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Abstract

We study the robust local testability of tensor products of two Algebraic-Geometry (AG) codes. In
particular, we prove that constant rate AG codes are robust locally testable. This significantly generalizes
the seminal result of Polishchuk-Spielman [PS94], which proved robust local testability of Reed-Solomon
codes. We establish an algebraic-geometric framework that enables us to geometrically interpret code-
words in tensor products of AG codes. Thereby, we use tools from intersection theory of algebraic
surfaces to prove a divisibility criterion for AG codes, that generalizes the bivariate divisibility result of
Polishchuk-Spielman.

Over the years, robust local testability of tensor products has played a key role in the development
of classical locally testable codes (LTCs) as well as quantum Low Density Parity Check (qLDPC) codes
and quantum Locally Testable Codes (qLTCs). To the best of our knowledge, after Reed-Solomon codes,
our result provides the first explicit family of robustly locally testable codes with constant rate and linear
dual-distance. Moreover, our result, when combined with [GG24], yields new explicit families of good
quantum CSS codes of length N which are locally testable with locality O(

√
N) and constant soundness.
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1 Introduction

Tensor product of vector spaces is a fundamental algebraic operation that takes as input two vector spaces
V,W over a field K, and yields another vector space denoted as V ⊗W . This tensor product space is a
universal object capturing linear-algebraic properties of all bilinear maps on V ×W . Since linear codes are
vector spaces by definition, the tensor product operation provides a natural way of generating a new linear
code from two given linear codes. Given two linear codes C1 ⊆ Fmq , C2 ⊆ Fnq over a finite field Fq, their tensor
product C1 ⊗ C2 ⊆ Fnmq admits a succinct description in terms of matrices. Indeed, the tensor product code
C1 ⊗ C2 ⊆ Fnmq can be identified as the space of all n×m matrices M whose rows are codewords of C1 and
columns are codewords of C2.

Tensor products have turned out to be an immensely successful tool for constructing codes with good
properties in classical as well as quantum coding theory [BSS06, DEL+22, LZ22, PK21]. One such highly
desired property of codes is that of local testability. A locally testable code (LTC) is an error-correcting code
which admits very efficient probabilistic membership tests. More specifically, a locally testable code C ⊆ Fnq
has a tester that makes a small number of coordinate queries to a given word x ∈ Fnq and accepts if x is a
codeword, and rejects with constant probability if x is far from every codeword. LTCs can be viewed as the
combinatorial core of Probabilistically Checkable Proofs (PCPs) and they play an important role in TCS.

Ben-Sasson and Sudan introduced the use of tensor products to construct LTCs and defined the notion of
robust local testability [BSS06]. They considered a natural membership test for a tensor code C1⊗C2 ⊆ Fn×m
based on its defining property. Given a matrix M ∈ Fn×m, we know that M ∈ C1⊗C2 iff all the rows belong
to C1 and all the columns belong to C2. So we can define a test as follows: pick a random row (or column) of
M , accept iff it belongs to C1 (or C2). The notion of robust local testability captures the robustness of this
membership test. In particular, a tensor product code C1 ⊗ C2 is robustly testable if the following holds: for
any matrix M ⊆ Fn×m, if the expected distance of a uniformly chosen row of M from C1 is small, and also
the expected distance of a uniformly chosen column is small, then M is close to C1 ⊗C2 (see Definition 1.1).

The first known instances of robustly locally testable tensor products originated in the algebraic parts
of the development of PCPs in early 1990s. In particular, the bivariate testing results of [BFLS91, PS94],
that preceded the definition of robust local testability already showed that tensor product of Reed-Solomon
codes are robustly testable. This robust local testability of tensor products of Reed-Solomon codes was
used extensively in the celebrated PCP constructions. Ever since robust local testability has played a
major role in several developments as noted below. It was a long-standing open problem to construct LTCs
with constant rate, where robustly testable tensor codes had led to the first combinatorial construction of
LTCs (and strong LTCs) of almost constant rate in [Mei08, Vid13]. More recently, the breakthroughs of
[DEL+22, PK22] constructed LTCs of constant rate, distance and locality (so called c3-LTCs) and settled
the c3-conjecture. Robust local testability of tensor products played an essential role in their constructions
as it acts as the only source of redundancies in the local constraints. Moreover, robust local testability of
Reed-Solomon codes also played a role in the breakthrough result showing MIP∗ = RE in [JNV+21].

In the quantum setting, it is still a major challenge to obtain such quantum Locally Testable Codes
(qLTCs) with optimal parameters [AE15, EH17]. However, a flurry of recent works have achieved remarkable
progress where robust local testability and its homological-algebraic variants have led to the construction
of good quantum codes with best-known parameters so far [HHO21, PK22, BE21, LZ22, DHLV23]. These
works are based on the connection between quantum codes and chain complexes in homological algebra, and
use tensor products of chain complexes to construct good quantum codes. As an essential component, these
constructions require classical codes which satisfy variants of the robust local testability property such as
the product expansion property and two-way robustness. These variants are all equivalent to robust local
testability in the case of two codes, and impose stronger constraints that imply robustness in the case of
more than two codes but not vice versa.

In particular, [PK22] utilized the product expansion property to construct asymptotically good families of
quantum Low Density Parity Check (qLDPC) codes and positively resolved the qLDPC conjecture. Recently,
[DLV24] used the two-way robustness property to construct almost-good quantum LTCs with constant rela-
tive rate, inverse-polylogarithmic relative distance and soundness, and constant-size parity checks. Moreover,
[GG24] showed that robust testability of Reed-Solomon codes yields explicit constructions of asymptotically
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good quantum CSS codes, which are locally testable with square number of queries and constant soundness.
Given this plethora of applications of robust local testability of tensor products, a motivating question

is the following:

What properties of codes C1, C2 guarantee robust local testability of the tensor product code C1 ⊗ C2?

Ben-Sasson and Sudan [BSS06] asked whether C1⊗C2 is robustly testable for all codes C1, C2 of sufficiently
large relative distance. This question was answered in the negative by Valiant [Val05] who constructed codes
C1 ⊗ C2 of relative distance arbitrarily close to 1, such that C1 ⊗ C2 is not robustly testable. Subsequently,
[CR05] provided examples of codes with constant rate and constant relative distance such that their tensor
product is not robustly testable, and [GM12] constructed a code whose tensor product with itself is not
robustly testable.

These counterexamples for general codes suggest that robust local testability of C1⊗C2 is a rather special
property1. Indeed, robust local testability of C1 ⊗ C2 has been established for very few classes of codes so
far. In particular, the aforementioned bivariate testing result of [PS94] showed that tensor product of Reed-
Solomon codes is robustly testable. [DSW06] showed that the tensor product of two codes is robustly testable
if one of them is a special type of LDPC code, namely a smooth code. The works of [PK22, KP22, LZ22]
showed that the tensor product of random linear codes is robustly testable with high probability. In [GSW24],

it was shown that tensor product of Algebraic-Geometry codes of length n and rate O(n−
1
2 ) are robustly

testable.
So far Reed-Solomon codes have been the only explicit family of robustly testable codes with asymptot-

ically good parameters, i.e. constant rate, linear distance and linear dual-distance. Although LDPC codes
can be explicitly constructed, their dual distance is constant. On the other hand, [GSW24] provided explicit
families of AG codes with super-constant dual distance, but these codes have a strong restriction of the rate
being O(n−

1
2 ).

In this paper, we prove robust local testability of tensor products of Algebraic-Geometry codes with
optimal parameters, i.e. constant rate, linear distance and linear dual distance (Theorem 1.2). Our result,
when combined with [GG24], yields new explicit good quantum CSS codes which are locally testable with
low locality and constant soundness. In order to prove robust local testability of AG codes, we develop a
geometric approach for studying tensor codes using intersection theory on algebraic surfaces. In particular,
we set-up a correspondence between tensor codewords and curves on algebraic surfaces. Using intersection
theoretic tools, we generalize the celebrated bivariate divisibility lemma of Polishchuk-Spielman [PS94] to
the setting of AG codes. In the following subsections we will discuss our results, key ideas and technical
contributions, some of which are interesting in their own right.

1.1 Robust local testability of Algebraic-Geometry codes

First let us formally define robust testability of tensor products. For a vector F ∈ Fnq and a code C ⊆ Fnq ,
we use δ(F, C) to denote the distance of F to the nearest codeword in C (see Section 2.2).

Definition 1.1. [Robust testability of tensor product] Let 0 ≤ ρ ≤ 1. For codes C1 ⊆ Fmq and C2 ⊆ Fnq , we
say that (C1, C2) is ρ-robust, or equivalently C1 ⊗ C2 is ρ-robustly testable, if for every F ∈ Fn×mq , we have

ρ · δ(F, C1 ⊗ C2) ≤
1

2
[δ(F, C1 ⊗ Fnq ) + δ(F,Fmq ⊗ C2)]

The parameter ρ quantifies the robustness of the natural membership test for the tensor code C1⊗C2. If
the rows of F are close to C1 and the columns of F are close to C2, then the average distance, i.e. the right
hand side of the inequality, is small. Therefore the ρ-robustly testable condition implies that the distance of
F to C1 ⊗ C2 is also small.

1In [BSS06], it was shown that the tensor product of three or more codes is robustly testable and it was used to construct
LTCs. However, in order to construct good classical and quantum codes with optimal parameters it is necessary to have robust
testability of tensor product of two codes or in the case of more than two codes, strictly stronger properties such as product
expansion are necessary. This necessitates the study of robust local testability for special classes of codes.
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Our main result will show tensor products of Algebraic-Geometry (AG) codes are robustly locally testable.
AG codes were first constructed by Goppa [Gop77, Gop81, Gop83] and these codes serve as a generalization
of Reed-Solomon codes and BCH codes. Below we will discuss an informal definition and basic properties of
AG-codes. We will defer the precise technical definition of AG codes to Section 2.

Algebraic-Geometry codes. A general recipe for constructing a linear code C ⊆ Fnq is as follows. Con-
sider a finite set S = {s1, · · · , sn} and a finite dimensional vector space F consisting of functions f : S → Fq.
Consider the set of evaluations C = {(f(s1), · · · , f(sn)) | f ∈ F}. Then C ⊆ Fnq is a linear code of block
length n over Fq. If we take S ⊆ Fq and then any univariate polynomial f(x) ∈ Fq[x] defines a function
S → Fq by evaluating the polynomial. By restricting the degree of the polynomials, we can obtain a finite
dimensional vector space and the corresponding evaluation code is the Reed-Solomon code

RS(n, k) = {(f(s))s∈S | f(x) ∈ Fq[x] and deg(f) < k}.

AG codes are generalizations of Reed-Solomon codes where S is taken to be a set of points on an
algebraic curve X and the set F is a space of rational functions on the curve. Here an algebraic curve is
an one dimensional geometric object defined by polynomial equations over a finite field Fq. For example, if
f(x, y) ∈ Fq[x, y] is a irreducible polynomial, the set of all zeros of f , i.e. X := {(a, b) | f(a, b) = 0} ⊆ F2

q

is an algebraic curve. Moreover, rational functions on the algebraic curve X are functions of the form
{f/g | f, g ∈ Fq[x, y], g|X ̸≡ 0}, i.e. quotients of polynomials f, g such that g does not vanish at all points
of X. For a rational function h = f/g, the set where the denominator g vanishes is called the set of poles
of h. If we choose S = X \ {p} for some point p ∈ X and let F be a space of rational functions with no
poles in S, then we can evaluate every rational function h ∈ F at the points of S. In order to ensure finite
dimensionality, we need to impose an upper bound on the order of vanishing of h at its possible pole p,
similar to restriction on the degree in case of Reed-Solomon codes. Given an algebraic curve X, a point
p ∈ X and fixing a degree ℓ, we can define the corresponding AG-code as

C(X, p, ℓ) := {(h(s))s∈S | the only possible pole of h is at p with order of vanishing at most ℓ}.

Every algebraic curve has a non-negative integer g associated with it, the so called genus of the algebraic
curve. The genus of X governs several algebraic-geometric and arithmetic properties of X. Moreover, the
genus also governs the parameters of AG codes, such as the rate. If |S| = n and genus of X is g, then the
linear code C(X, p, k) ⊆ Fnq is of length n, dimension at least ℓ− g and distance at least n− ℓ. We will say
that C(X, p, ℓ) is an AG code of length n, genus g and degree ℓ.

AG codes have numerous useful properties, for example, they can be explicitly constructed and can be
efficiently decoded. Similar to Reed-Solomon codes, AG codes also satisfy the multiplicative property, i.e. the
Hadamard product of two codewords from C(X, p, ℓ1), C(X, p, ℓ2) is a codeword in C(X, p, ℓ1+ ℓ2). Moreover,
AG codes exhibit several properties which make them better suited for applications than Reed-Solomon and
random codes. For instance, one can construct arbitrarily long AG codes over a given fixed field, whereas
the length of a Reed-Solomon code can be at most the field size q. Furthermore, AG codes are famously
known to surpass the Gilbert–Varshamov bound, which also shows the existence of AG codes that are better
than random codes. We refer to [Sti09, Ste12, CR21] for more details and exposition on AG codes.

Main result. In this paper, we prove the following result showing tensor products of AG codes are robustly
testable.

Theorem 1.2 (Informal version of Theorem 6.2). For all ϵ ∈ (0, 1), there exists ρ(ϵ) > 0 such that the
following holds. Let C1 and C2 be two AG codes of length n, genus g1, g2 and degrees ℓ1 and ℓ2 respectively.
Suppose that 4 + g1 + ℓ1 + g2 + ℓ2 < (1− ϵ)n. Then the tensor product code C1 ⊗ C2 is ρ(ϵ)-robustly testable.

Our result generalizes the robust local testability of Reed-Solomon codes [PS94]. Since Reed-Solomon
codes are special cases of AG codes of genus 0, we obtain the robust local testability of Reed-Solomon codes
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a special case of our result. Theorem 1.2 establishes robust testability for constant rate AG codes and it also
generalizes the robust testability of AG codes of length n and rate O(n−

1
2 ) [GSW24]2.

After Reed-Solomon codes, our result provides the first explicit family of robustly locally testable codes
with constant rate and linear dual-distance. Since the length of a Reed-Solomon code over Fq is at most q,
our result provides the first explicit family of robustly testable codes with these optimal parameters where
the length n can be arbitrarily large for fixed Fq (see Example 2.5 for existence of such codes).

Moreover, Theorem 1.2 is optimal since the inequality 4+ g1+ ℓ1+ g2+ ℓ2 < (1− ϵ)n can not be relaxed.
Indeed, [KP22] showed that the tensor product of a code and its dual code is never robustly testable. More
specifically, if {Cn} is family of codes of length n, then Cn⊗C⊥n is not ρ-robustly testable for any fixed ρ > 0,
as n → ∞. If we let Cn = C(X, p, ℓ1) be an AG code of length n, genus g and degree ℓ1, then the dual C⊥n
is also an AG code of length n, genus g and degree ℓ2 := 2g − 2 + n − ℓ1. For any ϵ and fixed ρ(ϵ), this
provides examples of AG codes Cn, C⊥n of length n, genus g = Θ(n) and degrees ℓ1 = Θ(n), ℓ2 = Θ(n) such
that (1− ϵ)n ≤ 4 + 2g + ℓ1 + ℓ2 and Cn ⊗ C⊥n is not ρ(ϵ)-robustly testable as n→∞.

In order to prove Theorem 1.2, we establish a divisibility criterion for tensor products of AG codes, which
generalizes the bivariate divisibility lemma of [PS94], and it is of independent interest as well.

1.2 Generalized divisibility for AG codes

The key ingredient that led to robust testability of Reed-Solomon codes is an algebraic statement regarding
divisibility of bivariate polynomials. This so called divisibility lemma due to Polishchuk-Spielman [PS94] is
the following statement.

Lemma 1.3 (Bivariate divisibility). [PS94, Lemma 8] Let E(x, y) be a polynomial of degree (b, a) and
N(x, y) be a polynomial of degree (b+ d, a+ d). If there exist distinct x1, · · · , xn such that E(xi, y) divides
N(xi, y) for 1 ≤ i ≤ n, distinct y1, · · · , yn such that E(x, yj) divides N(x, yj) for 1 ≤ i ≤ n, and if

n > min{2b+ 2d, 2a+ 2d},

then E(x, y) divides N(x, y).

Here the degree of a bivariate polynomial P (x, y) is the bi-degree, i.e. P (x, y) has degree (d, e) iff P has
degree d in the x variable and degree e in the y variable. Note that if P (x, y) ∈ Fq[x, y], then P (x, c) is
a univariate polynomial in Fq[x] when we fix y = c (a constant). Similarly, if ℓ ⊆ F2

q is a line defined by
y = mx+ c, then the restriction P |ℓ := P (x,mx+ c) is a univariate polynomial in Fq[x]. If E(x, y) divides
N(x, y) as bivariate polynomials in Fq[x, y], i.e. N(x, y) = Q(x, y)E(x, y) for someQ(x, y) ∈ Fq[x, y], then E|ℓ
divides N |ℓ as univariate polynomials for all lines ℓ (as long as E|ℓ is not identically 0). The divisibility lemma
essentially provides a converse of this, and helps deduce bivariate divisibility from univariate divisibility. It
says that if E|ℓ divides N |ℓ for restrictions to sufficiently many axis-parallel lines ℓ in F2

q (in both x and y
directions), then E divides N as bivariate polynomials in Fq[x, y].

This bivariate divisibility lemma has played a key role in several developments especially in algebraic
property testing. For instance, Friedl and Sudan used this divisibility lemma for multivariate low-error
low-degree testing [FS95], and more recently a variant of the divisibility lemma was used for low-degree
testing in the high-error regime [HKSS24]. In [BSCI+23], a version of this lemma was used for studying
proximity of affine subspaces of Fnq to a Reed-Solomon code, and led to a near-optimal proximity gap
result. In another direction, variants of the divisibility lemma were used to construct high-rate multivariate
polynomial evaluation codes [KKS24].

Before we state our generalization of the bivariate divisibility lemma, let us recall the natural correspon-
dence between bivariate polynomials and codewords in tensor product of Reed-Solomon codes. We will then
rephrase the divisibility lemma in terms of tensor codewords.

2The result of [GSW24] works in the more general setting of abstract AG codes. However the explicit family provided there
involves usual AG codes from algebraic curves.
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Since a non-zero polynomial of degree d in Fq[x] can have at most d number of zeroes, we have a one-to-one
correspondence, assuming d < n,{

Codewords in RS(n, d)

}
←→

{
P (x) ∈ Fq[x],deg(P ) < d

}
Given a bivariate polynomial P ∈ Fq[x, y] of bi-degree (d, e) and xi, yj ∈ Fq for i, j ∈ [n], we may evaluate
it on the pairs (xi, yj) to construct a n × n-matrix M defined by Mij := P (xi, yj). Note that every row
of M is given by evaluation of the univariate polynomial P (xi, y), and hence it is a codeword in RS(n, e).
Similarly, every column is a codeword in RS(n, d). Therefore, by definition, we have that M is a codeword
of the tensor product code RS(n, e) ⊗ RS(n, d). Moreover, [PS94, Proposition 4], shows that the converse
is also true, i.e. every tensor codeword M is an evaluation of a bivariate polynomial P (x, y). In fact, P is
uniquely determined by the tensor codeword M if d, e < n. Therefore we have a one-to-one correspondence
between bivariate polynomials and tensor codewords.{

Codewords in RS(n, e)⊗ RS(n, d)

}
←→

{
P (x, y) of bi-degree at most (d, e)

}
If we view bivariate divisibility via this correspondence, we see that E(x, y) divides N(x, y), i.e. E(x, y) =
Q(x, y)N(x, y), iff there exists a codeword Q ∈ RS(n, d)⊗ RS(n, d) such that N(xi, yj) = E(xi, yj)Q(xi, yj)
for all i, j ∈ [n]. In other words, E(x, y) divides N(x, y) in Fq[x, y] iff the corresponding tensor codeword E
divides N under the Hadamard product of codes.

Moreover, the information that E(xi, y) divides N(xi, y) can be packaged into the equivalent statement
that there is a codeword R ∈ RS(n, d)⊗Fq such that E(xi, yj)R(xi, yj) = N(xi, yj) for all i, j ∈ [n]. Similarly
there is a codeword C ∈ Fq ⊗ RS(n, d) such that E(xi, yj)C(xi, yj) = N(xi, yj). Note that R,C might not
be in RS(n, e) ⊗ RS(n, d), i.e. they might not be given by bivariate polynomials. However, the bivariate
divisibility lemma says that if n is large enough, then there exists such a codeword Q ∈ RS(n, d)⊗RS(n, d).

Our generalized divisibility lemma (Lemma 5.3) shows that the same statement holds with Reed-Solomon
codes replaced by AG codes. We now state a simplified version of our generalized divisibility lemma for AG
codes. In the following lemma, we let X be an algebraic curve of genus g, fix a point p ∈ X and denote
the AG codes C(X, p, ℓ) as C(ℓ). Here the notion of divisibility is with respect to the Hadamard product. In
particular, given tensor codewords E ∈ C(a)⊗C(b) and N ∈ C(a+ d)⊗C(b+ d), we say that E divides N if
there exists a codeword Q ∈ C(d)⊗ C(d) such that

N(xi, yj) = E(xi, yj)Q(xi, yj)

for all i, j ∈ [n].

Lemma 1.4 (Generalized divisibility for AG codes). Let E ∈ C(a) ⊗ C(b) and N ∈ C(a + d) ⊗ C(b + d) be
tensor codewords. Suppose there exist codewords R ∈ C(d)⊗ Fnq and C ∈ Fnq ⊗ C(d) such that

E(xi, yj)R(xi, yj) = E(xi, yj)C(xi, yj) = N(xi, yj)

for all i, j ∈ [n]. If n > a+ b+ 2d, then E divides N .

In Lemma 5.3, we prove this divisibility criterion in full generality. In particular, we allow AG codes
from two different curves X,Y and the lemma applies to the general definition of AG codes using divisors
on algebraic curves (Definition 2.2). Although we phrased the lemma above in terms of codewords in the
tensor product code, it is really a statement about rational functions on algebraic curves. We note that all
the previous variants of bivariate divisibility only worked for polynomials, whereas ours is the first one to
deal with rational functions on algebraic curves. Thus our proof requires new techniques and ideas. We set
up a one-to-one correspondence between tensor codewords and curves on algebraic surfaces. This enables
us to apply algebraic-geometric techniques from intersection theory of algebraic surfaces. In Section 1.4, we
will discuss our algebraic-geometric approach and these technical developments in more detail. We now note
an application of our main result towards construction of quantum locally testable codes.
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1.3 Application: good quantum codes

Quantum Low Density Parity Check (qLDPC) codes are quantum counterparts of classical LDPC codes and
these codes are known to be very useful for fault-tolerant quantum computation. Although good families
of classical LDPC codes were known since 1960s, constructions of qLDPC codes with asymptotically good
parameters were unavailable up until very recently. Starting with the work on fiber bundle codes [HHO21],
a series of further breakthroughs [PK21, BE21, PK22] finally provided constructions of asymptotically good
qLDPC codes using the lifted product construction, which is a generalization of tensor products of classical
codes. Subsequently, two other families of asymptotically good qLDPC codes were constructed in [LZ22,
DHLV23] using the left-right Cayley-complex, which had also led to the construction of c3-LTCs in [DEL+22].
Quantum locally testable codes (qLTC) with optimal parameters are still out of reach. However, [DLV24]
constructed almost-good quantum LTCs with constant relative rate, inverse-polylogarithmic relative distance
and soundness, and constant-size parity checks.

Several of these constructions of asymptotically good quantum codes employ robust local testability of
tensor products of random codes. A natural problem is to find new constructions of asymptotically good
qLDPC codes and qLTCs, and perhaps a construction that uses robust testability of explicit codes such
as Reed-Solomon codes. In [BH14], homological products were used to give a probabilistic construction of
quantum codes of length N with distance Θ(N) and stabilizer-weight Θ(

√
N). In [GG24], this construction

was derandomized, and by using robust local testability of Reed-Solomon codes this work obtained explicit
constructions of such quantum codes. Before stating our application to quantum codes, we recall the basic
notions of quantum codes below.

The simplest construction of quantum codes is due to Calderbank, Shor, and Steane (CSS) [CS96]. These
so called quantum CSS codes are a pair of classical codes (QX , QZ) with an orthogonality property Q⊥

X ⊆ QZ .
If Q is defined over Fq and it is a quantum code of length n, dimension k and distance d, then we say that
Q is a [[n, k, d]]q code3. If QX , QZ are AG codes, then we will say that Q is a quantum AG code. For an
algebraic curve X of genus g and a point p ∈ X, let us denote the AG code C(X, p, ℓ) as C(ℓ) as before. If
we let QX = QZ = C(ℓ), then by appropriately choosing ℓ, we can ensure the orthogonality property. Hence
the pair Q = (QX , QZ) is a quantum AG code, which we denote as Q(ℓ). This construction provides explicit
asymptotic families of quantum AG codes of constant rate and relative distance over any finite field Fq.

Our main result, when combined with [GG24, Theorem 2.4], directly yields new explicit families of locally
testable quantum codes as follows.

Corollary 1.5 (Informal version of Corollary 6.5). Let Fq be a finite field of characteristic 2, such that
q ≥ 216. Fix 7√

q−4 < ϵ < 1
8 (1−

14√
q ). For any n, we let N = n2. There exist ℓ1 = Θϵ(n) and ℓ2 = Θϵ(n) such

that the homological product of the quantum AG codes Q(ℓ1) and Q(ℓ2) is a [[N,Θ(N),Θ(N)]]q quantum

CSS code that is locally testable with locality O(
√
N) and soundness Ω(1).

In [GG24, Corollary 4.4], robust testability of Reed-Solomon codes was used to prove the analogous
result for homological products of quantum Reed-Solomon codes. Our result generalizes this to the case of
quantum AG codes. Note that the result of [GG24] also provided locally testable quantum codes with same
asymptotic order of parameters as in Corollary 1.5. However, due to the use of Reed-Solomon codes, the
length N of the quantum code Q was restricted to be at most q2. On the other hand, Corollary 1.5 provides
quantum codes of arbitrarily large length N over a fixed field Fq.

1.4 Technical contributions and overview of proofs

The key technical result for obtaining robust local testability of AG codes is our generalized divisibility lemma
(Lemma 1.4). In order to prove this divisibility result, we will establish an algebraic-geometric framework for
interpreting tensor codewords as geometric objects. In particular, we will build a correspondence between
tensor AG codewords and curves on algebraic surfaces. This framework will enable us to interpret divisibility

3Here the notions of dimension and distance of a quantum code Q are dependent on both of the classical codes QX and QZ .
We refer to Section 2.6 for the precise definition.
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of AG codewords as a geometric problem about containment of curves. Finally, we will use intersection
theoretic techniques to study both local and global behaviour of tensor codewords, which will lead us to the
proof of generalized divisibility. Our method is a generalization of the Bezout-type argument for obtaining
bivariate divisibility in [PS94]. We start by reviewing the ideas behind the proof of bivariate divisibility.

Bivariate divisibility

The bivariate divisibility lemma in [PS94], as well as its variants [Spi95, BSCI+23, KKS24], are all based on
Bezout’s theorem in algebraic geometry. In algebraic terms, Bezout’s theorem says that if E,N ∈ Fq[x, y] are
bivariate polynomials without common factors and of degrees d, e respectively, then E,N can have at most
de number of common zeroes in F2

q, even when counted with multiplicities. Here the notion of intersection
multiplicity at a common zero captures the information about the derivatives of the polynomials. Thus
Bezout’s theorem is a generalization of the fact that a degree d univariate polynomial can have at most d
roots even when the roots are counted with their multiplicities.

Now the bivariate divisibility problem is the following. We have two bivariate polynomials E,N ∈ Fq[x, y]
such that the univariate polynomial E|ℓ divides N |ℓ for restrictions to n number of axis-parallel lines ℓ ⊆ F2

q.
If n is sufficiently large compared to degrees of E,N , then E must divide N as bivariate polynomials in
Fq[x, y]. The proofs of the bivariate divisibility results can be summarized in the following steps.

1. Reduction to coprime polynomials. One can show that we may replace E,N by E/ gcd(E,N) and
N/ gcd(E,N) without loss of generality, and assume that E,N do not have any common factors, i.e.
they are coprime polynomials.

2. Lower bound on local intersection multiplicities. By assumption, we have that E|ℓ divides N |ℓ, and
both are univariate polynomials. Hence, if x is a root of E|ℓ of multiplicity m, then it is also a root of
N |ℓ of multiplicity at least m. Using this we can obtain a lower bound for the intersection multiplicity
at the common zeroes of E,N that lie on the given n number of axis-parallel lines.

3. Global upper bound on total number of common zeroes. Now, if E does not divide N , the we may apply
Bezout’s theorem. Hence, we can obtain a global upper bound on the total number of common zeroes
(with multiplicities) in terms of the degrees of E,N .

4. Compare the bounds. If n is sufficiently large compared to the degrees of E,N , then the lower bound
ends up being larger than the upper bound. This leads to a contradiction, and hence we must have
that E divides N .

The outline above immediately leads to a weaker version of the bivariate divisibility lemma (see [Spi95,
Proposition 4.2.22]), where n needs to be much larger than the bound in Lemma 1.3. Polishchuk-Spielman
[PS94] adapted Bezout’s theorem algebraically, and they used properties of resultants of polynomials and
unique factorization to obtain the lower and upper bounds in the steps above. In particular, their algebraic
adaptation provided an improved upper bound in Step 3, leading to Lemma 1.3 with a better inequal-
ity. However, these algebraic tools are specific to polynomials and make the technique less amenable to
generalizations.

On the other hand, one can equivalently view the steps above in a geometric way using the algebra-
geometry dictionary. In particular, each bivariate polynomial E,N ∈ Fq[x, y] gives rise to an algebraic curve
in F2

q, which we may as well denote by E,N ⊆ F2
q. Then the divisibility E|N implies the containment of the

corresponding algebraic curves, i.e. E ⊆ N . In Section 3, we illustrate this geometric perspective by proving
a version of bivariate divisibility (see Lemma 3.1) using properties of plane algebraic curves. In particular,
in Lemma 3.7, we note that the lower bound of Step 2 is a consequence of basic properties of non-singular
algebraic curves4. Similarly, this geometric perspective was also used to obtain a version of bivariate (and
multivariate) divisibility in [KKS24] that deals with lines in general position instead of axis-parallel lines
(see Section 1.5 for a comparison).

4Lemma 3.7 is a more general version of the similar statements in [Spi95, KKS24], which dealt with lines instead of non-
singular curves in general.
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Generalized divisibility for AG codes

The results discussed above dealt with divisibility problems for polynomials. In our setting of AG codes, we
are presented with new challenges arising from rational functions on algebraic curves. Moreover, the geometry
of higher genus algebraic curves is significantly more complex than that of genus 0 curves. Thus AG codes
pose novel geometric challenges which were not present in the case of Reed-Solomon codes and polynomial
evaluations. Below we will discuss the divisibility problem for AG codes and our algebraic-geometric tools
that enables us to carry out analogues of the steps outlined above in this more general setting of AG codes.

Formalizing divisibility. Recall that in our setting of AG codes, the notion of divisibility is with respect to
the Hadamard product. In other words, given two tensor AG codes E ∈ C(a)⊗C(b) andN ∈ C(a+d)⊗C(b+d),
we say that E divides N if there exists a codeword Q ∈ C(d)⊗ C(d) such that

N(xi, yj) = E(xi, yj)Q(xi, yj)

for all i, j ∈ [n]. When E,N are tensor Reed-Solomon codes, their divisibility under Hadamard product is
equivalent to divisibility as bivariate polynomials in Fq[x, y] via the correspondence described earlier. Now
the tensor AG codewords E,N are defined as evaluations of rational functions on an algebraic curve X,
instead of polynomials. Although rational functions can be described as quotients of polynomials modulo
the ideal of X, the divisibility of tensor AG codewords under the Hadamard product does not translate to
an algebraic notion of divisibility. Indeed, the set of rational functions form a field, and there always exists
a rational function, namely Q = N/E, such that N = EQ.

On the other hand, the geometric perspective in the setting of Reed-Solomon codes says that if E divides
N as tensor codewords then we have a containment of corresponding plane algebraic curves E ⊆ N in F2

q.

In fact, Hilbert’s Nullstellensatz implies a stronger statement over the algebraic closure Fq. In particular, an
irreducible polynomial E divides N as bivariate polynomials iff the corresponding algebraic curves satisfy

E ⊆ N as subsets of Fq
2
. Motivated by this observation, we extend this geometric perspective to AG codes

and interpret tensor AG codewords in terms of curves on algebraic surfaces.

Tensor codewords and divisors on algebraic surfaces. Given a bivariate rational function h = F (x,y)
G(x,y) ,

one can associate a natural geometric object to it as follows. Let F = F r11 · · ·F raa and G = Gs11 · · ·G
sb
b be

the irreducible factorizations in Fq[x, y]. Then the bivariate polynomials Fi, Gj each give rise to algebraic
curves Fi, Gj ⊆ F2

q. Therefore the natural algebraic-geometric object corresponding to the rational function
h is the collection of curves {Fi, Gj | i ∈ [a], j ∈ [b]} along with their multiplicities ri, sj . Here the algebraic
curves Gj can be thought of as the set of poles of h and similarly Fi are the set of zeroes of h. This leads
us to interpret rational functions via the well-established notion of divisors in algebraic-geometry. A divisor
on an algebraic surface S is a finite Z-linear combination of curves

∑r
i=1 aiCi, where Ci ⊆ S are irreducible

curves. Thus, the divisor corresponding to the rational function h above is given by
∑
i riFi −

∑
j sjGj on

the algebraic surface F2
q.

In Section 4.3, we use algebraic-geometric tools to adapt the above in a coding-theoretic setting. In
particular, suppose X,Y are two algebraic curves and let CX(a), CY (b) be AG codes defined by evaluations
of rational functions on X,Y respectively. For each tensor AG codeword D ∈ CX(a)⊗ CY (b), we associate a
divisor on the algebraic surface X × Y 5.{

Codewords in CX(a)⊗ CY (b)

}
−→

{
Divisors on the algebraic surface X × Y

}
In fact, by studying the zeroes and poles of rational functions, we show a stronger statement that the map
above is a bijection onto a natural subclass La,b of divisors on X × Y . This natural subclass La,b is in spirit
similar to the plane curves of bi-degree (a, b). However the notion of bi-degree is too weak in this general
setting of product surfaces, and we work with finer intersection-theoretic properties of divisors.

5In the case of Reed-Solomon codes, the product surface corresponds to Fq × Fq = F2
q .
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A key feature is that we establish this correspondence over the algebraic closure Fq. Moreover, the
correspondence over Fq is obtained by specializing to so called Fq-rational divisors, i.e. divisors defined over
the base field Fq. This feature enables us to simultaneously apply intersection theoretic techniques over the
algebraic closure as well as study tensor codewords over Fq. Moreover, as an important property, we ensure
that the divisors in La,b have only non-negative coefficients in its Z-linear expression. In general, the divisors
corresponding to bivariate rational functions discussed above can have negative coefficients. However the
non-negativity property of La,b ensures that these divisors still behave as curves (see Section 4.3 for properties
of this construction).

A geometric solution. The geometric framework above enables us to translate the divisibility of AG
codes into a geometric problem about divisors on algebraic surfaces. In particular, given E ∈ CX(a)⊗CY (b)
and N ∈ CX(a + d) ⊗ C(b + d) we consider the associated divisors on X × Y , which we still denote by
E,N ⊆ X × Y . Now suppose there exist codewords R ∈ CX(d)⊗ Fnq and C ∈ Fnq ⊗ CY (d) as in Lemma 1.4.
We translate this information into intersection theoretic properties of the divisors E,N when intersected
with vertical and horizontal curves in the product surface X × Y in Lemma 5.1. In particular, the existence
of such R (similarly C) implies that there are n number of horizontal (similarly vertical) curves F in X ×Y ,
such that every intersection point of E ∩ F appears as an intersection point of N ∩ F with at least the
same multiplicity. Now, the condition on tensor codewords that E divides N also translates in terms of
associated divisors. We have E|N iff the corresponding divisors E,N ⊆ X×Y satisfy the condition that the
divisor N − E is an effective divisor, i.e. all the coefficients of curves appearing in N − E are non-negative
integers. With this geometric interpretation, we carry out the analogues of the steps in bivariate divisibility.
However, these steps are more involved due to novel geometric challenges in this generalized framework.

Reduction to no common components. In this geometric framework the analogue of gcd is the notion
common part of the divisors E,N . In particular, the common part is the divisor B which includes all
the curves common to E,N with the coefficient taken to be smaller of the coeffcients appearing in E,N .
Therefore, we would like to replace E,N by E−B,N −B to assume they do not have common components.
However, this seemingly harmless step already presents us with a technical obstacle that was not present
for plane algebraic curves. The curves X,Y are of arbitrary genera, therefore the geometry of the product
surface X × Y is intrinsically different from that of Fq × Fq. In particular, the intersection theoretic
properties of B are not determined by its bi-degree, due to the presence of new type of curves on X × Y .
Moreover, these new divisors E −B,N −B are not necessarily from a subclass Ld,e corresponding to tensor
codewords. However, using intersection theory on surfaces, we show that we can still effectively control the
behaviour of these new divisors and we can indeed reduce to the case of E,N having no common components.

Lower bound on local intersection multiplicities. In order to obtain a lower bound on the local intersection
multiplicities at the points of E ∩N , we utilize the non-singularity of the horizontal and vertical curves in
X × Y . In Lemma 4.12, we note a generalization of the lower bound for plane curves that were used in
bivariate divisibility. In Lemma 5.2, we show that these local contributions add up to a global lower bound
on the size of E ∩N counted with multiplicities.

Global upper bound on intersection. For bivariate divisibility, the upper bound due to Bezout’s theorem
was provided by the intersection product E ·N on the surface P2. Although Bezout’s theorem does not apply
directly on X ×Y , we still have a notion of intersection product and other tools from intersection theory. In
particular, E,N are divisors corresponding to tensor codewords (i.e. they belong the corresponding classes
E ∈ La,b, N ∈ La+d,b+d), then we can still compute their intersection number E · N in terms of a, b, d.
However, we replaced E,N by E − B,N − B in step 1, and these new divisors no longer belong to such
subclasses of the form Lr,s. Therefore, we can not explicitly compute the intersection product E ·N just in
terms of a, b, d. However, we show that we can still estimate this intersection product to provide an upper
bound which is sufficient.
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Given these steps above, we show that if N −E was not an effective divisor, then the bounds contradict
each other. Once we have established that N − E is an effective divisor, we can use our correspondence to
produce a tensor codeword Q. Moreover, our construction guarantees that Q is indeed defined over Fq and
we get our desired divisibility result (see Section 5). Given our generalized divisibility lemma in Lemma 5.3,
the main results on robust testability and the application to quantum codes follow by adapting standard
arguments. We refer to Section 6 for details.

1.5 Related work

The work of [GSW24], defined an abstract generalization of AG codes based on basic properties of AG
codes. These abstract AG codes are, by definition, linear codes that satisfy distance and dimension lower
bounds similar to AG codes and are also required to satisfy the multiplication property. These codes are
parameterized by their length n and dimension k and another parameter called genus g. [GSW24] proved
that tensor products of abstract AG codes of length n are robustly testable provided n = Ω((k+ g)2). These
abstract AG codes are not required to come from algebraic curves and provide a possibly larger class of
codes. AG codes have an underlying geometry that is unavailable in the setting of abstract AG codes, hence
the techniques of [GSW24] are completely linear algebraic. We use this underlying algebraic geometry of
algebraic curves to establish robust testability for AG codes. Moreover, in the case of AG codes, our result
improves upon theirs, as we establish robust testability for constant rate AG codes.

In [KKS24], a version of bivariate divisibility was proved, which deals with lines in general position instead
of axis-parallel lines, and their work also proves a multivariate polynomial version of divisibility. Their proof
also uses Bezout’s theorem and intersection multiplicity and it is similar to the proof of bivariate divisibility
provided in our Section 3. Their work involves only plane algebraic curves and polynomial functions. On
the other hand, our main contribution on divisibility is in the setting of AG codes. Hence we employ
more advanced algebraic-geometric techniques and work in a more general setting of rational functions on
non-planar algebraic curves.

1.6 Organization

In Section 2, we discuss the necessary background on AG codes and the relevant algebraic-geometric notions.
In Section 3, we illustrate our geometric perspective by proving a version of bivariate divisibility. In Section 4,
we establish the correspondence between tensor AG codewords and divisors on surfaces. In Section 5 prove
our generalized bivariate divisibility lemma. Finally, in Section 6, we prove robust local testability of AG
codes and provide an application to quantum codes.
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2 Preliminaries

In this section we setup our notations and basic definitions regarding linear codes, AG codes and quantum
codes. We will also discuss basic properties of AG codes and show the existence of error correcting tensor
AG codewords, which will be useful for proving our main result.

2.1 Notations and conventions

Throughout Fq will denote a finite field of cardinality q, where q is a power of a prime p. For any field K, we
denote an algebraic closure by K. For any field K we denote the n-dimensional affine space as AnK. Similarly,
we let PnK be the projective space. Let [n] := {1, · · · , n} for any positive integer n. We will often identify
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the vector space Fnq with the space of functions {f : [n]→ F}. For functions f : [m]→ Fq and g : [n]→ Fq,
we define f ⊗ g : [m]× [n]→ Fq as (f ⊗ g)(x, y) = f(x)g(y).

2.2 Linear codes.

A code of block length n over an alphabet Σ is a subset of Σn. A subset C ⊆ Fnq is called a linear code if C
is a vector subspace (or a Fq-linear subspace) of Fnq . All codes considered in this paper will be linear codes
defined over finite fields.

Distances. Let S be a finite set. For f, g : S → Fq we use dist(f, g) to denote the absolute (non-
normalized) Hamming distance between f and g, i.e., dist(f, g) = |{x ∈ S | f(x) ̸= g(x)}|. We define the
normalized Hamming distance as

δ(f, g) =
1

|S|
dist(f, g)

For a vector f ∈ Fnq and code C ⊆ Fnq , we use δ(f, C) to denote the distance of f to the nearest codeword
in C, i.e. δ(f, C) = min{δ(f, g) | g ∈ C}.

Hamming weight. For x ∈ Fnq , we define the Hamming weight of f as |x| = #{i ∈ [n] | xi ̸= 0}, i.e. the
number of non-zero entries of x. We will simply refer to |x| as the weight of x.

Dual code. Given a code C ⊆ Fnq , the dual code of C, denoted C⊥ is given by

C⊥ = {x ∈ Fq | x · y = 0 for all y ∈ C}

where x · y =
∑n
i=1 xiyi.

Parity check matrices. Given a code C ⊆ Fnq with dim(C) = m, a parity check matrix for C is a matrix

M ∈ Fn−m×n
q such that C = ker(M) ⊆ Fnq . In other words, M is a generator matrix for the dual code C⊥.

Hadamard product. For two codes C1, C2 ⊂ Fnq , the Hadamard product is defined as C1 ⋆ C2 = {fg |
f ∈ C1, g ∈ C2}. In other words, it is the space of component-wise products of codewords, i.e. we have
C1 ⋆ C2 = {(x1y1, · · · , xnyn) | x ∈ C1, y ∈ C2}.

Base change. Given a linear code C ⊆ Fnq , we define C ⊆ Fnq , to be the linear subspace given by

C := C ⊗Fq
Fq, where ⊗Fq

is the tensor product operation on Fq-vector spaces. We note that if v1, · · · , vr is

a basis of C, then v1⊗1, · · · , vr⊗1 is a basis of C as a Fq-vector space. In particular, dimFq
(C) = dimFq

(C).

We will often refer to C as the base change of C.

2.3 Algebraic curves, divisors and Riemann-Roch spaces

In this subsection, we recall the necessary geometric background for defining Algebraic Geometry codes. For
the definitions of algebraic varieties, their function fields and morphisms of varieties we refer to the standard
sources [Ful08, Sha13, Har77, Ste12]. For the commutative algebraic background we refer to [AM69, Eis13].

A curve will be an algebraic variety of dimension 1. Given an algebraic variety X defined over a field K,
we denote its function field by K(X). In the special case, when X is the zero set of an irreducible polynomial
F ∈ K[x, y] over an algebraically closed field, we know that the function field K(X) is the field of fractions
of the integral domain K[x, y]/(F ). We will say that a variety X defined over a perfect field (such as an
algebraically closed field or a finite field) is non-singular or smooth iff the local ring OX,P is a regular local
ring. If X is an algebraic curve, the condition of regular local ring is equivalent to OX,P being a discrete
valuation ring [Ste12, Theorem 4.9].

Divisors on curves. Let X be a non-singular algebraic curve over an algebraically closed field K. A
divisor D on X is a finite formal linear combination

∑
P aPP , where P ∈ X and aP ∈ Z for all P . The

finite set {P ∈ X | aP ̸= 0} is called the support of D, denoted as Supp(D). We say that D is effective if
aP ≥ 0 for all P and we write D ≥ 0. The degree of a divisor D =

∑
P aPP is defined as deg(D) =

∑
P aP .

The set of all divisors on X forms a group Div(X) [Ste12, Section 4.3]. Moreover, every point P ∈ X defines
a discrete valuation νP : K(X) → Z, with the associated discrete valuation ring OX,P . For any non-zero
rational function f ∈ K(X), we define the divisor of f as div(f) =

∑
P νP (f)P . If νP (f) > 0, we say that
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P is a zero of f . Similarly, if νP (f) < 0, we say that P is a pole of the rational function f . Two divisors
D1, D2 are called linearly equivalent and we write D1 ∼ D2 iff D1−D2 = div(f) for some rational function.

Riemann-Roch space. For any divisor D ∈ Div(X), we define the corresponding linear system or the
Riemann-Roch space as

L(X,D) = {f | div(f) +D ≥ 0}

We know that L(X,D) is a finite dimensional vector space over K [Ste12, Section 4.3]. To every algebraic
curve there is a canonically determined non-negative integer g, which is called the genus of g. We refer to
[Ful08, Chapter 8] or [Har77, Section 2.8, Chapter IV] for detailed discussions on genus and its properties.
One key property of the genus is given by the celebrated Riemann-Roch theorem (see [Sti09, Section 1.5],
[Ste12, Theorem 4.27]), which will be very useful for us.

Curves over finite fields. We now discuss the analogues of the above concepts in the setting when K = Fq.
A curve defined over Fq is called absolutely irreducible if it is an irreducible curve when considered over the
algebraic closure Fq. In other words, the base change X := X ⊗Fq

Fq is irreducible over Fq [Ste12, Chapter

5]. The algebraic variety X can be thought of as the zero set of the same polynomials that define X, however
we allow solutions with coordinates in Fq. Throughout this paper, we will alternatively use geometrically
irreducible in place of absolutely irreducible. These two notions are equivalent (see [Sta24, Tag 0364]). We
will say that a curve X over Fq is non-singular if it is non-singular over the algebraic closure, i.e. X is
non-singular. Since we will always work with projective algebraic curves, we may assume that our curve X
is contained in a projective space PmFq

for some m.

Given a point (a1, · · · , an) ∈ Fq
n
, we will say that it is a Fq-rational point iff a1, · · · , an ∈ Fq. For the

projective variety X ⊆ PnFq
, the notion of Fq-rational points is defined as follows. A point P = [a0 : · · · :

an] ∈ X is called an Fq-rational point if ai ̸= 0 implies that aj/ai ∈ Fq for all j. Let σ : PnFq
→ PnFq

be the

Frobenius morphism given by σ([x0 : · · · : xn]) = [xq0 : · · · : xqn]. Note that σ fixes the Fq-rational points.
Let X be a non-singular projective algebraic curve over Fq. We will denote the set of Fq-rational points

as X(Fq). We say that a divisor D =
∑
P aPP ∈ Div(X) is a Fq-rational divisor on X if σ(D) =

∑
P aPσ(P )

[Ste12, Chapter 5, page 106]. Given X defined over Fq, we may consider its function field over both Fq and
Fq. We know that these two are related by by base change, in particular Fq(X) = Fq(X) ⊗Fq Fq, where
the tensor product operation is as Fq-vector spaces. Moreover, we have an inclusion Fq(X) ⊆ Fq(X). For a
Fq-rational divisor D on X, we define the Riemann-Roch space over Fq as

LFq
(X,D) = L(X,D) ∩ Fq(X),

where the intersection is computed as subsets of Fq(X). A consequence of the Riemann-Roch theorem is the
following lower bound 6.

Theorem 2.1. Let X be a geometrically irreducible non-singular projective algebraic curve of genus g over
Fq. Let D be Fq-rational divisor on X. Then we have

dim(LFq
(X,D)) ≥ deg(D)− g + 1.

2.4 Algebraic Geometry codes

In this section, we recall the definition of Algebraic-Geometry codes and their basic properties. We will use
the geometric definition as defined in [Ste12, CR21]. For equivalent algebraic versions of the definitions we
refer to [Gur04, Chapter 6] and [Sti09, Chapter 2].

Definition 2.2. [Ste12, Section 10.1] Let X be a geometrically irreducible non-singular projective algebraic
curve over Fq. Let x1, · · · , xn be distinct Fq-rational points on X. Let D = x1 + · · · + xn, as a Fq-rational

6In fact, the Riemann-Roch theorem establishes an equality where the difference between dim(LFq (X,D)) and deg(D)−g+1
is captured by dim(LFq (X,K −D)), with K being a canonical divisor on X.
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divisor on the curve X. Let H be a Fq-rational divisor on X such that deg(H) ≥ 0 and Supp(D)∩Supp(H) =
∅. We define the Algebraic Geometry code (AG code, also called geometric Goppa code) denoted CL(X,D,H)
as

CL(X,D,H) = {(f(x1), · · · , f(xn)) | f ∈ LFq
(X,H)} ⊆ Fnq .

Note that the only possible poles of f must be contained in Supp(H). Since xi ̸∈ Supp(H), we know
that the evaluations f(xi) is well-defined. The code CL(X,D,H) is a linear code of length n over Fq.

AG codes have additional parameters such as the genus of the underlying curve X and the degree of the
divisor H which govern the properties of the code. We define these associated notions below.

Genus of AG code. We define the genus of the code CL(X,D,H) to be the genus of the curve X.
Degree of AG code. We define the degree of the AG code CL(X,D,H) to be the degree of its defining

divisor H, i.e. deg(CL(X,D,H)) := deg(H). In particular, if the genus of X is g and deg(H) = ℓ, then we
will say that CL(X,D,H) is an AG code of genus g, length n and degree ℓ.

It is often customary to work with algebraic definitions of AG codes using the language of function fields
as in [Gur04, Chapter 6] and [Sti09, Chapter 2]. These algebraic definitions are equivalent to the geometric
definition above due to the equivalence between curves and function fields (see [CR21, Section 2.1]). Let us
elaborate on this equivalence of geometric and algebraic definitions of AG codes.

Remark 2.3. Given an irreducible and reduced algebraic curve X over Fq, its function field Fq(X) is a
finitely generated extension of Fq which is of transcendence degree 1. In particular, Fq(X) is an algebraic
function field of one variable over Fq [Sti09, Definition 1.1.1]. On the other hand, given an algebraic function
field K over Fq, there exists an irreducible, non-singular, projective curve X over Fq such that Fq(X) ≃ K
(see [Poo06, Section 2.1] and [Poo08, Proposition 2.2.13]). More precisely, by [Sta24, Tag 0BY1] (or [Poo06,
Section 2.1]), there is an equivalence of categories between

• the category of finitely generated field extension K/Fq of transcendence degree 1, and

• the category of irreducible, non-singular, projective curves and non-constanct morphisms.

For an irreducible, non-singular, projective algebraic curve X over Fq, we know that X is geometrically
irreducible iff the function field Fq(X) is geometrically irreducible over Fq [Sta24, Tag 054Q]. By [Sta24, Tag
0G33], Fq(X) is geometrically irreducible over Fq iff every element α ∈ Fq(X) that is separably algebraic over
Fq is in Fq. Since an algebraic extension of Fq is separable, we conclude that X is geometrically irreducible
over Fq iff the field Fq is algebraically closed in Fq(X). Therefore, we have a one-to-one correspondence
(up to isomorphisms) between algebraic function fields K/Fq of one variable with a full constant field, and
geometrically irreducible non-singular projective algebraic curves over Fq . Moreover, under this correspon-
dence, the divisors on the curve X correspond to places of the algebraic function field, and other algebraic
notions such as genus of the function field and Riemann-Roch spaces also coincide with their geometric
counterparts [Sti09, Appendix B]. Moreover, since [Sti09] works with algebraic function fields with a full
constant field ([Sti09, Section 1.4]), we conclude that the algebraic definition of AG codes provided in [Sti09,
Defintion 2.2.1] is equivalent to the geometric definition of [Ste12] used here.

The following result is well-known. We include a proof here for completeness.

Proposition 2.4. Let X be a geometrically irreducible non-singular projective algebraic curve over Fq. Let
g be the genus of X. Let x1, · · · , xn ∈ X be Fq-rational points and D =

∑
i xi. Let H ∈ Div(X) be a

Fq-rational divisor with deg(H) ≥ 0 and Supp(D) ∩ Supp(H) = ∅. Let CL(X,D,H) be the corresponding
AG code. Then we have

1. dim(CL(X,D,H))) ≥ deg(H) − g. Moreover, if 2g − 2 < deg(H) < n, then dim(CL(X,D,H)) =
deg(H) + 1− g

2. dist(CL(X,D,H)) ≥ n− deg(H).
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3. For any be a Fq-rational divisor G with deg(G) ≥ 0 and Supp(D) ∩ Supp(G) = ∅, we have that
CL(X,D,H) ⋆ CL(X,D,G) ⊆ CL(X,D,H +G).

4. The dual code (CL(X,D,G)
⊥ is also an AG code given by CL(X,D,H) where deg(H) = 2g − 2 + n−

deg(G).

Proof. Let deg(H) = ℓ and deg(G) = m. (1) If ℓ < n, then part (1) follows from [Ste12, Corollary 10.2]. So
we prove it in the case when ℓ = n.

Consider the Fq-linear map φ : LFq
(X,H) → Fnq defined by f 7→ (f(x1), · · · , f(xn)). If f ∈ ker(φ),

then f has zeros at x1, · · · , xn. In particular, f ∈ LFq
(X,H − (x1 + · · · + xn)). Note that deg(H − (x1 +

· · · + xn)) = 0. If f ̸= 0, then we must have that H − (x1 + · · · + xn) ∼ 0. Therefore we have that
dim(LFq (X,H − (x1+ · · ·+xn))) = 1. By the Riemann-Roch theorem, we have dim(LFq (X,H)) ≥ ℓ− g+1.
Therefore, dim(C(ℓ)) ≥ dim(LFq

(X,H))− dim(ker(φ)) ≥ ℓ− g.
(2) This part follows from [Ste12, Theorem 10.1].
(3) We know that if f ∈ LFq

(X,H) and g ∈ LFq
(X,G), then fg ∈ LFq

(X,H+G). Therefore, by definition
of the Hadamard product, we have CL(X,D,H) ⋆ CL(X,D,G) ⊆ C(X,D,H +G).

(4) Follows from [CR21, Theorem 12, Lemma 19].

Example 2.5. Fix a finite field Fq. Let Nq(g) denote the maximum number of Fq-rational points on a
geometrically irreducible non-singular projective algebraic curve over Fq of genus g. The Ihara constant of
Fq is defined as

A(q) = lim sup
g→∞

Nq(g)

g
.

By [Iha81, TVZ82, VD83] we know that A(q) =
√
q−1 if q is a square. Hence, for all γ > 0 sufficiently small,

there exists a sequence of geometrically irreducible non-singular projective algebraic curves {Xi | i ∈ N} over
Fq such that

lim
i→∞

|Xi(Fq)|
g(Xi)

=
√
q − 1− γ.

For each Xi, we may choose a Fq-rational point pi ∈ Xi and let x1, · · · , xni
be the rest of the Fq-rational

points on Xi. Let gi := g(Xi) denote the genus. Note that (
√
q − 2)gi ≤ ni + 1 ≤ √qgi for sufficiently large

i.
(1) For q ≥ 16, we have 2gi − 1 < ni. Let ℓi be a positive integer such that 2gi − 2 < ℓi < ni. Let

Hi = ℓipi, and Di = x1 + · · ·+ xni
. Consider the AG codes Ci = CL(Xi, Di, Hi). Then we have a sequence

of AG codes Ci of length ni and genus gi such that ni = Θ(gi) as i → ∞. Moreover the rate of the code Ci
is given by

Ri =
ℓi − gi + 1

ni

and the relative distance satisfies

δi =
ni − ℓi
ni

.

(2) Let q ≥ 144. Let us fix a constant α such that 3 < α < 1
2 (
√
q−5), and let ℓi = αgi in the construction

above. Then Ci are codes that have rates lower bounded by a positive constant and have linear dual-distance.
Indeed, we have

Ri >
(α− 1)
√
q

,

and the distance of the dual code satisfies

dist(C⊥i ) ≥ ni − (2gi − 2 + ni − ℓi) = ℓi − 2gi + 2 = Θ(ni).

Now let ϵ ∈ (0, 1) be such that (1 − ϵ) > 2(1+α)√
q−3 . Then we have 4 + 2gi + 2ℓi < (1 − ϵ)ni for i sufficiently

large. Hence the tensor code Ci ⊗ Ci satisfies the assumptions of Theorem 1.2.
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2.5 Tensor codes and Robustness

We start by recalling the basics of tensor product of codes and the notion of robust local testability.
Let C1 ⊆ Fmq and C2 ⊆ Fnq be two codes. We define their tensor product as

C1 ⊗ C2 = span({v ⊗ w | f ∈ C1, g ∈ C2}).

Note that C1⊗C2 ⊆ Fmnq is a linear code. If we think of codewords v ∈ C1 and w ∈ C2 as row vectors, then

we have a matrix given by the Kronecker product v⊗wT , where wT denotes the transpose of w. Therefore,
we may alternatively identify codewords of C1 ⊗C2 as matrices with the following property. A matrix M is
a codeword of C1 ⊗ C2 iff every row of M is a codeword of C1 and every column of M is a codeword of C2.

Let us recall the definition of robust testability of tensor codes.

Definition 1.1. [Robust testability of tensor product] Let 0 ≤ ρ ≤ 1. For codes C1 ⊆ Fmq and C2 ⊆ Fnq , we
say that (C1, C2) is ρ-robust, or equivalently C1 ⊗ C2 is ρ-robustly testable, if for every F ∈ Fn×mq , we have

ρ · δ(F, C1 ⊗ C2) ≤
1

2
[δ(F, C1 ⊗ Fnq ) + δ(F,Fmq ⊗ C2)]

Given two codewords R ∈ C1 ⊗ Fnq and C ∈ Fmq ⊗ C2, we show that there exists a low-degree “error-
correcting” tensor codeword E which is zero at the entries where R and C disagree. Finding such an
error-correcting polynomial in now a standard technique, which was employed in [Sud92], and it served as
the first step in [PS94]. The following result is a generalization in the setting of AG codes.

Lemma 2.6 (Error correcting tensor codeword). Fix 0 ≤ ϵ ≤ 1. Let C1 = CL(X,D1, G1), C2 = CL(Y,D2, G2)
be two AG codes of length n and genus g1, g2 respectively. Let R ∈ C1 ⊗ Fnq and C ∈ Fnq ⊗ C2 be such that
δ(R,C) = ϵ2. Let T = {(x, y) ∈ [n]× [n] | R(x, y) ̸= C(x, y)}. For i ∈ [2], let di ≥ ϵn+gi+1 be two integers.
Let H1, H2 be Fq-rational divisors of degree d1, d2 on X,Y respectively, such that Supp(Hi)∩ Supp(Di) = ∅.
Then the following holds.

1. There exists a non-zero tensor codeword E ∈ CL(X,D1, H1)⊗CL(Y,D2, H2) such that E(x, y) = 0 for
all (x, y) ∈ T .

2. There exists a non-zero codeword N ∈ CL(X,D1, G1 +H1)⊗ CL(Y,D2, G2 +H2) such that

E(xi, yj)R(xi, yj) = E(xi, yj)C(xi, yj) = N(xi, yj)

for all (i, j) ∈ [n]× [n], where D1 = x1 + · · ·+ xn and D2 = y1 + · · ·+ yn.

Proof. (1) Since δ(R,C) = ϵ2, we have that dist(R,C) = ϵ2n2. Therefore |T | = ϵ2n2, and let T =
{t1, · · · , tm} ⊆ [n]× [n] where m := ϵ2n2. Consider the linear map φ : CL(X,D1, H1)⊗CL(Y,D2, H2)→ Fmq
defined as E 7→ (E(t1), · · · , E(tm)). Here E(ti) is the ti-th entry of the n × n-matrix E. Note
that dim(CL(X,D1, H1)) ≥ d1 − g1 and dim(CL(Y,D2, H2)) ≥ d2 − g2 by Proposition 2.4. Hence
dim(CL(X,D1, H1) ⊗ CL(Y,D2, H2)) ≥ (d1 − g1)(d2 − g2). Since di ≥ ϵn + gi + 1, we have that
(d1 − g1)(d2 − g2) > ϵ2n2 = m. Therefore, ker(φ) ̸= (0) and we may choose E to be any non-zero ele-
ment in ker(φ).

(2) Let E ∈ CL(X,D1, H1)⊗ CL(Y,D2, H2) be given by part (1) above. Then we have

E(xi, yj)R(xi, yj) = E(xi, yj)C(xi, yj)

for all (i, j) ∈ [n]× [n]. We define N(xi, yj) := E(xi, yj)R(xi, yj) for all (i, j) ∈ [n]× [n]. Let N be the matrix
defined as Nij = N(xi, yj). Let Ni = (N(xi, y1), · · · , N(xi, yn)) denote i-th row of the matrix N . Then we
have that

Ni = (E(xi, y1)R(xi, y1), · · · , E(xi, yn)R(xi, yn)),

i.e. the component-wise product of the i-th rows of E and R. Since E ∈ CL(X,D1, H1) ⊗ CL(Y,D2, H2),
we know that every row of E is in CL(X,D1, H1) and every column of E is in CL(Y,D2, H2). Now
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R ∈ CL(X,D1, G1) ⊗ Fnq . Hence every row of R is in CL(X,D1, G1). Therefore, every row of N is in
CL(X,D1, G1 +H1). Note that we also have N(xi, yj) = E(xi, yj)C(xi, yj) for all (i, j) ∈ [n] × [n]. Thus,
similarly we have that every column of N is in CL(Y,D2, G2+H2), as every column of C is in CL(Y,D2, H2).
Therefore, we have that N ∈ CL(X,D1, G1 +H1)⊗ CL(Y,D2, G2 +H2).

Moreover, we have that N ̸= 0. Indeed, since E ̸= 0, we know that there exists (a, b) ̸∈ T such that
E(a, b) ̸= 0. As (a, b) ̸∈ T , we have R(a, b) ̸= C(a, b). Therefore, we can not have that R(a, b) = 0
and C(a, b) = 0. Without loss of generality we may assume that R(a, b) ̸= 0. Then we have N(a, b) =
R(a, b)E(a, b) ̸= 0.

2.6 Quantum codes

In this section, we recall the necessary background on quantum codes and homological products. We will
follow the exposition in [BH14, GG24]. We start by defining quantum CSS codes.

Definition 2.7. A quantum CSS code of length n over Fq is a pair Q = (QX , QZ) such that

1. QX , QZ ⊆ Fnq are (classical) linear codes,

2. (QX)⊥ ⊆ QZ .

We define the dimension of Q as k := dim(QZ) − dim(Q⊥
X) and rate R := k

n . Let dX be the minimum
weight of vectors in QX \ (QZ)⊥ and similarly, let dZ be the minimum weight of vectors in QZ \ (QX)⊥.
The distance of Q is defined to be d := min{dX , dZ}. We will say that Q is a [[n, k, d]]q code.

qLDPC codes. We will say that a quantum CSS code Q is a quantum Low Density Parity Check (qLDPC)
code of locality w if there exist parity check matrices HX , HZ for QX , QZ respectively such that every row
and every column of HX , HZ have at most w non-zero entries.

qLTC. We will say that a quantum CSS code Q is a quantum Locally Testable Code (qLTC) of soundness
ρ if there exist parity check matrices HX , HZ of QX , QZ repectively such that the following condition holds.

1. For every s ∈ im(HX), there exists some e ∈ Fnq with HX · e = s such that |s|
n−dim(QX) ≥ ρ

|e|
n .

2. For every s ∈ im(HZ), there exists some e ∈ Fnq with HZ · e = s such that |s|
n−dim(QZ) ≥ ρ

|e|
n .

Asymptotically good codes. A family of quantum codes is asymptotically good if the dimension and
distance grow linearly as n → ∞, i.e. it is a family of [[n, k, d]]q codes where k = Θ(n) and d = Θ(n) as
n→∞. Moreover, the family is asymptotically good qLDPC if the locality w is bounded by a constant, i.e.
w = O(1) as n→∞.

Quantum AG codes. We define a quantum AG code to be a quantum CSS code Q where QX , QZ are
Algebraic-Geometry codes as defined in Definition 2.2.

Example 2.8. (Quantum AG codes.) Let X be a geometrically irreducible projective algebraic curve X over
Fq of genus g. Suppose that X has at least n number of Fq-rational points. Let ℓ be a positive integer such
that 2g − 2 < ℓ < n. Fix distinct Fq-rational points P, P1, · · · , Pn ∈ X and let D = P1 + · · · + Pn be the
corresponding divisor.

Consider the AG codes QX := CL(X,D, ℓP ) and QZ := CL(X,D, ℓP ), as defined in Definition 2.2.
Suppose that n

2 + g − 1 ≤ ℓ. Note that there exist AG codes with this constraint on the parameters. Indeed,

for q ≥ 36, we may take ℓ = αg, where
√
q

2 + 1 < α <
√
q − 2, in part (1) of Example 2.5.

Then Q := (QX , QZ) is a quantum AG code of length n and dimension k = 2ℓ − n − 2g + 2. Indeed,
we have Q⊥

X = CL(X,D, (2g − 2 + n − ℓ)P ) ⊆ CL(X,D, ℓP ) = QZ as 2g − 2 + n − ℓ ≤ ℓ. Moreover,
dim(QX) = dim(QZ) = ℓ+ 1− g and dim(Q⊥

X) = n+ g − 1− ℓ by Proposition 2.4. Hence the dimension of
Q is k = dim(QZ)− dim((QX)⊥) = (ℓ+ 1− g)− (n− ℓ+ g − 1) = 2ℓ− n+ 2− 2g. Given X,D,P over Fq,
we denote such a quantum code Q as Q(X,D, ℓP ).
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We will use these quantum AG codes to construct locally testable codes via the homological product
method as done in [GG24]. Homological product of chain complexes is a useful tool for constructing quantum
CSS codes with good parameters.

Single-sector chain complex. A single-sector chain complex over Fq is pair C = (C, ∂C) where a C ⊆ Fq
is an Fq-linear subspace and ∂C ◦ ∂C = 0. Given a single sector chain complex C = (C, ∂C), we define
B∗(C) = im(∂C) and Z∗(C) = ker(∂C). Note that B∗(C) ⊆ Z∗(C) as ∂C ◦ ∂C = 0. Moreover, we define
the homology space as the quotient H∗(C) = Z∗(C)/B∗(C). The co-chain complex of C is the single sector
chain complex C∗ = (C, (∂C)T ). We similarly define B∗(C∗) = im((∂C)⊥), Z∗(C∗) = ker((∂C)T ) and
H∗(C∗) = Z∗(C)/B∗(C).

Homological product. Given two single-sector chain complexes A = (A, ∂A) and B = (B, ∂B) over a field
Fq of characteristic 2. The homological product C = A ⊗ B is the single-sector chain complex given by
C = A⊗B and ∂C = ∂A ⊗ IB + IA ⊗ ∂B .

We note the following result from [BH14] and [GG24, Lemma 4.2], which shows that there is a corre-
spondence between single-sector chain complexes and quantum CSS codes.

Proposition 2.9. (1) Let C = (C, ∂C) be a single-sector chain complex. Let QX = ker(∂C)T , where (∂C)T

denote the transpose of ∂C , and let QZ = ker ∂A. Then Q := (QX , QZ) is a quantum CSS code.
(2) Let Q = (QX , QZ) be a [[n, k, d]]q quantum CSS code over a field Fq of characteristic 2 such that

dim(QX) = dim(QZ). Let HX , HZ be full-rank parity check matrices of QX , QZ respectively, i.e. kerHX =
QX and kerHZ = QZ . Then C = (Fnq , HT

XHZ) is a single-sector chain complex. Moreover, the quantum
code associated with C (given by part (1) above), is Q.

(3) In both the parts above, we have B∗(C) = Q⊥
X , Z∗(C) = QZ and dim(H∗(C)) = dim(QZ)−dim(Q⊥

X) =
k. For the associated cochain complex C∗, we have B∗(C∗) = Q⊥

Z , Z
∗(C∗) = QX , and the associated quantum

code is (QZ , QX).

3 Bivariate divisibility revisited

In this section we revisit [PS94] with a geometric point of view. We will prove the following version of
bivariate divisibility, where we assume a stronger bound on n than in Lemma 1.3.

Lemma 3.1 (Special bivariate divisibility). Let E(x, y) be a polynomial of degree (b, a) and N(x, y) be a
polynomial of degree (b+d, a+d). Suppose there exist distinct x1, · · · , xn such that E(xi, y) divides N(xi, y)
for 1 ≤ i ≤ n, distinct y1, · · · , yn such that E(x, yj) divides N(x, yj) for 1 ≤ i ≤ n. Suppose the following
holds.

1. We have n > 2a+ 2b+ 4d.

2. E(x, yj) is a polynomial of degree b for all j ∈ [n] and E(xi, y) is a polynomial of degree a for all
i ∈ [n].

Then E(x, y) divides N(x, y).

As discussed in the introduction, we will consider the plane algebraic curves corresponding to the bivariate
polynomials E and N , and study the intersection multiplicities of these curves at their intersection points.
We will apply Bezout’s theorem to obtain a upper bound on the total intersection multiplicity of the curves
E and N . On the other hand, using Lemma 3.7, we will show that the divisibility assumptions on the
univariate polynomials implies a lower bound on the local intersection multiplicities. We will see that these
two bounds will contradict each other if E(x, y) does not divide N(x, y).

Our goal here is to illustrate the geometric perspective on bivariate divisibility and this section can be
read independent of the rest of the paper. It is worthwhile to note that the proof of Lemma 3.1 presented here
is not a special case of the proof of bivariate divisibility for AG codes (Lemma 5.3). In particular, here we will
use Bezout’s theorem on P2 (considered as compactification of Fq × Fq) whereas in the proof of Lemma 5.3,
the appropriate compactified surface is the product P1 × P1 (in general X × Y , where X,Y are projective
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curves of arbitrary genus). Since the geometry of a product surface X × Y is much more complicated than
P2, the arguments in this section do not capture the global parts of the proof of Lemma 5.3. However, the
proof in this section still captures the intuition for the local phenomena involving intersection multiplicities.

3.1 Plane algebraic curves and intersection multiplicities.

In this subsection, we will recall the basics of plane algebraic curves and Bezout’s theorem following [Ful08].
In Lemma 3.7, we will prove our inequality for local intersection multiplicities. We work over an algebraically
closed field K throughout this subsection.

An affine plane curve will be an equivalence class of non-constant polynomials in K[x, y], under the
equivalence relation F ∼ G iff F = λG for some non-zero scalar λ ∈ K. By abuse of notation we will write
F for the equivalence class of a polynomial F . A point P on an algebraic curve F will be a point P ∈ A2

K

such that F (P ) = 0 . The point P = (α, β) corresponds to a maximal ideal m = (x − α, y − β) in K[x, y].
We define the local ring of the curve F at P to be the localization OP (F ) := (K[x, y]/(F ))m. When F is an
irreducible polynomial, the local ring OP (F ) is the ring of all rational functions defined at P , as in [Ful08,
Section 2.4]. A point P on F is a non-singular point iff the local ring OP (F ) is a discrete valuation ring.
We will say that a curve F is non-singular iff all the points of F are non-singular. By [Ful08, Section 3.2,
Theorem 1], P is a non-singular point of an irreducible curve F iff P is a simple point of F . Equivalently, P
is non-singular iff there is a unique tangent line to F through P . Given two affine curves F,G and a point
P ∈ A2

K, we define the intersection multiplicity of F,G at P as

I(P, F ∩G) = dimK((K[x, y]/(F,G))m)

where m is the maximal ideal corresponding to P , and K[x, y]/(F,G))m is the localization of the ring
K[x, y]/(F,G) at the maximal ideal m. Since the coordinate ring of A2

K is K[x, y], this definition matches
with the description of the intersection multiplicity in [Ful08, Section 3.3,Theorem 3].

We refer to [Ful08, Chapters 4, 5] for the projective analogues of the above definitions of local rings and
intersection multiplicities. We recall Bezout’s theorem for projective plane curves below.

Theorem 3.2 (Bezout’s theorem). [Ful08, Section 5.3] Let F,G be projective plane curves. Assume that
F,G have no common components. Then we have∑

P

I(P, F ∩G) = deg(F ) deg(G).

Remark 3.3. Given affine plane curves F,G, we may construct their homogenizations and obtain projective
plane curves of the same degree. If F,G do not have common components then the corresponding projective
plane curves will also not have any common components. Therefore, for two affine plane curves in A2, we
have the upper bound provided by Bezout’s theorem.∑

P

I(P, F ∩G) ≤ deg(F ) deg(G).

In order to obtain our lower bound for proving Lemma 3.1, we need to study local intersection multiplic-
ities a point of intersection of three plane curves. The natural question here is the following.

Question 3.4. Let F,E,N be plane curves and P ∈ F ∩ E ∩N . If the pairs F,E and F,N intersect at P
with multiplicity at least m, i.e. I(P, F ∩E) ≥ m and I(P, F ∩N) ≥ m, what can we say about I(P,E ∩N)?
In particular, is I(P,E ∩N) ≥ m ?

Example 3.5. Note that in general we may not have that I(P,E ∩ N) ≥ m. Indeed, consider the plane
curves given by the nodal cubic F = y2 − x2(x+ 1) and lines E = y − x, N = y + x. Let P = (0, 0). Then
the lines E and N are both tangent to F . Using the properties of intersection numbers [Ful08, Section 3.3],
we compute that I(P, F ∩ E) = I(P, F ∩N) = 3. However, I(P,E ∩N) = 1 as E,N are both lines.
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Example 3.6. Let P = (0, 0), F = y, E = y−x2 and N = y−x3. The parabola E and the line F intersect
at P with multiplicity 2, as x2 has a multplicity 2 root at 0. Thus we have I(P, F ∩ E) = 2. Similarly, we
have I(P, F ∩N) = 3. Now, E,N are tangent at P and hence they intersect at P with multiplicity at least
2. In fact, we have I(P,E ∩N) = 2.

Note that the nodal cubic curve F in Example 3.5 is singular at the point P , whereas in Example 3.6 the
line F is non-singular. Indeed, this singularity at P is the obstruction towards obtaining the lower bound
for the intersection multiplicity of E and N . We prove this in Lemma 3.7 below. In fact, the same proof
generalizes to curves on non-singular algebraic surfaces in Lemma 4.12.

Lemma 3.7 (Intersection multiplicity lower bound). Let F,E,N be affine plane curves and P ∈ F ∩E ∩N .
Suppose that P is a non-singular point of F . Then we have

I(P,E ∩N) ≥ min{I(P, F ∩ E), I(P, F ∩N)}.

Proof. Note that we have a surjection of rings K[x, y]/(E,N) → K[x, y]/(F,E,N). Therefore,
by localizing with respect to the maximal ideal m corresponding to P , we obtain a surjection
(K[x, y]/(E,N))m → (K[x, y]/(F,E,N))m. Hence we have that I(P,E ∩ N) = dimK((K[x, y]/(E,N))m) ≥
dimK((K[x, y]/(F,E,N))m). Therefore, it is enough to show that

dimK((K[x, y]/(F,E,N))m) ≥ min{I(P, F ∩ E), I(P, F ∩N)}.

Since localization commutes with quotients, we have that (K[x, y]/(F,E,N))m = OP (F )/(E,N). As P
is a non-singular point of F , we know that OP (F ) is a discrete valuation ring. Let t be the uniformizing
parameter the DVROP (F ). If E is 0 inOP (F ), then we have I(P, F∩E) =∞. Hence (K[x, y]/(F,E,N))m =
OP (F )/(E,N) = OP (F )/(N) as desired. Similarly, we are done if N is 0 in OP (F ). Therefore, we may
assume that both E,N are non-zero in OP (F ). As OP (F ) is a discrete valuation ring, we have that E =

u1t
ordF

P (E) and N = u2t
ordF

P (N), where u1, u2 are units and ordFP denotes the order as in [Ful08, Section 2.3].
By [Ful08, Section 3.3, Property 8], we have that I(P, F∩E) = ordFP (E) and I(P, F∩N) = ordFP (N). Without
loss of generality, we may assume that ordFP (E) ≤ ordFP (N). Then we have OP (F )/(E,N) = OP (F )/(E),
as N is a multiple of E in OP (F ). Therefore, we have dimK(OP (F )/(E,N)) ≥ I(P, F ∩ E), which is the
minimum by assumption.

3.2 Proof of Lemma 3.1.

First, we reduce to the case where N,E do not have any common factors. Let G(x, y) = gcd(N,E). Suppose

that G(x, y) is of degree f in x and degree e in y. Let N = G(x, y)Ñ(x, y) and E = G(x, y)Ẽ(x, y). It is

enough to show that Ẽ divides Ñ . We will check that our assumptions still hold for these polynomials. Since
G(x, y) can be identically 0 for at most e values of y, we have that Ẽ(x, yj) divides Ñ(x, yj) for at least n−e
number of yj . Since deg(E(x, yj)) = b for all j ∈ [n], we have that deg(Ẽ(x, yj)) ≥ b− f whenever G(x, yj)

is not identically 0. In particular, we may assume that deg(Ẽ(x, yj)) = b− f for at least n− 2e number of
yj , as the degree of G(x, yj) can be less than f for at most e number of additional yj . Similarly, we have

that Ẽ(xi, y) is of degree (a− e) and divides Ñ(xi, y) for at least n− 2f number of xi. Note that we have

n− 2e− 2f > 2(a− e) + 2(b− f) + 4d.

Therefore, we may replace n by (n− 2e− 2f) and preserve condition (1) and (2) for the polynomials Ẽ

and Ñ . Thus we may assume that E,N do not have any common factors. Furthermore we may assume that
max{a, b} ≥ 1, i.e. E is a non-constant polynomial.

Let π1, π2 : A2
Fq
→ A1

Fq
be the projections given by π1(x, y) = x and π2(x, y) = y. Let Gj := π−1

2 (yj)

denote the fiber over yj . In other words, Gj ⊂ A2
Fq

is the zero set of the polynomial (y − yj). By abuse

of notation, we continue to denote by N,E ⊂ A2
Fq

the algebraic curves corresponding to the bivariate
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polynomials N(x, y) and E(x, y) respectively. Let H denote the algebraic curve given by the polynomial
H(x, y) :=

∏
j(y − yj) ∈ Fq[x, y]. Note that H = ⊔jGj ⊂ A2

Fq
, i.e. H is the disjoint union of the horizontal

lines y = yj .
Note that N(x, y), E(x, y) are polynomials of total degrees at most a+b+2d and a+b respectively. Since

N,E do not have any common factors by assumption, the corresponding algebraic curves have no common
components. Therefore, Bezout’s theorem implies that∑

P∈E∩N
I(P,E ∩N) ≤ deg(E) deg(N) ≤ (a+ b)(a+ b+ 2d).

As deg(E(x, yj)) = b, the univariate polynomial E(x, yj) has b number of zeroes counted with mul-
tiplicities. Therefore we conclude that the total intersection multiplicity of E and Gj is given by∑
P∈Gj∩E I(P,Gj ∩ E) = b for all j. Therefore, we have∑

P∈H∩E
I(P,H ∩ E) =

∑
j

∑
P∈Gj∩E

I(P,Gj ∩ E) = nb.

Now we will show that every intersection point of H ∩ E is also an intersection point of E ∩ N (even
when counted with multiplicities). This will lead to a contradiction as there would be too many points in
H ∩ E, since na > (a+ b)(a+ b+ 2d).

First we note that Gj ∩ E ⊂ Gj ∩ N for all 1 ≤ j ≤ n, since E(x, yj) divides N(x, yj). Moreover, if
P ∈ Gj ∩ E is a zero of E(x, yj) multiplicity m, then P is a zero of N(x, yj) of multiplicity at least m.
Therefore, we have I(P,Gj ∩ E) ≤ I(P,Gj ∩ N) for all 1 ≤ j ≤ n. Since Gj is non-singular, we have that
I(P,E ∩N) ≥ I(P,Gj ∩ E) for all P ∈ Gj ∩ E, by applying Lemma 3.7 to the curves Gj , E,N .

Since H is a disjoint union of Gj ’s, we obtain that I(P,E∩H) ≤ I(P,E∩N) for all P ∈ E∩H. Therefore,
we have

nb =
∑

P∈H∩E
I(P,E ∩H) ≤

∑
P∈E∩N

I(P,E ∩N) = (a+ b)(a+ b+ 2d).

Similarly, we will have that na ≤ (a + b)(a + b + 2d). Hence n(a + b) ≤ 2(a + b)(a + b + 2d). This is a
contradiction, since n > 2a+ 2b+ 4d by assumption.

4 Divisors, Codes and Intersection theory

In this section we will interpret tensor products of AG codes geometrically and build our geometric tools to
prove the generalized divisibility (Lemma 5.3) and generalized bivariate testing (Theorem 6.1). In particular,
in Section 4.3, we will build a correspondence between tensor codewords and divisors on product surfaces.
In Lemma 4.12, we will study local intersection multiplicities and prove the generalization of Lemma 3.7.
Along the way we will review necessary background on algebraic curves, surfaces, divisors and intersection
theory. We refer to [Ful08, Har77, Sti09, Ste12, Sha13, CR21] for more details on the algebraic-geometric
background.

4.1 Divisors.

We will discuss the notions of divisors and Riemann-Roch space on higher dimensional algebraic varieties.
For our applications, we will only need to consider surfaces, i.e. varieties of dimension 2. Moreover, we
will work with surfaces over the algebraic closure Fq, and hence we work over the algebraic closure in this
subsection.

Let X be a non-singular algebraic variety over Fq. A prime divisor on X is a irreducible closed subvariety
D of codimension 1. A Weil divisor (or simply a divisor) on X is a finite Z-linear combination of prime
divisors. We denote the group of all divisors as Div(X), it is the free abelian group generated by the set of
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all prime divisors. A divisor
∑
aiDi is called effective if ai ≥ 0 for all i. If D =

∑
aiDi is a divisor, then

the set ∪i,ai ̸=0Di is called the support of D and is denoted by Supp(D).
Let Fq(X) denote the function field of X. Every prime divisor D determines a discrete valuation νD :

Fq(X)→ Z∪ {∞}. Given a non-zero f ∈ Fq(X) we define the divisor of f , as divf :=
∑
D νD(f)D. We say

that two divisors D1, D2 are linearly equivalent and denote D1 ∼ D2 iff D1 −D2 = divf for some non-zero
rational function f . Let φ : X → Y be a morphism of non-singular varieties X,Y and D a divisor on Y
such that φ(X) ̸⊆ Supp(D). Then we can define a pull-back divisor φ∗(D) ∈ Div(X) [Sha13, Chapter 3,
Section 1.2]. If ι : X ↪→ Y is a subvariety with X ̸⊆ Supp(D), then we define the restricted divisor as
D|X := ι∗(D). Let φ : X → Y be a morphism of non-singular varieties X,Y such that φ(X) is dense in Y .
Then we have a pull-back homomorphism φ∗ : Div(Y )→ Div(X) [Sha13, Chapter 3, Section 1.2]. Moreover,
the homomorphism φ∗ preserves linear equivalence, i.e. if D1 ∼ D2 then φ∗D1 ∼ φ∗D2.

Given a divisor D on a non-singular variety X, we define the corresponding Riemann-Roch space as

L(X,D) = {f ∈ Fq(X) | divf +D ≥ 0} ∪ {0}

For simplicity, we will often write L(D) when X is evident from the context. The set L(D) is a vector
space over Fq, where addition is induced by addition in the function field Fq(X). If X is a projective
variety, then L(D) is a finite dimensional vector space. Moreover, if D1 ∼ D2, then there is an isomorphism
L(D1) ∼= L(D2).

4.2 Evaluation maps.

Let X be a geometrically irreducible non-singular projective algebraic curve over Fq. Let x1, · · · , xn ∈ X be
Fq-rational points and D = x1+· · ·+xn. Let H a Fq-rational divisor on X such that Supp(D)∩Supp(H) = ∅.

φX : L(X,H)→ Fq
n

be the evaluation map defined as f 7→ (f(x1), · · · , f(xn)). Note that here the Riemann-Roch space L(X,H)
is defined over the algebraic closure Fq and hence it consists of rational functions defined over Fq. Thus the
image im(φX) is a linear subspace of Fq

n
, and it is not contained in Fnq . In Definition 2.2, we defined the AG

code CL(X,D,H) as evaluations of rational functions defined over Fq. In particular, let LFq (X,H) denote
the Riemann-Roch space of rational functions defined over Fq, i.e.

LFq (X,H) = {f ∈ Fq(X) | divf +H ≥ 0} ∪ {0}.

We define
φX,Fq : LFq (X,H)→ Fnq

to be the evaluation map defined as f 7→ (f(x1), · · · , f(xn)). Then we have CL(X,D,H) = im(φX,Fq
). In

the next result, we note that these two constructions are agree after base change. This result is stated in
[Ste12, Chapter 5], and we provide a proof for completeness.

Proposition 4.1. Let CL(X,D,H) ⊆ Fnq be an AG code with D = x1 + · · · + xn. Then, the base change

CL(X,D,H) := CL(X,D,H))⊗Fq Fq is given by

CL(X,D,H) = im(φX) = {(f(x1), · · · , f(xn)) | f ∈ L(X,H))}.

Proof. Note that we have LFq (X,H) ⊆ L(X,H). By [Sha13, Section 3.5, Example 3.7], we know that

L(X,H) is generated over Fq by LFq
(X,H). Therefore we have L(X,H) = LFq

(X,H) ⊗Fq
Fq. Recall that

CL(X,D,H) is the image of the Fq-linear map φX,Fq
: LFq

(X,H)→ Fnq . Then we see that φX = φX,Fq
⊗Fq

Fq,
and hence CL(X,D,H) = CL(X,D,H)⊗Fq Fq = im(φX).

The following statement is a consequence of the proof of Proposition 2.4. We note it here for convenience.
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Lemma 4.2. Let CL(X,D1, H1) and CL(Y,D2, H2) be AG codes of length n over Fq. Then we have the
following.

1. If deg(H1) < n then the evaluation map φX,Fq
: LFq

(X,H1) → Fnq is injective, and hence an isomor-
phism onto CL(X,D1, H1).

2. If deg(Hi) < n for both i = 1, 2, then the map

φX,Fq
⊗ φY,Fq

: LFq
(X,H1)⊗ LFq

(Y,H2)→ Fnq ⊗ Fnq

is an isomorphism onto CL(X,D1, H1)⊗ CL(X,D2, H2).

3. The statements (1) and (2) above hold for the maps φX and φY defined over the algebraic closure Fq.

Proof. (1) Let f ∈ ker(φX,Fq ) be a non-zero rational function and D = divf +H1 be the effective divisor on
X which corresponds to f . Let x1, · · · , xn be the rational points corresponding to D1. If f ∈ ker(φX,Fq

),
then f vanishes on x1, · · · , xn, and hence D − D1 is an effective divisor on X. Note that D is linearly
equivalent to H1, i.e. D ∼ H1. Therefore we have deg(D −D1) = deg(H1)− n < 0. This is a contradiction
as degree of an effective divisor must be non-negative. Therefore, we must have ker(φX) = (0).

(2) By part (1) we have that φX,Fq : LFq (X,H1)→ CL(X,D1, H1) is an isomorphism. Similarly, we have
that φY,Fq : LFq (Y,H2)→ CL(Y,D2, H2) is also an isomorphism. Hence we must have that φX,Fq ⊗ φY,Fq is
an isomorphism onto CL(X,D1, H1)⊗ CL(Y,D2, H2).

(3) Recall that we have L(X,H1) = LFq
(X,H1)⊗Fq

Fq and that CL(X,D1, H1) = CL(X,D1, H1)⊗Fq
Fq.

Therefore, we obtain (3) by tensoring the isomorphisms given by (1) and (2) with ⊗ Fq.

4.3 Divisors associated to tensor codewords.

In this subsection we will construct divisors associated to tensor codewords. In particular, given two AG
codes C1, C2 on curves X,Y , and a codeword in the tensor product C1⊗C2, we will associate a curve/divisor
on the product surface X × Y . First, let us formalize the set-up and prove a few preliminary results.

Let X,Y be irreducible non-singular projective algebraic curves over Fq. Consider the irreducible non-
singular projective algebraic surface X × Y over Fq. Let π1 : X × Y → X and π2 : X × Y → Y be the
projection morphisms.

X × Y

X Y

π1 π2

Since π1, π2 are surjective, we have pull-back homomorphisms π∗
1 : Div(X) → Div(X × Y ) and

π∗
2 : Div(Y ) → Div(X × Y ). Let H1 ∈ Div(X) and H2 ∈ Div(Y ) be two divisors. Consider the divisor
π∗
1(H1)+π

∗
1(H2) ∈ Div(X×Y ) and its Riemann-Roch space L(X×Y, π∗

1(H1)+π
∗
1(H2)). Let L(X,H1) and

L(Y,H2) denote Riemann-Roch spaces of H1 and H2 on X,Y respectively. Recall that we have a pull-back
homomorphism between function fields π∗

1 : Fq(X) ↪→ Fq(X×Y ) given by composition with π1, and similarly
we have π∗

2 : Fq(Y ) ↪→ Fq(X × Y ). By tensoring with Fq, we obtain the pull-back homomorphisms over the
function fields over Fq.

Lemma 4.3. Let v1, · · · vr ∈ L(X,H1) and w1, · · · , ws ∈ L(Y,H2) be Fq-linear bases which are defined over
Fq. Let ψ be the Fq-linear map

ψ : L(X,H1)⊗ L(Y,H2)→ Fq(X × Y )

defined by ψ(vi⊗wj) = π∗
1(vi)π

∗
2(wj) for all i ∈ [r], j ∈ [s]. Similarly, let ψFq be the homomorphism over

the base field Fq. Then we have the following.
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1. For any v ∈ L(X,H1), we have π∗
1(v) ∈ L(X × Y, π∗

1(H1)). Similarly, π∗
2(w) ∈ L(X × Y, π∗

2(H2)) for
any w ∈ L(Y,H2).

2. The image of the map ψ is contained in L(X × Y, π∗
1(H1) + π∗

1(H2)).

Proof. (1) Let v ∈ L(X,H1). Then we have that div(v)+H1 is an effective divisor. Thus π∗
1(div(v)+H1) =

π∗
1(div(v))+π

∗
1(H1) = div(π∗

1v)+π
∗
1(H1) is an effective divisor, since pull-back of an effective divisor by the

projection morphism is effective. Therefore, π∗
1v ∈ L(X × Y, π∗

1(H1)).
(2) We have that π∗

1(vi) ∈ L(X × Y, π∗
1H1) and π∗

2(wj) ∈ L(X × Y, π∗
2H2) by part (1). Hence we have

that
div(π∗

1(vi)π
∗
2(wj)) + π∗

1(H1) + π∗
2(H2) = div(π∗

1(vi)) + div(π∗
1(vi)) + π∗

1(H1) + π∗
2(H2)

is effective. Therefore, π∗
1(vi)π

∗
2(wj) ∈ L(X × Y, π∗

1(H1) + π∗
2(H2)). By Fq-linearity, we have that im(ψ) ⊆

L(X × Y, π∗
1(H1) + π∗

2(H2)).

Corollary 4.4. Let CL(X,D1, H1) and CL(Y,D2, H2) be AG codes of length n over Fq. Let x1, · · · , xn ∈ X
and y1, · · · , yn ∈ Y be the Fq-rational points corresponding to D1, D2 respectively. Let f ∈ LFq

(X,H1) ⊗
LFq

(Y,H2). Then we have the following.

1. The corresponding codeword (φX,Fq ⊗ φY,Fq )(f) ∈ Fn×nq is given by the matrix
ψ(f)(x1, y1) ψ(f)(x2, y1) · · · ψ(f)(xn, y1)

· · · ·
· · · ·
· · · ·

ψ(f)(x1, yn) f(x2, yn) · · · ψ(f)(xn, yn)


2. In other words, let D := (φX,Fq

⊗ φY,Fq
)(f) ∈ CL(X,D1, H1) ⊗ CL(X,D2, H2). Then the rational

function ψ(f) is defined at (xi, yj) and we have ψ(f)(xi, yj) = D(xi, yj).

Proof. For any two rational functions v ∈ LFq
(X,H1) and w ∈ LFq

(Y,H2), we have φX,Fq
(v) =

(v(x1), · · · , v(xn)) and φY,Fq
(w) = (w(y1), · · · , w(yn)). Therefore, we note that the image (φX,Fq

⊗φY,Fq
)(v⊗

w) in Fn×nq is the Kronecker product of φX,Fq (v) and φY,Fq (w)
T . In particular, we have

(φX,Fq
⊗ φY,Fq

)(v ⊗ w) = φX,Fq
(v)⊗ φY,Fq

(w)T =


v(x1)w(y1) v(x2)w(y1) · · · v(xn)w(y1)

· · · ·
· · · ·
· · · ·

v(x1)w(yn) v(x2)w(yn) · · · v(xn)w(yn)


Let v1, · · · , vr and w1, · · · , ws be Fq-linear bases of LFq

(X,H1) and LFq
(Y,H2) respectively. By Proposi-

tion 4.1, we may assume that these are Fq-linear bases of L(X,H1) and L(Y,H2). Now π∗
1(vi)(x, y) = vi(x)

and π∗
2(wj)(x, y) = w(y). Therefore, the result holds when f = vi ⊗ wj , since ψ(vi ⊗ wj) = π∗

1(vi)π
∗
2(wj).

In general, we may write f =
∑
i,j aijvi ⊗ wj where aij ∈ Fq. Hence, by linearity of φX,Fq ⊗ φY,Fq we have

(φX,Fq⊗φY,Fq )(f) =
∑
i,j aij(φX,Fq⊗φY,Fq )(vi⊗wj). Now we have ψ(f)(xk, yℓ) =

∑
i,j aijvi(xk)wj(yℓ), and

we obtain the desired formula for (φX,Fq
⊗ φY,Fq

)(f) by writing each (φX,Fq
⊗ φY,Fq

)(vk ⊗ wℓ) as matrices
described above.

The rest of this subsection is devoted to our construction of divisors on product surfaces from tensor
codewords. We will use the following definitions and notation.

LetX,Y be geometrically irreducible non-singular projective algebraic curves over Fq, and letX,Y denote
their base changes to the algebraic closure Fq. Let H1, H2 be Fq-rational divisors on X,Y respectively.
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Let x1, · · · , xn ∈ X and y1, · · · , yn ∈ Y be Fq distinct rational points. We let D1 = x1 + · · · + xn and
D2 = y1+ · · ·+yn, and assume that Supp(Di)∩Supp(Hi) = ∅. We have the following commutative diagram
of Fq-linear maps

LFq
(X,H1)⊗ LFq

(Y,H2) LFq
(X × Y, π∗

1H1 + π∗
2H2)

CL(X,D1, H1)⊗ CL(Y,D2, H2)

ψFq

φX,Fq⊗φY,Fq
θFq

By tensoring with Fq, we obtain a commutative diagram over the algebraic closure.

L(X,H1)⊗ L(Y,H2) L(X × Y , π∗
1H1 + π∗

2H2)

CL(X,D1, H1)⊗ CL(Y,D2, H2)

ψ

φX⊗φY
θ

If deg(Hi) < n for both i = 1, 2, then we know that the left vertical arrow is an isomorphism by
Lemma 4.2. We define θFq := ψFq ◦ (φX,Fq ⊗ φY,Fq )

−1 and similarly θ := ψ ◦ (φX ⊗ φY )−1. Given any D ∈
CL(X,D1, H1)⊗CL(Y,D2, H2, we continue to denote by D the image under the inclusion CL(X,D1, H1)⊗
CL(Y,D2, H2) ↪→ CL(X,D1, H1) ⊗ CL(Y,D2, H2). Recall that the image of the map ψ is contained in
L(X × Y , π∗

1H1 + π∗
2H2) by Lemma 4.3.

Definition 4.5 (Rational function associated to tensor codeword). We define the rational function associated
to the tensor codeword D to be the rational function

θ(D) ∈ L(X × Y , π∗
1H1 + π∗

2H2),

Note that the rational function θ(D) is actually defined over the base field Fq, as θ is given by the base
change of the corresponding homomorphism θFq

over Fq.

Therefore, given a tensor codeword D, the above definition associates a rational function on the product
surface over the algebraic closure. The following result shows that non-zero codewords give rise to non-zero
rational functions.

Proposition 4.6. Let CL(X,D1, H1) and CL(Y,D2, H2)be AG codes of length n over Fq, with D1 =
∑
i xi

and D2 =
∑
j yj. Suppose that deg(Hi) < n for i = 1, 2. Let D ∈ CL(X,D1, H1)⊗CL(Y,D2, H2) be a tensor

codeword such that D(xi, yj) ̸= 0 for some i, j ∈ [n]. Then the rational function θ(D) is non-zero.

Proof. Since deg(Hi) < n, we know that φX,Fq
⊗ φY,Fq

is an isomorphism by Lemma 4.2. Let f = (φX,Fq
⊗

φY,Fq )
−1(D). Hence D is given by the evaluation of f at all the pairs (xi, yj), by Corollary 4.4. Since there

exists i, j ∈ [n] such that D(xi, yj) ̸= 0, we conclude that ψ(f) ̸= 0. Similarly for θFq .

The proposition above shows that the map θ is injective. In the following lemma, we will show that the
map θ is an isomorphism. In general, given two divisors A,B on an algebraic variety Z, we have a similar
multiplication map L(Z,A) ⊗ L(Z,B) → L(Z,A + B). However, this map is not always an isomorphism.
For instance, we may take Z to be an elliptic curve, let A be a divisor of degree 0 such that A ̸= 0 and
let B = −A. Then L(Z,A) = L(Z,B) = {0}, whereas L(Z,A + B) = L(Z, 0) is a 1-dimensional vector
space. Our situation in Lemma 4.7 is special since the divisors on the surface Z = X × Y are pull-backs of
divisors on X and Y . Here this isomorphism occurs due to algebraic-geometric reasons rather than purely
linear algebraic reasons. Hence, in order to prove this isomorphism, we will use the notions of sheaves and
cohomology from [Har77].

Lemma 4.7. Let CL(X,D1, H1) and CL(Y,D2, H2)be AG codes of length n over Fq, with D1 =
∑
i xi and

D2 =
∑
j yj. Suppose that deg(Hi) < n for i = 1, 2. The the maps θFq

and θ are isomorphisms of vector
spaces.
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Proof. Since θ = θFq ⊗ Fq, it is enough to show the statement for θ. By Proposition 4.6, we know that θ is

injective. Therefore it is enough to show that CL(X,D1, H1)⊗ CL(Y,D2, H2) and L(X × Y , π∗
1H1 + π∗

2H2)
are of the same dimension. Let Z = X×Y . We know that L(Z, π∗

1H1+π
∗
2H2) = H0(Z,OZ(π∗

1H1+π
∗
2H2)),

which is the 0-th cohomology group of the sheaf OZ(π∗
1H1 + π∗

2H2).
We have the following fiber product

Z Y

X Spec(Fq)

π2

π1 f

g

We have π1,∗π
∗
2H2

∼= g∗(f∗(H2)) ∼= g∗(H0(Y ,H2)) by [Har77, Proposition III.9.3]. Now, by using the
projection formula [Har77, Exercise II.5.1], we obtain

H0(X × Y, π∗
1H1 ⊗ π∗

2H2) ∼= (g ◦ π1)∗(π∗
1H1 ⊗ π∗

2H2)
∼= g∗ ◦ π1,∗(π∗

1H1 ⊗ π∗
2H2)

∼= g∗(H1 ⊗ π1,∗π∗
2H2)

∼= g∗(H1 ⊗ g∗(H0(Y,H2)))

∼= g∗(H1)⊗ (H0(Y,H2))

∼= H0(X,H1)⊗H0(Y ,H2).

Since H0(X,H1) = L(X,H1) ∼= CL(X,D1, H1) and H0(Y ,H2) = L(Y ,H2) ∼= CL(Y,D2, H2), we con-
clude that the Fq-vector spaces CL(X,D1, H1)⊗CL(Y,D2, H2) and L(X×Y , π∗

1H1+π
∗
2H2) are of the same

dimension.

The following definition provides our key construction that associates divisors on product surfaces to
tensor codewords. Recall that in the case of Reed-Solomon codes, tensor codewords are given by bivariate
polynomials. As discussed in the introduction, the following construction is a generalization of the algebraic
curves corresponding to bivariate polynomials.

Definition 4.8 (Divisor associated to a tensor codeword). Let CL(X,D1, H1) and CL(X,D2, H2) be AG
codes of length n over Fq, with D1 =

∑
i xi and D2 =

∑
j yj . Let D ∈ CL(X,D1, H1) ⊗ CL(X,D2, H2) be

a tensor codeword such that D(xi, yj) ̸= 0 for some i, j ∈ [n]. We define the divisor associated to the tensor
codeword D to be the effective divisor

div(θ(D)) + π∗
1(H1) + π∗

2(H2) ∈ Div(X × Y ).

Remark 4.9. Note that the rational function associated to D is non-zero by Proposition 4.6. Therefore the
divisor associated to the tensor codeword D is a well-defined divisor on the product surface X × Y over the
algebraic closure Fq. We also note that the rational function θ(D) is defined over the base field Fq. Therefore
the divisor D is an Fq-rational divisor. Moreover it is an effective divisor linearly equivalent to the divisor
π∗
1(H1) + π∗

2(mH2). For simplicity, we will abuse notation and continue to denote the divisor associated to
the tensor codeword D by the same letter, and write D := div(θ(D)) + π∗

1(H1) + π∗
2(H2).

We note useful properties of divisors associated to tensor codewords below.

Lemma 4.10. Let CL(X,D1, H1) and CL(X,D2, H2) be AG codes of length n over Fq, with D1 =
∑
i xi and

D2 =
∑
j yj. Let E ∈ CL(X,D1, H1)⊗ CL(X,D2, H2) be a non-zero tensor codeword. Let E ∈ Div(X × Y )

and θ(E) denote the divisor and the rational function associated to the codeword E respectively. Let Fi =
π−1
1 (xi) and Gj = π−1

2 (yj) be the fibers of the projection morphisms. Then we have the following.
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1. (Poles of E). If C ⊆ Supp(div(θ(E))) is an irreducible curve such that coeffC(div(θ(E))) < 0, then
C ⊆ Supp(π∗

1H1) or C ⊆ Supp(π∗
2H2).

2. Suppose that for some i ∈ [n], we have Fi ⊆ Supp(E) and coeffFi
(E) > 0. Then the rational function

θ(E) is defined at (xi, yj) and we have θ(E)(xi, yj) = 0 for all j ∈ [n].

Proof. (1) Note that E is the divisor div(θ(E))+π∗
1H1+π

∗
2H2. Since E is effective and coeffC(div(θ(E))) < 0,

we must have that C appears with positive coefficient in π∗
1H1+π

∗
2H2. Therefore, we have C ⊆ Supp(π∗

1H1)
or C ⊆ Supp(π∗

2H2).
(2) By applying Corollary 4.4 and base change to Fq, we conclude that θ(E) is defined at (xi, yj). Let

η be the generic point of the irreducible curve Fi and p := (xi, yj) for some j. Let us choose an affine
open neighbourhood p ∈ U = Spec(A) ⊂ X × Y such that θ(E) is a regular function on U , i.e. θ(E) ∈ A.
Note that we must have η ∈ U , and η is the generic point of the divisor Fi ∩ U in U . Let us continue
to denote the prime ideals of A corresponding to η, p by the same letters. Recall that by definition of AG
codes we have xi ̸∈ Supp(H1). Hence Fi ̸⊆ Supp(π∗

1H1). Moreover, since Fi maps dominantly to Y under
π2, we have that Fi ̸⊆ Supp(π∗

2H2). Thus we must have that coeffFi
(div(θ(E))) > 0 as coeffFi

(E) > 0.
Since coeffFi

(div(θ(E))) > 0, we know that νη(θ(E))) > 0 where νη is the discrete valuation on the discrete
valuation ring Aη . In particular, θ(E)/1 ∈ Aη is contained in the maximal ideal ηAη of the DVR Oη = Aη ⊂
K(A). Therefore, θ(E) ∈ η ⊂ A. Hence we also have θ(E) ∈ p ⊂ A, since η ⊂ p. Therefore θ(E)(p) = 0 in
Ap/pAp, i.e. θ(E)(xi, yj) = 0.

4.4 Intersection theory on surfaces.

In this subsection we develop the necessary background on intersection theory on surfaces. We will use the
definitions from [Har77, Chapter V]. The notions of intersection multiplicities and intersection product used
here are a generalization of the notions for plane algebraic curves in [Ful08].

Let S be an irreducible non-singular projective algebraic surface over Fq. A curve on S will mean any
effective divisor on S. For any point P ∈ S, we denote the corresponding local ring as OP,S .

Intersection multiplicity. If C andD are curves with no common irreducible component, and if P ∈ C∩D,
then we define the intersection multiplicity (C ·D)P of C and D at P to be the length of OP,S/(f, g), where
f, g are local equations of C,D at P . If P ̸∈ C ∩D, then we define (C ·D)P = 0.

We recall the following result regarding the intersection product on surfaces.

Theorem 4.11. [Har77, Chapter V, Theorem 1.1, Proposition 1.4] There is a unique pairing Div(S) ×
Div(S)→ Z, denoted by C ·D for any two divisors C,D, such that the following holds.

1. If C and D are non-singular curves meeting transversally, then C ·D = |C ∩D|, the number of points
of C ∩D.

2. It is symmetric: C ·D = D · C.

3. It is additive: (C1 + C2) ·D = C1 ·D + C2 ·D

4. It depends only on the linear equivalence classes: if C1 ∼ C2 then C1 ·D = C2 ·D.

5. If C and D are divisors on X having no common irreducible component, then we have C · D =∑
P∈C∩D(C ·D)P .

6. Let C be an irreducible curve on S. If D is an effective divisor such that C is not a component of
D. Then D · C ≥ 0. In particular, if D − E is an effective divisor where D,C do not have common
components, then D · C ≥ E · C.

Proof. Parts (1)− (4) are the content of [Har77, Chapter V, Theorem 1.1]. Part (5) is the content of [Har77,
Chapter V, Proposition 1.4]. For the first part of (6), note that we have C ·D =

∑
P∈C∩D(C ·D)P by part

(5). Moreover (C ·D)P ≥ 0 since the length of a module is a non-negative integer. Therefore D ·C ≥ 0. For
the second part, we apply the first part to the divisors D − E and C and use additivity.

28



Given a non-singular curve C ⊆ S and a divisor D ∈ Div(S) such that C ̸⊆ Supp(D), we defined the
restricted divisor D|C in Section 4.1. In the following result we provide an explicit formula for the restricted
divisor. Moreover, we also generalize our local intersection multiplicity bound from Lemma 3.7.

Lemma 4.12. Let S be a non-singular irreducible projective algebraic surface over Fq. Let N,E ∈ Div(S)
be divisors and F ⊂ S be a non-singular irreducible curve. Suppose that N,E are effective divisors without
common components and F ̸⊆ Supp(N) ∪ Supp(E). Then we have the following.

1. The restricted divisor N |F ∈ Div(F ) on the curve F is given by

N |F =
∑

P∈N∩F
(N · F )P · P.

In particular, deg(N |F ) = N · F . Similarly, E|F =
∑
P∈E∩F (E · F )P and deg(E|F ) = E · F .

2. For all P ∈ N ∩ E ∩ F , we have

(N · E)P ≥ min{(N · F )P , (E · F )P }.

3. Suppose that N |F −E|F is an effective divisor on F . Then, E∩F ⊆ N ∩F . Moreover, P ∈ N ∩E∩F ,
we have

(N · E)P ≥ (E · F )P .

Proof. (1) Since S is non-singular, any divisor on S is locally principal or a Cartier divisor by [Sha13, Chapter
3, Section 1.2] or [Har77, Chapter II, Proposition 6.11, Remark 6.11.2]. Therefore, we may assume that there
is an open cover S = ∪Ui and rational functions hi such that the Cartier divisor defined by {(Ui, hi)} is N .
Since N is effective, we may further assume that hi are regular functions on Ui. Since F ̸⊂ Supp(N), the
restricted divisor N |F is well-defined. Moreover F is non-singular. Hence we have that N |F is given by the
Cartier divisor {(Ui ∩ F, hi|F )} on F , corresponding to the open cover F = ∪(Ui ∩ F ) and the restricted
regular functions hi|F .

Now, for any point (or a prime divisor) P on F , the coefficient of P in the divisor N |F is given by νP (hi|F )
where P ∈ Ui ∩ F . Now, the local ring OP,F is a DVR. Hence, we have that νP (hi|F ) = length(OP,F /(hi)).
Let f be a local equation of F in a neighbourhood of P in S. Now, we have OP,F = OP,S/(f). Therefore
the coefficient of P in N |F is given by

νP (hi|F ) = length(OP,F /(hi)) = length(OP,S/(f, hi)) = (N · F )P .

(2) Let f, g, h ∈ OP,S denote the local equations of F,E,N at P respectively. We have a surjection
OP,S/(g, h)→ OP,S/(f, g, h). Therefore, we have

(N · E)P = length(OP,S/(g, h)) ≥ length(OP,S/(f, g, h)).

Since F is non-singular, the local ring OP,S/(f) ≃ OP,F is a DVR. Without loss of generality assume that
(E · F )P ≤ (N · F )P . Then we have that g divides h in OP,S/(f). Therefore OP,S/(f, g, h) ≃ OP,S/(f, g),
and hence we have

(N · E)P = length(OP,S/(g, h)) ≥ length(OP,S/(f, g)) = (E · F )P .

(3) Since N |F −E|F is an effective divisor, we have that (N ·F )P ≥ (E ·F )P for all P ∈ F . If P ∈ E∩F ,
the (E · F )P ≥ 1. Hence we also have (N · F )P ≥ 1 and P ∈ N ∩ F . Moreover, by part (2), we have
(N · E)P ≥ (E · F )P .

In the following result, we note intersection properties of fibers of projection morphisms in a product
surface.
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Proposition 4.13. Let X,Y be irreducible non-singular projective algebraic curves over Fq. Let π1 : X ×
Y → X and π2 : X × Y → Y be the projection morphisms. Let x1, x2 ∈ X and y1, y2 ∈ Y be distinct pairs
of points. Let Fi = π−1

1 (xi) and Gj = π−1
2 (yj) be the fibers of the projection morphisms. Then we have the

following.

1. We have F1 · C = F2 · C for any irreducible curve C ⊆ S, and similarly for G1 and G2.

2. We have F1 · F2 = 0, G1 ·G2 = 0 and Fi ·Gj = 1 for all i, j ∈ [2].

3. For any effective divisor E, we have E · Fi ≥ 0 and E ·Gj ≥ 0.

Proof. (1) We note that any two fibers F1, F2 are algebraically equivalent and hence numerically equivalent
[Har77, Chapter V, Exercise 1.7].

(2) Since x1 ̸= x2, we have F1∩F2 = ∅. Hence F1 ·F2 = 0. Similarly for G1 and G2. Furthermore, Fi, Gj
intersect transversely at the point (xi, yj) hence Fi ·Gj = 1.

(3) We may write E = E′ +mFi, where Fi ̸⊆ Supp(E′). Then E′ ∩Fi ≥ 0, as these are effective divisors
without common component Theorem 4.11. Since Fi · Fi = Fi · Fj = 0 for i ̸= j, we see that E · Fi ≥ 0.
Similarly we have E ·Gj ≥ 0.

In a product surface X × Y , the fibers play the role of axis-parallel lines in Fq
2
. Using this perspective,

we can generalize the concept of bi-degree of bivariate polynomials in Fq[x, y].

Definition 4.14. Let X,Y be irreducible non-singular projective algebraic curves over Fq. Let D ∈ Div(X×
Y ). We will say that D is of type (e, f), if D ·F = f and D ·G = e for some (and, hence all) fibers F = π−1

1 (x)
and G = π−1

2 (y), where x ∈ X and y ∈ Y .

In the following result, we note properties of the type of divisors defined above. In particular, there is an
upper bound for the self-intersection number D2 := D ·D in terms of the type of a divisor D. This will be
crucial for obtaining our replacement of the Bezout-type bounds for the product surface X × Y in the proof
of the generalized divisibility in Lemma 5.3.

Proposition 4.15. Let X,Y be irreducible non-singular projective algebraic curves over Fq. Let π1 : X ×
Y → X and π2 : X × Y → Y be the projection morphisms. Let F = π−1

1 (x) and G = π−1
2 (y), for some

x ∈ X and y ∈ Y . Then we have the following.

1. Let D ∈ Div(X × Y ) be a divisor such that D ∼ aF + bG for some a, b ∈ Z, where ∼ denotes linear
equivalence. Then

(a) D is of type (a, b), i.e. D · F = b and D ·G = a.

(b) If a, b > 0, then D · E > 0 for any effective divisor E.

2. If D ∈ Div(X × Y ) is an effective divisor of type (0, 0), then D = 0.

3. Let E,B ∈ Div(X × Y ) be divisors of type (e, f) and (a, b) respectively. Suppose that E − B is an
effective divisor. Then we have a ≤ e and b ≤ f .

4. Let D ∈ Div(X × Y ) be of type (e, f). Then we have D2 ≤ 2ef .

Proof. (1.a) We have D · F = (aF + bG) · F = aF · F + bG · F = b. Similarly we have D ·G = a.
(1.b) By [Har77, Chapter V, Exercise 1.9.b], we know that F + G is an ample divisor. Therefore,

(F +G) · E > 0 for any effective divisor E by [Har77, Chapter V, Theorem 1.10]. If a, b > 0, then we have
D · E = (F +G) · E + (a− 1)F · E + (b− 1)G · E. Now, F · E ≥ 0 and G · E ≥ 0 by Proposition 4.13.

(2) If D is an effective divisor of type (0, 0), then we have D · (F + G) = 0. This is a contradiction if
D ̸= 0, since (F +G) ·D > 0 by part (1.b).

(3) Since E − B is effective, we have (E − B) · F = E · F − B · F = f − b ≥ 0 by Proposition 4.13.
Similarly we have a ≤ e.

(4) This is the content of [Har77, ChapterV, Exercise 1.9.b].
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5 Generalized divisibility for AG codes

In this section we will prove our generalized divisibility result in Lemma 5.3. Along the way we will generalize
other intermediate steps of [PS94] to the setting of AG codes. We start with the following lemma which is
a geometric generalization of [PS94, Lemma 4].

Lemma 5.1. Let CL(X,D1, H1) and CL(Y,D2, H2) be two AG codes of length n over Fq, with D1 =
∑
i xi

and D2 =
∑
j yj. Let M1,M2 be divisors on X,Y respectively such that deg(Mi) + deg(Hi) < n and

Supp(Mi)∩ Supp(Di) = ∅. Suppose N ∈ CL(X,D1,M1 +H1)⊗CL(Y,D2,M2 +H2), E ∈ CL(X,D1,M1)⊗
CL(Y,D2,M2), R ∈ CL(X,D1, H1)⊗ Fnq and C ∈ Fnq ⊗ CL(Y,D2, H2) are non-zero codewords such that

E(xi, yj)R(xi, yj) = E(xi, yj)C(xi, yj) = N(xi, yj)

for all i, j ∈ [n].
Let Fi = π−1

1 (xi) and Gj = π−1
2 (yj) be the fibers of the projection morphisms π1 : X × Y → X and

π2 : X × Y → Y . Let N,E ∈ Div(X × Y ) denote the divisors associated to the codewords N,E respectively.
Then we have the following.

1. If Fi ⊆ Supp(E) for some i ∈ [n], then Fi ⊆ Supp(N). Similarly, if Gj ⊆ Supp(E), then Gj ⊆
Supp(N).

2. Let i ∈ [n] be such that Fi ̸⊆ Supp(N). Then the restricted divisor N |Fi
− E|Fi

is effective. Similarly,
if Gj ̸⊆ Supp(N) for some j ∈ [n], then N |Gj

− E|Gj
is effective.

Proof. Since N,E are non-zero codewords, we note that the associated divisors are well-defined by Propo-
sition 4.6. Then the divisor associated to the codeword N , which we also denoted by N , is given by
div(θ(N))+π∗

1(M1+H1)+π
∗
2(M2+H2). Thus we have the linear equivalenceN ∼ π∗

1(M1+H1)+π
∗
2(M2+H2).

Moreover, the divisor N is effective by construction. Therefore the possible poles of the rational function
θ(N) must be contained in π∗

1(M1+H1)+π
∗
2(M2+H2) by Lemma 4.10. Similarly we have E ∼ π∗

1M1+π
∗
2M2

and the only possible poles of E are contained π∗
1M1 + π∗

2M2. In other words, if a curve B appears with
negative coefficient in the divisor div(θ(N)), then we have B ⊆ Supp(π∗

1(M1+H1)+π
∗
2(M2+H2)). Similarly

for div(θ(E)). Fix i ∈ [n] and let ι : Fi ↪→ X × Y be the inclusion map. Note that π2 ◦ ι : Fi
∼−→ Y is an

isomorphism.
(1) Now suppose that Fi ⊆ Supp(E). Note that Fi can not have negative coefficient in div(θ(E)).

Indeed, we have Fi ⊆ Supp(π∗
1D1) and Supp(π∗

1D1) ∩ Supp(π∗
1M1) = ∅. Moreover, Fi dominates Y under

the projection π2, whereas π
∗
2M2 does not. Therefore, as Fi is in the support of E, we must have that

coeffFi
(div(θ(E))) > 0. Then θ(E)(xi, yj) = 0 for all j ∈ [n] by Lemma 4.10. Therefore E(xi, yj) =

θ(E)(xi, yj) = 0 for all yj by Corollary 4.4. Hence we have θ(N)(xi, yj) = N(xi, yj) = E(xi, yj)R(xi, yj) = 0
for all j ∈ [n]. If Fi ̸⊆ Supp(N), then ι∗(θ(N)) is a well-defined non-zero rational function. Moreover the
divisor N |Fi is well-defined effective divisor by Lemma 4.12. Since N |Fi = div(ι∗(θ(N))) +M2 +H2 on Fi,
we have ι∗(θ(N)) ∈ L(Fi,M2 +H2). This is a contradiction, since deg(M2 +H2) < n and ι∗(θ(N)) vanishes
on n number of points (xi, yj) on Fi.

(2) Now suppose that Fi ̸⊆ Supp(N). Then we also have Fi ̸⊆ Supp(E) by part (1). Hence,
ι∗(θ(N)), ι∗(θ(E)) are non-zero rational functions on Fi. Furthermore, we have the restricted divisors given
by N |Fi

= div(ι∗(θ(N)))+M2+H2 and E|Fi
= div(ι∗(θ(E)))+M2. Since C ∈ Fnq ⊗CL(Y,D2, H2), we know

that the i-th column Ci ∈ CL(Y,D2, H2) is a codeword. Therefore, by using the isomorphism in Lemma 4.2,
we have a non-zero rational function γi := φ−1

Fi
(Ci) ∈ L(Fi, H2).

We will show that ι∗(θ(N)) = ι∗(θ(E)) ·γi as rational functions in the function field Fq(Fi). Then we will
have div(ι∗(θ(N)) = div(ι∗(θ(E)))+div(γi). Hence we will have that N |Fi

−E|Fi
= div(γi)+H2 is effective,

since γ ∈ L(Fi, H2). The rest of the proof will be devoted to showing that ι∗(θ(N))− ι∗(θ(E)) · γi = 0 as a
rational function in Fq(Fi)(Fi).

Note that ι∗(θ(E)) · γi ∈ L(Fi,M2 + H2). Therefore, ι∗(θ(N)) − ι∗(θ(E)) · γi ∈ L(Fi,M2 + H2). Note
that by Corollary 4.4, we have that ι∗(θ(N))(xi, yj) = N(xi, yj) and ι∗(θ(E))(xi, yj) = E(xi, yj) for all
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j ∈ [n]. Since γi ∈ L(Fi, H2), the only possible poles of γi are contained in Supp(H2). Hence, the rational
function γi is defined at (xi, yj) ∈ Fi for j ∈ [n]. Moreover, we have γi(xi, yj) = C(xi, yj), since the
codeword Ci is the evaluation of the rational function γi, by definition of γi. Therefore, on the curve Fi,
we have (ι∗(θ(N)) − ι∗(θ(E)) · γi)(xi, yj) = 0 for all j ∈ [n]. If ι∗(θ(N)) − ι∗(θ(E)) · γi ̸= 0, then this is a
contradiction, as deg(M2 +H2) < n and ι∗(θ(N))− ι∗(θ(E)) · γi ∈ L(Fi,M2 +H2). Therefore we must have
that ι∗(θ(N))− ι∗(θ(E)) · γi = 0 as desired.

The following result provides a lower-bound on the intersection number N ·E in terms of the type of the
divisors N,E. This lower bound is generalizes the lower bound obtained in the proof of special bivariate
divisibility in Lemma 3.1.

Lemma 5.2 (Lower bound for intersection product). Let X,Y be irreducible non-singular projective algebraic
curves over Fq. Let x1, · · · , xn ∈ X be points with corresponding fibers Fi = π−1

1 (xi) in X × Y . Let
N,E ∈ Div(X × Y ) be effective divisors of type (d, e) and (a, b) respectively. Suppose that the following
conditions hold.

1. We have a, b, d, e ≥ 0 and e ≥ b.

2. The divisors N,E do not have any common components.

3. For all fibers Fi such that Fi ̸⊆ Supp(N), the restricted divisor N |Fi − E|Fi is an effective divisor on
the curve Fi.

Then we have
N · E ≥ nE · Fi = nb

Proof. First we will reduce to the case where none of the fibers Fi are in Supp(N). Suppose that r of the fibers
Fi are in Supp(N). Without loss of generality, suppose F1, · · · , Fr ⊆ Supp(N) and let fi = multN (Fi) ≥ 1.
Then we have that N ′ := N − (f1F1 + · · · + frFr) is an effective divisor. Now the divisor N ′ is of type
(d−f, e), where f = f1+· · ·+fr. We also have that the fibers Fi ̸⊆ Supp(N ′) for all i ∈ [n]. Furthermore, for
all r+1 ≤ j ≤ n, we have that N |Fj

= N ′|Fj
, since Fi ∩Fj = ∅ for i ∈ [r]. Hence we have that N ′|Fj

−E|Fj

is effective for all r + 1 ≤ j ≤ n. Since E · Fi = b, we have that

N · E = N ′ · E + (f1 + · · ·+ fr)b ≥ N ′ · E + rb.

Therefore it is enough to show that N ′ · E ≥ (n − r)b. Hence we may replace N by N ′ and n by (n − r),
and assume that none of the fibers Fi are in Supp(N).

Now we will reduce to the case where none of the fibers are in Supp(E). Without loss of generality,
suppose that F1, · · · , Fs ⊆ Supp(E) for some 1 ≤ s ≤ n. Let ci = multE(Fi). Then we may write
E′ := E − (c1F1 + · · ·+ csFs), where none of the fibers are in Supp(E′). Note that E′ is of type (a− c, b),
where c = c1+ · · ·+ cs. We also have that E|Fj

= E′|Fj
for all s+1 ≤ j ≤ n. Now, since N ·Fi = e, we have

N · E = N · E′ + (c1 + · · ·+ cs)e ≥ N · E′ + sb.

Therefore it is enough to show that N · E′ ≥ (n− s)b, and hence we may replace E by E′ and n by n− s.
Now we may assume that Fi ̸⊆ Supp(N) ∪ Supp(E) for all i ∈ [n]. Since N,E do not have common

components, we have that N ·E =
∑
P∈N∩E(N ·E)P by Theorem 4.11. Similarly, E ·Fi =

∑
P∈E∩Fi

(E ·Fi)P
for all fibers i ∈ [n]. Note that E|Fi

=
∑
P∈E∩Fi

(E ·Fi)P ·P andN |Fi
=

∑
P∈N∩Fi

(N ·Fi)P ·P by Lemma 4.12.
Since N |Fi

− E|Fi
is effective for all i ∈ [n], we have that (N · Fi)P ≥ (E · Fi)P and Fi ∩ E ⊂ Fi ∩ N by

Lemma 4.12. In particular, Fi∩E∩N = Fi∩E for all i ∈ [n]. Furthermore, we have that (N ·E)P ≥ (E ·Fi)P
for all P ∈ Fi ∩ E ∩N by Lemma 4.12. Note that Fi ∩ Fj = ∅ for 1 ≤ i ̸= j ≤ n. Therefore we have

N · E =
∑

P∈N∩E
(N · E)P ≥

n∑
i=1

∑
P∈Fi∩N∩E

(N · E)P ≥
n∑
i=1

∑
P∈Fi∩E

(E · Fi)P = nb.
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The following result is a generalization of the bivariate divisibility results in Lemma 1.3 and Lemma 3.1.

Lemma 5.3 (Generalized divisibility for AG codes). Let CL(X,D1, H1), CL(X,D1,M1) and
CL(Y,D2, H2), CL(Y,D2,M2) be AG codes of length n over Fq, with D1 =

∑
i xi and D2 =

∑
j yj.

Suppose N ∈ CL(X,D1,M1 + H1) ⊗ CL(Y,D2,M2 + H2), E ∈ CL(X,D1,M1) ⊗ CL(Y,D2,M2), R ∈
CL(X,D1, H1) ⊗ Fnq and C ∈ Fnq ⊗ CL(Y,D2, H2) are non-zero codewords. Suppose that the following two
conditions hold.

1. We have n > deg(M1) + deg(H1) + deg(M2) + deg(H2).

2. We have
E(xi, yj)R(xi, yj) = E(xi, yj)C(xi, yj) = N(xi, yj)

for all i, j ∈ [n].

Then there exists a codeword Q ∈ CL(X,D1, H1)⊗ CL(Y,D2, H2) such that

N(xi, yj) = E(xi, yj)Q(xi, yj)

for all i, j ∈ [n].

Proof. Let deg(Mi) = mi and deg(Hi) = ℓi. Let N,E ∈ Div(X × Y ) be the divisors corresponding to the
codewords N,E respectively. Note that the divisors N,E are of type (m1+ℓ1,m2+ℓ2) and (m1,m2) respec-
tively, by Proposition 4.15. Let Supp(N) ∩ Supp(E) = {B1, · · · , Br} and ai = multN (Bi), bi = multE(Bi)
be the corresponding multiplicities. Let B be the common part of N,E, i.e. B =

∑r
i=1 min{ai, bi}Bi. Let

N ′ = N −B and E′ = E −B. In the following we will show that E′ = 0.
Note that N ′, E′ are without common components, by construction. Suppose that B is of type (e, f).

Then we know that e ≤ m1 and f ≤ m2 by Proposition 4.15.
Moreover, we have that N ′ is of type (m1−e+ℓ1,m2−f+ℓ2), and similarly E′ is of type (m1−e,m2−f).

Let Fi = π−1
1 (xi) be the fibers of the projection π1 : X × Y → X. Without loss of generality, suppose that

F1, · · · , Fr ∈ Supp(B). Then B − (F1 + · · ·+ Fr) is effective, and we have

e = B ·G ≥ (F1 + · · ·+ Fr) ·G = r,

where G denotes the class of a fiber of the second projection, i.e. G = π−1
2 (y) for some y. Therefore, at

most e of the fibers can be in Supp(B), and after re-indexing, we may assume that Fi ̸⊆ Supp(B) for all
1 ≤ i ≤ (n− e).

By Lemma 5.1, we know that for any Fi ̸⊆ Supp(N), we have that Fi ̸⊆ Supp(E) and the restricted
divisor N |Fi

− E|Fi
is effective. Now, we have

N |Fi
− E|Fi

= (N ′ +B)|Fi
− (E′ +B)Fi

= N ′|Fi
− E′|Fi

.

Now suppose that Fi ̸∈ Supp(N ′) for some i ∈ [n − e]. Since Fi ̸⊆ Supp(B), we have Fi ̸⊆ Supp(N). Thus
we have that N ′|Fi

− E′|Fi
is effective for any Fi ̸⊆ Supp(N ′) where i ∈ [n − e]. Therefore, by applying

Lemma 5.2 to the divisors N ′, E′ and the first (n− e) fibers Fi, we obtain that

N ′ · E′ ≥ (n− e)(m2 − f). (1)

Similarly, by applying the argument to the fibers Gi = π−1
2 (yi), we obtain that

N ′ · E′ ≥ (n− f)(m1 − e). (2)

Now we have
N ′ · E′ = (N −B) · (E −B) = N · (E −B)− E ·B +B2.
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We have that N ∼ π∗
1(M1+H1)+π

∗
2(M2+H2) and E ∼ π∗

1M1+π
∗
2M2, which are of type (m1+ ℓ1,m2+ ℓ2)

and (m1,m2) respectively. By Proposition 4.15, we know that B2 ≤ 2ef . Hence we have

N ′ · E′ = N · (E −B)− E ·B +B2

= (m1 + ℓ1)(m2 − f) + (m2 + ℓ2)(m1 − e)−m1f −m2e+B2

≤ (m1 + ℓ1)(m2 − f) + (m2 + ℓ2)(m1 − e)−m1f −m2e+ 2ef

= (m2 − f)(m1 + ℓ1 − e) + (m1 − e)(m2 + ℓ2 − f).

(3)

Hence we have the inequality

N ′ · E′ ≤ (m2 − f)(m1 + ℓ1 − e) + (m1 − e)(m2 + ℓ2 − f). (4)

Now we will show that we must have m1 = e and m2 = f .
Case 1. Suppose that m1 = e or m2 = f . Without loss of generality we may assume that m1 = e. Then

we have N ′ · E′ ≤ (m2 − f)ℓ1 by inequality (4). However, we also know that N ′ · E′ ≥ (n − e)(m2 − f)
by inequality (1). If m2 ̸= f then this is a contradiction, since n > m1 + ℓ1 by assumption and m1 ≥ e.
Therefore in this case we must also have m2 = f , as desired.

Case 2. Suppose that m1 ̸= e and m2 ̸= f . Since n > m1 + ℓ1 +m2 + ℓ2, we have n − e > (m1 + ℓ1 −
e) + (m2 + ℓ2) and n − f > (m2 + ℓ2 − f) + (m1 + ℓ1). Since m1 − e > 0 and m2 − f > 0, we have strict
inequalities

(n− e)(m2 − f) > (m1 + ℓ1 − e)(m2 − f) + (m2 + ℓ2)(m2 − f) (5)

(n− f)(m1 − e) > (m2 + ℓ2 − f)(m1 − e) + (m1 + ℓ1)(m1 − e) (6)

Now the inequalities (1),(4) and (5) imply that we must have

(m1 − e)(m2 + ℓ2 − f) > (m2 + ℓ2)(m2 − f). (7)

Similarly, inequalities (2),(4) and (6) imply that

(m2 − f)(m1 + ℓ1 − e) > (m1 + ℓ1)(m1 − e) (8)

Now inequality (7) implies that (m1−e) > (m2−f). Similarly, inequality (8) implies that (m2−f) > (m1−e).
This is a contradiction. Hence we must have that m1 = e and m2 = f .

Now, we note that E′ = E − B is an effective divisor of type (0, 0). Hence E′ = 0, by Proposition 4.15.
Since E′ = 0, then we have that N −E is a non-zero effective divisor and N −E ∼ π∗

1H1 + π∗
2H2. We recall

that the divisors N,E ∈ Div(X × Y ) are defined over the base field Fq by Remark 4.9. Hence N − E is an
Fq-rational divisor and let g ∈ LFq

(X × Y, π∗
1H1 + π∗

2H2) be the corresponding rational function. Hence, it
suffices to let Q ∈ CL(X,D1, H1)⊗ CL(Y,D2, H2) be the codeword associated to N − E. More specifically,
we let Q = (θFq )

−1(g), where θFq is the isomorphism given by Lemma 4.7.

6 Main result and applications

First we prove our generalization of the bivariate testing result of [PS94, Theorem 9]. Given our generalized
divisibility lemma (see Lemma 5.3), the following result is obtained by adapting the combinatorial argument
in [PS94].

Theorem 6.1. Fix 0 ≤ ϵ ≤ 1. Let CL(X,D1, H1) and CL(Y,D2, H2) be AG codes of length n over Fq and
genus g1, g2 respectively. Let D1 =

∑
i xi and D2 =

∑
j yj. Let R ∈ CL(X,D1, H1) ⊗ Fnq and C ∈ Fnq ⊗

CL(Y,D2, H2) be codewords such that δ(R,C) = ϵ. Suppose that n > 2
√
ϵn+g1+g2+4+deg(H1)+deg(H2).

Then there exists a codeword Q ∈ CL(X,D1, H1)⊗ CL(Y,D2, H2) such that the set

A = {(xi, yj) | R(xi, yj) ̸= Q(xi, yj) or C(xi, yj) ̸= Q(xi, yj)},
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satisfies
|A| ≤ 2ϵn2.

In particular, we have δ(R,Q) + δ(Q,C) ≤ 4ϵ.

Proof. For simplicity, we will alternatively use (i, j) ∈ [n]× [n] in place of (xi, yj). We define

T = {(x, y) ∈ [n]× [n] | R(x, y) ̸= C(x, y)}.

Let di = ⌈
√
ϵn + gi + 1⌉. Choose Fq-rational divisors M1,M2 on X,Y respectively such that deg(Mi) = di

and Supp(Mi) ∩ Supp(Di) = ∅. For instance, we may choose a point x ̸∈ Supp(D1) and let M1 = d1x. By
Lemma 2.6, there exists a non-zero codeword E ∈ CL(X,D1,M1)⊗CL(Y,D2,M2) such that E(x, y) = 0 for
all (x, y) ∈ T . Furthermore, there exists a non-zero N ∈ CL(X,D1,M1 +H1) ⊗ CL(Y,D2,M2 +H2) such
that

E(x, y)R(x, y) = E(x, y)C(x, y) = N(x, y)

for all (x, y) ∈ [n] × [n]. Now, n > d1 + d2 + deg(H1) + deg(H2). Therefore, by Lemma 5.3, there exists a
codeword Q ∈ CL(X,D1, H1)⊗ CL(Y,D2, H2) such that

E(x, y)R(x, y) = E(x, y)C(x, y) = Q(x, y)E(x, y)

for all (x, y) ∈ [n]× [n].
Let us call a row good if R agrees with Q everywhere on that row. Similarly, we call a column good if C

agrees with Q everywhere on that column. Otherwise, we call the row or column bad. Let br be the number
of bad rows and bc be the number of bad columns.

First, we will show that bc ≤ d1 and br ≤ d2. We know that if E(x, y) ̸= 0, then R(x, y) = Q(x, y) =
C(x, y). Suppose that E is not identically zero on the i-th column. Then E(xj , yi) = 0 for at most d2 values of
xj , as the i-th column of E is a codeword in CL(Y,D2,M2). Therefore, for at least n−d2 > deg(H2) values of
xj , we have E(xj , yi) ̸= 0, and consequently Q(xj , yi) = R(xj , yi). Since Q ∈ CL(X,D1, H1)⊗CL(Y,D2, H2)
and C ∈ Fnq ⊗CL(X,D2, H2), we conclude that Q(xj , yi) = C(xj , yi) everywhere on the i-th column. Hence,
if E is not identically zero on a column, it must be a good column. Since E can be identically zero on at
most d1 number of columns, we conclude that bc ≤ d1. Similarly, we have br ≤ d2.

Recall that
A = {(x, y) ∈ [n]× [n] | R(x, y) ̸= Q(x, y) or C(x, y) ̸= Q(x, y)}.

We define
Z = {(x, y) ∈ [n]× [n] | R(x, y) = C(x, y) and R(x, y) ̸= Q(x, y)}.

Then we have A ⊆ T ⊔ Z, and hence |A| ≤ |T | + |Z|. Since |T | = ϵn2, it is enough to show that |Z| ≤ |T |.
Note that all entries of Z must lie in bad rows and bad columns, since R(x, y) = C(x, y) ̸= Q(x, y) for all
(x, y) ∈ Z.

Case 1. Suppose that d1 + deg(H1) ≥ d2 + deg(H2). Then we have n > 2(deg(H2) + d2). In particular,
n−deg(H2)−d2 > n

2 . We will show that for any bad column, the number of entries from T is strictly larger
than the number of entries from Z.

Note that C and Q can agree on at most deg(H2) entries in a bad column. Otherwise C = Q everywhere
on that column, which is a contradiction. Therefore, there are at least n− deg(H2)− br entries (x, y) in any
bad column, such that R(x, y) = Q(x, y) and C(x, y) ̸= Q(x, y). Hence, R(x, y) ̸= C(x, y), and (x, y) ∈ T
for all such (x, y). In particular, any bad column contains at least n− deg(H2)− br ≥ n− deg(H2)− d2 > n

2
number of entries from T . Hence, the number of entries from Z is smaller than the number of entries from
T in any bad column. Hence |Z| ≤ |T |, as Z is contained in the union of bad columns.

Case 2. Suppose that d2 + deg(H2) > d1 + deg(H1). By the same argument as in Case 1, we conclude
that for any bad row, the number of entries from T is strictly larger than the number of entries from Z. We
are done similarly as Z is contained in the union of bad rows.

Therefore, we have |Z| ≤ |T | in both cases. This shows that |A| ≤ 2ϵn2. Now, note that if R(x, y) ̸=
Q(x, y), then (x, y) ∈ A. Hence δ(R,Q) ≤ 2ϵ. Similarly, we have δ(Q,C) ≤ 2ϵ. Therefore we have
δ(R,Q) + δ(Q,C) ≤ 4ϵ.
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By a standard argument, Theorem 6.1 implies robust testability of tensor products of AG codes. For
instance, the proof of [GSW24, Theorem 2.4] holds with minor modifications.

Theorem 6.2. Let c0 > 1 and ρ = 1
3 (
c0−1
2c0

)2. Let CL(X,D1, H1) and CL(Y,D2, H2) be two AG codes of
length n, genus g1, g2 respectively over Fq. Suppose that n > c0(g1 + g2 +4+deg(H1) + deg(H2)). Then the
tensor product code CL(X,D1, H1)⊗ CL(Y,D2, H2) is ρ-robustly testable.

Proof. Let F ∈ Fn×nq . Let R ∈ CL(X,D1, H1)⊗ Fnq and C ∈ Fnq ⊗CL(Y,D2, H2) be the vectors closest to F
in their respective codes. Let deg(Hi) = ℓi. Suppose that δ(R,C) = ϵ. We consider two cases as follows.

Case 1. Suppose that
√
ϵ < c0−1

2c0
. Then we have that 1

1−2
√
ϵ
< c0. Hence we have

n > c0(g1 + g2 + 4 + ℓ1 + ℓ2) >
1

1− 2
√
ϵ
(g1 + g2 + 4 + ℓ1 + ℓ2).

Therefore, n > 2
√
ϵn+g1+g2+4+ℓ1+ℓ2. By Theorem 6.1, we know that there exists Q ∈ CL(X,D1, H1)⊗

CL(Y,D2, H2) such that δ(Q,R) + δ(Q,C) ≤ 4ϵ. Therefore we have

δ(F,Q) ≤ min(δ(F,R) + δ(R,Q), δ(F,C) + δ(C,Q))

≤ 1

2
(δ(F,R) + δ(R,Q) + δ(F,C) + δ(C,Q))

≤ 1

2
(δ(F,R) + δ(F,C) + 4ϵ)

≤ 5

2
(δ(F,R) + δ(F,C)),

where the last inequality holds since ϵ = δ(R,C) ≤ δ(F,R) + δ(F,C). Hence we have that

1

5
δ(F,Q) ≤ 1

2
(δ(F,R) + δ(F,C)).

In particular, ρ · δ(F,Q) ≤ 1
2 (δ(F,R) + δ(F,C)), as ρ < 1

5 .

Case 2. Suppose that
√
ϵ ≥ c0−1

2c0
. Then we have δ(R,C) ≥ ( c0−1

2c0
)2 = 3ρ > 2ρ and hence ρ ≤ 1

2δ(R,C).
Now we have

ρ · δ(F,Q) ≤ ρ ≤ 1

2
δ(R,C) ≤ 1

2
(δ(F,R) + δ(F,C)).

Therefore, we are done since δ(F,CL(X,D1, H1) ⊗ CL(Y,D2, H2)) ≤ δ(F,Q), and δ(F,R) =
δ(F,CL(X,D1, H1)⊗ Fnq ), δ(F,C) = δ(F,Fnq ⊗ CL(Y,D2, H2)) by assumption.

We note the following reformulation of Theorem 6.2.

Corollary 6.3. Let ϵ ∈ [0, 1) and ρ(ϵ) = ϵ2

12 . Let CL(X,D1, H1) and CL(Y,D2, H2) be two AG codes of
length n, genus g1, g2 respectively over Fq. If 4 + g1 + deg(H1) + g2 + deg(H2) < (1 − ϵ)n, then the tensor
product code CL(X,D1, H1)⊗ CL(Y,D2, H2) is ρ(ϵ)-robustly testable.

Proof. Let c0 = 1
1−ϵ . Then c0 > 1, and we have c0(4+g1+deg(H1)+g2+deg(H2)) < n. Hence Theorem 6.2

applies and we have ρ(ϵ) = ϵ2

12 .

Theorem 6.2 combined with the results of [GG24] directly yields new families of quantum CSS codes
which are locally testable with constant soundness. [GG24, Corollary 4.4] proved the following result for
quantum Reed-Solomon codes using the robust testability of Reed-Solomon codes [PS94]. As an application
of our main result we obtain a generalization of their result to the setting of quantum AG codes. The proof
of [GG24] goes through with our modified conditions on the parameters in this extended setting of AG codes.
We provide more details here for convenience.

36



Proposition 6.4. For any ϵ > 0, there exist ∆(ϵ) > 0 and ρ(ϵ) > 0 such that the following holds. For
i = 1, 2, let Qi = (QiX , Q

i
Z) be quantum AG codes of length n, rate Ri over a field Fq of characteristic 2 with

the following conditions.

1. QiX , Q
i
Z are AG codes of genus g and degrees ℓi ≤ (1− ϵ)n.

2. dim(QiX) = dim(QiZ).

3. ℓ1 − ℓ2 > ϵn+ 4g + 2.

4. ℓ1 + ℓ2 > (1 + ϵ)n+ 6g.

Let Ci be the single-sector chain complex obtained from Qi. Then the quantum CSS code associated with the
homological product A = C1⊗C2 is a [[n2, R1R2n

2,∆(ϵ)n2]]q code that is locally testable with locality at most
2n and soundness at least ρ(ϵ).

Proof. Let Q(A) denote the quantum code associated to the homological product complex A. Since Qi is
a length n code, the single sector chain complex Ci = (Ci, ∂

Ci) has C = Fnq . Since A = (C1 ⊗ C2, ∂
C1 ⊗

I + I ⊗ ∂C2) and C1 ⊗ C2 = Fn2

q , we have that length of Q(A) is n2. Moreover, any row or column of

the matrix ∂C1 ⊗ I + I ⊗ ∂C2 has at most 2n non-zero entries. Hence the locality of the quantum code
Q(A) is at most 2n. By the Künneth formula [BH14, Lemma 1] or [GG24, Proposition 3.23], we know that
H∗(A) = H∗(C1)⊗H∗(C2). Hence, by Proposition 2.9, we have dim(Q(A)) = dim(Q1) dim(Q2) = R1R2n

2.
Therefore, it remains to compute the distance and soundness of Q(A).
Distance bound. Recall that d(Q(A)) = min{dX(Q(A)), dZ(Q(A))}. First let us bound dZ(Q(A)). By

Proposition 2.9, we have B∗(C1) = (Q1
X)⊥, and Z∗(C2) = Q2

Z . Note that (Q1
X)⊥ and Q2

Z are AG codes of
genus g and degrees (2g− 2+n− ℓ1) and ℓ2. By condition (3) and Corollary 6.3, we know that (Q1

X)⊥⊗Q2
Z

is ρ(ϵ)-robust. By [GG24, Theorem 4.1], we have dZ(Q(A)) ≥ ϵρ(ϵ)n2, as d(Z∗(C1)) = d(Q1
Z) ≥ ϵn.

Now we bound dX(Q(A)). By Proposition 2.9, we see that dX(Q(A)) = dZ(Q(A∗)), where A∗ is the
associated cochain complex of A. Now we will apply the above argument to A∗. Note that A∗ = C∗1 ⊗ C∗2 ,
and C∗i is associated to the quantum code (QiZ , Q

i
X). Therefore, B∗(C∗1 ) = (Q1

Z)
⊥ and Z∗(C∗2 ) = Q2

X , which
are AG codes of genus g and degrees (2g − 2 + n − ℓ1) and ℓ2. Therefore, we are done by Corollary 6.3 as
above. We let ∆(ϵ) = ϵρ(ϵ).

Soundness bound. Now we check that the soundness is at least ρ(ϵ). By [GG24, Definition 3.13], the
soundness of Q(A) is given by ρ(Q(A)) = min{ 1

µ∗(A) ,
1

µ∗(A)}, where µ∗ and µ∗ are the (co)filling constants.

Let us first show a lower bound on 1
µ∗(A) . Note that B∗(C1) = (Q1

X)⊥ and B∗(C2) = (Q2
X)⊥, which are

AG codes of genus g and degrees (2g − 2 + n− ℓ1) and (2g − 2 + n− ℓ2) respectively. By condition (4) and

Corollary 6.3, we know that (Q1
X)⊥ ⊗ (Q2

X)⊥ is ϵ2

12 -robust. Let ∆i = d(QiZ)/n be the relative distance. By
[GG24, Theorem 4.1], we know that

1

µ∗(A)
≥ ϵ2

12
·min{ ϵ

2

12
,∆1,∆2}.

Now, ∆i = d(QiZ)/n ≥ ϵ by condition (1) and Proposition 2.4. Therefore, we have 1
µ∗(A) ≥ ( ϵ

2

12 )
2. Similarly,

1
µ∗(A) is bounded below by ( ϵ

2

12 )
2. Therefore, we may take ρ(ϵ) = ( ϵ

2

12 )
2.

Now we note that there exist families of quantum AG codes satisfying the assumptions of Proposition 6.4,
and as a corollary we obtain good quantum codes which are locally testable with constant soundness.

Corollary 6.5. Let q = 22m where m ≥ 8. Fix 7√
q−4 < ϵ < 1

8 (1 −
14√
q ). Let Q1 := Q(X,D, ℓ1P ) and

Q2 := Q(X,D, ℓ2P ) be two quantum AG codes as constructed in Example 2.8 with ℓ1 = α1g and ℓ2 = α2g
where

α1 = ⌊(1− ϵ)(√q − 2)⌋ − 1 and α2 = ⌊(1− 3ϵ)(
√
q − 2)⌋ − 1.
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Let Ci be the single-sector chain complex obtained from Qi. Then the quantum CSS code Q(A) associated
with the homological product A = C1 ⊗ C2 is a [[N,Θ(N),Θ(N)]]q code. Moreover, Q(A) is locally testable

with locality at most 2
√
N and soundness at least ρ := ( ϵ

2

12 )
2.

Proof. First, we have q ≥ 216. Hence 7√
q−4 <

1
8 (1−

14√
q ), and ϵ can be chosen in the given interval. Moreover,

we have √
q

2
+ 1 < ⌊(1− 3ϵ)(

√
q − 2)⌋ − 1,

and hence we may choose α1, α2 as above in the construction given by Example 2.8. Now let us check that
the assumptions of Proposition 6.4 apply as g, n→∞.

We have α1 = ⌊(1− ϵ)(√q − 2)⌋ − 1 and α2 = ⌊(1− 3ϵ)(
√
q − 2)⌋ − 1. Therefore,

α2g < α1g < (1− ϵ)(√q − 2)g < (1− ϵ)n

as (
√
q−2)g < n+1 <

√
qg in the construction of Example 2.5 (and Example 2.8). Hence ℓ1 = α1g, ℓ2 = α2g

satisfies condition (1). By the construction in Example 2.8, we know that dim(QiX) = dim(QiZ) for i ∈ [2].
Thus we have condition (2).

Now we have

α1 − α2 = ⌊(1− ϵ)(√q − 2)⌋ − ⌊(1− 3ϵ)(
√
q − 2)⌋ ≥ 2ϵ(

√
q − 2)− 2 > ϵ

√
q + 4

as ϵ > 7√
q−4 . Hence ℓ1 − ℓ2 = (α1 − α2)g > ϵn+ 4g + 2 as g, n→∞. Therefore, condition (3) is satisfied.

We have

α1 + α2 = ⌊(1− ϵ)(√q − 2)⌋+ ⌊(1− 3ϵ)(
√
q − 2)⌋ − 2

≥ (2− 4ϵ)(
√
q − 2)− 4

> (1 + ϵ)
√
q + 6

as ϵ < 1
8 (1−

14√
q ). Therefore, ℓ1 + ℓ2 = (α1 + α2)g > (1 + ϵ)n+ 6g as g, n→∞, and we have condition (4).

Hence Proposition 6.4 applies. Since N = n2, we have that Q(A) is a [[N,R1R2N,Θ(N)]]q code with

locality ≤ 2
√
N and soundness ≥ ρ. Now note that the dimension of Q1 is k1 = 2ℓ1 − n+ 2− 2g = Θ(n) by

Example 2.8. Hence the rate of Q1 satisfies R1 = Θ(1) as n→∞. Similarly, we have k2 = 2ℓ2−n+2−2g =
Θ(n), and hence R2 = Θ(1) as n→∞. Therefore we have that the dimension of Q(A) is Θ(N).
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