
AC0[p]-Frege Cannot Efficiently Prove that

Constant-Depth Algebraic Circuit Lower Bounds are

Hard

Jiaqi Lu∗

Imperial College London

Rahul Santhanam†

University of Oxford

Iddo Tzameret‡

Imperial College London

September 19, 2025

Abstract

We study whether lower bounds against constant-depth algebraic circuits computing the Per-
manent over finite fields (Limaye–Srinivasan–Tavenas [J. ACM, 2025] and Forbes [CCC’24]) are
hard to prove in certain proof systems. We focus on a DNF formula that expresses that such lower
bounds are hard for constant-depth algebraic proofs. Using an adaptation of the diagonalization
framework of Santhanam and Tzameret (SIAM J. Comput., 2025), we show unconditionally that
this family of DNF formulas does not admit polynomial-size propositional AC0[p]-Frege proofs,
infinitely often. This rules out the possibility that the DNF family is easy, and establishes that
its status is either that of a hard tautology for AC0[p]-Frege or else unprovable (i.e., not a tautol-
ogy). While it remains open whether the DNFs in question are tautologies, we provide evidence
in this direction. In particular, under the plausible assumption that certain (weak) properties of
multilinear algebra—specifically, those involving tensor rank—do not admit short constant-depth
algebraic proofs, the DNFs are tautologies. We also observe that several weaker variants of the
DNF formula are provably tautologies, and we show that the question of whether the DNFs are
tautologies connects to conjectures of Razborov (ICALP’96) and Kraj́ıček (J. Symb. Log., 2004).

Additionally, our result has the following special features:
(i) Existential depth amplification: the DNF formula considered is parameterised by a

constant depth d bounding the depth of the algebraic proofs. We show that there exists some fixed
depth d such that if there are no small depth-d algebraic proofs of certain circuit lower bounds for
the Permanent, then there are no such small algebraic proofs in any constant depth.

(ii) Necessity: We show that our result is a necessary step towards establishing lower bounds
against constant-depth algebraic proofs, and more generally against any sufficiently strong proof
system. In particular, showing there are no short proofs for our DNF formulas, obtained by
replacing ‘constant-depth algebraic circuits’ with any “reasonable” algebraic circuit class C, is
necessary in order to prove any super-polynomial lower bounds against algebraic proofs operating
with circuits from C.

∗Department of Computing. This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101002742, EPRICOT
project).

†This project was partly funded by the EPSRC grant EP/Z534158/1, Integrated Approach to Computational Com-
plexity: Structure, Self-Reference and Lower Bounds.

‡Department of Computing. This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101002742, EPRICOT
project). It was also supported by the Engineering and Physical Sciences Research Council (EPSRC) under grant
EP/Z534158/1, Integrated Approach to Computational Complexity: Structure, Self-Reference and Lower Bounds.. Email:
iddo.tzameret@gmail.com

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 134 (2025)

1 Introduction

Propositional proof complexity studies the sizes of proofs for propositional tautologies in propositional
proof systems of interest [CR79, BP98, Kra19]. In general, a propositional proof system Q is defined by
a polynomial-time computable binary relation RQ such that a formula ϕ is a propositional tautology if
and only if there is some y such that RQ(ϕ, y) holds; any such y is called a proof of ϕ. The R-proof size
of ϕ is the size of the smallest y such that RQ(ϕ, y) holds. For natural sequences of tautologies (such
as the Pigeonhole Principle, Tseitin graph formulas, and formulas encoding circuit lower bounds) ϕn
and propositional proof systems of interest (such as Resolution, Frege and Extended Frege), we would
like to understand how the proof size of ϕn grows with the size of the formula |ϕn|, and in particular
whether the proof size is polynomially bounded or not as a function of the size of the formula.

In their seminal paper on propositional proof complexity, Cook and Reckhow [CR79] observed that
NP = coNP if and only if there is a propositional proof system in which every sequence of tautologies
has polynomially bounded proof size. This is the basis of the “Cook-Reckhow program” [BP98], of
which the ideal limit is the separation of NP from coNP (and hence also P from NP) by showing
super-polynomial proof size lower bounds for progressively stronger propositional proof systems.

The Cook-Reckhow program can be seen as a dual, nondeterministic, analogue of the circuit
complexity approach to P vs NP, which proceeds by showing super-polynomial circuit size lower bounds
for progressively stronger circuit classes. This analogy is further strengthened by the fact that there
is a close correspondence between Boolean circuit classes and inference-based propositional logic,
i.e., Frege-style proof systems [BP98], in which new proofs are derived from axioms and previously
derived proof lines using simple sound derivation rules. The basic Resolution proof system works with
proof lines that are clauses; the Frege proof system with lines that are Boolean formulas; and the
Extended Frege (EF) proof system with lines that are essentially Boolean circuits. The strength of
these Frege-style proof systems is generally believed to grow as the proof lines get more expressive,
just as the corresponding circuit classes are believed to increase in computational power as they grow
more expressive.

1.1 Hard Formulas

We say that a sequence of formulas ϕn is hard if there is no proof of ϕn of polynomial size in |ϕn|.
One of the earliest steps in the Cook-Reckhow program—establishing a lower bound on the size of
proofs—was taken by Haken [Hak85]. He showed a super-polynomial lower bound for the Pigeonhole
Principle formulas in Resolution. Soon after, Ajtai [Ajt88] showed a super-polynomial lower bound
for the Pigeonhole Principle in AC0-Frege, which is the Frege-style system where proof lines are
constant-depth Boolean circuits. Since then, several improvements and extensions of Ajtai’s result
have been obtained [Ajt94, BIK+96a, BIK+96b], and the lower bound techniques used in these works
mirror the random restriction techniques used to prove lower bounds against the circuit class AC0,
further reinforcing the analogy between proof complexity lower bounds and circuit complexity lower
bounds (cf. [PBI93, KPW95]). In the circuit complexity setting, we also know lower bounds for the
circuit class AC0[p] of constant-depth Boolean circuits with prime modular gates, shown using the
polynomial method of Razborov and Smolensky [Raz87, Smo87]. Can the polynomial method or
other techniques used to show proof complexity lower bounds for the corresponding Frege-style proof
system AC0[p]-Frege?

Despite much effort, this question has remained open for more than three decades, and continues
to be a frontier question in proof complexity. It is already highlighted as a key open problem in the
1998 survey of Beame and Pitassi [BP98], and the recent survey of Razborov re-iterates this [Raz16b].
Progress on the question has focused on restricted algebraic subsystems of AC0[p]-Frege such as the

1

Nullstellensatz [BIK+96a] and Polynomial Calculus [CEI96] proof systems, which we discussed next.

1.2 Related Work on Algebraic Proof Systems

Much of the research on AC0[p]-Frege lower bounds has focused on subsystems such as Nullstellen-
satz and Polynomial Calculus, which encode a CNF and the Boolean constraints on its variables as
polynomials and reduce the task of proving that the CNF has no satisfying Boolean assignments1 to
proving that these polynomials do not have a common zero [BIK+96a, BIK+96b]. Nullstellensatz and
Polynomial Calculus are propositional proof systems in the Cook-Reckhow sense [CR79], since the
verification of proofs can be done in deterministic polynomial time.

Pitassi [Pit97] proposed more powerful algebraic proof systems where verifying the correctness
of a proof requires identity testing of algebraic circuits, i.e., checking whether a given algebraic
circuit is identically zero. Identity testing is known to be doable in randomized polynomial time,
but it remains a long-standing open question whether it can be done in deterministic polynomial
time for general algebraic circuits. Thus, the more general algebraic systems proposed by Pitassi are
not propositional proof systems in the traditional Cook-Reckhow sense, but they do have efficient
randomized verification.

Grochow and Pitassi [GP18] defined a strong algebraic proof system in this sense, called the
Ideal Proof System (IPS), where a single algebraic circuit acts as a certificate that a set of polynomial
equations does not have a common zero. The size of an IPS proof is simply the size of the corresponding
algebraic circuit which acts as a certificate. [GP18] showed that IPS is at least as strong as EF,
and also that super-polynomial IPS lower bounds for any sequence of unsatisfiable formulas implies
that the Permanent does not have polynomial-size algebraic circuits. This gives a long sought-after
connection between proof complexity lower bounds for strong proof systems and (algebraic) circuit
complexity lower bounds, but for an algebraic proof system with randomized verification rather than
for a propositional proof system. In a more recent paper [ST25], the implication from proof complexity
lower bounds to algebraic complexity lower bounds was strengthened to an equivalence for a certain
explicit sequence of formulas.

Given that a proof in IPS is a single algebraic circuit, we can define and study variants of IPS
where this circuit is of a restricted form. This has been done in several works in the past decade
[FSTW21, AF22, GHT22, HLT24], which seek to show proof complexity lower bounds for subsystems
of IPS or to find closer connections between IPS variants and propositional proof systems. Proof
complexity lower bounds in this setting are typically shown by adapting algebraic circuit lower bound
techniques. One apparent drawback to this approach is that the hard candidates in these works are
not propositional formulas, but rather purely algebraic instances (e.g., x1 + · · · + xn + 1 = 0) that
cannot be directly translated to propositional logic (cf. [EGLT25] for a discussion of this point).

In 2021, a breakthrough super-polynomial algebraic circuit lower bound against constant-depth
algebraic circuits was shown by Limaye, Srinivasan and Tavenas [LST25] for large enough fields,
and very recently has been extended by Forbes [For24] to fields of characteristic p for any prime p.
This motivates the question of whether a similar super-polynomial proof size lower bound holds for
constant-depth IPS, where the certificate is a constant-depth algebraic circuit. Some progress on
this question has been made in recent work [AF22, GHT22, HLT24], but it remains open whether
there are unsatisfiable CNF formulas (or propositional logic formulas more generally) requiring super-
polynomial constant-depth IPS proofs.

1We will sometimes switch back and forth in our discussion between the tasks of refuting that a CNF formula is
satisfiable and of proving that a DNF formula is a tautology, which are equivalent by De Morgan’s laws.

2

1.3 Framework and Results

While most lower bounds in propositional proof complexity for concrete tautologies rely on combi-
natorial or algebraic techniques, one can also try to use logic—specifically, diagonalization—for this
purpose. This is a natural idea, but in the propositional setting it faces an inherent obstacle: self-
reference. Suppose that a formula Φ expresses a proof-complexity lower bound. Ideally, one would
like Φ to encode the statement that “Φ itself has no short proofs.” This, however, is impossible: any
reasonable propositional encoding of Φ must use at least |Φ| symbols, so Φ would necessarily be longer
than itself.2

One way to circumvent this problem, due to Kraj́ıček, is to encode proofs implicitly, and hence
more economically, via a circuit that computes the bits of the proof given their index (see [Kra04a]).

Santhanam–Tzameret [ST25] proposed a different approach: instead of referring to itself directly,
a formula refers to a smaller version of itself. Concretely, they introduced the iterated lower bound
formulas, which encode inductively the statement that “the previous-level formula has no short proof,”
thus avoiding direct self-reference. This yields diagonalization-based formulas that provably lack short
proofs infinitely often. Specifically, if at level ℓ the formula

φℓ := “there is no short proof of φℓ−1”

has either a long proof or a short proof, then in both cases it establishes the truth of the no-short-proof
claim for φℓ−1. If φℓ has no proof at all, then in particular it has no short proof. Thus, we are done:
either φℓ or φℓ−1 has no short proof, and this holds for infinitely many ℓ.

By referring to a smaller (and therefore different) version of itself, the resulting formulas demon-
strate that φℓ has no short proofs infinitely often. However, this still leaves open whether these
formulas are hard tautologies or not tautologies at all (and thus vacuously unprovable). Let us elabo-
rate on the difference between showing that a statement is not easy, and showing that it is hard, i.e.,
that it is a tautology with no short proofs.

In general, given a proof system, every propositional formula φ falls into one of three categories:
1. a tautology with a short proof (easy), 2. a tautology without short proofs (hard), or 3. not a
tautology (hence unprovable). This is depicted in Table 1.

Proof Complexity ↓ / Validity → Tautology Non-tautology

Easy 1. easy formula X

Hard 2. hard formula X

Unprovable X 3. trivially unprovable

Table 1: A priori, every propositional formula falls into one of the cells labeled 1, 2, or 3.

The standard aim in proof complexity is to establish hardness, i.e., to identify a formula in cell
2. For strong proof systems this remains open. Thus, a natural intermediate step is ruling out
that a formula is easy (cell 1), while leaving open whether it belongs to cell 2 or 3. For this to be
meaningful, one must consider sequences of formulas whose tautological status is unknown. A natural
choice is formulas expressing open lower bounds in complexity theory. This viewpoint was emphasised
by Razborov [Raz15], who highlighted the importance of studying the proof complexity of natural
statements whose validity is unknown. This approach was pursued in the 1990s by Razborov and
others [Raz95a, Raz95b, Raz98, Raz15] (see also Kraj́ıček [Kra04b] and Raz [Raz04]).3

2Friedman [Fri79] and Pudlak [Pud86, Pud87] show how to adapt the proof of Gödel’s Second Incompleteness Theorem
to give sub-linear proof size lower bounds for strong enough propositional proof systems.

3Typically, these propositional formulas are known unconditionally to be tautologies for random objects. For example,

3

In this work, as in [ST25], we follow this approach. We show that a family of DNF formulas of
unknown validity has no short proofs. This situation is illustrated in Table 2.

Proof Complexity ↓ / Validity → Tautology Non-tautology

Easy 1. X X

Hard 2. hard formula X

Unprovable X 3. trivially unprovable

Table 2: The DNF formula under consideration in this paper is shown to lie in either cell 2 or cell
3; in particular, we rule out the possibility that it is in cell 1 (with respect to the proof system
AC0[p]-Frege).

There is another reason to consider statements of unknown validity when proving lower bounds
for strong systems: very few plausible hard candidates are known for Frege and Extended Frege. The
only compelling ones are random CNFs and circuit lower bound formulas, and for neither do we have
effective methods for certifying validity. Indeed, confirming the validity of a fixed formula ϕ typically
requires a proof, and existing proof methods can usually be captured in polynomial-size Frege or
Extended Frege proofs—implying that ϕ is not a plausible hardness candidate for these systems.

As mentioned above, iterated lower bound formulas provide a simple way to show that a sequence
of formulas is not easy. However, unlike formulas asserting SAT /∈ P/poly, it is unclear whether there
is any reason to believe they are tautologies. What [ST25] demonstrated is that assuming some circuit
lower bounds one can go beyond the iterated lower bound formulas: rule out that some formulas are
easy for formulas that are more likely to be tautologies—specifically, formulas expressing that proving
algebraic circuit lower bounds is hard. In particular, [ST25] combined the diagonalization framework
with the [GP18] reduction from proof complexity to circuit lower bounds that showed that a proof-
size lower bound implies an algebraic circuit-size lower bound (VP ̸= VNP). Hence, instead of stating
recursively that lower bounds are hard to prove, one formulates φ to be the statement “there are no
short proofs of algebraic circuit lower bounds of the Permanent”. This avoids the recursively defined
statement of the iterated lower bound formulas, and is a statement whose validity is easier to assess
and use. In this way we obtain:

circuit lower bound ⇒ no short proof of

φ︷ ︸︸ ︷
‘no short proof of the circuit lower bound’ .

However, this still leaves an extra conditional layer: we need to rely on VP ̸= VNP (the circuit lower
bound) to rule out that φ is easy.

In the present work, we eliminate this conditionality in the constant-depth regime. Using the un-
conditional constant-depth algebraic circuit lower bound of Limaye, Srinivasan and Tavenas [LST25],
we extend the diagonalization framework to constant-depth circuits.

We demonstrate formulas that unconditionally are not easy for AC0[p]-Frege, such that:

• Plausibly tautologies: we give some evidence supporting the validity of these
formulas;

• Necessary (complete): any hard instance for a sufficiently strong proof system
must imply that our formulas are also not easy for that system;

if a formula encodes a circuit lower bound for some Boolean function f , then for random f the lower bound holds. Thus,
while the interesting candidate formula stating, say, SAT ̸⊆ P/poly is not known to be a tautology, for a random f the
statement f ̸∈ P/poly is.

4

• Amplifying: exhibiting a form of existential depth amplification: there exists a
constant d, such that if our formulas are hard for depth-d proofs then they are hard
for every constant-depth d′ proofs.

Theorem 1.1 (Corollary of the more formal Theorem 1.2 below). For every prime p there is an
explicit sequence {ϕn} of DNF formulas (of unknown validity) such that there are no polynomial-size
AC0[p]-Frege proofs of {ϕn}.

As mentioned above, Theorem 1.1 is shown via a diagonalization argument applied to the algebraic
proof system IPS. It exploits the lower bound in [LST25] and Forbes’ finite fields version [For24], and
the fact that Grochow-Pitassi [GP18] showed that constant-depth IPS over finite prime fields simulates
AC0[p]-Frege.

The formulas ϕn express proof size lower bounds for algebraic proof systems, and the evidence for
their validity comes from several sources.

Remark (Switching between DNF tautologies and unsatisfiable CNF formulas). Since we work with
the refutation system IPS (whose constant-depth version simulates AC0[p]-Frege), it is more natural
to consider CNF formulas that are conjectured to be unsatisfiable, rather than DNF formulas that are
conjectured to be valid. This is a matter of convenience, because of the trivial equivalence between
showing that a CNF is unsatisfiable and showing that its complementary DNF is valid. We sometimes
abuse notation and use “refutations” and “proofs” interchangeably; in all cases, the exact meaning
should be clear from the context.

The CNF formulas we consider are related to the circuit lower bound formulas considered by
Razborov [Raz95a, Raz95b, Raz98, Raz15], but with two differences: we consider algebraic rather
than Boolean circuits, and our formulas express lower bounds for proving constant-depth algebraic
lower bounds in constant-depth IPS, rather than express the circuit lower bounds directly. This allows
us to adapt the diagonalization technique used to show an equivalence between circuit complexity and
proof complexity in [ST25] to derive an unconditional proof complexity lower bound in our setting.

To state our result more precisely we need the following notation. Let F be some underlying
(finite) field. We let:

• cktd(permn, s): a CNF formula expressing that the Permanent on n × n matrices has depth-d
algebraic circuits of size s over F.

• ref-IPSd(ϕ, t): a CNF formula expressing that ϕ has size-t IPS refutations of depth-d over F.

• The diagonalizing CNF formula is:

ψd,d′,n := ref-IPSd′(cktd(permn, n
O(1)), NO(1)),

where N = |cktd(permn, n
O(1))| is O(2n

O(1)
), expressing that depth-d′ IPS refutes in polynomial-

size that the permanent is computed by a depth-d algebraic circuit of polynomial-size.

The use of O(1) in the notation above is informal. We use it to avoid using more quantifiers that
would make the statement below hard to parse.

Theorem 1.2 (Informal Statement; Theorem 5.3). For every constant prime p and for all positive
integers d, there is a positive integer d′ such that for all positive integers d′′, there are no polynomial-
size depth-d′′ IPS refutations of the formula ψd,d′,n, for infinitely many n over Fp.

5

Theorem 1.2 states the existence of no polynomial constant-depth IPS refutations for formulas
that themselves express constant-depth IPS short refutation of constant-depth circuit upper bounds.
Here the size of a proof is always measured as a function of the length of the formula being proved.
The result holds for any finite field, and further for sequence of prime fields of increasing size that are
not too large, as we show below in Theorem 1.7.

Theorem 1.1 follows from Theorem 1.2 as follows: i) take the same p as in the statement of
Theorem 1.2; ii) let the formulas ϕn in the former result to be the negation of ψd,d′,n in the latter
result4, where d (the stated depth of circuit computing Permanent) is chosen to be large enough
and d′ (the stated depth of IPS refutations) is chosen as a function of d so that Theorem 1.2 holds;
iii) finally, use the fact that constant-depth IPS over fields of characteristic p simulates AC0[p]-Frege
[GP18].

1.3.1 Implications and Several Important Aspects of Theorem 1.2

Supporting evidence for the unsatisfiability of the diagonalizing CNF formula. We de-
scribe three forms of supporting evidence that ψd,d′,n is unsatisfiable.

(I)Hardness of multilinear algebra for constant-depth proofs. To establish the unsatisfiability of ψd,d′,n,
it suffices to show that constant-depth algebraic circuit upper bound formulas do not admit small-size
constant-depth IPS refutations.

The tensor rank principle denoted TRankPr
m,n(A) and introduced in [GGL+25], states that an

order-r tensor A of rank m can be written as the sum of n rank-1 tensors of order r. This principle
is easily shown to be unsatisfiable when m > n. In [GGL+25] the tensor rank principle was reduced
to constant-depth algebraic circuit upper bound formulas in constant-depth IPS. As a result, proving
super-polynomial-size lower bounds for the tensor rank principle against constant-depth IPS implies
the unsatisfiability of the diagonalizing CNF formula:

Corollary 1.3 ([GGL+25]; informal, see Corollary 6.6). If the sequence of CNF formulas ψd,d′,n

are satisfiable then the tensor rank principle TRankPr
m,n(A) admits polynomial-size refutations in

depth-O(d′) IPS.

It is known from [LST25, For24] that the determinant cannot be computed by polynomial-size
constant-depth algebraic circuits over any field. Consequently, following the informal alignment
between proof complexity and circuit complexity, one expects that proof systems operating with
constant-depth algebraic circuits cannot efficiently prove statements expressing linear (or multilinear)
algebraic properties (whose standard proofs use notions like rank and determinants). Therefore, it
is reasonable to expect that TRankPr

m,n(A) does not admit polynomial-size refutations in constant-
depth IPS, and hence, that ψd,d′,n is unsatisfiable by the corollary.

(II)Weaker versions of the CNF that are provably unsatisfiable. To establish the unsatisfiability of
ψd,d′,n, it suffices to show that constant-depth algebraic circuit upper bound formulas do not admit
small-size constant-depth IPS refutations. Here we mention two recent results that establish this for
weaker variants of ψd,d′,n = ref-IPSd′(cktd(permn, n

O(1)), NO(1)), namely when the proof system is
Polynomial Calculus with Resolution (PCR) instead of depth-d′ IPS (denoted “IPSd′” in ψd,d′,n) and
when the lower bound statement is against either algebraic circuits of unrestricted depth instead of
general algebraic circuits (denoted “cktd” in ψd,d′,n), or against noncommutative algebraic branching
programs.

4We take negation because we consider AC0[p]-Frege to be a proof system for DNF tautologies, while constant-depth
IPS is a refutation system for unsatisfiable CNFs.

6

The refutation system PCR can be considered roughly as depth-2 IPS (see [GP18]). Note that
when we increase the strength of the algebraic circuit model replacing cktd in ψd,d′,n, we are actually
weakening the statement, since proving lower bounds against stronger circuit model is harder, meaning
that it is easier to show that such lower bounds are harder.

Corollary 1.4 ([GGL+25]; Theorem 6.11). Let f be any polynomial in n variables over F2. The CNF
formula ref-PCR(ckt(f, nO(1)), NO(1)), stating that PCR over F2 has a polynomial-size refutation of
the statement that f is computable by polynomial-size algebraic circuits, is unsatisfiable.

When the proof system in ψd,d′,n is weakened again to PCR instead of depth-d′ IPS, while the
algebraic circuit model is very weak (which strengthens the proof complexity lower bound statement),
namely, noncommutative algebraic branching program (denoted ncABP), we have the following:

Corollary 1.5 ([GGRT25]). Let f be any noncommutative polynomial in n variables over F2. The
CNF formula ref-PCR(ncABP(f, nO(1)), NO(1)), stating that PCR over F2 has polynomial-size refuta-
tions of the statement that f is computable by polynomial-size noncommutative algebraic branching
programs, is unsatisfiable.

Corollary 1.5 is proved via a reduction similar to the reduction from iterated proof complexity
generators to Boolean circuit upper bound formulas in [Raz15]. Since an algebraic branching program
is characterized by iterated matrix multiplication, one can reduce the iterated rank principle to the
ncABP upper bound formulas [GGRT25]. Thus, Corollary 1.5 follows by an exponential lower bound
for the iterated rank principle.

(III)Algebraic analogues of proof complexity conjectures: Kraj́ıček [Kra04b] and Razborov [Raz96,
Raz16b] have conjectured the following:5 Extended Frege cannot efficiently prove any super-
polynomial Boolean circuit lower bound. Since Extended Frege is essentially a proof system that
operates with Boolean circuits, this conjecture says that proof systems operating with Boolean circuits
cannot efficiently prove Boolean circuit lower bounds. We raise the following analogous conjecture:

Constant-depth algebraic analogue of Kraj́ıček-Razborov conjecture: For every
d, there is a d′ such that there are no polynomial-size depth-d′ IPS proofs of super-
polynomial depth-d lower bounds for any polynomial f .

(Of course, the conjectured statement above depends on a natural encoding or formulation of the
lower bound statement.)

The constant-depth algebraic analogue of the Kraj́ıček-Razborov conjecture implies the unsatis-
fiability of the CNF formulas ψd,d′,n for arbitrary d and large enough d′. The formulas ψd,d′,n assert
this only for f = perm, and therefore follow trivially from the conjecture.

Diagonalizing formulas are necessary for lower bounds. We show that the diagonalizing
formulas are not easy is logically necessary in order to prove super-polynomial lower bounds for C-IPS
for any “reasonable” algebraic circuit class C. In other words, we show that the non-easiness of the
diagonalizing formulas is implied by any super-polynomial lower bounds on tautologies for algebraic
proofs operating with circuits from C. To show this, we use the circuits-to-proofs connection of [GP18].

5Razborov conjectured in [Raz15] that Frege cannot efficiently prove super-polynomial circuit lower bounds for any
Boolean function. More specifically, [Raz15, Conjecture 1] with suitable parameters for the underlying combinatorial
designs implies under some hardness assumptions that Frege cannot efficiently prove that SAT̸⊆ P/poly. Further
conjectures about the impossibility of Extended Frege to efficiently prove circuit lower bounds have been circulated in
the proof complexity literature and discussions (cf. [Raz16a, Raz21, Kra11]).

7

The notation C-IPS stands for the IPS proof system in which an IPS refutation (i.e., certificate)
is written as an algebraic circuit from the class C (for instance, depth-d circuits, for a constant d,
algebraic formulas, etc.). A “reasonable” algebraic circuit class C is one for which the Grochow-Pitassi
implication from C-IPS lower bounds to C circuit lower bounds holds, and moreover this implication is
efficiently provable in C-IPS. Our methods in this paper imply that all the commonly studied algebraic
circuit classes which contain the class of constant-depth algebraic circuits are reasonable.

Theorem 1.6 (Informal; Theorem 5.10; If algebraic proofs are not p-bounded then it is not easy to
prove that circuit lower bounds are hard for algebraic proofs.). Let C be any “reasonable” algebraic
circuit class. If there is a sequence {ϕn}n of unsatisfiable CNF formulas that requires super-polynomial
size C-IPS proofs for infinitely many n, then the sequence {ψn}n of CNF formulas does not have
polynomial size C-IPS proofs for infinitely many n, where ψn = ref-C-IPS(C-ckt(permn, n

O(1)), NO(1)),
with N = |C-ckt(permn, n

O(1))|.

Theorem 1.6 is shown by abstracting the argument of Theorem 1.2 and combining the resulting
generalization with the Grochow-Pitassi implication from proof complexity lower bounds to circuit
complexity lower bounds [GP18].

Existential depth amplification. The statements ψd,d′,n themselves refer to proof complexity
lower bounds. Nevertheless, the lower bounds stated in the formulas and the lower bounds we get
from our result are different.

First, the formulas state hardness of proving circuit lower bounds, while we get hardness of proving
proof complexity lower bounds.

Second, notice the quantification over depths in Theorem 1.2: there is some fixed depth d′ such
that if depth-d′ IPS lower bounds on certain circuit lower bounds for the Permanent hold, then we get
super-polynomial lower bounds for proofs of any constant depth. This shows that we can escalate the
depth-d′ IPS lower bounds stated in the formulas to any constant-depth IPS lower bounds. In other
words, our result does not merely repeat the stated lower bound we assumed against depth-d′ proofs
of circuit lower bounds, but goes beyond it to rule out short proofs in any depth of proof complexity
lower bounds.

1.3.2 Extension to Larger Fields

While [ST25] and Theorem 1.2 crucially use fields of constant size, and the ability to efficiently encode
computation over finite fields of constant size by CNF formulas, we show further how to encode and
reason about larger and growing fields. This technical contribution may be interesting on its own
right.

Specifically, by reasoning about the bits of polynomial expressions with algebraic proofs, Theorem
1.2 can be extended to underlying fields of size polynomially bounded by |ψd,d′,n|. Bit arithmetic in
proof complexity was used before (cf. [Goe90, Bus87, AGHT24, IMP20]). We show how to reason
about iterated addition, iterated multiplication and modular arithmetic in constant-depth IPS over
polynomial-size fields.

Theorem 1.7 (Informal Statement; Corollary 7.23). Let {pn} be any sequence of primes such that
pn = O(2n), and Fpn be the field of size pn. For all positive integers d, there is a positive integer
d′ such that for all positive integers d′′, there are no polynomial-size depth-d′′ IPS refutations of the
formula ψd,d′,n = ref-IPSd′(cktd(permn, n

O(1)), NO(1)) for infinitely many n over Fpn, where N =

|cktd(permn, n
O(1))| is O(2n

O(1)
).

8

1.3.3 The Diagonalization Argument

Here we explain informally the idea behind the proof of Theorem 1.2, showing that the diagonalizing
CNFs have no short refutations. This is where most of the nontrivial technical work lies. The key
idea is to combine diagonalization with the known implication from proof complexity lower bounds
to circuit complexity lower bounds [GP18].

The argument builds on the following three nontrivial technical points:

1. There is a reasonable CNF encoding expressing that the permanent polynomial can be computed
by bounded-depth small-size algebraic circuits “VNP = VAC0” (this is cktd(permn, n

O(1)) from
before).6

2. There is a reasonable CNF encoding of the statement that there are constant-depth IPS refuta-
tions of size s for a CNF ϕ (this is ref-IPSd(ϕ, t) from before).

3. If ϕ is unsatisfiable and there are short and constant-depth IPS refutations of “constant-depth
IPS efficiently refutates ϕ”, then there are short and constant-depth IPS refutations of “VNP =
VAC0”.

The work of [ST25] formalized the Grochow-Pitassi implication from IPS lower bounds for CNFs
to VNP ̸= VP within IPS. Assumption 3 above is a novel formalisation of a constant-depth version of
the Grochow-Pitassi implication within constant-depth IPS.

According to [LST25], the permanent polynomial cannot be computed by constant-depth small-
size algebraic circuits, which means “VNP = VAC0” is an unsatisfiable CNF, using Assumption 1.
Assume for the sake of contradiction that ψd,d′,n, namely, ref-IPSd′(“VNP = VAC0”, poly) (or more
formally, ref-IPSd′(cktd(permn, n

O(1)), NO(1))) has polynomial-size refutations in constant-depth IPS.
Then by Assumption 3, “VNP = VAC0” has polynomial-size constant-depth IPS refutations. But this
contradicts the soundness of IPS, since IPS has (polynomial-size) refutations of the statement that
“VNP = VAC0” has polynomial-size IPS-refutations (formally, one has to account for instances of
different sizes when following this argument, and we explain this more precisely below).

To clarify further the argument, we describe a slightly more detailed overview, highlighting the
logic behind the argument. We show that infinitely often there are no polynomial-size constant-depth
IPS refutations of the formula ref-IPSd′(cktd(permn, n

c), nc
′
), expressing that there exists a constant

c′ such that cktd(permn, n
c) has IPS refutations of size bounded from above by the polynomial nc

′

and depth bounded by d′.

Proof sketch of Theorem 1.2 (formally Theorem 5.3). Let i.o. abbreviate infinitely often, and let a.e.

denote its converse almost everywhere, that is, “always except for finite many cases”. Let G d

f(n)
1 = 0

stands for an IPS refutation of G of refutation-size bounded from above by f(n) and refutation-depth
bounded from below by d. Our goal is to prove:

∀ c, d ∃ c′, d′ ∀ c′′, d′′ i.o. ref-IPSd′(

γ︷ ︸︸ ︷
cktd(permn, n

c), |γ|c′)︸ ︷︷ ︸
λ

̸
d′′

|λ|c′′
1 = 0, (1)

meaning that for all constants c, d there are constants c′, d′, such that for all constants c′′, d′′, λ does
not have polynomial-size |λ|c′′ and constant depth d′′ refutation, infinitely often.

Assume by way of contradiction that the converse holds, namely:

∃ c, d ∀ c′, d′ ∃ c′′, d′′ a.e. ref-IPSd′(

γ︷ ︸︸ ︷
cktd(permn, n

c), |γ|c′)︸ ︷︷ ︸
λ

d′′
|λ|c′′

1 = 0, (2)

6We use VAC0 to denote Valiant’s analogue of AC0, in the same way that VP and VNP correspond to P and NP. The
class VAC0 consists of families of polynomials computable by constant-depth, polynomial-size algebraic circuits.

9

Using the bounded-depth version of the argument of [GP18] (i.e., Item 3 above), we get that if VNP
has polynomial-size depth-d circuits, then depth-d IPS is polynomially bounded, namely:

∃c1, d1 cktd(perm|γ|, |γ|c)︸ ︷︷ ︸
γ′

d1

|γ′|c1
ref-IPSd(cktd(permn, n

c), |γ|c)
d′′

|λ|c′′
1 = 0,

where |λ| is polynomially bounded by |γ′|. The second part from left of the refutation above is given
by the fact that ref-IPSd′(cktd(permn, n

c), |γ|c′) can be efficiently refuted in bounded-depth IPS for
any d′ and c′. Hence, we take d′ to be d and c′ to be c, yielding the second part of the refutation
above.

Therefore, in particular, by combining the two proofs into one, we get

∃c2, d2 cktd(perm|γ|, |γ|c) d2

|γ′|c2
1 = 0.

Thus, ∃c2, d2, ref-IPSd2(cktd(perm|γ|, |γ|c), |γ′|c2)︸ ︷︷ ︸
Λ

is a satisfiable CNF formula. Since Equation (2) holds almost everywhere, we can take n to be |γ|.
Then, by taking d′ to be d2 and c′ to be c2 in Equation (2),

∃C,D ref-IPSd2(cktd(perm|γ|, |γ|c), |γ′|c2)︸ ︷︷ ︸
Λ

D

|Λ|C
1 = 0,

which means Λ is refutable. By the soundness of IPS, Λ is unsatisfiable which is a contradiction.

1.4 Relation to Previous Work and Conclusion

Theorem 1.1 gives a first instance in which a formula whose validity is unknown is shown uncondi-
tionally to have no short proofs in AC0[p]-Frege. Razborov [Raz96] and Kraj́ıček [Kra04b] conjecture
that all Boolean circuit lower bound formulas are hard for EF, but this is open even for AC0-Frege
and even when we relax hardness to being non-easy (as we do in our work). Our lower bound is for
proof complexity lower bound formulas rather than for circuit lower bound formulas, but our work is
somewhat similar in spirit to [Raz95a].

From a technical point of view, our work is related to recent works by [ST25, PS19], which also use
diagonalization ideas. The main result of [ST25] is a conditional existence of hard formulas for IPS,
under the assumption that VNP ̸= VP. In contrast, our result ruling out easy formulas for constant-
depth IPS, i.e., Theorem 1.2, is unconditional. One way to interpret our result is that it strengthens
the equivalence between proof complexity lower bounds and circuit complexity lower bounds shown in
[ST25] to hold for constant-depth circuits, and then applies the recent breakthroughs constant-depth
algebraic circuit lower bounds [LST25, For24] to get unconditional proof complexity lower bounds.

Unconditional lower bounds for conjectured tautologies are also shown in [PS24] using a somewhat
different diagonalization technique, however these are for highly non-explicit formulas7, and do not
seem directly relevant to progress on lower bounds for tautologies. In contrast, Theorem 1.6 shows
that Theorem 1.2 is a necessary step toward super-polynomial lower bounds for constant-depth IPS.

One novel aspect in Theorem 1.1 is that a proof complexity lower bound for a propositional proof
system is shown via algebraic circuit lower bounds. The theory of feasible interpolation in propositional

7There are two sources of non-explicitness in [PS24]. First, they consider a distribution on conjectured hard formulas
rather than a fixed hard formula at every length. Second the formulas refer to a non-constructively defined proof system
with non-uniform verification.

10

proof complexity enables proof complexity lower bounds for weak systems such as Resolution and
Cutting Planes to be derived from lower bounds on monotone circuit complexity [BPR97, Kra97,
Pud97]. However, there is cryptographic evidence against the applicability of feasible interpolation
techniques to AC0-Frege and stronger proof systems [BPR00]. Implications from average-case circuit
lower bounds to proof size lower bounds for strong systems were conjectured by Razborov [Raz15] in
the context of proof complexity generators [ABRW04], but these conjectures are so far unproven.

We note that the question of proving proof complexity lower bounds for constant-depth IPS has
in itself been highlighted and studied in recent works [AF22, GHT22, HLT24, EGLT25, BLRS25].
Andrews and Forbes [AF22] show a super-polynomial constant-depth IPS lower bound for refut-
ing certain sets of polynomial equations. However, their hard instances do not themselves have
polynomial-size constant-depth circuits, and in particular are not CNFs. Govindasamy, Hakoniemi
and Tzameret [GHT22] give a super-polynomial multilinear constant-depth IPS lower bound for re-
futing polynomial equations expressible as small depth-2 algebraic circuits. Hakoniemi, Limaye and
Tzameret [HLT24] extend and strengthen these results from multilinear to low individual degree proofs
[GHT22]. However, they also show that the lower bound framework of [GHT22, HLT24] is incapable
of proving lower bounds for CNFs. Elbaz, Govindasamy, Lu and Tzameret [EGLT25] showed that any
constant-depth IPS lower bounds over finite fields would lead to lower bounds for CNF formulas and
thus AC0[p]-Frege lower bounds. Alas, the strongest constant-depth IPS lower bounds [HLT24] are
restricted to low individual degree refutations, for which the result of [EGLT25] do not hold. Proving
lower bounds for CNFs is essential for the application to AC0[p]-Frege lower bounds, and none of the
previous works achieve this. Our work provides an explicit CNF formula with no short refutations
and with some evidence for its unsatisfiability.

2 Preliminaries

2.1 Algebraic Complexity

Let F be a field. Denote by F[x] the field of polynomials with coefficients from F and variables
x = [x1, · · · , xn]. A polynomial is a formal linear combination of monomials, where a monomial is a
product of variables. Two polynomials are identical if all their monomials have the same coefficients.
The degree of a polynomial is the maximum total degree of a monomial in it.

Definition 2.1 (Depth-∆ algebraic circuits and algebraic formulas). An algebraic circuit over a field
F is a finite directed acyclic graph. The leaves are called input nodes, which have in-degree zero. Each
input node is labelled either with a variable or a field element in F. All the other nodes have unbounded
in-degree and are labelled by + or ×. The output of a + (or ×) node computes the addition (product,
resp.) of the polynomials computed by its incoming nodes. An algebraic circuit is called an algebraic
formula if the underlying directed acyclic graph is a tree (every node has at most one outgoing edge).
The size of an algebraic circuit C is the number of nodes in it, denoted by |C|. The depth of C is the
length of the longest directed path in it, denoted by Depth(C). If Depth(C) = ∆ we call C a depth-∆
circuit.

The product-depth of an algebraic circuit is the maximum number of product gates on a root-
to-leaf path. The product-depth is, without loss of generality, equal to the depth up to a factor of
two.

Definition 2.2 (Syntactic-degree sdeg(·)). Let C be an algebraic circuit and v a node in C. The
syntactic-degree sdeg(v) of v is defined as follows:

1. If v is a field element or a variable, then sdeg(v) := 0 and sdeg(v) := 1, respectively;

11

2. If v =
∑t

i=0 ui then sdeg(v) := max{sdeg(u0), · · · , sdeg(ut)};

3. If v =
∏t

i=0 ui then sdeg(v) :=
∑t

i=0 sdeg(ui).

Definition 2.3 (VP [Val79]). Over a field F, VPF is the class of families f = (fn)
∞
n=1 of polynomials

fn such that fn has poly(n) input variables, is of poly(n) degree, and can be computed by algebraic
circuits over F of poly(n) size.

Definition 2.4 (VNP [Val79]). Over a field F, VNPF is the class of families g = (gn)
∞
n=1 of polynomials

gn such that gn has poly(n) input variables and is of poly(n) degree, and can be written as

gn(x1, · · · , xpoly(n)) =
∑

e∈{0,1}poly(n)

fn(e, x)

for some family (fn) ∈ VPF.

Definition 2.5 (VAC0). Over a field F, VAC0
F is the class of families f = (fn)

∞
n=1 of polynomials

fn such that fn has poly(n) input variables, is of poly(n) degree, and can be computed by algebraic
circuits over F of poly(n) size and depth O(1).

Notice that VP,VNP and VAC0 are nonuniform complexity classes.

Definition 2.6 (Projection reduction [Val79]). A polynomial f(x1, · · · , xn) is a projection of a
polynomial g(y1, · · · , ym) if there is a mapping σ from {y1, · · · , ym} to {0, 1, x1, · · · , xn} such that
f(x1, · · · , xn) = g(σ(y1), · · · , σ(ym)). A family of polynomials (fn) is a polynomial projection or
p-projection of another family (gn) if there is a function t(n) = nΘ(1) such that fn is a projection of
gt(n) for all (sufficiently large) n. We say that f is projection-reducible to g if f is a projection of g.

The symmetric group, denoted by Sn, over n elements {1, . . . , n} is the group whose elements are
all bijective functions from [n] to [n] and whose group operation is that of function composition. The
sign sgn(σ) of a permutation σ ∈ Sn is 1, if the permutation can be obtained with an even number of
transpositions (exchanges of two [not necessarily consecutive] entries); otherwise, it is −1.

Definition 2.7 (Determinant). The Determinant of an n× n matrix A is defined as

det(A) :=
∑
σ∈Sn

(sgn(σ)
n∏

i=1

ai,σ(i)).

Definition 2.8 (Permanent). The Permanent of an n× n matrix A = (aij) is defined as

perm(A) :=
∑
σ∈Sn

n∏
i=1

ai,σ(i).

It is known that the Permanent polynomial is complete under p-projections for VNP when the
field F is a field of characteristic different from 2. The Determinant polynomial is not known to be
complete for VP under p-projections.

Theorem 2.9 ([Val79]). For every field F, every polynomial family on n variables that is computable
by an algebraic formula of size u is projection reducible to the Determinant polynomial (over the
same field) on u + 2 variables. For every field F, except those that have characteristic 2, every
polynomial family in VNPF is projection reducible to the Permanent polynomial (over the same field)
with polynomially more variables.

12

Definition 2.10 (Iterated Matrix Multiplication). Let n and d be such that N = dn2. The Iterated
Matrix Multiplication IMMn,d on N = dn2 variables is defined as the following polynomial. The
underlying variables are partitioned into d sets X1, · · · , Xd of size n2, each of which is represented as
an n × n matrix with distinct variable entries. Then IMMn,d is defined to be the polynomial that is
the (1, 1)th entry of the product matrix X1 ·X2 · · ·Xd.

Iterated Matrix Multiplication is in VP.

Theorem 2.11 (Super-polynomial lower bounds against constant-depth circuits over large field
[LST25]). Assume d ≤ logn

100 and the characteristic of F is 0 or greater than d. For any product-
depth ∆ ≥ 1, any algebraic circuit C computing IMMn,d of product-depth at most ∆ must have size

at least nd
exp−O(∆)

.

[BDS24] improved the lower bound for IMM against constant-depth. Let µ(∆) = 1/(F (∆) − 1),
where F (n) = Θ(φn) is the nth Fibonacci number (starting with F (0) = 1, F (1) = 2) and φ =
(1 +

√
5)/2 is the golden ratio.

Theorem 2.12 ([BDS24]). Fixed a field F of characteristic 0 or greater than d. Let N, d,∆ be
such that d = O(log / log logN). Then, any product-depth ∆ circuit computing IMMn,d on N = dn2

variables must have size at least NΩ(dµ(2∆)/∆).

A recent result by Forbes [For24] extended these results to any field, including finite fields.

Corollary 2.13 (Super-polynomial lower bounds on constant-depth circuits over any field [For24]).
Let F be any field, and d = o(log n). Then the iterated matrix multiplication polynomial IMMn,d where
Xi requires

nΘ(dµ(2∆)/∆)

size algebraic circuits of product depth ∆.

Since IMMn,d is a p-projection of the Permanent polynomial with poly(n, d) many variables, it
follows that the Permanent does not have constant-depth polynomial-size circuits over any field, in
the following sense.

Theorem 2.14 (No polynomial-size constant depth circuits for the Permanent [LST25, For24]). Let
∆ ≥ 1 and let F be any field. There are no constants c1, c2, such that the Permanent polynomial
perm(A) of the n× n symbolic matrix A over the field F is computable by an algebraic circuit of size
c1n

c2 and depth ∆ where ∆ is independent with n, for sufficiently large n.

2.2 Proof Complexity

Definition 2.15 (Propositional proof system, [CR79]). A propositional proof system is a polynomial-
time computable relation R(·, ·) such that for each x ∈ {0, 1}∗, x ∈ TAUT, if and only if there exists
y ∈ {0, 1}∗ such that R(x, y) holds. Given x ∈ TAUT, any y for which R(x, y) holds is called an
R-proof of x. A propositional proof system R is polynomially bounded (p-bounded) if there exists
a polynomial p such that for each x ∈ TAUT, there is an R-proof y of x of size at most p(|x|)
(i.e. |y| ≤ p(|x|)).

Definition 2.16 (p-simulation). Let P and Q be propositional proof systems. We say that P p-
simulates Q, written Q ≤p P , if there exists a polynomial p(·) such that for every propositional
tautology φ and every Q-proof π of φ of size s, there exists a P -proof π′ of φ whose size is at most
p(s).

13

Definition 2.17 (Frege, AC0-Frege and AC0[p]-Frege). A Frege rule is an inference rule of the form:
B1, . . . , Bn =⇒ B, where B1, . . . , Bn, B are propositional formulas. If n = 0, then the rule is an
axiom. A Frege system is specified by a finite set, R, of rules. Given a collection R of rules, a
derivation of a 3DNF formula f is a sequence of formulas f1, . . . , fm such that each fi is either an
instance of an axiom scheme or follows from previous formulas by one of the rules in R and such that
the final formula fm is f .

AC0-Frege are Frege proofs but with the additional restriction that each formula in the proof has
bounded depth.

AC0[p]-Frege are bounded-depth Frege proofs that also allow unbounded fan-in MODp connectives,
namely MODi

p for i ∈ {0, . . . , p− 1}. MODi
p(x1, . . . , xk) evaluates to true if the number of xi that are

true is congruent to i mod (p) and evaluates to false otherwise.

Definition 2.18 (Polynomial Calculus [CEI96]). Given a field F and a set of variables, a polynomial
calculus (PC) refutation of the set of axioms P is a sequence of polynomials such that the last line
is the polynomial 1 and each line is either an axiom or is derived from the previous lines using the
following inference rules:

f g

αf + βg

and
f

x · f
,

where α, β ∈ F are any scalars and x is an variable. The refutation has degree d if all the polynomials
in it have degrees at most d.

The degree of a PC proof is defined as the maximal degree of a polynomial appearing in it, and its
size is the number of different monomials in this proof.

Definition 2.19 (Polynomial Calculus with Resolution [ABSRW02]). Let F be a fixed field. Poly-
nomial Calculus with Resolution (PCR) is the proof system whose lines are polynomials from
F[x1, · · · , xn, x1, · · · , xn], where x1, · · · , xn are treated as new formal variables. PCR has all default
axioms and inference rules of PC (including, of course, those that involve new variables xi), plus
additional default axioms xi + xi = 1 (i ∈ [n]).

For a clause C, denote by ΓC the monomial

ΓC :=
∏
x∈C

x ·
∏
x∈C

x

and for a CNF τ , let Γτ := {ΓC |C ∈ τ}. (Note that τ is unsatisfiable if and only if the polynomials
Γτ have no common root in F satisfying all default axioms of PCR.) A PCR refutation of a CNF τ is
a PCR proof of the contradiction 1 = 0 from Γτ .

The degree of a PCR proof is defined as the maximal degree of a polynomial appearing in it, and
its size is the number of different monomials in this proof.

PC and PCR are equivalent with respect to the degree measure (via the linear transformation
x =⇒ 1− xi).

2.3 Ideal Proof System

Given f1, · · · , fm ∈ F[x1, · · · , xn] over some field F, Hilbert’s Nullstellensatz shows that f1(x) =
· · · = fm(x) = 0 is unsatisfiable (over the algebraic closure of F) if and only if there are polynomials
g1, · · · , gm ∈ F[x] such that

∑
j gj(x)fj(x) = 1 (as a formal identity), or equivalently, that 1 is in the

ideal generated by the {fj}j .

14

Definition 2.20 ((Boolean) Ideal proof system (IPS) [GP18]). Let f1(x), · · · , fm(x), p(x) ∈
F[x1, · · · , xn] be a collection of polynomials. An IPS proof of p(x) = 0 from {fj(x)}mj=1, showing
that p(x) = 0 is semantically implied from the assumptions {fj(x) = 0}mj=1 over 0-1 assignments, is
an algebraic circuit C(x, y, z) ∈ F[x, y1, · · · , ym, z1, · · · , zn], such that (the equalities in what follows
stand for formal polynomial identities8)

1. C(x, 0, 0) = 0.

2. C(x, f1(x), · · · , fm(x), x21 − x1, · · · , x2n − xn) = p(x).

The size of the IPS proof is the size of the circuit C. The variables y, z are sometimes called the
placeholder variables since they are used as a placeholder for the axioms. An IPS proof C(x, y, z) of
1 = 0 from {fj(x) = 0}mj=1 is called an IPS refutation of {fj(x) = 0}mj=1. If C comes from a restricted
class of algebraic circuits C, then this is called a C-IPS refutation.

We shall also use the algebraic version of IPS (which does not use the Boolean axioms):

Definition 2.21 ((Algebraic) Ideal proof system (IPSalg) [GP18]). Let f1(x), · · · , fm(x), p(x) ∈
F[x1, · · · , xn] be a collection of polynomials. An IPSalg proof of p(x) = 0 from {fj(x)}mj=1, show-
ing that p(x) = 0 is semantically implied from the assumptions {fj(x) = 0}mj=1 over assignments by
field elements, is an algebraic circuit C(x, y) ∈ F[x, y1, · · · , ym], such that

1. C(x, 0) = 0.

2. C(x, f1(x), · · · , fm(x)) = p(x).

The size and refutation are defined similarly to Definition 2.20.

Now, we introduce some notation we will use in the following sections. Let F = {fi(x) = 0}mi=1

be a collection of circuit equations, namely the fi’s are written as algebraic circuits. We use |F| to
denote the total size of the circuit equations in F . We denote by C : F IPS

s,∆
1 = 0 the fact that F has

an IPS refutation C of size at most s and depth at most ∆. If we do not care about the explicit size

of the IPS refutation, we denote by C : F IPS

∗,∆
1 = 0 the fact that F has an IPS refutation C of size

polynomially bounded by |F| and of depth ∆.
When we deal with algebraic IPS refutations, we will use the same notation as above, only using

IPSalg instead of IPS.
Polynomial identities are proved for free in IPS, which was observed in [AGHT24], and this also

holds for constant-depth IPS proofs.

Proposition 2.22. If C(x) is a Depth-∆ algebraic circuit in the variables x over the field F that
computes the zero polynomial, then there is an Depth-∆ IPS proof of C(x) = 0 of size |F |.

The following proposition can be regarded as a constant-depth analogue of Proposition A.5 in
[AGHT24].

Proposition 2.23 (proof by boolean cases in bounded-depth IPS). Let F be a field. Let F be
a collection of m many circuit equations over n many variables x. Assume that for every fixed
assignment α ∈ {0, 1}r where 0 ≤ r ≤ n we have

m∑
i=1

Gi · Fi +
r∑

i=1

Li · (xi − αi) +
n∑

i=1

Qi · (x2i − xi) = f(x)

8That is, C(x, 0, 0) computes the zero polynomial and C(x, f1(x), · · · , fm(x), x2
1 − x1, · · · , x2

n − xn) computes the
polynomial p(x)

15

where each Gi, Li and Qi has size s and depth-2 (in other words, each Gi, Li, and Qi is just a
summation of terms9), then there exist G′

i and Q
′
i such that

m∑
i=1

G′
i · Fi +

n∑
i=1

Q′
i · (x2i − xi) = f(x)

where each G′
i, Q

′
i has size cr · s and depth-2 for some constant c independent of r.

Proof. We prove by induction on r.
Base case: r = 0. Assume that

m∑
i=1

Gi · Fi +

n∑
i=1

Qi · (x2i − xi) = f(x)

where each Gi and Qi has size s and depth-2, then clearly there exist G′
i and Q

′
i such that

m∑
i=1

G′
i · Fi +

n∑
i=1

Q′
i · (x2i − xi) = f(x)

where each G′
i, Q

′
i has size cr · s (which is s in the base case) and depth-2 for some constant c

independent of r.
induction step: r > 0. Suppose for any assignment α ∈ {0, 1}r,

m∑
i=1

Gi · Fi +
r∑

i=1

Li · (xi − αi) +
n∑

i=1

Qi · (x2i − xi) = f(x)

where each Gi, Li and Qi has size s and depth-2. We aim to show that there exist G′
i and Q

′
i such

that
m∑
i=1

G′
i · Fi +

n∑
i=1

Q′
i · (x2i − xi) = f()

where each G′
i, Q

′
i has size c

r · s and depth-2 for some constant c independent of r.
Then, by our assumption, we know that for every fixed assignment α ∈ {0, 1}r−1 we have:

m∑
i=1

Gi · Fi +

r∑
i=2

Li · (xi − αi) +M · x1 +
n∑

i=1

Qi · (x2i − xi) = f(x) (3)

m∑
i=1

Pi · Fi +

r∑
i=2

Ki · (xi − αi) +N · (1− x1) +

n∑
i=1

Wi · (x2i − xi) = f(x) (4)

where each Gi, Li, M , Qi, Pi, Ki, N and Wi is of size s and depth 2. By the induction hypothesis,

m∑
i=1

G′
i · Fi +M ′ · x1 +

n∑
i=1

Q′
i · (x2i − xi) = f(x) (5)

m∑
i=1

P ′
i · Fi +N ′ · (1− x1) +

n∑
i=1

W ′
i · (x2i − xi) = f(x) (6)

where each G′
i, M

′, Q′
i, P

′
i , N

′ and W ′
i is of size cr−1 · s and depth 2.

9A term is a monomial multiplied by a field element.

16

By multiplying Equation (5) and Equation (6) with 1− x1 and x1, respectively, we get

m∑
i=1

(1− x1) ·G′
i · Fi + (1− x) ·M ′ · x1 +

n∑
i=1

(1− x1)Q
′
i · (x2i − xi) = (1− x1) · f(x) (7)

m∑
i=1

x1 · P ′
i · Fi + x1 ·N ′ · (1− x1) +

m∑
i=1

x1 ·W ′
i · (x2i − xi) = x1 · f(x) (8)

By summing Equation (7) and Equation (8), we get

m∑
i=1

[(1− x1)G
′
i + x1P

′
i] · Fi + [(1− x1)M

′ + (1− x1)Q
′
1 + x1N

′ + x1W
′
1] · (x21 − x1)+

n∑
i=2

[(1− x1)Q
′
i + x1W

′
i] · (x2i − xi) = f(x)

Note that both (1−x1)G
′
i+x1P

′
i , (1−x1)M

′+(1−x1)Q
′
1+x1N

′+x1W
′
1 and (1−x1)Q

′
i+x1W

′
i

can be computed by an algebraic circuit of size at most 6 · cr−1 ·s ≤ cr ·s and depth 2 for large enough
c independent with r. This concludes the proof of the proposition.

The following theorem is from [GP18], and it already holds for IPSalg.

Theorem 2.24 (Superpolynomial IPS lower bounds imply VNP ̸= VP [GP18]). For any field F, a
superpolynomial lower bound on IPSalg (also IPS) refutations over F for any family of CNF formulas
implies VNPF ̸= VPF. The same result holds if we assume that the IPSalg (IPS) refutation size lower
bound holds only infinitely often.

Lemma 2.25 ([GP18]). Every family of unsatisfiable CNF formulas (φn) has a family of IPSalg (also
IPS) certificates (Cn) in VNPF.

2.4 Encoding in Fixed Finite Fields

In the section, we are working in the finite field Fq where q is a constant (independent of the size of
the formulas and their number of variables). When we work with CNF formulas in IPS we assume
that the CNF formulas are translated as follows:

Definition 2.26 (Algebraic translation of CNF formulas). Given a CNF formula in the variables x,
every clause

∨
i∈P xi∨

∨
j∈N ¬xj is translated into

∏
i∈P (1−xi) ·

∏
j∈N xj = 0. (Note that these terms

are written as algebraic circuits as displayed, where products are not multiplied out.)

Notice that a CNF formula is satisfiable by 0-1 assignment if and only if the assignment satisfies
all the equations in the algebraic translation of the CNF.

The following definitions are taken from [ST25], and we supply them here for completeness.

Definition 2.27 (Algebraic extension axioms and unary bits [ST25]). Given a circuit C and a node
g in C, we call the equation

xg =

q−1∑
i=0

i · xgi

the algebraic extension axiom of g, with each variables xgi being the ith unary-bit of g.

17

Definition 2.28 (Plain CNF encoding of bounded-depth algebraic circuit cnf(C(x)) [ST25]). Let
C(x) be a circuit in the variables x. The plain CNF encoding of the circuit C(x) denoted cnf(C(x))
consists of the following CNFs in the unary-bit variables corresponding to all the gates in C and all
the extra extension variables in Item 3:

1. If xi is an input node in C, the plain CNF encoding of C uses the variables xxi0 , · · · , xxi(q−1)

that are the unary-bits of xi, and contains the clauses that express that precisely one unary-bit
is 1 and all other unary-bits are 0:

q−1∨
j=0

xxij ∧
∧

j ̸=l∈{0,··· ,q−1}

(¬xxij ∨ ¬xxil).

2. If α ∈ Fq is a scalar input node in C, the plain CNF encoding of C contains the {0, 1} constants
corresponding to the unary-bits of α. These constants are used when fed to (translation of) gates
according to the wiring of C in item 4.

3. For every node g in C(x) and every satisfying assignment α to the plain CNF encoding, the
corresponding unary-bit xgi evaluates to 1 if and only if the value of g is i ∈ {0, · · · , q − 1}
(when the algebraic inputs x ∈ (Fq)

∗ to C(x) take on the values corresponding to the Boolean
assignment α; ”∗” here means the Kleene star). This is ensured with the following equations:
if g is a ◦ ∈ {+,×} node that has inputs u1, · · · , ut. Then we consider the following equations:

u1 ◦ u2 = vg1
ui+2 ◦ vgi = vgi+1, 1 ≤ i ≤ t− 3

ut ◦ vgt−2 = g.

In other words, we add the extension variables vgi for each +,× gate, to sequentially compute the
unbounded fan-in gate g into a sequence of binary operations in the obvious way. For simplicity,
we denote each equation above by x ◦ y = z. Then, for each x ◦ y = z we have a CNF ϕ in the
unary-bits variables of x, y, z that is satisfied by assignment precisely when the output unary-
bits of z get their correct values based on the (constant-size) truth table of ◦ over Fq and the
input unary-bits of x, y (we ensure that if more than one unary-bit is assigned 1 in any of the
unary-bits of x, y, z then the CNF is unsatisfiable).

4. For every unary-bit variable xgi, we have the Boolean axiom (recall we write these Boolean
axioms explicitly since we are going to work with IPSalg):

x2gi − xgi = 0.

Therefore, we can see that the formula size of cnf(C(x) = 0) is poly(q2 · |C|).

Note that the only variables in a plain CNF encoding are unary-bit variables.

Definition 2.29 (Plain CNF encoding of a bounded-depth circuit equation cnf(C(x) = 0) [ST25]).
Let C(x) be a circuit in the variables x. The plain CNF encoding of the circuit equation C(x) = 0
denoted cnf(C(x) = 0) consists of the following CNF encoding from Definition 2.28 in the unary-bits
variables of all the gates in C (and only in the unary-bit variables), together with the equations:

xgout0 = 1 and xgouti = 0, for all i = 1, · · · , q − 1,

which express that gout = 0, where gout is the output node of C.

18

Definition 2.30 (Extended CNF encoding of a circuit equation (circuit, resp.); ecnf(C(x) = 0)
(ecnf(C(x)), resp.) [ST25]). Let C(x) be a circuit in the variables x over the finite filed Fq. The
extended CNF encoding of the circuit equation C(x) = 0 (circuit C(x), resp.), in symbols ecnf(C(x) =
0) (ecnf(C(x)), resp.), is defined to be a set of algebraic equations over Fq in the variables xg and
xg0, · · · , xgq−1 which are the unary-bit variables corresponding to the node g in C, that consist of:

1. the plain CNF encoding of the circuit equation C(x) = 0 (circuit C(x), resp.), namely,
cnf(C(x) = 0) (cnf(C(x)), resp.); and

2. the algebraic extension axiom of g, for every gate g in C.

Since we work with extension variables for each gate in a given circuit equation C(x) = 0, it is
more convenient to express circuit equations as a set of equations that correspond to the straight line
program of C(x) (which is equivalent in strength formulation to algebraic circuits):

Definition 2.31 (Straight line program (SLP)). An SLP of a circuit C(x), denoted by SLP(C(x)),
is a sequence of equations between variables such that the extension variable for the output node
computes the value of the circuit assuming all equations hold. Formally, we choose any topological
order g1, g2, · · · , gi, · · · , g|C| on the nodes of the circuit C (that is, if gj has a directed path to gk in C
then j < k) and define the following set of equations to be the SLP of C(x):

gi = gj1 ◦ gj2 ◦ · · · ◦ gjt for ◦ ∈ {+,×} iff gi is a ◦ node in C with t incoming edges from gj1, · · · , gjt.

An SLP representation of a circuit equation C(x) = 0 means that we add to the SLP above the equation
g|C| = 0, where g|C| is the output node of the circuit.

The below lemma, which we refer to as the translation lemma in this paper, shows that we can
derive the circuit equations from the extended CNF formulas encoding those circuit equations with
some additional axioms and vice versa.

Lemma 2.32 (Translating between extended CNFs and circuit equations in fixed finite fields [ST25]).
Let Fq be a finite field, and let C(x) be a circuit of depth ∆ in the x variables over Fq. Then, the
following both hold

ecnf(C(x) = 0)
IPSalg

∗,O(∆)
C(x) = 0 (9)

{
xg =

∑q−1
i=0 i · xgi : g a node in C

}
,{

x2gi − xgi = 0 : g is a node in C, 0 ≤ i < q
}
,

IPSalg

∗,O(∆)
ecnf

(
C(x) = 0

)
,{∑q−1

i=0 xgi = 1 : g is a node in C
}
, C(x) = 0, SLP(C(x))

(10)

Proposition 2.33 (Proposition 3.7 in [ST25]). Let C(x) = 0 be a circuit equation over Fq where q
is any constant prime. Then, C(x) = 0 is unsatisfiable over Fq iff cnf(C(x) = 0) is an unsatisfiable
CNF iff ecnf(C(x) = 0) is an unsatisfiable set of equations over Fq.

Using results in [EGLT25], we could remove some extension axioms used in [ST25] when working
over fixed finite fields. We use UBITj(x) to denote the following Lagrange polynomial:

UBITj(x) :=

∏q−1
i=0,i ̸=j(x− i)∏q−1
i=0,i ̸=j(j − i)

(11)

19

where x can be a single variable or an algebraic circuit. Hence, it is easy to observe that

UBITj(x) =

{
1, x = j,

0, otherwise.

Also, suppose x has size |x| and depth Depth(x) (when x is a single variable, it has size 1 and depth
1), UBITj(x) can be computed by an algebraic circuit of size O(|x|q−1) and depth Depth(x) + 2.

Definition 2.34 (Semi-CNF SCNF encoding of a bounded-depth circuit equation SCNF(C(x) = 0)).
Let C(x) be a circuit in the variables x. The semi-CNF encoding of the circuit equation C(x) = 0
denoted SCNF(C(x)) is a substitution instance of the plain CNF encoding in Definition 2.29 where
each unary-bits xuj of all the gates and extra extension variables10 u is substituted with UBITj(Cu)
where Cu is the bounded-depth algebraic circuit computed by u.11

We call xq − x = 0 the field axiom for the variable x.

Lemma 2.35 (Translate semi-CNFs from circuit equations in Fixed Finite Fields, [EGLT25]). Let Fq

be a finite field, and let C(x) be a circuit of depth ∆ in the x variables over Fq. Then, the following
hold

{xq − x = 0 : x is a variable in C}, C(x) = 0
IPSalg

∗,O(∆)
SCNF(C(x) = 0)

Lemma 2.36 (Translate circuit equations from semi-CNFs in fixed finite fields, [EGLT25]). Let Fq

be a finite field, and let C(x) be a circuit of depth ∆ in the x variables over Fq. Then, the following
hold

{xq − x = 0 : x is a variable in C}, SCNF(C(x) = 0)
IPSalg

∗,O(∆)
C(x) = 0

We will use our new translation lemma for the next section, which is our main result in fixed finite
fields. For polynomial-size finite fields, we have a different translation lemma that we will explain
later.

Proposition 2.37. Let C(x) = 0 be a circuit equation over Fq where q is any constant prime. Then,
C(x) = 0 is unsatisfiable over Fq iff scnf(C(x) = 0) is an unsatisfiable SCNF.

3 Universal Algebraic Circuits for Bounded-Depth

Here, we develop the necessary technical information regarding universal circuits. This is a novel
adaptation of the work of Raz [Raz10] to the bounded-depth setting, in which both the universal
circuit and the circuits it encodes are of bounded depth.

In this section, we will work with algebraic circuits whose edges can be labelled by field elements.
This does not make too much difference, as we can easily replace them with a multiplication, which
only increases the depth and size of a circuit up to a factor of 2.

For general algebraic circuits, we have the following.

Theorem 3.1 (Existence of universal circuits for homogeneous polynomials [Raz10]). Let F be a field
and x be n variables, and let Chom

s,d denote the class of all homogeneous polynomials of total degree
exactly d in F[x] that have algebraic circuits of size at most s. Then there is a circuit U(x,w) ∈ F[x,w]
of size O(d2s8) and syntactic-degree O(d) such that w are Ks,d = O(d2s8) many variables which are
disjoint from x, that is universal for Chom

s,d in the following sense: if f(x) ∈ Chom
s,d , then there exists

a ∈ FKs,d such that U(x, a) = f(x). Notice that given s and d, Ks,d can be computed efficiently.

10These extension variables are used in Item 3 of Definition 2.28 to help encode the circuit.
11This Cu can be constructed from SLPs easily.

20

We use the following simple adaptation from [ST25]:

Definition 3.2 (Universal circuits for polynomials [ST25]). The universal circuit for degree d and
size s circuits is defined as:

U(x,w) =
d∑

i=0

Ui(x,w),

where Ui(x,w) is the universal circuit for homogeneous x-polynomials of i degree Chom
s,i and where the

w-variables in each distinct Ui(x,w) are pairwise disjoint.

The size of U(x,w) is
∑d

i=0O(i4s8) = O(d5s8).

Definition 3.3 (Circuit-graph [Raz10]). Let Φ be an algebraic circuit. We denote by GΦ the under-
lying graph of Φ, together with the labels of all nodes. That is, the entire circuit, except for the labels
of the edges. We call GΦ, the circuit-graph of Φ.

We will need universal circuits for bounded-depth circuits, where the universal circuits are
bounded-depth themselves. We say a circuit-graph G is depth-∆ if Depth(G) ≤ ∆.

Definition 3.4 (Normal-Depth-Form). Let G be a depth-∆ circuit-graph. We say that G is in
Normal-Depth-Form if it satisfies:

1. All edges from the leaves are to + nodes.

2. All output-nodes are + nodes.

3. The nodes of G are alternating. That is, if v is a + node and (u, v) is an edge, then u is either
a leaf or a × node and if v is a × node and (u, v) is an edge then u is a + node.

4. The out-degree of every node is at most 1.

5. The depth of every leaf is the same.

We say that an algebraic circuit Φ is in normal-depth-form if the circuit-graph GΦ is in normal-
depth-form.

Lemma 3.5 (Existence of normal-depth-form algebraic circuits for bounded-depth algebraic circuits).
Let F be a field and ∆ be a constant. Let Φ be a depth-∆ algebraic circuit of size s for a polynomial
g ∈ F[x1, · · · , xn]. Then, there exists an algebraic circuit Φ′ that computes g such that Φ′ is a normal-
depth-form, and the number of nodes in Φ′ is poly(s). Moreover, given Φ (as an input), Φ′ can be
efficiently constructed.

Proof. First, we turn our depth-∆ algebraic circuit Φ into a depth-∆ algebraic formula φ of size
poly(s · 2∆). Since ∆ is a constant, φ is of size poly(s).

Then, by merging nodes and adding dummy nodes (+ nodes or × nodes such that only have one
input and one output), we can construct Φ′ from φ. To be specific, for an edge (u, v) in φ, if both
u and v are + nodes (resp., × nodes), we merge them to one + node (resp., one × node). Then, if
(u, v) is an edge after merging u is a × node, and v is a leaf, then we add a + node o between u and
v such that (u, o) and (o, v) are labelled with 1. If the output node u is a × node, we add a + node v
above it and label (u, v) with 1. Also, if the depth of a leaf is smaller than the maximum depth, by
alternatively adding dummy + nodes and × nodes, we can make the depth of every leaf the same.

We can see that Φ′ has bounded-depth and is of size poly(s). Φ′ is in normal-depth-form.

21

Remark 3.6. Note that if we consider the universal circuit for bounded-depth circuits with size
polynomially bounded by the number of variables, we can further bound the maximum fan-in of multi-
plication gates in the normal-depth-form. We bound the multiplication fan-in of φ by replacing each ×
node with polynomial many × nodes. This can be achieved since the size of the circuit is polynomially
bounded. After this replacement, φ is a bounded-depth algebraic formula with bounded multiplication
fan-in of size poly(s).

Theorem 3.7 (Existence of bounded-depth universal circuits for polynomials computed by bound-
ed-depth circuits). Let F be a field and x be n variables, and let VAC0

s,∆ denote the class of all
polynomials in F[x] that have algebraic circuits of size at most s and depth at most ∆, where ∆ is
a constant. Then there is a circuit U(x,w) ∈ F[x,w] of size poly(s) and depth poly(∆) such that w
are Ks,d variables that are disjoint from x, that is universal for VAC0

s,∆ in the following sense: if

f(x) ∈ VAC0
s,∆, then there exists a ∈ FKs,d such that U(x, a) = f(x). Notice that given s and d,

Ks,d can be computed efficiently and is bounded by poly(s). Also, the universal circuit preserves the
maximum multiplication fan-in.

Proof. Let F be a field. A polynomial g ∈ F[x] is computed by an algebraic circuit of size s and depth
at most ∆ where ∆ is a constant. Then, by Lemma 3.5, there exists a bounded-depth algebraic circuit
Φ′ that computes g such that Φ′ is in normal-depth-form of size poly(s) and depth 2∆′ − 1, which is
a constant. Let t be the maximum multiplication fan-in in Φ′.

We partition the nodes in Φ′ into 2∆′ levels by their depths as follows:

• For every i ∈ {1, · · · ,∆′ − 1}, level 2i contains the × nodes where each of them has a length
2i− 1 path to the output node.

• For every i ∈ {1. · · · ,∆′}, level 2i − 1 contains the + nodes where each of them has a length
2i− 2 path to the output node.

• Level 2∆′ contains all the leaves.

Now, we construct the universal circuit of depth 2∆′ − 1 as follows:

• For every + node in level 2i − 1 (i ∈ {1, · · · ,∆′}), the children of it are all the nodes in level
2i. There is only one + node in level 1 as the output node.

• For every × node in level 2i (i ∈ {1. · · · ,∆′ − 1}), the children of it are + nodes in level 2i+ 1.
All the × nodes in level 2i (i ∈ {1, · · · ,∆′ − 1}) are partitioned into t many groups, where ×
nodes in group j (1 ≤ j ≤ t) has j many children in level 2i. Also, all × nodes in the same
group have distinct children.

Since the out-degree of every + node in Φ′ is at most 1, it is sufficient to have Size(Φ′)/k many × nodes

with in-degree k in the above level. Therefore, there are at most Size(Φ′) + ⌈Size(Φ
′)

2 ⌉ + ⌈Size(Φ
′)

3 ⌉ +
· · ·+ ⌈Size(Φ

′)
t ⌉ ≤ Size(Φ′)2 many × nodes in the above level. Therefore, there are O(Size(Φ′)3) many

edges between + nodes in level 2i and × nodes in level 2i+ 1.
Hence, we get a depth 2∆′ − 1 universal circuit of size poly(Size(Φ′)) = poly(s). Also, note that

such universal circuit has the same maximum multiplication fan-in as Φ′.

4 Extracting Coefficients and IPS Refutation Formula

Let f(x,w) ∈ F[x,w] be a polynomial, and let M =
∏

i∈I x
αi
i ·

∏
j∈J w

βj

j be a monomial in f(x,w),
for some αi, βi ∈ N (where 0 ∈ N). Then, we call Σi∈Iαi the x-degree of M .

22

Definition 4.1 (coeffM (·) [ST25]). Let f(x,w) be a polynomial in F[x,w] in the disjoint sets of
variables x,w. Let M be an x-monomial of degree j. Then, coeffM (f(x,w)) is the (polynomial)
coefficient in F[w] (that is, in the w-variables only) of M in f(x,w).

Note that f(x,w) = ΣMiMi · coeffMi(f(x,w)), where the Mi’s are all possible x-monomials of
degree at most d, for d the maximal x-degree of a monomial in f(x,w).

Proposition 4.2 (Computation of coefficients in general circuits [ST25]). Let f(x,w) ∈ F[x,w] be
a polynomial in F[x,w] in the disjoint sets of variables x,w. Suppose that M is an x-monomial of
degree d, and assume that there is an algebraic circuit computing f(x,w) of size s and syntactic-degree
l. Then, there is a circuit of size O(7d · s) computing coeffM (f(x,w)) of syntactic-degree lO(1).

While [ST25] gave the above proposition about the computation of the coefficient of an x-monomial
in general algebraic circuits, we present the computation of the coefficient of an x-monomial in
bounded-depth circuits.

Since we can decrease the maximum multiplication fan-in to n in each polynomial-size bounded-
depth circuit with at most a polynomial-size blow up and depth blowing up by at most a constant
factor, we can assume that the maximum multiplication fan-in in each polynomial-size bounded-depth
circuit is n.

Proposition 4.3 (Computation of coefficients in bounded-depth circuits). Let f(x,w) ∈ F[x,w] be a
polynomial in F[x,w] in the disjoint sets of variables x,w. Suppose that M is an x-monomial of degree
d, and assume that there is an algebraic circuit C(x,w) computing f(x,w) of maximum multiplication
fan-in t, size s, syntactic-degree l and depth ∆ where ∆ is a constant such that

1. All edges from the leaves are to + nodes.

2. All output-nodes are + nodes.

3. The nodes of G are alternating. That is, if v is a + node and (u, v) is an edge, then u is a ×
node, and if v is a × node and (u, v) is an edge then u is either a leaf or a + node.

Then, there is a bounded-depth algebraic circuit of depth ∆, size O(2(t+d)d · s) computing
coeffM (f(x,w)) of syntactic-degree lO(1).

Proof. For a variable xi, we show how to construct a circuit, which is in the same depth as C(x,w),
computing a polynomial g(x,w) such that f = xi · g + h with h having no occurrences of xi. Then,
using d such iterations for each of the d variables in M , we shall get the circuit D that computes
the coefficient of M in f(x,w) of the same depth. Then, by assigning zeros to all x-variables in D,
we can eliminate all the monomials in D in both x and w variables. Now, we prove the following
claim. The following claim shows how to construct the circuit that extracts the coefficient of a single
variable. To construct the circuit that extracts the coefficient of a monomial of degree at most d, we
apply d iterations of the following claim. We denote by C(x,w) ↾xi=0 the polynomial C(x,w) where
xi is assigned 0.

Claim 4.4. Let C(x,w) be an algebraic circuit over the field F of maximum addition fan-in t1,
maximum multiplication fan-in t2, syntactic-degree l and depth ∆ such that

1. All edges from the leaves are to + nodes.

2. The output node is a + node.

23

3. The nodes of G are alternating. That is, if v is a + node and (u, v) is an edge, then u is a ×
node, and if v is a × node and (u, v) is an edge then u is either a leaf or a + node.

Then, for every variables xi, there is a depth-∆ circuit in the same form as C (i.e., with Item 1-
Item 3 holding) of maximum addition fan-in t1 · (2t2 − 1), maximum multiplication fan-in t2 + 1,
size O(2t2 |C|) and syntactic-degree lO(1) that computes the polynomial g(x,w), such that C(x) =
xi · g(x,w) + C(x,w) ↾xi=0.

Proof of claim. The proof is obtained by induction on circuit size. Denote by p the polynomial
computed by C and for every gate v in C denote by pv the polynomial computed at gate v.

Denote by Pxi(pv) the unique polynomial such that pv = xi · Pxi(pv) + pv ↾xi=0. For a × gate v
with fan-in t in C, we add at most 2t new gates. Each gate v itself is duplicated twice so that the
first duplicate computes Pxi(pv) and the second duplicate computes pv ↾xi=0.

Base case:
Case 1: pv = xi. Then, Pxi(pv) := 1 and pv ↾xi=0:= 0.
Case 2: pv = xj , for j ̸= i. Then, Pxi(pv) := 0 and pv ↾xi=0:= xj .
Case 3: pv = α, for α ∈ F. Then, Pxi(pv) = 0 and pv ↾xi=0= α.
Induction step:
Case 1: pv = Σt1

j=1uj . Then, Pxi(pv) = Σt1
j=1Pxi(puj) and pv ↾xi=0= Σt1

j=1puj ↾xi=0.

Case 2: pv =
∏t2

j=1 uj . Then,

Pxi(pv) =

t2∑
j=1

 ∑
S⊆[t2]
|S|=k

∏
k∈S

Pxi(puk
)
∏
l /∈S

pul
↾xi=0

xj−1
i

which is equivalent to
∏t2

j=1(xiPxi(puj) + puj ↾xi=0)−
∏t2

j=1 puj ↾xi=0 “divided by xi”, namely when

we decrease by 1 the power of every xbi in every monomial in this polynomial (noting that xi appears
with a positive power b ≥ 1 in every monomial), and

pv ↾xi=0=

t2∏
j=1

puj ↾xi=0 .

Note that by expanding brackets, Pxi(pv) is written explicitly with 2t2 − 1 many terms as depth-2
circuits that have one + node at the top and 2t2 − 1 many × nodes as children.

Then, by merging the + node in Pxi(pv) = Σt1
j=1Pxi(puj) and Pxi(pv) =∑t2

j=1

(∑
S⊆[t2]
|S|=k

∏
k∈S Pxi(puk

)
∏

l /∈S pul
↾xi=0

)
xj−1
i (Since this formula is written explicitly and

the circuit is alternating, which means there is always a + node above any × node), our circuit has
the same depth as C and is in the following form:

1. All edges from the leaves are to + nodes.

2. The output nodes is a + node.

3. The nodes of G are alternating. That is, if v is a + node and (u, v) is an edge, then u is a ×
node, and if v is a × node and (u, v) is an edge then u is either a leaf or a + node.

24

Moreover, by computing the x2i , x
3
i , · · · , x

t2
i at the bottom of the circuit using a trivial depth-2 circuit

with maximum multiplication fan-in t2, the maximum addition fan-in is t1 ·(2t2−1) and the maximum
multiplication fan-in is t2 + 1. The size of the circuit after one iteration is 2 · (2t2 − 1) · |C|. claim

As we showed above, we can construct a circuit of the same depth as C that extracts the coefficient
of a single variable in size 2 · (2t2 −1) · |C|. To construct a circuit of the same depth as C that extracts
the coefficient of a monomial of degree at most d, we just need to do d iterations of the above claim.
Therefore, after d iterations, the size of the circuits after the last iteration is |C| ·

∏d−1
i=0 (2

t2+i−1) ·2d =
O(2(t2+d)d|C|) and the syntactic-degree is lO(1). This concludes the proof of Proposition 4.3.

Definition 4.5 (Bounded-depth IPS refutation predicate IPSref(s,∆, l,F)). Let F be a CNF formula
with m clauses and n variables x written as a set of polynomial equations according to Definition 2.26.
Let U(x, y, w) be the bounded-depth universal circuit for depth ∆ and size s circuits in the x variables
and the m placeholder variables y, and the Ks,∆ edge label variables w. We formalize the existence
of a size s, depth ∆ circuit that computes the IPS refutation of F in degree at most l, denoted
IPSref(s,∆, l,F), with the following set of circuit equations (in the w variables only):

coeffMi(U(x, 0, w)) = 0

coeffMi(U(x,F , w)) =

{
1, Mi = 1 (i.e., the constant 1 monomial);

0, otherwise,

where i ∈ [N] so that {Mi}Ni=1 are the set of all possible x-monomials of degree at most l, and

N =
∑l

j=0

(
n+j−1

j

)
= 2O(n+l) is the number of monomials of total degree at most l over n variables,

and 0 is the all-zero vector of length m.
The size of IPSref(s,∆, l,F) is O(2(t+l)l · |U(x, y, w)| · |F| ·N) where t is maximum multiplication

fan-in in U(x, y, w).

Definition 4.6 (Formalization of VNP = VAC0). The formalization of VNP = VAC0(n, s, l,∆) denoted
“VNP = VAC0(n, s, l,∆)”, expressing that there is a bounded-depth universal circuit for size s and
depth ∆ circuits that compute the Permanent polynomial of dimension n (with x being the n2 variables
of the Permanent), is the following set of polynomial equations (in the w-variables only):

{coeffMi(U(x,w)) = bi : 1 ≤ i ≤ N},

where b = coeff(perm(x)) ∈ FN is the coefficient vector of the polynomial perm(x) of dimension n,
U(x,w) is the constant-depth universal circuit for polynomials of depth at most ∆ and have circuits of
size at most s, w are the Ks,∆ edge variables, {Mi}Ni=1 is the set of all possible x-monomials of degree

at most l, and N = Σl
j=0

(
n2+j−1

j

)
= 2O(n2+l) is the number of monomials of total degree at most l

over n2 variables. Then, the size of the above set of polynomial equations is O(2(t+l)l · |U(x,w)| ·N)
where t is maximum multiplication fan-in in U(x,w).

5 No Short AC0[p]-Frege Proofs for Diagonalizing DNF Formulas

This section presents our main result. we show unconditionally that constant-depth IPS cannot
efficiently refute certain constant-depth IPS upper bounds. As a corollary, we obtain the same result
for AC0[p]-Frege, since this proof system is simulated by constant-depth IPS over Fp (Theorem 5.6).
More precisely, we prove that constant-depth IPS does not admit polynomial-size refutations of the

25

diagonalizing CNF formulas Φt,l,∆′,n,s,∆, infinitely often. These formulas express the existence of size-
t, depth-∆′ IPS refutation of the statement that the Permanent polynomial is computable by size-s,
depth-∆ algebraic circuits.

In addition, this section contains the proof of Theorem 1.6, which shows that ruling out short
proofs for the diagonalizing formulas is a necessary step towards constant-depth IPS lower bounds.
We begin by introducing the formulas that will be used throughout the argument.

Let N =
∑l

j=0

(
n2+j−1

j

)
= 2O(n2+l) be the number of monomials of total degree at most l over n2

variables. We shall work over a finite field Fq here to enable the encoding of circuit equations as CNF
formulas.

• VNP = VAC0(n, s, l,∆): circuit equations expressing that there is an algebraic circuit of size s
and depth ∆ that agrees with the Permanent polynomial of dimension n on all the coefficients
of monomials of degree at most l (i.e., every monomialM computed by the algebraic circuit has
the same coefficient as in the Permanent polynomial).

– Type: circuit equations;

– Number of variable: Ks,∆ = poly(s,∆);

– Size: O(2(n+l)l · poly(s,∆) ·N).

• φcnf
n,s,l,∆: the CNF encoding of VNP = VAC0(n, s, l,∆) based on Definition 2.29.

– Type: CNF formula;

– Number of variable: O(2(n+l)l · poly(s,∆) ·N);

– Size: O(q · 2(n+l)l · poly(s,∆) ·N).

• φscnf
n,s,l,∆: the SCNF encoding of VNP = VAC0(n, s, l,∆) based on Definition 2.34 together with

the field axioms (xq − x = 0) for all variables.

– Type: SCNF formula;

– Number of variable: O(2(n+l)l · poly(s,∆) ·N).

• IPSref(t,∆, l,F): circuit equations expressing that there exists an algebraic circuit for size t and
depth ∆ that agrees with the IPS refutation of F on all the coefficients of monomials of degree
at most l.

– Type: circuit equations;

– Number of variable: Kt,∆ = poly(t,∆);

– Size: O(2(n+l)l · poly(t,∆) · |F| ·N).

• Φt,l,∆′,n,s,∆: The diagonalizing CNF formula. More precisely, the CNF encoding of
IPSref(t,∆

′, l, φscnf
n,s,l,∆) expressing that there is an algebraic circuit (the purported IPS refuta-

tion) of size t and depth ∆′ that agrees with the IPS refutation of φscnf
n,s,l,∆ on all the coefficients

of monomials of degree at most l.

– Type: CNF formulas;

– Number of variable: Kt,∆ which is poly(t,∆);

– Size: O(q · 2(n+l)l · poly(t,∆) · |F| ·N).

The following lemma easily follows from Lemma 2.25.

26

Lemma 5.1. Every family of unsatisfiable formulas (φn), which contains a set of unsatisfiable CNF
formulas, has a family of IPSalg (also IPS) certificates (Cn) in VNPF.

Since Semi-CNFs are substitution instances of CNFs, we get the following lemma by substituting
the occurrence of Boolean variables with their corresponding UBIT.

Lemma 5.2. {φscnf
n,s,l,∆}n is a family of unsatisfiable SCNF formulas and has a family of IPSalg (also

IPS) certificates (Cn) in VNPF.

We fix l : N → N to be a (monotone) size function l(r) = ⌈rϵ⌉ for some constant ϵ.
The main result of this section is the following.

Theorem 5.3 (Main; no short proofs over fixed finite field). Let q be a constant prime. The CNF
family {Φt,l,∆′,n,s,∆} does not have constant-depth polynomial-size IPS refutations infinitely often over
Fq, in the following sense: for every constant ∆ there exist constants c1 and ∆′, such that for every
sufficiently large constant c2 and every constants ∆′′ and c0, for infinitely many n, t(n), s(n) ∈ N,
such that t(n) > |φscnf

n,s,l,∆|c1 and nc1 < s(n) < nc2, Φt,l,∆′,n,s,∆ has no IPS refutation of size at most
|Φt,l,∆′,n,s,∆|c0 and depth at most ∆′′.

Before proving this theorem, we provide an overview of its proof.

Proof overview: By way of contradiction, we assume that there exists a constant ∆ such that for every
constant ∆′, for every sufficiently large n, and for every t(n), s(n) ∈ N, such that t(n) > |φscnf

n,s,l,∆|c1
and nc1 < s(n) < nc2 , Φt,l,∆′,n,s,∆ := cnf(IPSref(t,∆

′, l, φscnf
n,s,l,∆)) has a small depth-O(1) refutation.

Then, by substituting the occurrences of Boolean variables with the correspondence UBITs, we can
assume that scnf(IPSref(t,∆

′, l, φscnf
n,s,l,∆)) has a small and depth-O(∆′) refutation.

1. By applying Lemma 2.36, from φscnf
m,t,l,∆ where m, t, l are parameters, that meet the conditions

in Theorem 5.3, we can derive the circuit equations

VNP = VAC0(m, t, l,∆),

in O(∆) depth and polynomial-size IPS. Recall that VNP = VAC0(m, t, l,∆) is the set of circuit
equations expressing that there is an algebraic circuit of size t and depth ∆ that agrees with
the Permanent polynomial of dimension m on all the coefficients of monomials of degree at most
l.

2. In Lemma 5.4 we prove (the contrapositive of) the bounded-depth version of Theorem 2.24
within bounded-depth IPS. The contrapositive of the bounded-depth version of Theorem 2.24
expresses that if the Permanent polynomial can be computed by bounded-depth polynomial-
size circuits, then bounded-depth IPS can efficiently refute any family of CNF formulas. To be
more specific, from VNP = VAC0(m, t, l,∆) we derive IPSref(t,∆, l, φ

scnf
n,s,l,∆) in depth O(∆) and

polynomial size. Note that IPSref(t,∆, l, φ
scnf
n,s,l,∆) is the set of circuit equations expressing that

IPS can refute φscnf
n,s,l,∆ in size t and depth ∆.

3. Applying Lemma 2.35, we can derive scnf(IPSref(t,∆, l, φ
scnf
n,s,l,∆)) from IPSref(t,∆, l, φ

scnf
n,s,l,∆)

in depth O(∆) polynomial size IPS. Since we assumed that for any constant ∆′,
scnf(IPSref(t,∆

′, l, φscnf
n,s,l,∆)) has a small and bounded-depth refutation, it follows that

scnf(IPSref(t,∆, l, φ
scnf
n,s,l,∆)) has a small and bounded-depth refutation, particularly when we

take ∆′ = ∆.

27

Hence, we get a small and bounded-depth refutation of φ∗
m,t,l,∆, as follows:

φ∗
m,t,l,∆ IPSalg

∗,O(∆)
VNP = VAC0(m, t, l,∆) Lemma 2.36 (see Item 1)

IPSalg

∗,O(∆)
IPSref(t,∆, l, φ

scnf
n,s,l,∆) Lemma 5.4 (see Item 2)

IPSalg

∗,O(∆)
scnf(IPSref(t,∆, l, φ

scnf
n,s,l,∆)) Lemma 2.35 (see Item 3)

IPSalg

∗,O(∆)
1 = 0 by assumption.

Then we know that for some constant ∆′′′ and large enough w, the system of circuit equations
IPSalgref (w,∆

′′′, l, φ∗
m,t,l,∆) is satisfiable. Hence, by Proposition 2.33, cnf(IPSalgref (w,∆

′′′, l, φ∗
m,t,l,∆)) is

satisfiable.
By assumption, for any constant ∆′, for all sufficiently large n, for all proper t(n), s(n) ∈ N,

Φt,l,∆′,n,s,∆ := cnf(IPSref(t,∆
′, l, φscnf

n,s,l,∆)) has a small and depth-O(1) refutation. Taking t = w,

∆′ = ∆′′′, n = m, s = t, we know that cnf(IPSalgref (w,∆
′′′, l, φscnf

m,t,l,∆)) is refutable which implies it is
not satisfiable. This is a contradiction.

Proof of Theorem 5.3. For the sake of contradiction, we assume that there exists a constant ∆ for
all constants c1, ∆

′ such that there exist constants c2, ∆
′′ and c0 for all n, t(n), s(n) ∈ N such that

t(n) > |φscnf
n,s,l,∆|c1 and nc1 < s(n) < nc2 ,

cnf(IPSalgref (t, l,∆
′, φscnf

n,s,l,∆))︸ ︷︷ ︸
λ

IPS

|λ|c0 ,∆′′

1 = 0. (12)

By substituting the occurrence of Boolean variables with their corresponding UBITs, we get that
there exists a constant ∆ for all constants c1, ∆

′ such that there exist constants c2, ∆
′′ and c0 for all

n, t(n), s(n) ∈ N, if t(n) > |φscnf
n,s,l,∆|c1 and nc1 < s(n) < nc2 ,

scnf(IPSalgref (t, l,∆
′, φscnf

n,s,l,∆))︸ ︷︷ ︸
λ

IPSalg

|λ|c0 ,∆′′

1 = 0. (13)

Since the Boolean axioms of each UBIT can be easily derived, as shown in the proof of Lemma 2.35,
IPS can be replaced by IPSalg here.

We take ∆′ = ∆, which gives us the following:

scnf(IPSalgref (t, l,∆, φ
scnf
n,s,l,∆))︸ ︷︷ ︸

λ

IPSalg

|λ|c0 ,∆′′

1 = 0. (14)

Let m = 6(L′ + P ′) where L′ is the number of variables in φscnf
n,s,l,∆ and P ′ is the number of

placeholders needed for axioms in φscnf
n,s,l,∆. Let γ := φscnf

m,t,l,∆ be the Semi-CNF formulas φscnf
m,t,l,∆

together with the field axioms for the variables in IPSalgref (t, l,∆, φ
scnf
n,s,l,∆).

By Lemma 5.4, there exist constants c3 and ∆′′′ such that

γ︷ ︸︸ ︷
φscnf
m,t,l,∆ IPSalg

|γ|c3 ,∆′′′

scnf(IPSalgref (t, l,∆, φ
scnf
n,s,l,∆)).

Combining the above equation with the assumption, we know that

28

φscnf
m,t,l,∆ IPSalg

|γ|c3 ,∆′′′

scnf(IPSalgref (t, l,∆, φ
scnf
n,s,l,∆))︸ ︷︷ ︸

λ

IPSalg

|λ|c0 ,∆′′

1 = 0. (15)

Since |λ| is polynomially bounded by |γ|, there exists a constant c1 such that

|γ|c3 + |λ|c0 < |γ|c1 .

We pick a big enough c1 such that

φscnf
m,t,l,∆︸ ︷︷ ︸
γ

IPSalg

|γ|c1 ,∆′′′+∆′′

1 = 0.

From the above equation, we can conclude that IPSalgref (w, l,∆
′′′ + ∆′′, φscnf

m,t,l,∆) is satisfiable
for some w ≥ |γ|c1 over Fq and is polynomially bounded by |γ|. Hence, by Proposition 2.33,

cnf(IPSalgref (w, l,∆
′′′ + ∆′′, φscnf

m,t,l,∆)) is also satisfiable over Fq. However, by our assumption, when

we take ∆′ = ∆′′′ + ∆′′, we know that for all big enough w and t, IPSalgref (w, l,∆
′′′ + ∆′′, φscnf

m,t,l,∆) is

refutable. By the soundness of IPS, cnf(IPSalgref (w, l,∆
′′′ +∆′′, φscnf

m,t,l,∆)) should be unsatisfiable which
is a contradiction.

It remains to prove the following.

Lemma 5.4 (Constant-depth version of Grochow-Pitassi formalization in IPSalg). There are constants
c3 and ∆′′′ such that under the above notation and parameters:

γ︷ ︸︸ ︷
φscnf
m,t,l,∆ IPSalg

|γ|c3 ,∆′′′

scnf(IPSalgref (t, l,∆, φ
scnf
n,s,l,∆)).

Proof. Recall that γ := φscnf
m,t,l,∆ is the Semi-CNF formula φscnf

m,t,l,∆ together with field axioms for all
variables in it. LetN ′ be the number of x-monomials with degree at most l overm variables. According
to Lemma 2.36, from φscnf

m,t,l,∆, we can derive the following circuit equations in polynomial-size IPSalg

{coeffMi(U(x,w)) = bi : 1 ≤ i ≤ N ′},

where b = coeff(perm(x)) ∈ FN ′
q is the coefficient vector of the Permanent polynomial perm(x), and

U(x,w) is the universal circuit for algebraic circuits of depth at most ∆ and of size at most t. Formally,
there exist constants c4 and ∆1 such that

λ
IPSalg

|λ|c4 ,∆1 {coeffMi(U(x,w)) = bi : 1 ≤ i ≤ N ′}

which is

λ
IPSalg

|λ|c4 ,∆1
VNP = VAC0(m, t, l,∆).

Now, we will show that from VNP = VAC0(m, t, l,∆), there is a depth-O(∆) polynomial size IPS

derivation of IPSalgref (t, l,∆, φ
scnf
n,s,l,∆).

29

Claim 5.5. Suppose Mi is an x-monomial with degree at most l. Let a be any possibly partial substi-
tution of polynomials (including field elements) for the variables x. Given VNP = VAC0(m, t, l,∆) :=
{coeffMi(U(x,w)) = bi : 1 ≤ i ≤ N ′}, we can derive

coeffM (U(x ↾a, w)) = coeffM (perm(x ↾a)) (16)

in depth-O(∆) polynomial size IPSalg for every x-monomial M with degree at most l.

Proof of Claim 5.5. First, it is easy to get the following polynomial identity,

U(x ↾a, w) = U(x,w) ↾a . (17)

And by Definition 4.1, we have the following polynomial identity,

U(x,w) ↾a=

 ∑
i∈[N ′]

coeffMi(U(x,w)) ·Mi

 ↾a . (18)

And since coeffMi(U(x,w)) only contains w variables, we have the following polynomial identity, ∑
i∈[N ′]

coeffMi(U(x,w)) ·Mi

 ↾a=
∑
i∈[N ′]

coeffMi(U(x,w)) · (Mi ↾a) . (19)

Hence, combining three polynomial identities in Equation (17), Equation (18) and Equation (19)
above, we have the following polynomial identity,

U(x ↾a, w) =
∑
i∈[N ′]

coeffMi(U(x,w)) · (Mi ↾a) . (20)

Let M be any x-monomial with degree at most l. By the above polynomial identity, we have the
following polynomial identity,

coeffM (U(x ↾a, w)) = coeffM (
∑
i∈[N ′]

coeffMi(U(x,w)) · (Mi ↾a)) . (21)

Since coeffM is a linear operator, we have the following polynomial identity,

coeffM (
∑
i∈[N ′]

coeffMi(U(x,w)) · (Mi ↾a)) =
∑
i∈[N ′]

coeffM (coeffMi(U(x,w)) · (Mi ↾a)) . (22)

Since coeffM (coeffMi(U(x,w)) · (Mi ↾a)) = coeffMi(U(x,w)) ·coeffM (Mi ↾a), we have the following
polynomial identity,∑

i∈[N ′]

coeffM (coeffMi(U(x,w)) · (Mi ↾a)) =
∑
i∈[N ′]

coeffMi(U(x,w)) · coeffM ((Mi ↾a)) . (23)

Hence, combining the three polynomial identities in Equation (21), Equation (22) and Equation (23),
we have the following polynomial identity,

coeffM (U(x ↾a, w)) =
∑
i∈[N ′]

coeffMi(U(x,w)) · coeffM ((Mi ↾a)) (24)

30

in depth-O(∆) linear-size IPSalg (we increased the depth of U(x,w) by a constant factor using Propo-
sition 4.3).

Also, since we have already derived {coeffMi(U(x,w)) = bi : 1 ≤ i ≤ N ′} from λ, by multiplying
coeffM (Mi ↾a) to each circuit equation and adding them, we can derive the following circuit equation
in depth-O(∆) polynomial-size IPSalg,∑

i∈[N ′]

coeffMi(U(x,w)) · coeffM ((Mi ↾a)) =
∑
i∈[N ′]

bi · coeffM (Mi ↾a) . (25)

By definition, we have the following polynomial identity,∑
i∈[N ′]

bi · (Mi ↾a) = perm(x ↾a) . (26)

Therefore, for any x-monomialM with degree at most l, we have the following polynomial identity,

coeffM (
∑
i∈[N ′]

bi · (Mi ↾a)) = coeffM (perm(x ↾a)) . (27)

Also, since bi are just field elements and linearity of coeffM ,

coeffM (
∑
i∈[N ′]

bi · (Mi ↾a)) =
∑
i∈[N ′]

bi · coeffM (Mi ↾a) . (28)

Combining the two polynomial identities in Equation (27) and Equation (28) above and using
Proposition 2.22 again, we prove the following polynomial identities,∑

i∈[N ′]

bi · coeffM (Mi ↾a) = coeffM (perm(x ↾a)) (29)

in depth-O(∆) polynomial size IPSalg.

Hence, by combining those three circuit equations in Equation (24), Equation (25) and Equa-
tion (29),

coeffM (U(x ↾a, w)) =
∑
i∈[N ′]

coeffMi(U(x,w)) · coeffM ((Mi ↾a))∑
i∈[N ′]

coeffMi(U(x,w)) · coeffM ((Mi ↾a)) =
∑
i∈[N ′]

bi · coeffM (Mi ↾a)∑
i∈[N ′]

bi · coeffM (Mi ↾a) = coeffM (perm(x ↾a)),

we can derive

coeffM (U(x ↾a, w)) = coeffM (perm(x ↾a)) (30)

in depth-O(∆) polynomial size IPSalg. This concludes the proof of Claim 5.5.

31

Now, we divide x into x′ and y two disjoint parts of variables, where y represents the placeholder
for axioms and x′ represents the rest.

By Theorem 2.14, we know that φscnf
n,s,l,∆, which contains φscnf

n,s,l,∆ that denotes the SCNF encoding

of the circuit equation VNP = VAC0(n, s, l,∆) is unsatisfiable. Therefore, by Lemma 5.2, there exists
a VNP-IPSalg refutation for φscnf

n,s,l,∆.
Note that the Permanent polynomial perm(x) of dimension m = 6(L′ + P ′) is complete for VNP

with m/6 = L′+P ′ variables which is the number of variables in IPSalgref (t, l,∆, φ
scnf
n,s,l,∆) [Val79]. There-

fore, there exists an substitution α such that perm(x ↾α) computes exactly a VNP-IPSalg refutation
of φscnf

n,s,l,∆.
Notice that under substitution α, y must be unassigned because they are the variables representing

placeholders which means perm(x ↾α) = perm(x′ ↾α, y).
We use y ↾0 to represent that all y variables are assigned zero, and y ↾φscnf

n,s,l,∆
to represent that

each yi is replaced by the corresponding ith axiom from φscnf
n,s,l,∆.

By Claim 5.5, from
VNP = VAC0(m, t, l,∆),

we can derive the following circuit equation,

coeffM (U(x′ ↾α, y ↾0, w)) = coeffM (perm(x′ ↾α, y ↾0)) (31)

where α is the substitution such that perm(x ↾α) computes exactly the VNP-IPSalg refutation of
φscnf
n,s,l,∆.

Therefore, perm(x′ ↾α, y ↾0) is the IPSalg refutation of φscnf
n,s,l,d with placeholder variables replaced

with all zero. By the definition of IPSalg, we have the following polynomial identity,

coeffM (perm(x′ ↾α, y ↾0)) = 0 . (32)

Combining Equation (31) and Equation (32), we have

coeffM (U(x′ ↾α, y ↾0, w)) = 0 . (33)

Again, by Claim 5.5, we have

coeffM (U(x′ ↾α, y ↾φscnf
n,s,l,∆

, w)) = coeffM (perm(x′ ↾α, y ↾φscnf
n,s,l,∆

)) . (34)

Note that perm(x′ ↾α, y ↾φscnf
n,s,l,∆

) is the IPSalg refutation of φscnf
n,s,l,∆ with placeholder variables

replaced with all axioms in φscnf
n,s,l,∆. By the definition of IPSalg, we have the following polynomial

identity,

coeffM (perm(x′ ↾α, y ↾φscnf
n,s,l,∆

)) =

{
1, Mi = 1 (i.e., the constant 1 monomial);

0, otherwise,
. (35)

Combining Equation (34) and Equation (35), we have

coeffM (U(x′ ↾α, y ↾φscnf
n,s,l,∆

, w)) =

{
1, Mi = 1 (i.e., the constant 1 monomial);

0, otherwise.
(36)

Note that Equation (33) and Equation (36) are exactly the circuit equations in

IPSalgref (t, l,∆, φ
scnf
n,s,l,∆). Also, note that we can prove Equation (33) and Equation (36) for every

32

monomial M in parallel, and there are only a constant many polynomial identities and derivations in
the proof for each M . Moreover, the depth of each polynomial identity and derivation is bounded by
O(∆). Hence, we can conclude that there exist constants c5 and ∆2 = O(∆) such that

φscnf
m,t,l,∆︸ ︷︷ ︸
γ

IPSalg

|γ|c5 ,∆2
IPSalgref (t, l,∆, φ

scnf
n,s,l,∆) . (37)

Note that φscnf
m,t,l,∆ already includes all the field axioms of variables in IPSalgref (t, l,∆, φ

scnf
n,s,l,∆). By

Lemma 2.35, we can derive scnf(IPSalgref (t, l,∆, φ
scnf
n,s,l,∆)) in depth-O(∆) polynomial-size IPSalg.

We can conclude that there exist constants c3 and ∆′′′ such that

φscnf
m,t,l,∆︸ ︷︷ ︸
γ

IPSalg

|γ|c3 ,∆′′′

scnf(IPSalgref (t, l,∆, φ
scnf
n,s,l,∆)) . (38)

Theorem 1.2 in the introduction which uses a fixed prime field of size p follows from Theorem
5.3 by setting ψd,d′,n = Φt,l,∆′,n,s,∆, where d = ∆, d′ = ∆′ and s and t are chosen to be appropriate
polynomially bounded functions as in the statement of Theorem 5.3.

To get the no-short proof result against AC0[p]-Frege we use the following simulation:

Theorem 5.6 (Depth-preserving simulation of Frege systems by the Ideal proof system [GP18]). Let
p be prime and F any field of characteristic p. Then IPSF p-simulates AC0[p]-Frege in such a way that
depth-d AC0[p]-Frege proofs are simulated by depth-O(d) IPSF proofs. In particular, AC0[p]-Frege is
p-simulated by bounded-depth IPSF.

Therefore, a corollary of Theorem 5.3 is (see the argument in Section 1.3 that comes after Theo-
rem 1.2):

Corollary 5.7. For every prime p there is an explicit sequence {ϕn} of DNF formulas (of unknown
validity) such that there are no polynomial-size AC0[p]-Frege proofs of {ϕn}.

5.1 Ruling Out Easiness for Diagonalizing CNFs is Necessary

We now turn to establishing Theorem 1.6. We first define the notion of a “reasonable” circuit class.

Definition 5.8. We say C is a reasonable algebraic circuit class if C-IPS can efficiently prove the
C-IPS analogue of Lemma 5.4, i.e., that C lower bounds for Permanent follow from C-IPS lower bounds
for CNF formulas.

The main result of [ST25] can be seen as showing that the class of general algebraic circuits is
reasonable, and Theorem 5.3 shows that the class of constant-depth algebraic circuits is reasonable as
well. The proof of Theorem 5.3 establishes that every natural algebraic class intermediate in power
between constant-depth circuits and general circuits is reasonable as well.

We observe that Lemma 2.25 can be generalised for an arbitrary algebraic circuit class C.

Theorem 5.9 (Grochow-Pitassi for C). Let C be any algebraic circuit class. For any field F, if C-IPS
is not p-bounded, namely there exists a super-polynomial lower bound on algebraic C-IPS refutations
(hence also on C-IPS refutations) over F for a family of unsatisfiable CNF formulas {ϕn}n, then
VNPF ̸= CF.

33

Proof. By Lemma 2.25, any family of unsatisfiable CNF formulas {ϕn}n has an IPS refutation that
is computable in VNP. However, since C-IPS is not p-bounded, there exists a family of unsatisfiable
CNF formulas {ϕn}n that require super-polynomial size C-IPS proofs. Hence no IPS refutation for the
family {ϕn}n is in C. Thus we have that the VNP refutation is not in C, and hence that VNP ̸= C.

Now, we show that the C-analogue of Theorem 1.2 is necessary to prove C-IPS lower bounds for
unsatisfiable CNFs, when C is a reasonable algebraic circuit class.

We use {ΦC
n} to denote the C analogue of {Φt,l,∆′,n,s,∆} from Theorem 5.3.

Theorem 5.10 (Necessity of the main theorem). Let C be any reasonable algebraic circuit class.
Let p be a sequence of primes, and Fp be the prime field. If C-IPS is not p-bounded over Fp, which
means there is a super-polynomial lower bound on algebraic C-IPS refutations (hence also on C-IPS
refutations) over Fp for a family of unsatisfiable CNF formulas {ϕn}n, then the CNF family {ΦC

n} does
not have polynomial-size C-IPS refutations infinitely often over Fp in the following sense: there exists
a constant c1 such that for every sufficiently large constant c2 and every constant c0, for infinitely
many n, t(n), s(n) ∈ N, t(n) > 2(n

c1) and nc1 < s(n) < nc2, ΦC
n has no C-IPS refutation over Fp of

size at most |ΦC
n|c0.

Proof. Our definition of a reasonable algebraic circuit class C abstracts out the properties of C required
to prove an implication from VNP ̸= C to super-polynomial lower bounds on ΦC

n against C-IPS, using
essentially the same proof as for Theorem 5.3. By Theorem 5.9, super-polynomial C-IPS lower bounds
for any sequence {ϕn}n of unsatisfiable CNFs implies VNP ̸= C. The desired result follows from
combining these two implications.

Theorem 5.10 is the formal version of Theorem 1.6 in the Introduction.

6 Supporting Evidence for the Diagonalizing CNFs as Unsatisfiable

In this section, we present two results providing supporting evidence that the diagonalizing CNF Φ
is unsatisfiable.

6.1 Tensor Rank Hardness Entails that Φ is Unsatisfiable

Here we show that a lower bound against constant-depth IPS refutations of a formula expressing a
tensor with tensor rank m cannot be decomposed to the summation of n rank-1 tensors, implying
that the diagonalization formula Φ is unsatisfiable.

It is now known from [LST25] that basic linear-algebraic operations such as matrix rank, de-
terminant, and plausibly solving systems of linear equations cannot be efficiently carried out by
constant-depth algebraic circuits, i.e., VAC0. The rank of an n× n matrix over a field is only known
to be computable in uniform NC2 via Mulmuley’s parallel algorithm [Mul86] (in fact, integer determi-
nant is computable already in #SAC1 [Coo85]). In contrast, determining the rank of a 3-dimensional
tensor is known to be NP-hard [H̊as90, Shi16].

The following is the rank principle as studied in [GGRT25] (cf. [SU04, Kra09, GGPS23]).

Definition 6.1 (Rank Principle). Let F be a field and m,n be two positive integers such that m > n.
We denote RankPm

n (A) the system of degree-2 polynomial equations stating that the rank of an m×m
matrix A is at most n over F. More precisely, the rank principle RankPm

n (A) is defined over 2mn

34

variables arranged into two matrices X ∈ Fm×n and Y ∈ Fn×m, For every i, j ∈ [m], there is an
equation in RankPm

n (A) stating that the (i, j)th entry of the product XY is equal to Ai,h. That is∑
k∈[n]

xi,kyk,j −Ai,j , i, j ∈ [m]. (39)

By linear algebra, when the rank of A exceeds n, RankPm
n (A) is unsatisfiable. The work of

[GGL+25] considers a generalisation of the rank principle, which they call the tensor rank principle.

Definition 6.2 (Tensor Rank Principle). Let F be a field and m,n be two positive integers such
that m > n. We denote TRankPr

m,n(A) the system of degree-r polynomial equations stating that

the tensor rank of the r-tensor A ∈ F(

r times︷ ︸︸ ︷
m× · · · ×m) is at most n over F. More precisely, the rth-

order tensor rank principle TRankPr
m,n(A) is defined over rmn variables arranged into r matrices

X1, . . . , Xr ∈ {0, 1}m×n where each matrix Xi can be viewed as n vectors xj,k ∈ {0, 1}m for k ∈ [n]
and j ∈ [r]. For every i1, . . . , ir ∈ [m] (not necessarily distinct), there is an equation in TRankPr

m,n(A)
stating that the (i1, . . . , ir)th entry of the summation of the tensor product

⊗r
j=1 xj,k is equal to Ai1,...,ir

(where ⊗ denotes the tensor (outer) product of vectors). That is,∑
k∈[n]

∏
j∈[r]

xj,ij ,k = Ai1,...,ir , i1, . . . , ir ∈ [m], (40)

where xj,ij ,k denote the (ij , k)th entry of the matrix Xj.
Additionally, for every i ∈ [m], k ∈ [n] and j ∈ [r], we have a Boolean axiom x2j,i,k−xj,i,k. Namely,

TRankPr
m,n(A) is the set of polynomial equations stating that

∑
k∈[n]

r⊗
j=1

xj,k = A.

Note that
⊗r

j=1 xj,k is the rth order tensor of rank 1 obtained by the outer product of all the
kth columns in X1, . . . , Xr. Hence, by basic algebra, it follows that the sum of n rank 1 tensors∑

k∈[n]
⊗r

j=1 xj,k has tensor rank at most n. Thus, whenever the tensor rank of A exceeds n, the
formula TRankPr

m,n(A) is unsatisfiable. For standard background on tensor rank and tensor decom-
positions, see the survey by Kolda and Bader [KB09]. As noted earlier, the tensor rank principle
generalises the matrix equation XY = A, which corresponds to the rank principle. In fact, the rank
principle RankPm

n (A) is precisely the case r = 2 of the tensor rank principle, i.e., TRankP2
m,n(A).

[GGL+25] proved that TRankPr
m,n(A) requires exp(Ω(n))-size PCR refutations over the two-

element field.

Theorem 6.3 ([GGL+25]). Every PCR refutation over F2 of TRankPr
m,n(A) requires 2

cn monomials
for some constant c.

They also exhibit a reduction from the tensor rank principle to bounded-depth algebraic circuit
upper bounds statements (so that the latter are at least as hard as the former), specifically the
statement “perm ∈ VAC0.”

Definition 6.4 (Bounded-depth algebraic circuit upper bound formulas AUB). Let f(x) ∈ F[x]
be a polynomial with n-variables and degree at most l. The following set of polynomial equations

35

AUB(f, s, l,∆) (in the w-variables only) express that the polynomial f(x) can be computed by a
bounded-depth algebraic circuit of size s and depth ∆:

{coeffMi(U(x,w)) = bi : 1 ≤ i ≤ N},

where b = coeff(f(x)) ∈ FN is the coefficient vector of the polynomial f of dimension N , U(x,w) is
the constant-depth universal circuit for polynomials of depth at most ∆ and size at most s, w are the
Ks,∆ (circuit) edge variables, {Mi}Ni=1 is the set of all possible x-monomials of degree at most l, and
N = Σl

j=0

(
n+j−1

j

)
= 2O(n+l) is the number of monomials of total degree at most l over n variables.

The size of the above set of polynomial equations is O(2(t+l)l · |U(x,w)| ·N) where t is the maximum
multiplication fan-in in U(x,w).

Theorem 6.5 (Constant-depth algebraic circuit upper bounds are at least as hard as tensor rank
principle [GGL+25]). Suppose SLP(AUB(f, s, ℓ,∆)) admits size-S depth-∆′ IPS refutations where ∆ >
4 and s > n2ℓ4. Then, TRankPn

N,
√
s(A) admits size-O(Nn · S +NK · |SLP(AUB(f, s, l,∆))|) depth-

(∆′ + 5) IPS refutations where

• N =
(
n+ℓ
ℓ

)
is the number of monomials in n variables and total degree at most ℓ.

• A is the n-tensor such that the (M, . . . ,M)th entry of A is coeffM(p) where M is a monomial
in n variables and total degree at most ℓ. The rest of A are all zeros.

Corollary 6.6 ([GGL+25]). Suppose TRankPr
m,n(A) requires 2n

δ
-size depth-∆′ IPS refutations, for

some constant δ > 0. Then, SLP(AUB(f, s, ℓ,∆)) requires |SLP(AUB(f, s, ℓ,∆))|ω(1)-size, depth-
(∆′ − 5) IPS refutation.

In particular, this shows that the hardness of the tensor rank principle against constant-depth IPS
entails the unsatisfiability of the diagonalizing formula Φ from Section 5.

6.2 Unconditional PCR Lower Bounds for Algebraic Circuit Upper Bound For-
mulas

In the previous section, we showed that the tensor rank principle TRankPr
m,n(A) can be reduced to

the bounded-depth algebraic circuit upper bound formulas AUB(f, s, l,∆). In this section, we show
that a variant of the rank principle can be reduced to general (unbounded depth) algebraic circuit
upper bound formulas AUB(f, s, l). This yields an unconditional PCR lower bound for AUB(f, s, l).

The definition of algebraic circuit upper bound formulas is similar to the bounded-depth case,
except that the universal circuit for bounded-depth is replaced with the universal circuit for general
algebraic circuits, as defined in [Raz10] (see [ST25]). Accordingly, we adopt the same notation for
general algebraic circuit upper bound formulas as for the bounded-depth case, except that the depth
parameter is omitted.

Definition 6.7 (Algebraic circuit upper bound formula). Let f(x) ∈ F[x] be a polynomial with
n-variables and degree at most l. The following set of polynomial equations AUB(f, s, l) (in the w-
variables only) expressing that the polynomial f(x) can be computed by an algebraic circuit of size
s:

{coeffMi(U(x,w)) = bi : 1 ≤ i ≤ N},
where b = coeff(f(x)) ∈ FN is the coefficient vector of the polynomial f of dimension N , U(x,w) is
the universal circuit for polynomials of degree at most l and circuit size at most s, w are the Ks,l edge
variables, {Mi}Ni=1 is the set of all possible x-monomials of degree at most l, and N = Σl

j=0

(
n+j−1

j

)
=

2O(n+l) is the number of monomials of total degree at most l over n variables. The size of AUB(f, s, l)
is O(7l · |U(x,w)| ·N).

36

Now, we define an iterated version of the rank principle. Let FL be a finite field of characteristic
L. We will denote by F≤n

L the set of vectors over FL of length at most n. Similarly, F<n
L denotes

the set of vectors over FL of length less than n. Let L, n,K ∈ N+. For every vector π ∈ F≤n
L , let

Xπ = (xπi,k)i∈[LK],k∈[K] be variable matrices (unique for each different π). Let Y be a K×LK matrix
in variables yk,j for k ∈ [K], j ∈ [LK]. For every vector π ∈ Fn

L, let A
π be an LK × LK matrix over

FL, and {Aπ} be the set consisting of all Aπ over all vectors π.

Definition 6.8 (Iterated Rank Principle [GGRT25]). Let L, n,K be parameters in N+. The Iterated
Rank Principle is IRankPL,n,K({Aπ}) :=∑

k∈[K]

xπi,kyk,j − x
π(⌈ j

K
⌉−1)

i,j−(⌈ j
K
⌉−1)K

, ∀π ∈ F<n
L , i ∈ [LK], j ∈ [LK],

∑
k∈[K]

xπi,kyk,j −Aπ
i,j , ∀π ∈ Fn

L, i ∈ [LK], j ∈ [LK].

Namely, IRankPL,n,K({Aπ}) contains all the degree-2 polynomial equations in the following matrix
multiplications (where πb, for b ∈ FL, denotes concatenation of b to π):

XπY = [Xπ0Xπ1 · · ·Xπ(L−1)], ∀π ∈ F≤n
L , (41)

XπY = Aπ, ∀π ∈ Fn
L. (42)

Note that Equation (42) are instances of the rank principle, hence the Iterated Rank Principle is
no stronger than the rank principle. Intuitively, Equation (41) provides auxiliary axioms that allow
us to access the nodes of a tree, in which we can embed a circuit.

Definition 6.9 (Iterated Rank Principle with Extension Variables). Let L, n,K be parameters in
N+. The Iterated Rank Principle with Extension Variables denoted IRankPEL,n,K({Aπ}) consists of
the equations in IRankPL,n,K({Aπ}) together with

zπi,k,j − xπi,kyk,j , ∀π ∈ F<n
L , i ∈ [LK], k ∈ [K], j ∈ [LK].

Theorem 6.10 ([GGRT25]). Every PCR refutation over F2 of IRankPEL,n,K({Aπ}) requires 2K
δ

monomials for some constant δ > 0.

Note that the size of IRankPEL,n,K({Aπ}) is exponential in n. Hence, if we choose K large
enough (e.g., K ≥ n100) this theorem gives a super-polynomial PCR lower bound. [GGL+25] further
showed, through a reduction from the iterated rank principle with extension variables to (the SLP
Definition 2.31 version of) AUB(f, s, l), that the latter admits an unconditional size lower bound
against PCR.

Theorem 6.11 ([GGL+25]). Every PCR refutation over F2 of SLP(AUB(f, s, l)) where s is polyno-
mially bounded requires |SLP(AUB(f, s, l))|ω(1) many monomials.

7 No Short Bounded-Depth IPS Refutations for Diagonalizing CNF
Formulas: the Polynomial-Size Fields Case

In this section, we work over finite fields whose characteristic is polynomially bounded by the instance
size, in order to obtain a more general result. This contrasts with the previous section, where the
characteristic of the finite field was a fixed global constant, independent of the instance size. Here we

37

encode binary string arithmetic—including addition, multiplication, and modular computation into
CNF formulas. Within this setting, we also establish the translation lemma, which yields a version of
Theorem 5.3 over finite fields of polynomially bounded characteristic. In other words, we show that
no efficient provability result holds against constant-depth IPS over polynomial-size finite fields. Since
Forbes [For24] extended [LST25] to arbitrary fields, the results of this section generalize Theorem 5.3.
The techniques here, however, are somewhat more involved.

We will continue to use notations such as cnf(C(x) = 0) and ecnf(C(x) = 0) from the fixed-field
setting, but with a different interpretation: in this section they refer to the CNF and Extended CNF
encodings of C(x) = 0 obtained via bit-level arithmetic, which we describe below.

7.1 Bit Arithmetic

Field elements are encoded in standard binary representation. We work over the finite field Fq. Note
that the characteristic of Fq is not constant. More precisely, we work over a finite field Fq where q
may grow polynomially (with the input size).

Definition 7.1 (The encoding of binary value VAL). Given a bit vector wk−1, . . . , w0 of variables w,
denoted w, ranging over 0-1 values, define the following algebraic formulas:

w = VAL(w)

VAL(w) = Σk−1
i=0 2

i · wi,

where VAL(w) is an extension variable. The size of a VAL is O(k).

Definition 7.2 (Arithmetization operation arit(·)). For a variable yi, arit(yi) = yi. For the truth
value false ⊥ and true ⊤ we put arit(⊥) := 0 and arit(⊤) := 1. For logical connectives we define
arit(A ∧B) := arit(A) · arit(B), arit(A ∨B) := 1− (1− arit(A)) · (1− arit(B)), and for XOR operation
we define arit(A⊕B) := arit(A) + arit(B)− 2 · arit(A) · arit(B).

In this way, for every Boolean formula F (x) with n variables and a Boolean substitution α ∈
{0, 1}n, arit(F)(α) = 1 if and only if F (α) = ⊤.

We will present the CNF encoding of unbounded fan-in algebraic circuits using bit arithmetic.
However, for simplicity, we present the algebraic encoding ϕ that is ”equivalent“ to the CNF formula
F . For ”equivalent”, we mean that ϕ can be derived from F in constant depth and constant size, and
vice versa. The reason why this can be achieved is that each formula has only a constant number of
variables. Therefore, by the implicational completeness of IPS over 0-1 assignment, IPS can derive all
formulas simultaneously in constant depth. It is easy to see that all formulas we give below can be
written as CNFs. Also, we write ϕ− ψ = 0 as ϕ = ψ.

We divide the addition bit arithmetic in a finite field into two big steps:

• Addition Step: for two k length binary representations x = xk−1, . . . , x0 and y = yk−1, . . . , y0,
we do the general addition bit arithmetic which outputs a k + 1 length binary representations
ADDk, . . . ,ADD0.

• Modular Step: we turn this k + 1 length binary representations ADDk, . . . ,ADD0 into a k
length binary representation ADD′

k−1, . . . ,ADD
′
0, which represents the same number in finite

field Fq. In other words,
∑k

i=0 2
iADDi ≡

∑k−1
i=0 2iADD′

i mod q. Note that, it is possible that∑k−1
i=0 2iADD′

i ≥ q.

For the convenience of later use of the Modular step in multiplication bit arithmetic in a finite field,
we generalize our Modular step into the following:

38

• Given a k length binary representations x = xk−1, . . . , x0 and an extra bit x′ which is the t+1th
bit where t ≥ k. We do the addition bit arithmetic of 0, xk−2, . . . , x0 and the k length binary
representation of (2tx′ + 2k−1xk−1) mod q, which outputs a k+ 1 length binary representation
y = yk, . . . , y0.

• Then, we do the addition bit arithmetic of yk−1, . . . , y0 and (2kyk mod q), which outputs a k−1
length binary representation. The reason why the output must be smaller than 2k is as follows:

Notice that, both two items
∑k−2

i=0 2ixi and (2tx′ + 2k−1xk−1) mod q are smaller than q since∑k−2
i=0 2ixi < 2k−1 ≤ q. If

∑k−1
i=0 2iyi + 2kyk < 2k, then we are done. Otherwise, suppose∑k−1

i=0 2iyi + 2kyk ≥ 2k. Since
∑k−1

i=0 2iyi ≤ 2k − 1,
∑k−1

i=0 2iyi + 2kyk ≥ 2k implies that yk = 1.
Hence,

k−1∑
i=0

2iyi + (2kyk mod q) ≤
k−1∑
i=0

2iyi + 2kyk − q

=

k−2∑
i=0

2ixi + (2tx′ + 2k−1xk−1 mod q)− q

< 2q − q

= q

< 2k

Therefore, we know that the output of this step must be a k − 1 length binary representation.

Now, we define the formula for the addition step.

Definition 7.3 (The carry bit CARRYi, the addition bit ADDi and the encoding of carry lookahead
addition Addition). Suppose we have two k length binary representations x = xk−1, . . . , x0 and y =
yk−1, . . . , y0. We define the carry bit CARRYi, the addition bit ADDi and the encoding of carry
lookahead addition Addition(x, y,ADD) as follows, together with the Boolean axioms for each variable:

CARRYi(x, y) =

{
arit((xi−1 ∧ yi−1) ∨ ((xi−1 ∨ yi−1) ∧ CARRYi−1(x, y))), i = 1, . . . , k;

arit(⊥), i = 0,

and

ADDi(x, y) = arit(xi ⊕ yi ⊕ CARRYi(x, y)), i = 0, . . . , k − 1

ADDk(x, y) = CARRYk(x, y)

The size of the encoding Addition(x, y,ADD) is also O(k). The encoding Addition(x, y,ADD) repre-
sents the addition of two k length binary representations x and y, which gives a k + 1 length binary
representation ADD.

Also, we denote Addition′ as encoding of carry lookahead addition without CARRYk and ADDk. In
other words, Addition′(x, y,ADD) represents the addition of two k length binary representations x and
y, which gives a k length binary representation ADD.

Notice that both CARRYi and ADDi are extension variables. Now, we define the encoding of
modular.

39

Definition 7.4 (The encoding of modularModular). Suppose we have a k length binary representation
x = xk−1, . . . , x0 and another binary bit x′ which is the t + 1th bit in a binary representation, the

encoding of modular Modulart(x, x′,ADD′) is defined as follows, together with the Boolean axioms for
each variable:

Addition(

the last k bit of x with xk−1 exchanged to 0︷ ︸︸ ︷
0, xk−2, . . . , x0, m︸︷︷︸

the k length binary representation of 2tx′ + 2k−1xk−1 mod q

, u)

Addition′(

the last k bit of u︷ ︸︸ ︷
uk−1, . . . , u0, w︸︷︷︸

the k length binary representation of 2kuk

,ADD′)

m and w are defined as follows. Suppose a is the binary representation of 2t mod q, b is the
binary representation of 2k−1 mod q and c is the binary representation of 2t +2k−1 mod q, each bit
mi in m can be computed by a Boolean function f ti (x

′, xk−1) whose truth table is as follows:

x′ xk−1 f ti (x
′, xk−1)

0 0 0

0 1 bi
1 0 ai
1 1 ci

Therefore, f ti (x
′, xk−1) can be represented by a CNF with variables x′ and xk−1 since all a, b

and c are fixed. We denote such CNF as cnf(f ti (x
′, xk−1)). Hence, m are defined as mi :=

arit(cnf(f ti (x
′, xk−1))).

Similarly, w are defined as wi := arit(cnf(gi(uk))) where gi is another Boolean function only
depends on uk.

With the encoding of carry lookahead addition Addition and the encoding of modular Modular, we
define the CNF encoding of x+ y = z.

Definition 7.5 (The CNF encoding of bit arithmetic for addition in a finite field). For any SLP
formula x + y − z = 0, the CNF encoding of bit arithmetic for addition in a finite field, denoted as
CNF-ADD(x, y, z), is as follows:

• Addition step: Addition(x, y,ADD)

• Modular step: Modulark(ADDk−1, . . . ,ADD0,ADDk,ADD
′)

• Connection step: for each 0 ≤ i ≤ k − 1, we have ADD′
i = zi.

For the multiplication bit arithmetic in a finite field, we divide it into three big steps:

• Multiplication Step: For two k length binary representations x = xk−1, . . . , x0 and y =
yk−1, . . . , y0, we do the general multiplication bit arithmetic which outputs k many k binary
representations s0, . . . , sk−1 where sij = xj ∧ yi.

• Modular Step: for si, we do the generalized modular step for i times, which gives us a k length
binary representation whose value is the same as

∑i+k
j=i 2

jsij in the finite field Fq.

40

• Addition Step: After the Modular Step, we have k many k-length binary representations. Using
the addition we showed above, we can add them together in the finite field Fq and get a k-length
binary representation.

Definition 7.6 (The encoding of multiplication MULTi, MULT). Suppose we have two binary
representations x = xk−1, . . . , x0 and y = yk−1, . . . , y0, we define the encoding of multiplication
MULT(x, y, s0, · · · , sk−1) as follows, together with the Boolean axioms for each variable:

MULTi(x, y, si) :=

{
si,j = arit(xj−i ∧ yi), i ≤ j ≤ k − 1 + i

si,j = arit(⊥), 0 ≤ j < i.
, 0 ≤ i ≤ k − 1

where si is a k+i length 0-1 vector. The size of the encoding of multiplication MULT(x, y, s0, · · · , sk−1)
is O(k2).

Definition 7.7 (The CNF encoding of bit arithmetic for multiplication in a finite field). For any SLP
formula x× y − z = 0, the CNF encoding of bit arithmetic for multiplication in a finite field denoted
as CNF-MULT(x, y, z), is as follows:

• Multiplication step: MULT(x, y, s0, · · · , sk−1)

• Modular step: for each si such that 1 ≤ i ≤ k−1, we have the following i many modular formula:

Modulark(si,k−1, . . . , si,0, si,k, ui,k)

Modulark+1(ui,k, si,k+1, ui,k+1)

...

Modularj(ui,j−1, si,j , ui,j), k + 1 ≤ j ≤ i+ k − 1.

All ui,j is a k length binary representation.

• Addition step: Now for each si, we have a k length binary representation ui,i+k−1 such that∑i+k−1
j=0 2jsi,j =

∑k−1
j=0 2

jui,i+k−1,j in the finite field Fq. Then, using the CNF encoding of bit
arithmetic for addition in a finite field as we defined above in Definition 7.5, we have the
following:

CNF-ADD(s0, u1,k, v1)

CNF-ADD(v1, u2,k+1, v2)

...

CNF-ADD(vi, ui+1,k+i, vi+1), 1 ≤ i ≤ k − 2

• Connection step: for each 0 ≤ j ≤ k − 1, we have vk−1,j = zj.

The size of CNF-MULT(x, y, z) is O(k3).

Definition 7.8 (CNF encoding of unbounded fan-in algebraic circuits; cnf(C(x))). Let C(x) be an
(unbounded fan-in) algebraic circuit in variables x. The CNF encoding of C(x) denoted cnf(C(x))
consists of the following CNFs in the binary representation bits variables of all the nodes in C and
extra extension variables (and only in the binary representation bits variables):

41

• If α ∈ F is a scalar input node in C, the CNF encoding of C contains the {0, 1} constant
corresponding to the binary representation bits of α. These constants are used when fed to
nodes according to the wiring of C.

• For every node g in C(x), suppose g is a + node that has inputs u1, . . . , ut. Then, firstly, we
have the formula CNF-ADD for each of the following equations:

u1 + u2 = vg1
ui+2 + vgi = vgi+1, 1 ≤ i ≤ t− 3

ut + vgt−2 = g.

Same for × nodes. Suppose g is a × node that has inputs u1, . . . , ut. Then, we have the
multiplication formula CNF-MULT for each following equations:

u1 × u2 = vg1
ui+2 × vgi = vgi+1, 1 ≤ i ≤ t− 3

ut × vgt−2 = g.

• For every Boolean variables u, we have the Boolean axiom

u2i − ui = 0

We call variables vgi the intermediate nodes which are nodes that do not exist in C but are used
to help to encode and the SLP formula ui+2 + vgi = vgi+1 or ui+2 × vgi = vgi+1 the intermediate
SLP formulas. The size of the CNF encoding of unbounded fan-in algebraic circuits cnf(C(x)) is
O(tk3|C|) = O(k3|C|2) where t is the maximum fan-in.

Notice that, in the above CNF encoding, we can only guarantee that the output of the circuit,
which is a k length binary representation gout, is equal to zero in the finite field Fq. In other words,

we can guarantee that
∑k−1

i=0 2igout,i = 0. However, this does not mean that gout,i = 0 for all bits.
Instead of guaranteeing each gout,i is equal to 0, we guarantee that each gout,i = qi where q is the k
length binary representation of q. Therefore, to encode the output of the algebraic circuit is equal to
0, we add q to the output, which is

CNF-ADD(gout, q︸︷︷︸
the binary representation of q

, gout).

Definition 7.9 (CNF encoding of unbounded fan-in algebraic circuit equations; cnf(C(x)) = 0). Let
C(x) = 0 be a circuit equation in the variables x over a finite field Fq. The CNF encoding of it denoted
cnf(C(x) = 0) consists of the CNF encoding of C(x) from Definition 7.8 together with the equations

• CNF = ADD(gout, q︸︷︷︸
the binary representation of q

, gout)

• gout,i = qi, 0 ≤ i ≤ k − 1 which express that the output node gout = 0 and gout,i are the binary
representation bits of gout. We call these formulas the connection formulas for the output node.

The size of the CNF encoding of unbounded fan-in algebraic circuits equation cnf(C(x) = 0) is
O(tk3|C|) = O(k3|C|2) where t is the maximum fan-in.

42

Definition 7.10 (Extended CNF encoding of unbounded fan-in algebraic circuit equation (circuit
resp.); ecnf(C(x) = 0) (ecnf(C(x)), resp.)). Let C(x) be a circuit in the x variables over the field Fq.
Then the extended CNF encoding of the circuit equation C(x) = 0 (circuit C(x), resp.), in symbols
ecnf(C(x) = 0) (ecnf(C(x)), resp.), is defined to be the following:

• the CNF encoding of circuit equation C(x) = 0 (circuit C(x), resp.), namely, cnf(C(x) =
0)(cnf(C(x)), resp.); and

• the binary value formula for each binary representation bits vector.

The size of the Extended CNF encoding of unbounded fan-in algebraic circuits equation ecnf(C(x) = 0)
is O(tk3|C|) = O(k3|C|2) where t is the maximum fan-in.

Same as the argument given in [ST25], we have the following propositions.

Proposition 7.11. Let C(x) be a circuit equation over F. Then, C(x) is unsatisfiable over F if and
only if cnf(C(x) = 0) is an unsatisfiable CNF if and only if ecnf(C(x)) = 0 is an unsatisfiable set of
equations over F.

Corollary 7.12. If ecnf(C(x) = 0) is unsatisfiable over Fq then it has an IPSalg refutation in VNPFq .

Now, we are ready to show the translation lemma for bit arithmetic encoding, similarly to
Lemma 2.35 and Lemma 2.36.

Lemma 7.13. Let Fq be a finite field. Let x = xk−1, . . . , x0, y = yk−1, . . . , y0 and z = zk−1, . . . , z0 be
three k length binary representations. Then,

CNF-ADD(x, y, z)
IPSalg

O(2k·poly(k)),O(1)
VAL(x) + VAL(y) = VAL(z)

Lemma 7.14. Let Fq be a finite field. Let x = xk−1, . . . , x0 and y = yk−1, . . . , y0 be two k length
binary representations. Let ADD = ADDk,ADDk−1, . . . ,ADD0 be a k+1 length binary representation.
Then,

Addition(x, y,ADD)
IPSalg

O(k),O(1)
VAL(x) + VAL(y) = VAL(ADDi(x, y)).

In other words, from Addition(x, y,ADD), there is a O(1)-depth, O(k)-size IPSalg proof of VAL(x) +
VAL(y) = VAL(ADDi(x, y)).

Proof of Lemma 7.14. By Definition 7.3, Addition(x, y,ADD) includes

ADDi(x, y) = arit(xi ⊕ yi ⊕ CARRYi(x, y)), i = 0, · · · , k − 1

ADDk(x, y) = CARRYk(x, y).

By simple substitution, it suffices to show

Addition(x, y,ADD)
IPSalg

∗,O(1)
k−1∑
i=0

(xi + yi) · 2i =
k−1∑
i=0

(xi ⊕ yi ⊕ CARRYi(x, y)) · 2i + CARRYk(x, y) · 2k.

For each 0 ≤ i ≤ k − 1, we aim to show that there is a constant-depth, constant-size IPSalg proof
of the following equation:

2i · (xi + yi) = 2i(xi ⊕ yi ⊕ CARRYi(x, y)) + 2i+1CARRYi+1(x, y)− 2iCARRYi(x, y).

43

By substituting CARRYi+1 with (xi ∨ yi) ∧ CARRYi(x, y)) according to Definition 7.3, for each
0 ≤ i ≤ k − 1, the above equation becomes

2i ·(xi+yi) = 2i(xi⊕yi⊕CARRYi(x, y))+2i+1((xi∧yi)∨((xi∨yi)∧CARRYi(x, y)))−2iCARRYi(x, y).

Note that the above equation, which has only three Boolean variables, is true under any 0-1 assign-
ment. Therefore, by Proposition 2.23, there is a constant-depth, constant-size IPSalg proof of the
above equation.

Observe that all the equations above can be proved simultaneously. By summing over all these
equations, there is a constant-depth, O(k)-size IPSalg proof of

k−1∑
i=0

(xi + yi) · 2i =
k−1∑
i=0

(xi ⊕ yi ⊕ CARRYi(x, y)) · 2i + CARRYk(x, y) · 2k.

We can conclude

Addition(x, y,ADD)
IPSalg

O(k),O(1)
VAL(x) + VAL(y) = VAL(ADDi(x, y)).

Lemma 7.15. Let Fq be a finite field. Let x = xk−1, . . . , x0 and y = yk−1, . . . , y0 be two k length
binary representations. Let z be a Boolean variable. Then,

Modulart(x, z, y)
IPSalg

O(2k·poly(k)),O(1)
VAL(x) + 2tz = VAL(y).

In other words, from Modularl(x, z, y), there is a O(1)-depth, O(k)-size IPSalg proof of VAL(x)+2tz =
VAL(y).

Proof of Lemma 7.15. Recall Definition 7.4, Modulart(x, z, y) contains

Addition(0,

the last k − 1 bit of x︷ ︸︸ ︷
xk−2, . . . , x0, m︸︷︷︸

the k length binary representation of 2tz + 2k−1xk−1 mod q

, u),

Addition′(

the last k bit of u︷ ︸︸ ︷
uk−1, . . . , u0, w︸︷︷︸

the k length binary representation of 2kuk

, y).

By Lemma 7.14,

Addition(0, xk−2, . . . , x0,m, u) IPSalg

O(k),O(1)
k−2∑
i=0

2ixi + VAL(m) = VAL(u).

By Proposition 2.23, there is a constant-depth, constant-size IPSalg proof of VAL(m) = 2tz +
2k−1xk−1 since there are only two Boolean variables in it after replacing each bit mi with
arit(cnf(f ti (z, xk−1))).

Hence, by adding VAL(m) = 2tz+2k−1xk−1 and
∑k−2

i=0 2ixi+VAL(m) = VAL(u) together, we have
VAL(x) + 2tz = VAL(u).

Now, we aim to show that

Addition′(uk−1, · · · , u0, w, y) IPSalg

O(2k·poly(k)),O(1)
VAL(u) = VAL(y)

44

Same as the proof of Lemma 7.14, for 0 ≤ i ≤ k−2, there is a constant-depth, constant-size IPSalg

proof of

2i · (ui + wi) = 2iyi(uk−1, . . . , u0, w) + 2i+1CARRYi+1(uk−1, . . . , u0, w)− 2iCARRYi(uk−1, . . . , u0, w).

For the kth bit, we aim to prove

2k−1(uk−1 + wk−1) = 2k−1yk−1(uk−1, . . . , u0, w)− 2k−1CARRYk−1(uk−1, . . . , u0, w),

which is

2k−1(uk−1+wk−1) = 2k−1(uk−1⊕wk−1⊕CARRYk−1(uk−1, . . . , u0, w))−2k−1CARRYk−1(uk−1, . . . , u0, w).

By replacing uk−1, wk−1 and CARRYk−1(uk−1, . . . , u0, w) by constant-depth, poly(k)-size formulas
U(x, y), W (x, y) and CARRY (x, z) correspondingly, we get

2k−1(U +W) = 2k−1(U ⊕W ⊕ CARRY)− 2k−1CARRY.

The above equation holds over all Boolean assignments of x, z according to our discussion above. By
Proposition 2.23, we get a depth-2, O(2k · poly(k))-size IPSalg of the above equation. By adding the
above equations, we have

∑k−1
i=0 2iui + VAL(w) = VAL(y).

Since each bit in w can be replaced by the corresponding arit(cnf(gi(uk))), there is a constant-
depth, constant-size IPSalg proof of VAL(w) = 2kuk since there is only one Boolean variable (i.e. uk)
in the formula after replacing. From

∑k−1
i=0 2iui + VAL(w) = VAL(y) and VAL(w) = 2kuk, we get

VAL(u) = VAL(y).
Now, we can conclude that

Modulart(x, z, y)
IPSalg

O(2k·poly(k)),O(1)
VAL(x) + 2tz = VAL(y).

Proof of Lemma 7.13. Recall the Definition 7.5, CNF-ADD(x, y, z) is as follows:

• Addition step: Addition(x, y,ADD)

• Modular step: Modulark(ADDk−1, . . . ,ADD0,ADDk,ADD
′)

• Connection step: for each 0 ≤ i ≤ k − 1, we have ADD′
i = zi.

We aim to show

CNF-ADD(x, y, z)
IPSalg

O(k),O(1)
VAL(x) + VAL(y) = VAL(z).

By Lemma 7.14,

Addition(x, y,ADD)
IPSalg

O(k),O(1)
VAL(x) + VAL(y) = VAL(ADD).

By Lemma 7.15,

Modulark(ADDk−1, . . . ,ADD0,ADDk,ADD
′)

IPSalg

O(2k·poly(k)),O(1)
VAL(ADD) = VAL(ADD′).

Note that VAL(ADDk−1, . . . ,ADD0) + 2kADDk = VAL(ADD).

Since for each 0 ≤ i ≤ k − 1, ADD′
i = zi. It is easy to show that VAL(ADD′) = VAL(z). We can

conclude that

CNF-ADD(x, y, z)
IPSalg

O(2k·poly(k)),O(1)
VAL(x) + VAL(y) = VAL(z).

45

Lemma 7.16. Let Fq be a finite field. Let x = xk−1, . . . , x0, y = yk−1, . . . , y0 and z = zk−1, . . . , z0 be
three k length binary representations. Then,

CNF-MULT(x, y, z)
IPSalg

O(2k·poly(k)),O(1)
VAL(x) · VAL(y) = VAL(z)

Lemma 7.17. Let Fq be a finite field. Let x = xk−1, . . . , x0 and y = yk−1, . . . , y0 be two k length
binary representations. Let sk−1, . . . , s0 be k many binary representations with different length where
si = si,i+k−1, . . . , si,0 is a i+ k length binary representation for 0 ≤ i ≤ k − 1. Then,

MULT(x, y, s0, . . . , sk−1) IPSalg

O(k2),O(1)
VAL(x) · VAL(y) =

k−1∑
i=0

VAL(si).

In other words, from MULT(x, y, sk−1, . . . , s0), there is a O(1)-depth, O(k + i) size IPSalg proof of
VAL(x) · VAL(y) =

∑k−1
i=0 VAL(si).

Proof of Lemma 7.17. Recall Definition 7.6, MULT(x, y, s0, · · · , sk−1) includes

MULTi(x, y, si) :=

{
si,j = arit(xj−i ∧ yi), i ≤ j ≤ k − 1 + i

si,j = arit(⊥), 0 ≤ j < i.
, 0 ≤ i ≤ k − 1.

First, we aim to show that from each MULTi(x, y, si), there is a O(k + i)-size, O(1)-depth IPSalg

proof of
VAL(x) · 2iyi = VAL(si).

For each j such that i ≤ j ≤ k − 1 + i, from si,j = xj−i ∧ yi and Boolean axioms, there is a
O(1)-size, O(1)-depth IPSalg proof of 2j−ixj−i · 2iyi = 2jsi,j . For each j such that 0 ≤ j < i, from
si,j = 0, there is a O(1)-size, O(1)-depth IPSalg proof of 2jsj = 0. By summing up all these equations,
there is a O(k + i)-size, O(1)-depth IPSalg proof of

VAL(x) · 2iyi = VAL(si).

Again, by summing up all these equations for each MULTi, there is a O(k2)-size, O(1)-depth IPSalg

proof of
k−1∑
j=0

2jxj ×
k−1∑
i=0

2iyi =
k−1∑
i=0

k−1+i∑
w=0

2wsiw.

which is VAL(x) · VAL(y) =
∑k−1

i=0 VAL(si).

Proof of Lemma 7.16. Recall the Definition 7.7, CNF-MULT(x, y, z) is defined as follows:

• Multiplication step: MULT(x, y, s0, · · · , sk−1).

• Modular step: for each si such that 1 ≤ i ≤ k − 1, we have the following i many modular
formula:

Modulark(si,k−1, . . . , si,0, si,k, ui,k)

Modulark+1(ui,k, si,k+1, ui,k+1)

...

Modularj(ui,j−1, si,j , ui,j), k + 1 ≤ j ≤ i+ k − 1.

All ui,j is a k length binary representation.

46

• Addition step: Now for each si, we have a k length binary representation ui,i+k−1 such that∑i+k−1
j=0 2jsi,j =

∑k−1
j=0 2

jui,i+k−1,j in the finite field Fq. Then, using the CNF encoding of
bit arithmetic for addition in a finite field as we defined above in Definition 7.5, we have the
following:

CNF-ADD(s0, u1,k, v1)

CNF-ADD(v1, u2,k+1, v2)

...

CNF-ADD(vi, ui+1,k+i, vi+1), 1 ≤ i ≤ k − 2

where each vi is k length binary representation.

• Connection step: for each 0 ≤ j ≤ k − 1, we have vk−1,j = zj .

By Lemma 7.17,

MULT(x, y, s0, . . . , sk−1) IPSalg

O(k2),O(1)
VAL(x) · VAL(y) =

k−1∑
i=0

VAL(si).

By Lemma 7.15, for each si, there is a O(2k · poly(k))-size, O(1)-depth IPSalg proof of

VAL(si,k−1, . . . , si,0) + 2ksi,k = VAL(ui,k)

VAL(ui,k) + 2k+1si,k+1 = VAL(ui,k+1)

VAL(ui,j−1) + 2jsi,j = VAL(ui,j), k + 1 ≤ j ≤ i+ k − 1.

By summing up the above equations, there is a O(2k · poly(k))-size, O(1)-depth IPSalg proof of
VAL(si) = VAL(ui,i+k−1).

Therefore, there is a O(2k · poly(k))-size, O(1)-depth IPSalg proof of VAL(si) = VAL(ui,i+k−1), 1 ≤
i ≤ k − 1.

By Lemma 7.13, given the formulas in the addition step:

CNF-ADD(s0, u1,k, v1)

CNF-ADD(v1, u2,k+1, v2)

...

CNF-ADD(vi, ui+1,k+i, vi+1), 1 ≤ i ≤ k − 2,

there is a O(2k · poly(k))-size, O(1)-depth IPSalg proof of

VAL(s0) + VAL(u1,k) = VAL(v1)

VAL(vi) + VAL(ui+1,k+i) = VAL(vi+1), 1 ≤ i ≤ k − 2.

By adding them together,

VAL(s0) +
k−1∑
i=0

VAL(ui,i+k−1) = VAL(vk−1).

Since we have already proved that VAL(si) = VAL(ui,i+k−1) for each i such that 1 ≤ i ≤ k− 1, by
summing up them together with VAL(s0),

47

k−1∑
i=0

VAL(s0) = VAL(s0) +
k−1∑
i=1

VAL(si)

= VAL(s0) +
k−1∑
i=0

VAL(ui,i+k−1)

= VAL(vk−1).

By Connection step, for each o ≤ j ≤ k − 1, vk−1,j = zj . There is a O(k)-size, O(1)-size IPSalg

proof of VAL(vk−1) = VAL(z).
Now, we can conclude that

CNF-MULT(x, y, z)
IPSalg

O(2k·poly(k)),O(1)
VAL(x) · VAL(y) = VAL(z)

Lemma 7.18 (Translating from extended CNFs to circuit equations). Let Fq be a finite field and let
k be 2k−1 < q < 2k, and let C(x) be a circuit of depth ∆ over x variables. Then, the following hold

ecnf(C(x) = 0)
IPSalg

O(2k·poly(k)|C|),O(∆)
C(x) = 0

To prove Lemma 7.18, we will first show that from the Extended CNFs of each node g with t
many children in C(x), there is a O(1)-depth, O(2k · poly(k)t)-size IPSalg proof of the SLP formula of
g. Then, we will show that from SLP(C(x) = 0), there is a O(∆)-depth, O(2k · poly(k)|C|)-size IPSalg

proof of the circuit equation C(x) = 0.

Proof of Lemma 7.18. First, we aim to show that from the Extended CNFs of each node g with t
many children in C(x), there is a O(1)-depth, O(2k · poly(k)t)-size IPSalg proof of the SLP formula of
g. We start with the + node case.

Suppose we have the following CNF formulas:

CNF-ADD(u1, u2, v
g
1)

CNF-ADD(ui+2, v
g
i , v

g
i+1), 1 ≤ i ≤ t− 3

CNF-ADD(ut, v
g
t−2, g)

which are the CNF encoding of the node g expressing that
∑t

i=0 ui = g.
By Lemma 7.13, from there is a O(kt)-size, O(1)-depth IPSalg proof of

VAL(u1) + VAL(u2) = VAL(vg1)

VAL(ui+2 + VAL(vgi) = VAL(vgi+1), 1 ≤ i ≤ t− 3

VAL(ut) + VAL(vgt−2) = VAL(g).

By Definition 7.10, for ui, v
g
i and g, ecnf(C(x) = 0), ecnf(C(x) = 0) includes VAL(ui) = ui,

VAL(vgi) = vgi and VAL(g) = g, which are the binary value formulas for them.

48

Hence, from the Extended CNF encoding of the node g, there is a O(kt)-size, O(1)-depth IPSalg

proof of the following SLPs:

u1 + u2 = vg1
ui+2 + vgi = vgi+1 1 ≤ i ≤ t− 3

ut + vgt−2 = g

By summing up all the SLP formulas,

u1 + u2 + · · ·+ ut = g.

For the × nodes case, suppose we have the following CNF formulas:

CNF-MULT(u1, u2, v
g
1)

CNF-MULT(ui+2, v
g
i , v

g
i+1), 1 ≤ i ≤ t− 3

CNF-MULT(ut, v
g
t−2, g)

which are the CNF encoding of the node g expressing that
∏t

i=0 ui = g.
By Lemma 7.16, from the CNF encoding of the node g, there is a O(2k · poly(k)t)-size, O(1)-depth

IPSalg proof of

VAL(u1)× VAL(u2)− VAL(vg1) = 0

VAL(ui+2)× VAL(vgi)− VAL(vgi+1) = 0, 1 ≤ i ≤ t− 3

VAL(ut)× VAL(vgt−2)− VAL(g) = 0.

By Definition 7.10, ecnf(C(x) = 0) includes the binary value formulas for those binary represen-
tations.

Hence, from the Extended CNF encoding of the node g, there is a O(kt)-size, O(1)-depth IPSalg

proof of the following SLPs:

u1 × u2 − vg1 = 0

ui+2 × vgi − vgi+1 = 0, 1 ≤ i ≤ t− 3

ut × vgt−2 − g = 0

Then, by the following depth-2 O(t)-size formula

(u1 × u2 − vg1)×
t∏

j=3

uj + · · ·+ (ui+2 × vgi − vgi+1)×
t∏

j=i+3

uj + · · ·+ (ut × vgt−2 − g) = 0,

there is a O(2k · poly(k)t)-size, O(1)-depth IPSalg proof of u1 × · · · × ut − g = 0.
For the output node, by the axioms gout,i = qi and binary value formulas for gout and q, gout =

VAL(gout) = VAL(q) = 0 can be easily derived.
Therefore, from ecnf(C(x) = 0), there is a O(1)-depth, O(2k · poly(k)|C|)-size IPSalg proof of SLP

formulas of C(x) = 0.
Now, we aim to show that from these SLP formulas, there is O(∆)-depth, O(2k · poly(k)|C|)-size

IPSalg proof of the circuit equation C(x) = 0. We prove this by induction that for each node g, there
is a O(Depth(g))-depth, O(2k · poly(k)|Cg|)-size IPSalg proof of a circuit equation Cg(x)− g = 0:

49

• Base case: Since we have the binary value formulas for all the leaves, this is immediate.

• Addition case: suppose we have a SLP formula u1+u2+· · ·+ut−g = 0 where for each ui, there is
a O(Depth(ui))-depth, O(2k ·poly(k)|Cui |)-size IPSalg proof of a circuit equation Cui(x)−ui = 0.
Then, by summing up all the circuit equations Cui−ui together with u1+u2+ · · ·+ut = g, there
is a O(Depth(g))-depth, O(2k ·poly(k)|Cg|)-size IPSalg proof of a circuit equation

∑t
i=1Cui−g = 0

as this proof adds one depth and one node.

• Multiplication case: suppose we have a SLP formula u1 × u2 × · · · × ut − g = 0 where for
each ui, there is a O(Depth(ui))-depth, O(2k ·poly(k)|Cui |)-size IPSalg proof of a circuit equation
Cui(x)−ui = 0. Then, computes (

∑t
i=1((Cui−ui)×

∏i−1
j=1Cuj

∏t
l=i+1 ul))+(u1×u2×· · ·×ut−g),

which adds two depths and two nodes. This gives a O(Depth(g))-depth, O(2k · poly(k)|Cg|)-size
IPSalg proof of a circuit equation

∏t
i=0Cui − g = 0.

• Output node: given SLP formula gout = 0 and circuit equations Cgout − gout = 0, it is easy to
get Cgout = 0.

Now, we can conclude that

ecnf(C(x) = 0)
IPSalg

O(2k·poly(k)|C|),O(∆)
C(x) = 0

Lemma 7.19. Let Fq be a finite field, and let C(x) be a circuit of depth ∆ over x variables. Then,
the following hold

SLP(C(x)), C(x) = 0
IPSalg

O(|C|),O(∆)
SLP(C(x) = 0)

Proof of Lemma 7.19. We aim to show that given SLP(C(x)) and C(x), there is aO(∆)-depth, O(|C|)-
size IPSalg proof of gout = 0. By the proof of Lemma 7.19, given SLP(C(x)), there is a O(|C|)-size,
O(∆)-depth IPSalg proof of Cgout − gout = 0 where Cgout is exactly the same as C(x). gout = 0 can be
obtained by a simple subtraction.

Proposition 7.20. Let x = xk−1, . . . , x0 be a k-length binary representation, where x is an algebraic
variable.

{x2i − xi = 0 : 0 ≤ i ≤ k − 1},
x = VAL(x),

x = 0
IPSalg

O(2k·poly(k)),O(∆)
{xi = qi : 0 ≤ i ≤ k − 1}

Proposition 7.20 follows from Proposition 2.23.

Lemma 7.21 (Translating from circuit equations and addition axioms to extended CNFs). Let Fq be
a finite field and let k be 2k−1 < q < 2k, and let C(x) be a circuit of depth ∆ over x variables. Then,
the following holds

{x2i − xi = 0 : xi is a binary variable in ecnf(C(x) = 0)},
All formulas in ecnf(C(x) = 0) except the connection formula for the output node,

SLP(C(x)),

C(x) = 0
IPSalg

O(2k·poly(k)|C|),O(1)
ecnf(C(x) = 0).

50

Proof of Lemma 7.21. Note that the only formulas required to derive is the connection formula for
the output node:

{gout,i = qi : 0 ≤ i ≤ k − 1}.

By Lemma 7.19, there is O(∆)-depth, O(|C|)-size IPSalg of gout = 0. Together with additional
axioms and Boolean axioms we already have, we have all the axioms needed in Proposition 7.20. By
Proposition 7.20, there is a O(1)-depth, O(2k · poly(k)) IPSalg proof of gout,i = qi.

Lemma 7.22 (Translating between extended CNFs and circuit equations). Let Fq be a finite field
and let k be 2k−1 < q < 2k, and let C(x) be a circuit of depth ∆ over x variables. Then, the following
holds

ecnf(C(x) = 0)
IPSalg

O(2k·poly(k)|C|),O(∆)
C(x) = 0

and

{x2i − xi = 0 : xi is a binary variable in ecnf(C(x) = 0)},
All formulas in ecnf(C(x) = 0) except the connection formula for the output node,

SLP(C(x)),

C(x) = 0
IPSalg

O(2k·poly(k)|C|),O(1)
ecnf(C(x) = 0).

For an instance of size s, we take the characteristics of the finite field to be a prime number
between n3 and (n + 1)3 that must exist for sufficiently large instances according to [Che10]. Let k
be the number of bits needed for the binary representation of field elements in Fq. In other words,

2k−1 ≤ q < 2k. We let N =
∑l

j=0

(
n2+j−1

j

)
= 2O(n2+l) be the number of different monomials over n2

variables and degree at most l.

• VNP = VAC0(n, s, l,∆): circuit equations expressing that there is a constant-depth universal
circuit for size s and depth ∆ circuits that compute the Permanent polynomial of dimension n,
which means there are n2 many variables, over degree l.

– Type: circuit equations;

– Number of variable: Ks,∆ which is poly(s,∆);

– Size: O(2(n+l)l · poly(s,∆) ·N).

• φcnf
n,s,l,∆: the CNF encoding of VNP = VAC0(n, s, l,∆) based on definition Definition 7.9

– Type: CNF formulas;

– Number of variable: O(2(n+l)l · poly(s,∆) ·N);

– Size: O(k · 2(n+l)l · poly(s,∆) ·N).

• φecnf
n,s,l,∆: the Extended CNF encoding of VNP = VAC0(n, s, l,∆) based on definition Defini-

tion 7.10

– Type: Extended CNF formulas;

– Number of variable: O(2(n+l)l · poly(s,∆) ·N);

– Size: O(k · 2(n+l)l · poly(s,∆) ·N).

• IPSref(t,∆, l,F): circuit equations expressing that there exists a constant-depth universal circuit
for size t and depth ∆ circuits that computes the IPS refutation of F over degree l.

51

– Type: circuit equations;

– Number of variable: Kt,∆ which is poly(t,∆);

– Size: O(2(n+l)l · poly(t,∆) · |F| ·N).

• φ∗
n,s,l,∆: the Extended CNF encoding φecnf

n,s,l,∆ together with additional extension axioms for
IPSref(s,∆, l,F) includes:

{x2i − xi = 0 : xi is a binary variable in ecnf(IPSref(s,∆, l,F))},
All formulas in ecnf(IPSref(s,∆, l,F)) except the connection formula for the output node,

SLP(IPSref(s,∆, l,F)) excepts the SLP formulas for output nodes

– Type: Extended CNF formulas;

– Number of variable: O(q · 2(n+l)l · poly(s,∆) ·N);

– Size: O(k · 2(n+l)l · poly(s,∆) ·N).

• Φt,l,∆′,n,s,∆: the CNF encoding of IPSref(t,∆
′, l, φ∗

n,s,l,∆) expressing that IPS refutes φ∗
n,s,l,∆ in

size t, depth ∆′ and degree l.

– Type: CNF formulas;

– Number of variable: Kt,∆ which is poly(t,∆);

– Size: O(k · 2(n+l)l · poly(t,∆) · |F| ·N).

By replacing the use of Lemma 2.35 and Lemma 2.36, which is the translation lemma for fixed finite
fields, with the above Lemma 7.22, which is the translation lemma for polynomial-size finite fields, in
the proof of Theorem 5.3, we can get the corollary below. We fix l : N → N to be a (monotone) size
function l(n) = nϵ for some constant ϵ.

Corollary 7.23 (Main theorem in polynomial-size finite fields). The CNF family {Φt,l,∆′,n,s,∆}n
does not have polynomial-size IPS refutations infinitely often over Fq, for every prime q such that
q < (|φ∗

n,s,l,∆|+1)3, in the following sense: for every constant ∆ there exists a constant c1, a constant
∆′ such that for every sufficiently large constant c2 and every constant ∆′′ and every constant c0,
for infinitely many n, t(n), s(n) ∈ N, t(n) > |φ∗

n,s,l,∆|c1 and nc1 < s(n) < nc2, Φt,l,∆′,n,s,∆ has no IPS
refutation of size at most |Φt,l,∆′,n,s,∆|c0 and depth at most ∆′′.

Corollary 7.23 is a formal statement of Theorem 1.7 in the Introduction, which can be obtained
from it by setting l, s, t to appropriate polynomial functions of n, and by setting d = ∆, d′ = ∆′, d′′ =
∆′′.

References

[ABRW04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudorandom
generators in propositional proof complexity. SIAM J. Comput., 34(1):67–88, 2004. (A preliminary
version appeared in Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (Redondo Beach, CA, 2000)). 1.4

[ABSRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space com-
plexity in propositional calculus. SIAM J. Comput., 31(4):1184–1211 (electronic), 2002. 2.19

52

[AF22] Robert Andrews and Michael A. Forbes. Ideals, determinants, and straightening: proving and
using lower bounds for polynomial ideals. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2022, page 389–402, New York, NY, USA, 2022.
Association for Computing Machinery. 1.2, 1.4

[AGHT24] Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, and Iddo Tzameret. Semialgebraic proofs,
IPS lower bounds, and the τ -conjecture: Can a natural number be negative? SIAM J. Comput.,
53(3):648–700, 2024. 1.3.2, 2.3, 2.3

[Ajt88] Miklós Ajtai. The complexity of the pigeonhole principle. In Proceedings of the IEEE 29th Annual
Symposium on Foundations of Computer Science, pages 346–355, 1988. 1.1

[Ajt94] Miklós Ajtai. The independence of the modulo p counting principles. Electronic Colloquium on
Computational Complexity, ECCC, (Report no.: TR94-014), December 1994. 1.1

[BDS24] CS Bhargav, Sagnik Dutta, and Nitin Saxena. Improved lower bound, and proof barrier, for
constant depth algebraic circuits. ACM Transactions on Computation Theory, 16(4):1–22, 2024.
2.1, 2.12

[BIK+96a] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák. Lower bounds
on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. Soc. (3), 73(1):1–26,
1996. 1.1, 1.2

[BIK+96b] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák, Alexander A. Razborov, and
Jǐŕı Sgall. Proof complexity in algebraic systems and bounded depth Frege systems with modular
counting. Computational Complexity, 6(3):256–298, 1996. 1.1, 1.2

[BLRS25] Amik Raj Behera, Nutan Limaye, Varun Ramanathan, and Srikanth Srinivasan. New bounds for
the ideal proof system in positive characteristic. In 52nd International Colloquium on Automata,
Languages, and Programming (ICALP 2025), Aarhus, Denmark, July 2025. To appear. 1.4

[BP98] Paul Beame and Toniann Pitassi. Propositional proof complexity: past, present, and future. Bull.
Eur. Assoc. Theor. Comput. Sci. EATCS, (65):66–89, 1998. 1, 1.1

[BPR97] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs with
small coefficients. The Journal of Symbolic Logic, 62(3):708–728, 1997. 1.4

[BPR00] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization for Frege
systems. SIAM J. Comput., 29(6):1939–1967, 2000. 1.4

[Bus87] Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole principle. The Journal of
Symbolic Logic, (52):916–927, 1987. 1.3.2

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm to
find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on the Theory
of Computing (Philadelphia, PA, 1996), pages 174–183, New York, 1996. ACM. 1.1, 2.18

[Che10] Yuan-You Fu-Rui Cheng. Explicit estimate on primes between consecutive cubes. The Rocky
Mountain Journal of Mathematics, pages 117–153, 2010. 7.1

[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,
64(1-3):2–21, 1985. 6.1

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems.
J. Symb. Log., 44(1):36–50, 1979. 1, 1.2, 2.15

[EGLT25] Tal Elbaz, Nashlen Govindasamy, Jiaqi Lu, and Iddo Tzameret. Lower bounds against the ideal
proof system in finite fields. arXiv preprint arXiv:2506.17210, 2025. 1.2, 1.4, 2.4, 2.35, 2.36

[For24] Michael A Forbes. Low-depth algebraic circuit lower bounds over any field. In 39th Computational
Complexity Conference (CCC 2024). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024. 1.2,
1.3, 1.3.1, 1.4, 2.1, 2.13, 2.14, 7

53

[Fri79] Harvey Friedman. On the consistency, completeness and correctness problems. Unpublished, 1979.
2

[FSTW21] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof complexity lower
bounds from algebraic circuit complexity. Theory Comput., 17:1–88, 2021. 1.2

[GGL+25] Michal Garlik, Svyatoslav Gryaznov, Jiaqi Lu, Rahul Santhanam, and Iddo Tzameret. Meta-
mathematics of algebraic circuit lower bounds. Manuscript, 2025. 1.3.1, 1.3, 1.4, 6.1, 6.1, 6.3, 6.5,
6.6, 6.2, 6.11

[GGPS23] Nicola Galesi, Joshua A. Grochow, Toniann Pitassi, and Adrian She. On the algebraic proof
complexity of tensor isomorphism. In 38th Computational Complexity Conference (CCC 2023),
volume 264 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:35. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2023. 6.1

[GGRT25] Michal Garlik, Svyatoslav Gryaznov, Hanlin Ren, and Iddo Tzameret. The weak rank principle:
Lower bounds and applications. Manuscript, 2025. 1.5, 1.3.1, 6.1, 6.8, 6.10

[GHT22] Nashlen Govindasamy, Tuomas Hakoniemi, and Iddo Tzameret. Simple hard instances for low-
depth algebraic proofs. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 188–199. IEEE, 2022. 1.2,
1.4

[Goe90] Andreas Goerdt. Cutting plane versus Frege proof systems. In Egon Börger, Hans Kleine Büning,
Michael M. Richter, and Wolfgang Schönfeld, editors, Computer Science Logic, 4th Workshop,
CSL ’90, Heidelberg, Germany, October 1-5, 1990, Proceedings, volume 533 of Lecture Notes in
Computer Science, pages 174–194. Springer, 1990. 1.3.2

[GP18] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial
identity testing: The ideal proof system. J. ACM, 65(6):37:1–37:59, 2018. 1.2, 1.3, 1.3, 1.3, 1.3.1,
1.3.1, 1.3.1, 1.3.3, 1.3.3, 2.20, 2.21, 2.3, 2.24, 2.25, 5.6

[Hak85] Armin Haken. The intractability of resolution. Theoret. Comput. Sci., 39(2-3):297–308, 1985. 1.1

[H̊as90] Johan H̊astad. Tensor rank is NP-complete. Journal of algorithms, 11(4):644–654, 1990. 6.1

[HLT24] Tuomas Hakoniemi, Nutan Limaye, and Iddo Tzameret. Functional lower bounds in algebraic
proofs: Symmetry, lifting, and barriers. In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, STOC 2024, page 1396–1404, New York, NY, USA, 2024. Association for
Computing Machinery. Full version in ECCC https://eccc.weizmann.ac.il/report/2024/079/. 1.2,
1.4

[IMP20] Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. The surprising power of constant depth
algebraic proofs. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors,
LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken,
Germany, July 8-11, 2020, pages 591–603. ACM, 2020. 1.3.2

[KB09] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009. 6.1

[KPW95] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the size of bounded
depth Frege proofs of the pigeonhole principle. Random Structures & Algorithms, 7(1):15–39,
1995. 1.1

[Kra97] Jan Kraj́ıček. Interpolation theorems, lower bounds for proof systems, and independence results
for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457–486, 1997. 1.4

[Kra04a] Jan Kraj́ıček. Diagonalization in proof complexity. Fundamenta Mathematicae, 182:181–192, 2004.
1.3

[Kra04b] Jan Kraj́ıček. Dual weak pigeonhole principles, pseudo-surjective functions, and provability of
circuit lower bounds. Journal of Symbolic Logic, 69(1):265–286, 2004. 1.3, 1.3.1, 1.4

54

[Kra09] Jan Kraj́ıček. A proof complexity generator. In Proc. from the 13th International Congress of
Logic, Methodology and Philosophy of Science (Beijing, August 2007), Studies in Logic and the
Foundations of Mathematics. King’s College Publications, London, 2009. 6.1

[Kra11] Jan Kraj́ıček. On the proof complexity of the Nisan-Wigderson generator based on a hard NP ∩
coNP function. J. Math. Log., 11(1):11–27, 2011. 5

[Kra19] Jan Kraj́ıček. Proof complexity, volume 170. Cambridge University Press, 2019. 1

[LST25] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds against
low-depth algebraic circuits. Journal of the ACM, 72(4):1–35, 2025. 1.2, 1.3, 1.3, 1.3.1, 1.3.3, 1.4,
2.11, 2.14, 6.1, 7

[Mul86] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary
field. In Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages
338–339, 1986. 6.1

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the pigeon-
hole principle. computational complexity, 3(2):97–140, 1993. 1.1

[Pit97] Toniann Pitassi. Algebraic propositional proof systems. In Neil Immerman and Phokion G.
Kolaitis, editors, Descriptive Complexity and Finite Models, Proceedings of a DIMACS Workshop
1996, Princeton, New Jersey, USA, January 14-17, 1996, volume 31 ofDIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 215–244, Providence, RI, 1997. American
Mathematical Society. 1.2

[PS19] Jan Pich and Rahul Santhanam. Why are proof complexity lower bounds hard? In 60th An-
nual IEEE Symposium on Foundations of Computer Science FOCS 2019, November 9-12, 2019,
Baltimore, Maryland USA, 2019. 1.4

[PS24] Ján Pich and Rahul Santhanam. Learning algorithms versus automatability of frege systems.
Journal of Mathematical Logic, 2024. 1.4, 7

[Pud86] Pavel Pudlak. On the length of proofs of finitistic consistency statements in first order theories.
Studies in Logic and the Foundations of Mathematics, 120:165–196, 1986. 2

[Pud87] Pavel Pudlak. Improved bounds to the length of proofs of finite consistency statements. Contem-
porary Mathematics, 65:309–331, 1987. 2

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.
The Journal of Symbolic Logic, 62(3):981–998, Sept. 1997. 1.4

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis
with logical addition. Mathematical notes of the Academy of Sciences of the USSR, 41(4):333–338,
1987. 1.1

[Raz95a] Alexander A. Razborov. Bounded arithmetic and lower bounds in boolean complexity. In Clote,
P., Remmel, J., eds. Feasible Mathematics II. Progress in Computer Science and Applied Logic,
volume 13, pages 344–86. Birkhauser, 1995. 1.3, 1.3, 1.4

[Raz95b] Alexander A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izv. Ross. Akad. Nauk Ser. Mat., 59(1):201–224, 1995. 1.3, 1.3

[Raz96] Alexander A. Razborov. Lower bounds for propositional proofs and independence results in
bounded arithmetic. In Friedhelm Meyer auf der Heide and Burkhard Monien, editors, Automata,
Languages and Programming, 23rd International Colloquium, ICALP96, Paderborn, Germany,
8-12 July 1996, Proceedings, volume 1099 of Lecture Notes in Computer Science, pages 48–62.
Springer, 1996. 1.3.1, 1.4

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput. Complexity, 7(4):291–
324, 1998. 1.3, 1.3

55

[Raz04] Ran Raz. Resolution lower bounds for the weak pigeonhole principle. J. ACM, 51(2):115–138,
2004. 1.3

[Raz10] Ran Raz. Elusive functions and lower bounds for arithmetic circuits. Theory of Computing,
6(1):135–177, 2010. 3, 3.1, 3.3, 6.2

[Raz15] Alexander A. Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial
calculus resolution. Annals of Mathematics, 181:415–472, 2015. 1.3, 1.3, 1.3.1, 5, 1.4

[Raz16a] Alexander Razborov. Propositional proof complexity: Fifteen (or so) years after. Talk at “A
Celebration of Mathematics and Computer Science. Celebrating Avi Wigderson’s 60th Birthday
October 5 - 8, 2016”. https://youtu.be/7LfW6VTW8zo?t=2722, 2016. 5

[Raz16b] Alexander A. Razborov. Guest column: Proof complexity and beyond. SIGACT News, 47(2):66–
86, 2016. 1.1, 1.3.1

[Raz21] Alexander Razborov. P, NP and proof complexity. Talk at “SAT and Foundations of Mathemat-
ics”, Simons Institute. https://youtu.be/xx4mxcqAl5A?t=2333, 2021. 5

[Shi16] Yaroslav Shitov. How hard is the tensor rank? arXiv preprint arXiv:1611.01559, 2016. 6.1

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity.
In Proceedings of the Annual ACM Symposium on the Theory of Computing 1987, pages 77–82,
1987. 1.1

[ST25] Rahul Santhanam and Iddo Tzameret. Iterated lower bound formulas: A diagonalization-based
approach to proof complexity. SIAM Journal on Computing, pages 313–349, 2025. Preliminary
version appeared in Proceedings of the 53rd Annual ACM Symposium on Theory of Computing
(STOC 2021). 1.2, 1.3, 1.3, 1.3, 1.3, 1.3.2, 1.3.3, 1.4, 2.4, 2.27, 2.28, 2.29, 2.30, 2.32, 2.33, 2.4, 3,
3.2, 4.1, 4.2, 4, 5.1, 6.2, 7.1

[SU04] Michael Soltys and Alasdair Urquhart. Matrix identities and the pigeonhole principle. Arch. Math.
Log., 43(3):351–358, 2004. 6.1

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM
Symposium on the Theory of Computing, pages 249–261. ACM, 1979. 2.3, 2.4, 2.6, 2.9, 5

56

https://youtu.be/7LfW6VTW8zo?t=2722
https://youtu.be/xx4mxcqAl5A?t=2333

— Page left blank for ECCC stamp —

57
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

