr[Xs ∈ T ] = O(τ/σ) hold.

Using Claim 3.4.1, it follows that |W ′
s ∩ S| > ((σ/3) − O(ϵ′′)) · |W ′

s|, since Xs is O(ϵ′′)-close to be
uniform on W ′

s. Likewise, we get |W ′
s ∩ T | = O((τ/σ) + ϵ′′) · |W ′

s|.
Before proving the Claim 3.4.6, we use it to complete the analysis of the foregoing iterative

process. In the ith iteration, we set S = C \
⋃

j∈[i−1]W
′′
sj and T =

⋃
j∈[i−1]D

′
sj . Observe that

|T | = O(ϵ′′ · |C|), whereas we care of the case that |S| = Ω(ϵ · |C|). Furthermore, recall that the
number of excellent vertices in C (i.e., (1− η) · |C|) is at least |C| − (|S|/3). In the latter case (i.e.,
|S| = Ω(ϵ · |C|)), using Claim 3.4.6, we infer that there exists an excellent vertex s that satisfies
|W ′

s ∩W ′′
sj | ≤ |W

′
s| − |W ′

s ∩ S| ≤ (1 − Ω(ϵ)) · |W ′
s| for every j ∈ [i − 1]. Using Claim 3.4.5 (and

recalling that |W ′
s ∩ T | = O(ϵ′′/ϵ) · |W ′

s|), it follows that |W ′
s ∩

⋃
j∈[i−1]W

′′
sj | = O(ϵ′′ · |W ′

s|/ϵ), since
|W ′

s∩W ′′
sj | ≥ |W

′′
sj |−O(ϵ′′) ·max(|W ′

s|, |W ′′
sj |) is impossible (because |W ′′

sj | ≥ (1−O(ϵ′′/ϵ)) · |W ′
sj | and

|W ′
s| ≤ |W ′

sj | imply that |W ′′
sj |−O(ϵ′′/ϵ)·max(|W ′

s|, |W ′′
sj |) ≥ (1−O(ϵ′′/ϵ))·|W ′

sj | > (1−Ω(ϵ))·|W ′
s|).15

Proof: Note that uniformly selecting s ∈ C and outputting Xs (which is generated by a lazy random
walk starting at s)16 yields a uniform distribution over C, whereas selecting uniformly a excellent
vertex s and outputting Xs yields a distribution, denoted Z, that is η-close to uniform. Hence,

Exps [Pr[Xs ∈ S]] ≥ σ − η ≥ 2σ/3,

where the expectation is over uniformly distributed excellent s ∈ C. It follows that for at least a
σ/3 fraction of the excellent s ∈ C, it holds that Pr[Xs ∈ A] ≥ σ/3. Likewise,

Exps [Pr[Xs ∈ T ]] ≤ τ

1− η
< τ/2,

which implies that for more than 1 − (σ/4) fraction of the excellent s ∈ C, it holds that Pr[Xs ∈
T ] ≤ τ/8σ. The claim follows.

Conclusion. For each connected component C, if 1−γ fraction of the vertices in C are excellent,
then C is O(γ)-close to some graph in Ξc′ . This expanding graph consists of the connected compo-
nents over the vertex-sets W ′′

s1 , ...,W
′′
st and |C| −

∑
i∈[t] |W ′′

si | isolated vertices. Recall that the ith

connected component (having vertex-set W ′′
si) is O(ϵ′′)-close to being a c′-edge expander. Indeed,

we have omitted all edges in E(W ′′
si , C \W

′′
si) as well as all edges incident at R

def
= C \

⋃
i∈[t]W

′′
si ,

while upper-bounding that their number by∑
i∈[t]

O(ϵ′′ · |W ′′
i |) +O(|R|) = O(ϵ′′ · |C|) +O(γ · |C|) = O(γ · |C|),

since ϵ′′ = o(ϵ) whereas γ = Ω(ϵ). Recalling the standard counting argument outlined in Foot-
note 14, this completes the proof of Theorem 3.4.

15Note that Claim 3.4.5 is applied to W ′′
s1 , ...,W

′′
si−1

and W ′
s (rather than to W ′

s1 , ...,W
′
si−1

and W ′
s).

16Hence, we effectively take a (non-lazy) random walk on a 2d-regular graph.

17



4 On the exponential dependence on g in testing Γg+1

Recall that Theorem 1.5 asserts a O(d⌈g/2⌉)-query proximity-oblivious tester for the set of graphs
having girth greater than g (i.e., Γg+1). We show that an exponential dependence of the query
complexity on the girth is unavoidable.

Theorem 4.1 (lower bound on testing Γg+1): For every d ≥ 3, α < 1/2, and g : N→ N such that
g(n) ∈ [3, α · log2 n], the query complexity of testing Γg is exp(Ω(g)).

We stress that Theorem 4.1 holds also for two-sided error testers, and is proved for constant
proximity parameter (e.g., ϵ = (1− 2α)/d).

Proof Sketch: The key observation is that a random 3-regular k-vertex graph is “extremely close”
to having girth greater than α · log2 k but is far from having girth at least (1/α) · log2 k. In
contrast, a o(

√
k)-query algorithm that explores a random 3-regular k-vertex graph is unlikely to

see a cycle. This means that an algorithm that makes o(
√
h) queries cannot distinguish between

a random 3-regular k-vertex graph and a k-vertex graph consisting of k/h connected components
each being a random 3-regular h-vertex graph. Using h = kα

2
, it follows that such an algorithm

cannot distinguish between a distribution of graphs that have girth greater than g = α · log2 k and
a distribution of graphs that are far from having girth greater than (1/α) · log2 h = α · log2 k.

The foregoing description blurs the difference between being “extremely close” to having girth
greater than g = α · log2 k and having girth greater than g. Intuitively, if being extremely close
means being k−1/2-close, then omitting the relevant edges yield a graph of girth greater than g,
whereas a o(

√
k)-query algorithm is unlikely to see evidence of these omission (which result in few

vertices having degree smaller than 3). Details follow.

Key facts. As evident from the foregoing overview, the proof relies on facts regarding the distance
of a random d-regular k-regular graph from having certain girth (i.e., from the set of d-regular
k-regular graphs having certain girth). We start by stating these facts.

Fact 1: The number of (simple) ℓ-cycles in a random d-regular k-vertex graph is approximated by
a Poison distribution with mean (d− 1)ℓ/2ℓ, provided that (d− 1)2ℓ−1 = o(k) (cf. [13, p. 2]).

Letting g = α · log2 k and noting that 2g = kα = o(
√
k), it follows that, with probability

1− o(1), a random 3-regular k-vertex graph contains at most
√
k (simple) cycles of length at

most g. In other words, a random 3-regular k-vertex graph is k−1/2-close to having girth at
least g + 1.

Hence, omitting
√
k edges from the graph, we obtain a graph of girth at least g+1 that looks

like a random 3-regular k-vertex graph to any o(
√
k)-query explorer.

Fact 2: Any h-vertex graph of girth g has average degree at most h2/g + 1 (see [1, 19]).

Letting h = kα
2
and using g = α · log2 k, it follows that h2/g = 22α

2/α < 2, which means that
an h-vertex graph of girth at least g has average degree smaller than 3− ϵ, for some constant
ϵ > 0 (which depends on α).

Hence, every h-vertex 3-regular graph is ϵ-far from having girth at least g = (1/α) · log2 h.

18



Lastly, we observe that the argument in [6, Sec. 7.2] extends to showing that, for every t, distin-
guishing between a random 3-regular k-vertex graph and a k-vertex graph consisting of t random
3-regular k/t-vertex graphs requires Ω(

√
k/t) queries. (The original argument is for the case t = 4.)

The actual proof. With these preliminaries in place, we turn to the actual proof. For any g ≥ 3, we
let k = 2g/α. For any n ∈ {m · k :m ∈ N}, we consider the following two distributions on n-vertex
graphs of degree at most 3.

1. The n-vertex graph consists of n/k connected components that are each a k-vertex graph of
degree at most 3 that is generated at random as follows.

(a) We sample the conditional space of random 3-regular k-vertex graphs that contain at
most

√
k (simple) cycles of length at most g.

(Recall that (by Fact 1), for 2g = kα = o(
√
k), with probability 1 − o(1), a random

3-regular k-vertex graph contains at most
√
k (simple) cycles of length at most g.)

(b) We obtain a k-vertex graph of girth at least g + 1 by omitting an arbitrary edge from
each of the foregoing cycles.

Hence, the resulting n-vertex graph has girth at least g + 1.

2. The n-vertex graph consists of n/kα
2
connected components that are each a random 3-regular

kα
2
-vertex graph.

(Recall that (by Fact 2), each connected component is ϵ-far from having girth at least g,
because a kα

2
-vertex graph of girth g must have average degree at most (kα

2
)2/g + 1 =

(2α·g)2/g + 1 = 22α + 1, whereas we can set ϵ > 0 such that ϵ ≤ 2− 22α.)

Hence, this n-vertex graph is ϵ-far from having girth at least g.

Recall that by the foregoing observation, distinguishing between a random 3-regular k-vertex graph
and a graph consisting of k1−α2

connected components that is each a random 3-regular kα
2
-vertex

graph requires Ω(
√
kα2) = exp(Ω(g)) queries. The same holds when trying to distinguish the two

foregoing distributions, because the modifications performed (in the first distribution) cannot be

noticed by an O(
√
kα2)-query exploration.17

Acknowledgments

We are grateful to Nati Linial and Merav Parter for a helpful discussions regarding girth.

References

[1] Noga Alon, Shlomo Hoory, and Nati Linial. The Moore Bound for Irregular Graphs.
Graphs and Combinatorics, Vo. 18, pages 53–57, 2002.

17More precisely, we first streamline the second distribution by partitioning the n/kα2

graphs of in the distribution

to n/k graphs each consisting of k/kα2

connected components. Letting qi denote the number of queries made to the ith

graph (in one of the two distribution), we observe that the argument in [6, Sec. 7.2] implies that the distinguishability

gap is upper-bounded by
∑

i O(q2i /k
α2

) = O(q2/kα2

), where q =
∑

i qi.

19



[2] Tugkan Batu and Clement L. Canonne. Generalized Uniformity Testing. In 58th FOCS,
pages 880–889, 2017.

[3] Ilias Diakonikolas, Daniel Kane, and Alistair Stewart. Sharp Bounds for Generalized
Uniformity Testing. In ECCC, TR17-132, 2017.

[4] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[5] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property Testing and its connection
to Learning and Approximation. Journal of the ACM, Vol. 45 (4), pages 653–750, July
1998.

[6] Oded Goldreich and Dana Ron. Property Testing in Bounded Degree Graphs. Algorith-
mica, Vol. 32 (2), pages 302–343, 2002.

[7] Oded Goldreich and Dana Ron. On Testing Expansion in Bounded-Degree Graphs. In
Studies in Complexity and Cryptography, pages 68–75, 2011. Preliminary version in ECCC,
TR00-020, 2000.

[8] Oded Goldreich and Dana Ron. On Proximity Oblivious Testing. SIAM Journal on
Computing, Vol. 40, No. 2, pages 534–566, 2011.

[9] Oded Goldreich and Laliv Tauber. Testing in the bounded-degree graph model with degree
bound two. ECCC, TR22-184, 2022.

[10] Mikhail Gromov. Singularities, Expanders and Topology of Maps. Part 2: From Combina-
torics to Topology via Algebraic Isoperimetry. Geom. Funct. Anal., Vol. 20 (2), pages 416–
526, 2010.

[11] Satyen Kale and C. Seshadhri. An Expansion Tester for Bounded Degree Graphs. SIAM
Journal on Computing, Vol. 40, No. 3, pages 709–720, 2011.

[12] Akash Kumar, C. Seshadhri, and Andrew Stolman. Random walks and forbidden minors
III: poly(d/ϵ)-time partition oracles for minor-free graph classes. In 62nd FOCS, pages
257–268, 2021.

[13] Brendan D. McKay, Nicholas C. Wormald, and Beata Wysocka. Short Cycles in Random
Regular Graphs. The Electronic Journal of Combinatorics, Vol. 11, Art. R66, 2004.

[14] Nathan Linial and Roy Meshulam. Homological Connectivity of Random 2-Complexes.
Combinatorica, Vol. 26 (4), pages 475–487, 2006.

[15] Izhar Oppenheim. Local Spectral Expansion Approach to High Dimensional Expanders
Part I: Descent of Spectral Gaps. Discrete Comput. Geom., Vol. 59.2, pages 293–330,
2018.

[16] Aviv Reznik. Finding k-Paths in Cycle-Free Graphs. Master thesis, Weizmann Institute
of Science, 2011.
Available from https://www.wisdom.weizmann.ac.il/∼oded/msc-ar.html.

20



[17] Ronitt Rubinfeld and Madhu Sudan. Robust Characterization of Polynomials with Ap-
plications to Program Testing. SIAM Journal on Computing, Vol. 25 (2), pages 252–271,
1996.

[18] Yavin Sabo. On Finding Small Subgraphs in Bounded-Degree Graphs. Master thesis,
Tel-Aviv University, 2016.
Available from https://www.wisdom.weizmann.ac.il/∼oded/msc-ar.html.

[19] Luca Trevisan. The Moore Bound for Irregular Graphs (an exposition).
Available from https://lucatrevisan.wordpress.com/ (posted on February 2004).

21

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


