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Abstract

Error correcting codes encode messages by codewords in such a way that even if some of the codeword
is corrupted, the message can be decoded. Typical decoding algorithms for error correcting codes either
use linear space or quadratic time. A natural question is whether codes can be decoded in near-linear time
and sub-linear space simultaneously. A recent result by Cook and Moshkovitz gave efficient decoders that
can uniquely decode Reed-Muller and other codes from a constant fraction (less than half) of corruption.

In this work, we address the problem of list decoding in near-linear time and sub-linear space. In the
list decoding setting, most of the codeword is corrupted, and one wants to output a short list of potential
messages that contains the true message. For any constants v, 7 > 0, we give decoders for Reed-Muller
codes that can decode from 1 — ~ fraction of corruptions in time n'™™ and space n".

Our decoders work by extending the iterative correction technique of Cook and Moshkovitz. However,
that technique, which gradually decreases the number of corruptions in the message, was tailored to the
unique decoding setting. We first identify an intermediate problem, codewords list recovery, for which we
can make iterative correction work. We then show how to reduce general list decoding to the codewords
list recovery problem in efficient time and space. The reduction relies on local correction and testing. In
the codewords list recovery problem, the input consists of n unordered lists of symbols from L codewords,
where a small fraction of the lists is corrupted. The goal is to find the n unordered lists of symbols that
are exactly the symbols from the L codewords.

In addition, we prove that any linear code with time-space efficient encoding or decoding must be local,
in the sense that the codewords satisfy a local linear constraint. This rules out codes like Reed-Solomon
from having time-space efficient encoding or decoding.
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1 Introduction

1.1 Time-Space Efficient Codes

Error correcting codes encode information in a robust way, so that even if part of an encoding gets corrupted,
it is still possible to decode the information. Codes are of great importance in communication and storage
and have been studied for decades [Ham50; [Ree00]. In theoretical computer science, codes have numerous
applications, e.g., for pseudorandomness [KUO06; |STVO01} [Uma03; |Goll0], interactive protocols |[Lun+90;
GKR15; RRR16|, probabilistically checkable proofs [Bab+91} [Fei+91; [AS98} |Aro+98| and cryptography
[Tre04; McET78; |(Cou01}; |OS09; [Sha79).

Definition 1.1 (Error correcting code). An error correcting code is a function C : ¥* — X" where different
messages x # x' € X¥ are mapped to codewords C(z), C(x') that differ much: C(z); # C(x'); for at least d
of i € [n]. The relative distance of the code is d/n. The rate of the code is k/n. The alphabet of the code
is ¥. An asymptotically good code is an infinite family {Cy}r>1 where Cy : ¥* — " has constant rate,
relative distance, and alphabet for all k.

The number of indices i € [n] where two strings w,w’ € X" differ, i.e., w; # w}, is called the Hamming
distance between the strings. The number of indices ¢ where w; = w) is the agreement of the strings. The
process of computing C(x) for a message x is called encoding. The process of computing z from a word w
that agrees with a codeword C(x) on most indices, is called decoding. Note that only words w that agree
with a codeword C(z) on all but less than d/2 indices can be uniquely decoded. An important generalization
of decoding is list decoding |Eli57; [Woz58|. Here, the decoder outputs all the codewords that have sufficient
agreement with w. List decoding with short lists is often possible even for corrupted codewords with close
to d errors (!) Such words may only agree with a codeword on a small fraction of the positions i € [n]. List
decoding turns out to be important for communication, and is crucial for many applications in theoretical
computer science, such as pseudorandom generators [STV0L; |SU05], low error PCPs [MRO0S8; [DH09; TKW09;
MZ24] and optimal inapproximability [HO1].

Definition 1.2 (List decoding). Let C : ¥¥ — X" be an error correcting code. A ~y-list decoding algorithm
gets as input w € X" and outputs all the codewords C(x) with yn agreement withe w, i.e., C(x); = w; for at
least yn indices © € [n]. We call n(1 — ) the list decoding radius and 1 — ~ the relative list decoding radius.

Algorithmic coding theory aims to implement error correcting codes efficiently. Much work focuses on
the time complexity of encoding and decoding, resulting in explicit asymptotically good codes that can
be encoded and decoded in deterministic linear time [Spi95; [SS96]. List decoding too can be achieved in
linear time |GI03]. However, these algorithms have a linear space complexity. Other work focused on space
complexity. All asymptotically good linear codes can be encoded in logarithmic space and quadratic time.
Some codes (e.g., [Spi95]) were shown to also have decoding in logarithmic space, however the algorithms
use large polynomial time. For instance, Spielman codes [Spi95] have uniform circuits with linear size and
d = O(log(n)) depth circuits that decode them. These low depth circuits have a straightforward algorithm
evaluating them in O(d) = O(log(n)) space (where d > 2log(n)), but it runs in time Q(2%) = Q(n?).

The current work focuses on deterministic algorithms that run simultaneously in almost linear time
and sub-linear space. The question of whether there are explicit asymptotically good codes with time-
space efficient encoding or decoding was raised in [BMS09] and [Gro06], respectively. Much of the initial
work in the area focused on negative results. Bazzi, Mahdian and Spielman [BMS09| considered Turbo-
like codes that could potentially have linear time and logarithmic space encoding, but showed that they
were not asymptotically good. Bazzi and Mitter |[BMO5| proved that codes that can be encoded in linear
time and sub-linear space cannot be asymptotically good. Gronemeier |Gro06] showed that deterministic
non-adaptive decoders in almost linear time must run in near-linear space. In sharp contrast, recent work
gave positive results. The paper [CM24] constructs explicit asymptotically good codes with deterministic
almost-linear time and sub-linear space encoders |[CM24]. It evades the impossibility result by considering
almost linear time instead of linear time. The paper |[CM25| constructs explicit asymptotically good codes
with deterministic almost-linear time and sub-linear space decoders. It evades the impossibility result by
using an adaptive decoder.



A downside of the paper [CM25| is that it only gives unique decoding algorithms. The goal of the current
paper is to design time-space efficient deterministic list decoding algorithms. Our main theorem is as follows:

Theorem 1.3 (Good Codes With Time-Space Efficient Uniform List Decoding (Informal; See Section [7))).
For any constants 7 > 0 and v > 0, there exists an explicit asymptotically good code with a deterministic
~-list decoding algorithm that runs in time n'*™ and space n™ on input of size n.

The code for which we can give time-space efficient list decoding is the Reed-Muller code, as well as small
alphabet versions of it obtained by concatenation with constant alphabet codes. The Reed-Muller code is
natural and widely used. Its codewords are the truth tables of low degree multivariate polynomials over a
finite field. The code is known for its strong local testing and correction properties, and those properties are
crucial for our result.

We remark that if one only wants a non-uniform list decoder for codes that are locally testable and
correctable (with weaker parameters than Reed-Muller) one can employ a technique from the paper |[GM16]
(See Section [A]in the appendix).

1.2 Overview of Our List Decoding Algorithm

Our main technical contribution is generalizing the unique decoding algorithm from the paper |[CM25| to
the list decoding setting. The method of |[CM25| iteratively corrects the received word until it becomes a
codeword. This approach makes sense in the unique decoding setting, but does not seem appropriate for the
list decoding setting, where the received word might have small agreement with many different codewords.

The key idea of our solution is as follows. First, we identify a simpler problem that we call codewords list
recovery, for which we are able to generalize the approach of [CM25]. Then, we show how to reduce the list
decoding problem to the codewords list recovery problem in efficient time and space.

The general structure of our list decoding algorithm is described in Figure

) . local correction, testing )
List Decoding Codewords List Recovery

Figure 1: Codewords list recovery is solved in efficient time-space via an iterative correction algorithm
(technique from |[CM25[; suitably generalized). List decoding is solved via a time-space efficient reduction
to codewords list recovery. Both the algorithm and the reduction use local correction. The reduction uses
local testing too.

Codewords list recovery is a special case of the list recovery problem. In list recovery the input consists
of short lists of possible symbols for each position in the codeword, and the goal is to find all the codewords
that are consistent with most of the lists. In codewords list recovery, the lists come from ¢ codewords. Most
of the lists are ezxactly consistent with those ¢ codewords, and the goal is to correct those lists:

Definition 1.4 (Codewords List Recovery). Let C : ¥¥ — X" be a code. Let Q',...,Q° € C(X*) be
codewords. Fori=1,...,n let Q; = {Q},...,Q¢} be the set of codeword symbols in position i. The input is
a sequence of lists Wy, ..., W, C X, where for all indices except at most dn indices i € [n] we have W; = Q;.
The goal is to find Q',...,Q°.

Our algorithm for codewords list recovery requires a generalization of the algorithm in [CM25] to the case
where there are [ symbols rather than one per index. Meanwhile, it is the time-space efficient reduction from
list decoding to codewords list recovery that does much of the heavy lifting for the list decoding algorithm.
The reduction uses local correction to compose the lists and local testing to ensure that most lists match
exactly with global codewords.

1.3 Time-Space Efficiency and Locality

Our list decoding algorithm relies on local correction and testing. The paper |[CM25] on unique decoding
relies on local correction. The codewords in the paper [CM24] or in Turbo-like codes [BMS09| have symbols



that depend on a small number of other codeword symbols and input symbols. A natural question is whether
the locality of all those codes is an artifact of the ideas that were used so far in this area, or whether locality
is somehow inherent to time-space efficient error correcting codes.

Perhaps surprisingly, we show that locality is inherent, in the following sense. We consider linear codes,
i.e., linear transformations C : £*¥ — £". Moreover, we assume that C is systematic, i.e., C maps z € XF
to a codeword C(z) = (z,y) € X" that starts with the input z. (Note that there is no loss of generality
in considering systematic codes, and this assumption will allow us to handle encoding and decoding at the
same time.) For linear codes, C(X*) is a linear subspace, and the orthogonal subspace C(¥*)+ consists of
the linear constraints that all the codewords satisfy. The weight of a constraint in C(X*)* is its Hamming
distance from 0. The minimum weight over all non-zero elements in C(X*)t is a measure of the locality of
C. All locally testable and locally correctable codes have low weight constraints, however this is a necessary
but not a sufficient condition for local testability and local correction.

We show that linear, systematic, codes C with time-space efficient encoding or decoding must have a low
weight linear constraint:

Theorem 1.5 (Linear Codes Without Local Constraints Can Not Be Encoded Or Decoded Efficiently). Let
C : ¥F = 3" be a linear systematic code. Let t be the minimum weight of a non-zero element in C(XF)~L.
Then, any encoder for C running in time T and space S must have ST = Q((n — k)(t — S)). Further, any
corrector for C that can correct d errors running in time T and space S must have ST = Q(d(t — 5)).

This theorem implies that codes with time-space efficient encoding or decoding must be local in the sense
of having a low weight constraint. Locally correctable codes like those considered in this paper or in [CM25]
indeed have low weight constraints. The codes considered in [CM24; BMS09| are not locally correctable but
they have low weight constraints too.

The theorem rules out many codes from having time-space efficient encoding or decoding. For instance,
the Reed-Solomon code does not have low weight constraints, and therefore cannot have time-space efficient
encoding or decoding;:

Corollary 1.6 (Reed-Solomon Codes Are Not Efficiently Encodable Or Decodable). Let F be a field and
deg < |F| be an integer. Then any encoder for the Reed-Solomon code, where the codewords are the tables of
univariate polynomials of degree at most deg over F, requires time T and space S such that ST = Q((|F| —

deg — 1)(deg+ 1 —5)). Similarly, any decoder correcting d errors for the Reed-Solomon code requires time
T and space S such that ST = Q(d(deg+ 1 —9)).

2 List Decoding Main Ideas

In this section, we explain the main ideas that go into our list decoding algorithm. We discuss the connection
between local decoding and randomized time-space efficient decoding. We explain the iterative correction
technique of |[CM25|. We recall the details of local correction for Reed-Muller codes and the main results
about its local testing. Finally, we sketch our new algorithms: the algorithm for codewords list recovery and
the reduction from list decoding to codewords list recovery. Our goal in this section is to review the main
ideas so the reader can quickly grasp the information. Full details about the algorithms and their analysis
appear in the body of the paper, and the reader is advised to consult them while reading this review.

2.1 Time-Space Efficient Unique Decoding

Observe that randomized time-space efficient unique decoding follows from locally decodable codes with a
sub-linear number of queries [KT00; [Yek12]. In locally decodable codes it is possible to get “random access”
to the message given a corrupted codeword. That is, to decode a single symbol in the message x;, it suffices
to make a small number of queries to the corrupted codeword, chosen in a randomized fashion.

Definition 2.1 (Locally decodable code). A code C' : ¥ — X" is locally decodable with q queries, € decoding
error, and § relative decoding radius if it has a randomized decoder D that does the following. D is given
oracle access to a word w € X" and an index in the message i € [k], makes q queries to w, and outputs
be X. Ifw is close to a codeword, that is, w; = C(z); for at least 1 — & fraction of j € [n], then for all
i € [k] the decoder decodes the i’th symbol b = x; with probability at least 1 — ¢ over its randomness.



By repeating the local decoder O(log k) times, its error probability is sufficiently smaller than 1/k, and
running the decoder on every ¢ € [k], one obtains a time-space efficient randomized decoder. Provided that
the local decoder makes ¢ = n°!) queries and runs in time and space that are polynomial in ¢, the space
complexity of the decoder we get is sub-linear and the time complexity is almost linear. Those ideas can
also be extended to get a randomized time-space efficient list decoding algorithm from locally list decodable
codes.

The challenge in decoding is to get time-space efficiency in a deterministic algorithm. A natural deran-
domization would take at least quadratic time: it would enumerate over all possible randomness strings of
the local decoder (at least a linear number). For each randomness string, it would compute, in at least linear
time, the corresponding codeword and check how close it is to the received word.

In contrast, we want a derandomization that does not increase the run-time substantially. Randomized
local (i.e., sub-linear time) decoding provably cannot be derandomized without increasing the run-time sig-
nificantly (to linear run-time), since any deterministic decoder must read the entire received word. However,
the paper [CM25] succeeds in derandomizing (global) decoding without significantly increasing the runtime.
Unfortunately, the derandomization requires the unique decoding setup.

The paper [CM25| assumes that the code is locally correctable. Local correction is similar to local
decoding, except that the corrector receives i € [n] and wishes to find C(z);.

Definition 2.2 (Locally correctable code). A code C : ¥¥ — X" is locally correctable with q queries, €
decoding error, and 0 relative decoding radius if it has a randomized decoder D that does the following. D
is given oracle access to a word w € X" and an index in the message i € [n], makes q queries to w, and
outputs b € X. If w is close to a codeword, that is, w; = C(x); for at least 1 — ¢ fraction of j € [n], then for
all i € [n] the decoder decodes the i’th symbol b = C(x); with probability at least 1 — e over its randomness.

The approach of [CM25] is to iteratively decrease the number of corruptions in the received word by local
correction. The insight is to decrease the number of corruptions only by a factor n°!) in each iteration,
and show that only n°") randomness strings suffice for such a small improvement. Since one can test each
randomness string in linear time (comparing the corrected word with the received word), one gets time
n'*toM) overall.

2.2 Algorithm For Codewords List Recovery

The idea of iterative correction worked in the unique decoding setting, where there is a single codeword we
wish to correct, and there is a natural progress measure, namely the distance to that codeword. In this
paper, we generalize this approach to the case of the codewords list recovery problem (See Definition .

The input to the codewords list recovery problem consists of n sets of up to ¢ symbols each, denoted
Wy, ...,W, CX.

It is guaranteed that there are ¢ global codewords Q' ..., Q" such that all sets W, except perhaps én,
are consistent with the global codewords, i.e., W; = {Q},...,Q¢}. We refer to the i € [n] where there is no
consistency as a corruption. The goal of the algorithm is to find the ¢ global codewords Q' ..., Q¢.

Note that for £ = 1 this problem is precisely the unique decoding problem. We generalize the unique
decoding algorithm of [CM25|] from ¢ = 1 to general ¢. The algorithm is described in detail in Section

The algorithm gradually decreases the number dn of corrupted lists from a small constant § until it
reaches ¢ < 1/n (i.e., no corruptions). When all lists are consistent with the ¢ codewords, there is a time and
space efficient algorithm for identifying the codewords that give those lists (see Lemma. As in the unique
decoding case [CM25|, the algorithm decreases the number of corrupted lists dn using local correction, except
that now local correction manipulates sets of [ symbols instead of individual symbols. We will elaborate on
local correction of the Reed-Muller code, and how to manipulate ¢ symbols, in the next subsection. Overall,

we get an almost-linear time and sub-linear space algorithm for the codewords list recovery problem of
Reed-Muller codes.

2.3 Local Correction for Reed-Muller Codes

In this subsection we discuss local correction in the list decoding regime, which we refer to as local list
correction. Recall that we discussed local correction in the unique decoding regime in Section Local list



correction is crucial both for the algorithm for codewords list recovery, and for the reduction of list decoding
to codewords list recovery.

There are several ways to define local correction in the list decoding regime, so first we discuss the
definition we use and contrast it with another standard definition. The corrector is given oracle access to
a highly corrupted codeword. Let [ denote the number of codewords in the ~-list decoding of the received
word. On input an index ¢ € [n] the corrector wishes to find the i’th symbol of each of the ! codewords in
the list decoding using a small number of queries to the word. One standard definition of local list correctors
involves outputting [ different circuits, each consistent with a single codeword. On input ¢ € [n] the j’th
circuit outputs the ¢’th symbol of the j’th codeword. We use a weaker definition, where the corrector only
needs to output at most [ symbols for the i’th index, containing the symbols from the [ codewords, but
without associating each with its codeword. The definition we use for local correction is as follows.

Definition 2.3 (Locally list correctable code (weak definition)). A code C : X¥ — X" is locally list cor-
rectable with q queries, € correction error, v agreement, and l list size, if it has a randomized decoder D as
follows. D is given access to a word w € ™ and an index in the codeword i € [n], makes q queries to w, and
outputs L; C X, |L;| <1, such that if w is close to a codeword, that is, w; = C(z); for at least v fraction
of j € [n], then for every i € [n] the decoder’s list L; contains C(x); with probability at least 1 — & over its
randomness.

We focus on the Reed-Muller code, which is perhaps the most natural locally correctable code (See also
the survey by Yekhanin [Yek12] on local decoding). First, let us formally define the Reed-Muller code: For
natural numbers dim,deg > 1 and a finite field F the degree deg Reed-Muller code over F9™ is the set of
dim-variate, total degree deg polynomials. The codeword length is n = |[F4™| the alphabet is I, and we
identify the indices i € [n] with points € F4™. The codeword consists of the evaluations of the polynomial
on all points in F4™. That is, for a polynomial p : Fi™ — F, the corresponding codeword is (p(z))cpeim-

The Reed-Muller code has a simple local list correction |[AS97; [STVO01|, which we describe next. Given
a received word w : F9™ — F and a point to correct z € F9M local correction is as follows:

1. Pick a line through z in F4™ uniformly at random.

2. Perform Reed-Solomon list decoding [Sud97; |GS99; [FB98|] of the restriction of w to the line to find
degree-deg polynomials with at least ~ v agreement.

3. Output the evaluations of all the polynomials from step 2 on .

The corrector only queries |F| points out of n = [F4™|, and is therefore local. Given access to w which is a
codeword @, the corrector always outputs Q(x). The idea is that if w agrees with a polynomial @) on a large
fraction of the points in F9™  then a uniform line is expected to contain a similar fraction of points they
agree on. Therefore, Q(x) would probably be outputted. On the other hand, if there are few z € F4™ such
that w(x) ¢ {Q'(x),...,Q (x)} where Q', ..., Q" is the list decoding of w, a random line will rarely contain
enough of those to output a symbol inconsistent with Q*, ..., Q"

The property of lines that enables local correction is sampling:

Definition 2.4 (Sampling). A family of samples {S} where each sample S is a size-s subset of Fém s a
sampler with accuracy error € and strong confidence error § if for any A C FI™ 1 = |A|/|F¥™|, for at least
1 —dp fraction of the samples S we have

[Ans| Al |
S| L ) .

In the context of local correction, the set A corresponds to corrupted symbols in w, or to points where
w agrees with a codeword (). Note the dependence of the error probability du on p (the relative size of A).
Hence, when pu corresponds to the fraction of corruptions in w, the sampling error is appropriately smaller.

Like [CM25], we will need the following variations on local correction, used here in the list decoding
regime instead of the unique decoding regime:



Error reduction: For our iterative correction technique, it is imperative to decrease the error probability
of the corrector below what a random line can obtain. Specifically, we wish to decrease the error by a factor
larger than the number of queries. To do so, the corrector picks several lines through z instead of just one,
and only picks values for x that repeat for the majority of lines. The paper |[CM25] constructs an appropriate
sampler: With probability 1 — u|F|~“() the majority of lines sample A within accuracy error € = |[F|~%(1),
See Section [5.2] for formal results.

Average-case local correction: We consider local correction that works for most points « € F4™ and
not necessarily for all points. This will allow us to decrease the amount of randomness that the corrector
uses from n per point to n°Y) per point. This decrease in randomness is crucial in order to obtain almost
linear time and sub-linear space.

In the algorithm for codewords list recovery we will use a further variation on local correction, namely
handling inputs that consist of ¢ symbols instead of a single symbol per position:

List recovery input: The corrector can be made to work for list recovery problems rather than list
correction problems. Here the input is a set of £ values in F per z € F4™ as opposed to a single value in
F. In other words, the received word w can be thought of as a multi-string, rather than a string. The only
change to the local corrector is performing Reed-Solomon list recovery instead of list decoding [KV03; |Ale05;
Gur07).

2.4 Local Testing

In the next subsection we describe the reduction of the list decoding problem to the codewords list recovery
problem in efficient time-space. This reduction completes our list decoding algorithm. For the reduction, we
crucially rely on incorporating local testing in our local correction. The use of a local testing theorem is new
to the list decoding regime and did not appear in the time-space efficient unique decoding algorithm |[CM25].

In this sub-section we discuss the definition of local testing we use and contrast it with other standard
definitions. In local testing, there is oracle access to a word in X", which may or may not agree much with
a codeword. The tester makes a small number of queries to the word and either accepts or rejects. It is
supposed to accept codewords. Since the tester makes a small number of queries, it cannot distinguish words
that agree with a codeword on almost all the indices from codewords. Hence, the tester is only expected to
reject words that are far from the code.

The definition we use asks that the acceptance probability of the tester directly corresponds to the
agreement of the word with a codeword, up to a small additive term:

Definition 2.5 (Locally Testable Codes (additive approximation)). We say that a code C' : ¥¥ — %" s
a locally testable code (LTC) with q queries and additive approzimation « if there is a tester that makes q
queries to a received word w € X" and either accepts or rejects such that:

o If w = C(x), then the tester always accepts.

o If the tester accepts with probability 3, then there is a codeword C(x) that agrees with w on at least
8 — « and at most 8+ « fraction of positions.

The additive approximation definition is much stronger than other definitions of local testing that are
sometimes considered. Oftentimes, certain distance from the code implies a certain rejection probability,
but farther distance from the code does not necessitate higher rejection probability. A different standard
definition (Definition requires that the probability that the tester rejects provides a multiplicative
approximation (with a factor strictly larger than 1) of the distance to a codeword. This definition allows the
distinguishing of codewords from words that have noticeable distance from the code, but does not provide
useful information if w is very far from the code. The small additive approximation in Definition means
that one can detect codewords even if they agree with the received word on a very small fraction of positions.

A slight modification of the local corrector of the Reed-Muller code described in the previous section
makes the corrector into a local tester with a small additive approximation [F|~*(1) [MR06]. As of the time



of writing this paper, we do not know of other codes with a randomness-efficient local corrector and tester
with a small additive approximation.

In the subsection that follows we discuss the time-space efficient reduction from list decoding to codewords
list recovery, and give more details about the reason for using local testing.

2.5 Reduction From List Decoding To Codewords List Recovery

In this subsection we describe the time-space efficient reduction from list decoding to codewords list recovery.
This reduction is one of the key contributions of the current work. In the reduction we use the local list
correction of subsection [2.3] combined with local testing as, described in subsection

In the list decoding problem, we are given oracle access to a word w : F9M — F and we wish to find all
the dim-variate polynomials Q', ..., Q" of degree at most deg that agree with w on at least ~ fraction of the
points in F4™M. We wish to construct a codewords list recovery instance that corresponds to the list decoding
of w.

We could invoke the local list corrector on each possible randomness to obtain a list recovery instance.
The main difficulty is that this list recovery instance is not necessarily a codewords list recovery instance with
a small number of corruptions. There are two ways the sets we generate could go wrong: One is sets missing
symbols from certain nearby codewords. We call these in-codeword errors. Because of sampling (discussed
in Subsection [2.3]), in-codeword errors are rare. The other is sets that contain symbols that do not belong
to any nearby codeword. We call these out-of-codeword errors. If out-of-codeword errors are rare as well,
then we are done. However, it is possible that many indices x € F4™ have out-of-codeword errors, because
many of the n°(") lines through z are consistent with local polynomials that do not correspond to any global
polynomials.

To make sure that out-of-codeword errors are rare, we adapt our local corrector to incorporate local
testing (See Definition . Local testing implies that if there is significant local agreement for many
random choices of the local correction, then the local agreement must correspond to agreement with a global
polynomial Q. We use the local tester of [MR06] we mentioned before, and for that we change the local
corrector to query O(1)-dimensional subspaces and not lines. Importantly, we only use subspaces for the
reduction to list recovery. The rest of the correction uses more query efficient correctors.

3 Only Local Codes Are Time and Space Efficiently Encodable or
Decodable

In this section we give the simple proof of Theorem [1.5] that shows that time-space efficient linear codes must
have low weight constraints. The general result (see Theorem is that if the uniform distribution over
codewords is t-wise independent, then correcting d codeword symbol erasures requires an algorithm running
in time T and space S such that ST = Q((¢t — S)d). This implies the theorem since a linear code is t-wise
independent if and only if it does not have a linear constraint involving t variables. General code correction
implies erasure correction, so this also implies a lower bound for more general correction. Further, encoding
a code is a special case of erasure correction, so this result is also a lower bound for encoding codes.

The basic proof strategy is to show that even conditioned on knowing S symbols of information about
an input codeword, to output S + 1 symbols that were erased, we need to read some block of t — S symbols
from the input word. Thus to write d symbols, one must use (¢t — S)SLJrl time steps.

To show that even with S bits of information we need to read ¢t — S symbols of the codeword, we consider
the state after reading the next t — S — 1 symbols. If we only read t — S — 1 symbols and then wrote S + 1
symbols, then due to t-wise independence, there are ¢ symbols of information in the symbols read plus the
symbols written. Yet we only know the S symbols we began with plus the ¢t —.S — 1 symbols we read, which
is only ¢ — 1 symbols of information. The symbol of information missing must be in the S + 1 symbols we
wrote since we read the remaining ¢ — S — 1 symbols as plain text. Thus the corrector can not write S + 1
symbols before it reads all t — .S symbols. Since the algorithm has bounded space, at any step it only has
roughly S bits of information about the specific codeword.

In the rest of this section, we will formalize this argument.



3.1 Erasure Decoding

In this section, we will briefly define erasure decoding. An erasure of a word is just the same word with some
of the symbols erased.

Definition 3.1 (Erasure). Take any integer n and alphabet ¥.. Call some L ¢ ¥ the empty symbol. We say
that a function E : 3™ — (S U{L})™ erases d symbols if for some set H C [n] with |H| = d we have that for
all x € X" that for all i € H that E(z); =L and for all j ¢ H we have E(z); = x;.

Similarly, for any x € £ and ' € (XU {L})"™, we say that ' is x with d erasures, if for some E that
erases d symbols we have that E(x) = a'.

The idea of erasure decoding is that instead of corruption being a symbol change, corruption is a symbol
being replaced with a special empty symbol outside the original alphabet. In erasure decoding, the decoder
knows what symbols are corrupted, but not what their original value was. In the standard definition of
erasure decoding, one does not know what symbols will be erased before hand. Our results hold even if one
does know which symbols will be erased. Finally, our results are stated most naturally in terms of correction,
so we will define targeted erasure correction.

Definition 3.2 (Targeted Erasure Correction). Take any integer n and alphabet X, Let E : ¥ — (SU{L})"™
be a function that erases d symbols. Let C : % — 3" be a code. We say that a function D : (SU{L})" — "
is an erasure corrector for code C and error E if for all x € ©* we have that

Erasure decoding is easier than standard decoding because one can reduce erasure decoding to standard
decoding by guessing the erased symbols.

Lemma 3.3 (Correctors Imply Targeted Erasure Correction). Take any integer n and alphabet ¥. Let
C :3F — %" be a code. Suppose there is a time T space S, distance d corrector for C. Then for every E
that erases d symbols, there is an erasure corrector for code C' and error E running in time O(T) and space

0(S).

Proof. For any given input 2z’ that is a d erasure of x, just replace every symbol missed from z’ with a
random symbol, call the result *. Now z* is within d of x and we can use the decoder for C to recover
T. O

An advantage to defining targeted erasure correction is that encoding is a special case of targeted erasure
decoding (where none of the message bits are corrupted). Thus our decoding lower bounds apply to encoding
as well.

Lemma 3.4 (Encoding is Targeted Erasure Correction). Take any integer n and alphabet . Let C : ©F —
3" be a systematic code. Then the function C is an erasure corrector for code C' and some function E that
erases n — k symbols.

Proof. The function E just erases all but the k£ message symbols from the codeword. O

3.2 Proof of Theorem [1.5]

Now we will give a slightly more formal overview of the proof. In our proof, it is useful to imagine that
the corrector gets as input a uniformly random codeword, and is trying to read just enough of it to learn
a few symbols. At any given point in time, the corrector has some state which is reached by some specific
set of codewords. The first observations is that since there are few states, the state reached with high
probability must be reached by many other codewords. In Lemma [3.5] we argue that as long as there are
enough codewords that map to the current state, the corrector must read a lot of symbols before outputting
the next S + 1 corrections. We then use Lemma many times in Theorem to give the final result.

Lemma 3.5 (Low Space t-Wise Independent Code Correctors Need Many Queries To Output A Few Sym-
bols). Let C : X% — " be a systematic code such that the uniform distribution over codewords in C' is t-wise



independent. Let E be a function which erases d symbols. Let S < d be a constant and Y be a uniform
distribution over at least |S|¥=% codewords in C.

Take any deterministic algorithm D that takes as input words from E(Y) and writes to S + 1 distinct
indexes erased by E such that for any y € Y, any time D writes symbol i it writes y;. In other words, D

correctly corrects S + 1 symbols erased by E from codewords in Y. Then with probability at most ﬁ will

corrector D read less than t — S symbols.

Proof. First we will show that with probability at most I%\ will Y conditioned on the first £ —.S — 1 symbols

be a distribution |Z|*~* or fewer codewords. Then we will argue that this implies that D fails on some input
from Y if it reads less than ¢t — .S symbols.

Conditioning Y on t — S — 1 symbols partitions the at least |X codewords in Y is distributed over
into |X|*~°~! groups. In the worst case, only |S|*~°~! elements could be in a partition with |Z|*~* or fewer
elements in it (since |X|'~571|$|*~t = |£|¥=9-1). Thus the probability that a random y € Y will be in such

k—S—1
a partition is at most % = ﬁ Thus with probability at most ﬁ will Y conditioned on the first

|k7t

|k7$

t — S — 1 symbols read be a distribution over |X or fewer codewords.

Let Y/ be Y conditioned on the first ¢ — .S — 1 symbols read. Suppose that Y’ is a distribution over
more than |X|*~* codewords. We will now argue that if D writes S + 1 symbols, no matter what S + 1
symbols are written, there will be some input in the distribution of Y’ such that the symbols written are
incorrect. Consider the set of S + 1 coordinates written and the t — S — 1 read. If Y’ restricted to these
t coordinates were constant, then Y’ must only be a distribution over at most |%|*~* codewords (the total
number of codewords divided by the number of assignments to these ¢ symbols) since the coordinates of C
are t-wise independent. But Y is a distribution over more than |X|*~* symbols, so Y” is not fixed on these
t coordinates. However, it is fixed on the ¢ — S — 1 coordinates read, so it must not be fixed on the S + 1
coordinates written. Therefore, whatever is written after reading these coordinates must be wrong on some
codewords from Y. O

Now applying this lemma several times gives us the main result of this appendix.

Theorem 3.6 (t-Wise Independent Code Correctors Require Large Time-Space). Let C : ¥¥ — " be a
systematic code such that the uniform distribution over codewords in C is t-wise independent. Let E be
a function which erases d symbols. Let S < d be a constant. Than any function D : (XU {L})" — X"
running in time T and space Slog(|X|) that is an erasure corrector for code C and error E must have
ST = Q((t — 5)d).

Proof. Let Y be the distribution over all codewords in C. Consider the expected runtime of D. At any

given time step, the probability that Y conditioned on the state of the corrector is a distribution over
k

ILZ \lgl‘s = |2|*=5~1 or fewer states is at most Iﬁl\’ since |%|¥ is the number of codewords and |X| is the

number of states of the corrector. If Y conditioned on the current state is a distribution over more than

|S[F=9-1 states, by Lemma the probability that the decoder outputs S + 2 symbols before reading

2

t — .S — 1 symbols is at most ﬁ Thus, at any given time step, with probability at least (1 — ﬁ) > i will

the corrector read t — S — 1 symbols before it outputs the next S + 2 symbols. Thus in expectation, at any

given step in the computation, writing the next S + 2 symbols of output requires reading (¢ — S) symbols
of the input.

By splitting the d symbols to be corrected into 2 (ﬁ) chunks, we conclude that the expected final

ra(o-s (2))

ST >Q((t — S)d).

time of the decoder must be

Now we prove Theorem



Proof. First we show that any ¢ coordinates of a random linear codeword are independent if and only if there
is no way to write a non-trivial linear constraint of the codeword using just those ¢ coordinates. Since we
could not find a reference for this folklore result, we give a brief proof here.

If there is a non-trivial linear constraint on ¢ coordinates, then some choice of assignment to those
coordinates is invalid. So a random codeword can not be independent because some assignments to those ¢
happen with probability 0 instead of probability ﬁ

For the other direction, first observe that evaluating a linear function on a uniformly random input gives
a uniformly random distribution over it’s image. If the image of the linear function on t coordinates is not
uniform, then this means not all assignments to those ¢ coordinates are possible. Thus the linear function
that only outputs these ¢ coordinates is not onto. Any linear subspace is defined by constraints, and the
linear subspace that is the image on these ¢ coordinates is not the whole space, so it has a linear constraint.

Now we can apply Lemma [3.5] to get that any specific, large erasure cannot be efficiently corrected. Now
combining this with Lemma [3.4] and Lemma [3.3] we get our final result. O

Since self dual codes don’t have small constraints, this recovers the result of [SV06|] that self dual codes
cannot be encoded time and space efficiently and generalizes it to decoding, and more general codes.

4 Preliminaries

4.1 Error Correcting Codes

Our results are about decoding error correcting codes. An error correcting code is a function that maps any
two distinct messages to codewords that are far apart in Hamming distance. The Hamming distance of two
strings is the number of indexes where they differ.

Definition 4.1 (Hamming Distance). For any alphabet X and integer n, we define the Hamming distance
A:¥X"x¥" -5 N by
Alz,y) =i € [n]: 2; # ys}|.

Now we can define an error correcting code, often just called a code.

Definition 4.2 (Error Correcting Code). For alphabets X1 and Xo, integers k,n € N and distance d € N, a
code is a function C : ¥ — X8 such that for all x,y € X¥ with x # y we have that

A(C(z),C(y)) = d.

We call d the distance of C, X9 the alphabet of the code, and X1 the alphabet of the message. We call % the
rate of the code.

Any z € XX we call a message and we call C(z) its codeword. We define the codewords of C to be the
set {C(x) : x € X}

We say the code is asymptotically good if d = Q(n) and n = O(k).

Often an error correcting code is defined in terms of its set of codewords and not its encoding function.
In particular

Lemma 4.3 (Codes From Codewords). Suppose that there is a set C' C ™ such that for all u,v € C with
u # v we have that A(u,v) > d. Then there is a code C : [|C'|]] — ™ with distance d such that the set of
codewords for C is C'.

We say that y € C if there exists some x such that C(x) = y.

This comes from ordering the elements of C’ in an arbitrary order and letting C'(7) output the ith element.
The primary feature of codes we are interested in is decoding. First, we define unique decoding.

Definition 4.4 (Unique Decoding). Suppose we have a code C : ¥ — Y. Then we say a function
D : X3 — Y¥ is a decoder with decoding radius d if for all messages x € XX and strings y € X3 with
A(C(z),y) < d we have that D(y) = z. We call ¢ the relative decoding radius.

If D can be computed in time T and space S, we say that C' is decodable in time T and space S. We say
C is time T and space S decodable if such a D exists.

10



In contrast to decoding, one can also ask for the codeword to be corrected. This is where our decoder,
instead of outputting the message x, it instead outputs the codeword C(x).

Definition 4.5 (Correcting). Suppose we have a code C : £5 — 5. Then we say a function D : X3 — X2
is a corrector with correcting radius d if for all messages * € ¥ and strings y € %% with A(C(z),y) < d we
have that D(y) = C(x). We call % the relative correcting radius.

If D can be computed in time T and space S, we say that C' is correctable in time T and space S with a
correcting radius of d.

A straight forward consequence of a code with minimum distance d is that any codeword can be corrected
up to d/2 errors. This is because for a distance d code, any string can only have one codeword closer than d/2,
otherwise there would be 2 codewords closer together than d. And this is tight: if there are two codewords
at distance d, then the string halfway between them is distance d/2 from both. So one can only correct
codewords uniquely up to half the distance of the codeword.

But if one allows us to output a few candidate codewords, then one can do better. In the last example,
there are two codewords with distance d/2 from a point, but there are only two. So if we allow our corrector
to output 2 strings, then one can do correction with distances greater than d/2. We call this list correction.
A famous result in list correction is called the Johnson bound. It shows that as long as the distance we want
to correct isn’t too close to d, then there is a short list of codewords that are near any point.

4.2 Multi-strings

Another type of error correction is called list recovery. Sometimes during correction, one is not very confident
about the exact symbols at each location in the string, but has a short list of candidate symbols at each
location. This model allows the decoder to better quantify uncertainty as to what symbols are correct and
can lead to better decoding results.

For our results, we frequently use string-like objects where each location is not a specific symbol, but a
set of possible symbols. We call these objects multi-strings.

Definition 4.6 (Multi-string). . Let X be an alphabet. Denote 2* = {A C ¥} to be the set of all subsets of
¥. For any natural number ¢ < |X| we denote (%) ={A C X :|A| </} to be the set of subsets of & of size
at most £.

Let n be an integer. We call any w € (2¥)" a multi-string over alphabet ¥ of length n. Specifically, w
is such that for each i € [n], w; C X. We call w an £-multi-string if for each i € [n] we have that |w;| < L.
Equivalently, w is an £-multi-string if w € (%)n

If w or w? is a string in X", then we can also interpret it as the 1-multi-string such that for all i € [n]
we have that w; = {w;}.

The use of (%)n to denote an /-multi-string is common in the literature [HRZW17; Kop+23], but is often
referred to as just a string. We prefer to emphasize that this is not a simple string and we will not manipulate
them like simple strings, so we call them multi-strings to emphasize this. As an example, we will consider
multi-strings that are taken as a union of codewords. This only makes sense if we view the coordinates of
the multi-string as sets.

Definition 4.7 (Multi-string Union). For alphabet ¥ and integer n, let w',w? € (2%)" be length n multi-
strings. Then we define the union of wl and w? as the multi-string w' U w? such that for all i € [n]

(w' U w?); = w} Uw?.
Similarly, for k multi-strings w', ..., w*, we define U;e[k] w? such that for all i € [n] we have (U;'E[k] wl); =
Ujem wi-

For list recovery, we want to recover the set of codewords near a given multi-string. Further, as an
intermediate step to outputting all codewords near a multi-string, we will first ask for the multi-string
containing all the codewords near a multi-string. So for notation, we define the following.

11



Definition 4.8 (Near Codewords). For an alphabet X, integer n, code C' whose codewords are in X", multi-
string w, and agreement vy, we define the list of v near codewords to w as the set of codewords that agree
with w on v fraction of indices.

near/(w) = {y € C': Pr [y € w] >},
1€n

And we define the multi-string of v near codewords to w as

/

c
near-ms; (w) = U y.
y€Enear (w)
We say that (-multi-string w is an {-codeword multi-string if near-ms{ (w) = w, or equivalently if for
some set of codewords Q1,...,Qp we have w = U;e[é] Q;.

4.3 List Recovery

Now that we have introduced multi-strings, we can formally define list recovery.

Definition 4.9 (List Recovery). Suppose we have a code C : X% — X8, and integers £ and L. Then we say
a function D : (E;)n — (X2)E is a list recovery algorithm with list recovering radius d, input list length ¢

and output list length L if for all {-multi-strings w € @Q)n and y € C such that Pr;|y; ¢ w] < d we have
that for some j € [L] that D(w); = y.

If D can be computed in time T and space S, we say that C is list recoverable in time T and space S with
a correcting radius of d.

Equivalently, we can rephrase list recovery to say that nearlc_ a/m) € D(w), abusing notation slightly

if we interpret the output of D as a set instead of a list. Note that in the global correcting setting, we can
check if one of the outputs of D is actually within distance d of w before outputting it, so we can actually
assume that neary , (w) = D(w).

One may wonder whether most codes even have better list recovering radius than unique decoding radius.
The famous Johnson bound shows that for large distance codes (distance close to 1), the answer is yes. We
use a slight generalization of the Johnson bound [Joh62]. Similar extensions were given by Guruswami and
Sudan [GS99|. For completeness, we include a proof.

Lemma 4.10 (Extension to The Johnson Bound). Suppose for alphabet ¥ and integer n, there is a code C
with distance d whose codewords are length n strings over 3. Then for any constant ¢ > 1 and integers a
and ¢ such that a > \/fn(n — d)c, and any w € (%) we have that for

n 1
L=1t¢-
al—1/c

there are at most L strings in X" that agree with w on more than a locations. That is, C is list recoverable
with list recovery distance n — a, input list length £, and output length L.

Proof. For multi-strings = and w, define agreement by agr(z, w) = Pric,[z; € w;]. For strings s' and s
this simplifies to agr(z, w) = Priepn[s] = s7].

Suppose for some alphabet ¥, input list length ¢, and string length n that we have w € (%)n Suppose for
some agreement a there are L strings s',s2,..., sl € " such that for all j € [L] we have that the agreement
between s/ and w is at least a: agr(s’,w) > a. Then the average over i € [n] and o € w; of the number of
J € [L] such that s = o is at least %. So on average, a random s’ agrees with at least % — 1 other strings
at any of the a indexes it agrees with w. Thus the average number of indexes s/ agrees with a random other

s® is at least this number times a divided by L. This is
E [agr(s’, s')] > La a_a o
j#i g s =\ L i L

12



Thus if the distance of the code is at least d, the maximum agreement of the code is at most n —d. Thus
if each s; is in the code, we must have that:

a a
oL
a? a
L - <2.
In (n )*L

jp—
2 (n—d)
aln
a? — In(n — d)
< aln i
a? —Inj—
< in
“a(l—1/c)
n 1
2551—1/6

O

A straightforward corollary of this result is that if there are very few errors in an /-multi-string w then
there are only ¢ codewords close to w.

Corollary 4.11 (List Recovery With Few Errors). Suppose there is a code with alphabet ¥ and distance d

whose codewords are length n strings. Then for any a,f such that a > 1:1—”32 and a > 2¢y/n(n — d), and any

w e (?)n there are at most ¢ strings in X™ that agree with w on more than a locations. That is, C is list
recoverable with list recovery distance n — a, input list length £, and output length £.

Proof. Use the prior theorem with ¢ = 4¢. This gives an output list length of L < £+ 1, so the list length is
at most £. O

There is a general, black box reduction from any list decodable code to a list recoverable code. This
reduction works by a greedy algorithm: split the input ¢-multi-string w into ¢ different strings and then do
list decoding with decoding radius /¢ on each of them. All codewords that are contained in w on v fraction
of inputs will be in the output.

Lemma 4.12 (List Decoding to List Recovery). Suppose C is a code with alphabet ¥ which is list decodable
with relative list decoding radius 1 — ~ and output length L in time T and space S with q queries. Then for
any integer £, the code C' is also list recoverable with input list length ¢, output list length L¢, and relative
list recovering radius 1 — £y in time LT + O({qlog(|X])) and space O(log(¢|X|)) + S with £q queries.

Proof. For input f-multi-string w, we split w into ¢ strings w',...,w’ in any arbitrary way as long as

w C U;e[g] w®. Then we run list recovery on each w’ with agreement v and output the results. Consider any
codeword y that is contained in w for ¢v fraction of indices. See that for some i € [¢] that y must agree with
w® in 7 fraction of locations since the expected fraction of symbols y agrees with a random w’ must be at
least . Thus the algorithm outputs y. The time and number of queries of this algorithm is just the time to
run this algorithm ¢ times plus a small overhead to split up w. The space is just the space to run the list
decoder plus the space to remember which w® we are on and to grab the ith symbol from the list of symbols
in w. O
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4.4 Code Concatenation

Our approach to constructing a list decodable code will result in a large alphabet. A standard way to reduce
the alphabet size of a code is by using code concatenation. Code concatenation just replaces every symbol
from the code with a codeword from a smaller code.

Definition 4.13 (Code Concatenation). Suppose for some alphabets ¥1,%9, %3 and integers k,m,n there
are codes Cy : ¥ — X8 and Cy : ¥y — X7, Then we define the concatenated code C : ¥ — $8™ (denoted
C = C1 0 Cy) such that for any x € X%, i € [n] and j € [m] we have

C(2)(i—1ym+j = C2(C1(2):);.

Now we show that concatenating two efficient list recoverable codes gives an efficient list recoverable
code.

Lemma 4.14 (Concatenated Codes Are Efficient). Suppose Cy is a code that is list recoverable with list
recovering radius dyi, input list length £ and output list length L in time T1 and space S1 with q1 queries.
Suppose Cy is a code that is list recoverable with list recovering radius ds, input list length € and output list
length €' in time Ty and space So with g queries. Further suppose that Cy is also encodable in time T3 and
space S3.

Then Cy o Cy is list recoverable with recovering radius dids, input list length £, output list length L in
time T1 + ¢1T> + nT3 and space Sy + Ss + S3 with q1q2 queries.

Proof. The list recovery algorithm is the obvious one. Run the list recovery algorithm for C; and each time
it queries a codeword symbol, run the list recovery algorithm for Cs, and when it would print a symbol, run
the encoder for Cs. The efficiency is direct.

To show the list recovery succeeds. Suppose that there is an -multi-string w and a codeword y such that
for at most dydy indexes k € [nm] do we have that yi is not contained in wy. Then in particular, for at most
dy indexes i € [n] do we have that for dy indexes j € [m] do we have that for & = (i — 1)m + j that yy, is not
contained in w. Thus since Cy has list recovering radius ds, for at most d; locations do we have the list of
symbols that Cy provides to C is missing the corresponding symbol from the codeword y. Thus since C
has list recovering radius d;, we have that the codeword in C; corresponding to y is recovered. O

To actually use code concatenation, we need an efficiently computable code that is list recoverable and
has small alphabet. Since we are only applying this code on O(log(n)) bit inputs, the efficiency of this code
does not matter a lot, it just needs very good list recovery.

To apply code concatenation, we need some codes with constant sized alphabets (see [Gur09]). For any
constant e, there is a code that is list decodable from 1 — e fraction of errors with an alphabet that only
depends on € [GR22, Theorem 1.1].

Lemma 4.15 (List Decodable Codes With any Agreement and Constant Alphabet). For any R € (0,1)
and € > 0, there is an infinite family of error-correcting codes of rate at least R over an alphabet of size
(1/€)9/9) that can be encoded in time poly(n/e) and can be list decoded from (1 — R — €)-fraction of errors
with list size at most L = 2P°Y1/€) i, time poly(Ln).

For actually binary codes, we can use |Gur+02].

Lemma 4.16 (List Decodable Codes With Binary Alphabet). For any fized € > 0, there exists a polynomial

time constructible code family with a binary alphabet and rate 2(e*) that can be list decoded from % — €

fraction of errors in time poly(n2P°Y1/€)). They can also be encoded in time poly (n2P°'y(1/€)).

4.5 List Recovery For Reed-Solomon Codes

For our explicit codes, we will use alphabets that are finite fields.

Definition 4.17 (Finite Field). We call an integer p a prime power if there exists a prime number py and
positive integer such that p = p§. For any prime power p, we denote the field of order p as Fp,.
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One of the codes we will consider is the Reed-Muller code. This is the code with codewords that are low
degree polynomials over many variables.

Definition 4.18 (Reed-Muller Code). For a field F, degree deg, and number of variables dim the Reed-
Muller code with degree deg for F9™ is the code whose codewords are polynomials Q : F™ — F of degree deg
represented by evaluating Q at all points in F9™. So the alphabet of the degree deg Reed-Muller code for F9m
is B and the codeword length is n = |F|9™.

If dim =1, we call the code a Reed-Solomon code.

Guruswami and Sudan give a time efficient algorithm for list decoding (and list recovery) of Reed-Solomon
codes [Sud97; |GS99]. See “Essential Coding Theory” [GRS23| Chapter 12] for this algorithm. More efficient
list decoding algorithms were given in follow up works [FB98} [KV03|. We use the fast list recovery algorithm
given by Alekhnovich [Ale05|, and the output list length comes from an extension to the Johnson bound
described in Lemma 10l

Lemma 4.19 (List Recovery of Reed-Solomon Codes). Let F be a finite field. For degree deg < |F|, let
C : Fdeetl — FIFl pe the Reed-Solomon code over F with degree at most deg. See that deg is the maximum
agreement of any two distinct codewords of C'.

Then for any £, distance d, and ¢ > 1 such that |F| — d > \/degl|F|c, we have that C is list recov-

erable with input list length ¢, output list length L < émlﬁ%l%l/c, and list recovery distance d, in time
F

[Flpoly (¢log(Fl) 1L ).

Remark (Soft Decoding). This list recovery algorithm is more generally a soft decoding algorithm.

As a special case of this list recovery algorithm, if the number of errors we need to correct and the input
list size is small enough, then the output list length is the same as the input list length. So when doing list
recovery in the low error regime, input and output list lengths can be equal.

Corollary 4.20 (List Recovery for Reed-Solomon Codes With Few Errors). Let F be a finite field. For

degree deg < |F|, let C : Fdes+l — FIFl be the Reed-Solomon code over F with degree at most deg. Let £ be an
integer such that 1 < £ < %d!sg.

Then for any ¢, we have that C' is list recoverable with input list length ¢, output list length ¢ and list

recovery distance d = 4%| in time |F|poly (( log(|F|)%>.

Proof. Set ¢ =4¢ > 1+ 3(. See that |F| —d = |F| — % > ‘%l and that
v/ degl|F|c <2¢+/deg|F|

F
<o,/ I deg|F|
16deg

Thus |F| — d > y/degl|F|c. So applying Lemma there is an efficient decoder with output length

|F| 1
L <t
I —d1-1/c

1 1
<p__ - il
ST (H 3z>

1 1
< — -
<t <1+ 3£> (1+ 35)

<l+1.

Since £ is the largest integer less than £ + 1, the output list length is at most 4. O
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Reed-Muller codes (and more generally lifted Reed-Solomon codes |GK16]) are a sub-code of Reed-
Solomon codes over a larger field, so the list recovery of Reed-Solomon codes also applies to Reed-Muller
codes.

Lemma 4.21 (List Recovery of Reed-Muller Codes). Let F be a finite field. For degree deg < |F|, and

dimension dim, let C be the Reed-Mull code over F¥™ with degree at most deg. See that ‘l%g s the mazimum

relative agreement of any two distinct codewords of C.

Then for any £, relative agreement ~y, and ¢ > 1 such that v > d‘ﬁgfc, we have that C' is list recoverable

with input list length £, output list length L < 6%1%1/C, and list recovery relative distance 1 — ~, in time
i F
[FImpoly (¢1og(FI) L ).

Note that here v = %. For some of our results, we will use v instead of d as some results are stated
more naturally with relative agreement -y instead of distance d.

4.6 Local Testing

One important feature we need in our codes is a space efficient way to test if a word is close to a codeword
or not. The standard way to do this is with local testing [GS06]. Local testing of a code is a randomized
algorithm that makes few queries to a word such that the test passes for all codewords and fails with high
probability for any word that is far from all codewords. In particular, we want the probability of the test
failing to be a good approximation of the distance to the nearest codeword.

Definition 4.22 (Locally Testable Codes (For Low Error)). We say that a code C : X5 — ¥ is a locally
testable code (LTC) with q queries, randomness R, and approzimation factor « if there exists a tester V
that takes as input randomness r € {0,1}% and oracle access to a string w € X5 and outputs a single bit,
denoted V¥ (r), such that:

Locality: For any r € {0,1}® and w € % we have that V*(r) can be computed with only q queries to w.

Approximation: For any w € X5 we have
alA(w,C)

M < Pr [Vw(r)] < — 17
no re{0,1}F n

If the approzimation factor a is not specified, it is assumed to be 2.

For non-uniform correction, a general local tester who can approximate the number of errors within any
constant multiplicative factor is enough. We call this the low error (high agreement) setting because we
only need our local tester to differentiate between low error and constant fraction of error. In the low error
regime, for a = 2, if the test fails with probability 0.01, then we know the word has relative distance within
0.02 of a codeword. However, if the test fails with probability 0.99, then we still only know the relative
distance to a codeword is 0.495. This is the standard setting and there has been extensive work constructing
codes that are locally testable in the low error regime. Locally testable codes in the low error regime include
multiplicity codes [KTS22], tensor codes [BS06; [Vid15} [Kop+17], lifted Reed-Solomon codes [GKS13], codes
based on certain expander graphs [Din+22; PK22; LH22|, codes based on probabilistically checkable proofs
[Ben+03|, and Reed-Muller codes [PS94; F'S95|.

On the other hand, we could also ask our local tests to not just give a good estimate of the distance to
a code, but also a close estimate of the amount of the agreement with a codeword. We call this the high
error (low agreement) setting. In this setting, a word only fails the test with probability 0.99 if it is 0.98
far from every codeword. This setting is studied far less often. A prominent example of a code with tests
in the high error regime are Reed-Muller codes [RS97; |AS97; BDLN17; [MZ23; [Har+24]. These works show
that for low degree testing (which is a local test for Reed-Muller codes) the subspace tests give the distance
to low degree codewords up to a very small additive error. Other codes with tests in the high error regime
include the direct product code [DGOS|.

For our results, we need local testers in the high error regime that are very randomness efficient. In
the low error regime, there is an efficient local test based on lines in an e biased set [Ben+03]. In the high
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error regime, there is an efficient local test based on subspaces with directions from a subfield [MR06|. See
Lemma [6.3]

4.7 Locally Correctable Codes

To construct space efficient global correctors, we will use local correction. A locally correctable code is a
code with a local corrector. A local corrector is a randomized algorithm, D, that when given oracle access to
a string w that is a slightly corrupted version of a codeword y, the corrector D can compute any symbol of
y with high probability using few queries to w. See [Yek12] for an overview of locally correctable and locally
decodable codes.

Definition 4.23 (Locally Correctable Codes (LCC)). For any code C : ¥ — X2 with distance greater than
2d, we say that C is a locally correctable code (LCC) if there exists some local corrector D that takes as
input an index i € [m|, a randomness string v € {0, 1}, and oracle access to a string w € X% and outputs
a single symbol, denoted D™ (i,r), such that

Locality: On any input string w € X%, index i € [n], and randomness r € {0,1}% we have that D (i,r)
can be computed with only q queries to w.

Soundness: There is an s < 3 such that for any w € £% and x € ¥ with A(w,C(z)) < d and any i € [n]
we have

Bl # Clol <

We call d the correcting radius, q the number of queries, and s the soundness of D. If soundness s is not
specified, it is assumed to be % If correcting radius d is not specified, it is assumed to be Q(n).

Many constructions of locally decodable and correctable codes have been given [KSY14; HOW13}; |GKS13;
Kop+17].

To do list correction, we can’t start with just a unique local correction algorithm. We need a local list
correction algorithm. This is a randomized local algorithm that makes few queries to the input, and then
outputs a few local decoders such that each nearby codeword is decoded by one of the local decoders.

Definition 4.24 (Locally List Correctable Codes (LLCC)). Take any code C : X% — X2 and suppose that
there exists a randomized algorithm D with oracle access to an input word w € X5 and outputs a collection
of randomized local correctors Dy, ...,Dy. For each j € [L], the local corrector D; takes as input an index
i € [n], a randomness string v € {0,1}F, and oracle access to a string w € X8 and outputs a single symbol,
denoted DY (i,7).

We say that D 1is a local list correcting algorithm for C' if

Locality: For some q, we have that D only makes q queries to w and each D; also only makes g queries to
w.

Soundness: There are s1,s2 € (0,1) and distance d such that for any w € X% with probability at least
1 — s1, D outputs D1, ... Dy such that for every and x € ¥ with A(w,C(x)) < d, we have that for
some j € [L] that

Pr  [D¥(i,r) # C(x);] < so.
B DEGn) # C@) <

We call d the list correcting radius, q the number of list correcting queries, and L the list length. We call s1

the list choosing soundness and so the list correcting soundness. If the soundness s1 or s is not specified,

then they are assumed to be % If the list length is not specified, it is assumed to be O(1).

Many of the local correcting results extend to local list decoding |[GK16; HRZW17} |Gop+18; [Kop+23].
Just as one can generalize list decoding to list recovery, we also can generalize local list decoding to local
list recovery.
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Definition 4.25 (Locally List Recoverable Codes (LLRC)). Take any code C : ¥ — X% and suppose that
there exists a randomized algorithm D with oracle access to multi-string w € (E;’)n and outputs a collection
of randomized local correctors Dy, ...,Dy. For each j € [L], the local corrector D; takes as input an index
i € [n], a randomness string r € {0,1}, and oracle access to a multi-string w € (Z;)n and outputs a single
symbol, denoted DY (i,r).

We say that D is a local list recovery algorithm for C' if

Locality: For some q, we have that D only makes q queries to w and each Dj; also only makes q queries to
w.

Soundness: There are s1,s2 € (0,1) and distance d such that for any w € (Z;)n with probability at least
1 — s1, D outputs D1,... Dy, such that for every and x € X¥ with |{i : C(x); ¢ w;}| < d, we have that
for some j € [L] that

b D)) # )] < s

We call d the list recovring radius, q the number of list recovery queries, £ the input list length and L
the output list length. We call s1 the list choosing soundness and so the list correcting soundness. If the
soundness s1 or sg s not specified, then they are assumed to be % If the list length is not specified, it is
assumed to be O(1).

To get our decoders for locally list recoverable codes, we will further need that they are both locally
testable and have an efficient global unique decoder. A prior result by Cook and Moshkovitz [CM25] showed
that all typical locally correctable codes have efficient unique decoders. So we further define a typical locally
correctable code to be one that is systematic, smooth, and has perfect completeness.

A systematic code is a code such that any message is contained (as plain text) in the associated codeword.
We use systematic codes since it gives a straightforward way to get the message from an uncorrupted
codeword. Similar results hold for any code with an efficient way to recover the message from an uncorrupted
codeword. Systematic codes provide a simple mechanism for doing this.

Definition 4.26 (Systematic Code). We say that a code C : ©5 — X8 is systematic if for all i € [k] there
exists j € [j] such that for all x € $% we have that z; = C(z);.

A smooth code is a code with a local corrector such that when it corrects any particular symbol, the
corrector queries every index of the input with about equal probability. In particular, no index is queried
more often than about %‘1 times in expectation.

Definition 4.27 (Smooth). We say that a code C : ¥ — X% with a local corrector D (where the randomness
of D is R) is 8 smooth if for all w € X5 and i,j € [n]:

pr [DU(i, s inder i <
re{oﬂ}R[ (i,7) queries index j of w| <

S|

If B is unspecified and D is q query, we assume [ = 2q.

A non-adaptive code is a code with a local corrector such that the indexes of the input which are queried
only depends on the randomness and the index of the symbol being decoded, not on the input being corrected.
Put another way, given the index to decode and a random string, the corrector can specify each of the ¢
locations it will query before querying them.

Definition 4.28 (Non-Adaptive). We say that a code C : X% — X8 with a local corrector D (where the
randomness of D is R) is non-adaptive if for all i € [n] and r € %, we have that D" (i,r) always queries
the same indexes in w for any w € X7j.

Finally, a code with a local corrector is said to have perfect completeness if, when it is given a valid
codeword, it always outputs the symbols from that codeword. Put another way, local corrections of an
uncorrupted codeword always output that codeword.
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Definition 4.29 (Perfect Completeness). We say that a code C : ¥ — X2 with a local corrector D (where
the randomness of D is R) has perfect completeness if for all x € ¥¥, for any i € [n] and v € {0,1}F we
have that

D@ (4, r) = C(x);.

Now we define a typical LCC to be any systematic code with a corrector that is smooth, non-adaptive and
has perfect completeness. These are standard properties of locally correctable codes, and all the standard
constructions of LCC are typical (with only minor changes).

Definition 4.30 (Typical Locally Correctable Codes). For any systematic code C : Y% — X8 we say
that C is a typical LCC if it is an LCC and has a corrector that is smooth, non-adaptive, and has perfect
completeness.

5 Low Error List Recovery

Reed-Muller codes are already well known to be locally list recoverable, and locally testable. So one could
use the results in Appendix to give non-uniform efficient list recovery algorithms for Reed-Muller codes.
But we can give a uniform list decoding algorithm for Reed-Muller codes.

We start by giving a list recovery algorithm for the case where there is low error. List recovery with very
few errors is very similar to the unique decoding case of |[CM25| except that instead of improving a string
to a nearby codeword, we are improving a multi-string. In Section [f] we will show how to locally reduce
from a high error string to a multi-string with very low error. Combining these two results will give our list
decoding algorithm for Reed-Muller codes.

5.1 List Improving Sets

An improving set is a set of deterministic local functions that takes as input a string near a codeword and
outputs another string that in expectation is closer to that codeword. Improving sets were defined in [CM25]
to allow time and space efficient global decoding. In this paper we use a generalization called a list improving
set which takes as input a multi-string that is near a codeword multi-string (a multi-string that is exactly
made from codewords) and in expectation outputs a multi-string closer to that codeword multi-string.

One technical note is that we separate the kind of errors in an input multi-string into two kinds. The in-
codeword, or completeness, errors where there are symbols missing in the multi-string that are in a codeword,
and the out-of-codeword, or soundness, errors where there are symbols in the multi-string that are not in
a codeword. By separating the two we are able to handle many more out-of-codeword errors since we start
with fewer in-codeword errors.

Definition 5.1 (List Improving Set). Take any alphabet %, integers n, €, and a code C whose codewords
are in X". Let L be an integer and T be a set of deterministic functions from £-multi-strings to L-multi-
strings. Then for any integer d and numbers d,« > 0, we say I is a below d factor § list improving set with
out-of-codeword tolerance 1 — «, input list length £ and output list length L for C if

Completeness: For any {-multi-string w, and codeword multi-string @Q where

Pr (Q, ¢ w)] < &
n

i€[n]
we have that
Pr [Qi Z f(w);] <0 Pr [Q; € w;].
feZi€ln] i€[n)

Soundness: For any {-multi-string w, and £-codeword multi-string @ with

Prjw,ZQi]<1-—a

i€[n]
we have that

Pr [f(w); ZQi <06 Pr [w ZQi.

feZ,ie[n] feZ,ie[n]
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Efficient: We say that T is q query, time T, and space S if for each function in f € T and i € [n], we can
compute f(w); using only q queries to w in time T and space S.

A straightforward consequence of this definition is a test for how close a multi-string is to a codeword
multi-string. Specifically, we can test if some y is closer to the codewords that w is close to.

Lemma 5.2 (List Improving Set to Tester). Take any alphabet &, integers n, £, and a code C whose codewords
are in X". Suppose that T is a q query, time T, space S, below d factor & list improving set with out-of-
codeword tolerance 1 — a, input list length £ and output list length L for C'.

Then there is an algorithm V that takes as input {-multi-string w and L-multi-string y and outputs a
number B € [0,1] such that if for some {-codeword multi-string Q we have

d
Pr [Q; € w] S
1€[n]
and
Prjw; £ Q] <1-a
i€[n]
then

B— Pr Qi #yil| < 251,51;] Qs # wi

i€[n]

and V runs with nq|Z| + n queries in time O(nT|Z|), and space S + log(n|Z||X])).

Proof. The idea is that we will run every function f € Z on w to get a good estimate of ) and compare that
to y. See that by the completeness and soundness of Z we have that

fGIze[n] Qi # f(w)i] <f€IZE Qi € f(w); ]+f€1PZf€[ ][f(w)i Z Q]
<52£[£L Qi € wi] + 5fezf’)ir€[n] [wi € Q]
<26 g’[r] [Qi # wi] .

So by a reverse triangle inequality, we have

Qi # ] — lyi # f(w )]<25Pr Qi # wil .

fET, ze[n] feI e[
The algorithm outputs 8 = Prycz i) [y # f(w);] and our result holds. O

Now if we run this test with y being the output of different functions in the list improving set, then we
can find a function in the improving set that improves the multi-string significantly.

Lemma 5.3 (List Improving Set Gives Partial Codewords List Recovery). Take any alphabet %, integers
n, €, and a code C whose codewords are in X™. Suppose that T is a q query, time T, space S, below d factor
0 list improving set with out-of-codeword tolerance 1 — v, input list length ¢ and output list length L for C.
Then there is an algorithm D that takes as input an €-multi-string w and outputs the index of some f € T
such that if for some £-codeword multi-string QQ we have

S

Pr [Q; € wi] <

i€[n]
and

I’[r][wiZQi]Sl—a
€N

then we also have that

r [f(w)i # Qi) <66 Pr [w; # Q.
ze[n] 1€[n]

The algorithm D runs with nq|Z|? queries, time O(nT|Z|?), and space S + O(log(n|Z||X])).
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Proof. The idea is to run the local test from Lemma with y = f(w) for each f € T and output the
function f that outputs the smallest 3. All that we need to show is that there is some f € Z that will fail
with probability at most 46 Pricp, [w; # Q;]. Recall the local tester in Lemma chooses a random f' € 7
and compares f(w) to f/'(w). See that

Pr [fw)i # f'(w)i] <2 Pr  [Q; # f(w);]

f'€L,fET ie[n] fETL,i€[n]
<46 ,P[r] [w; # Q] .
IS

Thus since in expectation a random f € 7 fails with probability at most 40 Pric[,) [w; # Q4], some f achieves
this expectation. That is, for some f;, the test of Lemma outputs a < 46 Pricpn) [w; # Q;]. For such
an f, we have that

Pr [f(w); # Q] < 65 751;] [wi # Q4]

i€[n]

So the protocol outputs such an f. O

Using this, we can get codewords list recovery from a list improving set. This is list recovery where
instead of actually outputting the codewords, we output a multi-string that exactly contains the codewords.

Lemma 5.4 (List Improving Set Gives Codewords List Recovery). Take any alphabet ¥, integers n, ¢, and
a code C' whose codewords are in X™. Suppose that T is a q > 2 query, time T, space S, below d factor
0 < % list improving set with out-of-codeword tolerance 1 — «, input list length £ and output list length L
for C. Then there is an algorithm D that takes as input an {-multi-string w and outputs the description of
a function f such that if for some £-codeword multi-string Q@ we have that

Pr (@i g wi< 2

1€[n]

and
Pr[w; 2 Q] <1—«

1€[n]
then the function f has
flw) =Q.
Let k = [log(n + 1)/log(1/60)]. Then the algorithm f has description length O(klog(|F|)), and each

output location can be computed with ¢~ queries in time O(Tq") and space O(kS). The algorithm D runs
with O(ng*|Z|?) queries in time O(nTq*|Z|?), and space O(kS + log(n|Z||X])).

Proof. The idea is to run Lemma [5.3] recursively & times. Each time it will decrease the fraction of errors
by a factor of 65. After k rounds, this will decrease the fraction of error down to (68)* < n%_l, which would
require no errors.

For a more formal induction, suppose that we have an algorithm D; that runs with O(ngq‘|Z|?) queries
in time O(nT'¢*|Z|?), and space O(iS + log(n|Z||3|)) and outputs a function f; that has description length
O(ilog(|F])), and each output location can be computed with ¢* queries in time O(T'¢') and space O(iS)
such that Pricpy[fi(w) = Qi] < (66)%. For i = 1, we get this by using Lemma directly. In the general
case, we get D; 1 by running Lemma on f;(w) and then outputting f;11 as the found f composed with
fi- This only increases the time and number of queries of D;;1 and f;11 by a factor of ¢q. Since ¢ > 2, this
is a geometric sequence, so the time of running all Dy, ..., D; are factored into the O. Similarly space only
increases by an additive amount S since there is another level in the recursion. O

5.2 Correcting Lines

To run our list recovery algorithm, we need to first construct list improving sets. In fact, our list improving
sets use the same correcting lines used by [CM25] to construct their improving sets. Our corrector uses a set
of pseudorandom lines through a point, corrects along each, and takes a majority vote. We will now more
formally define what properties our lines must have to give us a good list improving set.

The first concept is called “correcting lines”. Correcting lines for a given index x € F4™ are just a set of
lines that pass through x. A set of such correcting lines will be good if less than half over-sample the set of
corruptions.
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Definition 5.5 (Correcting Lines for z). Let dim,c be natural numbers, take e > 0, take F to be a field, take

x € FIm_ L. forms c correcting lines for x if L, = (I1,...,1.), where ly,...,l. are lines in F9m such that
for all i € [c] we have that 1;(0) = .
For any set A CF9m et = |]‘F’2,‘"|. We say that L, is e-sampling for A if
P Pril;(N) e Al —u| > €| <1/2.
b Le%[ (A) € 4] u‘ > 6] /

A correcting lines set is a set of correcting lines (so it is a set of sets of lines) such that for any set A, most
correcting lines are e-sampling for A. If this is true, then we can do error correction. Specifically, we need
the probability that correcting lines are not e-sampling to be proportional to the size of A so the correction
always decreases the number of errors.

Definition 5.6 (Correcting Lines Set). Let dim, ¢, k be natural numbers and take F to be a field. A correcting
lines set is a family £L = {L,,; : v € F9™ i € [k]}, where each L, ; forms ¢ correcting lines for x. We say L
forms a below d correcting lines set with strong confidence error 8, and accuracy error € if for all A C Fdm
with |A| < d, we have that

Pr  [Ly; is not e-sampling for A] < dmin{u,1 — u}
z€Fdim jek]

_ 14
where @ = T

We say L is time T and space S uniform if for each x € F¥™ and i € [k] we have that every l € L, ; can
be computed in time T and space S. We call c the line count of L.

We use the same correcting lines as used in the prior work. The following result is proved during the
proof of [CM25| Lemma 8.11]. This correcting line set is made by using an e-biased set to make a subspace
sampler, and then sampling lines in that subspace.

Lemma 5.7 (Good Correcting Lines Exist). Take any field F with |F| > 101, any dimensions dim and a,
and € > 0. Then there exists L that is a below €|F|*9™ /12 correcting lines set for F29™ with accuracy error

11€/12, strong confidence error
a?*t1400¢
O\ s |
‘F|a€2

and line count |F|. Further the size of the final correcting lines set is
“Cl — ‘F‘a(dim+2a+O(1))po/y(dim)
and L is time and space poly(|F|*dim) uniform.

In prior work, Cook and Moshkovitz [CM25] showed that correcting line sets give improving sets for
Reed-Muller codes. We now show that they further give list improving sets.

Lemma 5.8 (Improving Set from a Correcting Lines Set). Suppose that for some dimension dim and field
F we have L that is a time T space S uniform, below d correcting lines set for F4Mm with size |L|, strong
confidence error §, accuracy error €, and line count c. Let n = |F9m|,

Let C be the Reed-Muller code for field F, dimension dim and degree deg. Suppose for some integer ¢,

and some «y € (0,1) we have thatl—%—e>ﬁy>\/%.

Then there is a c(|F| — 1) + 1 query, time c (T +0 (|JF| (dimpolylog(\]FD + poly (6 10g(|F|)%)))) space

S+0((dim+c) log(|F|)) + |F|poly (E log(|IF|)L,£e|g) below d, factor § list improving set for C with size |L|/|F9m|,

3|F|
20deg’

out-of-codeword tolerance v — € — %elg, and input list length €. Further if v > 1 — & and £ <

10 then

the output list length is also £.
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Proof. Let k = |L]|/n. We now describe for i € [k], how the ith function in the improving outputs the symbols
at index x € F9™. For every line [ € L, it queries everywhere in that line and then runs list recovery on

that line with agreement v using Lemma [4.21'| Specifically, the local recovery of the polynomial restricted

to a single line outputs a list of length L < E%ﬁ/c, (for any ¢’ where v > Cl‘d[;lge) that contains every

polynomial that agrees with that line on a v fraction of inputs and runs in time |F|4™poly (E log(|F|)%).

Finally, our function outputs a symbol o if for the majority of lines £, ; the list recovery algorithm outputs
a polynomial that evaluates to o at x.
Now we verify it has the required properties.

Completeness: Take any /-multi-string w and codeword multi-string () where

Pr [Qr g wr] <

weFdTm

S

Let A be the set of locations x where @, ¢ w,. Since L is a correcting line set, we know that the
probability over z € F4™ and i € [k] that £, ; is not e-sampling for A is at most § Prycpam [Qr € w,].
Now we just need to show that if £, ; is e-sampling for A, then the local corrector will output all the
symbols in Q.

If £, ; is e-sampling for A, this means that for less than % fraction of lines in £, ; do we intersect with
A more than “%l +e< % + € fraction of points. Thus for more than half the lines in £, ; we sample

points j where (); C w; more than 1 — % — € > v fraction of the time. Since most of the lines agree
with @ on a -~y fraction of locations, the local list recovery algorithm outputs every symbol in Q...

Soundness: Take any /-multi-string w and ¢-codeword multi-string @) with

{deg

mgFEim (wy Z Qu) SV—ﬁ—W-

Similar to the completeness case, let A be the set of locations x such that w, € Q.. We only need

to show that if £, ; is e-sampling for A, then we will not output any symbols outside Q. If £, ; is
e-sampling for A, then we have that at least half of the lines have less than v — € — ZﬁFelg +e=v— e“;g
fraction of indexes in A. Since there are at most ¢ polynomials in @) and any other polynomial can

only agree with any of these ¢ polynomials at % places, at least half the lines can only agree with

any polynomial outside @ on less than v — Zﬁ;ﬁ + (% = ~ fraction of the points. So such lines will
not correct to any other polynomials. Thus if £, ; is e-sampling for A it will not output any symbols

outside Q)

Efficient: Finally, each local function only needs to query the c lines (which all intersect at a point), and
only requires the time to find the ¢ lines in £, ;, which is O(cT), plus for each of the c¢ lines the time
to compute the points in that line, O(polylog(|F|)|F|dim), plus time |F|poly (6 log(|F|)%> to run the
local list recovery on that line. Altogether this gives the claimed time.

For space, we only need the space to to find the lines, S, plus the space to store a description of the
line, dimlog(|F|), plus which line we are on, O(log(c)), plus the space to run list recovery on a line,

|F|poly (6 log(|]F|)%), plus the space to store how many times each symbol has been decoded by a line,

which is at most O(|F|log(cL)) where L is the output list length, which is at most |F|poly (Z log(|F|)%) .

We note that a function in the improving set computes each coordinate independently.

When v > 1 — 4—1€ and ¢ < %, the output list length is because the agreement is so high, similar
to Corollary

1We note that we could have used Corollary since a Reed-Muller code restricted to a line is a Reed-Solomon code. We
only use Lemma @ since it is stated in terms of v which is more convenient for us.
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In more detail, first let ¢’ = 3.5¢. See that v > 1 — % and

<.

See that ¢/ > 1+ 2.5¢. Thus the output list length is

1 1
L<t———
_gw 1-1/¢
1 2
< -
(1)

=t (1—1/<11+w>>2

1 2
< e
<1455

<l +1.
Thus the output list has length at most £.

5.3 Codewords Recovery for Reed-Muller Codes to List Recovery

Now using the correcting lines, we can get list improving sets, which give us codewords list recovery. Now
we just need to convert the codewords list recovery into regular list recovery. Essentially, we need some way
to associate each symbol in the multi-string with the specific codeword its associated with so we can print
the codewords in order.

We use the special properties of Reed-Muller codes to show how to take a multi-string codeword and
efficiently output the corresponding list of codewords. In particular, that for every two points, there is a
local code that contains those two points (namely, the low degree polynomials on the line between them).

Lemma 5.9 (Efficient List From Codeword Multi-String Codeword). Take integers dim, deg, ¢ and field F
such that £ < %. Suppose that Q"',...,Q"" are elements of the degree deg Reed-Muller code over F9m.
Let QQ be the codeword multi-string Q = U;'E[é] Q.

Then there is an O(|F|%™) query algorithm running in time O(|F9™|¢) and space O(f + log(|F9¥™|)) that
outputs a length [(£ + dim)log(|F|)| description of a list of £ functions fi,..., fe such that (under some
ordering of the functions) for each j € [€], f;(Q) = Q’ and each f; can compute an index of its output in

|F| queries and time |F|poly (flog(|F|)%)-

Proof. The algorithm is simple: search @ until we find the index, z € F9™, with ¢ symbols in it. There will
be such a coordinate because each pair of codewords can only agree on ‘l%g fraction of places, thus at only

at most 62% < 1 fraction of places can any two of the codewords agree. Once z is found, each symbol in

Q. uniquely identifies which codeword it corresponds to. Each f; remembers z and one symbol ¢; € Q.
Finally, for each f; to decode a symbol ', it looks at the line through x and 2’ and runs Reed-Solomon list

recovery on this line to get a list of polynomials that are the codewords Q',..., Q7 restricted to this line.
Only @ restricted to this line outputs o; at x, so use that ¢’ restricted to this line to output the symobl
at o’. O
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5.4 Low Error List Recovery For Reed-Muller Codes

Now, we can use our correcting lines from Lemmal[5.7| with Lemma[5.8]to get a list improving set. We can use
that list improving set with Lemma [5.4] to recover the codeword multi-string. Finally we use Lemma [5.9 to
turn that codeword multi-string into the distinct codewords. All together, this gives us efficient list recovery
in the low error regime. In Section [7] we combine Lemma [5.10] with the results in Section [6] to get list
decoding in the high error regime.

Lemma 5.10 (Low Error List Recovery for Reed-Muller). There is some large constant ¢o such that the
following holds. Take any field F with |F| > 101, any dimensions dim and a, integer £, and o > 0. Let
n = |Fe9m| Let C be the Reed-Muller code for F*9™ and degree deg. Suppose for some integer £, each of
the following holds:

1. log(|F) = co(log(a) + log(1/a))
2. a< ﬁ

3. ﬂf{;lg < 15a

Then there is an algorithm D that takes as input an (-multi-string w and outputs the description of £
functions f1, ..., fo such that the following holds. Suppose for some codewords Q'*, ..., Q" we have codeword
multi-string Q = U;e[l] Q. Then if

Pr [Q; L wi] <«

i€[n]

and
Pr [wl g Ql] S 1 — 50«

i€[n]
then for each j € [{] there is a j' € [¢] such that fj(w) = Q".
Further, D runs with
2
nt 4/ |F|90) poly(dim)
queries in time
2
n 4/ |79 poly(dimf),
and space
poly(|F¢|dim?).
And each f; can compute a single index of its output with n*/ *poly(|F|) queries, time n* ®poly(|F¢|dimf) and
space poly(|F*|dimf).
Proof. First we choose parameters for Lemma and Lemma Set € = 12a. Set v = 1 — 2¢. See that
7:1—24a>1—4i€. See that

ldeg
—— <15«
|F|

15

<
—100¢
1

5.
s \/% < /1.001/2 < 0.71 < 0.75 < 7. Also see that

ldeg 15
bl R b
|F| —100¢
20deg
< 3[F] .
—\/ 20deg

<




By Lemmathere exists £ that is a below ¢|F|?d™ /12 = an correcting lines set for F*d™ with accuracy
error 11€/12, strong confidence error
a2a+1400a
o(“pra )

and line count |F|. Further the size of the final correcting lines set is
‘ﬁl — \F\“(dim“”O(l))poly(dim)

and £ is time and space poly(|F|®dim) uniform.
By Lemmal5.§|there is a ¢ = [F|(|F| — 1) + 1 < |F|? query, time

F
|F| (poly(IF“dim) +0 <F <adimpo|y|og(|F|) + poly <€10g(|F|)eg>>>> = poly(|F*|dim¢)
space
poly(|F|*dim) 4+ O((adim + |F|) log(|F|)) + |F|poly (Elog(lﬁ‘)!é) = poly(|F*|dim¢)
below an, factor § = O (%) list improving set, Z, for C with size |Z| = % = |F|*(a+O0W)poly(dim),

out-of-codeword tolerance v — 11¢/12 — eﬁﬁg, and input list length £. Further since y =1—24a > 1— Ile and

< %7 then the output list length is also £.

Then by Lemma there is an algorithm D that takes as input an ¢-multi-string w and outputs the
description of a function f such that if for some codeword multi-string ) we have that

Pr [Q; L wi] <a

i€[n]

and od
Pr [w; € Q;] <v—11¢/12 — weee

then the function f has f(w) = Q. See that 1 — 50« < v — 11¢/12 — eﬂTeﬁ so the second condition holds if

1€[n]

Let k = [log(n + 1)/log(1/65)]. Before we give the efficiency of D and f, we first simplify k and ¢*. See

that
- |]F|a62
log(1/6d) =log (O <a2a+1400a

=2log(e) + alog(|F|) — (2a + 1)(log(a) + O(1)) + O(1)
=alog(|F|) — O(alog(a) + log(1/¢))
>alog(|Fl)/2

as long as log(|F|) is sufficiently larger than log(a) + log(1/€). Then we can simplify & to

adim
o (eslE)

log(1/63) ) = O(dim).

See that
¢~ <qn'oe(d)/1og(1/69)
9 2103([]17\)
<|F|?n=Tos(Fn/2

§|F|2n4/a.
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Then the algorithm f has description length O(klog(|F|)) = O(dim(log(|F|))), and each output location can
be computed with ¢* < |F|?n*/® queries in time

O(Tq*) = O(poly(|F|dim¢)|F|*n*/*) = n*/*poly(|F*|dim¢)

and space
O(kS) = poly(|F?|dim¥).

The algorithm D runs with
O(ng"|Z|?) = O(n**+*/[F[2[F[2* @O M) poly(dim)) = n'*4/*|F|7*") poly(dim)

queries in time
2
O(mTq*|T[?) = n*+4/|F|°C) poly (dime),

and space O(kS + log(n|Z||F|)) = poly(|]F*|dim¥).

Finally, to complete the proof, we apply Lemma to convert the output of f into ¢ individual func-
tions f1,..., fo that output Qi,...,Q,. This last step uses an additional ng® queries and runs in time
n' % poly(|F*|dim¢) and space poly(|F*|dim¢). The final f; needs to query the input |[F|g* = n*/*poly(|F|)
times and run in time n*/®poly(|F®|dim¢) and space poly(|F¢|dim¢) to compute a single symbol of its out-
put. O

5.5 Why Not Use Local Correctors from Low Error List Recovery for High
Error?

One might suspect that one can use the same correctors for the low error list recovery setting to list decode in
the high error setting, just use low agreement instead of high agreement in the local correction. By sampling
properties, this will still include all the nearby codeword symbols at most locations even in the high error
setting. So we corrected most codewords, there are fewer errors, so we are done, right?

Unfortunately, there are two kinds of errors. In codeword errors where we don’t decode symbols when
they are in a nearby codeword, and out-of-codeword errors, were we decode symbols that are not in a nearby
codeword. Our sampling property just gives us fewer in codeword errors. Without some sort of high error
(low agreement) low degree testing properties for our local correctors, we don’t know how to rule out many
of these out-of-codeword type errors.

What is so bad about out-of-codeword errors? Recall that in our iterative correction paradigm, we
start with some number of errors, and a family of local correctors that decreases the number of errors on
average. Then we find a specific local corrector that decreases the number of errors. To choose such a local
corrector, we need to test every local corrector. These out-of-codeword errors make it harder to test how
good a local corrector is. A local corrector that “corrects” a lot of symbols that are not in a codeword could
look better than it really is.

One approach to testing the corrector is to take all local correctors and take a vote on which symbols are
right. Only symbols from the overwhelming majority would be put in the good list. Then we take whichever
corrector outputs the good list most often. Unfortunately, without any bound on the out-of-codeword errors,
the out-of-codeword errors may collude to prevent us from reducing the number of in-codeword errors very
far below /n without using more time or space.

One potential way to overcome this is to show that if out-of-codeword errors do have this sort of collusion,
then they must actually be from other codewords, and then we can handle them again through sampling.
This is essentially what we do, but only at the first step. Our first local correctors comes from a high error
low degree test. This forces us to have few out-of-codeword errors, since if there are many out-of-codeword
errors that would imply they came from a nearby codeword and thus are not out-of-codeword. After that,
there are few out-of-codeword errors, and sampling suffices for the rest of the analysis. In fact, we use such
a local corrector in the next section.
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6 High Error List Decoding to Low Error List Recovery

Now to reduce from the high error regime to the low error regime, we need a randomness efficient low degree
test for Reed-Muller codes that works in the high error, or low agreement, regime. The structure of the test
needs to guarantee we can do local list recovery if a string is near a codeword, and the soundness of the test
needs to guarantee that we don’t often decode extra symbols that aren’t from a nearby codeword.

6.1 Low Degree Testing

The local tester we use is the space vs point test by Moshkovitz and Raz [MRO06] which is based on sampling
two directions from a small subfield, and then looking at the subspace through those points and the point
we want to decode. For notation, we will first introduce an affine 3 dimensional subspace.

Definition 6.1 (Affine Subspace). For a field F, dimension dim, and linearly independent z,y;,ys € F9m,
denote by affine(0, z,y1, y2) the affine, dimension 3 subspace that contains 0, z,y1, and ys.
More concisely, we also define the span of z,y1,y2 as span{z,y1,y2} = affine(0, z, y1, y2).

The space versus point test takes two functions on a three dimensional subspace, one from a global
function, f, and one that is low degree, g, and returns whether they are equal at a specific point. Importantly,
g does not need to come from a global function.

Definition 6.2 (Space Vs. Point). Fir dimension dim > 3, field F, degree deg, and function f : F¥m — T,
Let g be a set of degree deg functions on three dimensional subspaces. For notation, for every linearly
independent z,y1,ys € F4™ there is a function Gspan{zy1,y2} : SPaN{2, 1,92} — F. Then we define SpacePoint
as

true z,y1, Y2 are linearly dependent

SpacePointf’g(z,yl,yz) - '
Gspan{z,y1,y2}(2) = f(2)  otherwise

Similarly, if for some integer £ we have f : F9m — (Ig) then we define

true z,Y1,Y2 are linearly dependent

SpacePoint’9 (z,y1,y2) = ;
Gspan{=y1,y2}(2) € f(2)  otherwise

Often it is convenient to think of g as the closest degree d polynomial to f on a subspace, but in the list
decoding setting, it will also be convenient to think of g as any close enough local codeword. Then the local
testing result says that if f agrees with any choice of g very often, then in fact g itself must mostly come
from a small set of global low degree codewords. In particular, this is useful because it means that any local
corrections that succeed often must be from a nearby codeword. The following is [MR06, Theorem 2] (with
some observations from [MR06, Lemma 6.1]).

Lemma 6.3 (Subspace from Subfield vs. Point Soundness). Fiz dimension dim > 3, a field F, a subfield
H CF and a degree deg. Let C' be the Reed-Muller code over field F, dimension dim and degree deg. Denote

1/8 . 1/4 .
n=2"dim <<H}H|) + (d'Tﬂ;“jeg) > For every function w : F¥™ — F and every ~ if for some g we have

p SpacePoint"9(z, y, =
sepm DL g oPacePOINt™ (2,51, y2)] =

then the following holds:

Decoding There exists a degree at most deg polynomial Q : F¥™ — F such that

Pr [Q(z) = w(@)] >~ = 3n.
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List decoding |°| For every a > 3n + 4 ‘(Tef foro =a—3n—2 ‘(Tef we have

Pr [~SpacePoint"*9(z,y1,y2) V 3Q € near, (w) s.t. Qlspan{zy1.ys} = span{zy1.ya}] = 1 —
z€F™,y1,y2 €A™

where near$, (w) is the set of codewords that agree with w on an &' fraction of locations, as in Defini-
tion[{-8
It is important that the nearby codewords explain g, not the original string w. This allows us to conclude
that we cannot have many local correctors that output symbols not from a nearby codeword. Too much
agreement means that there must be a codeword nearby that they agree with.
By [MRO6, Corollary 5.8], there is a partial converse to Lemma Namely that these subspaces are a
sampler.

Lemma 6.4 (Subfields Sample). Let dim,F,H, and deg be as in Lemma . Take any set A C FIm et
|A]

1= » and any constant € > 0. Then sample s as the random subspace that goes through 0, a uniformly

random z € F4M  and y1,y, € H¥™ that are also uniformly random and linear independent. Then we have :

sNAl 1/ p 1
P[ s M e \m )
6.2 Local List Testing

The prior results give us results for local list decoding, which is sufficient for our application. But, there is
a straightforward reduction to get local list recovery from local list decoding. We provide this more general
result in case it is needed in the future. The reader may skip this section and assume that £ = 1 in the next
section.

Lemma 6.5 (List Recovery From List Decoding). Let C be a code with codewords of length n and alphabet
3. Let S be some set of subsets of [n]. Suppose that the following holds.

List Decoding: For some a and o' we have that for all families of functions (g : s = X)ses and strings
w e X" that
ISDIf [9s(1) # w; vV 3Q € nearS,(w) s.t. Qls =gs] >1 -«
seS,1es

where near$, (w) is the set of codewords that agree with w on an & fraction of locations, as in Defini-
tion[{-8
Then we have the following.

List Recovery: For any £-multi-string w' € (%)n, and all families of functions (g : s — X)ses we have that

Isjr [95(7) ¢ w} v 3Q € nearS, (w') s.t. Q|s = gs] > 1 — La.

ses,ies

Proof. The proof is through a greedy algorithm. Choose any length n string w, contained in the f~-multi-string
w’. For this string, see that near$, (w) C nearS, (w'). Therefore,

al al

ISDI [95(7) # w; V 3Q € nearS, (w') s.t. Qs = gs] > 1 — .
EISToRASE

That is

Ef. [95(1) # w; V 3Q € nearS, (w') s.t. Q|s = g4
sSES,ES

= Pr [gs(i) # wil+

SES,IEs

P ) = w; P 30 € C/ N st =
SES;I;ES[gS(Z) wl] sES|i€s whef:e gs(i):wi[ Q nearq (w ) 5 Q|5 gS}

>1—a.

2This result can be found by looking into the proof of [MR06, Lemma 6.1] and observing that its f is f(y) = v — 3n and
setting d’ to deg.
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Now taking the expectation over a random string w contained in w’ we have

1, ¢ / 1, ¢ ’
l-a<l—- E [g(z),eﬂ] + E {g(l),ew} Pr [3Q € nearS (w') s.t. Qs = gs]
s€S,i€s wz‘ SES,i€s wi| s€S,i€s where g, (i)Ew)
1 1
<l1-- P j T+- P j ! P 3 C(w') s.t. =
- 14 56371;65 l9: (1) € wil + / seS,l;es l9:(i) € wi] s€S,ics wheI;e gs(i)ewi[ Q € neargy () st Qs = 9]
1-fa<l— P (i ! P (i ! P 3 C(w') st. Qs = gs
fa - SGS,IZ"GS [gb (Z) € wZ] + SGS,IZ"Es [gb (Z) € wl] sES,i€s Wheﬁe gs(i)Gw;[ Q < nedla (w ) st Q‘é gb]

< lgr [95(7) ¢ w} Vv 3Q € near$, (w') s.t. Qs = gs).
se€S5,1€s

Applying this to Lemma [6.3| we get the following

Corollary 6.6 (Subspace vs. Point List Recovery). Fix dimension dim > 3, a field F, a subfield H C F
and a degree deg. Let C be the Reed-Muller code over field F, dimension dim and degree deg. Denote

1/8 _ 1/4
n = 27dim ((Igﬂl) + (d""'deg) > Then the following holds.

[F|
List Recovery: For every a > 3n+4 “%g leto/ =a—3n—2 ‘l%f. For any £-multi-string w' € (?)n, and
all families of functions g we have that

Pr [~SpacePoint” 9 (z,y1,y2) V 3Q € nearS,(w') s.t. Qlspan{z,y1,ys} = span{zyr.ye}) = 1 — Lo
ZE]F”",yl 7y2€]H:[7YL

This test allows us to rule out too many out-of-codeword errors. Specifically, every out-of-codeword error
comes from a function ¢ restricted to some span that has some agreement with the code. If there is too
much such agreement, this must be because some of the agreement comes from a nearby codeword.

6.3 Local Correctors

Now we can prove that these subspaces are good local correctors. The low completeness error comes from
the sampling property of subspaces, and the low soundness error comes from the list decoding property of
the low degree test. For notation, recall that nearg(w) is the set of codewords that are in w for v fraction of
coordinates, as defined in Definition 4.8

Lemma 6.7 (Pseudorandom Local Correctors). Fiz dimension dim > 3, a field F, a subfield H C F, an

, NS gimdes V4
integer £ and a degree deg. Denote n = 27dim (W) + ( "T]ng) )

Then for any € > 0, relative agreement v, and ¢ > 1 such that v > +/deglc/|F|, for some L < %%UC,

there is a set of local correctors I that compute any index of the output using only |F3| queries to the input

%). There are |I| < [H|>™ functions. Further, these functions T are such that

for any £-string w we have:

and time |F|3poly (10g(|IF|)
Completeness: For any y € near, (w) we have

1
p i il < =
fez,éwm[y € flw)i] < 5

(1)

[f(w); £ near—ms(c;/e)(l_a)_w(w)i] <l-a

Soundness: For any o such that (v/¢)(1 — «) > 4n we have

r .
fEL,zeRdm
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Proof. Each local corrector is associated with linearly independent 3,7, € HY™. To correct the symbol at
x € F9m it takes the three dimensional subspace through 0, x,y1,y2 and does list recovery with agreement
~v on that subspace. If x is already in the subspace spanned by y; and ys, we give up and don’t output
anything. This kind of failure is why their is an extra ﬁ in the completeness error.

Completeness: Take any codeword y € nearg c(w) so that, by definition, y agrees with w on at least v + ¢

fraction of places. Let A be the locations where y is contained in w. Then by the sampling property, the
probability we sample A at fewer than v fraction of places is at most % (ﬁ + ITl\) So the probability

we under-sample A or we give up is at most }2 (ﬁ + \FI) By the list decoding of Lemma [4.21] our

local corrector will output the symbols for y whenever we sample ~ fraction of points from A. Thus
the probability that we don’t output a symbol of y is at most

1 1 . 2
e \[H]  [F|/°
Soundness: Suppose that for (1 — «) fraction of local correctors and positions the local corrector outputs

a symbol not in near—msg/z)fﬁﬁn(w) for f = %,

This implies that for a (1 — «) fraction of local correctors and positions that there is a local codeword
not from near-ms(cjy/g)_ﬁ_E)n(w) that is contained in w for + fraction of points. Let g be the family
of functions outputting such local codewords. Then using ¢ in SpacePoint with w, we get a test that
succeeds with probability (1 — «).

We will use Corollary but with its « set slightly less than v/¢. Let v/ = v/¢ — 8 —3n—3./deg/|F|.

See that
7'+ 30+ 2y/deg/[F| =7/t — 5 — /deg/|F|
>41) — +/deg/|F|
>3n + 4+/deg/[F|
Since n > 5,/deg/|F|. Then by Lemma [6.3| we have that

Pr [~SpacePoint™?(z,y1,y2) V3IQ € nearg,(w) st Qlspan{z,y1,ys} = Ispan{z,y1,ys}]
z€F™ y1,y2€H™

>1 — (v + 3n+ 2+/deg/|F])
—1—67—6 v/ deg/|F|)
>1—v+ay.

Since the probability that SpacePoint“9(z,y1,y2) fails is at most 1 — y(1 — «) = 1 — v + 8 there must
be some codeword @ in near-ms,(f/(w) (and thus in near—msg{/e)(lfa)ig)n(w)) that has Qlspan{z,y1,ys} =
Gspan{z,y1,y2}- But this is a contradiction since we chose g specifically to not agree with any such Q. So
there cannot be 1 — « fraction of local correctors that output a symbol not in near—msg/l)(l_a)_5n(w).

The number of queries comes from the size of a three dimensional subspace, and the time comes from
Lemma .21 O

: c _ c
Then as long as we choose 7, a and € appropriately so that near-ms7, (w) = near-msZ, ) 5, (w) then

we in particular have that for most coordinates and correctors we recover all symbols in nearby codewords,
and a not too small fraction of coordinates and functions only recover symbols in nearby codewords. So
some corrector will be good enough to use with our low error list recovery algorithm from Lemma [5.10)

Corollary 6.8 (There Exists a Good Local Corrector). Fiz dimension dim > 3, a field F, a subfield H C F
1/8 _ 1/4
and a degree deg. Denote n = 27dim ((&1) + (d'm'deg) ) Take any €, > 0, and relative agreement

I

~ such that v(1 — ) > 4n. Then there is some L < %, such that for any string w with

c
near-ms_ ., .(w) = near- ms<, ~(1—a)— 577( w),
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for I the family of functions from Lemma[6.7 there is a local corrector f € T such that

Completeness:
2L 1 2
C , ) i
fEIEEFdim[near—ms,y+e(w)z Z flw)] < = (|H| + |IF|> )
Soundness: o
. _mC ) _ =
fez,zléwm[f(w)l Z near-ms;y_ ) 5, (w)i] <1 5

Proof. If this was a single inequality, then we could use the bounds from Lemma [6.7] and use that some f
must meet them in expectation. However, since we have two bounds, we need to show that the probability
of failing both is less than one.

Since we only have a soundness expectation of 1 — a, we could have 1 — « fraction of f € Z output
symbols not in a nearby codeword at every index. But we know that « fraction of the time, a random f € Z
and a random index must not output any extra symbols. So let T be the fraction of functions f € Z that
outputs an extra symbol for more than 1 — «/2 fraction of coordinates. Then 7(1 — «/2) < 1 — «. Thus the
soundness condition fails with probability at most 7 < 1 — «/2.

Now we need the completeness condition to fail with probability at most «/2. By a union bound and a
Markov inequality, for all but /2 fraction of f € Z does the completeness bound hold. Thus with probability
less than one do both fail. Thus for some f € Z both the soundness and the completeness holds. O

Our final protocol will try all functions f € Z and many choices of v until it finds a local corrector that
works.

6.4 Why not Use Local Correctors From List Decoding in List Recovery?

One might ask why not use the local correctors from this section in the recursion for low error list recovery.
The issue is that subspaces don’t sample well enough for the recursive procedure to be efficient. If we tried
to use such a local corrector for the entire decoding, then our decoder would not be time efficient. This is
because a k dimensional subspace can only decrease the distance by a factor of ﬁ at the cost of increasing

the number of queries by a factor [F|¥. The number of queries multiplies at every level of recursion, just like
the fraction of errors. If we tried to apply this recursively, we would get a quadratic time decoder. We need
curves, manifolds, or many subspaces together.

However, such a local corrector is fine to use once at the beginning of correction since we only pay this
overhead once. After which we can use our more query efficient local corrector to remove any remaining
erTors.

7 Uniform List Correction For Reed-Muller Codes

Now we can finally construct our list corrector for Reed-Muller codes. First, in Theorem we will state
our result for some conditions that are convenient to prove the result. Then in Theorem we will show
for what choices of v and 7 we can satisfy these conditions. Finally, we use code concatenation to get small
alphabet for the special case where v and 7 are constants.

Theorem 7.1 (Uniform, Explicit, High Error List Correction for Reed-Muller Codes). There is some large
constant ¢y such that the following holds. Take any field F with |F| > 101, subfield H C F, any dimensions
dim and a, and numbers o,y,e > 0. Let n = |F%™|. Let C be the Reed-Muller code for field F, dimension

1/8 i e\ /4
adim and degree deg. Denote n = 27adim ((I]flﬂ) + (a' s eg) >

[F]
Let L = L%j Suppose each of the following holds:

1. log(|F[) > co(log(a) + log(1/a))
2. v>10(a+€/v+5n/7)
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L {1 2 a
3. ?<W+W)§ﬁ
1

4- & < 75500

5. L€ < 30000

Then there is an algorithm D that takes as input a string w and outputs the description of at most L
functions f1,..., fr such that for any codeword Q € C' with

Pr [Q; = w;] > v
i€[n]

then for some i € [L] we have that f;(w) = Q.
Further, D runs with
n1+4/aL|H|2adim|F|O(a2)pO/y(dim)

queries in time
n1+4/aL‘H|2adim|]F|O(a2)pO/y(dimL),

and space

poly(|F*|dimL).
Each f; can compute a single index of its output with n*/®poly(|F|) queries in time n*/®poly(|F*|dimL) and
space poly(|F*|dimL).

Proof. First, we need to choose a setting of 4’ such that 7' <+ and near$+6(w) = nearg,(lfa)fsn(w) SO we

can apply Corollary to reduce the high error list decoding setting to the low error list recovery setting.
After that, we apply Lemma to recover the original codewords. Since there are not too many choices of
~" and local correctors we consider in Corollary we will try them all and use whichever succeeds.

To find 7/, we will try for every ¢ from 0 to L with the value v, = v — i(e + ya + 5n). Now we will show
that for some ~/ that nearg’:ure (w) = near%(lfa)fgm(w). This is equivalent to showing that for some +/, there

is no codeword whose relative agreement with w is within [v/(1 —a) — 57,7, +¢€). This is true if each interval
is disjoint and there are only L total codewords that agree with w on 7} (1 — «) — 57 places.
To see that they are all distinct, see that for any i € [L]

Yi+e=y—ile+ya+5n) +e€
<y — (i —1)(e+ya+5n) —ya—5n
<viog — e =5n
<Yi—1(1 —a) = 5n.

To see that there are at most L, see that
V(L= a) =5 >y = (L+1)(ya + e+ 5n)

3
27— ;(7a+€+5’7)

5
>'Y_§

Further since v > 501 > 1000+/deg/|F| by Lemma we have that there are at most ¢ < % <L
codewords with agreement 7 (1 — «) — 51 of w. So all L + 1 intervals are distinct and there are only L
codewords, so some interval must not have a codeword at that distance. Since we will try all intervals, for
analysis let %7 < v’ <~ be such an interval.

See that that /(1 — a) > 24(1 — a) > 47 and near$+e(w) = nears(l_a)_sn(w). Let o/ = 150a. By
Corollary there is a family of functions Z and for some f € 7 we have that
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Completeness:

2L 1 2 @
P -ms® i J< 2=+ 2 )< — <d.
feI,iéFdim[near msyre(W)s € f(w)i] < ae? (|H| + |IF|) =160 ~°

Soundness: Further we have

E [f(w); & near—msf(l_a)_gm(w)i] <1-—==1-50d"

a
fET,xcRdm 2

Further f only makes |F3| queries to the input and runs in time |F|>poly (log(|F|)%). There are |Z| <

|H|2edim functions. Since we will try every single f € Z, for analysis, assume we chose the right one.
See that each of the following holds:

1. log(|F|) > co(log(a) + log(1/a’))

/ 1
3. f5E < 150/

Then by Lemma [5.10] there is an algorithm D that takes as input an ¢-multi-string w and outputs the
description of ¢ functions fi, ..., fr such that if for some /-codeword multi-string @Q we have that

Pr [Q; € wi] < o
i€[n]

and
P[r] [w; € Q;] <1 —50a
i€[n

then if Q = U;‘e[ﬂ Q" for codewords Q" then for every j € [¢] there is a j’ € [] such that f;(w) = Q". In
particular, if we give f(w) as input to D, it will output functions such that when they are composed with f,
they give the codewords in nearg(lfa) (w) which contains nearg(w). The only change is that the number
of queries has an extra |F?| term, the time has an extra ¢|F|?poly (log(|]F|)%) term and the space has an

extra |F|?poly (10g(|]F|)%) term.

—57

Finally, there is an extra time L|H]|2?4™ overhead to the time and number of queries since we need to try
this for every choice of v} and local corrector in Corollary This gives a final number of queries of

n1+4/aL|H|2adim |F|O(a2) po|y(d|m)

time

nl+4/aLUHI|2adim|IE~|O(aQ)poly(dimL)7

and space
poly(|F*|dimL).

And each f; can compute a single index of its output with n*/®poly(|F|) queries, time n* ®poly(|F*|dimL)
and space poly(|F*|dimL). O

Setting these parameters appropriately, we can get time and space efficiently list decodable codes for a
wide variety of parameters.

Theorem 7.2 (Good Codes With Time-Space Efficient Uniform List Decoding). Choose any functions T(n)
. . . 4
and y(n) such that for all n we have % is an integer, y(n) > W%’ and y(n) > T(n)i}%
where ¢ gs the large constant from Lemma[5.10, Then there is a uniform, infinite family of codes with rate
(y7)O/ ™) with an alphabet of size O(log(n)) that can be list decoded from 1 —~ fraction of errors in time

nt O™ and space nO(7).
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Proof. We will use Theorem with the following settings. For convenience I will leave the n implicit and
denote 7(n) and y(n) as 7 and ~ respectively.
Let a = % and dim = a?. For ¢ that is a power of 2, our code, C, will be the Reed-Muller over the field

15

F, with dimension dima and degree deg = L”jgzgqj. See that C has codeword length n = ¢@4im = ¢1/™ . See

adim
that the rate of C is at least (ﬁgﬁl’\) = (poly(vT))l/Ta = (y7)0/™)

Let H be a subfield of F such that [H| = 2M°(@)/7] = ¢O(") the constant a = 15 and € = 2:100

i

Now to apply Theorem [7.1] we need to satisfy various inequalities. We start by bounding the n from
Lemma[6.3] This seems to be the weak link in our algorithm. If one wants to improve our results, we suggest
to start by improving a local testing result with a smaller 7.

1\® a - dim - deg 1/4
n =2"adim <> + (>
( G H
- 73 4 73|F| 1020

:12 qf'r/s n 7372
73 105 /-

—_
oo

Now by assumption we have

1000
V= /16,15
1000
v = /16715
yrto =~ 7/16
108 =1
727—3 > —7/8
T

Thus we conclude that

Now let us check all the conditions in Theorem [T.1]

1. Now we show log(|F|) > ¢o(log(a) + log(1/a)).

See that |F| = ¢ = n™", so log(|F|) = 73log(n). See that v > 72;130/460, SO @ = pigr > m’ S0
log(1/a) < 72log(n)/co — log(1/7). Thus

log(|F|) =77 log(n)

=7%log(n)co/co — colog(1/7) + colog(1/7)
>co(log(1/a) + log(a)).

2. Now we show v > 10(« + €/ + 5n/7). We do this in three parts.

(a) We show o < 7Z5. This is true since we defined « to be a very small multiple of ~.
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(b) We show £ < 5. See that
2106
vy [Hly
e 2-10°
v ,)/2.5 |H|
210 __,
= 425 4 /
2106 /~42r\*
=7z 100
<L
— 100
(¢) Finally we show that % < ﬁ. To see this, see that we have already bounded n by n < %72.
Thus % < 155

Altogether these imply that v > 10(« + €/ + 5n/7).

3. Now we need to show that 6% (i + l) < o See that

[H] " TF] 500 °
L /1 2 2 H ’
Lil  2)\_2(x [Hy) 3
e \m| "E) Sy 2ooe )
2
< 3
—2-.1012
a2
<—.
~ 500
4. Now we show a < m. This is true since 3 < % and since we chose a to be a very small multiple
of .
5. Finally we show that Ll%e‘g < 3000c. See that

Ldeg <g 7877(]1

[F| —v 10%° ¢
B

S1019

<3000

Now by Theorem we know that there is a decoder for C' that runs in time
n1+4/aL‘H‘2adim|F|O(a2)p0|y(dimL) :n1+O(T)qO(T/T3)qO(1/T2)p0|y(1/7"‘}/),
:n1+O(T)nO(7)nO(T)nO(T4)

:nt+O(T)

)

and space

poly(|F?|dimL) =¢°*/"dim
:qO(l/T) (1/7_)0(1)

=nO),
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Now as a corollary when 7 and « are constants we can get an asymptotically good code (with a size
O(log(n)) alphabet).

Theorem 7.3 (Good Codes With Time-Space Efficient Uniform List Decoding). For any constants 7 > 0

and v > 0, there exists an infinite family of uniform asymptotically good codes with rate (77)0(1/72) and
alphabet size O(log(n)) that can be list decoded from 1 —~ fraction of errors in time n**™ and space n”.

Now we can use our list decoding algorithm to get list recovery, and then we can concatenate our code
to get list decoding with a smaller alphabet. Using Lemma we can get efficient list recovery for
Reed-Muller codes.

Theorem 7.4 (Good Codes With Time-Space Efficient Uniform List Recovery). For any constants T > 0,
£ >0, and v > 0, there exists an infinite family of uniform asymptotically good codes with rate (77/5)0(1/72)
and alphabet size O(log(n)) that is list recoverable from =y fraction of agreement with length ¢ input lists in
time O(n**7) and space O(n").

Proof. First we use Theoremto get an asymptotically good code C with alphabet size O(log(n)) that can
be list decoded from 1—7 fraction of errors in time O(n'*7/2) and space O(n"/2). Now applying Lemma
we have that a list recovery algorithm for C' with input length ¢ that recovers from ~ fraction of agreement
in time O(¢n'*7/2log(log(n))) = O(n'*7) and space O(log(¢log(n)) + n7/?) = O(n'*7). O

Now that we have list recovery of Reed-Muller codes, we can use code concatenation to get a code with a
small alphabet that is list decodable. By concatenating Theorem with Lemma we get the following.

Theorem 7.5 (Constant Alphabet Codes With Time-Space Efficient List Decoding). For any constants
€ >0, and 7 > 0, there exists an infinite family of uniform asymptotically good codes with rate (€T)O(1/TZ)
and a size (1/€)°1/9) alphabet which can be list decoded from 1 — € fraction of errors in time O(n'*7) and

space O(n7).

Proof. By Lemmam there is a code Cy with constant rate and alphabet (1/¢)?(1/€) that can be encoded
in time poly(n/e) and list decoded from (1 — €/2)-fraction of errors with list size at most ¢ = exp(poly(1/¢))
in time poly(¢'n). By Theorem there is an asymptotically good code C; with rate (67)0(1/72) and
alphabet size O(log(n)) that can be list recovered from 1 — ¢/2 fraction of errors with input list length ¢’
in time n'*7/2 and space n™/2. Concatenating these two codes where Cy has a length O(log(n)) input, we
get an asymptotically good code with rate (67')0(1/72) and an alphabet of size (1/€)°(}/¢) that can be list
decoded from (1 — €/2)? > 1 — € fraction of errors in time n'+7/2poly(log(n) exp(poly(1/€))) = n'*™ and
space n7/2 4 poly(exp(poly(1/¢)) log(n)) = O(n7).

In a similar way, we can use concatenation with the binary code form Lemma [{.16] to get a binary code
that is list decodable with error close to one half.

Theorem 7.6 (Binary Codes With Time-Space Efficient List Decoding). For any constants ¢ > 0, and

7 > 0, there exists an infinite family of uniform asymptotically good codes with rate (67’)0(1/7—2) and a binary
alphabet which can be list decoded from § — € fraction of errors in time O(n'*7) and space O(n").

Proof. By Lemma there is a code Cy with rate Q(e?) and a binary alphabet that can be list decoded

from 1 — €/2 fraction of errors in time poly(n/e). They can also be encoded in time poly (n2P°¥(1/€)). By

Theorem there is an asymptotically good code C; with rate (er)?(/ ™) and alphabet size O(log(n)) that
can be list recovered from 1 — ¢/2 fraction of errors with input list length ¢ in time n'*7/2 and space n™/2.
Concatenating these two codes where Cy has a length O(log(n)) input, we get an asymptotically good code

with rate (64(€T)O(1/T2)) = (er)°(/™) and a binary that can be list decoded from (1/2 — ¢/2)(1 —¢/2) >

1 —e fraction of errors in time n'*7/2poly(log(n)2P°¥(1/9)) = O(n'*7) and space n™/2+poly(log(n)2P¥(1/))
o(n7).

o
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Open Problems

This is the first work showing that the time and space efficient deterministic list decoding is possible. Many
problems remain in this area. Such as:

1.

Find codes that are both time and space efficient to encode and time and space efficient to decode.
A prior result [CM24] showed that there are good codes that are time and space efficient to encode.
This result shows that even list decoding can be done time and space efficiently. However, these are
different codes.

. Get almost linear time and sub-polynomial space decoders for an asymptotically good code. Our

code gets worse rate as our time and space improve. The prior work |[CM25|] achieved this for unique
decoding for lifted Reed-Solomon codes. Could one get a similar result for the list decoding setting?

Make this code practical. We did not optimize our algorithm, and as a result we have astronomical
constants like 102° in our result. While some improvement can likely be made with some straightforward
optimization, we suspect that to make this algorithm practical will require improved derandomized low
degree tests. The local test of [MRO6] alone requires a field size of over 101¢ to get any nontrivial results.

A related problem is to improve our rate, decoding radius trade off. In our results, to go from an
agreement v decoder to an agreement 7/2 decoder we have to decrease the rate of the code (in Theo-
rem by a factor 2734M where dim is the dimension of the Reed-Muller code. The Johnson bound
suggests that we should be able to achieve this by decreasing the rate by a factor of 272dim,

Improving either of these results seems to require improved, randomness efficient low degree testing.
While there has been much work on low degree testing, little of it has been in the randomness efficient
setting. To the best of our knowledge [MROG6| provides the most efficient known low degree test that
is both in the low randomness and the low agreement regime.

Give non-uniform time and space efficient decoders for all local list correctable codes. Our results only
give us time and space efficient decoders for codes that are both local list correctors and locally
testable. This local testing property was not required in the unique decoding case since all locally
correctable codes have a weaker testing property called vicinity local testing. If one is not trying to
decode all the way from the decoding radius, this test suffices. But in the list correcting setting where
one is trying to decode to almost the full distance of the code, vicinity local testing is not enough.

It is not obvious whether all locally list correctable codes should be time and space efficiently
decodable. The local testing property seems extremely important for our proof technique. So we more
generally ask whether all locally list correctable codes are time and space efficiently list decodable (up
to near the distance of the code). If any were not, then this would be a problem solvable by super
linear time randomized algorithms provably in less time space product complexity than possible for a
deterministic algorithm.

Construct simultaneously time and space efficient PRGs. List decoding was used in prior PRGs [STV01;
SUO05], and recent work has analyzed both the fine grained space complexity of PRGs [DT23; DPT24]
and the fine grained time complexity of PRGs |[CT21} |CT22; [Dor+22]. It is natural to attempt to get
derandomization that is both very space efficient and very time efficient simultaneously.

Since list decoding is a common ingredient in PRGs, we suspect that time and space efficient list
decodable codes could be useful. If list decoding is used in such constructions, we suspect that to get
optimal time and space efficiency we would need codes that are both time and space efficient to encode
as well as to decode.
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A Non uniform List Recovery

A.1 List Decoding by Finding a Good Coin in a Pile

If one is only interested in a non-uniform algorithm for time-space efficient list decoding, one can use ideas

from |[GM16] to obtain a simple algorithm that uses a time-space efficient unique decoding algorithm as a

blackbox. The algorithm relies on local testing, but local testing for large constant agreement ~ suffices.

Therefore, this algorithm can be performed for locally testable and correctable codes other than Reed-Muller.
The properties we need from a code for our non-uniform results are:

Locally Testable (Low Error Regime): This is a locally testable code that gives a close multiplicative
estimate of the distance to the nearest codeword. This is local testing in the low error (high agreement)
regime where words are close to codewords, which is easier than the high error (low agreement) regime
needed for our uniform decoders.

Definition A.1 (Locally Testable Codes (Low Error, Informal)).

We say that a code C : ©§ — X8 is

a locally testable code (LTC) with q queries and approximation factor « if there is a tester thalt makes
q queries to a received word w € X" and either accepts or rejects such that if the tester accepts with
probability [, then there is a codeword C(z) that agrees with w on at least 3/« and at most af fraction
of positions.

Typical Locally Correctable: This means the local corrector is non-adaptive (where it queries is only a
function of the randomness), the queries are smooth (for each index we want to correct, no particular
symbol in the input is queried with high probability), and the corrector has perfect completeness (the
local corrector always succeeds when the input is a codeword).
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Definition A.2 (Typical Locally Correctable Codes). For any systematic code C : ©§ — X8 we say
that C' is a typical LCC if it is an LCC and has a corrector that is smooth, non-adaptive, and has
perfect completeness.

Locally List Correctable: This is the standard notion of locally list correctable that first generates a
short list of decoders such that with high probability, every nearby codeword is calculated by one of
these decoders.

Definition A.3 (Locally list correctable code). A code C : X¥ — X" is locally list correctable with q
queries, € correction error, & relative decoding radius, and L list size, if it has a randomized D algorithm
that makes q queries to a word w € X" and outputs local correctors D1, ..., Dy, such that the following
holds. With probability at least 1 — ¢, for each codeword C(z) that is close to w, that is, w; = C(x);
for at least 1 — & fraction of i € [n], for some j € [L], for all i € [n] the local corrector D; makes q
queries to w, and outputs C(z);.

Exact definitions can be seen in Section [l See Theorem [A.10] for a full theorem statement.

Theorem A.4 (Locally List Recoverable and Testable Codes Have Efficient Deterministic Decoding (Infor-
mal)). Suppose we have a code C : X¥ — X" that is a locally testable code, typical locally correctable code,
and is locally list decodable with list decoding radius d, output list length L, and n°Y) queries. Take any

£E>0 withfzo(@).
Then there is a deterministic, non-uniform global list recovering algorithm for C with output list length
L, and list recovering radius d — &n that runs in time

o(1)

- (
O <n1+o(1) (:L_ T 1Og(g|)>

and space
0 (n0<1>Llog(L) 1og(|z|)) .

The idea is as follows. Consider the different randomness settings for a randomized local corrector. Each
of them leads to the correction of some fraction of the indices (possibly 0). Most of them correct most
indices. We wish to find one randomness string that leads to the correction of most indices. We can then
invoke our unique decoding algorithm on the word to decode the message. To aid our search, we use local
tests to estimate the fraction of indices that are corrected for a randomness string.

In the paper |GM16| a setup of this nature was described using the following metaphor: There is a pile
of coins. Each coin falls on heads with some probability (“bias”). Suppose that most of the coins in the pile
are highly biased. We wish to find one biased coin. We can flip any coin we want.

The analogy is that each randomness string corresponds to a coin. Flipping the coin corresponds to
choosing a local test, doing local correction to run that test on the supposedly corrected codeword, and out-
putting whether the test passesﬂ The bias of the coin is roughly the fraction of indices that are corrected. We
wish to find a highly biased coin, namely a randomness string that corrects most indices. The paper |[GM16]
shows that by making O(m) coin flips one can find a biased coin with probability at least 1 —2~"". From this
one can get a non-uniform algorithm for list decoding via Adleman’s argument: Once the error probability
goes below the number of inputs, there must exist randomness for the coin flipping algorithm that works for
all inputs. Fix this randomness as non-uniform advice for the algorithm. The corrector may still have some
errors, but few enough that we can use time and space efficient unique decoding to remove the remaining
errors.

Comparison of uniform and non-uniform results. Our uniform and non-uniform results both utilize
local testability to improve beyond the unique decoding radius, but they use them differently. Our non-
uniform corrector first generates distinct correctors that output words close to codewords and then these are
further corrected independently. In contrast, our uniform decoders remove all errors first (it does codewords
list recovery), then it separates them into distinct codewords.

3More specifically, there are many decoded words and we check if enough of them pass. See Appcndix for more details.
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For our non-uniform corrector we use local testing to make sure that the starting decoders correspond
to codewords. This local test only needs to confirm that the number of errors is very low, so it only needs
to get a good estimate of the number of errors in the low error regime. These tests are used in conjunction
with a non-uniform coin flipping procedure that our uniform correctors do not use. In contrast, our uniform
corrector needs local tests that give a good estimate of the error when it is very close to one. This is because
our uniform tester is not used directly, instead it is embedded in the local corrector and implies that with
high probability there are few out-of-codeword errors after the first round of correction. In both algorithms,
after the first round (choosing the close enough decoders for non-uniform case and removing out-of-codeword
errors for the uniform case) local testing is no longer used.

Our non-uniform correctors are more efficient than the uniform ones because known uniform local testers
and correctors are not as randomness efficient as our non-uniform testers and correctors.

A.2 Challenges in Non-Uniform List Recovery

One issue is that the coin flipping protocol doesn’t promise we get a perfect coin (one that has perfect bias
and all the tests always pass). It instead only promises we get a coin that has high bias. Said another way,
there is a gap between what the protocol is promised exists versus what it actually gives. Informally, this
corresponds to local correctors that sometimes fail, or they output codewords that are not quite as close to
the input word as we desire. One difficulty this adds is that there is still some error in the codeword, which
we address with efficient unique decoding.

Our coin flipping subroutine also has another, more subtle technical hurdle. Namely, we don’t know how
many codewords are close to the provided word and there may be several codewords near the list decoding
radius. In contrast, for unique decoding we always know there is exactly one nearby codeword (if there are
any at all). The issue is during local testing: how do we know the local list correction is correcting to all the
nearby codewords?

One solution is to count the number of nearby codewords, and make sure there are enough. Indeed, we
do this in our local test. The challenge is that there may be some codewords near the decoding radius that
have an adversarial probability of passing a test. Indeed, the coin flipping protocol is only promised to not
return any coin with a bias below some gap. This corresponds to accepting some codewords that are slightly
farther than the decoding radius. So if we are only counting the number of nearby codewords, we may count
a distant codeword and miss a nearby codeword. This is unacceptable. Our deterministic local corrector
must always output every nearby codeword.

The solution is to tailor the local tests so that there are no codewords whose distance lies in the gap
of our test. So if we really get local correctors that pass our test with high probability, they must correct
to all the nearby codewords since no codeword will be at an adversarial distance to confuse the tester. Of
course, we cannot be sure that there will be no codewords within any specific constant distance from the
provided word. So we have to try several small gaps and use a counting argument to show one of them
must not have a codeword whose distance is in that specific gap. For this counting argument to work, we
need to have a bound on the maximum number of codewords within a given distance. This is why we lose a
small factor in the correcting radius. There could be many codewords whose distance is just larger than the
correcting radius. So our gaps need to all be within the original correcting radius, costing us the &n factor
in our decoding radius in the result.

A.3 Testing Local Correctors

Our test has three parts. One part tests that local correctors output codewords. This comes from local
testing. The second is that these codewords are near the input multi-string, and the third is that they are
different from each other. The second and third comes from random sampling to estimate their relative
agreement.

Lemma A.5 (Testing if Strings Are Close). For any integers n, d, ¢, alphabet ¥, and constants £, s > 0,

there is a randomized test V that takes as input a string w' € X", and an l-multi-string w? € (%)n such
that:
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Completeness: If Pricy [w} ¢ w?] < % — &, then the algorithm accepts with probability at least 1 —s. We

call 1 — s the completeness.

Soundness: If Pricpy[w} ¢ w?] > £, then the algorithm accepts with probability at most s. We call s the
soundness.

Efficiency: The algorithm makes O (n(if’_gi%é;')) queries to w' and w? and runs in time O (log(n)n(if_gi%é“;))

(the log(n) factor is just to describe the query locations).

16n log(1/s) 1

(n—d)¢?
"T_d + % fraction of the sampled j have w]l € wj2», then we accept. The completeness and soundness follows
from a Chernoff bound.

For completeness, if A(wy,ws) < d —né&, then the expected number of points w; and wy will agree on is
> 16(7:337*33245) (”;d + f) > 16%. Then by a Chernoff bound, the probability that our sample has £/2
fraction fewer points they agree is at most

Proof. The algorithm will make queries to the same random places in w! and w?. If at least a

e—(€/D%u/2 L~ 16/
<s.

A similar argument holds holds for completeness. O

Now we give a test for checking how many codewords near a given multi-string w are actually (nearly)
L

described by w', ..., w".
Lemma A.6 (Testing Claimed Codewords). Take any locally testable code C : ¥ — X% with distance dg
approzimation factor o and g, testing queries. Now suppose one is given as input strings w', ... ,wl e Xy,
integers £, L' < L, integers dyi,ds, and an £-multi-string w € (E;). Then there is a test, V, making queries

to w and each w? such that:

Completeness: If

fweski3jeLw = C@)A Pr vl ¢ w)< D%
n

i€[n]

—f}’>L’

then the test passes with probability at least %

Soundness: If

{zexh:3je[L],A(C(z),w!) <dy A Pr[C(x); ¢ w;] < %} <L

1€[n]

and dy < m then the test passes with probability at most %.

Efficient: If the local tester for the code runs in time T and space S, this new tester runs in time

n log(L)dy | dalog(n)
1) <L10g(L)d2 <T04+ do - (n —d; +d2)§2>)

and space

0 (s +log(n) + Ld% log(L))

while making

0 (L log(L)dﬁ2 (‘W + (n—dﬁdﬂ@))

queries to w', ..., wr.
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Informally, the completeness condition says that if there are I’ codewords among w',...,w” that are
also near w, then we will accept with probability 3/4. The soundness condition says that if there are not
L’ codewords even close to any of the w',... ,w” that are also close to w, then the test will reject with
probability 3/4. We think of n > dg > dy > dy and dy = n'~€ for a very small € so that the test runs in time
close to n€.

Proof. Our test proceeds in three parts. The first part tests the strings w?, ..., w” to see which are codewords.
Our second test makes sure these codewords are near w. Our third test verifies that the strings are different
codewords. Now we will state the tests again in more detail.

The first test runs the local tester 2%(log(L) + 3) times for each string and a string passes if all tests

da
pass. The second test compares O (%) random locations of each w’ to w (using Lemma with
soundness 16%) to check if each of the w’ that pass the first test are within dq — da —né of w, or further than

dy — dy from w. We use d; — dy because w’ may be dy from C(z) and we want to know if C(x) is within
dy of w. For the third test we choose 7-(2log(L) + 2) random locations and the collection of strings pass if
there at least L’ different strings passing the first two tests that differ on those random locations.

Now we verify the test is as claimed.

Completeness: Let W, = {C(z) : x € X},3j € [L],w! = C(z) A Pricpy [w! ¢ w;] < di=dz _ £}, Suppose
that |W,.| > L. First see that all w € W, pass the first test. By the completeness of Lemma and
a union bound, the probability that any w € W, fails the second test is at most 1—16. By the distance of
C, we also see that for every pair of strings in W,, the probability that they agree on a random index
is at most 1 — %0. So the probability they agree on all %(2 log(L) 4 2) locations is at most

2 (2log(L)+2)
(1 _ d0> ‘0 <e—2log(L)=2
n
< 1
—7L?

So by a union bound, the probability that any pairs of strings of W agree on the random points is at
most % Thus with probability at most % will the test fail.

Soundness: Let W, = {C(z) : € £},3j € [L], A(C(z),w’) < da A Prici)[C(z); ¢ wi] < L}, Now
suppose that |[Ws| < L’. First we will argue that with low probability will any string far from every
string in Wy pass. Then we will argue that with low probability will at least L’ strings close to W
disagree on the random locations.

Consider any w’ that is not within distance do of any string in W,. If A(w?,C) > da, since C is
locally testable, the probability a local test fails is at least %. Thus the probability that w’ passes all
G (log(L) + 3) local tests is at most

an (log(L)+3

an -
1
<—.
8L

Suppose there is any # € Y¥ such that A(w?,C(z)) < dy. If Prie[n][wg ¢ w;] < %, then
Pricn[C(x); ¢ wi] < Pricpy [w! ¢ w;] + Al O) < 4 which would imply C(z) € W, a contradic-

n

tion since w? is far from W,. Thus Pr;c,) [wf ¢ w;] > 4=% and by the soundness of Lemma with

n
probability at most 16% will the second test pass. So by a union bound, with probability at most é

would any string ds far from every codeword within d; of w pass the first two tests.

Now consider any w’ such that for some w’ € W, we have that A(w’,w’) < dy. Then we will show
with high probability w and w’ will agree on the random points chosen. The probability they disagree
on a random point is at most %2. So by a union bound, the probability they disagree at any of the

2 (2log(L) +2) points is at most %(log(L) +1). So by a union bound, the probability any w’ within
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dy of a w' € W, disagrees with that w’ is at most %(log(L) +1)L. In particular, if dy <
then the probability is at most %.

do
16L(log(L)+1)’

See that if only strings within dy of a codeword in Wy pass the first two tests, and every string within
dy of a codeword in Wy agrees with some string in W, on the randomly chosen points, then the test
will fail since [Ws| < L’. So by a union bound, the probability the test passes is at most %.

Efficient: The number of queries for the first test is L times the number of queries for the local tester
times the number of local tests. This is LG"(log(L) + 3)g:. The number of queries for the second

test is O (L%). The number of queries for the third test is L times the number of locations

queried, which is L3-(2log(L) + 2). So the total number of queries is:

an nlog(L) n

an n n
=0 (L log(L) (dQQt + —(n " di + d2)€2 + do))

-0 (L log(L)d% (aqt T (n—dldi@)g?» .

The time is similar, except that we also need to count the number collisions when restricting the strings
to random locations. To do this, we sort the L strings restricted to these random locations. This only
adds an extra O(Llog(L) - log(L)) time steps.

O

A.4 Finding Good Enough Local Correctors

Once we can test if a given set of local correctors corrects most errors for a given multi-string, we just need
to choose local correctors that pass with high probability. If it passes the test with high probability, then it
will output local correctors that correct to strings near the codewords we actually want. At that point we
can use unique decoding to finish the job.

To complete our argument, we need a subroutine for solving the coin flipping problem by Grossman and
Moshkovitz |[GM16, Lemma 4.2]. This lets us efficiently find a local corrector that is heavily biased (or at
least, biased above i) We give the specific instantiation of this algorithm for our setting. This algorithm
takes a randomized algorithm, and a test for that randomized algorithm, and finds a good output with
very high probability. Using this, we efficiently find local correctors that are good enough with such high
probability that some choice of randomness always succeeds.

Lemma A.7 (Finding A Good Coin With High Probability). Suppose that there is a randomized algorithm,
A, that produces an output, B. Suppose that there is a randomized algorithm V that takes B as input and
either accepts or rejects B. Suppose that both A and V' both run in time T and space S, and that |B] = O(S).
Finally, suppose that

P;r[Pr[V accepts Bl <1—mn] < 1/2.

Then for any constant £ > 0 and integer n, there is an algorithm that runs in time
log(n/€)\*
O |nT < ¢ >

O(S +1log(n/¢))
and with probability 2=" outputs a B such that V accepts with probability at least 1 —n — &.

and space
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In particular if £ = (1), then the time is O(nlog(n)?T) and the space is O(S + log(n)).

Now combining these results, we can get a randomized algorithm for list correctable codes that can find
a list of L' good deterministic local correctors with very high probability (if there are L’). Of course, by
good, we mean the local correctors output strings close to the nearby codewords (think within n!=¢).

We note that this test only promises we find L’ codewords within % of w if there are L’ codewords
% — & of w. It does not promise that it will return the L’ codewords that are specifically within
—&. So if there is a codeword whose distance from w is between % and % — &, we may return that
nearby codeword and not a closer one.

within
di—ds
n

Lemma A.8 (Finding Good List Of Deterministic Correctors). Take any locally testable code C : ¥ — X2
with distance dy approximation factor o and q; testing queries whose local tester runs in time T; and space
Si. Suppose that C' is also locally list recoverable with q. list correcting queries, list correcting soundness
8[/%’ list correcting radius dy, input list length £ and output list length L whose local list correcting algorithm
runs in time T, and space S..

There is a randomized algorithm, D', that takes as input a constant £ > 0, mtegegs do, L', and m where
dy < m and dy < dy —do —&n < dy < dy and a multi-string w € (2;) that either rejects or
outputs O(T,) bits describing a list of L different deterministic algorithms, D1, ..., D} which have oracle

access to w and take an index j € [n] and outputs a symbol in Xo. Then the following holds:

Efficient: D’ runs in time

0 (mtostm*Lioe(2) 7 (7. (a5 ) + M + (150 o))

and space

0 (St + 5. + log(mnaL) + T. + Ldﬁ log(L)) .
0

Further, each D) runs in time T, and space S, and makes only q. queries to its input.

Soundness: If [{C(z) : z € ¥, A(C(z),w) < d1}| < L', then with probability at least 1 — 2=™ will D’
reject.

Completeness: For j € [L], define w' € £ by wi! = D (i). If

et pric) gul< M2 g > 1

then with probability at least 1 — 27™ will D' output DY, ..., D} such that

{rexh: Pr(C(z); ¢ wi] < %/\ 3j € [L), A(w"”,C(x)) < dg}| > L.

i€[n]

Proof. The output deterministic algorithms are just the local correctors from the local list decoder for C
with the randomness hard coded. The only trick is to get a good answer with higher probability, we need
to test the local decoders we get. To do this, we view the test of Lemma [A.0] as a test of how good the
deterministic correctors are, then we run Lemmal[A.7 to efficiently find a good local decoder. Finally, we run
the test of Lemma 10m time mores on the decoders that are chosen by the coin flipping subroutine and
reject if more than half the tests fail.

Let V be the test of Lemmal[A6] If there are less than L’ codewords within d; of w, then by the soundness
of the test, for any deterministic decoders that are given, V will accept with probability at most i. So by
a Chernoff bound, if there are 10m + 10 tests run, the probability more than half the tests pass is at most
2=m=1 So the soundness holds.

If there are more than L’ codewords within d; — da — &n of w, then with probability at least 2/3 will
the randomized decoders chosen by the list recovery algorithm, D1,..., Dz, contain decoders that decode
to these L’ closest codewords with probability 1 — ﬁ. By a union bound, if their randomness is hard
coded, chosen uniformly at random, the probability that D,..., Dy contain decoders that decode to these

50



L' closest codewords is at least % By completeness of Lemma such a set of decoders passes the test
with probability at least %. By Lemma the probability the coin flipping protocol chooses decoders that
don’t accept with probability at least % is at most 2~™~!. By soundness of Lemma if the test passes
with probability at least %, then there must be L’ codewords within d; of w that Dq,..., Dy decode to
within distance da. So the probability that the chosen Df,..., D} do not decode to strings within ds of L’
codewords within d; of w is at most 271,

Again by a Chernoff bound, the probability the final 10m + 10 tests will fail over half of the attempts is
at most 27™~!. Thus the probability that the test either chooses an invalid D1, ..., D} or rejects is at most
27", So completeness holds.

For the efficiency, see that we one only needs to run the the local test and local correction for each round
of the coin flip subroutine. So the time is the time to run O(mlog(m)) local tests plus the time to make all
the queries for those tests times the time to make all those queries. O

A.5 Completing The Local Correctors

Once we have local correctors that output strings near the codewords, we can do unique decoding on them.
This lemma from [CM25] shows that an efficient global decoder for unique decoding exists.

Lemma A.9 (Typical LCCs have Efficient Deterministic Correctors). Suppose code C' : $¥ — X8 is a
typical LCC with smoothness (8, and q queries as well as an LCC with correcting radius dy and q queries.

Then the code C' has a deterministic non-uniform corrector and decoder with correcting and decoding
radius do = db /3 running in time

0 <nq2 (5 I 20(\/log(n/5) log(q))> 1og(|22|)>

and space

O (q <1og(ﬁ) + log(n) w) 10g(|22|> :

Now applying this unique decoder with our algorithm for choosing local decoders that output a string
near a codeword, we get our efficient list recovery algorithm.

More specifically, our local corrector does the following. For each ¢ € [L], we run the coin flipping
procedure with a test who looks for codewords within d; — &i/L of the provided input with the test’s gap set
to £/2L. We run this for every L’ € [L] to find as many codewords within d; — £i/L as possible. For some
two successive intervals, we will find the same number of nearby codewords. This means that the closer
correctors must have found all codewords near the input. Use the codewords from that closer decoding
radius.

This will give approximations of all the codewords within d; — €. Finally, we run unique decoding on
these codewords to remove any errors in our approximations.

Theorem A.10 (Locally List Recoverable and Testable Codes Have Efficient Deterministic Decoding).
Suppose we have a code C : ©¥ — X8 with distance dy that is a:

LTC with approzimation factor a with q; queries.

Typical LCC with unique correcting radius dfy, smoothness 3, correcting soundness and q. queries.

1
1in’
Locally List Recoverable with list recovering radius dy, input list length £, output list length L, list cor-

recting soundness SL%, and q. queries.
Then for any & > 0 such that df > % and & < m, there is a deterministic, non-uniform
global list recovering algorithm for C with input list length ¢, output list length L, and list recovering radius
di — &n that runs in time

274 2
o (n (niog(;%) L 10g(§2) Gt | s (5 4 90 (Viog(n/5) log(‘“)))) 10g(|22|)>
— U1

o1



and space

o(( r-+log(nL) + L2 1og(Z) + 4 (log(6)+10g(n) w»leg(w))-

Proof, To get the final non uniform algorithm, the basic idea is to run the protocol from Lemma with
=n+1 for log(L) times to figure out how many codewords are near w. In particular, we want to run it
W1th doy = and its £’ set to ﬁ Unfortunately, the algorithm of Lemma is only guaranteed

L+1)
to find as many strings within dy of w as there are within d; — 5—" So it is quite possible that it gives a
corrector to a codeword farther than d; — L‘ET” and misses a codeword much closer to w, perhaps even the

closest codeword. To get around this we will run Lemma[A.§| for L’ more times to get the codewords closer
than d; — L+1’d1 fi”p oo dy — L+1 In one of the intervals [d; — innl,dl G- Pgn] there must not be
any codewords whose distance from w is in that interval. So our corrector for that level correctly finds all
the nearby codewords. Finally, we can run our efficient deterministic decoding on our list of deterministic
decoders we previously selected to correct our codeword.

Specifically, setting do = see that for any ¢ € [L + 1], and any proposed setting of L', we can run

in
211’
Lemma with m = n+ 1 to find local decoders for dy approximations of codewords within d; — % of
=5,
within d; — Llinl of w, then we reject with probability at least 1 — 27"~!. Thus some choice of randomness
will always succeed and we hard code that randomness, so we have a deterministic procedure that always

works. For each ¢ € [L + 1], by using a binary search on L’ we can find an L} such that there are at most

L} codewords within dy — LZT of w, and at least L} codewords within d; — (iZi)f". Since there are only L
codewords within d; of w, we must have for some 17 that Li = L}, . In particular, this means that the local

correctors for the closer distance, L;,;, must have correct to all the codewords within d; — (Zz_?f”, since
it corrects to Lj of them and there are only Lj codewords within L}, ; = L; of them. So take these local
decoders, and apply Lemma

For Lemma to succeed, we need do

w if there are L' codewords within d; — of w with probability 1 —27""!, and if there aren’t L’ codewords

< m, but this holds since dy = % and ¢ <

m, so this protocol succeeds in finding the local correctors. That is, we give deterministic local

correctors Dj,..., D} such that for every codeword within d; — &n, there is some D] that outputs a do
approximation of it. Since df > % > 3ds, we also have that Lemma succeeds for each D} correcting

to such a codeword. Thus the local recovery succeeds.

Now we analyze the runtime To find the initial local correctors we need to run Lemma[A.§|(L+1) log(L)
times with its £ set to ¢ = 2L+1 and its dy set to dy = 2(L+1 We also note that since we are in the non-
uniform setting, we can upper bound the time and space of the algorithm by the number of queries times

log(|%2]). So running Lemma [A.§ requires time

)-
0 (L log(L (m log(m)QLlog(L)d% (TC (aqt i fl; ) 5,2) + k’g(d?dQ + (521051()@2 n oth)))
<0 <n10g 212 log(L)? j; (qc (ozqt—i— ( Ln >+ ! W+aqt> 10g(|22|)>
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1 2 L*log(L)?
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and space

O(St + S + log(mnalL) + T, —I—Ld log(L))

<0 (<qt + 00 log([%) +log(nl) + L+ log<L>) |
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Then running the final L local correctors of Lemma requires time

0 (Lacna? (5 +2° VPTG b
-0 (nng’ (5 + 2O(\/log(n/,ﬁ’) log(qc))) 1og(22|))

and space

0@%”ﬂ4@@+mw %%?)m%ﬂ.

Putting these together gives the final stated time and space. O

Remark (Efficient Soft Decoding). We note that while we state all the results for the list recovery, the more
general result for soft decoding also holds. Similarly, list decoding is a special case of list recovery where
{=1.
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