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Abstract

We prove algorithmic versions of the polynomial Freiman-Ruzsa theorem of Gowers, Green,
Manners, and Tao (Annals of Mathematics, 2025) in additive combinatorics. In particular,
we give classical and quantum polynomial-time algorithms that, for A ⊆ Fn

2 with doubling
constant K, learn an explicit description of a subspace V ⊆ Fn

2 of size |V |≤ |A| such that A can
be covered by KC translates of V , for a universal constant C > 1.

1 Introduction

The Freiman-Ruzsa theorem [Fre87, Ruz99] is a cornerstone of additive combinatorics with diverse
applications to theoretical computer science (cf. [Lov15]). Loosely speaking, the theorem shows that
sets exhibiting approximate combinatorial subgroup behaviour must be algebraically structured.
To make this precise, recall that a set A has doubling constant K if |A+A|≤ K|A|, where A+A =
{a+a′ ; a, a′ ∈ A}. Note that A has doubling constant 1 if and only if it is a subgroup or a coset of
a subgroup, and in turn, the doubling constant of A can be thought of as a combinatorial measure
of the approximate subgroup behaviour of sets. In this paper, we focus on subsets of Fn2 . In this
setting, the Freiman-Ruzsa theorem states that sets A ⊆ Fn2 with |A + A|≤ K|A| is covered by
exp(K) translates of a subspace V ⊂ Fn2 of size |V |≤ |A|.

Marton conjectured that the aforementioned dependency inK can be improved to a polynomial,
in what became widely known as the Polynomial Freiman-Ruzsa (PFR) conjecture. Over a decade
later, Sanders proved a quasipolynomial Bogolyubov-Ruzsa theorem, which implies a version of the
Freiman-Ruzsa theorem with quasipolynomial dependency on the doubling constant K. In a recent
breakthrough, the PFR conjecture was proved by Gowers, Green, Manners, and Tao.

Theorem 1.1 (Combinatorial PFR theorem [GGMT25]). There exists a polynomial P0 : R+ → R+

such that the following holds. For any n ≥ 1, if A ⊆ Fn2 satisfies |A+A|≤ K|A|, then A is covered
by at most P0(K) translates of a subspace V ⊂ Fn2 of size |V |≤ |A|.

A key reason for the importance of the PFR theorem in additive combinatorics is that it provides
means to transition from a combinatorial notion of approximate subgroup structure, captured
by constant doubling, to an algebraic notion, captured by a bounded subspace-cover, at only a
polynomial cost.
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1.1 Algorithmic PFR

The PFR theorem (and the closely-related quasi-polynomial Bogolyubov-Ruzsa theorem) also pro-
vide powerful tools that found diverse applications to theoretical computer science, including lin-
earity testing of maps f :Fn2 → Fm2 [Sam07], constructions of two-source extractors from affine
extractors [ZBS11], communication complexity lower bounds [BSLRZ14], super-polynomial lower
bounds on locally decodable codes [BDL13], constructions of non-malleable codes [ADL14], higher-
order Goldreich-Levin theorems [TW14, KLT23, BC25], sparsification algorithms for 1-in-3-SAT
[BNOŽ25], quantum proofs for classical theorems [DdW09], quantum and classical worst-case to
average-case reductions [AGGS22, AGG+24], tolerant quantum testing of stabilizer states [AD25b],
quantum learning of structured stabilizer decompositions [AD25a], and beyond.

However, when considering applications of the PFR theorem and similar tools to theoretical
computer science as above, it is often necessary or desirable to have an efficient algorithmic state-
ment, where an explicit description of the subspace can be learned efficiently, as opposed to an
existential combinatorial statement. Indeed, the naive algorithm that extracts the subspace runs in
time O(2n). Fortunately, for the quasi-polynomial Bogolyubov-Ruzsa theorem, Ben-Sasson, Ron-
Zewi, Tulsiani, and Wolf [BSRZTW14] showed an algorithmic version, which extracts a subspace
in time O(n3 log n).

The above motivates a natural question that arose after the resolution of the PFR conjec-
ture [GGMT25]. Namely, now that we know that a subset A of constant doubling can be covered
by at most a polynomial number of translates of a subspace H ⊂ Fn2 of size |H|≤ |A|, can we learn
the subspace H efficiently?. We refer to this as the “algorithmic PFR question.” Our main contri-
bution answers this question by proving an algorithmic version of the polynomial Freiman-Ruzsa
theorem, where the covering subspace can be learned explicitly in poly(n)-time. In the following,
a query to a set A ⊆ Fn2 is an evaluation of the characteristic function 1A(x) for a chosen x ∈ Fn2 ,
and a random sample from A is a uniformly chosen element a ∈ A.

Theorem 1.2. (Algorithmic PFR) There exists a polynomial P1 : R+ → R+ such that the following
holds. Let A ⊆ Fn2 satisfy |A+ A|≤ K|A| for a doubling constant K ≥ 1. There is an Õ(n4)-time
randomized algorithm that uses O(log|A|) random samples and Õ(log2|A|) queries to A which, with
probability at least 2/3, returns a subspace V ≤ Fn2 of size at most |A| such that A can be covered
by P1(K) translates of V .

We remark that the probability of success 2/3 is arbitrarily chosen and can be amplified via
standard error-reduction techniques. The algorithm returns the subspace V specified by an ex-
plicit basis. As typically viewed in additive combinatorics, the doubling constant K is a constant
independent of n (as constant doubling implies structure), and in turn our asymptotic notation
suppresses factors of K.

Quantum algorithms. En route to obtaining our algorithmic PFR theorem, we obtain quantum
algorithms with query complexity (which we then dequantize; see the techniques section) and
time complexity1 that is a factor-n lesser than the classical algorithms. Namely, we show the
following theorem.

Theorem 1.3. (Quantum Algorithmic PFR) There exists a polynomial P1 : R+ → R+ such that
the following holds. Let A ⊆ Fn2 satisfy |A + A|≤ K|A| for a doubling constant K ≥ 1. There is

1In the context of quantum algorithms, by time we mean the total number of single and two-qubit quantum gates
used in the quantum algorithm.
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an O(n3)-time quantum algorithm that uses O(log|A|) random samples and quantum queries to A
which, with probability at least 2/3, returns a subspace V ≤ Fn2 of size at most |A| such that A can
be covered by P1(K) translates of V .

Optimality. We complement our algorithms by also showing that both of our classical and quan-
tum algorithms are asymptotically optimal in terms of the query complexity dependence in n, up
to a logarithmic factor. In particular, we show that Ω(n2) queries to the set A are necessary for
classical algorithms in order to output the subspace V . Similarly, we show that Ω(n) quantum
queries to the set A are necessary. Our lower bounds are proven via a simple information-theoretic
argument. Finally, we note that random samples are necessary to hit A in the case it is sparse,
and information-theoretically, it is necessary to obtain Ω(log|A|) samples from A in order to hit at
least a basis for A. See Section 5 for the lower bounds.

1.2 Homomorphism testing and structure-vs-randomness decomposition

A key reason for the power and centrality of the PFR theorem is its applications to deriving strong
structural theorems regarding homomorphism testing and structure-vs-randomness decomposition.
However, while the PFR theorem is known to be equivalent to the aforementioned structural the-
orems [Gre04a, Gre05], the equivalences are not trivially algorithmic. Nonetheless, we provide
versions of these theorems that admit efficient algorithms.

The first theorem is concerned with local-to-global phenomena. Namely, it shows that if a map
f : Fm2 → Fn2 satisfies a local affine-linear constraint with a significant probability, then it must be
globally close, in fractional distance, to an affine-linear map, which can be efficiently learned. This
statement is useful because it connects the PFR theorem to property testing and coding theory.

Theorem 1.4 (Homomorphism testing). There exists a polynomial P2 : R+ → R+ such that the
following holds. Let f : Fm2 → Fn2 satisfy

Pr
x1+x2=x3+x4

[f(x1) + f(x2) = f(x3) + f(x4)] ≥ 1/K.

Then, there is an affine-linear function g : Fm2 → Fn2 such that f(x) = g(x) for at least 2m/P2(K)
values of x ∈ Fm2 . Furthermore, there is an Õ((m + n)3)-time randomized algorithm that, with
probability at least 2/3, learns a concise representation of g.

The second theorem also exhibits local-to-global structure, this time by showing that maps
that are locally an approximate homomorphisms admit a structured decomposition, which can be
efficiently learned.

Theorem 1.5 (Structured approximate homomorphism). There exists a polynomial P3 : R+ → R+

such that the following holds. Let f : Fm2 → Fn2 satisfy

|{f(x) + f(y)− f(x+ y) : x, y ∈ Fm2 }| ≤ K.

Then f may be written as g + h, where g : Fm2 → Fn2 is linear and |Im(h)|≤ P3(K). Furthermore,
there is an Õ((m + n)3)-time randomized algorithm that, with probability at least 2/3, learns a
concise representation of g.

1.3 Technical overview

A natural approach for proving an algorithmic PFR theorem is to try to algorithmize each step
in the proof of the PFR conjecture given in [GGMT25], which would in principle provide a result
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similar to Theorem 1.2. Unfortunately, the aforementioned proof heavily relies on entropic methods
that are non-algorithmic by nature and it is unclear whether such machinery can be transformed
into efficient algorithms. To overcome this barrier, we take a detour through quantum algorithms.

Stabilizer learning and the Gowers U3-norm of quantum states. In a recent breakthrough,
Chen, Gong, Ye, and Zhang provided an efficient quantum procedure to learn the closest stabilizer
state to a given quantum state [CGYZ25]. The connection between this task and additive combi-
natorics was first noted by Arunachalam and Dutt [AD25b], who defined the Gowers U3-norm of
an arbitrary n-qubit quantum state |ψ⟩ =

∑
x∈Fn

2
f(x) |x⟩ (where (f(x))x is an ℓ2-unit vector) as

∥|ψ⟩∥U3 = 2n/2

 E
x,h1,h2,h3∈Fn

2

∏
ω∈F3

2

C |ω|f(x+ ω · h)

1/23

, (1)

where C |ω|f = f if ω :=
∑

j∈[3] ωj is odd and f otherwise. This is proportional to the Gowers

U3- norm of the function f encoded in the amplitudes of the state |ψ⟩, but normalized so that
∥|ψ⟩∥U3 ≤ ∥f∥ℓ2 = 1.

Arunachalam and Dutt showed that stabilizer states are the extremizers of the Gowers U3-
norm over quantum states, and that a quantum state has non-negligible U3-norm if and only if it
correlates with a stabilizer state. Moreover, using the PFR theorem (Theorem 1.1), they obtained
a polynomial Gowers inverse theorem for quantum states: the U3-norm of a quantum state and its
maximal correlation with a stabilizer state are polynomially related (see also [BvDH25, MT25]).
As such, our high-level strategy is to use the stabilizer learning protocol in [CGYZ25] to obtain
a quantum algorithmic version of the polynomial Gowers inverse theorem, which is known to also
be equivalent to the PFR theorem due to work of Green and Tao [GT10] and of Lovett [Lov12].
We then arrive at an algorithmic result, albeit quantum, of a statement that is combinatorially
equivalent to PFR.

However, as discussed in the previous section, it is non-trivial to make such combinatorial
equivalences algorithmic. In this paper, we algorithmize a proof of equivalence between these two
results (inspired by the proofs of Green-Tao and Lovett), thus allowing us to employ the stabilizer
learning algorithm [CGYZ25] to obtain efficient quantum algorithms for the PFR theorem and the
structural theorems stated in Section 1.2.

Classical algorithms via dequantization. After obtaining the quantum algorithms above, the
last ingredient needed is a method to dequantize these algorithm so as to obtain efficient classical
algorithms for PFR, as stated in Theorems 1.2, 1.4 and 1.5. Towards this end, we use in our
arguments the machinery developed by Briët and Castro-Silva [BC25] to replace the quantum
learning algorithm in [CGYZ25] by a classical algorithm that emulates it. This allows us to obtain
analogous algorithmic results in the classical setting, at the expense of quadratically worse query
complexity than in the quantum setting. This quantum-to-classical blow-up is inherent, and indeed,
we prove it is necessary and essentially optimal (see Theorem 5.1).

Proof outline. With the strategy above in mind, we proceed to give a high-level outline of the
proofs of Theorems 1.2 and 1.3, which build on the combinatorial arguments of Green and Tao
[GT10] and Lovett [Lov12]. Our other algorithmic results follow via similar methods from these
two theorems and the combinatorial arguments of Green and Ruzsa [Gre05].

4



Suppose we have sample and query access to a set A ⊆ Fn2 such that |A + A|≤ K|A| for
a doubling constant K ≥ 1. We shall first need to localize A inside the space Fn2 , which in
applications can be much larger than A itself (indeed, this is the reason why sample access to A is
necessary). We do this by first sampling O(log|A|) uniformly random elements from A and taking
their linear span, which we denote by U ≤ Fn2 . While U might not contain all of the original set,
using the fact that A has bounded doubling we can show that their intersection A′ := A ∩ U will
likely comprise at least half of the points in A (for a careful choice of parameters). We prove this
in Lemma 3.1, which allows us to shift attention from A, which can be arbitrarily sparse inside Fn2 ,
to the localization A′, which occupies a positive fraction (at least a 2−2K-fraction) of the vector
space U , by the Freiman-Ruzsa theorem. Note that A′ will also have small doubling constant:

|A′ +A′|≤ |A+A|≤ K|A|≤ 2K|A′|.

We next wish to obtain a “dense model” of the localized set A′; that is, a set S ⊆ Fm2 that is
“additively equivalent” to A′, as captured by the notion of Freiman isomorphisms, but which has
density at least 1/KC (for a universal constant C > 1) inside its ambient space Fm2 . We show how
to do this in Lemma 3.2, which states that with high probability a uniformly random linear map
π : U → Fm2 , for m = log|4A′|+10, will be a Freiman isomorphism (i.e., isomorphism of additive
quadruples) from A′ to S := π(A′). Informally, this means they have the same additive structure,
and hence such a dense model can be efficiently obtained by sampling.

Equipped with the localized dense model, we proceed to learn the covering subspace. Denote
by f : S → A′ the inverse of π when restricted to S. By the definition of Freiman isomorphisms,
we have that

∀a, b, c, d ∈ S : a+ b = c+ d =⇒ f(a) + f(b) = f(c) + f(d).

From this approximate linearity condition of f on S, we can show that the function

g(x, y) = 1S(x)(−1)f(x)·y

is approximately quadratic.

In particular, following the approach of Green [Gre05] and Green-Tao [GT10], we show a slight
strengthening of the homomorphism testing formulation of the PFR theorem (see Lemma 3.3),
which we then proceed to algorithmize (see Lemma 3.4), relying on tools such as the quadratic
Goldreich-Levin theorem (see Theorem 2.12). In more detail, we first prove that there exists a
quadratic function q : Fm+n

2 → F2 such that∣∣∣ E
x∈Fm

2 , y∈Fn
2

1S(x)(−1)f(x)·y(−1)q(x,y)
∣∣∣ ≥ 1

P (K)
, (2)

for some polynomial P :R+ → R+.

Crucially, we can efficiently learn such a high-correlation quadratic function q. This is done
relying on the stabilizer learning algorithm of Chen et al [CGYZ25] in the quantum setting, or
its dequantization by Briët and Castro-Silva [BC25] in the classical setting. In order to use those
theorems, however, we need to be able to efficiently query the function g(x, y). This requires making
queries to the set S = π(A′), and inverting the linear map π restricted to A′. We show how this
can be done using a O(n3) time pre-processing step, and an extra cost of O(n2) time for each query
to g. The total time and query complexities of our algorithms follow from this step.
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From Eq. (2) and algebraic manipulations, we conclude that the homogeneous bilinear form

B(x, y) = q(x, y)− q(x, 0)− q(0, y) + q(0, 0)

correlates well with g(x, y). Since we obtained an explicit description of q, we can compute a
matrixM ∈ Fn×m2 such that B(x, y) = yTMx. By a simple Fourier analytic argument, we can then
conclude there is some v ∈ Fn2 such that

f(x) =Mx+ v for at least 2m/P ′(K) values x ∈ S,

where P ′:R+ → R+ is another polynomial we obtain in our proof. This implies that the subspace

V = {Mx : x ∈ Fm2 } ≤ Fn2

satisfies
|A′ ∩ (v + V )| = |Im(f) ∩ (v + V )| ≥ 2m/P ′(K) ≥ |A|/P ′(K).

By an application of Ruzsa’s covering lemma, we conclude that P ′(K) translates of V can cover A.
By our choice of m and the fact that A′ has bounded doubling, we deduce that V is covered by
2m/|A|≤ 212K4 translates of any of its subspaces having size |A|, which concludes the high-level
overview of the proof.

Future directions. As discussed above, a crucial component of the proof of our classical algo-
rithmic PFR theorem relies on dequantizing a quantum algorithm for learning the closest stabilizer
state to a given arbitrary quantum state. Finding further connections between quantum algorithms
and additive combinatorics is an interesting direction for future research. One concrete question
that is left open from our work is to improve the dependence on the doubling constant K. As is
standard in additive combinatorics, K is assumed to be a constant, but for asymptotically grow-
ing K it is an interesting open problem whether there exists an algorithm with query and time
complexities that scale polynomially in K.

2 Preliminaries

In this section, we state results that we will use in our algorithmic PFR theorems. We begin with
standard definition in additive combinatorics.

2.1 Additive combinatorics

For a set S ⊆ Fn2 and k ≥ 1, define the k-fold sumset as kS = {
∑

i∈T ai : ai ∈ S}|T |=k. In particular,
S+S = {a1+a2 : a1, a2 ∈ S}. We define the doubling constant of S as the smallest integer K such
that |2S|≤ K|S|. We denote the linear span of S by span(S). An additive quadruple in a set S is
(x1, x2, x3, x4) ∈ S4 such that x1 + x2 = x3 + x4.

Definition 2.1. The additive energy of a set S is the number of additive quadruples in S:

E(S) := |{(x1, x2, x3, x4) ∈ S4 : x1 + x2 = x3 + x4}|.

Note that E(S) ≤ |S|3.

Definition 2.2 (Freiman homomorphism). For a set S ⊆ Fn2 , a function ϕ : S → Fm2 is a Freiman
homomorphism if, for every additive quadruple x1, x2, x3, x4 ∈ S such that x1 + x2 = x3 + x4, we
have that ϕ(x1) + ϕ(x2) = ϕ(x3) + ϕ(x4).
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Definition 2.3 (Freiman isomorphism). A Freiman isomorphism is a bijective Freiman homomor-
phism ϕ such that its inverse is also a Freiman homomorphism; this is equivalent to requiring that

∀a, b, c, d ∈ S : a+ b = c+ d ⇐⇒ ϕ(a) + ϕ(b) = ϕ(c) + ϕ(d).

We shall need the following well-known theorems and lemmas in additive combinatorics.

Theorem 2.4 (Freiman-Ruzsa theorem [Ruz99, EZ12]). Let A ⊆ Fn2 . If |A + A|≤ K · |A|, then
|span(A)|≤ 22K/(2K) · |A|.

Theorem 2.5 (Balog-Szemerédi-Gowers theorem). Let A ⊆ Fn2 be a set such that

E(A) = |{(x1, x2, x3, x4) ∈ A4 : x1 + x2 = x3 + x4}| ≥ |A|3/K.

There there is a set A′ ⊆ A such that

|A′|≥ |A|/P (1)
BSG(K) and |A′ +A′|≤ P

(2)
BSG(K)|A|.

Lemma 2.6 (Plünnecke’s inequality [TV06]). If A ⊆ Fn2 satisfies |2A|/|A|≤ K, then |4A|/|A|≤ K4.

Lemma 2.7 (Ruzsa’s covering lemma). If S, T ⊆ Fn2 satisfy |T + S|≤ K|S|, then there is a subset
X ⊆ T of size |X|≤ K such that T ⊆ X + 2S.

2.2 Quantum information

Our quantum algorithms revolve around stabilizer states; we will use the following characterization
of stabilizer states.

Theorem 2.8 ([Nes08]). Every k qubit stabilizer state can be written in the following form

1√
|A|

∑
x∈A

iℓ(x)(−1)q(x) |x⟩ ,

for some affine subspace A ⊆ Fk2, quadratic polynomial q and linear polynomial ℓ in the variables
(x1, . . . , xk) ∈ Fk2.

Our quantum algorithmic PFR theorems will crucially use the agnostic learnability of stabilizer
states. Informally the task here is as follows: supposing an arbitrary quantum state |ψ⟩ was τ -close
to an unknown stabilizer state |ϕ⟩, output the “nearest” stabilizer state |ϕ′⟩ that is τ − ε close. A
recent work of Chen, Gong, Ye, and Zhang [CGYZ25], gave an agnostic learning algorithm that
runs in time quasipolynomial in 1/τ and polynomial in the other parameters. Formally, their result
is stated in the following theorem.

Theorem 2.9 ([CGYZ25]). Let C be the class of stabilizer states. Fix any ε ≤ τ ∈ (0, 1). There is
an algorithm that, given access to copies of ρ with max|ϕ′⟩∈C |⟨ϕ′|ρ|ϕ′⟩|≥ τ , outputs a |ϕ⟩ ∈ C such
that |⟨ϕ|ρ|ϕ⟩|≥ τ − ε with high probability. The algorithm performs single-copy and two-copy mea-
surements on at most n ·poly(1/ε, (1/τ)log 1/τ ) copies of ρ and runs in time n3poly(1/ε, (1/τ)log 1/τ ).

We will also require the following subroutines for estimating the overlap between two states
and obtaining unitaries that prepare stabilizer states

Lemma 2.10 (SWAP test). Let ε, δ ∈ (0, 1). Given two arbitrary n-qubit quantum states |ψ⟩
and |ϕ⟩, there is a quantum algorithm that estimates |⟨ψ|ϕ⟩|2 up to error ε with probability at least
1− δ using O(1/ε2 · log(1/δ)) copies of |ψ⟩ , |ϕ⟩ and runs in O(n/ε2 · log(1/δ)) time.
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Lemma 2.11 (Clifford synthesis [DDM03, PMH03]). Given the classical description of an n-qubit
stabilizer state |ϕ⟩, there is a quantum algorithm that outputs a Clifford circuit C that prepares |ψ⟩,
using O(n2/log n) many single-qubit and two-qubit Clifford gates.

2.3 Classical learning algorithms

Our classical algorithmic PFR theorems will crucially use the recent result by Briët and Castro-
Silva [BC25], which can be thought of as dequantizing the agnostic learning algorithm for stabilizer
states of [CGYZ25]. In particular, they showed that if one had query access to the amplitude vector
of the unknown quantum state |ψ⟩, then one can obtain a quadratic polynomial that most closely
approximates the amplitudes. Formally, they proved the following theorem.

Theorem 2.12 ([BC25, Theorem 1.1]). Let f : Fn2 → [−1, 1] be a 1-bounded function and let
ε, δ > 0. There is a randomized algorithm A that makes n2 log n log(1/δ)(1/ε)O(log(1/ε)) queries
to f and has O(n3) time complexity such that, with probability at least 1 − δ, outputs a quadratic
polynomial p : Fn2 → F2 satisfying

| E
x∈Fn

2

[f(x)(−1)p(x)]|≥ max
q quadratic

| E
x∈Fn

2

[f(x)(−1)q(x)]|−ε.

3 Algorithmic lemmas

In this section, we will prove lemmas that will be useful in establishing our quantum and classical
algorithmic PFR theorems.

3.1 Probabilistic dense model and sparse set localization

The following lemmas provide efficient randomized algorithms for finding Freiman isomorphisms
and localizing sparse sets by showing that there is an abundance of them, and hence they can be
sampled at random efficiently.

Lemma 3.1 (Localizing a sparse set). Let ε, δ > 0 and A ⊆ Fn2 . Let m := log|span(A)|, k :=
⌈2m/ε⌉ · ⌈log(1/δ)⌉. If v1, . . . , vk are uniformly random elements of A then, with probability at least
1− δ, we have

|A ∩ span{v1, . . . , vk}|≥ (1− ε)|A|.

Proof. Let ℓ ≥ 2 be an integer to be chosen later, and let v1, . . . , vℓ be ℓ independent random
elements of A. Let V0 = {0} and, for each 1 ≤ i ≤ ℓ, denote the linear span of the first i random
elements v1, . . . , vi by Vi. Suppose first that

Pr
v1,...,vℓ∈A

[|A ∩ Vℓ|≥ (1− ε)|A|] < 1/2. (3)

Then Prv1,...,vℓ∈A [|A \ Vℓ|> ε|A|] ≥ 1/2, and so

Pr
v1,...,vi∈A

[|A \ Vi|≥ ε|A|] > 1/2 for all 0 ≤ i ≤ ℓ. (4)
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It follows that

E
v1,...,vℓ∈A

[ dim(Vℓ)] =
ℓ∑
i=1

Pr
v1,...,vi∈A

[vi /∈ Vi−1]

≥
ℓ∑
i=1

Pr
v1,...,vi−1∈A

[
|A \ Vi−1|≥ ε|A|

]
· Pr
v1,...,vi∈A

[
vi /∈ Vi−1

∣∣∣|A \ Vi−1|≥ ε|A|
]

>

ℓ∑
i=1

1/2 · ε = εℓ/2,

where the final inequality used Eq. (4). Since Vℓ ⊆ span(A), we must have dim(Vℓ) ≤ log|span(A)|=
m, and thus ℓ < 2m/ε is required for equation (3) to hold. Denoting t := ⌈2m/ε⌉, we conclude that

Pr
v1,...,vt∈A

[|A ∩ span{v1, . . . , vt}|≥ (1− ε)|A|] ≥ 1/2.

Repeating this sampling ⌈log(1/δ)⌉ times independently at random, the probability that we succeed
at least once is at least 1− δ. With k = t⌈log(1/δ)⌉, it follows that

Pr
v1,...,vk∈A

[
|A ∩ span{v1, . . . , vk}|≥ (1− ε)|A|

]
≥ 1− δ,

proving the lemma statement.

Lemma 3.2 (Algorithmic dense model). Let δ > 0, A ⊆ Fn2 and let m ≥ log|4A|+ log 1/δ be an
integer. Suppose π : Fn2 → Fm2 is a random linear map. Then A is Freiman-isomorphic to π(A)
with probability at least 1− δ.

Proof. Recall that π is a Freiman isomorphism between A and π(A) if

∀a, b, c, d ∈ A : a+ b+ c+ d = 0 ⇐⇒ π(a) + π(b) + π(c) + π(d) = 0.

Observe that the property above implies that π is bijective.2 If π : Fn2 → Fm2 is a linear map, then
the forward implication is automatically satisfied, and moreover

π(a) + π(b) + π(c) + π(d) = π(a+ b+ c+ d).

It then suffices to check that

∀a, b, c, d ∈ A : π(a+ b+ c+ d) = 0 =⇒ a+ b+ c+ d = 0,

which is equivalent to requiring that π(x) ̸= 0 for all nonzero x ∈ 4A.

Now let π : Fn2 → Fm2 be a uniformly random linear map. Then, for each x ∈ 4A \ {0}
individually, π(x) is uniformly distributed over Fm2 . It follows from the union bound that

Pr [∃x ∈ 4A \ {0} : π(x) = 0] ≤ |4A|−1

2m
,

which is less than δ if 2m ≥ |4A|/δ. This concludes the proof.

2To see this, if c = d, then the implication above gives a = b ⇐⇒ π(a) = π(b), which implies π is a bijection.
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3.2 Algorithmic restricted homomorphism

We will show the following slight strengthening of the homomorphism testing formulation of the
PFR theorem, which we prove following the approach of Green [Gre05] and Green-Tao [GT10], and
then algorithmize.

Lemma 3.3 (Restricted homomorphism testing). Suppose S ⊆ Fm2 and f : S → Fn2 satisfy

|{(x1, x2, x3, x4) ∈ S4 : x1 + x2 = x3 + x4 and f(x1) + f(x2) = f(x3) + f(x4)}| ≥ 23m/K.

Then there exists an affine-linear function ψ : Fm2 → Fn2 such that f(x) = ψ(x) for at least
2m/P4(K) values of x ∈ S.

Proof. Consider the “graph” set

Γ = {(x, f(x)) : x ∈ S} ⊆ Fm+n
2 .

Then |Γ|= |S|≤ 2m and E(Γ) ≥ 23m/K ≥ |Γ|3/K. By the Balog-Szemerédi-Gowers Theorem
(Theorem 2.5), there exists a set Γ′ ⊆ Γ such that

|Γ′|≥ |Γ|/P (1)
BSG(K) and |Γ′ + Γ′|≤ P

(2)
BSG(K) · |Γ|.

By the combinatorial PFR theorem (Theorem 1.1), it then follows that Γ′ can be covered by

K ′ := P1(P
(1)
BSG(K)P

(2)
BSG(K))

translates of a subspace H ≤ Fm+n
2 of size |H|≤ |Γ′|, say

Γ′ ⊆
K′⋃
i=1

(ui +H).

Let π : Fm+n
2 → Fm2 denote the projection map onto the first m coordinates: π(x, y) = x for

x ∈ Fm2 , y ∈ Fn2 . Let kerH(π) = H ∩ ({0m} × Fn2 ) be the kernel of π restricted to H and let H ′

be a complemented subspace of kerH(π) in H, so that H = H ′ ⊕ kerH(π). By linearity and the
injectivity of π on H ′, there exists a matrix M ∈ Fn×m2 such that

H ′ = {(x,Mx) : x ∈ π(H)}, (5)

and by the rank-nullity theorem we have that

|H|= |kerH(π)|·|π(H)|.

Moreover, since Γ′ is a graph, we have

|Γ′ ∩ (ui +H)| = |π(Γ′ ∩ (ui +H))| ≤ |π(ui +H)|= |π(H)|,

and thus

|Γ′|=

∣∣∣∣∣Γ′ ∩
K′⋃
i=1

(ui +H)

∣∣∣∣∣ ≤
K′∑
i=1

|Γ′ ∩ (ui +H)| ≤ K ′|π(H)|,

from which we conclude that |π(H)|≥ |Γ′|/K ′. Finally, since H = H ′ ⊕ kerH(π), we have

|Γ′|=

∣∣∣∣∣Γ′ ∩
K′⋃
i=1

⋃
v∈kerH(π)

(ui + v +H ′)

∣∣∣∣∣ ≤
K′∑
i=1

∑
v∈kerH(π)

|Γ′ ∩ (ui + v +H ′)|;
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there must then exist some translate ui and some v ∈ kerH(π) such that

|Γ′ ∩ (ui + v +H ′)| ≥ |Γ′|
K ′|kerH(π)|

.

Using the assumption |H|≤ |Γ′|, the identity |H|= |kerH(π)|·|π(H)| and the bound |π(H)|≥ |Γ′|/K ′,
we conclude from the last inequality that

|Γ′ ∩ (ui + v +H ′)| ≥ |H|
K ′|kerH(π)|

=
|π(H)|
K ′ ≥ |Γ′|

(K ′)2
.

We can now easily conclude. Fixing ui = (x1, y1), v = (x2, y2) ∈ Fm+n
2 such that the above

inequality holds, we obtain from the description of H ′ (equation (5)) that

Γ′ ∩ (ui + v +H ′) = Γ′ ∩ {(x+ x1 + x2, Mx+ y1 + y2) : x ∈ π(H)}
= Γ′ ∩ {(x, Mx−Mx1 −Mx2 + y1 + y2) : x ∈ π(H) + x1 + x2}.

There must then be at least |Γ′|/(K ′)2 values of x ∈ S such that (x, f(x)) ∈ Γ′ and

f(x) =Mx−Mx1 −Mx2 + y1 + y2.

Denote ψ(x) =Mx−Mx1 −Mx2 + y1 + y2. Recalling that |Γ′|≥ |Γ|/P (1)
BSG(K) and

23m/K ≤ E(Γ) ≤ |Γ|3,

we obtain that f(x) = ψ(x) for at least

|Γ′|
(K ′)2

=
|Γ′|

P1(P
(1)
BSG(K)P

(2)
BSG(K))2

≥ 2m

KP
(1)
BSG(K)P1(P

(1)
BSG(K)P

(2)
BSG(K))2

values of x ∈ S. The theorem follows with P4(K) = KP
(1)
BSG(K)P1(P

(1)
BSG(K)P

(2)
BSG(K))2.

The main technical lemma for our proofs is an algorithmic version of this last result, which
relies on the quadratic Goldreich-Levin theorem (see Theorem 2.12).

Lemma 3.4 (Algorithmic restricted homomorphism). Suppose S ⊆ Fm2 and f : S → Fn2 satisfy

|{(x1, x2, x3, x4) ∈ S4 : x1 + x2 = x3 + x4 and f(x1) + f(x2) = f(x3) + f(x4)}| ≥ 23m/K.

There is a randomized algorithm that makes KO(logK)(m + n)2 log(m + n) queries to S and to f ,
runs in KO(logK)(m + n)3 log(m + n) time and, with probability at least 0.7, returns M ∈ Fn×m2 ,
v ∈ Fn2 such that

|{x ∈ S : f(x) =Mx+ v}| ≥ 2m/P ′
4(K).

Proof. Define the function g : Fm+n
2 → {−1, 0, 1} by

g(x, y) = 1S(x) · (−1)f(x)·y.

Note that one query to g can be made using one query to S, one query to f and O(n) time. We
first show that g correlates well with a quadratic function:

11



Claim 3.5. There exists a quadratic polynomial p : Fm+n
2 → F2 such that∣∣∣ E

x∈Fm
2 ,

y∈Fn
2

g(x, y)(−1)p(x,y)
∣∣∣ ≥ 1

P4(K)
,

where P4(·) is the polynomial promised by Lemma 3.3.

Proof. From Lemma 3.3, we know there exists an affine-linear function ψ : Fm2 → Fn2 such that

Pr
x∈Fm

2

[x ∈ S and f(x) = ψ(x)] ≥ 1

P4(K)
.

Let E be the set where f and ψ agree:

E = {x ∈ S : f(x) = ψ(x)}.

Note that g(x, y) = (−1)ψ(x)·y for all x ∈ E, y ∈ Fn2 , and so by Cauchy-Schwarz

E
x∈Fm

2

1E(x) = E
x∈Fm

2

(
1E(x) · E

y∈Fn
2

g(x, y)(−1)ψ(x)·y
)

≤
(

E
x∈Fm

2

1E(x)
2
)1/2(

E
x∈Fm

2

(
E

y∈Fn
2

g(x, y)(−1)ψ(x)·y
)2)1/2

=
(

E
x∈Fm

2

1E(x)
)1/2(

E
x∈Fm

2

E
y,y′∈Fn

2

g(x, y)g(x, y′)(−1)ψ(x)·(y+y
′)
)1/2

=
(

E
x∈Fm

2

1E(x)
)1/2(

E
x∈Fm

2

E
z∈Fn

2

1S(x)(−1)f(x)·z(−1)ψ(x)·z
)1/2

.

We conclude that∣∣∣ E
x∈Fm

2

E
z∈Fn

2

g(x, z)(−1)ψ(x)·z
∣∣∣ ≥ E

x∈Fm
2

1E(x) = Pr
x∈Fm

2

[x ∈ E] ≥ 1

P4(K)
.

The quadratic function p : (x, z) 7→ ψ(x) · z thus satisfies the claim.

We now use the quadratic Goldreich-Levin theorem (Theorem 2.12) with f replaced by g and
ε := 1/(2P4(K)). We conclude that, in O((m+n)3) time and using (m+n)2 log(m+n) ·KO(log(K))

queries to g, we can obtain a quadratic function q : Fm+n
2 → F2 which satisfies the following with

probability at least 0.9: ∣∣∣ E
x∈Fm

2 , y∈Fn
2

1S(x)(−1)f(x)·y(−1)q(x,y)
∣∣∣ ≥ 1

2P4(K)
. (6)

Assume that this inequality holds, and write

q(x, y) = (x, y)TA(x, y) + u · x+ u′ · y + b,

where A ∈ F(m+n)×(m+n)
2 , u ∈ Fm2 , u′ ∈ Fn2 and b ∈ F2. Denote the (m× n)-submatrix of A defined

by its first m rows and last n columns by A12, and the (n×m)-submatrix of A defined by its last
n rows and first m columns by A21. We claim that f agrees often with an affine-linear function
whose linear part equals (AT12 +A21)x:
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Claim 3.6. If equation (6) holds, then there exists some z0 ∈ Fn2 such that

|{x ∈ S : f(x) = (AT12 +A21)x+ z0}| ≥
2m

64P4(K)3
. (7)

Proof. Define the bilinear form B : Fm2 × Fn2 → F2 by

B(x, y) = q(x, y)− q(x, 0)− q(0, y) + q(0, 0).

We have that

B(x, y) =
[
x y

]
A

[
x
y

]
+
[
u u′

] [x
y

]
+ b−

[
x 0n

]
A

[
x
0n

]
−
[
u u′

] [ x
0n

]
− b

−
[
0m y

]
A

[
0m

y

]
−

[
u u′

] [0m
y

]
− b+ b

=
([
x 0n

]
+
[
0m y

])
A

[
x
y

]
−
[
x 0n

]
A

[
x
0n

]
−
[
0m y

]
A

[
0m

y

]
=

[
x 0n

]
A

[
0m

y

]
+
[
0m y

]
A

[
x
0n

]
= xTA12y + yTA21x

= yT (AT12 +A21)x.

Write σ := 1/(2P4(K)) and M := AT12+A21 for convenience, so that B(x, y) =Mx · y. Plugging in

q(x, y) =Mx · y + q(x, 0) + q(0, y)− q(0, 0)

into Eq. (6), we obtain∣∣∣ E
x∈Fm

2

E
y∈Fn

2

1S(x)(−1)f(x)·y(−1)Mx·y(−1)q(x,0)+q(0,y)−q(0,0)
∣∣∣ ≥ σ.

By the triangle inequality, we conclude that∑
x∈S

∣∣∣ E
y∈Fn

2

(−1)f(x)·y(−1)Mx·y(−1)q(0,y)
∣∣∣ ≥ σ · 2m, (8)

where we used the fact that for a fixed x ∈ S, the quantity (−1)q(x,0)−q(0,0) is constant and has
absolute value 1.

Defining the function h : Fn2 → {−1, 1} by h(y) = (−1)q(0,y), one can rewrite Eq. (8) as∑
x∈S

|ĥ(f(x) +Mx)| ≥ σ · 2m.

Since |ĥ(z)|≤ 1 for all z ∈ Fn2 , this implies that there exist at least (σ/2) · 2m many x ∈ S such that

|ĥ(f(x) +Mx)| ≥ σ/2. Let us define the set T = {z ∈ Fn2 : |ĥ(z)|≥ σ/2}, so that

|{x ∈ S : f(x) +Mx ∈ T}| ≥ σ2m

2
.

Then
σ2m

2
≤

∑
z∈T

|{x ∈ S : f(x) +Mx = z}| ≤ |T |·max
z0∈T

|{x ∈ S : f(x) +Mx = z0}|.
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Since h is a Boolean function, by Parseval we have that

1 =
∑
z∈Fn

2

|ĥ(z)|2≥
∑
z∈T

(σ/2)2 =⇒ |T |≤ 4/σ2.

From these last two inequalities, we conclude there exists some z0 ∈ T such that

|{x ∈ S : f(x) +Mx = z0}| ≥
1

|T |
σ2m

2
≥ σ32m

8
,

which proves the claim.

It now suffices to find such a vector z0 ∈ Fn2 such that Eq. (7) holds. We do this by sampling
x1, x2, . . . , xt uniformly at random from Fm2 , passing each point xi through the indicator function
1S and then computing the difference d(xi) = f(xi) − (AT12 + A21)xi. For each z ∈ {d(xi)}i∈[t],
we then estimate Prx∈S [f(x) = (AT12 + A21)x + z] and output the value z∗ which maximizes the
agreement. To complete the argument, let us now comment on the value of t required to determine
a good value of z∗. First, note that Eq. (7) implies

Pr
x∈Fm

2

[d(x) = z0] ≥
1

64P4(K)3
.

Thus, by sampling t = O(P4(K)3) times, we ensure that v0 ∈ {d(xi)}i∈[t] with probability at least

0.9. Finally, we determine z∗ as mentioned before by estimating Prx∈S [f(x) = (AT12 + A21)x + z]
for each z ∈ {d(xi)}i∈[t], which can be done up to error 1/(128P4(K)3) with probability at least
1 − 0.1/t using an empirical estimator3 that uses O(log(K)P4(K)3) samples from Fn2 and queries
to S and f for each i ∈ [t]. In total, this procedure consumes O(log(K)P4(K)6) queries to S and
to f , and succeeds with probability at least 0.8 (after taking the union bound).

We then return M = AT12 + A21 and v = z∗ as given above. With probability at least 0.7,
the guarantee of the statement is satisfied with P ′

4(K) = 128P4(K)3. The overall query and time
complexities of the algorithm are mostly due to the use of Theorem 2.12, and match the complexities
stated in the lemma.

4 Proof of the algorithmic PFR theorems

In this section, we provide the proof of our main results, relying on the algorithmic lemmas estab-
lished in Section 3. We begin with classical algorithms in Section 4.1 and then proceed to quantum
algorithms in Section 4.2.

4.1 Classical algorithmic PFR theorems

We first prove our main classical results, which we restate more precisely below.

Theorem 4.1 (Algorithmic PFR). Suppose A ⊆ Fn2 satisfies |A+A|≤ K|A|. There is a randomized
algorithm that takes O(log|A|+K) random samples from A, makes 2O(K) log2|A|· log log|A| queries
to A, runs in time KO(logK)n4 log n and has the following guarantee: with probability at least 2/3,
it outputs a basis for a subspace V ≤ Fn2 of size |V |≤ |A| such that A can be covered by P ′

1(K)
translates of V .

3In particular, for Boolean functions f, g, one can estimate Prx[f(x) = g(x)] up to error ε with probability at least
1− δ using the empirical estimate Estm := 1

m

∑m
j=1 f(xj)g(xj) which can be computed by querying f, g at uniformly

random x1, . . . , xm ∈ Fn
2 and for m = poly(1/ε log(1/δ)).
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Proof. We first describe the algorithm to find V :

1. Sample t = 28 log|A|+56K many uniformly random elements from A, and denote their linear
span by U . Let A′ := A ∩ U .

2. Take a random linear map π : U → Fm2 where m = log|A|+4 logK + 10. Let S = π(A′)
denote the image of A′ under π, and let f : S → U be the inverse of π when restricted to S.4

3. Apply Lemma 3.4 to obtain an affine-linear map ψ : Fm2 → U such that f(x) = ψ(x) for at
least |A|/P ′

4(2
33K13) values x ∈ S.

4. Take a subspace V of Im(ψ) having size at most |A|, and output a basis for V .

We now analyze the correctness and complexity of this algorithm. For Step (1), note that
Theorem 2.4 directly implies that |span(A)|≤ 22K · |A|. Now, by our choice of t, Lemma 3.1 implies
that |A′|≥ |A|/2 with probability at least 0.99. Supposing this is the case, we have that

|A′ +A′|≤ |A+A|≤ K|A|≤ 2K|A′|.

Moreover, by Lemma 2.6 we conclude that |4A′|≤ |4A|≤ K4|A|≤ 2K4|A′|.

For Step (2), note that Lemma 3.2 shows that (with probability at least 0.99) π is a Freiman
isomorphism from A′ to S = π(A′). In this case, the inverse map f : S → A′ is a Freiman
isomorphism and |S|= |A′|.5

In Step (3) we wish to apply Lemma 3.4, which requires us to bound from below the quantity

|{(x1, x2, x3, x4) ∈ S4 : x1 + x2 = x3 + x4 and f(x1) + f(x2) = f(x3) + f(x4)}|.

We claim that this is at least |A′|3/(2K):

Claim 4.2. If f : S → A′ is a Freiman isomorphism and |A′ +A′|≤ 2K|A′|, then

|{(x1, x2, x3, x4) ∈ S4 : x1 + x2 = x3 + x4 and f(x1) + f(x2) = f(x3) + f(x4)}| ≥
|A′|3

2K
.

Proof. If f is a Freiman isomorphism, then the quantity above equals

|{(x1, x2, x3, x4) ∈ S4 : f(x1) + f(x2) = f(x3) + f(x4)}|
= |{(y1, y2, y3, y4) ∈ (A′)4 : y1 + y2 = y3 + y4}|
= E(A′).

Now note that ∑
z∈2A′

|{(y1, y2) ∈ (A′)2 : y1 + y2 = z}| = |A′|2

and ∑
z∈2A′

|{(y1, y2) ∈ (A′)2 : y1 + y2 = z}|2

=
∑
z∈2A′

|{(y1, y2, y3, y4) ∈ (A′)4 : y1 + y2 = z = y1 + y2}|2

= E(A′),

4In our analysis we show that this inverse is well-defined with high probability.
5We remark that the definition of Freiman isomorphism gives these two properties immediately.
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so by Cauchy-Schwarz

|A′|2≤ |2A′|1/2E(A′)1/2 =⇒ E(A′) ≥ |A′|4/|2A′|.

The claim now follows from the assumption |2A′|≤ 2K|A′|.

Next we note that, by assumption and by our choice for m, we have that

|A′|≥ |A|
2

≥ 2m

211K4
.

From the claim, we then conclude that S and f satisfy the hypothesis of Lemma 3.4 with K
substituted by K ′ := 233K13. We can then obtain an affine-linear function ψ : Fm2 → U such that,
with probability at least 0.7,

|{x ∈ S : f(x) = ψ(x)}| ≥ 2m

P ′
4(2

33K13)
. (9)

It remains to argue how one can simulate queries to S and f , as required by the statement of
Lemma 3.4. To this end, observe that we have a full description of the linear map π : U → Fm2 ,
so in time O(m2n) we can find its kernel ker(π) = {v ∈ U : π(v) = 0}. We first make three
observations about this: (a) ker(π) is a subspace of size

|U |
|Im(π)|

≤ |span(A)|
|S|

≤ 2|span(A)|
|A|

≤ 22K ,

where we used Theorem 2.4 in the final inequality; (b) for every x ∈ Im(π), we have that π−1(x) is a
translate of ker(π); (c) in O(m2n) time we can find the inverse map π−1 : Im(π) → U/ker(π). Using
item (b), we can check whether x ∈ S (i.e., π−1(x)∩A ̸= ∅) by enumerating over all y ∈ π−1(x) and
checking if y ∈ A or not. By item (a), this takes at most 22K queries to A. Hence, after computing
ker(π) and π−1, one can make one query to S and to f using 22K queries to A and O(mn) time.

Now define the affine subspace V ′ = Im(ψ). By definition we have that |V ′|≤ 2m = O(K4)|A′|,
and by Eq. (9) we have

|A ∩ V ′|= |Im(f) ∩ Im(ψ)|≥ |S|Pr
x∈S

[f(x) = ψ(x)] ≥ 2m

P ′
4(2

33K13)
.

It follows that
|A+ (A ∩ V ′)|≤ |A+A|≤ K|A|≤ 2m ≤ P ′

4(2
33K13)|A ∩ V ′|.

Applying Ruzsa’s covering lemma (Lemma 2.7), we obtain that A can be covered by P ′
4(2

33K13)
translates of 2(A ∩ V ′) ⊆ V ′ + V ′ = ψ(0) + V ′.

Overall, the complexity of the algorithm is as follows: we need O(K + log|A|) samples from A,
and the number of queries to A is as given by Lemma 3.4, i.e.,

22K ·KO(logK)(m+ log|U |)2 log(m+ log|U |) = 2O(K)(log|A|)2 log log|A|,

where we used that m = log|A|+O(logK) and log|U |= O(log|A|+K). The total runtime is the
cost of Lemma 3.4, the cost of inverting π, and the cost for making the queries to f and S, i.e.,

KO(logK)(m+n)3 log(m+n)+O(m2n)+KO(logK)(m+n)2 log(m+n) ·O(mn) = KO(logK)n4 log n,

proving the theorem statement.
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Theorem 4.3 (Homomorphism testing). Suppose f : Fm2 → Fn2 satisfies

Pr
x1+x2=x3+x4

[f(x1) + f(x2) = f(x3) + f(x4)] ≥ 1/K.

There is a randomized algorithm that makes KO(logK)(m + n)2 log(m + n) queries to f , runs in
KO(logK)(m+ n)3 log(m+ n) time and, with probability at least 2/3, outputs a matrix M ∈ Fn×m2

and a vector v ∈ Fn2 such that

Pr
x∈Fm

2

[f(x) =Mx+ v] ≥ 1/P ′
2(K).

Proof. This follows immediately from Lemma 3.4 with S = Fm2 and P ′
2(K) = P ′

4(K).

Theorem 4.4 (Structured approximate homomorphism). Suppose f : Fm2 → Fn2 satisfies

|{f(x) + f(y)− f(x+ y) : x, y ∈ Fm2 }| ≤ K.

There is a randomized algorithm that makes KO(logK)(m + n)2 log(m + n) queries to f , runs in
KO(logK)(m+ n)3 log(m+ n) time and, with probability at least 2/3, outputs a matrix M ∈ Fn×m2

such that
|{f(x)−Mx : x ∈ Fm2 }|≤ P ′

3(K).

Proof. We first show that the property in the statement implies that

Pr
x1+x2=x3+x4

[f(x1) + f(x2) = f(x3) + f(x4)] ≥
1

K
. (10)

Indeed, denote ∆f := {f(x)+ f(y)− f(x+ y) : x, y ∈ Fm2 }, so that |∆f |≤ K by assumption. Then

E
b∈∆f

E
x∈Fm

2

E
y∈Fm

2

1[f(x) + f(y)− f(x+ y) = b] =
1

|∆f | E
x,y∈Fm

2

∑
b∈∆f

1[f(x) + f(y)− f(x+ y) = b]

=
1

|∆f | E
x,y∈Fm

2

1

≥ 1

K
,

and so by Cauchy-Schwarz

1

K2
≤ E

b∈∆f
E

x∈Fm
2

(
E

y∈Fm
2

1[f(x) + f(y)− f(x+ y) = b]
)2

= E
b∈∆f

E
x∈Fm

2

E
y,z∈Fm

2

1[f(x) + f(y)− f(x+ y) = b = f(x) + f(z)− f(x+ z)]

=
1

K
E

x,y,z∈Fm
2

∑
b∈∆f

1[f(y)− f(x+ y) = b− f(x) = f(z)− f(x+ z)]

=
1

K
E

x,y,z∈Fm
2

1[f(y)− f(x+ y) = f(z)− f(x+ z)]

=
1

K
E

x1+x2=x3+x4
1[f(x1) + f(x2) = f(x3) + f(x4)],

which gives inequality (10) as desired.
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We may then apply Lemma 3.4 (with S = Fm2 ) to obtain a matrix M ∈ Fn×m2 and a vector
v ∈ Fn2 such that, with probability at least 0.7, we have

Pr
x∈Fm

2

[f(x) =Mx+ v] ≥ 1/P ′
4(K). (11)

We claim that, if this inequality holds (and |∆f |≤ K), then

|{f(x)−Mx : x ∈ Fm2 }|≤ K2P ′
4(K), (12)

which is the property we want with P ′
3(K) = K2P ′

4(K). It then suffices to prove (12).

Denote E := {x ∈ Fm2 : f(x) =Mx+ v}, so that |E|≥ 2m/P ′
4(K) by Eq. (11). Then

|Fm2 + E|= 2m ≤ P ′
4(K) · |E|,

so we may use Ruzsa’s covering lemma (Lemma 2.7, with S = E and T = Fm2 ) to conclude there
exists a set X ⊆ Fm2 of size P ′

4(K) such that Fm2 ⊆ X + 2E. In other words, every element of Fm2
can be written as x+ y + z with x ∈ X (where |X|≤ P ′

4(K)) and y, z ∈ E.

Now, for every x ∈ X, y, z ∈ E, by definition of the set ∆f there exist b, b′ ∈ ∆f such that

f(x+ y)− f(x)− f(y) = b and f(x+ y + z)− f(x+ y)− f(z) = b′.

Summing these two identities, we conclude that

f(x+ y + z) = f(x) + f(y) + f(z) + b+ b′

= f(x) +My +Mz + b+ b′

= f(x) +M(x+ y + z)−Mx+ b+ b′,

and so

f(x+ y + z)−M(x+ y + z) = f(x)−Mx+ b+ b′ ∈ {f(x′)−Mx′ : x′ ∈ X}+∆f +∆f

is contained in a set of size at most |X|·|∆f |2≤ K2P ′
4(K). This gives Eq. (12) and concludes the

proof of the theorem.

4.2 Quantum algorithmic PFR theorem

We now give a quantum algorithm that is quadratically better than in the query complexity com-
pared to the classical algorithm shown in the section above. We restate the statement of the
quantum result in more detail below.

Theorem 4.5 (Quantum algorithmic PFR). Suppose A ⊆ Fn2 satisfies |A+ A|≤ K|A|. There is a
quantum algorithm that takes O(log|A|+K) random samples from A, makes 2O(K) log|A| quantum
queries to A, runs in time KO(logK)n3 and has the following guarantee: with probability at least
2/3, it outputs a basis for a subspace V ≤ Fn2 of size |V |≤ |A| such that A can be covered by P ′

1(K)
translates of V .

To prove the above theorem, we will reprove Lemma 3.4 in the quantum setting, but now taking
advantage of the main result (Theorem 2.9) of Chen, Gong, Ye, and Zhang [CGYZ25], which allows
us to find the closest stabilizer state to a given unknown n-qubit quantum state. Formally, the
quantum version of Lemma 3.4 is as follows.
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Lemma 4.6. Suppose S ⊆ Fm2 and f : S → Fn2 satisfy

|{(x1, x2, x3, x4) ∈ S4 : x1 + x2 = x3 + x4 and f(x1) + f(x2) = f(x3) + f(x4)}| ≥ 23m/K.

There is a quantum algorithm that makes KO(logK)(m + n) quantum queries to S and to f , runs
in KO(logK)(m+ n)3 time and, with probability at least 0.7, returns M ∈ Fn×m2 , v ∈ Fn2 such that

|{x ∈ S : f(x) =Mx+ v}| ≥ 2m/P ′
4(K).

To prove Lemma 4.6 and describe its corresponding algorithm, we need a quantum protocol to
prepare the quantum state that encodes the function

gS(x, y) = 1S(x)(−1)f(x)·y,

which from Claim 3.5, we know has high correlation with a quadratic function.

Claim 4.7. Consider the context of Lemma 4.6. Let δ ∈ (0, 1). Suppose we have quantum query
access to S via the oracle OS and query access to f : S → Fn2 via the oracle Of as follows

|x, 0⟩ OS−→ |x,1S(x)⟩ , |x, 0n⟩
Of−→ |x, f(x)⟩ .

There is a quantum algorithm that makes O(K log(1/δ)) queries to OS , Of and prepares an (m+n)-
qubit state |ψ⟩ encoding gS(x, y) for (x, y) ∈ Fm+n

2

|ψ⟩ = 1√
2n|S|

∑
x∈S,
y∈Fn

2

(−1)f(x)·y |x, y⟩ ,

using O(Kn log(1/δ)) time to prepare one copy of |ψ⟩ with probability at least 1− δ.

Proof. First, given quantum query access to S, the algorithm prepares

1√
2m

∑
x∈Fm

2

|x, 0⟩ OS−→ 1√
2m

∑
x∈Fm

2

|x,1S(x)⟩ ,

and measures the second register. With probability |S|/2m ≥ 1/K, the algorithm obtains 1 in
which case the resulting state is |S⟩ = 1√

|S|

∑
x∈S |x⟩. So making O(K log(1/δ)) quantum queries,

one can prepare |S⟩ with probability ≥ 1− δ. Then algorithm then simply performs the following

1√
|S|

∑
x∈S

|x⟩ ⊗ 1√
2n

∑
y∈Fn

2

|y⟩
Of−→ 1√

2n|S|

∑
x∈S,
y∈Fn

2

|x, y, f(x)⟩ (13)

−→ 1√
2n|S|

∑
x∈S,
y∈Fn

2

|x, y, f(x)⟩ ⊗n
i=1 |f(x)i · yi⟩ (14)

−→ 1√
2n|S|

∑
x∈S,
y∈Fn

2

|x, y⟩ |f(x)⟩ ⊗n
i=1 |f(x)i · yi⟩ |f(x) · y⟩ . (15)

where the second operation is by applying n many CCNOT gates with the control qubits being
yi, f(x)i applied onto the target qubit |0⟩i, and the third operation is by applying n CNOT gate
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between the control qubit |f(x)i · yi⟩ and target qubit |0⟩. After obtaining the state in Eq. (15), the
algorithm applies a single-qubit Hadamard on the last qubit and measures in the computational
basis. If it is 1, it continues. First note that if the last qubit was 1, then the resulting quantum
state is

1√
2n|S|

∑
x∈S,
y∈Fn

2

(−1)f(x)·y |x, y⟩ |f(x)⟩ ⊗n
i=1 |f(x)i · yi⟩ |1⟩ . (16)

Furthermore the probability of obtaining 1 is exactly 1/2. Upon succeeding, the algorithm inverts
the n many CCNOT gates and the query operator Of to obtain the state

|ψ⟩ = 1√
2n|S|

∑
x∈S,
y∈Fn

2

(−1)f(x)·y |x, y⟩ .

Overall, the algorithm used O(Kn log(1/δ)) time and O(K log(1/δ)) queries to prepare |ψ⟩.

We are now ready to prove Lemma 4.6.

Proof of Lemma 4.6. The proof will be similar to the classical proof in Lemma 3.4. Similar to the
proof there, we are guaranteed by Claim 3.5 that there exists a quadratic polynomial q : Fn2 ×Fn2 →
{0, 1} which has high correlation with gS(x, y) = 1S(x)(−1)f(x)·y, i.e.,∣∣∣∣∣ E

x,y∈Fm
2 ×Fn

2

[1S(x)(−1)f(x)·y(−1)q(x,y)]

∣∣∣∣∣ ≥ 1

P4(K)
,

where P4(·) is the polynomial promised by Lemma 3.3. For simplicity in notation, let us denote
σ := 1/P4(K). In particular, defining the quantum states

|ψ⟩ = 1√
2n|S|

∑
x∈S,y∈Fn

2

(−1)f(x)·y |x, y⟩ , |ϕq⟩ =
1√
2n+m

∑
x∈Fn

2 ,y∈Fm
2

(−1)q(x,y) |x, y⟩ ,

we have that |⟨ψ|ϕq⟩|2≥ σ2. Moreover by Theorem 2.8, we note that the quantum state |ϕq⟩ is a
stabilizer state6, and thus the stabilizer fidelity of |ψ⟩ is also at least σ2. We now use Theorem 2.9
on copies of |ψ⟩ prepared using Claim 4.7, with the error instantiated as ε = σ2/2 to learn a
stabilizer state |s⟩ such that |⟨s|ψ⟩|2≥ σ2/2. By Theorem 2.8, we can write this stabilizer state as

|s⟩ = 1√
|As|

∑
z∈As

iℓs(z)(−1)qs(z) |z⟩ , (17)

where As ⊆ Fn+m2 is an affine subspace, ℓs is a linear polynomial and qs is a quadratic form. To

6We remark that |ϕq⟩ is in fact a degree-2 phase state (i.e., the subspace is Fm+n
2 and there are no complex phases),

but we will not use that here.
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lower bound the size of |As|, we will lower bound the size of |As ∩ T | (denoting T := S × Fn2 ):

σ√
2
≤ |⟨ψ|s⟩| =

∣∣∣ 1√
|As|·|S|·2n

∑
x∈S
y∈Fn

2
(x,y)∈As

iℓ(x,y)(−1)q(x,y)+f(x)·y
∣∣∣

≤ 1√
|As|·|S|·2n

∑
(x,y)∈As∩T

∣∣∣iℓ(x,y)(−1)q(x,y)+f(x)·y
∣∣∣

≤
√

|As ∩ T |√
|S|·2n

,

where we have used the triangle inequality in the second line and noted that each internal term is
at most 1 in the final inequality along with using |As|≥ |As ∩ T |. The above result implies that
|As| is large i.e.,

|As|≥ |As ∩ T |≥ (σ3/2)2m+n, (18)

as |S|≥ σ · 2m. Writing As = a + Hs where Hs is a linear subspace, we then have codim(Hs) ≤
log(2/σ3). To obtain a quadratic phase state |ϕp⟩ corresponding to a quadratic phase polynomial
p : Fn+m2 → F2 that has high fidelity with |ψ⟩ from the description of |s⟩, we have the following
observations (similar to that in [BC25, Proof of Theorem 1.1]) and which will inform our approach.

Let us denote the orthogonal complement of Hs as H⊥
s = {x ∈ Fn+m2 : x · h = 0, ∀h ∈ Hs}.

The Fourier decomposition of 1As(x) is given by

1As(x) =
|Hs|

|2n+m|
∑
λ∈H⊥

s

(−1)λ·(a+x), (19)

which follows from the observation that

E
x
[1As(x)(−1)λ·x] = 2−(n+m)

∑
x∈Hs

(−1)λ·(a+x) = |Hs|2−(n+m)(−1)λ·a E
x∈Hs

[(−1)λ·x]

= |Hs|2−(n+m)(−1)λ·a[λ ∈ H⊥
s ].

We then observe that

σ/
√
2 ≤ |⟨ψ|s⟩| = 1√

|As|·|S|·2n
∣∣∣ ∑
z∈Fn+m

2

1As(z)gS(z)(−1)qs(z)iℓs(z)
∣∣∣ (20)

=
|Hs|√

|As|·|S|·2n
∣∣∣ ∑
λ∈H⊥

s

E
z∈Fn+m

2

(−1)λ·(a+z)gS(z)(−1)qs(z)iℓs(z)
∣∣∣ (21)

≤ |Hs|·|H⊥
s |√

|As|·|S|·2n
max
λ∈H⊥

s

∣∣∣ E
z∈Fn+m

2

(−1)λ·zgS(z)(−1)qs(z)iℓs(z)
∣∣∣ (22)

≤
√
2

σ2
max
λ∈H⊥

s

∣∣∣ E
z∈Fn+m

2

(−1)λ·zgS(z)(−1)qs(z)iℓs(z)
∣∣∣, (23)

where we used the Fourier decomposition of 1As(z) from Eq. (19) in the second line, applied the
triangle inequality along with considering the λ ∈ H⊥

s which maximizes the expectation in the third
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line, and finally used Eq. (18) as well as noting |Hs|·|H⊥
s |= 2n+m and |S|≥ σ · 2m. From Eq. (23),

we have that ∃λ⋆ ∈ H⊥
s such that∣∣∣ E

z∈Fn+m
2

gS(z)(−1)qs(z)+λ
⋆·ziℓs(z)

∣∣∣ ≥ σ3/2.

Define the function h(z) := gS(z)(−1)qs(z)+λ
⋆·z. Additionally, we denote Rh = Re(Ez[h(z)]) to

be the real part of the above expectation and Ih = Im(Ez[h(z)]) to be the imaginary part of the
expectation. Now, we consider the two candidate quadratic polynomials p0(z) := qs(z) + λ⋆ · z and
p1(z) := qs(z)+λ

⋆ ·z+ℓs(z), where qs and ℓs are the quadratic and linear polynomials corresponding
to the stabilizer state |s⟩ in hand (Eq. (17)). We observe that the quadratic phase states |ϕp0⟩ and
|ϕp1⟩ satisfy

|⟨ψ|ϕp0⟩| =
∣∣∣ E
z∈Fn+m

2

[h(z)]
∣∣∣ = ∣∣∣ E

z∈Fn+m
2

[h(z)1ℓs(z)=0] + E
z∈Fn+m

2

[h(z)1ℓs(z)=1]
∣∣∣ = |Rh + Ih|

|⟨ψ|ϕp1⟩| =
∣∣∣ E
z∈Fn+m

2

[h(z)(−1)ℓs(z)]
∣∣∣ = ∣∣∣ E

z∈Fn+m
2

[h(z)1ℓs(z)=0]− E
z∈Fn+m

2

[h(z)1ℓs(z)=1]
∣∣∣ = |Rh − Ih|

Noting that max{|a+ b|, |a− b|} = |a|+|b|≥
√

|a|2+|b|2, we then have

max{|⟨ψ|ϕp0⟩|, |⟨ψ|ϕp1⟩|} ≥
∣∣∣ E
z∈Fn+m

2

gS(z)(−1)qs(z)+λ
⋆·ziℓs(z)

∣∣∣ ≥ σ3/2. (24)

In other words, one of the quadratic polynomials p0 or p1 has high correlation with gS(z).

To determine this quadratic polynomial, we now use the following approach. We create the
list of candidate quadratic polynomials L where we add the polynomials pλ0(z) := qs(z) + λ · z and
pλ1(z) := qs(z)+λ · z+ ℓs(z) for each λ ∈ H⊥

s . This list will be of size |L|= 2|H⊥
s |≤ 4/σ3, where we

have used codim(Hs) ≤ log(2/σ3). For each p ∈ L, we prepare copies of the quadratic phase state
|ϕp⟩ (which is also a stabilizer state) using Lemma 2.11 and then measure |⟨ψ|ϕp⟩|2 using the SWAP
test (Lemma 2.10) up to error σ3/4 and output the quadratic polynomial p⋆ that maximizes the
fidelity. This consumes poly(1/σ) sample complexity and O(n2/log n · poly(1/σ)) time complexity.
We are guaranteed by Eq. (24) that (−1)p

⋆
satisfies∣∣∣ E

(x,y)∈Fm
2 ×Fn

2

1S(x)(−1)p
⋆(x,y)+f(x)·y

∣∣∣ ≥ σ3

2
=

1

2P4(K)3
, (25)

where we have substituted back σ = 1/P4(K) set earlier. Having determined the polynomial p⋆, we
now proceed as in Lemma 3.4 to determine the affine linear function φ that agrees with ϕ on many
values x ∈ S. This completes the proof of the lemma. The main contribution to query complexity
and time complexity is utilizing Theorem 2.9.

With this lemma, we are finally ready to prove the main theorem in this section.

Proof of Theorem 4.5. The proof of this theorem is very similar to the classical proof. We write
the details below:

1. Sample t = 28 log|A|+56K many uniformly random elements from A, and denote their linear
span by U . Let A′ := A ∩ U .

2. Take a random linear map π : U → Fm2 where m = log|A|+4 logK + 10. Let S = π(A′)
denote the image of A′ under π, and let f : S → U be the inverse of π when restricted to S.
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3. Apply Lemma 4.6 to obtain an affine-linear map ψ : Fm2 → U such that f(x) = ψ(x) for at
least |A|/P ′

4(2
33K13) values x ∈ S.

4. Take a subspace V of Im(ψ) having size at most |A|, and output a basis for V .

The only difference between the classical and quantum algorithm is in Step (3). So, we do not
reproduce the correctness analysis and refer the reader to the classical proof of Theorem 1.2.

Overall, the complexity of the algorithm is as follows. The sample complexity to the set A is
O(K + log|A|), as given in step (1). Computing ker(π) ≤ U and π−1 : Im(π) → U/ker(π) takes
O(m2n) time and, after this is done, each query to S and f takes 22K queries to A and O(mn)
time. The total number of queries to A needed to apply Lemma 4.6 is then

22K ·KO(logK)(m+ log|U |) = 2O(K) log|A|,

where we used that m = log|A|+O(logK) and log|U |= O(log|A|+K). The total runtime is the
cost of Lemma 4.6, the cost of inverting π and the cost of making queries to S and f , i.e.

KO(logK)(m+ log|U |)3 +O(m2n) +KO(logK)(m+ log|U |) ·O(mn) = KO(logK)n3,

concluding the proof of the theorem.

5 Lower bounds

In this section, we show that the query complexities of the classical and quantum algorithms
presented in Section 4 are essentially optimal in terms of their dependence on n. Our lower bounds
are a simple information-theoretic argument (similar to the argument in [Mon12, Proposition 1]).
We remark that both our lower bounds will consider the hard instances to be dense sets A ⊆ Fn2
(i.e., |A|/2n ≥ Ω(1)). In this case the classical and quantum algorithm need not use random samples
from A at all: observe that randomly sampled points will lie in A (which can be verified by queries)
with constant probability, so with a constant overhead in complexity one can remove the need for
samples in the classical algorithms.

5.1 Classical lower bound

We first show that the classical algorithm is essentially optimal in terms of the dependence in n.

Theorem 5.1. Suppose A ⊆ Fn2 satisfies |A + A|≤ K|A|. Suppose an algorithm makes t queries
to OA and, with non-negligible probability, identifies a subspace H ≤ Fn2 that covers A by (2K)C

cosets for some constant C > 0. Then t = ΩK(n2).

Proof. The proof follows from letting A itself be a subspace of Fn2 (clearly subspaces have doubling
constant 1). Let H be a uniformly random subspace in Fn2 . Given query access to H ≤ Fn2 , the
algorithm needs to output a subspace H ′ such that (2K)C translates of it cover H. In particular,
this implies that one learns a subspace H ∩H ′ whose size is at least 2n/(2K)C (i.e., has dimension
at least n− C log(2K)).

Now, observe that every classical query provides one bit of information, i.e., on input x ∈ Fn2 ,
outputs if x ∈ H or not. Let the random variable H’ be the random variable corresponding to the
output of the algorithm after making t queries to OH . Then we have that

I(H : H’) ≤ t,
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since the algorithm makes t queries each giving one bit of information. Furthermore since the goal
of the algorithm is to obtain H ∩ H’ which is a subspace of dimension n − C log(2K), by Fano’s
inequality [Cov99] we have that

Pr[identification] ≥ 1− I(H : H’)

log|supp(H)|
≥ 1− t

log(2Θ((n−C log(2K))2))
= 1−O

( t

(n− C log(2K))2

)
,

where we used that the number of subspaces in Fn2 is 2Θ(n2). The above implies that t = ΩK(n2)
for an algorithm that identifies H with non-negligible probability.

5.2 Quantum lower bound

We now show that the quantum algorithm is optimal in terms of the dependence in n.

Theorem 5.2. Suppose A ⊆ Fn2 satisfies |A+ A|≤ K|A|. Suppose an algorithm makes t quantum
queries to OA and, with non-negligible probability, identifies a subspace H ≤ Fn2 that covers A by
(2K)C cosets for some constant C > 0. Then t = ΩK(n).

Proof. Like in the classical proof, we let A itself be a subspace of Fn2 . Let H be a uniformly random
subspace in Fn2 . Recall from the previous proof that one needs to learn a subspace H ∩H ′ whose
size is at least 2n/(2K)C (i.e., has dimension at least n − C log(2K)). More formally, let H be a
uniformly random subspace in Fn2 . Given quantum query access to H ⊆ Fn2 , suppose the algorithm
outputs H’. A quantum query algorithm can be viewed as a communication protocol, that on
input |x, 0⟩ outputs |x,1H(x)⟩, which uses n+1 qubits of communication in total. Let the random
variable H’ be the random variable corresponding to the output of the algorithm after making t
queries to OH . Then by Holevo’s theorem, we have that

I(H : H’) ≤ 2t(n+ 1),

since the communication in involves sending n + 1 qubits back and forth, in total t many times.
Furthermore since the goal of the algorithm is to identify H, by Fano’s inequality [Cov99] we
have that

Pr[identification] ≥ 1− I(H : H’)

log|supp(H)|
≥ 1− 2tn

log(2Θ(n2))
= 1−O(t/n),

where we used that the number of subspaces in Fn2 is 2Θ(n2). The above implies that t = Ω(n) for
an algorithm that identifies H with non-negligible probability.
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[BNOŽ25] Benjamin Bedert, Tamio-Vesa Nakajima, Karolina Okrasa, and Stanislav Živnỳ.
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