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Abstract

Proving lower bounds on the size of noncommutative arithmetic circuits is
an important problem in arithmetic circuit complexity. For explicit n variate
polynomials of degree Θ(n), the best known general bound is Ω(n log n) [Str73;
BS83]. Recent work of Chatterjee and Hrubeš [CH23] has provided stronger
(Ω(n2)) bounds for the restricted class of homogeneous circuits.

The present paper extends these results to a broader class of circuits by using
syntactic degree as a complexity measure. The syntactic degree of a circuit
is a well known parameter which measures the extent to which high degree
computation is used in the circuit. A homogeneous circuit computing a degree d
polynomial can be assumed, without loss of generality, to have syntactic degree
exactly equal to d [Fou+24]. We generalize this by considering circuits that are
not necessarily homogeneous but have low syntactic degree. Specifically, for an
explicit n variate, degree n polynomial f we show that any circuit with syntactic
degree O(n) computing f must have size Ω(n1+c) for some constant c > 0. We
also show that any circuit with syntactic degree o(n log n) computing the same f
must have size ω(n log n). We further analyze the circuit size required to compute
f based on the number of distinct syntactic degrees appearing in the circuit. Our
analysis yields an ω(n log n) size lower bound for all but a narrow parameter
regime where an improved bound is not obtained. Finally, we observe that low
syntactic degree circuits are more powerful than homogeneous circuits in a fine
grained sense: there exists an n variate, degree Θ(n) polynomial that has a
circuit of size O(n log2 n) and syntactic degree O(n) but any homogeneous circuit
computing it requires size Ω(n2).

1 Introduction

Let F be a field and X = {x1, . . . , xn} be a set of variables. A noncommutative polyno-
mial f(X) over F in the variables X is a finite F-linear combination of noncommutative
monomials in X (equivalently, one may think of these as words in {x1, . . . , xn}∗). The
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set of all such polynomials forms a ring under addition and noncommutative multiplica-
tion, this is the noncommutative polynomial ring denoted by F⟨X⟩. In noncommutative
arithmetic circuit complexity, the central object of study is the noncommutative arith-
metic circuit. A noncommutative arithmetic circuit (we will often simply say circuit for
short), is a directed acyclic graph whose leaves are labeled by variables (say from X)
and constants from F, and whose internal nodes, called gates, are labeled by either +
or ×. A circuit is said to have fan-in 2 if each gate has in-degree 2. Each gate in the
circuit computes a polynomial in the natural way: a + gate computes the sum of the
polynomials computed at the children and a × gate computes the product. Importantly,
since the product is noncommutative, each product gate comes with an ordering on the
children. Since we will deal with fan-in 2 circuits, each such gate has a designated left
child and a designated right child. We will say that a circuit has size s if the underlying
graph has s vertices. We will say that a gate g in a circuit has depth ∆ if the longest
leaf to g path in the circuit has length ∆. The depth of a circuit is then defined as
the maximum depth of any gate in it. We designate a particular gate of the circuit to
be the output gate, and the polynomial computed by the circuit is defined to be the
polynomial computed at this distinguished gate.

A central goal in this area is to prove exponential lower bounds on the size of circuits
computing explicit1 polynomials. The most influential work in this area is that of
Nisan [Nis91]. He showed exponential lower bounds on the size of formulas computing
explicit polynomials. Formulas are circuits whose underlying graph is a tree. In order to
show this, he introduced a complexity measure, now called Nisan Rank. Unfortunately,
his methods do not provide such strong bounds for circuits. Indeed, the best lower
bounds on the circuit size of an explicit, n variate degree Θ(n) polynomial are of the
form Ω(n log n) [Str73; BS83] and improving upon this has been an outstanding open
problem for more than 40 years. The work of Carmosino et al. [Car+18] provides strong
motivation to improve upon the n log n bound: they show, for instance, that barely
superlinear lower bounds (of the form Ω(nω/2+ϵ), where ω is the exponent of matrix
multiplication) for noncommutative circuits computing constant degree polynomials
can be amplified to obtain exponential lower bounds.

In a recent work [CH23], Chatterjee and Hrubeš improve upon the Ω(n log n) bound,
assuming that the circuit is homogeneous. A circuit is said to be homogeneous if every
gate in it computes a homogeneous polynomial. In their main result ([CH23], Theorem
14), they construct an n variate, degree Θ(n) polynomial f such that any homogeneous
circuit computing f requires size Ω(n2).

Note that noncommutative circuits can be homogenized, but this procedure incurs
a multiplicative blowup of d2 (where d is the degree of the polynomial) in size and
therefore the results in the paper discussed above fall short of giving lower bounds for
general (not necessarily homogeneous) circuits.

1We will say that a polynomial f ∈ F⟨X⟩ is explicit if there is a polynomial time algorithm that
computes, given a monomial m ∈ X∗, the coefficient of m in f .
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2 Our Results

The work of Chatterjee and Hrubeš [CH23] leaves open (and tantalizingly so) the
question of going beyond homogeneous circuits and proving ω(n log n) lower bounds
for general circuits. In this work, we take a step in this direction. We remove the
homogeneity restriction and replace it with a bound on the syntactic degree. Let Ψ be a
circuit. For each gate g in Ψ, we define the syntactic degree d(g) inductively as follows:
for a leaf g labeled by a field constant, we define d(g) = 0. For a leaf labeled by a variable,
we define d(g) = 1. For a sum gate g = g1 + g2 we define d(g) = max{d(g1), d(g2)}. If
g = g1 × g2 is a product gate, we define d(g) = d(g1) + d(g2). Note that for each gate g,
the degree of the polynomial computed at g is at most d(g). The syntactic degree of Ψ
is then defined as the maximum over all gates g of Ψ of d(g).

Notice that if we have a homogeneous circuit Ψ for a degree d polynomial, we can
assume without loss of generality that the syntactic degree of Ψ is exactly d. This is
because in such a circuit, each gate g either computes a polynomial of degree equal
to d(g), or it computes the 0 polynomial. This is well known [Fou+24] and easily
proved, for example by induction. Therefore, homogeneity forbids (useful) computation
of polynomials of degree larger than d. This simple observation suggests a natural
relaxation of homogeneity: allowing the circuit to have syntactic degree larger than the
degree of the output, but not much more. Such relaxations of homogeneity have been
examined in the literature. For instance, in a recent result, the authors of [Fou+24]
provided a quasi -homogenization result for commutative formulas. A formula is said to
be quasi-homogeneous if the syntactic degree of the formula is a polynomially bounded
(from above) by the degree of the output.

Quantitatively, we recall that Chatterjee and Hrubeš have proved an Ω(n2) lower
bound on the size of any homogeneous noncommutative circuit computing some explicit
polynomial on n variables of degree Θ(n). In contrast, for general circuits, the strongest
known lower bound remains Ω(n log n).

One can now ask the following intermediate question: can we prove better-than-
Ω(n log n) lower bounds on the size of circuits computing an explicit n variate, degree
Θ(n) polynomial where the circuit is not necessarily homogeneous, but has syntactic
degree, say, O(n)? Such circuits may compute intermediate inhomogeneous polynomials
of degree higher than the degree of the output, but not much higher. We answer this
question in the affirmative.

Remark 2.1. Circuits with bounded syntactic degree are provably more powerful than
their homogeneous counterparts: there exists an n variate, degree Θ(n) polynomial which
can be computed by a circuit of size O(n log2 n) and syntactic degree O(n) but any
homogeneous circuit computing it must have size Ω(n2). This follows from inspecting a
construction presented in the work of Chatterjee and Hrubeš, see Section 5.

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn}. Our results apply to the palindrome
polynomial Paln,n(X, Y ) ∈ F⟨X, Y ⟩ where Paln,d(X, Y ) ∈ F⟨X, Y ⟩ is defined as follows:
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Paln,d(X, Y ) =
∑

(i1...,id)∈[n]d

(
d∏

j=1

xij

d∏
j=1

yid+1−j

)
A version of this polynomial was already introduced by Nisan in [Nis91] to sep-

arate circuits from formulas. Indeed, there exists a homogeneous circuit of size
O(n2) that computes Paln,n(X, Y ). We obtain this from the recursive expression
Paln,d =

∑n
i=1 xiPaln,d−1yi. On the other hand, it follows from Nisan’s work [Nis91]

that any formula computing Paln,n(X, Y ) requires size nΩ(n). Since a fan-in two circuit
with depth ∆ can be converted into a formula of size ≤ 2∆, it follows that any circuit
computing Paln,n(X, Y ) must have depth, and therefore size, Ω(n log n). In this paper
we improve upon this lower bound for circuits with low syntactic degree. As alluded to
before, our main results are the following.

Theorem 2.2. (Stated below as Corollary 4.3) Let Ψ be a circuit computing Paln,n(X, Y )
with syntactic degree O(n). Then there exists a constant c > 0 such that Ψ has size
Ω(n1+c).

Theorem 2.2 offers a qualitative strengthening of the main theorem in the work of
Chatterjee and Hrubeš ([CH23], Theorem 14), since their result applies to homogeneous
circuits while ours applies to a provably stronger class of circuits (Remark 2.1).

Next, we analyze the circuit size required to compute Paln,n based on the number
of different syntactic degrees that appear in the circuit. We show that for a circuit if
this number is o(n log n), then it must have size ω(n log n).

Theorem 2.3. (Stated below as Corollary 4.5) Let Ψ be a circuit computing Paln,n(X, Y ).
Let d′ = |{d(g) | g is a gate in Ψ}|. If d′ = o(n log n), Ψ has size ω(n log n).

Note that Theorem 2.3 applies to circuits with arbitrarily high syntactic degree. We
only require that the number of distinct d(g)’s appearing in Ψ satisfies the constraints
mentioned above. Also, note that if d′ = ω(n log n), we trivially get an ω(n log n) bound:
if a circuit has ω(n log n) types of gates then it must have ω(n log n) gates. So, the only
case where we do not obtain a lower bound asymptotically better than Ω(n log n) is
when d′ and the size of Ψ are both Θ(n log n). We do not know if such circuits exist for
Paln,n.

Theorem 2.3 has the following immediate corollary:

Theorem 2.4. (Stated below as Corollary 4.6) Let Ψ be a circuit computing Paln,n(X, Y )
with syntactic degree o(n log n). Then Ψ has size ω(n log n).

Finally, in Section 5 we analyze a construction provided in the work of Chatterjee
and Hrubeš, and show a fine grained separation between homogeneous circuits and
circuits with low syntactic degree.
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3 Proof Idea and Notations

We use the methods of Nisan [Nis91] to obtain our lower bounds. Specifically, we bound
the dimension of the coefficient space of an X, Y separated polynomial computed by a
circuit of low syntactic degree: Let f ∈ F⟨X, Y ⟩ be a polynomial. We say f is X, Y
separated if in each nonzero monomial of f , every X variable appears before every Y
variable. Note that the Paln,d(X, Y ) polynomials are X, Y separated. Now suppose f
is X, Y separated. Thinking of f as a polynomial in the Y variables with coefficients
that are elements of F⟨X⟩, we write

f =
∑
m∈Y ∗

cmm

where cm ∈ F⟨X⟩. Define coeffm(f) ≜ cm, and CoeffX(f) ≜ {coeffm(f) | m ∈ Y ∗}.
Recalling that the ring F⟨X⟩ forms an F-vector space with X∗ as a basis, we consider
the dimension of the F-span of the set CoeffX(f). For f = Paln,n(X, Y ), this quantity
is nn. On the other hand, Nisan, in [Nis91], showed that if f is computed by a formula
of size s, then this dimension is bounded above by sO(1). Since a circuit of size s can
be converted into a formula of size ≤ 2s, his method applied directly gives a lower
bound of Ω(n log n) on the size of any circuit computing Paln,n(X, Y ). We refine this
analysis and show that if an X, Y separated polynomial is computed by a circuit with
restrictions on the syntactic degrees appearing in it, we may obtain a better upper
bound on the dimension of the span of the coefficients, by explicitly constructing a
spanning set of polynomials. This gives the lower bounds. For future convenience, we
set up some more notation. Let Ψ be a noncommutative circuit. Recall that for a gate
g in Ψ, d(g) denotes its syntactic degree. Define DΨ ≜ {d(g) | g is a gate in Ψ}. We
say that a circuit Ψ is in normal form if no product gate has a child of syntactic degree
0. Since gates with syntactic degree 0 can only compute constants, we may assume
without loss of generality, by pushing constants all the way down to the leaves, that a
given circuit is in normal form. We allow leaves labeled by αx where α ∈ F and x is a
variable. Such leaves also have syntactic degree 1.

Remark 3.1. It is unclear whether the technique of Chatterjee and Hrubeš [CH23] for
proving lower bounds against homogeneous circuits can be extended to circuits of low
syntactic degree. One indication that their approach does not directly generalize is that,
as noted in Remark 2.1 and further discussed in Section 5, the polynomial for which
they prove an Ω(n2) homogeneous circuit lower bound in fact admits a small circuit of
low syntactic degree.

4 Lower Bound

In this section, we prove our main result. Theorems 2.2, 2.4 and 2.3 follow as corollaries
of Theorem 4.1, which we prove below.
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Theorem 4.1. Let Ψ be a size s, fan-in 2 circuit computing Paln,d(X, Y ). Let |DΨ| = d′.
Then, s ≥ (d′ − 1)n(d−2)/(d′−1) − 2d′ + 2.

Proof. For simplicity, we assume without loss of generality that Ψ is in normal form.
For each gate g ∈ Ψ, we let ĝ denote the polynomial computed at g in Ψ. For each gate
g, we write

ĝ = ĝ1 + ĝX + ĝY + ĝXY + ĝother

where ĝ1 denotes the constant term of ĝ, ĝX denotes the sum (with coefficient) of
non-constant monomials of ĝ which contain only X variables, ĝY denotes the sum (with
coefficient) of non-constant monomials of ĝ which contain only Y variables, ĝXY denotes
the sum (with coefficient) of monomials of ĝ in which both X and Y variables occur
and all X variables appear before all the Y variables, and ĝother denotes the sum (with
coefficient) of all the other monomials.

Let DΨ = {l1 . . . , ld′} with l1 < . . . < ld′ . For each k ∈ [d′], define Gk ≜ {g |
g is a gate in Ψ with d(g) = lk}. For each k ∈ [d′], we will build a (reasonably small) set
Bk ⊆ F⟨X⟩ of spanning polynomials such that for each g ∈ Gk, CoeffX(ĝ1), CoeffX(ĝX),
CoeffX(ĝY ), CoeffX(ĝXY ) ⊆ span{Bk} and for each t < k,Bt ⊆ Bk. We build these sets
iteratively. Our base case will be k = 1 with B1 = {1, x1, . . . , xn} and |B1| = n + 1.
Now suppose we have already constructed Bl for each l < k. First, set Bk ← Bk−1.
Let Pk ⊆ Gk be the set of product gates g in Ψ with d(g) = lk. For each such gate
g = g′ × g′′ with d(g′) = lt, d(g

′′) = lp, we note that t, p < k since Ψ is normal. Observe
the following:

ĝ1 = ĝ′1 × ĝ′′1

ĝX = ĝ′X × ĝ′′X + ĝ′X × ĝ′′1 + ĝ′1 × ĝ′′X

ĝY = ĝ′Y × ĝ′′Y + ĝ′Y × ĝ′′1 + ĝ′1 × ĝ′′Y

ĝXY = ĝ′X × ĝ′′Y + ĝ′XY × ĝ′′Y + ĝ′X × ĝ′′XY + ĝ′XY × ĝ′′1 + ĝ′1 × ĝ′′XY

For each such g ∈ Pk (with g = g′×g′′), we update Bk as Bk ← Bk∪{ĝX}∪{ĝ′X×h |
h ∈ Bk−1}.

Claim 4.2. For k ∈ [d′] and each gate g ∈ Gk, we have that CoeffX(ĝ1), CoeffX(ĝX),
CoeffX(ĝY ), CoeffX(ĝXY ) ⊆ span{Bk}

Proof. We show this by inducting on the depth of the gate g.

• If g is a leaf, it satisfies the claim by construction of B1.

• g is a product gate: Let g = g′ × g′′ with d(g) = lk. As mentioned earlier, if
d(g′) = lt, d(g

′′) = lp then t, p < k since Ψ is normal.

1. CoeffX(ĝ1) ⊆ span{Bk}: This is true since CoeffX(ĝ1) just contains a constant,
B1 ⊆ Bk and B1 contains the constant 1.
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2. CoeffX(ĝX) ⊆ span{Bk}: This is true since CoeffX(ĝX) = {ĝX} and ĝX is in
Bk

3. CoeffX(ĝY ) ⊆ span{Bk}: Again, this is true since CoeffX(ĝY ) is just a set of
field constants, B1 ⊆ Bk and B1 contains the constant 1.

4. CoeffX(ĝXY ) ⊆ span{Bk}: Consider a monomial m ∈ F⟨Y ⟩ with coeffi-
cient coeffm(ĝXY ) (which is an element of F⟨X⟩). We write coeffm(ĝXY ) =
coeffm(ĝ′X× ĝ′′Y )+coeffm(ĝ′XY × ĝ′′Y )+coeffm(ĝ′X× ĝ′′XY )+coeffm(ĝ′XY ×
ĝ′′1)+coeffm(ĝ′1× ĝ′′XY ). It suffices to show that each term in this expansion
is individually in span{Bk}.
– Observe that coeffm(ĝ′X × ĝ′′Y ) is a scalar multiple of ĝ′X which is in
Bk (1 ∈ Bk−1 and so ĝ′X × 1 ∈ Bk).

– Next, coeffm(ĝ′XY×ĝ′′Y ) is a linear combination of coefficients of the form
coeffm′(ĝ′XY ) wherem

′ is a prefix ofm. By induction, for each suchm′ we
have coeffm′(ĝ′XY ) ∈ span{Bt} ⊆ span{Bk} and so coeffm(ĝ′XY × ĝ′′Y ) ∈
span{Bk}.

– Further, coeffm(ĝ′X × ĝ′′XY ) is just ĝ
′
X × coeffm(ĝ′′XY ). Since we have

coeffm(ĝ′′XY ) ∈ span{Bp} ⊆ span{Bk−1} by induction, coeffm(ĝ′X ×
ĝ′′XY ) ∈ span{Bk}, by construction, as desired.

– Finally, by induction, coeffm(ĝ′XY ) and coeffm(ĝ′′XY ) are in span{Bt} ⊆
span{Bk} and span{Bp} ⊆ span{Bk} respectively, and therefore so are
coeffm(ĝ′XY × ĝ′′1) and coeffm(ĝ′1 × ĝ′′XY ).

• g is a sum gate: Let g = g′ + g′′ with d(g) = lk, d(g
′) = lk and d(g′′) = lt with

t ≤ k. We assume the claim for g′ and g′′, by induction on depth. That is, we
assume that CoeffX(ĝ′1),CoeffX(ĝ′X),CoeffX(ĝ′Y ),CoeffX(ĝ′XY ) ⊆ span{Bk} and
CoeffX(ĝ′′1), CoeffX(ĝ′′X), CoeffX(ĝ′′Y ), CoeffX(ĝ′′XY ) ⊆ span{Bt} ⊆ span{Bk}.
The claim then follows from the fact that ĝ1 = ĝ′1 + ĝ′′1, ĝX = ĝ′X + ĝ′′X ,
ĝY = ĝ′Y + ĝ′′Y and ĝXY = ĝ′XY + ĝ′′XY .

This finishes the proof Claim 4.2

Let us now bound |Bd′|. For each k ∈ [d′], define sk ≜ |Pk|. Note that
∑d′

k=1 sk is
at most s, the size of Ψ. Observe that for each k ≥ 2, we have by construction that
|Bk| ≤ sk(|Bk−1| + 1) + |Bk−1| ≤ (sk + 1)(|Bk−1| + 1). Define, for each 2 ≤ k ≤ d′,
bk ≜ |Bk| + 1. This fixes b1 = n + 2. Applying the inequality above, we get that
for each 1 ≤ k ≤ d′, bk ≤ (sk + 1)bk−1 + 1 ≤ (sk + 2)bk−1. Therefore, we see that

bd′ = |Bd′ |+ 1 ≤ (n+ 2)
(∏d′

k=2(sk + 2)
)
.

Applying the AM-GM inequality, |Bd′ | ≤ (n + 2)

(
s+ 2d′ − 2

d′ − 1

)d′−1

. Since Ψ

computes Paln,d, we must also have that |Bd′ | ≥ nd. This is because CoeffX(Paln,d) is
the entire set Xd of degree d monomials in X, and distinct monomials are independent
in the vector space F⟨X⟩. Therefore,
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nd/(d′−1) ≤ (n+ 2)1/(d
′−1)

(
s+ 2d′ − 2

d′ − 1

)
=⇒

s ≥ (d′ − 1)n(d/(d′−1))−(log(n+2)/((d′−1) logn)) − 2d′ + 2

≥ (d′ − 1)n(d−2)/(d′−1) − 2d′ + 2

This finishes the proof of Theorem 4.1.

Corollary 4.3 (Restatement of Theorem 2.2). Let Ψ be a circuit computing the
polynomial Paln,n(X, Y ) with syntactic degree O(n). Then there exists a constant c > 0
such that Ψ has size Ω(n1+c).

Proof. Let d′ = |DΨ|. Suppose the syntactic degree of Ψ is ≤ αn for some constant α.
Note that α ≥ 2 since the degree of Paln,n is 2n. Also, note that by definition, d′ ≤ αn
because d′ is the number of distinct syntactic degrees appearing in Ψ and also that
d′ ≥ log(2n) > 1, because the degree of Paln,n(X, Y ) is 2n and one may find a root to
leaf path in the circuit on which the syntactic degree drops by a factor of at most half
at each step. We split into two cases.

• Case 1). d′ ≤ n/2: In this case, we apply Theorem 4.1 and find that s ≥
(d′ − 1)n2 − 2d′ + 2 = Ω(n2 log n).

• Case 2). n/2 < d′ ≤ αn: In this case, we apply Theorem 4.1 and find that
s ≥ (n/2)n(n−2)/(αn−1) − 2d′ + 2 = Ω(n1+1/α).

Since α ≥ 2, we have s = Ω(n1+1/α) in both cases.

Remark 4.4. Homogeneous circuits computing Paln,n(X, Y ) can be assumed to have
syntactic degree 2n, and so Corollary 4.3 gives us a Ω(n3/2) lower bound for such
circuits. Note that this is worse than the Ω(n2) bound proved by Chatterjee and Hrubeš
(for a different polynomial). On the other hand, our technique works for a broader class
of circuits.

Let us now give a more precise analysis based on the number of distinct syntactic
degrees appearing in the circuit, i.e., on the size of |DΨ|.

Corollary 4.5 (Restatement of Theorem 2.3). Let Ψ be a circuit computing the
polynomial Paln,n(X, Y ). If |DΨ| = o(n log n), then Ψ has size ω(n log n).

Proof. Let the size of Ψ be s. Suppose |DΨ| = d′ = d′(n) = o(n log n). Define
g(n) ≜ n log n/d′(n). Note that g(n) = ω(1). Applying Theorem 4.1, we find that
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s ≥ (d′ − 1)× n(n−2)/(d′−1) −O(d′)

≥ (d′/2)× nn/2d′ −O(d′) (for large enough n)

≥ n log n

2g(n)
× 2g(n)/2 − o(n log n)

≥ ω(n log n)

This finishes the proof of Corollary 4.5.

When the syntactic degree is slightly higher, we have the following corollary.

Corollary 4.6 (Restatement of Theorem 2.4). Let Ψ be a circuit computing the
polynomial Paln,n(X, Y ) with syntactic degree o(n log n). Then Ψ has size ω(n log n).

Proof. If the syntactic degree of Ψ is o(n log n), then |DΨ| = o(n log n) and the conclu-
sion follows from Corollary 4.5

5 Separation between homogeneous and low syntac-

tic degree circuits

In this section, we observe that low syntactic degree circuits are provably more powerful
than homogeneous circuits in a fine grained sense. We will consider the ordered
symmetric polynomials OSk

n defined as follows:

OSk
n(x1, . . . , xn) =

∑
1≤i1<...<ik≤n

∏
j∈[k]

xij

On the one hand, Chatterjee and Hrubeš showed ([CH23], Theorem 14) the following
lower bound:

Theorem 5.1 ([CH23], Theorem 14). Any homogeneous circuit computing OS⌊n/2⌋
n

must have size Ω(n2).

On the other hand, they observe ([CH23], Section 5) that a well known construction
([BCS97], Chapters 2.1-2.3) of circuits of size O(n log2 n) computing the commutative
elementary symmetric polynomials (this construction uses the Fast Fourier Transform)
continues to hold noncommutatively. Here, we observe that the syntactic degree of this
(noncommutative) circuit, which simultaneously computes {OSk

n}nk=0, is n.
For completeness, we present the construction here and analyze the syntactic degree

of the resulting circuit. For simplicity, we work over the complex numbers, and we
assume that n is a power of 2. The circuit Cn is constructed such that it simultaneously
computes the set {OSk

n}nk=0 of polynomials. Cn will have size O(n log2 n) and syntactic
degree n.
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The basic observation is that for each k, OSk
n is the coefficient of tn−k in

∏n
i=1(xi+ t).

Here t commutes with the xi’s.
By induction, we assume that we have circuits C1

n/2 and C2
n/2 that compute the coeffi-

cients of 1, t, . . . , tn/2 in the polynomials A(t) =
∏n/2

i=1(xi+t) and B(t) =
∏n

i=n/2+1(xi+t)
respectively. We are now interested in computing the coefficients of 1, t, . . . , tn in the
polynomial A(t)B(t). In order to do this, we implement the well known FFT based
algorithm for univariate polynomial multiplication. Let ω ∈ C be a primitive 2n-th
root of unity.

• Evaluation: Using the Fast Fourier Transform (FFT) and the circuits C1
n/2

and C2
n/2 which represent coefficient vectors of A(t) and B(t) respectively, we

construct two circuits Φ1 and Φ2 for computing A(1), A(ω), . . . , A(ω2n−1) and
B(1), B(ω), . . . , B(ω2n−1) respectively. Importantly, the syntactic degree of Φ1

and Φ2 is exactly the same as that of C1
n/2 and C2

n/2, which by induction is n/2.
This is because the FFT implements a linear transformation which never multiplies
the entries of the coefficient vectors.

• Pointwise Product: Next, we use Φ1 and Φ2 to construct a circuit Φ which simul-
taneously computes the polynomials A(1)B(1), A(ω)B(ω), . . . , A(ω2n−1)B(ω2n−1).
The syntactic degree of Φ is n.

• Interpolation: Finally, we again use the (inverse) FFT to construct the circuit
Cn which computes the coefficients {OSk

n}nk=0 of the power of t in A(t)B(t). This
step does not increase the syntactic degree because it’s linear. Therefore, the
syntactic degree of Cn is n.

Cn in particular computes the polynomial OSn/2
n , has size O(n log2 n) ([CH23],

[BCS97]) and syntactic degree n. It heavily uses inhomogeneity but has low (in terms
of n/2) syntactic degree. This construction therefore demonstrates the power of low
syntactic degree circuits vis-à-vis homogeneous circuits.

6 Discussion

In this paper, we proved ω(n log n) lower bounds for noncommutative circuits of low
syntactic degree. The question of proving such lower bounds for general circuits remains
open. One possible avenue of attack for this problem is inventing a size preserving
procedure for reducing a circuit’s syntactic degree. As a concrete question, suppose
we are given a circuit of size s and syntactic degree d = ω(n) that computes Paln,n.
Can we construct another circuit computing Paln,n with syntactic degree O(n) and
size s× no(1)? An affirmative answer to this question, combined with our work, would
immediately yield strong lower bounds for general circuits. Reducing syntactic degree
is no harder (and perhaps easier) than homogenization, so one may expect a more
efficient way to do it than simple homogenization. Another question that stems from
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this work is whether we can handle separately the case when the number of distinct
syntactic degrees appearing in a circuit computing Paln,n is Θ(n log n).
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