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Abstract. Hyperdeterminants are high dimensional analogues of determinants, as-
sociated with tensors of formats generalizing square matrices. First conceived for
2 x 2 x 2 tensors by Cayley, they were developed in generality by Gelfand, Kapranov
and Zelevinsky. Yet, hyperdeterminants in three or more dimensions are long con-
jectured to be VNP-Hard to compute, akin to permanents and unlike determinants.
Even deciding if the hyperdeterminant of a given tensor is zero is conjectured to be
NP-Hard. We prove this decision problem is NP-Hard under randomised reductions, in
four or more dimensions. In quantum information, hyperdeterminants measure quan-
tum entanglement, under the name “tangle”. Our reduction implies that it is hard to
tell if four or more qudits are tangled, unless quantum computers can efficiently solve
NP-complete problems.

1 Introduction

1.1 Hyperdeterminants

The determinant of a square matrix is a homogeneous polynomial in the matrix coordinates
with integer coefficients that vanishes if and only if the matrix is singular. Cayley discovered
an analogue of the determinant for three dimensional 2 x 2 x 2 format tensors, called the
hyperdeterminant, depicted below [3].

ap1o a110
Hyperdeterminant= agyyat1y + ago1atio + a100%01 + a5110300
a
doit 111 —2(ap00@001a110@111 + @000¢010@101¢111 + G000Q011 1008111
+a00100100101@110 + @001A011G4110%100 + 61010@011@101&100)
@000 a100 +4(ap00@011a101G110 + G001@01001000111)-
apo1 a101

Cayley’s hyperdeterminant is evidently a homogeneous polynomial in the tensor coordi-
nates with integer coefficients. Remarkably, it vanishes precisely when the tensor is singular.
Gelfand, Kapranov and Zelevinsky generalised hyperdeterminants to arbitrary dimensions
and built a vast theory around them [I0/9]. The property of the hyperdeterminant vanish-
ing precisely when the tensor is singular persists in all dimensions. Tensor singularity is a
geometric notion defined through projective duality. The hyperdeterminant is defined as the
polynomial, uniquely defined up to sign, whose vanishing defines the hypersurface of singular
tensors. We defer to [9] for formal definitions of singularity and the hyperdeterminant.
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1.2 Degeneracy

Instead, our exposition relies on the algebraic notion of degeneracy (see §, which is equiv-
alent to singularity. Consider as r-dimensional tensors, elements A in the tensor product
of (dual) vector spaces of dimensions k1 + 1,ks + 1,..., k. + 1 over complex numbers. We
also think of such a tensor as a multilinear form, and identify it with a (k1 + 1) x (ko +
1) x ... x (k, + 1) format r-dimensional matrix of coordinates. We will call k; + 1 as the
length in the j-th dimension. Square matrices correspond to the r = 2, ky = ko with the
same length in both dimensions. Consider the following algebraic definition of degeneracy of
square matrices: A matrix A is degenerate if there is a pair of non zero vectors (w'ef, wrisht)
such that w'*A and Aw'8" are both zero vectors. The definition may seem atypical, but
is clarified by thinking of (w'*, w"8") as a pair of left and right kernel vectors. It is this
motif that easily generalises in the following definition for three dimensional tensors. A three
dimensional tensor A (trilinear form) is degenerate, if there exists a triple (w™, w(® w®))
of non zero kernel vectors such that evaluating the trilinear form at all but one (so, two) of
the vectors results in the all zero dual vector. That is,

A (*,w@),w(g)) =0, 4 (w(l), *,w(g)) =0, A (w(l), w®, *) =0,

are zero (dual) vectors in the first, second and third dimension respectively. Likewise, an r-
dimensional tensor is degenerate if there is an r-tuple of non zero vectors such that evaluating
the r-linear form at all but one of the vectors gives the zero (dual) vector.

1.3 Tensors generalising square matrices

Not all matrices have associated determinants, only square matrices do. Likewise, not all
tensor formats have associated hyperdeterminants. Gelfand, Kapranov and Zelevinsky de-
lineated this dichotomy as follows. A tensor has a well defined hyperdeterminant if and only
if it is of a format satisfying the convexity constraint

Vie{l2,....or}, k<> ke (1.1)
(£

Formats with the further assurance that there is at least one j satisfying the equation
with equality are called as boundary formats. Formats that satisfy equation [I.I] that are not
boundary are called as interior. We call all other formats exterior, though this is not common
terminology. In two dimensions, the convexity constraint simplifies to k1 < ko and kg < ko,
meaning only square matrices have determinants. Boundary formats generalise square matri-
ces to higher dimensions in the strictest sense. To quote Gelfand, Kapranov and Zelevinsky
[10], “It is instructive to think of matrices of boundary format as proper high dimensional
analogs of ordinary square matrices”. To summarise, interior and boundary formats come
with a hyperdeterminant, whose vanishing characterises degenracy. Exterior formats do not
have a well defined hyperdeterminant. Informally, exterior formats have one dimension whose
length (projectively) exceeds the sum of lengths of the other dimensions. This affords enough
freedom that the variety of degenerate tensors has co-dimension more than one, preventing
a single polynomial from carving it. Yet, the notion of degeneracy remains perfectly sound,
even for exterior formats. Informally, when we refer to the hyperdeterminant of a format,
we mean a polynomial in the coordinates ring. But the hyperdeterminant of a tensor refers
to a field element, resulting from evaulating the aforementioned polynomial at the tensor
coordinates.
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1.4 Conjectures on the hardness of hyperdeterminants

Linear algebraic problems that are computationally easy in two dimensions, often transi-
tion in three or more dimensions into multilinear analogues that are hard. Hillar and Lim
catalogued many such problems, and proved new hardness results on some more [12]. They
conjectured that computing the hyperdeterminant is hard, as one transitions from two dimen-
sions (where computing determinants is easy) to three. The conjectured hardness depends on
the model of computation: #P-hard in the counting model, VNP-hard in the arithmetic cir-
cuit model and NP-hard to zero test [12][Conjecture 1.9, Conjecture 13.1]. In the discussion
following [12][Conjecture 13.1], they cite reasons for their conviction behind the conjecture.
Among them is the apparent complexity of hyperdeterminants even in small examples: the
2 x 2 X 2 x 2 hyperdeterminant has nearly 2.9 million monomials [13]. Another reason they
propose is that testing the vanishing of general multivariate resultants (for systems with as
many polynomials as variables) is known to be NP-hard.

The obstruction to previous hardness proof attempts: In fact, they show that polynomials for
the multivariate resultant decision problem can be taken to be bilinear forms [I2][Theorem
3.7]. The general multivariate system in [I2][Theorem 3.7], translated appropriately to our
notation, is exactly the problem of testing if a tensor is degenerate! But the instances they
generate while encoding an NP-complete problem (namely, 3-COLOR) are three dimensional
exterior format, with no associated hyperdeterminant to speak of. In essence, known en-
codings of NP-complete problems as tensor degeneracy inflate the tensor in one dimension
(the dimension that indexes constraints) to land in exterior formats, beyond the relevance
of hyperdeterminants.

Some tangential results: There is some evidence for hardness of hyperdeterminants over finite
fields from cryptography. Tensors that are keys in tensor isomorphism based cryptography
(such as the MEDS post-quantum signature scheme [4]) are weak if they are degenerate, and
there are cryptanalytic algorithms to test degeneracy in three dimensional cubical (which
are, interior) formats [23]. These algorithms take time exponential in the length of the cube.
Likewise, Grobner basis and other algebraic methods that attempt to solve the degeneracy
equation take exponential time in the length of one of the dimensions [8J24)2526]. This is
merely evidence of the difficulty of known techniques, and not insightful towards a proof
of hardness. There is also some evidence for VNP-hardness of hyperdeterminants [14], us-
ing a Cramer’s rule that translates an arithmetic circuit for the hyperdeterminant to one
that solves the homogeneous multilinear system defining degeneracy. But again, solving de-
generacy was not known to be hard in any format for which hyperdeterminants exist. The
combinatorial hyperdeterminant is a different attempt at a generalisation of determinants to
higher dimensions, by extrapolating the Leibniz formula for determinants. Barvinok proved
NP-hardness of zero testing [I] and Gurvits proved #P-hardness and VNP-hardness of the
combinatorial hyperdeterminant [I1]. Curiously, both these hardness results were in four
dimensions, leaving the three dimensional case open. Yet, it is dubious if the hardness proof
of the combinatorial hyperdeterminant informs the status of hardness of the hyperdetermi-
nant, for the combinatorial version does not have the rich algebraic and geometric structure
intrinsic to the hyperdeterminant.

1.5 Our results

We prove that the decision version of problem is hard.
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Theorem 1. Fiz a dimension r > 4. Deciding if a rational r-dimensional tensor (of a
format for which hyperdeterminants exist, that is, interior or boundary) has zero hyperde-
terminant is NP-hard under randomised reduction.

By rational, we mean that the coordinates of the tensor are rational numbers. The result
holds over arbitrary number fields too, since the statement over the rational numbers is
stronger. The theorem only considers constant dimensions, which allow the input tensor to
be presented by writing down all its coordinates. If we allow the dimension to grow, the
input size grows exponentially in the dimension and is not considered by the theorem.

The reduction to four dimensions: We initially follow the reduction of Hillar and Lim
[12][Theorem 3.7]: starting from 3-COLOR, expressing it as a homogeneous polynomial sys-
tem, which is then encoded as a degeneracy problem. This initial phase maps a graph G to
a three dimensional tensor A3¢ such that the graph has a proper 3-colouring if and only
if A3¢ is degenerate. As hinted before, this tensor A3“ is of exterior format, without a hy-
perdeterminant. In fact, it is wildly exterior, with the length in the longest dimension being
quadratic in the number of vertices, while the length in the other two dimensions is linear.
Our main insight is to construct a tensor A*“ in four dimensions of a boundary format
enveloping this exterior format in three dimensions, as follows. Append a fourth dimension
of the smallest possible length to make the format boundary. Call this the enveloping four
dimensional boundary format. Plant A3¢ as one of the slices of A*“ (in the fourth dimen-
sion) and draw the rest of the coordinates of A*“ independently and uniformly from a large
finite set of integers.

In boundary formats, the Cayley trick implies that the hyperdeterminant equals the re-
sultant of the multilinear systems defined by the slices (in the longest dimension) [9][Theorem
3.1ﬂ This helps relate the hyperdeterminant of A*“ to the degeneracy of one of its slices,
namely A%C. In particular, while the three dimensional format of A3“ does not have a hyper-
determinant, it does have a Chow form, which Gelfand, Kapranov and Zelevinsky prove to
be the hyperdeterminant of the enveloping four dimensional boundary format [9][Theorem
3.10]. As a consequence, A3“ is degenerate if and only if every enveloping boundary format
tensor that has A%¢ as a slice (in the fourth dimension) has vanishing hyperdeterminant
[9][Corollary 3.11]. Therefore, if A3¢ is degenerate, then the hyperdeterminant of A*¢ van-
ishes. Say A3¢ is not degenerate. Consider the hyperdeterminant of the enveloping four
dimensional boundary format, partially evaluated at the A3C slice. This partial evaluation is
a non zero polynomial (with coordinates outside the slice as indeterminates), for otherwise
we show it contradicts [9][Corollary 3.11]. The fact that permuting parallel slices preserves
the hyperdeterminant up to sign is crucial in reaching this conclusion. The hyperdeterminant
of A%C is the evaluation of this non zero polynomial at the randomly chosen coordinates out-
side the planted slice. With a degree bound on this non zero polynomial, the Schwartz-Zippel
lemma ensures A*¢ does not vanish with high probability. Therefore, one can test if G has
a proper 3-colouring by testing if A*“ has zero hyperdeterminant.

Reduction to higher dimensions: We present a deterministic reduction that lifts hardness
to higher dimensions in lemma [3] We reduce the hyperdeterminant zero testing problem
(restricted to boundary formats) from r-dimensions to the hyperdeterminant zero testing

! The longest dimension will turn out to be the first, not the fourth dimension of A*“
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problem in a desired higher dimension s. Again, we think of s as a constant, since the re-
duction will write down an s-dimensional tensor in its entirety. Let A, be the r-dimensional
tensor whose hyperdeterminant is in question. We construct a (s —r 4 2)-dimensional bound-
ary format tensor Bs_, o designed to be of non vanishing hyperdeterminant, whose longest
dimension is of the same length as one of A,’s dimensions. To this end, we rely on ex-
plicit constructions of Gelfand, Kapranov and Zelvinsky (identity tensors) or Weyman and
Zelevinsky (diagonal tensors, Vandermonde-Weyman-Zelevinsky tensors)(see also [22]). The
reduction maps A, to the tensor convolution A, x Bs;_,42. Tensor convolution is a generali-
sation of inner products, matrix-vector products and matrix multiplication. Multiplying by
a vector (inner product) reduces dimension, multiplying by matrices preserves dimension,
while convolving with tensors (of three or more dimensions) increases dimensions. The result
of our convolution A, x Bs_,42 has dimension s. Dionisi and Ottaviani proved a high dimen-
sional analogue of the Binet-Cauchy theorem for hyperdeterminants, which for boundary
formats generalises the multiplicativity of determinants [6]. Multiplicativity implies that the
hyperdeterminant of A, x Bs_, o vanishes if and only if that of A, or Bs_, 42 vanish. Thus,
the hyperdeterminant of A, is zero if and only if that of A, x Bs_,12 is.

Hyperdeterminants modulo large primes: Our hardness results seem to extend to the hard-
ness of testing if the hyperdeterminant of a given tensor is zero modulo a given large prime.
A natural path to such results is to rely on the theory of hyperdeterminants over (algebraic
closures of) finite fields. The foundational theory however, was developed by Gelfand, Kapra-
nov and Zelevinsky [10][9, Chap. 14] over the complex numbers. We need the theory to hold
in positive characteristic. Further, the very definition of hyperdeterminants uses geometric
tools (such as tangency and projective duality) that need great care while translating to pos-
itive characteristic [I6J17]. Kaji proved that the hyperdeterminant theory does translate to
positive characteristic [I5], with theorems such as those ensuring hyperdeterminants exists
for interior /boundary formats, that their vanishing characterises degeneracy, etc. continuing
to hold true. Taking for granted that other theorems regarding hyperdeterminants we invoke
also hold, we have hardness results for computing hyperdeterminants modulo primes. The
pursuit of hardness modulo primes will not be our focus of this work, as we merely remark
in passing the modifications needed to this end. The reason for the exponential blow up
in the prime modulus, is that certain polynomials derived from the hyperdeterminant have
exponential degree, which forces the Schwartz-Zippel lemma to demand exponentially large
fields. Nevertheless, such a prime can be written down in size polynomial in the size of the
tensor. Further, in cryptographic contexts [23/4], where hardness over finite fields is useful,
the prime moduli are exponential for other reasons.

1.6 Open problems and directions

The obvious question is if hyperdeterminants are hard in three dimensions. Even in four or
more dimensions, our reductions always land eventually in boundary formats, perhaps due
to a richer known theory in these formats. Thus, our hardness results actually hold if the
hyperdeterminant zero testing problem is restricted to boundary formats. A natural open
question is if there is an infinite family of interior formats, restricted to which zero testing
hyperdeterminants is hard. A technical question is if our reduction mapping G to A*“ is
parsimonious (counting the number of projective solutions to the degeneracy equation of
A% If so, hyperdeterminants are #P-hard in four dimensions.
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1.7 Applications

Hyperdeterminants arise in quantum information as a measure of entanglement, when the
amplitudes of quantum states are considered as normalised tensors in a projective space.
Curiously, (the absolute value of) Cayley’s 2 x 2 x 2 hyperdeterminant was rediscovered
by physicists Coffman, Kundu and Wooters as a tripartite entanglement measure of three
qubits, generalising concurrence (the usual determinant) of bipartite systems [5]. Further sig-
nificance of hyperdeterminants to quantum information was identified by Miyake and Wadati
[21], through projective duality between separability and singularity. In particular, the hy-
perdeterminant is invariant under stochastic local operations and classical communication
(SLOCC). It has good distinguishing power as an invariant (called in general, tangle), for
instance separating the Greenberger-Horne-Zeilinger state from the W state [7]. Further, its
non vanishing certifies that the state is in a generic orbit, ensuring entanglement distillation
algorithms starting from that state succeed [2][Section 5], with applications to the quantum
marginals and N-representability problems [I8]. Our hardness result proves that it is hard to
decide if a given four (or more) qudit system is tangled (that is, has non zero tangle), even
for small systems where the (exponentially larger) classical description of the state is given
as input. The phrase “four qudits” allows the length “d” across the four qudits to be different.
An open problem is if there is quantum version of deciding tangle that is QMA-hard. Remark
[] suggests that our reduction motif may help prove hardness in increasing dimensions, when
the classical description is exponential, but there is a succinct quantum state. For instance,
in deciding the tangle of one qudit and d qubits, as d grows. Hyperdeterminants are also
a sought after invariant in cryptanalysis, as mentioned before. Therefore their hardness is
reassuring for tensor based cryptosystems (as a first step towards average case hardness,
which cryptography demands).

1.8 Organisation

In section §[2] we recall the notions of degeneracy, hyperdeterminants and state the problem.
In subsections §[3.1]and §[3-2] we recount the initial phase of the reduction mapping 3-COLOR
to the degeneracy problem, due to Hillar and Lim [I2], which builds on [20/19]. Part of the
reason is for the exposition to be self contained. The other reason is that we do not use
the first phase as a blackbox, but take notation from it for certain bounds. In subsection
§ we present the reduction to four dimensional hyperdeterminants. The mapping of the
reduction is in the statement of theorem [2} In subsection §[3.4] we lift the hardness from four
to higher dimensions. These combine to give the main theorem [3] Many of the mathematical
ingredients we need are in the book of Gelfand, Kapranov and Zelevinsky [9], all citations
to which will implicitly mean to chapter 14.

2 Degeneracy of tensors and hyperdeterminants

We define degeneracy and hyperdeterminants over an arbitrary field F that is embedded in
the field of complex numbers C, but later restrict to the rational numbers Q or a number
field in computational contexts. Part of the reason is to distinguish the role of F from its
algebraic closure (when translating the results to finite fields, etc), which are identical for
complex numbers. The choice of field will not be explicit in the notation, but understood
with context. For positive numbers ki, ko, ..., k., an r-dimensional tensor over F of format
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(k1 +1) x (k2 +2)... x (k- + 1) is an element
Ae (IF"“'HYk ® (Fk2+1)* ®...0® (IF’“'H)*

in the tensor product of dual vector spaces. We will use j exclusively to index dimensions
{1,2,...,r}. Fix a coordinate system z() = (x((f),ac(lj),...,xgj)) for the j*"-vector space
Fkit1 or equivalently an ordered basis for the dual (]Fki“)*. Then, identify A with the

r-dimensional matrix
A= (i, iy,..4,,0<i1 <ki,0< 43 <kg,...,0<0, <E,).

When a tensor A is the input to algorithm or a computation problems, we mean that it is
presented by writing down the r-dimensional matrix in its entirety. There is a trichotomy of
tensor formats depending on the convexity constraint

Vie{l2,....r}, k<> ke (2.1)
(£

Formats that satisfy equation [2.I] with the further assurance that there is at least one j
satisfying the equation with equality are called as boundary formats. Formats that satisfy
equation [2.I] that are not boundary are called as interior. We call all other formats exterior.
We follow (but not demand) the common convention to place the longest dimension (that
is, j with the largest k;) first. Most of the cited results also follow this convention, with the
notable exception of [I0][Section 3C], where the longest dimension is placed last. Therefore
care must be taken in translating cited results to our context. Associated with A is the
multilinear form over the algebraic closure F = C (which we also denote by A)

A Chtl o Chetl | x Ot — C

(w(l), w(2), . ,w(r)> — Z ail,i%m%wg)wg) - wg).
0<is <hky
0<i, <k,
Evaluating the multilinear form in all but one of the vectors yields a dual vector. A tensor
is degenerate if there is a tuple of vectors, each non zero, such that all these evaluations
{A (w®,w®, . w0 s bt (™) }j yield the zero dual vector, as stated below.

Definition 1. (Degeneracy) Call the tensor A degenerate if and only if there is an r-tuple
of mon zero vectors (w(l),w@), cw) e ChFlx Chetl i o x CRF 1 such that in every
dimension j € {1,2,...,r},

Z z aio,il,...,irwgg)wg) .. .wg;ll)wgil) e wg) xEj) =0 (6 (ij+1)*) . (2.2)
0<i;<k; | 0<ii<k,
0< iy <k

The inner summation is over all dimensions except j. That is,

0) (1 §—1) (+1 r ) ,
S i wll ) wl Vel =0, 0 << 0 <k (23)
0<io<ko
0<i, <k,
where again the summation is over all dimensions except j.

This notion of degeneracy is identical to that in [J], except that there it is (i) stated in terms
of an r-tuple of projective vectors instead of non zero vectors, (ii) and stated for F =F = C.
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Hyperdeterminants. Consider a format (k; +1) x (ks +1)... X (k. + 1) that is either
interior or boundary. Introduce a set of commuting indeterminates

iy ig,iny, 0 <01 < k1,0 <iip < ko, ... ,0 <, <k,

corresponding to the tensor coordinates a;, ,,..., of the format. The hyperdeterminant of
format (k1 + 1) x (k2 +2)... x (k- + 1) is a homogeneous integer polynomial

Detry+1,kp41,.. ko1 € Zaiy iy, i, 0 < i1 < k1,0 <idg < kg,...,0<i, <k

which can be viewed as an element in the coordinate ring of the tensor. The polynomial is
only defined up to a sign, but the sign does not matter in the problems we address. Besides,
there are natural ways to resolve the sign [27]. The choice of format on the hyperdeterminant
notation is implicit in [QUI0], but we write it explicitly as a subscript, for we will jump across
dimensions and formats in the reduction. Denote the evaluation of the hyperdeterminant at
the tensor A as

Detpy 41, ko+1,... kr+1(A) €T,

obtained by substituting the coordinates a;, ;,... ;. of the tensors for the indeterminates
@iy is,...i,- 1f the format of A is clear from context, we may drop the subscript and denote
Detg 41 ko1, k+1(A) by Det(A). A property we will repeatedly appeal to is that the tensor

A is degenerate if and only if

Dety, +1,ks+1,... ko +1(4) = 0.

Definition 2. Fix a dimension r > 3. Define -HYPERDETERMINANT to be the problem
of deciding if Det(A) = 0 for a given r-dimensional tensor A (of a format that has a
hyperdeterminant) with entries in the rational numbers.

The hardness results we prove for r-HYPERDETERMINANT remain true if the entries of the
input tensor are from a number field, instead of rational numbers.

3 Reductions

We will reduce from the NP-Complete problem 3-COLOR, consisting of all undirected graphs
G = (V, E) that have a proper three colouring. A three colouring is a map ¢ : V — S to
some set S of size three. It is proper, if and only if for all edges (u,v) € E, c(u) # c(v).

3.1 Encoding graph colouring as polynomial systems

Definition 3. For a graph G = (V, E) let

Tyl — 22 Yv eV,
O Yoz — T2 Yv eV,
@ Typz — Y2 Vv eV,

> (uw)er To + TuTy + 2 Vo E V.

denote the homogeneous system of polynomial equations, with each vertex v € V indexing a
pair (y,Yyy) of variables and an extra variable z for homogenisation.
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Lemma 1. [Hillar-Lim [I2]] For every field with F of characteristic zero with a primitive
cube root of unity, the graph G = (V, E) is in 3-COLOR if and only if the homogeneous system
has a non-trivial solution over F. By non-trivial, we mean not all variables are assigned zero.

Proof. Fix a primitive cube root of unity w € F. Then, the other primitive cube root of unity
is w?. Without loss of generality take the set of three colours to be the set {1,w,w?} C I of
cube roots of unity.

Let G = (V,E) be in 3-COLOR with a proper three colouring ¢ : V — {1,w,w?}. For
every vertex v € V, set z, «— c(v) and y, = x,!. Set z «— 1, ensuring the first three sets
of equations in Cg are satisfied. Since every edge has distinctly coloured vertices, for all
(u,v) € E,

3 3

Ly — Ty

2 2
Ty F Ty = Ty + Ty + X, = =0

Ty — Ty
implying
Z 22+ xyr, +22 =0, Yoev,
u urv v Y ’
(u,v)EE

ensuring the last set of equations are satisfied.

Conversely, consider a non-trivial solution ((x,,yy)vev,2) € F2VI+1 4o Cq. If z = 0, then
forallv € V, 22 = y2 = 0 = 22 = y2 = 0, contradicting non-triviality. Therefore, z # 0, and
due to the homogeneity, we may assume z = 1. Then, for all v € V, z,y, = 1 = y, = x, !
and y, = x2. Therefore, for all v € V, 23 = 1. Assign the vertex v € V the colour w,,
which is valid since x, is a cube root of unity. All that remains is to prove that it is a
proper colouring. For an edge (u,v) € F, if the incident vertices are coloured differently,
then z,, # x, = 22 + x,7, + 22 = 0, as before. But if for an an edge (u,v) € E the incident
vertices are coloured the same, z, = 2, = x2 + 2,2, + 22 = 3x2. Therefore, for all vertices
veV,
Z xi + xyxy + 9:72} = 35,22 =0
(u,v)EE

where s, counts the number of vertices adjacent to v that are coloured the same as v. But
since z}, is a root of unity and 3 # 0 in a field of characteristic zero, s, has to be zero,
ensuring the colouring is proper. a

Remark 1. Lemmaworks in characteristic p, if 3s, # 0. This is true, if p # 3 and p > |V]|.
We can do better, and reduce from 3-COLOR restricted to graphs of degree at most 4.
Despite the degree constraint, this problem remains NP-complete and the condition p # 3
and p > |V| can be relaxed to p > 5. A finite field F, of size ¢ has a primitive cube root of
unity if and only if ¢ = 1 mod 3. For ¢ # 1 mod 3, we can extend the field by adjoining a
root of 2% + x + 1.

3.2 Encoding the graph colouring polynomial system as degeneracy

Hillar and Lim embed the polynomial system C¢ associated with a graph G = (V, E) (of
n = |V| vertices) into a three dimensional tensor A3¢ as follows ﬂ The second and third
dimensions both index the variables, while the first dimension indexes constraints.

2 Superscripts such as 3G on the tensors A*¢ are merely labels indicating dependence on the graph
G and dimension 3, and do not denote any operation on the tensor.
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Bilinear to homogeneous quadratic forms: Denote the solution vectors (of the degeneracy
system of the tensor A3“ we will soon write down) in the second and third dimensions as
w® and w® respectively. Evaluating the tensor in the second and third dimensions yields a
bilinear form in w® and w®). For these bilinear forms to capture the quadratic constraints in
Cg, it suffices (i) to identify the coordinates of w(?) with the variables ((2,)vev, (Yo)vev, 2)
and (ii) to constrain the solutions w® and w® to be projectively equivalent. To this end,
the first set of constraints are that the 2 X 2 minors of the matrix (2n + 1) x 2 obtained by
placing w® and w®) next to each other vanishe Explicitly, these constraints are

wf)w,(,f) — wfz)wf’) =0, ¥¢me{0,1,...,2n} such that £ # m.
The constraint wéz)wg) - wﬁg)wég) = 0 for £ = m is satisfied trivially and does not need
to be enforced. Say two non zero vectors w® and w(® are projectively equivalent, that is,
there is a non zero constant ¢ € C such that w® = cw®). Then clearly, these constraints
are satisfied. The converse is also true. Say, two non zero vectors w(® and w®) satisfy these
constraints. Hence, there exists an index m such that wﬁ,‘j’) # 0, which implies

(2)
wf)wf,?l’) = wﬁ,z)wf) = wéz) = %wég), ve e {0,1,...,2n} = w® = %x(?’),

W, Wm
proving the converse. To encode these n(2n + 1) constraints as tensor coordinates, fix an
enumeration ¢ : {(¢,m) | £ #m} — {0,1,...,n(2n + 1) — 1} of the constraints, and set the

matrix A,(¢,m) € {—1,0, 1} FDxE+D) guch that

(WY A, gy 0 = 00D — w0

m m

as the ¢(¢, m)-th slice of the tensor A%“ in the first dimension. That is,

ASG o inis = Aueam) (i2,73),0 < o(,m) < n(2n+1) = 1,0 < iy < 2n,0 < iz < 2n.
Encoding the Cq system: Likewise, fix an enumeration of the 4n constraints in Cg, to index
the first dimension running from n(2n+1) to n(2n+4) —1. Let A;, € {—1,0,1}Zn+Dx(2n+1)
be the matrix such that (w(®)*A4;, w®) is the i;-th constraint and set i, )-th slice of the tensor
A in the first dimension. That is,

A3C = Ay, (ig,43),n(2n+ 1) < i3 <n2n+5) — 1,0 < iy < 2n,0 < i3 < 2n.

11,52,13
Thus, A3¢ is of n(2n +5) x (2n + 1) x (2n + 1) format with coordinates in {—1,0, 1}.
Lemma 2. [Hillar-Lim [12]] G is in 3-COLOR if and only if A3C is degenerate.

Proof. By lemma [I] and the constraints translating bilinear constraints to quadratic forms,
G is in 3-COLOR if and only if there exists non zero vectors w® and w(® such that
A3G (x,w? w®)) = 0. Tt remains to show that there is a non zero w®) € C*("+5) compatible
with the choice of w(?), w®), that is, satisfying A3¢ (w™, w®), %) = 0 and A3 (wM), x,w®)) =
0. But for fixed w(®, w(®) | these constitute homogeneous linear constraints, 2(2n+1) in num-

ber. Since n(2n + 5) > 2(2n + 1), there exists such a non zero vector w). O

3 These quadratically many constraints to enforce the projective equivalence of the solution vectors
across two dimensions are the culprits in inflating the length in one dimension, pushing to external
formats. A succinct enforcement of equivalence may help prove hardness in three dimensions
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3.3 Lifting to four dimensional boundary formats

Theorem 2. Let G = (V,E) be a graph with n = |V| vertices. Construct a n(2n + 5) X
(2n 4+ 1) x (2n + 1) x n(2n + 1) boundary format tensor A*C as follows. Set the zeroth slice
of A*C in the fourth dimension to be A3 that is

s 4G . 3G
ig =0 = @iy in,isyia *= Qiyin,is:
Draw the remaining coordinates, that is a?fiws’u with 14 > 0, independently and uniformly

2((n(2n+5))!)
from {1’27 R (2n+1)!(2n+1)!(n(2n+1))!} CZ.

— If G is in 3-COLOR, then

Det(2n15)2n+1,2n4 1,n(2n+1) (A*F) = 0.
— If G is not in 3-COLOR, then

1

Pr[Dety(an15) 20412041 n(2nt1) (A*C) £ 0] > 5

Therefore, 3-COLOR <, 4-HYPERDETERMINANT under randomised reductions.
Proof. Say G is in 3-COLOR. Then, by lemma [2, A3“ is degenerate. This does NOT imply
Dety2n+5) 2n-+1,2n4+1(AY) = 0, since n(2n+5) x (2n+1) X (2n+1) is an exterior format and the
hyperdeterminant Det,,(2,45),2n+1,2n+1 does not exist. But the enveloping four dimensional
format n(2n +5) x (2n + 1) x (2n + 1) x n(2n + 1) is a boundary format, which has an
associated hyperdeterminant. By [9][Corollary 3.11],

Detp(2n+5),2n+1,2n+1,n(2n+9) (A*9) =0,

since A*CG contains the exterior format A3C as a slice in the fourth dimension.

Say G is not in 3-COLOR. Recall the four dimensional boundary format hyperdeterminant

Dety(an15),2n41,2n+1,n(2n49) € L0, iy is,ia, 01, 12,13, 4],
considered as a polynomial in the coordinate indeterminates. Partially evaluate it on the
zeroth slice of A*“ in the fourth dimension, by substituting the coordinates of the tensor

4G s
Qi in,iz,ig Ai1,’i2,ig,’i4’vz4 - 07

and (by mild abuse of notation) denote the resulting polynomial as
Det(ABG’ *) € Z[aihiz,i&iu 11,12,13,%4 > 0}

As the partial evaluation of an integer coefficient polynomial at integers, Det(A3“, ) is a
polynomial with integer coefficients. We claim that Det(A%¢ %) is a non zero polynomial.
Assume otherwise, that Det( A3 x) is identically zero. Then, for every n(2n+5) x (2n+1) x
(2n + 1) x n(2n + 1) boundary format tensor B that contains A3“ as the zeroth slice in the
fourth dimension, Det,,(25,45),2n+1,2n+1,n(2n+1) (B3) is obtained by substituting in Det(A3C %)
the coordinates of B that are not on the zeroth slice in the fourth dimension. If Det(A3%, %)
were identically zero, then

Dety(2n+5)2n+1,2n+1,n2n+1)(B) = 0.
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Further more is true, Dety,(2545),2n+1,2n+1,n(2n+1)(B) = 0 for all n(2n + 5) x (2n + 1) x
(2n + 1) x n(2n + 1) boundary format tensor B that contains A3“ as a slice in the fourth
dimension, irrespective of if the slice is in the zeroth position. This is true since permuting
parallel slices preserves the hyperdeterminant, up to sign [9][Corollary 1.5a]. But then, by
[9][Corollary 3.11], A3¢ is degenerate. By lemma A3C being degenerate contradicts that G
is not in 3-COLOR. Therefore, our assumption is wrong, and Det(A3¢, %) is a non zero poly-
nomial, as claimed. We wish to bound the probability of vanishing of the hyperdeterminant
Dety(2n45),2n+1,2n4+1,n(2n+1) (A%, which is obtained by substituting in the non zero polyno-
mial Det 4sc, the coordinates of A*C that are not on the zeroth slice in the fourth dimension.
Therefore, we may view Detn(2n+5)727;+1,27L+17n(2n+1)(A4G) as the evaluation of the of the
non zero polynomial Det(A3“, %) at points drawn independently and uniformly from the set

{1, 2,00, @n +1)2,(((27;(i711)+,?7)l)('2)n EuyN } of integers. To bound the probability of non vanishing, we
invoke the Schwartz-Zippel lemma over the integers. To apply the Schwartz-Zippel lemma,
we only need a bound on the degree of Det(A3¢ x), since the bound is apathetic to the size

of the coefficients. Since substitutions do not increase degree,

deg (Det(A?’G7 *)) < deg (Detn(2n+5),2n+1,2n+1,n(2n+1)) .
Applying the degree bound for boundary formats [9][Corollary 2.6],

(n(2n +5))!
2n+ D!(2n+ 1)Y(n(2n+ 1))

deg (Det(A3“ %)) <

Since the sample domain we draw each coordinate from is at least twice deg (Det(A3G, *)),
the Schwartz-Zippel lemma implies

1
Pr[Detn(2n+5),2n+1,2n+1,n(2n+9)(A4G) #0] > ok

All that remains is to show that the reduction is indeed polynomial time. Since the number
of coordinates (roughly 16n%) of A*“ and the number

2((n(2n + 5))!)
log, ((Qn + D!I2n+ 1)Y(n(2n + 1))

) = ot

of bits to write down each coordinate are both polynomial in n, we can write down A*“ in
its entirety in polynomial time. Therefore, the mapping in the statement of theorem [2]is a
polynomial time reduction. O

Remark 2. For theorem [2] to be valid over a finite field F,, the finite field must have at least

2((n(2n +5))!)
2n 4+ D!I2n + D!(n(2n + 1))!

q>

elements. Otherwise, the Schwartz-Zippel bound does not suffice. If all the properties of
the hyperdeterminants we invoked in the proof of theorem [2| hold in positive characteristic,
then in four dimensions, testing if the hyperdeterminant of a given tensor is zero modulo a
given prime that is exponentially large (in the smallest dimension length) is NP-hard under
randomised reductions.
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3.4 Lifting to higher dimensions

We present a deterministic reduction to lift hardness to higher dimensions, that leverages
the multiplicativity of boundary format determinants. The reduction needs two new ingre-
dients, (i) the notion of tensor convolution (which generalises matrix multiplication) and (ii)
structured boundary format tensors that by design have non vanishing hyperdeterimant.

Definition 4. (Tensor convolution.) Let A be a (k1 +1) x (k2 +1) X ... x (k. +1) boundary
format tensor with ki = ko + ks + ...+ k.. Let B be ({1 +1) x (la+1) x...x (s +1)
boundary format tensor with €1 = fo + U3+ ... + 5. The convolution Ax; B with respect to
a dimension j such that k; = {1 is the (k1 +1) X (ko +1) x ... x (kj—1+1) x (kjp1+1) ...
(kr +1) x (la+1) x (l3+1) x...x (bs+ 1) format r+ s — 2-dimensional tensor with entries

kj 0y
Z Z Qi igyennyigoennyin Ol ity il
i5=0i, =0
0<iy <ki,0<ip<hy...,0<is 1 <kj_1,0<ij 41 <kjir,...,0<ip <k,
0<ih <Uls,0<iy<{l3,...,0<7, </

The resulting convolution is again of boundary format with the first dimension being the
longest, k1 = ko +ks+...+kj_1+kjr1+...+k.+lo+L3+...+{;. The definition of tensor
convolution is identical to that of [9], except we have specialised it to boundary formats to
ease the cumbursome notation.

Definition 5. (Identity tensor) For a boundary format (ky + 1) X (ks +1) X ... x (k. + 1)
with k1 = ko + ks + ... + k., define DFrTLE2t1lwketl 16 be the tensor with entries

g Lke Lkl 1, 11 =1y + 13+ ...+,
P1025ee0tr 0, i1 F g+ i3+ ...+ ip.

Lemma 3. Fiz dimensions r,s with r < s. Restricted to boundary formats,
r-HYPERDETERMINANT <,, s-HYPERDETERMINANT.

Proof. Let A" be an r-dimensional (k1 +1) x (k2 +1) ... x (k. + 1) boundary format tensor,
whose degeneracy is in question. Without loss of generality, let ky = ko + ks + ... + k.. We
may assume that there is a j 7# 1 such that s —r 42 < k;, for otherwise, A" is of a format of
constant size and can be ignored in the reduction. Convolve A” and the (s—r+2)-dimensional
diagonal tensor of
(ki +1) x(kj—s+r+1)x2x2x...x2,
S—T

boundary format with respect to the j-th dimension, resulting in the s dimensional tensor

A% = AT . ij+1,kjfs+r+1,2,2,‘..,2
= j ,
By the multiplicativity of boundary format hyperdeterminants in Dionisi and Ottaviani [6],

Det(A®) = Det(AT)¢ Det (DFi+hks—str41,2.2,..2¢

where the exponents e, e’ are certain easy to compute multinomial coefficients in the lengths
of the format. We only need the fact that they are both positive integers. For brevity of
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notation, we have suppressed the subscripts on the hyperdeterminants signifying the format,
but the format should be clear from the tensors in the argument. The identity tensor has
hyperdeteminant plus or minus one [J][Lemma 3.4], implying

Det(A%) = £Det(A")°.

In particular, Det(A?®) is zero if and only if Det(A") is zero, proving that A — A® is a
deterministic polynomial time reduction. O

In fact, the reduction is stronger. Given Det(A?), one can efficiently compute Det(A”) up
to an e-th root of unity, which may help lift VNP or #P hardness to high dimensions.

Remark 3. The role of the identity tensor in the reduction in lemma [3| can be recast with
other explicit constructions of boundary format tensors that are guaranteed to have non
vanishing hyperdeterminant. Two options, both due to Weyman and Zelevinsky [27], are
diagonal tensors with non zero entries on the diagonal and Vandermonde-Weyman-Zelevinsky
tensors. For Vandermonde-Weyman-Zelevinsky tensors, the field has to have at least as many
elements as k; 41 to make sure the vectors that define the tensor can be made out of distinct
field elements. They have the advantage of a proof of non vanishing that is elementary,
irrespective of the characteristic of the field [22].

Theorem 3. For a fivred dimension r > 4, r-HYPERDETERMINANT is NP-hard under ran-
domised reductions.

Proof. Compose the reduction in theorem [2] with that of lemma [3] O

The idea underlying the reduction in lemma [3] in lifting hardness to higher dimensions s
applies to a broad spectrum of formats. For instance, we can prove hardness when the
dimension s grows with the problem size. Such a reduction may not be polynomial time,
since the tensor A® mapped to, is too big to write down. However, such reductions may
be interesting for quantum information, since such large exponentially large tensors can be
encoded efficiently as quantum states.

Remark 4. Consider the n(2n+5) X (2n+1) x (2n+1) x n(2n + 1) boundary format tensor
A%C that a graph with n vertices gets mapped to in theorem [2| Successively convolve it with
three diagonal matrices to get

An(2n+9)G . _ (((A4G *D(n(2n+5),2,2,4..72)) *D2n+1,2,27...,2) *D2n+l,2,2,...,2) .

Here, we have suppressed the subscripts on the convolution operator %, but it is understood
that the convolution happens at a dimension of appropriate length. The resulting tensor
An2nt5)G g of boundary format

n2n+5) x2x2x...x2.
—_—
n(2n+5)—1

Successively invoking the multiplicativity of boundary format hyperdeterminants [6],
Det(AM2nH9)GY = 4 Det(AYF)e,
for some positive integer exponent e. Therefore,

Det(AM?+9)G) — 0 o Det(A*C) = 0.
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embedding 3-COLOR as an instance of n(2n + 5)-HYPERDETERMINANT, restricted to n(2n +
5)x2x2x...x2 boundary formats. The tensor A"(?"*+5)& can be encoded in the amplitudes
of a pure state of a one qudit, d qubit system, with d = n(2n + 5) — 1 (after projectivising
and normalising). The hyperdeterminant becomes a measure of multipartite entanglement
of such systems, called as tangle. Assuming this embedding is easy to compute on quantum
computers, deciding if a one qudit, d qubit system is tangled is NP-hard under randomised
reductions. Such quantum information applications will be expanded on in a longer version.
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