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Abstract

Given algorithms A1, A2 running in logspace and linear time, there are two basic ways to
compute the composition x → A2(A1(x)). Applying naive composition gives an algorithm in
linear time but linear space, while applying emulative composition (i.e. the composition of
space-bounded algorithms) gives an algorithm in logarithmic space but quadratic time. Such
time overheads are extremely common while designing low-space algorithms.

A natural question is whether one can enjoy the best of both worlds: for every A1, A2, is
there a routine to compute A2 ◦A1 in linear time and in small space? We prove that:

1. For linear time algorithms, this is unconditionally impossible – any space-efficient compo-
sition must be polynomially slower than the naive algorithm.

2. Extending the unconditional lower bound in either one of many different ways (e.g., to
algorithms running in large polynomial time, or to a lower bound for k-fold composition
that increases as nωk(1)) would imply breakthrough algorithms for a major question in
complexity theory, namely derandomization of probabilistic logspace.

The main conceptual contribution in our work is the connection between three questions: the
complexity of composition, time-space tradeoffs for deterministic algorithms, and derandomiza-
tion of probabilistic logspace. This connection gives additional motivation to study time-space
tradeoffs, even under complexity-theoretic assumptions, and the motivation is strengthened by
the fact that the tradeoffs required in our results are very relaxed (i.e., super-linear tradeoffs for
deterministic algorithms).

To prove our results we develop the technical toolkit in an ongoing line of works studying
pseudorandomness for low-space algorithms, and as a by-product, we improve several very recent
results in this line of work. For example, we show a new “win-win pair of low-space algorithms”,
extending the construction of (Doron, Pyne, Tell, Williams, STOC 2025) to more general func-
tions and eliminating a previously large polynomial runtime overhead; we reduce the task of
derandomizing low-space algorithms to the seemingly tractable task of proving lower bounds for
uniform Read-Once Branching Programs; and we introduce two highly efficient targeted pseu-
dorandom generators, which use optimized versions of previous generators as building-blocks.
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1 Introduction

Given two algorithms A1 and A2 that use very little memory, and an input x ∈ {0, 1}n, how can we
compute the composition A2(A1(x))? For concreteness, let’s assume that A1 and A2 run in linear
time and use O(log n) bits of work space.

The naive method is to compute y = A1(x), store the output y, and then compute A2(y). This
method runs in linear time, but it may require too much memory. For example, when y is of linear
length, this method uses a linear amount of space rather than O(log n).

A well-known alternative method in algorithm design and complexity theory preserves the space
complexity (approximately), but increases the runtime. In this method, we run A2 and provide it
“virtual access” to its input y = A1(x): whenever A2 tries to read a bit of y, we run A1(x) from
scratch to compute that bit (and discard the rest of A1’s output). This method still uses O(log n)
bits of space,1 but its running time is now quadratic instead of linear. This space-efficient yet
time-inefficient method (coined “emulative composition” by Goldreich [Gol08]) is a component in
nearly every low-space algorithm in theoretical computer science.

We observe that the two known methods can also be interpolated, up to lower order factors,
giving an achievable curve: we can compute the composition in any time t and space s ≥ Ω(log n),
as long as the time-space product satisfies t · s ≥ Ω̃(n2); see Proposition 4.1 for details. Also, for
certain specific classes of algorithms, we can do much better; for example, when A2 is read-once
over its input (see Definition 3.2), we can compose in linear time and O(log n) space.

The question motivating the current work is whether there is a better method for composing
low-space algorithms, in general. In other words, we ask:

Question 1.1. What is the time and space complexity of composing low-space algorithms?

As far as we are aware, no methods better than the ones mentioned above are known. However,
we are also unaware of any paper studying lower bounds for this problem (e.g., trying to prove that
it is impossible to beat this curve), even under complexity-theoretic hardness assumptions.

For context, many previous works in complexity theory studied time-space tradeoffs for com-
puting a single function; we survey some of these works below. The new perspective in the current
work is trying to find two functions, each of them efficiently computable in low space by itself, such
that any algorithm computing their composition must incur an additional overhead.2

Our contributions, in a gist. For linear time algorithms (as above), we show that overhead-free
composition is impossible; that is, we prove an unconditional time-space lower bound for composing
two natural algorithms. We then prove a sequence of results, showing that proving the same lower
bound in various other natural settings would imply a breakthrough on a major open problem in
complexity theory, namely the BPL = L problem. For example, proving the same lower bound for
algorithms running in large polynomial time would imply such a breakthrough.

From a technical perspective, the novelty in the latter results is that the required time-space
lower bounds need only hold for uniform deterministic algorithms. That is, in contrast to prior
work (which deduced such conclusions from time-space lower bounds for non-deterministic or prob-
abilistic machines), the connection that we show to BPL = L holds in a relaxed setting, which may
be amenable to analysis. Furthermore, the consequences that we deduce also seem within reach.

Hence, the main conceptual contribution in our work is the new connection between three ques-
tions: the complexity of composing algorithms, time-space tradeoffs for deterministic algorithms,

1For a formal statement incorporating minor overheads, see Proposition 3.3.
2Intuitively, the interesting technical challenge here is that we want to prove a “complexity increase”; that is, that

the complexity of the composition A2 ◦A1 is higher than the maximum of the complexity of A1 and of A2.
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and BPL = L. This connection gives additional motivation for studying time-space tradeoffs for
deterministic algorithms, even conditionally (i.e., even under complexity-theoretic assumptions),
and this motivation is strengthened by the fact that the tradeoffs required in our results are very
relaxed (e.g., only requiring time-space t1.01 for t-time algorithms).

1.1 Our Main Results

Our first result is that there are two linear-time algorithms using space O(log n) whose composition
unconditionally requires time-space n1.33. In particular, there is no way to compose these algorithms
without either increasing the space to nΩ(1), or suffering a polynomial slowdown. The proof of this
result is due to Ryan Williams, who generously agreed to include it in this work.

Theorem 1.2 (hardness of composing low-space algorithms [Wil25]). There are two algorithms A1

and A2 each mapping n bits to n bits in linear time and space O(log n) such that for any constant
ε > 0, any algorithm computing the composition A2(A1(x)) correctly on more than an ε-fraction of
the inputs x has time-space product at least n1.33.

The lower bound in Theorem 1.2 suggests that, perhaps, there is indeed no better algorithm
for composition than the two known methods (and their interpolation). Theorem 1.2 falls short
of proving the foregoing statement, since the lower bound is n1.33, rather than n2. As far as we
know, there is no reason to believe that it cannot be improved to n2, and we pose a concrete open
problem whose resolution would imply this (see Section 2.1).

Composing algorithms that run in large polynomial time. Next, we ask whether composi-
tion overheads are necessary only for linear-time algorithms, or also for algorithms running in larger
time. That is, can we show that for every polynomial t, there are t-time logspace algorithms whose
composition requires time-space t1+Ω(1)? The technical version of Theorem 1.2 holds for t ≈ n3/2

(and asserts a lower bound of t4/3−Ω(1), see Theorem 4.4), but this t is still fixed and small.
Our second main result is that generalizing Theorem 1.2 for arbitrary large polynomials t

would yield a significant breakthrough on a long-standing open problem in complexity theory:
derandomization of probabilistic logspace. (That is, the problem of simulating probabilistic logspace
algorithms by deterministic algorithms that incur as little simulation overhead as possible.)

Theorem 1.3 (hardness of composing low-space t-time algorithms implies derandomization). Sup-
pose that there is δ > 0 such that for every polynomial t(n) and constant ε > 0 the following holds.
There are two algorithms A1 and A2 running in time t and space O(log n) such that any algorithm
computing A2(A1(x)) successfully on an ε-fraction of inputs x ∈ {0, 1}n requires time-space product
t1+δ.3 Then BPL ⊆ ∩ε>0zavgεL.

4

Note that in Theorem 1.2 the lower bound holds for δ ≈ 1/3, whereas in Theorem 1.3, a lower
bound with any δ > 0 (i.e., arbitrarily small) suffices for the conclusion.

It is often conjectured that BPL can indeed be derandomized (i.e., that BPL = L), but proving
this has remained an infamously open challenge for decades. The strongest known results assert that
BPL ⊆ SPACE[n3/2−o(1)] (see [SZ99,Hoz21,Hoz22]) or that BPL ⊆ SC (see [Nis91,Nis92,Pyn24]).

3In this statement we refer to the runtime of both A1 and A2 as a function t = t(n) of the length of the input
x ∈ {0, 1}n to the composition. We could alternatively describe A1 as running in time t and outputting t bits, and
describe A2 as running in linear time (in t); these choices are syntactic and do not meaningfully affect our results.

4For definitions of BPL and of zavgL, see Section 3. In a gist, the meaning of the statement is that every
probabilistic algorithm using space O(logn) can be simulated by a deterministic algorithm using space O(logn),
where the simulation is correct over 1− ε of the inputs (and ε > 0 is arbitrarily small).
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The conclusion in Theorem 1.3 asserts derandomization of BPL on average, which is weaker than
BPL = L, but would still be a major result (see, e.g., [DPT24,DPTW25]).

We do not have strong evidence that the hypothesis in Theorem 1.3 is true, even under stan-
dard complexity-theoretic hardness assumptions, and we believe that finding such evidence is an
important open problem. In Section 4.3 we present candidate functions whose composition may be
hard, along with a reduction of proving lower bounds for composing two algorithms to a potentially
easier problem (of proving lower bounds for composing constantly many algorithms).

Composing more than two algorithms. We now consider another seemingly innocent gen-
eralization of Theorem 1.2, which may be more amenable to analysis. Fix arbitrary algorithms
A1, ..., Ak, each running in linear time and logspace. Note that we can compute the composition
Ak(Ak−1(...(A1(x)))) in time O(k · n) and linear space, and that emulative composition runs in
logspace but requires time at least nk. Can we compute the k-fold composition in low space (say,
O(log n) or polylog(n)) without paying a runtime overhead of nΩ(k)?

For large values of k = k(n), this question captures classical questions in complexity theory. For
example, for k = O(log n), the classical question of whether L = NL is equivalent to the question of
whether the k-wise composition of a certain logspace algorithm (i.e., for Boolean matrix squaring)
can be done in polynomial time and logspace.5 For an even larger k = poly(n), the question of
whether L = P is equivalent to the question of whether k-wise composition of any function can
be computed in logspace and polynomial time (this is because the P-complete problem of Circuit
Evaluation reduces to composing poly(n) logspace algorithms). We elaborate more on that below.

Our third main result focuses on the case of a small k = O(1). We show that a lower bound of
nΩ(k) for this case would yield the same breakthrough derandomization result as in the conclusion
of Theorem 1.3. In fact, even a more relaxed lower bound of nΩ(log∗(k)) suffices.

Theorem 1.4 (hardness of composing k low-space algorithms implies derandomization). Assume
for every polynomial p and ε > 0 there is k ∈ N for which the following holds. There are algorithms
A1, ..., Ak, each running in linear time and space O(log n), such that any algorithm computing
Ak(Ak−1(...A1(x))) successfully on an ε-fraction of inputs x with space polylog(n) runs in time at
least p(n). Then BPL ⊆ ∩ε>0zavgεL.

Even proving a lower bound as in Theorem 1.4 for composing super-constantly many algorithms
would yield a similar, slightly weaker conclusion. (For the technical statement of this, see Theo-
rem 2.3.) For example, if there are k = (log n).01 logspace algorithms that cannot be composed in
SC (i.e., in polynomial time and polylog(n) space), then BPL can be simulated in deterministic
space (log n)1.01 (where both the hardness assumption and the derandomization conclusion refer to
1− ε of inputs).

However, the bright side is that this setting can be more easily related to classical questions in
algorithm design and complexity theory (i.e., compared to the setting of k = 2 and large t), and
thus we have somewhat stronger evidence that the lower bound might be true. Specifically, for the
setting of k ≥ log(n), two well-known complexity-theoretic conjectures – the standard assumption
that NC ̸⊆ SC, and the strong assumption that Savitch’s theorem [Sav70] cannot be sped-up in
space no(1) – imply that k-wise composition with space polylog(n) requires super-polynomial time,
and requires time nΩ(k1−ε) for every ε > 0, respectively. See Section 4.3 for further details.

5This is since NL-complete problem of s → t connectivity is equivalent under logspace reductions to the problem
of squaring such a matrix for O(logn) times.
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Even worst-case hardness suffices. In the unconditional lower bound of Theorem 1.2 as well
as in Theorems 1.3 and 1.4, the hardness was “average case”, in the sense that every algorithm fails
to compute the composition on at least 1− ε of the inputs. Finally, we show that in the setting of
composing exponential-time algorithms, even a worst-case lower bound suffices for derandomization,
and in fact for full (i.e., worst-case) derandomization of linear space.

Theorem 1.5 (worst-case hardness implies derandomization). Suppose there is δ > 0 such that
for every sufficiently large d ∈ N there is k ∈ N for which the following holds. There are algorithms
A1, . . . , Ak so that:

• On input x ∈ {0, 1}n, letting xi = Ai ◦ . . . ◦ A1(x), we have that Ai+1(xi) is computable in
time 2dn and space O(n) for every i.

• For every algorithm B running in time 2dn(1+δ) and space poly(n), for every sufficiently large
n there is x ∈ {0, 1}n such that B(x) ̸= Ak ◦ . . . A1(x).

Then BPSPACE[n] ⊆ SPACE[O(n)].

Context: Time-space tradeoffs for computing a single function. Time-space tradeoffs for
computing a single function (i.e., that does not necessarily arise from a composition) have been
studied in complexity theory since the works of Cobham [Cob66] and of Borodin and Cook [BC82].
To contextualize our results, we compare them to these prior works.

First, the difference in our results between the setting of small polynomial time and that of
large polynomial time (cf., Theorem 1.2 vs. Theorem 1.3) is analogous to the difference between
the two settings when studying time-space tradeoffs for a single function. Specifically, there are
many known time-space tradeoffs for functions computable in small polynomial time (e.g., quadratic
tradeoffs for functions [BC82,Yes84,Abr91,RS82,Bea91,BCM13,MW19,Din20,YZ24] and super-
linear tradeoffs for decision problems [BJS01,Ajt05,Ajt02,BSSV03,BV02,Pag05]), but no known
tradeoffs for functions computable in large polynomial time.6 In fact, as far as we are aware, time-
space tradeoffs for functions computable in large polynomial time are not even known to follow
from standard complexity-theoretic hardness assumptions.

Secondly, similarly to our conclusions in Theorems 1.3 to 1.5, previous works showed that
derandomization-type conclusions would follow from time-space tradeoffs for a function computable
in large time. However, crucially, the required hardness in prior works is for strong models of
computation, for which far fewer lower bound techniques are known (e.g., for non-deterministic
machines [Kor22, Theorem 29], or for probabilistic algorithms [BCT25, Theorem 5.3]), and ac-
cordingly, the conclusions in prior work are general and strong (e.g., prBPP = prP). In contrast,
our results only rely on time-space tradeoffs for uniform deterministic machines, and we deduce
conclusions that seem within reach (i.e., relaxed versions of BPL = L).

Our interpretation of the latter difference is optimistic. Lower bounds for deterministic machines
(and the conclusions regarding BPL = L) might be tractable, and our results give additional
motivation for studying the three questions that the current work connects: the complexity of
composition, time-space tradeoffs for deterministic algorithms, and BPL = L.

6Another line of works shows polynomial time-space tradeoffs for computing NP-hard functions, such as satisfiabil-
ity [Kan84,PPST83,Gra94,For97,LV99,Tou01,FLvMV05,Wil06,Wil08,Wil13,BW15], and some of these works also
showed time-space tradeoffs for probabilistic machines [DvM06,Die07,MW21]. Also, a recent line of works studies
time-space tradeoffs in the read-once streaming model [Raz19,DS18,GRT19,LTWY23].
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1.2 Corollaries for Pseudorandomness and Circuit Evaluation

As we will explain in Section 2, to prove Theorems 1.3 to 1.5 we significantly improve the technical
toolbox in an ongoing line of work studying pseudorandomness for low-space algorithms [PRZ23,
DPT24,LPT24,Pyn24,DPTW25]. Hence, as a by-product of our technical contributions, we obtain
significant improvement to some very recent results in this line of work.

1.2.1 Derandomization from Hardness for ROBPs

Recall that space-bounded derandomization amounts to constructing a low-space algorithm that
approximates the acceptance probability of a given Read-Once Branching Program (ROBP; see Def-
inition 3.5). Recent works reduced the latter task to proving lower bounds for uniform deterministic
models of computation, where these models are weak but still stronger than ROBPs (e.g., for uni-
form constant-depth circuits with majority gates and oracle access to ROBPs in [DPT24], or for
uniform polysize circuits with oracle access to space ε · n in [DPTW25]). This is an undesirable
state of affairs, since the target of the reduction might be harder to analyze than the origin.

Our next result rectifies this: we show that derandomization of linear space follows from natural
lower bounds for uniform ROBPs. We find this quite striking, since ROBPs are often thought of as
one of the simplest computational models in complexity theory (i.e., both weak and amenable to
combinatorial analysis), and indeed exponential lower bounds for ROBPs have been well-known for
many decades (see, e.g., [BHST87]). The particular lower bound needed in our result differs from
what is known because it refers to hardness of compressing an explicit string by uniform ROBPs (of
size quasipolynomial in the length of the string), rather than to hardness of computing an explicit
truth-table (by ROBPs of size that is smaller than the truth-table).

Theorem 1.6 (derandomization of ROBPs from lower bounds for ROBPs). There is c > 1 such
that the following holds. Suppose that the following is true:

There is an algorithm that gets input 1n, runs in space O(log n), and outputs a list
of n-bit strings fn,1, . . . , fn,m such that for every logspace-uniform family of ROBPs of
width 2(logn)

c
and length n and every large enough n, the ROBP fails to compress fn,i

to size polylog(n), for some i.

(The notion of “compressing” here means outputting a machine M of size polylog(n)
that gets input i ∈ [n], runs in space polylog(n) and time poly(n), and outputs (fn)i.)

Then, BPSPACE[n] ⊆ SPACE[O(n)].

In fact, to deduce the conclusion, we only need a logspace-computable string incompressible by
a specific family of ROBPs, which is even “more uniform” than stated (e.g., the map from input
x and i ∈ [n] to the ith internal state of the ROBP after reading x≤i can be computed in space
O(log n), which is sub-logarithmic in the ROBP size). For a formal statement, see Theorem 7.5.

Remark 1.7. An alternative way of reading the assumption in Theorem 1.6 is as referring to hard-
ness for deterministic, low-space streaming algorithms; indeed, known lower bounds hold even for
probabilistic streaming algorithms, whereas Theorem 1.6 only needs lower bounds for deterministic
algorithms.7 Other ways of interpreting the assumption are as asserting the existence of a refuter,

7Theorem 1.6 is somewhat reminiscent of a result of Chen, Tell, and Williams [CTW23], who showed that deran-
domization of BPP is equivalent to constructing a refuter for nε-space probabilistic streaming algorithms. Inspecting
their proof, to derandomize BPP it suffices to refute algorithms that compress the string to a circuit of size nε. In
comparison, in Theorem 1.6 we only need lower bounds for deterministic streaming algorithms (indeed, just uniform
ROBPs), these algorithms run in polylogarithmic space rather than space nε, and the compressed version is a low-space
machine rather than a general circuit (but we need the algorithm printing fn to run in space O(logn)).
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or as an algorithm obtained using a low-space witnessing theorem from bounded arithmetic; for
brevity, we omit a full explanation (for explanations see, e.g., [CJSW21,GC25]).

1.2.2 Unconditional “Win-Win” Results

A special case of composing k low-space algorithms is the problem of evaluating a logspace-uniform
circuit of depth (k · log(n)) (this is because we can compute each sequence of O(log n) layers
as a function of the previous layer in logspace, using the standard DFS-style algorithm). We
use this observation to establish an “instance-wise” connection between circuit evaluation and
pseudorandomness for low-space algorithms, as follows.

Recall that Doron et al. [DPTW25] showed a “win-win pair of algorithms”: a pair of algorithms
A1,A2 such that on every input x, either A1 simulates a BPL machine on x, or A2 solves s → t
connectivity on x (interpreted as a graph), and both algorithms are significantly more efficient than
the known algorithms for the respective task. The caveat is that we do not know which of the two
algorithms works on any given input (even though at least one is guaranteed to work).

We present a significantly improved win-win pair of algorithms. Specifically, in our result A1

can compute the k-wise composition of any logspace computable function f , rather compute only
s→ t connectivity, and in addition it is faster, running in time that is near-linear in the runtime of
f (the algorithm in [DPTW25] had large polynomial overheads; see Section 2.2 for details). As one
appealing corollary, we prove unconditionally that for every given input x, either we can evaluate a
circuit of super-logarithmic depth at x in SC (i.e., in polynomial time and polylogarithmic space),
or we can derandomize a BPL machine at x.

Theorem 1.8 (win-win pair of algorithms for derandomization and circuit evaluation). For every
ε > 0 and R ∈ BPL and C ∈ uniflogspaceNC1+ε,8 there are algorithms A1,A2 such that for every
x ∈ {0, 1}n, either:

1. A1(x) computes C(x) in time poly(n) and space polylog(n).

2. A2(x) computes R(x) in space O(log1+ε n).

Moreover, both algorithms report if they fail to compute the answer, and never exceed their resource
bounds.

By scaling up Theorem 1.8 to linear space and exponential time, we can also obtain a win-win
result for complexity classes: either probabilistic linear space can be derandomized in deterministic
space O(n1+ε), or all languages decidable by logspace-uniform circuits of size 2O(n) and depth
(log n)1+ε can be decided in time 2O(n) and space poly(n). See Theorem 7.3 for details.

2 Overview of Proofs

We first discuss the lower bound for time-space efficient composition, then the derandomization
results.

8We say a language is in uniflogspaceNC1+ε if there is a logspace-uniform sequence of circuits {Cn}n∈N, where Cn

has size poly(n) and depth O(log1+ε n), and x ∈ {0, 1}n is in the language iff Cn(x) = 1.
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2.1 Lower Bounds for Composition

Our lower bound for composition proceeds by taking a problem for which we have quadratic time-
space lower bounds, and writing it as the composition of functions g1, g2 that can themselves be
computed in small space and time. Thus, any function computing g2 ◦ g1 must incur a nontrivial
time-space overhead.

The specific problem we use is sorting. We are given a list of n numbers L = (v1, . . . , vn) in
[nc], and must output sort(L). Near-quadratic time-space lower bounds for this problem are known
even for RAM algorithms with access to advice [BC82,RS82,Bea91,MW19], and these bounds hold
on average over a random input list.

We show that we can sort as g2(g1(L)), where both functions are length-preserving, and com-
putable in logspace and time Õ(n3/2). Thus, a time- and space-efficient composition would violate
the sorting lower bound (and then a simple padding trick implies Theorem 4.4).

Sorting in Two Levels For simplicity of presentation, here we assume the input list contains
no duplicates, and m =

√
n is an integer. The function g1 iterates over i ∈ [m], and for each i does

the following. Given the quantile values di, di+1 for the (i ·m)th and ((i+1) ·m)th largest elements
respectively, first output di. Subsequently, scan through the input and output all elements of L in
the range [di, di+1) in the order we encounter them. Finally, increment i and proceed to finding
the next quantile. It is easy to see that the output of g1(L) is

d0, L0, . . . , dm−1, Lm−1

and the sublists Li satisfy di ≤ Li < di+1 but are themselves unsorted.
For elements in a polynomial-sized domain, quantile finding can be done in nearly-linear time

and logspace: Specifically, we perform a binary search over the domain, where at each step we
determine which half of the current sub-domain to recurse into by scanning the input list once and
counting the elements in each half of the current sub-domain. We do this to find each of the m
quantiles, and so the time complexity of g1 is m · Õ(n) = Õ(n3/2).

Then the function g2 takes the output g1(L) and sorts each sublist Li, using the brute-force
algorithm, which runs in O(m2) = O(n) time and logspace. The total runtime of g2 is O(n3/2).

We note that our bound for composition could be quantitatively improved by speeding up both
layers. In fact, such a speed up might yield essentially the tightest possible tradeoff:

Open Problem 2.1. Are there functions g1, g2 computable in simultaneous logspace and nearly-
linear time such that g2(g1(L)) = sort(L)?

An affirmative answer to Open Problem 2.1 would imply space-efficient composition of length-
preserving functions must impose a quadratic overhead on runtime, which matches the time-space
product achieved by naive and emulative composition (and the interpolation between them) up to
polylog factors. Moreover, a quantitative improvement over our results can even be obtained from
a more relaxed algorithm, which sorts by composing four algorithms:

Open Problem 2.2. Are there functions g1, g2, g3, g4 computable in simultaneous logspace and
nearly-linear time such that g4(g3(g2(g1(L)))) = sort(L)?

It is not immediately obvious that an affirmative answer for Open Problem 2.2 would imply a
lower bound for a single composition, but we prove that this is indeed the case. Specifically, an
affirmative answer (for sorting, or for any other function for which quadratic time-space tradeoffs are
known) would yield a lengh-preserving function f such that computing f ◦ f with polylogarithmic

space requires runtime Ω̃
(
n
√
2
)
= ω(n1.41) (see Proposition 4.5).

7



2.2 Win-Win Algorithms and Derandomization

Both Theorem 1.3 and Theorem 1.4 follow from a more general technical result. The result asserts
that for every low-space computable function f and probabilistic low-space machine M there are
two algorithms A1 and A2 that, on every input x, satisfy the following: Either A1(x) computes
the k-wise composition f (k)(x) at time and space similar to those of computing f(x) once, or
A2(x) deterministically simulates M(x) with low space overhead. We stress that at each input at
least one of the algorithms is guaranteed to work, but we do not know which one of them works.
Indeed, this “win-win pair of algorithms” is closely related to the main technical result of Doron et
al. [DPTW25], and we will explain the connection to their work after the result statement.

To state the result, consider an input x ∈ {0, 1}n, and a function f that we will compose for
k times. We want f to represent computation in time t = t(n) and logspace; for convenience, we
assume that f is length-preserving and computable in linear time and logspace, and we will first
apply it to x||0t (i.e., to a padded version of x), and then to f(x), f(f(x)), and so on.9 Our result
asserts that for every k = k(n) and every input x, either A1(x) computes f (k)(x||0t) in time t1.01

and polylogarithmic space (i.e., dramatically faster than emulative composition, which takes time
tk(n)), or A2(x) deterministically simulates a BPL machine on x in space O(k(n) · log(n)).

Theorem 2.3 (win-win pair of algorithms for composition and derandomization). Let R ∈ BPL,
let δ > 0 be a constant, and let t(n) be a sufficiently large polynomial (depending on R and on δ).
Then, for every k : N → N and length-preserving f : {0, 1}∗ → {0, 1}∗ computable in quasilinear
time and logspace, there are algorithms A1,A2 such that for every x ∈ {0, 1}n at least one of the
following occurs:

1. A1(x) computes f (k)(x||0t(n)) in time t(n)1+δ and space polylog(n).

2. A2(x) computes R(x) in space O(k(n) · log n).

Moreover, both algorithms report if they fail to compute the answer, and never exceed their resource
bounds.

It is instructive to compare Theorem 2.3 to the main technical result of Doron et al. [DPTW25].
They also presented a win-win pair of algorithms: in their case, either A1 solved directed s-t
connectivity on the graph x in polynomial time and polylogarithmic space (i.e., in SC), or A2

computed R(x) in non-deterministic logspace. In comparison, Theorem 2.3 is a vast generalization
and a significant quantitative improvement. First, instead of solving connectivity, A1 now computes
a composition of an arbitrary function f (connectivity is a special case, since it can be solved by
repeated composition of matrix squaring). Secondly, A1 runs in near-linear time t1+δ, rather than
in arbitrarily large polynomial time; this is crucial for our results asserting that lower bounds
for composition imply derandomization (cf., Theorem 1.3). And thirdly, A2 does not use non-
determinism, but (in contrast to [DPTW25]) has a multiplicative space overhead of k.10

Recap: The bootstrapping system of [DPTW25]. As a starting point, let us recall the
techniques in [DPTW25]. Given input x, they considered a bootstrapping system a-la [CT21a],
comprised of a sequence of rows P1(x), ..., Pk=logn(x) where each Pi(x) ∈ {0, 1}n is the result of
applying matrix squaring on the adjacency matrix of the graph x for i times.

9This choice is not consequential for our results. For example, instead of padding x, we could alternately define
an initial function f0 mapping n bits to t(n) bits, and then iteratively compose f on f0(x).

10The original result of [DPTW25] does not follow from the statement of Theorem 2.3 (since the original result refers
to (k = logn)-wise composition and has A2 running in non-deterministic logspace), but it can be easily recovered
using the new technical tools that underlie Theorem 2.3.
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Fixing a suitable suitable reconstructive pseudorandom generator GEN, let us ask what happens
if we apply GEN to each Pi(x), yielding a set Si(x) = GEN(Pi(x)). (For simplicity, think of using
the Nisan-Wigderson generator [NW94] with the string Pi(x) as a “hard truth-table”.) If there
is i ∈ [k] such that Si(x) fools the probabilistic machine M(x), then A2 can derandomize M(x)
in non-deterministic logspace; specifically, it finds the useful i, computes Pi(x) in NL, applies the
generator, and simulates M(x) with the coins in Si(x) (see details below). Otherwise, the failure
of GEN for all i ∈ [k] allows them to deduce that there is a low-space machine REC that gets
input Pi(x) and compresses Pi(x) to a polylogarithmic-size oracle circuit.11 Since we can simulate
access to Pi(x) when we have access to Pi−1(x) (because the sequence of matrix-squaring rows is
downward self-reducible in logspace), the algorithm A1(x) can now iteratively run REC to compress
P1(x), P2(x), ..., and so on, each time discarding all but the previous circuit, until it prints Pk(x).

To make this approach work, they needed the following properties from the generator GEN and
the reconstruction algorithm REC. The generator GEN needs to be computable in logspace, and to
be able to detect its failure (in order to decide if there is i ∈ [k] such that Si(x) is pseudorandom
for M(x)). The reconstruction REC needs to be deterministic, and to run in polylogarithmic space.
For these purposes, they constructed a version of the generator of Shaltiel and Umans [SU05] with
a derandomized low-space reconstruction, building on versions in prior works [PRZ23,DPT24].

Our starting point: Trying to generalize to composition of arbitrary functions. The
initial observation underlying our result is that the approach above superficially seems to almost
immediately generalize to a k-wise composition of arbitrary functions. Indeed, starting with an
arbitrary low-space f (rather than matrix squaring) we can define Pi(x) = f (i)(x), and apply GEN
to each Pi(x). In the first case (derandomization), instead of computing Pi(x) non-deterministically,
we compute it using emulative composition, in space O(k · log(n)).

However, this idea cannot be materialized to obtain our results (or, in fact, any meaningful
result for a small k) using previously known technical tools. The problem is in the second case, in
which the algorithm A1 computes f (k) in time that is polynomial, but is very large; in particular, for
small k, the time overhead is larger than the runtime tk of emulative composition. This overhead
comes from the large runtime of applying REC to each Pi(x), and from the fact that when we
have a compressed version of f (i−1)(x) and want to compute REC(f (i)(x)) in low space, the natural
approach is to use emulative composition (i.e., whenever REC wants a bit j of f (i)(x), we compute
f on f (i−1)(x) and store only the jth bit), which yields a quadratic overhead on top of that.

Main technical challenge: Eliminating all time overheads. The core technical contribution
in our work is a new generator that allows us to overcome the two challenges above. In a gist, the
reconstruction algorithm for this generator is both extremely time efficient (i.e., runs in near-linear
time), and is read-once with respect to its input f (see Definition 3.2). The read-once property will
allow us to avoid the overhead of emulative composition in the algorithm A1 as a whole.

Theorem 2.4 (logspace generator with deterministic, near-linear time, read-once reconstruction).
There is a universal constant c > 1 and there are algorithms GEN,REC such that for every f ∈
{0, 1}t=nd

and ROBP B of size n, the following occurs.12

11For simplicity, assume that this compression is a circuit Ci that gets input j and oracle access to M(x, ·) and
outputs Pi(x)j . In their actual result, Ci is a machine of description size polylog(t) (where t = |Pi(x)|) that, on any
input j, runs in time poly(t) and space polylog(t).

12Indeed, our generator will be pseudorandom for ROBPs. Recall that for a randomized logspace algorithm, if we
fix the input x and consider the action of the algorithm over the random coins r, we obtain an ROBP Bx : {0, 1}n

c

→
{0, 1} of size at most nc, where the constant c depends on the space complexity of the randomized algorithm; and
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1. The algorithm GEN(B, f) runs in space O(log n) and either outputs a (1/10)-additive estimate
of E[B(U)] or ⊥.

2. If GEN(B, f) =⊥, the algorithm REC(B, f) runs in time t · nc and space polylog(n), reads f
in read-once fashion, and outputs an oracle machine M of description size polylog(n) that
satisfies the following. When given input j ∈ [t], the machine M runs in space polylog(n)
and time nc, and satisfies MB(j) = fj.

The construction underlying Theorem 2.4 uses classical generators as sub-components (e.g.,
yet-another variation on [SU05]), but it is a new construction that requires additional ideas, rather
than an optimization of a known generator. We will describe it in Sections 2.2.1 and 2.2.2.

Remark 2.5. For context, recall that reconstruction procedures in classical generators are ei-
ther non-uniform or probabilistic (e.g., non-uniform in [NW94,IW97,SU05,MV05], or probabilistic
in [IW98, SU07,TV07,CRTY20,CLO+23]). Generators with derandomized reconstruction proce-
dures for the low-space setting have been introduced recently by Pyne, Raz, and Zhan [PRZ23] (see
also [PRZ23,LPT24,DPT24], and indeed [DPTW25]), and all previous constructions use “heavy”
pseudorandom tools and involve large time overheads.

Let us see how Theorem 2.4 suffices to prove Theorem 2.3. The derandomization algorithm A2

enumerates over i ∈ [k], and instantiates GEN with f = f (i)(x). If for some i we obtain an estimate
of E[B(U)], we successfully derandomize R on input x; otherwise we output ⊥. We can compute
x 7→ f (i)(x) in space O(k · log n) via emulative composition, and thus A2 runs in space O(k · log n).

If A2 outputs ⊥, it must be the case that for every i, REC(B, f (i)(x)) prints a machine Mi

of size polylog(n) such that MB
i (j) = f (i)(x)j . The algorithm A1 iteratively finds a compressed

representation of f (1)(x), . . . , f (k)(x) in time t · poly(n) ≤ t1+δ and space polylog(n).
Specifically, assuming we have such a representation Mi−1 for f (i−1)(x), we run the algorithm

REC(B, f (i)(x)) to build a compressed representation Mi for f
(i)(x). Crucially, we now exploit the

fact that REC reads f (i)(x) in read-once fashion (and sequentially, i.e. it reads the bits in-order):
We simulate the machine that computes f on input f (i−1)(x) in stages; whenever REC asks for the
next bit of f (i)(x), we simulate the machine until it prints that bit, and then pause the simulation
until REC asks for the subsequent bit (keeping its intermediary paused configuration in storage).
Once REC halts and outputs a machine Mi representing f (i)(x), we delete Mi−1 and increment i.
Thus, the runtime of compressing each layer i is only t ·nc, and so is the total runtime;13 and since
we never store more than two machines, the space complexity stays polylog(n).

2.2.1 The Line Generator and Compressor

We first describe a simple generic transformation that takes a reconstructive pseudorandom gen-
erator and makes the reconstruction procedure read-once over the hard string/truth-table f . We
call the resulting construction the Line Generator and Compressor, and denote the pair of algorithms
(LINEGEN, LINEREC) (and see Section 6.1 for a formal statement).

Suppose we are given a string f ∈ {0, 1}t which we want to either compress or use to derandomize
B. Fix a reconstructive PRG, for example the version of the Shaltiel-Umans generator [SU05]
from [DPTW25], denoting the PRG by SU and the reconstruction by RSU. The reconstruction
RSU is deterministic and low-space, but requires read-many access to f .14

to determine the output of the machine at x it suffices to estimate the expectation of Bx up to error, say, 1/10
(see Proposition 3.7). For simplicity of presentation in this introduction, we assume c = 1.

13Without loss of generality we may assume k ≤
√
logn, as otherwise the algorithmA2 unconditionally exists [SZ99].

14In this overview, we ignore the role of transforming the ROBP distinguisher to a collection of next-bit-predictors.
For this key step, we adopt the same strategy as prior work [LPT24,DPTW25].
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The generator. For each i ∈ [t], denote by

Pi
def
= f1...i||0t−i

the first i bits of f , padded to length t. The generator LINEGEN computes SUPi for every i, and
outputs the collection of lists (SUPi)i∈[t], one of which is hopefully pseudorandom.15 Since SU is
logspace, LINEGEN can compute the output lists in logspace (using its access to f).

The reconstruction. For i = 1, ..., n, the reconstruction LINEREC iteratively builds a machine
Mi such that for all j ∈ [i]

Mi(B, j) = (Pi)j ,

where each Mi is of size polylog(n) and can be evaluated in time poly(n) and space polylog(n).
Assuming LINEREC has found such a machine Mi−1, it now wants to run RSUPi to obtain Mi.

To do so it reads the next bit fi, and since

Pi = f1..i−1||fi||0t−i = Mi−1(B, 1)|| . . . ||Mi−1(B, i− 1)||fi||0t−i

the reconstruction now has all of the information needed to compute Pi. (Specifically, whenever Pi

is queried at location j < i, the reconstruction runs Mi−1 and answers its queries using its input B,
and whenever (Pi)i is queried the reconstruction answers with the stored bit fi.) It then invokes
RSUPi , and once RSU produces a machine Mi representing Pi, we can delete Mi−1 and increment
i. After t steps, LINEREC obtains a compressed representation M = Mt for f .

Note that the reconstruction runs in time that is essentially t times the runtime of RSU (on a
truth table of length t), and in space polylog(n) (as it only stores at most two machines Mi−1,Mi

at each step). Finally, note that LINEREC indeed reads each bit of f once, and in increasing order
(see Definition 3.2 for a formal definition of this read-once model).

2.2.2 The Tree Generator and Compressor

The remaining problem is that the reconstruction algorithm LINEREC runs in large poly(t) time.
Specifically, its runtime is dominated by the final application of RSU, where we apply it on the
entire truth table f of length t. Examining RSU in depth (as well as other classical reconstructive
PRGs with deterministic log-space reconstruction [PRZ23,DPT24]), we do not see a way to directly
optimize/tweak the underlying technical tools and reduce c to 1 + ε.16

The next construction, called the Tree Generator and Compressor, is again based on a generic
transformation of any reconstructive PRG whose reconstruction is read-once over f into a recon-
structive PRG whose reconstruction is both read-once and time-efficient. Specifically, the recon-
struction will run in time t ·nc ≪ t1+δ, where c > 1 is universal and the inequality holds for a large
enough polynomial t (see Theorem 6.5).

The high-level idea is as follows. Let us consider the reconstruction’s perspective, trying to
compress f . Imagine that we have the ability to compress any piece of information of length m into
polylog(n) bits, in time poly(m). (Intuitively, this is a justifiable assumption, since the generator
can try and use anym bits of information for derandomization, and if it fails then the reconstruction

15Indeed, this yields a somewhere-PRG rather than a PRG (since we only hope that one the lists will be pseudo-
random). For (SU,RSU) specifically and when the distinguisher is an ROBP, the generator can also test each list
SUPi for pseudorandomness, and only output a single pseudorandom list (this is possible because the reconstruction
algorithm is low-space and deterministic, so the generator finds Pi on which the reconstruction fails; see [DPT24]).

16For example, even if we ignore the time complexity of all technical tools, as part of the low-space derandomization
of the reconstruction it repeatedly enumerates over sampler outputs in a universe of size at least 2t.
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can compress these m bits.) For simplicity, let us ignore the complexity of decompression for a
moment. The problem with the line compressor is that it tries to compress m = t bits, which costs
time poly(t). So now we will try and compress only blocks of m = n bits.

Recursive compression. We will use a recursive compression approach. We first compress each
block of n bits of f into polylog(n) bits, yielding a new string of length (t/n) · polylog(n) (i.e., the
concatenated compressed representations of the blocks). Then we repeatedly compress the string,
at each iteration i obtaining a string of length (t/ni) ·polylog(n). After constantly many iterations,
we obtain a representation of f of size polylog(n), as we wanted.

Indeed, at each compression step we only pay time complexity poly(n). However, the problem
(again, ignoring the complexity of decompression) is the complexity of the compression procedure
as a whole. To see the issue, think of the recursive approach above as a tree over f , and note
that given f , the reconstruction wants to output the compressed version that is at the root of this
tree. On the one hand, the reconstruction can never store an entire intermediate tree layer. On
the other hand, using emulative composition costs time that is polynomial in t (which seems like a
chicken-and-egg problem, since we were trying to avoid precisely this overhead).

We avoid the time overhead by exploiting the fact that the algorithm we use to compress each
n-bit block (i.e., LINEREC) is read-once over the block. Specifically, in contrast to general low-
space algorithms, observe that emulative composition of read-once algorithms can be done in a
way that is both time-efficient and space-efficient. For example, to compute A1(A2(x)) where A1

is read-once, we simulate A2 and store its intermediate configuration, and whenever A1 accesses an
input bit, we continue the simulation of A2 until it produces the next bit;17 this way, A2 is only
simulated once, and we avoid a multiplicative time overhead. Using this idea and analyzing the
recursive composition carefully, this suffices to compress f in time t · poly(n).

Repairing the generator’s complexity. The idea above suffices for efficient compression, but
now the generator became space-inefficient. To see why, note that we need the generator to apply
LINEGEN to the n bits corresponding to each node of the tree described above.18 In particular, the
generator needs to compute the compressed descriptions of each block in the tree.

The problem is that the compressed description of a block is the output of LINEREC on the
block, and thus the generator needs to compute LINEREC on n-bit blocks. However, LINEREC uses
space polylog(n), which (while being low enough for the reconstruction algorithm) is prohibitively
large for the generator, which we want to run in logspace (for derandomization of BPL).

To resolve this problem we show that the output of LINEREC can also be computed by an
alternative algorithm, which runs in logspace but is not read-once over f . Indeed, the reconstruction
will use the first algorithm for LINEREC, which is read-once but uses space polylog(n), whereas
the generator will use the second algorithm for LINEREC, which is not read-once but uses space
O(log n). This alternative algorithm is essentially just the reconstruction algorithm RSU of the
underlying reconstructive PRG that we apply to each node, where the non-trivial point is that this
algorithm produces the same output as our first algorithm for LINEREC.

Decompression. The compressed representation (i.e., the root of the tree above) allows to com-
pute the mapping i 7→ fi in time poly(t) and space polylog(t), as follows. In our actual construction

17Indeed, this requires not only that A1 accesses each input bit once, but also that it accesses them in the order
at which A2 produces them. In the current paper our notion of read-once requires this stricter condition (in fact we
require that A1 reads its input sequentially and in-order, left to right), and LINEREC satisfies this notion.

18Recall that the reconstruction needs the ability to compress each such block of n bits, and thus we need to assume
that the ROBP distinguishes the output of LINEGEN on each block from random.
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of the tree above, instead of using arbitrary n-bit blocks, we use blocks of size n · polylog(n), each
of which contains n compressed descriptions of size polylog(n). Thus, given location i ∈ [t], we can
trace a unique path from the root to a leaf representing a block of f that contains index i.

The decompression algorithm follows this path, which is of length d = O(1). At each iteration
it has a current compressed description of a block stored, which allows it to compute the polylog(t)-
size portion of the block that is the compressed description of the next block (in space polylog(t)
and time poly(t)). Since at any given moment the algorithm just needs to store two compressed
descriptions, the overall decompression runs in space polylog(t) and time poly(t).

2.2.3 Improving the Uniformity of Shaltiel-Umans

Implementing the idea outlined in Section 2.2.2 runs into a final serious issue. As explained above,
the generator’s space complexity is at least the space complexity of RSU, i.e. the reconstruc-
tion of the underlying PRG used at each node. Recall that the latter PRG is a version of the
Shaltiel-Umans [SU05] generator, shown by Doron et. al. [DPTW25]. However, their reconstruc-
tion algorithm uses polylog(n) space, rather than O(log n) space.

We improve their construction, and indeed show a version of the Shaltiel-Umans PRG with a
deterministic logspace reconstruction algorithm. The full construction, which is presented in Sec-
tion 5, is involved and relies on too many low-level technical details to survey here. Let us therefore
describe the main observation that underlies our improvement, at a high level.

The algorithm in [DPTW25] produces poly(n) circuits, each of size polylog(n), and one of
those correctly computes the hard string/truth-table P ∈ {0, 1}n.19 Since these circuits do not
seem evaluable in space less than polylog(n), the approach in [DPTW25] was to try out all circuits.

In this work too, we still do not know if it is possible to evaluate each of the output circuits in
space less than polylog(n). However, the crucial observation is that for the correct circuit, we can
verify in space O(log n) that it is indeed correct.

Being somewhat inaccurate for the sake of this high-level description, each circuit computes
the mapping i 7→ Pi by iteratively computing a sequence of k = log(n) collections of bits of P ,
denoted L1, ...,Lk, where each Lj consists of polylog(n) bits Pj,1, ..., Pj,polylog(n) (and Lk contains
Pi). At each iteration, the circuit tries to compute Lj+1 from Lj , and the correct circuit will do
this successfully (whereas incorrect circuits will output L′j+1 that contains an incorrect bit of P ).

Thus, the verification task reduces to checking that for each j = 1, ..., k− 1, the sub-component
in the candidate circuit that computes Lj+1 from Lj works correctly. This might mistakenly seem
infeasible, because just storing Lj requires polylog(n) bits. However, for the correct circuit, we do
not need to store all of the bits in Lj , because we know that these are the corresponding bits of P .
And fortunately, the locations in P of these bits, as well as the functionality of the sub-component,
can all be computed in space O(log n). Thus, for each candidate circuit, and for j = 1, ..., k − 1,
we check that the sub-component correctly produces Lj+1 from Lj , without ever needing to store
more than O(log n) bits.

2.2.4 Derandomization From Lower Bounds for ROBPs

Finally, we explain how we derive derandomization from finding strings that are hard to compress
by read-once branching programs (Theorem 1.6). We focus on derandomizing linear space. For
derandomization on n-bit inputs, our hypothesized algorithm will print an incompressible string f

19We use the notation P rather than f to remind the reader that this PRG will be applied to each node in the
construction of the Tree Generator.
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of length N = 2O(n), in space O(logN) = O(n). For simplicity, let us consider derandomizing a
single ROBP Bn of length and width N = 2O(n), which can be printed in space O(n).20

For a compression ROBP Bn, we label each state v in the final layer with a machine Mv; we say
that Bn compresses f if the final state reached on input f is labeled with a machine that computes
f . Note that if Bn takes inputs of length N and has size w, it can hope to successfully compress
only at most a 2− log(w)/N fraction of inputs. We construct such an ROBP Bn of length N and
width 2poly(n), such that every non-compressed input can be used to derandomize Bn.

The ROBP Bn is obtained from the line compressor. Fixing Bn, LINEREC(Bn, f) attempts to
compress f to size s = polylog(N), and moreover does so taking a read-once pass over f . Our
ROBP Bn essentially implements LINEREC(Bn, ·), and as LINEREC uses space poly(n), Bn has size
2poly(n). Thus, for every f that Bn does not compress, we have that LINEGEN(Bn, f) = ρ, where ρ
is a (1/10)-approximation of E[Bn], which suffices to derandomize L on input length n.

Furthermore, this ROBP Bn can be printed in space poly(n) = O(log |Bn|), essentially because
LINEREC runs in this space on inputs of length 2n. Moreover, we can compute the map from
(potentially partial) input f≤i to the ith state v reached in Bn(f≤i) in space O(n), essentially via
the alternative logspace algorithm for LINEREC mentioned in Section 2.2.2.

3 Preliminaries

Throughout the paper we work in the multi-tape Turing machine model. We say a machine runs in
space s if s is the space used in total across all worktapes. However, our lower bound for composition
(Theorem 1.2) holds in the RAM model as well, as the time-space lower bounds it relies on hold in
that model.

Definition 3.1. We say a family of circuits/ROBPs {Cn}n∈N is logspace uniform if there is an algo-
rithm that on input 1n runs in spaceO(log |Cn|) and outputs Cn. We say L ∈ uniflogspaceSIZEDEP[S,D]
if L can be decided by a family of logspace-uniform circuits of size S(n) and depth D(n).

We define what it means for an algorithm to be read-once over an input.

Definition 3.2. We say an algorithm A(x, y) is read-once over the input x if the algorithm works
as follows. It is given y on a standard (read-only) input tape, and x on a second (also read-only)
input tape, where the head on the second input tape (for x) can never be moved left.

3.1 Basic Results

We first formally recall emulative composition. For clarity, we state it for length-preserving func-
tions.

Proposition 3.3 ([Gol08], Lemma 5.2). Let g1, g2 : {0, 1}⋆ → {0, 1}⋆ be length-preserving functions
computable in space s1, s2 ∈ [log n, n] and time t1, t2. Then, g2 ◦ g1 can be computed in space

s(n) = s2(n) + s1(n) +O(log(n)) and time O(t1 · t2).

We require that we can hardwire inputs into algorithms in a space-efficient manner (in particular,
the machine with this information hardwired can printed in small space).

20Technically, we must derandomize a set of 2n ROBPs, one for each input x ∈ {0, 1}n. However, these can be
represented by a single uniform ROBP of size 2O(n); see the proof of Theorem 7.5 for details.
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Lemma 3.4 (Efficiently printing TMs with “hard-wired” information). Let M be a Turing machine
that runs in time t(n) ≥ n and space s(n) on n-bit inputs. Then, there is another Turing machine
that gets input 1n and y ∈ {0, 1}m, where m < n, runs in space O(logm) and time O(m), and
prints a machine M ′ satisfying the following:

1. The description size of M ′ is O(m).

2. When given input x ∈ {0, 1}n−m, the machine M ′ runs in time Õ(t(n) ·m) and space s(n) +
O(log n) and outputs M(x ◦ y).21

Proof. First observe that given input y ∈ {0, 1}m, we can print in time O(m) a machine PRINTy

that, on an empty input, prints y to its output tape.22

The machine M ′ that we print implements the following functionality. It simulates M , while
keeping track of the location of its input head; whenever the input head exceeds location n−m, at
every time-step M ′ simulates PRINTy (from scratch) while keeping a counter for the number of
bits PRINTy outputs, stores the output bit yi corresponding to the current location i of the input
head, and simulates the functionality of M according to yi.

One way to design M ′ that implements this functionality and that has an efficiently printable
representation is as follows. The machine has two sets of states, one set of constantly many states
implementing the main functionality, and another set of O(m) states implementing the functionality
of PRINTy. The first set of states are indexed by 0j where j ∈ [O(1)], and the second set of states
are indexed by 1j where j ∈ [O(m)]. The transition function may be represented as a truth-table of
size O(m) (the transitions between 0j states are a constant-sized DFA, and the transitions between
1j states are trivial). This representation is of total size O(m), and can be printed in time O(m).

The space consumption of M ′ is s(n)+O(log n), where the additive overhead is for counters and
for keeping track of the input head location. Its runtime is Õ(t(n) ·m), where the polylogarithmic
overhead comes from the various counters (i.e., for simulating PRINTy and for keeping track of the
input head location), and for simulating the functionality above using the same number of tapes
as M (i.e., when we work in a multitape model with a fixed number of tapes).

3.2 Read-Once Branching Programs and Nisan’s PRG

Read-once branching programs act as our derandomization target, and as a model of compressors.

Definition 3.5. An read-once branching program (ROBP) of length n and size s is a layered directed
graph with (n + 1) layers, each with s states per layer.23 For every state v in layer i, there are
edges labeled 0, 1 to (not necessarily distinct) states v0, v1 in layer i + 1. There is an initial state
vst and a final state vacc, and we say B(x) = 1 for x ∈ {0, 1}n if, starting at vst and following the
edge labeled xi at layer i for i ∈ [n], we reach state vacc.

We say B is a multi-output ROBP if each state v in the final layer is labeled with a string
pv ∈ {0, 1}∗, such that B(x) = pv for the final state v reached on input x.

We need that ROBPs can be evaluated in logspace.

Fact 3.6. A read once branching program B : {0, 1}n → {0, 1} of size s ≥ n has the property that
the map x→ B(x) can be computed in space O(s), given access to x and B.

21We do not claim anything about the behavior of M when it is given input whose length is not n−m.
22Specifically, we print a machine with O(m) states, where for i ∈ [m] the ith set of O(1) states implements the

functionality “print yi and move the head right”.
23We let the size denote the size of each layer, which as we always assume s ≥ n does not affect the asymptotics.
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We recall the correspondence between randomized logspace algorithms and ROBPs:

Proposition 3.7 (Languages to ROBPs). There is c > 1 such that for every R ∈ BPSPACE[s(n)]
for s ≥ log n, there is a space cs algorithm that, on input x ∈ {0, 1}n, outputs an ROBP Bx :
{0, 1}2cs → {0, 1} of size 2cs such that if x ∈ R, then E[Bx] ≤ 1/3 and if x /∈ R, E[Bx] ≥ 2/3.

We next recall the pseudorandom generator for ROBPs of Nisan [Nis94], which requires an
explicit family of hash functions:

Fact 3.8. For every t ∈ N, there exists a pairwise independent hash family H : {0, 1}t → {0, 1}t
such that |H| = 22t, and h ∈ H (which we associate with h ∈ {0, 1}2t) can be evaluated in space
O(log t).

Definition 3.9 (Nisan’s PRG). For n = 2ℓ ∈ N, let t = 50ℓ. For (h1, . . . , hℓ) ∈ Ht, define
NIS(h1,...,hℓ) : {0, 1}

t → {0, 1}t·n inductively as follows. Let NIS0(r) = r1, and for j ∈ [ℓ]

NIS(h1,...,hj)(r) = (NIS(h1,...,hj−1)(x)||NIS(h1,...,hj−1)(hj(r))).

Note that NIS can be evaluated in space O(ℓ) given access to r and the hash functions.

3.3 Pseudorandomness

We recall basic definitions related to pseudorandomness. We let Un denote the uniform distribution
over {0, 1}n.

Definition 3.10. We say L ∈ BPL if there is a randomized Turing machine M (with one-way
access to the random tape) that runs in logspace, always halts in polynomial time, and x ∈ L (resp.
x /∈ L) if Pr[M(x) = 1] ≥ 2/3 (resp Pr[M(x) = 1] ≤ 1/3).

Definition 3.11. We say L ∈ zavgεL if there is a deterministic Turing machine M that runs in
logspace, always halts in polynomial time, and M(x) ∈ {0, 1,⊥}. Moreover, for every n ∈ N we
have that

Pr
x←Un

[M(x) = I [x ∈ L]] ≥ 1− ε

and M(x) =⊥ for every case where M(x) ̸= I [x ∈ L].

Note that our definition is zero error, i.e. the machine never incorrectly decides the language,
only fails to return an answer.

Predictors and D2P transformations. For a distributionD, we say the size of the distribution
is its support size.

Definition 3.12. For a function C : {0, 1}n → {0, 1} and a distribution D over {0, 1}n, we say D
α-fools C if |E[C(Un)]− E[C(D)]| ≤ α. For a function P : {0, 1}m → {0, 1} where m < n, we say
P is a δ-predictor for D if

Pr
x←D

[P (x≤m) = xm+1] ≥
1

2
+ δ.

We recall the definition of a Distinguish-to-Predict (D2P) transformation by Li et. al [LPT24],
following Doron et. al. [DPT24].

Definition 3.13 ([LPT24]). For a circuit C : {0, 1}n → {0, 1}, we say a collection of circuits
P : {0, 1}<n → {0, 1} is an α-distinguish to δ-predict (D2P) transformation for C if the following
holds. For every distribution D of size at most m that does not δ-fool C, there is P ∈ P such that
P is an α-predictor for D.
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4 Algorithms and Lower Bounds for Composition

In this section we show one upper bound and one lower bound on composing space-bounded al-
gorithms. Specifically, in Section 4.1 we show an algorithm that interpolates naive composition
and emulative composition (as mentioned in Section 1), and in Section 4.2 we prove Theorem 1.2.
Finally, in Section 4.3 we discuss evidence for hardness of composition and a specific candidate,
and prove that a lower bound on any constant number of compositions implies a lower bound on
one composition.

4.1 Interpolating Naive and Emulative Composition

Consider composing two algorithms running in time t and space s. Naive composition works in time
O(t) and space O(t), whereas emulative composition works in time O(t2) and space O(s + log t).
The following algorithm generalizes both up to polylogarithmic factors, by allowing to compute the
composition in any time t′ < t and s′ > s, as long as s′ · t′ ≥ Θ̃(t2 · s).

The idea is to divide the computation of the inner machineM1(x) into b checkpoints, and for
each checkpoint (which we space evenly throughout the time-t computation) we store the working
configuration ofM1. These checkpoints take O(bs) space to store. Then, when the outer machine
M2 requests a bit j of M1(x), rather than simulating M1 from the start, we can begin the
simulation from the relevant checkpoint, from which we only need to simulate O(t/b) steps to
obtainM1(x)j , resulting in a total runtime of Õ(t2/b). We make this idea precise below.

Proposition 4.1. For every pair of functions g1, g2 computable in simultaneous time t(n) ≥ n and
space s(n) ≥ log(t), and for any nice function b(n) ∈ [1, t],24 the composition g2 ◦ g1 is computable
in simultaneous time Õ(t2(n)/b(n)) and space O(s(n)b(n)).

Proof. Without loss of generality we assume t(n)/b(n) is an integer. Let M1 and M2 be Turing
machines that compute g1 and g2 respectively in time t and space s. We simulate their composition
with O(1) additional worktapes, then appeal to the result of [HS66] to construct a final two-tape
simulation with polylogarithmic time25 overhead.

We first compute b = b(n) and store it on a worktape using O(log t) = O(s) bits. For i ∈
{0, . . . , b− 1}, we set ci = ti/b. We think of ci as dividing the timesteps of the simulation ofM1,
and call ci the ith checkpoint.

Phase 1: Computing checkpoints We first compute and store on two worktapes the follow-
ing:

E⃗ = (e0, . . . , eb−1)

C⃗ = (C0, . . . , Cb−1)

where ei ∈ [n] is the number of bits output by M1 up to timestep ci, and the string Ci ∈
{0, 1}v=s+⌈logn⌉+O(log s)+O(1) is the configuration of M1(x) at timestep ci. Here the configuration
includes the state of the worktapes, the location of the input and working tape heads, and the con-
figuration of the FSM. Note that the total space to compute and store E⃗, C⃗ is O(s)+ b · v = O(bs),
and this step runs in time Õ(t + bs) = Õ(t) (note that we can assume bs < t, since otherwise the
space consumption in our statment is O(t) and the statement follows by naive composition).

24We say b : N → N is nice if it can be computed in simultaneous time O(t) and space O(s).
25Inspecting the proof, the simulation of a time-t space-s k-tape computation can be simulated as a time O(t log s),

space O(s) two-tape computation (i.e., by using O(s) “regions/zones” rather than O(t)).
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The time bound follows as we simulateM1 once (tracking the number of elapsed steps and the
number of output bits), and b times in this simulation halt and record O(s) bits onto the separate
tapes.

Phase 2: Simulating the outer machine. Subsequently, we simulate M2 on a virtual input
y = g1(x) (using a separate pair of worktapes for this simulation), and write the output as it is
produced to the final output tape.

We track the location of the tape head ofM2 on the virtual input tape using O(log n) bits of
space. At each step of the simulation, if the input head ofM2 is on yj , we pause the simulation.
Next, we compute the value blk(j) ∈ [b] such that

eblk(j) ≤ j < eblk(j)+1

i.e. the block where M1(x) computes the jth bit of output. We compute blk(j) by moving the
head on the tape holding E⃗. If the current head location is at the start of ek and j ≥ ek, we move
right, and otherwise move left, until we find the value of k for which ek ≤ j < ek+1, and let this
value be blk(j). Once we find blk(j), we move the head on the tape holding C⃗ to before Cblk(j),
copy Cblk(j) to a separate set of worktapes, and begin to simulateM1(x) from configuration Cblk(j).
Once this simulation has produced its j − eblk(j)th bit of output yj , we halt the simulation and
return control toM2 with the correct value yj .

We now show the space and time are as claimed. The space follows from the analysis of the
first phase, as the second phase runs in space O(s+ log n) = O(s).

For time, note that in the second phase we perform at most t queries to the virtual tape holding
y = M1(x). Let the sequence of queried locations be q1, . . . , qt. Since we are working in the
multi-tape Turing machine model, we have that for every i,

|qi − qi+1| ≤ 1. (1)

We claim we can compute yq1 , . . . , yqt (and hence perform the overall simulation in the second
phase) in time O(t2s/b+ ts). The time to produce yqi is as follows:

1. The time to compute the value blk(qi), given qi.

2. The time to set up the simulation ofM(x) from configuration Cblk(qi).

3. The time to simulateM1 until it produces yqi .

First, we maintain after query qi that the the tape heads for E⃗, C⃗ are positioned before eblk(qi) and
Cblk(qi) respectively. Next, we must determine the location of blk(qi+1). By Equation (1) we only
need to examine the immediately adjacent locations eblk(qi+1±1). Thus the time to determine the
next value blk(qi+1) (and move the heads to immediately before eblk(qi+1) and Cblk(qi+1)) is O(s)
per step.

Second, with the heads in this position we can copy Cblk(qi+1) and simulate M1 from this
configuration for at most t/b steps in time O(t/b), so the latter two steps run in time O(s + t/b)
per query to the virtual input tape. Thus, our total runtime is Õ(t(t/b) + ts) as claimed (and note
that the logarithmic time loss comes from simulating this machine with a two-tape machine).

Finally, we claim that the second factor in the time complexity is never the dominant term and
hence we can omit it. If t2/b ≤ ts, then t ≤ bs and the statement follows from naive composition.
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4.2 A Lower Bound for Composing Two Algorithms

Following the description in Section 2, we first show how to sort n elements as a composition of
two algorithms running in time Õ(n3/2) and space O(log n), and then deduce Theorem 1.2 as a
corollary.

Theorem 4.2 (Sorting as a composition of two algorithms). There are length-preserving algorithms
A1, A2 : {0, 1}∗ → {0, 1}∗ such that:

1. Each of A1, A2 is computable in time Õ(n3/2) and space O(log n) on inputs of length n.

2. For every n-bit input, interpreted as a list L ∈ [poly(m)]m for m = n/O(log n), we have that
A2(A1(L)) = sort(L).

We will need the ability to find quantiles in nearly linear time and logarithmic space:

Lemma 4.3. There is an algorithm that, given a list L ∈ [D]m and an index k ∈ [m], outputs the
element sort(L)k in time Õ(m logD) and space O(log(Dm)).

Proof. We initiate low = 1, high = D + 1 and counters llow = 0, lhigh = m.26 We maintain the
following invariants:

1. llow is always equal to the number of elements of L strictly less than low, and lhigh is the
number of elements of L strictly less than lhigh.

2. llow ≤ k < lhigh.

The algorithm proceeds in d = ⌈logD⌉ iterations as follows. At each step, we compute

M =

⌈
low+ high

2

⌉
and determine IM , the number of elements in [low,M), which can be done in time Õ(m logD)
and space O(log(m logD)) by a single pass over the input list L. If llow + IM ≤ k, we set

low←M, llow ← llow + IM .

and otherwise set
high←M, lhigh ← lhigh − IM .

Finally, after d iterations we have that high− low = 1. Then it must be the case that sort(L)k =
low, as by the second invariant the kth element in sort(L) is not strictly less than low but is
strictly less than low+ 1.

We can now prove the upper bound:

Proof of Theorem 4.2. The algorithms work as follows. Assume without loss of generality that
ℓ =
√
m is an integer. Let ki = i · ℓ for i ∈ {0, . . . , ℓ}.

26The latter counter is only used in the analysis.
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The Algorithm A1. The algorithm A1 maintains dl, dh ∈ [m], where at stage i

dl = sort(L)ki , dh = sort(L)ks(i) .

where s(i) is defined as the least j > i where

sort(L)kj > sort(L)ki .

Note that if all values are unique then s(i) is simply i+ 1, and the definition only serves to avoid
double-printing values.

We set i = 0 and define sort(L)k0 = 0, and iterate over i = 0, s(0), s(s(0)), ..., where stage i
works as follows. First, the algorithm computes both values by calls to Lemma 4.3 in time Õ(m)
and space O(logm). Next, we determine Cl = |{i ∈ [m] : Li = dl}|, the number of occurrences of
dl in the list (which we can do by a single scan through L). We then print to the output Cl copies
of dl. Next, we scan through L, and print to the output every element y ∈ L such that

dl < y < dh

in the order we encounter them in L. Finally, we set i← s(i) and proceed to the next stage. After
s(i) reaches ℓ+ 1 and that phase is completed (we define sort(L)kℓ+1

=∞), we halt.
We argue correctness as follows. Note that the output is of the form

Vu0 , Uu1 , . . . , Uut , Vut

where u0, . . . , ut is the sequence of values of i processed in the loop, Uuj is the number of copies of
sort(L)kuj in the list, and every v ∈ Vuj satisfies Uuj−1 < v < Uuj . In particular, for every i where

sort(L)ki = sort(L)kuj for some j ∈ [t], the algorithm prints sort(L)ki to location ki in the output
in stage j. Thus, the output can equivalently be cast as

L1, d1, . . . , dℓ, Lℓ

where di ≤ di+1 for every i, and |Li| =
√
m − 1 for every i, and for every y ∈ Li we have

di−1 ≤ y ≤ di.
Note that A1 works in at most ℓ =

√
m steps, and in each step it performs computation in time

Õ(m) and using space O(logm). Thus, A1 runs in time Õ(m3/2) and space O(logm).

The Algorithm A2. The algorithm A2 assumes that the input list is of the partially sorted form
described above, and works in ℓ stages as follows. For stage i, it prints di, sorts the sublist Li using
the brute-force algorithm running in time O(ℓ2 log(m)) = Õ(m) and space O(logm), and prints
sort(Li), then increments i. The runtime is Õ(m3/2) since there are ℓ stages each sorting a list of√
m elements, and correctness follows from the output guarantee of A1.

We now use Theorem 4.2 to prove lower bounds on the overhead of composition.

Theorem 4.4 (Sorting Lower Bound [BC82,RS82,MW19]). For every constant ε > 0 the following
holds. Let A be an algorithm such that on infinitely many n, with probability at least ε over L ∈ [n2]n

it holds that A(L) = sort(L). Then A runs in time-space product Ω̃(n2). Moreover, the time-space
lower bound holds even if A gets non-uniform advice.27

27That is, the lower bound holds even when for each input length n, the algorithm is allowed to receive an arbitrary
non-uniform advice string an on a separate read-only advice tape.
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We remark that this result holds for algorithms in the RAM model as well, and thus so does
our lower bound.

Theorem 1.2 (hardness of composing low-space algorithms [Wil25]). There are two algorithms A1

and A2 each mapping n bits to n bits in linear time and space O(log n) such that for any constant
ε > 0, any algorithm computing the composition A2(A1(x)) correctly on more than an ε-fraction of
the inputs x has time-space product at least n1.33.

Proof. Fix ε > 0. Given a string x ∈ {0, 1}n, we interpret x as L||y, where L ∈ [m2]m with

m(n)
def
= n2/3/polylog(n) for some large enough polylog(n), and y is the remaining bits of the

input. Let A1, A2 be the algorithms of Theorem 4.2, where we slightly modify A1 such that it
simply ignores the suffix y, so that

A2(A1(x)) = sort(L).

By choosing the polylog(n) term in the definition of m to be sufficiently large, we obtain that both
algorithms run in space O(log n) and time Õ(m3/2) = O(n).

Finally, we claim that any algorithm computing x→ sort(L) on an ε fraction of x on an infinite
sequence of input lengths must have time-space product n1.33.

Suppose for contradiction there was some algorithm A running in time-space O(n1.33) that
computes x → sort(L) with probability at least ε over the input L||y, for an infinite sequence of
input lengths n. By an averaging argument, for infinitely many n there exists a fixing yn such that

Pr
L∼U[m2]m

[A(L||yn) = sort(L)] ≥ ε.

We modify A into an algorithm with advice by hardwiring this string yn on each input length m(n);
this adds at most a multiplicative polylog(n) time overhead (from tracking where the input head of
A exceeds the input L, and answering instead with the advice string). Then for an infinite sequence
of input lengths m, Ayn(L) = sort(L) with probability at least ε over L, and A runs in time-space

Õ(n1.33) ≤ m2−.0001. This contradicts the time-space lower bound of Ω̃(m2) of Theorem 4.4.

4.3 Partial Evidence for General Hardness of Composition

In this section we present partial evidence suggesting that generalized versions of Theorem 1.2 are
true; specifically, that time-space lower bounds for composition hold also for large polynomial time,
and also for k-fold composition (with a time-space overhead that grows with k).

First, we detail the connection between two prior conjectures in complexity theory and hardness
of composition. Then we present a reduction of proving hardness of composing two algorithms to
proving hardness of composing O(1) algorithms. Finally we present a candidate hard problem for
composition, and explain why it seems hard.

4.3.1 Evidence from complexity-theoretic conjectures

Consider the classical conjecture that NC ̸⊆ SC; that is, there is a problem computable by logspace-
uniform circuits of polynomial size and polylogarithmic depth that is hard for polynomial-time
algorithms using space polylog(n) (see, e.g., [Coo79], [Coo81, Section 7], [Bor77, Open Problem
2], [GHR95, Chapter 5.3]). Since evaluating a polynomial size circuit of depth O(logi n) can be
computed as a k = logi−1(n)-fold composition of a function computable in quasilinear time and
logspace (i.e., the function that outputs the gate values in the next layer when given the gate values
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of current layer), a separation NCi ̸⊆ SC would imply that there is no polynomial time, polyloga-
rithmic space algorithm for logk−1(n)-fold composition of a quasilinear time, logspace function.

Quantitatively stronger evidence comes from hypothesized time-space tradeoffs for directed
connectivity. To see this, recall the classical question of whether Savitch’s theorem [Sav70] for
s→ t connectivity in directed graphs can be improved: Savitch’s algorithm runs in space O(log2 n)
and time nO(logn), and an open question is whether there is an algorithm running in space n.99 and
time nO(log0.99 n) (and see also [LV20], [Coo79], [Wig92, Section 3.1]).28 Since s → t connectivity
can be computed as a log(n)-fold composition of a space O(log n), linear-time algorithm, if the
algorithm cannot be improved in this way, then the time overhead for (k = log n)-wise composition
must be nΩ(k1−ε) for every ε > 0, even if the space of the algorithm computing the composition is
allowed to be n0.99 ≫ polylog(n).

4.3.2 A reduction to proving hardness of composing O(1) algorithms

Suppose that we want to prove the hypothesis in Theorem 1.3; that is, a time-space tradeoff of t1+δ

for composing an algorithm running in time t and space polylog(t).
We observe that a lower bound on a constant number of compositions implies a (quantitatively

weaker) bound on a single composition. In particular, proving a time-space lower bound of t1+δ for
some δ > 0 on a single composition reduces to proving a time-space lower bound of t1+ε for some
ε > 0 on (k = O(1))-fold compositions. (Note that in the target of the reduction, we do not need
a lower bound of tΩ(k), but rather only a lower bound of t1+ε.)

Proposition 4.5. Suppose there is ε > 0 and k = 2ℓ and a length-preserving function g computable
in simultaneous time t(n) and space polylog(n) such that every algorithm computing x → g(k)(x)
in space polylog(n) requires time Ω(t1+ε). Then, for some polynomial t′(n) ≥ t(n), there is a
length-preserving function g′ computable in time t′ and polylog(n) space such that every algorithm
computing x→ g′(g′(x)) in space polylog(n) requires time Ω((t′)1+δ), where δ = (1+ ε)1/ℓ− 1 > 0.

Proof. Assume for contradiction that for every polynomial t′(n) > t(n) and every t′-time, polylog-
space computable function g′, the composition g′ ◦ g′ can be computed in space polylog(n) and

time c · (t′)r1/ℓ , where r = 1 + ε and the constant c may be arbitrarily small. We will construct a
machine computing g(k) that violates the assumed lower bound.

The construction is iterative. We proceed in ℓ stages, where at stage i we have a machine that
computes the length-preserving function gi−1 defined as

x→ g(2
i−1)(x)

in time ti and space polylog(n), where we define ti inductively in terms of ti−1.
Setting t1 = t, the base case follows from the machine that computes g. Assuming that gi−1 is

computable in time ti for stage i, by assumption there is a machine computing

x→ g(2
i)(x)

in time ti+1 = c · tr1/ℓi and polylog(n) space. After ℓ iterations, we obtain that x 7→ g(k)(x) is
computable in time

cℓ · t(r1/ℓ)ℓ = cℓ · t1+ε

and space polylog(n), where cℓ is arbitrarily small; this violates the assumption.

28In restricted models, such a lower bound holds unconditionally [BS83,Tom82,EPA99].
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Hence, for some constant c > 0 and some i ∈ [ℓ], the function gi−1, which is length-preserving

and computable in time ti+1 > t and space polylog(n), cannot be composed once in time t
(1+ε)1/ℓ

i+1 =

t1+δ
i+1 and polylog(n) space.

4.3.3 A candidate hard problem

Finally, we present a candidate problem for proving that there are functions computable in time t
and (separately) space O(log t), such that every algorithm computing their composition must run
in time t1+Ω(1) for space polylog(n). We think of t as a large polynomial in the input length n.

The basic version. Fix a function f that on inputs of length O(log n) runs in time t′(n) = t(n)/n
and space O(log t), and assume that f is hard to compute in space polylog(n) and time less than
t′(n). Moreover, assume that f supports a strong direct product result: any algorithm running in
space polylog(n) cannot batch-compute f on inputs x1, ..., xd=nε in time t′(n) · d1−o(1), even when
given polylog(n) bits of advice that depends on x1, ..., xd. Then, the candidate hard function is

x1, ..., xn/O(logn) 7→ sort
(
f(x1), ..., f(xn/O(logn))

)
(4.1)

Relying on Theorem 4.2, the function in Eq. (4.1) is computable as the composition of three
functions computable in time t(n) and space O(log t).

It is natural to suspect that computing Eq. (4.1) in space polylog(n) should take time t1+Ω(1).
This is because the time-space lower bound for sort asserts that any polylog(n)-space algorithm must
make n1.99 queries to its input (for simplicity we ignore the difference between n and n/O(log n)),
and by the properties of f , answering each query takes time essentially t. The assumption that f is
hard to batch-compute even given advice ensures that the prior state of the machine is not helpful
for batch-computing f at any given moment in the execution.

Problem 4.6. Under plausible complexity-theoretic assumptions, prove that for some f , the func-
tion in Eq. (4.1) requires a time-space trade-off of t1+Ω(1); or provide evidence to the contrary.

Intuitively, the difficult part in affirmatively resolving Problem 4.6 is ensuring that there are no
“interactions” between f and sort, in the sense that the computation used for sort cannot be used
to speed-up the computation of f (or vice versa).

Remark 4.7. Indeed, the candidate above is based on block composition, and is thus reminiscent
of the well-known KRW conjecture [KRW95]. However, in contrast to the KRW conjecture, we are
focused on time-space tradeoffs for uniform algorithms, and we are not aware of any result indicating
that hardness of our candidate would imply lower bounds for non-uniform circuits. Moreover, the
KRW conjecture asserts that block-composition of every pair of functions is hard (for formulas); in
contrast, when studying low-space algorithms as in our work, composing certain functions is easy
(e.g., read-once logspace algorithms can be composed in linear time and logspace), and thus our
candidate refers to the block-composition of two specific hard functions.

A more general version. Building on the same intuition, we now present a more general can-
didate, which may support a stronger result. Specifically, for this candidate it may be possible to
prove a time-space tradeoff of t2−ε for a single composition.

Definition 4.8. We let the machine composition problem be defined as follows. On input

(M ′,M, x1, . . . , xn) ∈ {0, 1}Õ(n)
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where xi ∈ {0, 1}polylog(n), and M ′ and M are polylog(n)-sized descriptions of Turing machines
that run in time t(n) and t(n)/n respectively and space O(log n) on inputs of size polylog(n) (and
output a single bit), the output is

M ′(M(x1), . . . ,M(xn)).

Observe that machine composition can be written as f ◦ g, where both f and g are computable
in simultaneous space O(log n) and time t.

Problem 4.9. Under plausible complexity-theoretic assumptions, prove that the machine compo-
sition problem requires a time-space tradeoff of t2−o(1)/n; or provide evidence to the contrary.

Generalizing the basic version, the properties we are hoping for is that computing M ′ in space
polylog(n) requires ≈ t queries to its input M(x1), ...,M(xn), and that answering each query in
space polylog(n) (i.e., computing M) takes time essentially t/n.

5 A Generator with Uniform Deterministic Logspace Reconstruc-
tion

In this section we design a reconstruction procedure for the Shaltiel-Umans [SU05] generator that
runs in deterministic logspace. The algorithm is a modified version of the reconstruction procedure
from [DPTW25]. In terms of presentation, we find it infeasible to point out the relevant changes
without surveying the entire construction (which is complicated and involves many parameters
and sub-components). Therefore we will present the entire construction – most of it identical
to [DPTW25] – while marking the relevant new parts or significant changes in blue.

Theorem 5.1 (a somewhere-PRG with uniform deterministic logspace reconstruction). Let M : N→
N be a logspace-computable function such that M(N) ≤ N εSU, where εSU > 0 is a universal constant.
Then, there exist a pair of algorithms SU and RSU that for every f ∈ {0, 1}N satisfy the following.

1. When SU is given input 1N and oracle access to f it runs in space O(logN) and prints a
collection L1, ..., Lℓ where each Li is a list of poly(N) strings of length M = M(N), where
ℓ = O(log(N)/ log(M)).

2.

For each i ∈ [ℓ], let ji ≤ M , and let Pi : {0, 1}ji → {0, 1} be a (1/M2)-next-bit-predictor for
the uniform distribution on Li. Then, when RSU gets input 1N and oracle access to f and to
P1, ..., Pℓ, it runs in space O(logN)+polylog(M), and prints a (deterministic) oracle circuit
C : {0, 1}log(N) → {0, 1} of size poly(M) such that CP1,...,Pℓ(x) = f(x) for all x ∈ [N ].

Recall that the standard model of space-bounded oracle machines allows the machine to specify
queries on a dedicated “write-only” tape, and then enter a “query” mode in which the oracle reads
the query on the tape, erases the tape’s content, and returns the answer. This model facilitates
replacing the oracle by another space-bounded machine, in which case the composition can be im-
plemented in space that is additive in the space of both machines but not in the length of the query
(see, e.g., [Gol08, Exercise 5.7]). This is important in the specific case of RSU from Theorem 5.1,
which runs in space O(logN) but makes queries that may be much longer (i.e., of length M − 1).

In Section 5.1 we present the arithmetic setting for the generator and reconstruction, as well
as a few preliminary technical lemmas. In Section 5.2 we present the generator itself. Then,
in Section 5.3 and Section 5.4 we present two stand-alone parts of the reconstruction procedure,
and in Section 5.5 we present the full reconstruction procedure.
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5.1 Arithmetic Setup

Throughout our argument, we will denote the input by x ∈ {0, 1}n (rather than f ∈ {0, 1}N ) and
the output length by m instead of M . We also assume without loss of generality that m ≥ log(n)
(otherwise, the generator can trivially output all m-bit strings).

5.1.1 Arithmetic setting

For input length n ∈ N and output length m ≤ n, and for a constant ε = εSU > 0:

• (Field.) Let q = Θ(m · log(n))c be a prime power, where c > 1 is a sufficiently large universal
constant. We consider Fq as an extension of a subfield Fq0 of size q0 = Θ(m · log n); note that
the extension degree is a constant ∆ = Θ(c).

• (Degree.) Let d = mε.

• (Number of variables.) Let v = Oε(log(n)/ log(m)) such that v ≥ (1/ε)·log(n/ log(q))/ log(d).

• (Prediction advantage.) Let ρ = 1/2m2.

Given x ∈ {0, 1}n, treat it as a list of ⌊n/ log(q)⌋ coefficients specifying a polynomial x̂ : Fv
q →

Fq of degree d. By our lower bound on v we have
(
d+v
d

)
≥ ⌊n/ log(q)⌋, and therefore all the

coefficients specified by x are useful towards defining x̂; in particular different x’s give rise to
different polynomials x̂.29

Fact 5.2. There is an algorithm that gets input n,m, q,∆ satisfying the constraints above, runs
in space O(log n), and outputs a representation of Fq.

Proof. Let q = pr for a prime p. The algorithm enumerates over degree-(r − 1) polynomials
Fp → Fp, each of which is represented by r · log(p) = log(q) < O(log n) bits, and tests each
polynomial u for irreducibility. The latter test is also done by brute-force, enumerating over all
polynomials Fp → Fp of degree at most r − 2 and checking if there is one that divides u.

Fact 5.3. There is an algorithm that gets as input a representation of Fq and an integer v ∈ N,
runs in space O(v · log(q)), and prints a monic irreducible polynomial u⋆ ∈ Fq[x] of degree v − 1.

Proof. The algorithm works by brute-force, analogously to the proof of Fact 5.2. Each polynomial
Fq → Fq of degree v − 1 is represented by O(v · log(q)) bits.

Due to Fact 5.2 and 5.3, from now on we will assume that all of our space-bounded algorithms
have access to a fixed representation of Fqv , in the form of the irreducible polynomial u⋆ ∈ Fq[x]
produced by the algorithm above.

5.1.2 A generator matrix in logspace

We will need an algorithm that prints powers of a generator matrix for Fv
q in space O(v · log(q)).

We first define this notion, and show that several basic operations in Fqv and in Fv
q can be done in

small space. Then, we construct the algorithm for printing powers of a generator matrix.

Definition 5.4. We say that A ∈ Fv×v
q is a generator matrix for Fv

q if
{
Ai · s⃗

}
i∈[qv−1] = Fv

q \
{
0⃗
}

for any non-zero s⃗ ∈ Fv
q .

29When x is too short to specify all the coefficients of a polynomial of degree d, we consider the polynomial x̂
obtained by padding x with zeroes to the appropriate length.
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Claim 5.5. There is an algorithm that gets input A ∈ Fv×v
q and i ∈ [qv − 1], runs in space

O(log(i) · log(q)), and prints Ai.

Proof. Consider the binary tree of depth ⌈log(i)⌉ with i leaves labeled by A and 2⌈log(i)⌉− i leaves
labeled by the identity matrix, and each node labeled by the multiplication of the labels of its
children. Computing each entry of the label of each node can be done in space O(log(v)+log(q)) =
O(log q) with query access to the labels of its children. The algorithm prints each entry of the
top node, and simulates the query access of each node by space-efficient composition; the space
complexity is thus O(log(i) · log(q)).

Claim 5.6. There is an algorithm that gets input ω ∈ Fqv , runs in space O(log(v) · log(q)), and
prints the matrix Tω ∈ Fv×v

q that represents multiplication by ω in Fv
q .

30

Proof. Let Cu⋆ ∈ Fv×v
q be the companion matrix of the irreducible u⋆ from Fact 5.3, and recall

that Cu⋆ = Tx where x ∈ Fq[x]/(u
⋆) is the identity polynomial. Also recall that Cu⋆ has a very

simple structure,31 and in particular there is an algorithm that (given u⋆) prints Cu⋆ in space
O(log(v) + log(q)).

Let ω =
∑v−1

i=0 ωix
i. Then, Tω =

∑v−1
i=0 ωiC

i
u⋆ . Using Claim 5.5, we can print each Ci

u⋆ in space
O(log(v) · log(q)), and hence we can also print Tω in such space.

Proposition 5.7. There is a generator matrix A for Fv
q and an algorithm A′ such that A′ gets

input i ∈ [qv − 1], runs in space O(log(n)), and prints Ai.

Proof. The algorithm first finds a primitive element ω ∈ Fqv , by brute-force. That is, it enumerates
over elements of Fqv , and for each element ω′ it raises it to the powers i = 2, 3, ..., qv− 1 and checks
whether any intermediate result is 1. This can readily be done in space O(v log q).

Now, let ω be the first primitive element encountered, and recall that A = Tω is a generator
matrix for Fv

q . The algorithm raises ω to the power i, and then uses Claim 5.6 to compute Tωi =
T i
ω = Ai. The proposition follows, noting that v log q = O(log n).

5.1.3 A standard list-decodable code

Our construction will use a logspace-computable list decodable code. We do not need particularly
tight parameters, and the classical construction of Sudan, Trevisan, and Vadhan [STV01] suffices
for us. (We do not even rely on the locality of the decoder in their construction.)

Theorem 5.8 (a list-decodable code; see [STV01]). There is a universal constant cSTV > 1 and
algorithm EncSTV that maps x ∈ {0, 1}log(q) to EncSTV(x) ∈ {0, 1}ℓq=poly(log(q),1/ρ) such that the
mapping yields a (12 − ρ, ρ̄ = (1/ρ)cSTV)-list-decodable code, EncSTV runs in space O(log q), and the
list-decoder DecSTV runs in time poly(log(q), 1/ρ).

5.2 The Generator

On an input x ∈ {0, 1}n, G first encodes x as a polynomial x̂ : Fv
q → Fq of (total) degree d.

30That is, consider the Fq-basis
{
1, x, x2, ..., xv−1

}
for Fv

q , and the corresponding bijection ξ : Fqv → Fv
q (i.e., ξ

maps a polynomial
∑

i∈{0,...,v−1} aix
i to (a0, ..., av−1)). Then, for every ω, ν ∈ Fqv we have that Tω · ξ(ν) = ξ(ω · ν).

31Specifically, the coefficients of u⋆ appear in its rightmost column, and otherwise all of the entries in the matrix
are zero except for one subdiagonal whose entries are one.
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The lists L0, ..., Lv−1. We first define “q-ary lists” whose elements are vectors in Fm
q , and then

define the final output lists Li whose elements are strings in {0, 1}m. For every i = 0, ..., v − 1, the

ith q-ary list L
(q)
i ⊆ Fm

q that G(x) outputs is defined as follows. For every s⃗ ∈ Fv
q , the generators

includes in L
(q)
i the m-element string

L
(q)
i (s⃗) = x̂(A1·qi · s⃗) ◦ x̂(A2·qi · s⃗) ◦ ... ◦ x̂(Am·qi · s⃗), (5.1)

where A is the generator matrix given by Proposition 5.7.
Then, for every s⃗ ∈ Fv

q and j ∈ [ℓq], the corresponding m-bit string in Li is

Li(s⃗, j) = EncSTV

(
L
(q)
i (s⃗)1

)
j
◦ EncSTV

(
L
(q)
i (s⃗)2

)
j
◦ ... ◦ EncSTV

(
L
(q)
i (s⃗)m

)
j
.

The list Lv. In addition, the generator outputs the list Lv ⊆ {0, 1}m defined as follows. Let
pow : {0, 1}v·log(q) → {0, 1}v·log(q) be the function that parses its input i ∈ {0, 1}v·log(q) as an integer
i ∈ {0, ..., qv − 1} and outputs pow(i) = Ai · 1⃗ (in binary representation). Then, for every i ∈
{0, 1}v·log(q) and z ∈ {0, 1}v·log(q) the generator outputs

Lv(i, z) =
〈
pow(m−1)(i), z

〉
◦
〈
pow(m−2)(i), z

〉
◦ ... ◦ ⟨pow(i), z⟩ ◦ ⟨i, z⟩ ,

where pow(j) is the j-wise repeated composition of pow.

Complexity. Note that there are v + 1 = O(log(n)/ log(m)) lists, and each list contains at most
q2v · poly(m) = poly(n) strings of m field elements.

Also note that the generator is computable in space O(log n). To see this, for each Li with
i < v, and for each fixed s⃗, observe that computing each output element reduces in space O(log n)
to computing Ai · s⃗, which can be done in space O(log n) using Proposition 5.7. For Lv, given any
fixed (z, i) ∈ {0, 1}v·log(q) × {0, 1}v·log(q), the bottleneck is computing pow(j)(i). To do so, observe
that the output of pow is of length v · log(q); hence, we can iteratively compute pow(j)(i) by storing
the output of each iteration and computing pow again.

5.3 The Reconstruction Procedure for Lv

Let Pv : {0, 1}iv → {0, 1} be the (1/m2)-next-bit-predictor for Lv, where iv < m.

Proposition 5.9 (efficiently printing a circuit that computes discrete log). There is an algorithm
Rdl that on input 1n and with oracle access to Pv runs in space O(log n) and outputs an oracle
circuit Cdl of size poly(m) such that CPv

dl (A
i · 1⃗) = i for all i ∈ {0, 1}v·log(q).

Proof. The algorithm Rdl will be the combination of three algorithms R1, R2, R3 that print three
corresponding circuits C1, C2, C3. We first describe the three algorithm, and then explain how to
combine them to get a single algorithm and a single circuit.

Consider the oracle circuit C1 that gets y = Ai · 1⃗ = pow(i) ∈ {0, 1}v·log(q) and tries to find i.
The circuit gets an additional input z ∈ {0, 1}v·log(q), computes

wy,z =
〈
pow(iv−1)(y), z

〉
◦
〈
pow(iv−2)(y), z

〉
◦ ... ◦ ⟨pow(y), z⟩ ◦ ⟨y, z⟩ ,

and outputs Pv(wy,z). The distribution obtained by uniformly choosing i ∈ {0, 1}v·log(q) and setting
y = Ai ·⃗1 is identical to the distribution obtained by uniformly choosing y0 ∈ {0, 1}v·log(q) and setting
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i = pow(m−1−iv)(y0) and y = Ai · 1⃗. With probability at least 1/2+1/m2 over (y0, i, y) chosen from
the latter distribution and over z, the predictor satisfies Pv(wy,z) = pow(m−1−iv)(y0) = i. Since the
distributions are identical, we have that

Pr
i,z
[CPv

1 (Ai · 1⃗, z) = ⟨i, z⟩] ≥ 1/2 + ε1, (5.2)

where ε1 = 1/m2. Observe that C1 is of size poly(m, log(n)) = poly(m) and that it can be printed
by a machine R1 running in space O(log n). For simplicity, we will denote C1 = CPv

1 .

Also observe that the function computed by C1 can be computed in space O(log n) with oracle
access to Pv. To do this, given input (y, z), for each j = iv − 1, ..., 0 we compute pow(j)(y)
and print it to the oracle-query tape along with z. Computing pow(j)(y) is done by repeatedly
invoking Proposition 5.7 (recalling that the output of pow is of length v · log(q) = O(log n)).

The next procedure will compute the mapping Ai ·⃗1 7→ i correctly on ε2 = poly(ε1) fraction of the
i’s. We will use a space-efficient and randomness-efficient version of the Goldreich-Levin [GL89] de-
coding algorithm, given by Doron, Pyne, and Tell [DPT24] following Pyne, Raz, and Zhan [PRZ23]:

Theorem 5.10 (efficient Goldreich-Levin decoding; see [DPT24, Theorem 5.16]). Let k = v ·log(q).
There is an algorithm DecGL that gets input ε1, δ > 0 and a random seed sGL of length O(k +
log(1/δ)), runs in space O(log(k/ε1)+loglog(1/δ)), and outputs a list of LGL = O((k/ε21) · log(1/δ))
oracle circuits CsGL,1, ..., CsGL,LGL

satisfying the following.

• Each CsGL,i is an oracle TC0 circuit of size poly(k/ε1) with one majority gate that makes
non-adaptive oracle queries.

• For every i ∈ {0, 1}v·log(q) and every C
(i)
1 : {0, 1}v·log(q) → {0, 1} satisfying Prz[C

(i)
1 (z) =

⟨i, z⟩] ≥ 1/2 + ε1/2, we have that

Pr
sGL

[
∃j ∈ [LGL] : ∀u ∈ [k], C

C
(i)
1

sGL,j
(u) = iu

]
≥ 1− δ.

Consider the algorithm R2 that gets input Ai · 1⃗, draws a random sGL ∈ {0, 1}O(k+log(1/δ)) and
j ∈ [LGL], executes DecGL with values ε1/2 and δ = 1/2, and prints an oracle circuit C2 that gets

input Ai · v⃗ and outputs the truth-table of C
C

(i)
1

sGL,j
, where C

(i)
1 (z) = C1(A

i · 1⃗, z). By Eq. (5.2), with

probability at least ε1/2 over i ∈ {0, 1}v·log(q) it holds that Prz[C1(A
i · 1⃗, z) = ⟨i, z⟩] ≥ 1/2 + ε1/2,

and for each such i, by Theorem 5.10, with probability at least (1 − δ)/LGL over sGL, j the truth-

table of C
C

(i)
1

sGL,j
is i. Hence, Pri,sGL,j [C

C1
2 (Ai · 1⃗) = i] ≥ ε1·(1−δ)

2LGL
= Ω(ε1/(m

4 · log(n))). It follows

that with probability at least Ω(ε1/(m
4 · log(n))) over the random choices sGL, j of R2, we have

that Pri[C
C1
2 (Ai · 1⃗) = i] ≥ ε2 = Ω(ε1/(m

4 · log(n))). Note that C2 is of size poly(m, log(n)) =
poly(m), and that R2 can print it in space O(log n) (relying on the fact that DecGL runs in space
O(log(v · log(q) · m2)) = O(log n)). Also, the number of random coins that R2 uses is O(k +
log(1/δ) + log(LGL)) = O(v · log(q) + log(m)) = O(log n).
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We now explain how to modify R2 so that it does not use random coins. The modified algorithm
enumerates over choices of coins sGL, j, trying to find a choice such that

Pr
i
[CC1

2 (Ai · 1⃗) = i] ≥ ε2.

For every fixed (sGL, j), the modified R2 enumerates over i ∈ {0, 1}v·log(q), and for each i checks
whether CC1

2 (Ai · q⃗, sGL, j) = i. Thus, it is just left to verify that given input sGL, j, i, we can
compute CC1

2 (Ai · 1⃗, sGL, j) in space O(log n).
By Proposition 5.7, we can compute each output bit of the mapping i 7→ Ai in space O(log n),

and by the discussion after Eq. (5.2), we can compute C1 in space O(log n) (with oracle access to
Pv). Relying on standard composition of space-bounded algorithms, we only need to show that
C2 can be computed in space O(log n). This is true since each of the v · log(q) output bits of C2

is simply an output of CsGL,j , and by Theorem 5.10 we have that CsGL,j is a TC0 circuit of size
poly(v · log(q)). We can simulate this circuit in space logarithmic in its size, with access to the
description of the circuit given by the algorithm DecGL.

The next procedure will compute Ai · 1⃗ 7→ i correctly on all inputs i, using the random self-
reducibility of discrete log. This procedure is a space-efficient and randomness-efficient adaptation
of [CLO+23, Lemma 4.6].

For any fixed j ∈ [qv − 1], consider the following oracle circuit C3,j (looking ahead, for some
choices of j, the C3,j ’s will be sub-circuits in C3). Given input Ai · 1⃗ and oracle access to CC1

2 , the
circuit C3,j computes v⃗ = Aj · (Ai · 1⃗), and then computes b = CC1

2 (v⃗). It checks whether Ab · 1⃗ = v⃗,
and rejects otherwise. Now it knows that Ab · 1⃗ = Aj · Ai · 1⃗, and hence A−j · Ab · 1⃗ = Ai · 1⃗,

and the circuit outputs

{
b− j b > j

qv − (b− j) o.w.
. (Recall that A is a generator matrix, and hence A

is invertible.) Note that C3,j is of size polylog(n) and can be printed in space O(log n). (We rely
on Proposition 5.7 to hard-wire a description of A into C3,j .)

We claim that, given a fixed j and input Ai ·1⃗, the output of C3,j(A
i ·1⃗) can be computed in space

O(log n) with oracle access to Pv. Computing v⃗ can be done in space O(log n) by Proposition 5.7,
and computing b ∈ {0, 1}v·log(q) can be done in such space with access to Pv by the discussion
following Theorem 5.10. Computing Ab · 1⃗ is done via Proposition 5.7 again, and the final step
amounts to checking if b > j and printing an integer in [qv] (i.e., either b− j or qv − (b− j)).

To construct R3 and C3 we will need the following space-efficient sampler:

Theorem 5.11 (see, e.g. [DPT24, Theorem 3.12]). For every ε, δ : N→ [0, 1] computable in space
O(log(1/εδ)), there is an algorithm Samp that for every n ∈ N computes a strong (ε, δ)-sampler
with sample size poly(log(1/δ), ε) and randomness n̄ = n+O(log(1/εδ)), using space O(n̄).

The machineR3 uses Theorem 5.11 with output length v·log(q), accuracy ε2/2 = 1/ poly(m, log(n)),
and confidence 1/n2, to draw a random sample. Note that the number of random coins for Samp
is O(v · log(q) + log(n)) = O(log n), and that its sample size is poly(m, log(n)). Then, R3 prints an

oracle circuit C3 that gets input Ai · 1⃗, computes C
C

C1
2

3,j (Ai · 1⃗) for every output j ∈ {0, 1}v·log(q) in
the sample of Samp, and if one of the C3,j ’s printed i then C3 prints that i.32 By a union-bound,
with probability at least 1− 1/n, it holds that C3 computes Ai · 1⃗ 7→ i for all i ∈ {0, 1}v·log(q). Note
that R3 is computable in space O(log n), and that C3 is of size poly(m, log(n)).

32Observe that for every j, the circuit C3,j never errs (i.e., it either aborts or outputs the correct answer), so if
several C3,j ’s print answers, the answers are identical.
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We explain how to modify R3 so that it does not use random coins. The modified algorithm
enumerates over choices of O(log n) coins for Samp, and for each fixed choice r, it tests whether the
resulting circuit C3 indeed computes Ai · 1⃗ 7→ i for every i ∈ {0, 1}v·log(q). Since we can enumerate
over i’s in space O(log n), it suffices to verify that C3(A

i · 1⃗) can be computed in space O(log n).
This follows from the fact that Samp is computable in such space, that the sample size is

poly(m, log(n)) ≤ poly(n) (so that we can enumerate over the sample), that for each fixed j in the
sample, the sub-circuit C3,j is computable in such space (by the discussion before Theorem 5.11),
and that we can compute Ai′ ·1⃗ in space O(log n), where i′ is the output of C3,j (by Proposition 5.7),
and check whether it equals our input.

The final algorithm Rdl combines R1, R2, R3 in a straightforward way to output an oracle circuit

Cdl that implements C
C

C1
2

3 (the oracle queries that Cdl makes are intended to be answered by Pv,
since C1 requires oracle access to Pv). The space complexity of Rdl is O(log n), and it outputs Cdl of
size poly(m, log(n)) = poly(m) that, when given oracle access to Pv, correctly computes Ai · 1⃗ 7→ i
for all i ∈ [qv−1]. (This paragraph replaces the last paragraph of the original proof in [DPTW25]).

5.4 The Reconstruction Procedure for L
(q)
0 , ..., L

(q)
v−1

In this section we will construct a procedure that gets oracle access to predictors for the q-ary

lists L
(1)
0 , ..., L

(q)
v−1 (in a sense that will be defined in Definition 5.16) and computes the function

y 7→ x̂(Ay · 1⃗). The main result statement appears in Proposition 5.21.

Notation. For i ∈ {0, ..., q0 − 1}, let wi be the (i + 1)th element in Fq0 in lexicographical order.
For consistency, throughout the section we will use the following notation:

• i ranges in {0, ..., v}.

• j ranges in [m− 1].

• k ranges in [qv − 1].

• t is an element in Fq, or an index in a set [r].

For brevity, we will also use the following notation for elements of Fq. Recall that Fq ≡ F∆
q0 ,

and we will frequently parse each t ∈ Fq as a sequence consisting of one element wi ∈ Fq0 and ∆−1
elements u ∈ F∆−1

q0 . Thus, we will frequently denote this by t = (wi, u) ∈ Fq.

5.4.1 Pseudorandom primitives

We now present a few pseudorandomness primitives that we will need for the reconstruction of

the q-ary lists L
(q)
0 , ..., L

(q)
v−1. Specifically, we will need the randomness-efficient curve sampler by

Guo [Guo13], and a space-efficient averaging sampler. We first define curve samplers, state Guo’s
result, and then prove that Guo’s sampler is computable in logspace. Then, we state the averaging
sampler that our proof will use.

Throughout this section and the next, we will frequently refer to distributions over subsets S′

of a set S as (ε, δ)-samplers. (Recall that the standard terminology refers to samplers as functions
whose output is a subset S′ ⊆ S, i.e., the set of sampled points.) By this terminology, we mean that
for every T ⊆ S, with probability 1− δ over the choice of S′ we have Prs∈S′ [s ∈ T ] ∈ |T |/|S| ± ε.
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We will also frequently identify curves C : Fq → Fq with their image C = {C(t)}t∈Fq
, and it

will be clear from context which of the two interpretation of “a curve” we are referring to (i.e., a
function or its image). For a matrix A ∈ Fv×v

q , the notation A · C means {A · C(t)}t∈Fq
.

Definition 5.12 (curve sampler). Let Samp : {0, 1}n̄ × Fq → Fv
q be an (ε, δ)-sampler. We say that

Samp is a degree-t curve sampler if for every fixed z ∈ {0, 1}n̄, the function Sampz(i) = Samp(z, i)
is a curve Fq → Fv

q of degree at most t.

Theorem 5.13 (Guo’s curve sampler [Guo13]). Let ε, δ : N → [0, 1] and q : N → N be space-
computable such that q(v) is a prime power satisfying q(v) ≥ (v · log(1/δ(v))/ε(v))Θ(1). Then, there
is an algorithm that for every v ∈ N computes a strong degree-t curve (ε, δ)-sampler

Samp : {0, 1}n̄ × Fq → Fv
q

with t = (m · logq(1/δ))O(1) and n̄ = O(v · log(q)+log(1/δ)), using space O(v · log(q)+loglog(1/δ))).

Proof. We prove that Guo’s construction is computable in space O(v · log(q) + O(loglog(1/δ))),
and that it yields a strong sampler. Let us first bound the space-complexity. The construction is
the composition of an outer sampler and an inner one, and we first analyze them separately and
then analyze the composition.

Claim 5.13.1. The outer sampler in Guo’s construction Out : FO(v+logq(1/δ))
q × Flog(v)+1

q → Fv
q is

computable in space O(v · log(q) + loglog(1/δ)).

Proof. The outer sampler first transforms its source into a block source, using the condenser
of [GUV09]. Given (x, y) ∈ Fn̄out

q × Fq and a parameter vi, where n̄out = O(v + logq(1/δ)), the
condenser outputs

Condvi(x, y) =
(
y, fx(y), fx(ζ · y), ..., fx(ζvi−2 · y)

)
∈ Fvi

q (5.3)

where ζ ∈ Fq is a primitive element and fx(z) =
∑n̄out−1

i=0 xi · zi. We can find a primitive element
ζ ∈ Fq in space O(log q) (by brute-force), raise it to the power ≤ vi in space O(log(vi) + log(q)),
and compute (x, z) 7→ fx(z) in space O(log(n̄out) + log(q)). The transformation of the source into
a block source is

Blk(x, y1, ..., ys) = (Condv1(x, y1), ...,Condvs(x, ys)) ∈ F4(v−1)
q ,

where s = log(v), vi = 4v · 2−i,
∑

i∈[s] vi = 4(v − 1), and Blk is computable in space O(log(v) +
log(q) + loglog(1/δ)) because Cond is computable in that space.

Now, given a block source ((a1, b1), ..., (as, bs)) where (ai, bi) ∈ Fvi/2
q × Fvi/2

q for all i, and seed
y′s ∈ Fq, the outer extractor works as follows. For each i = s, ..., 1, it prints the first vi/2 − 1
elements of ai · y′i + bi and defines yi−1 to be the last element of ai · y′i + bi. This is computable in
space O(v · log(q)) since the linear function in each block (i.e., ai · y′i + bi) is computable in such
space, and the algorithm only needs to store a single element in Fq when moving from one block
to the next. By composing this algorithm with Blk, we get an (ε, δ)-sampler

Out : FO(v+logq(1/δ))
q × Flog(v)+1

q → Fv
q

computable in space O(v · log(q) + loglog(1/δ)), where the output length is truncated to v (i.e., we
rely on the fact that

∑
i∈[s] vi/2− 1 = 2v − 2− log(v) > v). 2
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Claim 5.13.2. The inner sampler In : Fpolylog(v)+O(logq(1/δ))
q ×Fq → Flog(v)+1

q is computable in space
O(log(q) · polylog(v)).

Proof. Let ℓ = log(v) + 1. The sampler In is defined recursively, with s′ = log(ℓ) = O(loglog(v))

levels of recursion. For level i, we fix parameters di = ℓ/2i and ti =

{
16i/4 i < s′

16i/4 + 5 · logq(1/δ) i = s′
,

and define an algorithm

Ini : F4ti·di
q × Fdi

q → Fℓ
q.

At the first level In0 just outputs its seed. At level i ≥ 1, the algorithm Ini gets input (xi,1, xi,2) ∈
F3ti·di
q × Fti·di

q and a seed si ∈ Fdi
q , computes (zi,1, zi,2, zi,3) = Curvei(xi,1, si) ∈ F3di

q , and outputs
Ini−1 (Condi(xi,2, zi,1), (zi,2, zi,3))), where the algorithms are defined as follows.

• The algorithm Curvei(xi,1, si) : F3ti·di
q ×Fdi

q → F3di
q parses its input xi,1 as ti triplets of elements

(c0,1, c0,2, c0,3), ..., (cti−1,1, cti−1,2, cti−1,3) ∈ F3
qdi

, parses its seed si as an element y ∈ Fqdi , and

computes
(∑ti−1

j=0 cj,1 · yj ,
∑ti−1

j=0 cj,2 · yj ,
∑ti−1

j=0 cj,3 · yj
)
. It then parses the latter triplet as

3di elements in Fq and outputs these elements.

Note that Curvei is computable in space O(di ·log(q)+log(ti)) ≤ O(log(v)·log(q)+polylog(v)),
and that its output is of length O(di · log(q)) ≤ O(log(v) · log(q))).

• The algorithm Condi : Fdi·ti
q × Fdi

q → F2di·ti−1
q parses its input x1,2 as ti elements in Fqdi and

its seed as an element y ∈ Fqdi , and outputs 2di · ti−1 elements defined as in Eq. (5.3).

This algorithm works over the field of size q′ = qdi , and is computable in space O(log(q′) +
log(di · ti−1)) ≤ O(log(v) · log(q)). Its output length is at most ti−1 · di · log(q) = polylog(v).

Thus, the computation of In = Ins′ amount to computing two strings of total length at most
log(q) · polylog(v), and then passing them on to level s′ − 1 (as the input and seed to Ins′−1);
indeed, at each level, the algorithm maps its input to two strings, and gives these strings as input
to the level below. Since the strings at each level are of length at most log(q) · polylog(v), and the
computation at each level can be done in space O(log(v) · log(q)+ polylog(v)), the inner sampler is
computable in space O(log(q) · polylog(v)). 2

The final sampler uses the inner sampler In : Fn̄in
q × Fq → Flog(v)+1

q to sample from the outputs
of Out, where n̄in = polylog(v) +O(logq(1/δ)); that is, given (x, x′) ∈ Fn̄out

q × Fn̄in
q and y ∈ Fq,

Samp((x, x′), y) = Out(x, In(x′, y)).

The bound on the space complexity follows by combining Claims 5.13.1 and 5.13.2.

Strongness. Having proved that Guo’s curve sampler is computable in small space, let us now
prove that the construction yields a strong sampler. We only give here a proof sketch, and the full
proof involves fully articulating standard techniques from extractor theory.

In [Guo13], the outer and inner samplers are in fact analyzed using the terminology of random-
ness extractors, and indeed, strong samplers are equivalent to strong extractors [Zuc97]. Following
[RSW06, Theorem 8.2], we know that when we compose an outer and an inner extractor, for the
final extractor to be strong, it suffices for the outer one to be strong (with a very minor loss in
parameters, that essentially “sacrifices” the entropy in the seed).
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The outer extractor Out employs the block-source extraction framework, after a block-source
conversion step. One can verify that if the block-source conversion step is strong (namely, that Blk
is close to a block-source even conditioned on a typical fixing of y1, . . . , ys)), and the extractor used
in the block-source extraction procedure is strong, then the entire process yields a strong extractor.
To argue that the block-source conversion step is strong, one can use the fact that Cond is a strong
condenser (the latter fact is immediate, since it outputs the seed y). For the block-source extraction
step, Out uses the “line extractor” that maps ((a, b), y) to (a1y + b1, . . . , aviy + bvi). The fact that
it is strong readily follows from its analysis as a sampler (see, e.g., [Guo13, Lemma 2.3]).

Having established Theorem 5.13, the following corollary is immediate.

Corollary 5.14. For any ε = poly(ρ) and δ = q−O(v), there is a probabilistic algorithm that
generates a curve C : Fq → Fv

q , using O(log n) random coins and in space O(log n), such that

dcrv ≜ deg(C) = (m·log(n))O(1) and the resulting distribution over curves is a strong (ε, δ)-sampler.

An averaging sampler. Recall that Fq ≡ F∆
q0 . We will also need to sample a set of points

R ⊆ F∆−1
q0 space-efficiently and randomness-efficiently, which we do using the sampler from Theo-

rem 5.11.

Corollary 5.15. For any δ = q−O(v), there is a probabilistic algorithm that generates a set R ⊆
F∆−1
q0 of size r = poly(v, log(q)), using O(log n) random coins and in space O(log n), such that the

distribution over R’s is an (ε, δ)-sampler, for ε = 1
(m·log(n))2 .

Proof. We use Theorem 5.11 with output length ∆ · log(q0) < log(q) and ε = 1/(m · log(n))2 and
δ = q−O(v). The sample size is poly(1/ε, log(1/δ)) = poly(m, log(n)), the required randomness is
log(q) +O(log(1/εδ)) = O(log n), and the space complexity is linear in the randomness.

5.4.2 Learning a single curve

We first show an algorithm analogous to “Learn Next Curve” in [SU05]. Intuitively, the algorithm
uses a predictor and a sequence of “known” points on previous curves to predict points on the next
curve, and then uses a small number of “known” points on the next curve in order to error-correct
its predictions. The crucial part for us is the efficiency of this algorithm (i.e., it is a space-bounded
machine that outputs a small circuit), and distilling the exact properties that this algorithm needs
from the distribution over the relevant curves in order to work.

Definition 5.16 (good predictors). We say that P (i) : Fm−1
q → Fρ̄

q is a ρ-good predictor for L
(q)
i if

Pr
z⃗∈L(q)

i

[P (i)(z⃗1,...,m−1) ∋ z⃗m] > ρ.

Recall that ρ̄ was defined as ρ̄ = (1/ρ)cSTV in Theorem 5.8, and indeed we use the same parameter
when considering predictors in Definition 5.16.

For simplicity of presentation, we will assume throughout this section that all predictors predict

the mth element; that is, for each i ∈ {0, ..., v − 1}, the predictor P (i) : Fji
q → Fρ̄

q for L
(q)
i has

ji = m − 1. This assumption does not meaningfully affect the argument (in fact, it is a “worst-
case” scenario for the reconstruction) and we make it only to reduce notational clutter.

Lemma 5.17 (derandomized learning of a single curve). There is a machine LrnNext that gets
input 1n and i ∈ {0, ..., v − 1} and R ⊆ F∆−1

q0 of size r = |R|, runs in space O(log n), and prints a
circuit CLrnNext,i of size poly(q, 1/ρ) satisfying the following.
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1. Input. Points
{
(a

(m−1)
t , ..., a

(1)
t ) ∈ Fm−1

q

}
t∈Fq

, evaluations {bt ∈ Fq}t∈[r], and i∗ ∈ {0, ..., v}.

2. Output. A set {ot ∈ Fq}t∈Fq
.

3. Functionality. Consider a distribution over curves C : Fq → Fv
q of degree D = dcrv · q0 · r

and an independent distribution over sets R ⊆ F∆−1
q0 of size r such that the distribution over

C is a (ρ/4, q−20v)-sampler and the distribution over R is a (1/2, q−20v)-sampler. Then, for
every (ρ/2)-good predictor P (i), with probability at least 1− q−10v over C,R it holds that:

When a
(j)
t = x̂(A−j·q

i · C(t)) for all t ∈ Fq and j ∈ [m − 1], and bt = x̂(C(wi∗ , Rt)) for all
t ∈ [r], and CLrnNext,i is given as oracle P (i), its output satisfies ot = x̂(C(t)) for all t ∈ Fq.

Moreover, there is another machine that gets input 1n and i and R (same as LrnNext) and
in addition a curve C and oracle access to x̂ and to P (i), runs in space O(log(n) + polylog(m)),
and decides whether or not the circuit CLrnNext,i that LrnNext outputs satisfies the requirement with

respect to C and P (i) (i.e., whether when a
(j)
t satisfy the hypothesis above with respect to C and R,

the output of CLrnNext,i with oracle access to P (i) is {x̂(C(t))}t∈Fq
).

Proof. Let us first describe CLrnNext,i, and then prove the required properties. The circuit will use
Sudan’s [Sud97] list-decoding algorithm for the Reed-Solomon code:

Theorem 5.18 (list-decoding of the RS code [Sud97]). Given p distinct pairs {(xa, ya) ∈ Fq × Fq}a∈[p],
there are at most 2/µ degree-d′ polynomials g such that g(xa) = ya for at least a µ-fraction of the
pairs, as long as µ >

√
2d′/p. Furthermore, a list of all such polynomials can be computed in time

poly(p, log(q)).

For each t ∈ Fq, the circuit queries its oracle Pj : Fm−1
q → Fρ̄

q on the point (a
(m−1)
t , ..., a

(1)
t ) ∈

Fm−1
q , which yields a set St ⊆ Fq of size |St| = ρ̄. It then uses Theorem 5.18 with the set S = ∪t∈FqSt

and with parameter values p = ρ̄ · q and µ = (ρ/4) · ρ̄ and d′ = d · D to obtain a list of 8/(ρ · ρ̄)
polynomials in time poly(q, ρ−1). (Note that µ >

√
2d′/p, since q1−1/∆ > 32d · dcrv · r · poly(1/ρ),

relying on a sufficiently large choice of constant c > 1 in Section 5.1.1.) If the list contains a unique
polynomial p : Fq → Fq such that p(wi∗ , Rt) = bt for all t ∈ [r], output {p(t)}t∈Fq

; otherwise, fail.
Observe that there is a uniform machine that gets a first set of inputs 1n, i, R and a second set

of inputs
{
(a

(m−1)
t , ..., a

(1)
t )

}
, {bt} , i∗, and computes the value of CLrnNext,i (i.e., of the circuit corre-

sponding to the first set of inputs) on the second set of inputs in time tLrnNext = poly(q, ρ−1). Hence,
this functionality is also computable by a O(log(ttLrnNext))-space-uniform circuit of size poly(tLrnNext)
(i.e., by a standard simulation of machines by highly uniform circuits of quadratic size). The ma-
chine LrnNext gets input 1n, i, R, and prints the latter circuit in space O(log(ttLrnNext

)) ≤ O(log n)
while hard-wiring the values of i and of R to the appropriate input gates.

Analysis. We want to prove the claim about the functionality of CLrnNext,i. We first argue that:

Claim 5.18.1. With probability 1− q−20v over the choice of C, it holds that

Pr
t∈Fq

[x̂(C(t)) ∈ St] ≥ ρ/4.

Proof. Consider a uniformly chosen z⃗ ∈ L
(q)
i . By the guarantee on P (i) we know that

Pr[P (i)(z⃗1,...,m−1) ∋ z⃗m] ≥ ρ/2.
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However, we also know that z⃗ is distributed identically to

x̂(A−(m−1)·q
i
(y⃗)) ◦ ... ◦ x̂(A−qi · y⃗) ◦ x̂(y⃗)

for a uniformly chosen y⃗ ∈ Fv
q . (This is because Aqi is invertible, and relying on the definition of

L
(q)
i (s⃗) in Eq. (5.1) and on the fact that z⃗ is obtained via a uniform choice of s⃗ ∈ Fv

q .)
Hence, when choosing a uniformly random y⃗ ∈ Fv

q , with probability at least ρ/2 we have that

P (i)(x̂(A−(m−1)·q
i
(y⃗)), ..., x̂(A−q

i · y⃗)) ∋ x̂(y⃗). (5.4)

Since the distribution over C is an (ε = poly(ρ), δ = q−20v)-sampler, with probability at least 1− δ,
the fraction of points y⃗ = C(t) on the curve such that Eq. (5.4) holds is at least ρ/2− ε = ρ/4. 2

By Claim 5.18.1, with probability 1− q−20v over the choice of C there are at least µ = (ρ/4) · ρ̄
pairs (t, u) in S = ∪t∈F {t} × St such that u = pC(t), where pC(t) = x̂(C(t)). Also note that pC
is of degree d′ = d · D. Hence, for every C satisfying the above, the list of polynomials that the
algorithm from Theorem 5.18 outputs contains pC .

Now, condition on such a C, and consider any p ̸= pC of degree deg(p) = d · D. Note that
d ·D/q∆−10 < 1/2 (relying on a sufficiently large choice of c > 1 in the definition of q). Hence, by
the Schwartz-Zippel lemma, the fraction of roots of p − pC in any set S ⊆ Fq of size q∆−10 is less
than 1/2. In particular,

Pr
u∈F∆−1

q0

[p(wi∗ , u) ̸= pC(wi∗ , u)] > 1/2.

Since the distribution over R ⊆ F∆−1
q0 is a (1/2, q−20v)-sampler, with probability 1− q−20v there

is t ∈ [r] such that p(wi, Rt) ̸= pC(wi, Rt). By a union-bound over all p’s that the algorithm
of Theorem 5.18 outputs, with probability at least 1 − q−20v · poly(1/ρ) ≥ 1 − q−10v over R the
circuit CLrnNext,i outputs the unique pC .

33

33The bound poly(1/ρ) ≤ q10v assumes that m ≤ nζ for a universal constant ζ > 0. We can indeed assume this
without loss of generality, otherwise Theorem 5.1 is trivial.
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Let us now describe the machine for the “moreover” part. It first checks whether or not the
assertion in Claim 5.18.1 holds, using its oracle access to P (i) and to x̂ and the given curve C. That
is, for each t ∈ Fq, it computes C(t), queries x̂(C(t)), queries P (i)(t) to obtain St, and checks if
x̂(C(t)) ∈ St. When Prt∈Fq [x̂(C(t)) ∈ St] < ρ/4, the machine rejects.

At this point, by Theorem 5.18, we know that the list-decoding algorithm used by CLrnNext,i

outputs a list that contains the correct polynomial pC . We just need to rule out the existence of
another p in this list that agrees with pC on the point-set {(wi∗ , Rt) ∈ Fq}t∈[r]. Since R is given to

the machine as input, and we can compute pC(t) = x̂(C(t)) at any point t ∈ Fq (using our input
C and the oracle access to x̂), it suffices to show that we can evaluate each polynomial that the
list-decoding algorithm outputs, at any given t ∈ Fq.

This calls for a space-efficient implementation of the algorithm in Theorem 5.18. As proved
in [CT21b], this algorithm is implementable in logspace-uniform randomized NC when the field is
prime and the number of points p is relatively small. We need a deterministic algorithm, and to
get rid of the assumptions about primality and p. We prove that:

Theorem 5.19. Let q, p, d : N → N and µ : N → [0, 1] be computable in logspace. There is a
logspace-uniform circuit family that gets as input 1n and a representation of a finite field Fq and p
distinct pairs

{
(ai, bi) ∈ F2

q

}
i∈[p] such that µ > 2

√
d/p, and outputs a list of at most 2/µ polynomials

that contains every polynomial τ of degree at most d satisfying Pri∈[m][τ(ai) = bi] ≥ µ. The circuit
size is poly(|Fq|) and its depth is polylog(|Fq|).

Since the proof of Theorem 5.19 uses known ideas, we defer it to Appendix A. Now, the
list-decoding algorithm in its statement is implementable by a circuit of depth polylog(|Fq|) con-
structible in space O(log |Fq|), and hence the algorithm is also computable in space polylog(|Fq|).
In particular, in our setting this is space polylog(m).

5.4.3 Learning interleaved curves

The next algorithm will construct two interleaved curves, using Corollary 5.14 and Corollary 5.15,
such that one can use the CLrnNext,i’s from Lemma 5.17 repeatedly to learn qv−1 “shifts” of each of
these curves by A. At each step, the previous learned curve will intersect the next curve we want to
learn at sufficiently many locations for the needed error-correction in Lemma 5.17. Our construction
of the interleaved curves is different than that in previous works (e.g., in [SU05,CLO+23]), since
we need a randomness-efficient algorithm.

Lemma 5.20 (derandomized interleaved learning). There is a randomized algorithm that gets input
1n, uses O(log n) random coins and O(log n) space, and outputs two curves C1, C2 : Fq → Fv

q and

a set R ⊆ Fq0 such that for every collection of (ρ/2)-good predictors P (0), ..., P (v), with probability
1 − q−5v the following holds. For every i ∈ {0, ..., v − 1} and k ∈ [qv − 1], when we give LrnNext
input i and R, it prints CLrnNext,i such that:

1. Learning CNxt,1(t) ≜ Ak+qi ·C1(t) from CPrv,1(t) ≜ Ak ·C2(t). When we give CLrnNext,i the

points
{
a
(j)
t = x̂(A−j·q

i · CNxt,1(t))
}
t∈Fq ,j∈[m−1]

and evaluations
{
bt = x̂(CPrv,1(wi, Rt))

}
t∈[|R|]

and i∗ = i and oracle access to P (i), it outputs
{
x̂(CNxt,1(t))

}
t∈Fq

.
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2. Learning CNxt,2(t) ≜ Ak·C2(t) from CPrv,2(t) ≜ Ak·C1(t). When we give CLrnNext,i the points{
a
(j)
t = x̂(A−j·q

i · CNxt,2(t))
}
t∈Fq ,j∈[m−1]

and evaluations
{
bt = x̂(CPrv,2(wv, Rt))

}
t∈[|R|] and

i∗ = v and oracle access to P (i), it outputs
{
x̂(CNxt,2(t))

}
t∈Fq

.

Moreover, there is another machine that gets input 1n and oracle access to x̂ and to a collection
of (ρ/2)-good predictors P (0), ..., P (v), runs in space O(log n)+polylog(m), and outputs C1, C2 and
R such that the guarantee above holds (i.e., for every i, k, when we give LrnNext input i and R, it
prints CLrnNext,i satisfying the two items).

Proof. Let C : Fq → Fv
q be a degree-dcrv curve sampled by Corollary 5.14 with ε = ρ/12 and

δ = q−30v, and let R ⊆ Fq0 be a set sampled by Corollary 5.15 with δ = q−30v. Denote r = |R|.
We let C1 = C, and define C2 : Fq → Fv

q as the unique curve of degree (r · q0 − 1) satisfying the
following:

∀a ∈ {0, ..., q0 − 1} ,∀u ∈ R, C2(wa, u) = Sa · C1(wa, u), (5.5)

where Sa =

{
Aqa a ∈ {0, ..., v − 1}
Id a ∈ {v, ..., q0 − 1}

Observe that max {deg(C1),deg(C2)} < dcrv · q0 · r = D, and that we can sample the curves and
R and print them in space O(log n) and by using O(log n) coins.

Thus, we turn to the analysis. We first claim that the two curves have sufficient “sampling”
properties and “intersection sampling” properties, as follows.

Claim 5.20.1 (each curve is a sampler, marginally). For any fixed k ∈ [qv − 1], when choosing C
from Corollary 5.14 with ε = ρ/12 and δ = q−30v and R from Corollary 5.15 with δ = q−30v,

1. The distribution Ak · C1 is an (ε, δ)-sampler.

2. The distribution Ak · C2 is an (ε′, δ′)-sampler, where ε′ = 3ε = ρ/4 and δ′ = 2δ · q0 < q−20v.

Proof. First observe that C1 is an (ε, δ)-sampler, because C1 = C. Next, for any shift Ak, the curve
Ak · C1 is also an (ε, δ)-sampler; this is since Ak is invertible, and so the mapping of the image of
C1 to the image of Ak · C1 is a bijection.

We prove that C2 is a sampler relying on the fact that C is a strong sampler and on the fact
that R is a sampler. Specifically, fix any choice of C = C1. We first claim that for every T ⊆ Fv

q

and every fixed a ∈ {0, ..., q0 − 1}, with probability at least 1− δ over R it holds that∣∣∣ Pr
u∈R

[C2(wa, u) ∈ T ]− Pr
u∈F∆−1

q0

[Sa · C1(wa, u) ∈ T ]
∣∣∣ ≤ ε, (5.6)

and ∣∣∣ Pr
u∈R

[C2(wa, u) ∈ T ]− Pr
u∈F∆−1

q0

[C2(wa, u) ∈ T ]
∣∣∣ ≤ ε. (5.7)

Indeed, the statements in Eqs. (5.6) and (5.7) are true because R is an (ε, δ)-sampler in F∆−1
q0 (and

considering the tests Twa(u) = 1[Sa · C1(wa, u) ∈ T ] and T ′wa
(u) = 1[C2(wa, u) ∈ T ]).
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It follows that for every fixed C1 and T ⊆ Fv
q , with probability at least 1− δ · q0 over R we have∣∣∣ Pr

a∈{0,...,q0−1},u∈F∆−1
q0

[C2(wa, u) ∈ T ]− Pr
a∈{0,...,q0−1},u∈F∆−1

q0

[Sa · C1(wa, u) ∈ T ]
∣∣∣

=
∣∣∣ E
a∈{0,...,q−1}

[
Pr

u∈F∆−1
q0

[C2(wa, u) ∈ T ]− Pr
u∈F∆−1

q0

[Sa · C1(wa, u) ∈ T ]

] ∣∣∣
≤ E

a∈{0,...,q−1}

[∣∣∣ Pr
u∈F∆−1

q0

[C2(wa, u) ∈ T ]− Pr
u∈F∆−1

q0

[Sa · C1(wa, u) ∈ T ]
∣∣∣]

≤ 2ε. (5.8)

Now, consider the joint distribution (C1, R, C2), which is obtained by choosing C = C1 and
R independently, and defining C2 = C2(C1, R) as in Eq. (5.5). Assume towards a contradiction
that there is T ⊆ Fv

q such that with probability more than 2δ · q0 over (C1, R, C2) it holds that
Prt∈Fq [C2(t) ∈ T ]− |T |/qv > 3ε.34

Now, by Eq. (5.8), for every fixed choice of C1, with probability 1− δ · q0 over R we have that

Pr
a∈{0,...,q0−1},u∈F∆−1

q0

[Sa · C1(wa, u) ∈ T ]− |T |/qv > ε. (5.9)

We call every choice of R satisfying Eq. (5.9) good for C1.
Next, consider the following test T ′ ⊆ Fq × Fv

q . Given (t, z⃗), we parse t = (wa, u) ∈ Fq0 × F∆−1
q0 ,

and define M((wa, u), z⃗) ≜ Sa · z⃗ ∈ Fv
q ; we include (t, z⃗) in T ′ iff M(t, z⃗) ∈ T . Note that when (t, z⃗)

is chosen uniformly, the distribution M(t, z⃗) is uniform in Fv
q , and hence

Pr
t,z⃗∈Fq×Fv

q

[(t, z⃗) ∈ T ′] = |T |/qv.

On the other hand, when (t, z⃗) is uniformly chosen from the set {(t, C1(t))}t∈Fq
, the distribution

M(t = (wa, u), z⃗) is the uniform distribution on {Sa · C1(wa, u)}a∈{0,...,q0−1},u∈F∆−1
q0

, and hence

Pr
t∈Fq

[
(t, C1(t)) ∈ T ′

]
= Pr

a∈{0,...,q0−1},u∈F∆−1
q0

[Sa · C1(wa, u) ∈ T ] .

Plugging the two equations above into Eq. (5.9), whenever R is good for C1, we have that

Pr
t∈Fq

[
(t, C1(t)) ∈ T ′

]
− Pr

t,z⃗∈Fq×Fv
q

[(t, z⃗) ∈ T ′] > ε. (5.10)

It follows that

Pr
C1

[Eq. (5.10) holds] ≥ Pr
C1,R

[(
Pr
t∈Fq

[C2(t) ∈ T ]− |T |/qv > 3ε

)
∧R is good for C1

]
≥ 1− 2δ · q0 − δ · q0,

contradicting the fact that C = C1 is a strong (ε, δ)-sampler. 2

34Note that if there is T ′ such that
∣∣∣Prt∈Fq [C2(t) ∈ T ′] − |T ′|/qv

∣∣∣ > 3ε with probability more than 2δ · q0, then
there is T such that Prt∈Fq [C2(t) ∈ T ′]− |T ′|/qv > 3ε with probability more than δ > 0 (i.e., by taking either T = T ′

or T as the complement of T ′). Thus, to rule out the former it suffices to rule out the latter.
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Claim 5.20.2 (interleaved curves agree on the points specified byR). For any fixed i ∈ {0, ..., v − 1}
and any choice of C and R we have that

R ⊆
{
u ∈ F∆−1

q0 : Aqi · C1(wi, u) = C2(wi, u)
}
.

Moreover, for any fixed k ∈ [qv − 1], the claim still holds if we simultaneously replace “C1” by
“Ak · C1” and “C2” by “Ak · C2”.

Proof. The basic claim follows from the definition of C2, and the “moreover” part follows immedi-
ately from the basic claim. 2

Now, for Item (1) of our lemma, fix i and k, and let CNxt,1(t) = Ak+qi ·C1(t). By Lemma 5.17,
with probability at least 1− q−10v over CNxt,1 and R, when we give CLrnNext,i the points{

a
(j)
t = x̂(A−j·q

i · CNxt,1(t))
}
t∈Fq ,j∈[m−1]

and the evaluations
{
bt = x̂(CNxt,1(wi, Rt))

}
t∈[|R|] and i∗ = i and oracle P (i), it outputs

{
CNxt,1(t)

}
t∈Fq

,

as long as the distributions over CNxt,1 and R are appropriate samplers. By Claim 5.20.1, the dis-
tribution over CNxt,1 is indeed such a sampler. By Claim 5.20.2, the curves CNxt,1 and CPrv,1(t) =
Ak · C2(t) agree on the point-set {(wi, Rt)}t∈[r], and hence the functionality of CLrnNext,i remains

identical if we replace the set of bt’s above by
{
bt = x̂(CPrv,1(wi, Rt))

}
t∈[r].

For Item (2), similarly, we fix i, k, and let CNxt,2(t) = Ak ·C2(t). We use Lemma 5.17 identically
to the proof above, the only difference being that now we argue about CLrnNext,i when it is given i∗ =
v (rather than i∗ = i). The claim follows relying on the fact that CNxt,2 is an appropriate sampler
(by Claim 5.20.1) and that CNxt,2 and CPrv,2(t) = Ak · C1(t) agree on the point-set {(wv, u)}u∈Fq0

(by the definition of C1 and C2 on {(wv, ·)}, in Eq. (5.5)).
The two paragraphs above established that for every fixed i, k, the statements in Items (2)

and (1) hold with probability at least 1 − q−10v. By a union-bound over i ∈ {0, ..., v − 1} and
k ∈ [qv − 1], with probability at least 1− q−5v the two statements hold for every i, k.

For the “moreover” part, our machine will enumerate over choices of R,C1, C2, and for each
choice use the machine M5.17 from the “moreover” part of Lemma 5.17 to test the conditions with
respect to R,CNxt,1, CNxt,2 and all i, k.

In more detail, the machine enumerates over the seeds for Corollaries 5.14 and 5.15. For each
fixed pair of seeds, it enumerates over all i ∈ {0, ..., v − 1} and k ∈ [qv − 1], and invokes M5.17

twice: once with virtual access to C = CNxt,1 = Ak+qi · C1, and afterwards with virtual access to
C = CNxt,2 = Ak ·C2.

a When the machine encounters a seed-pair such that M5.17 accepts for all i, k,
it outputs the corresponding C1, C2, R. Note that the machine runs in space O(log n)+polylog(m).

By the analysis above, for most choices of seed pairs, the two requirements in the statement
of Lemma 5.20 will be satisfied for all i, k. Syntactically, the first requirement is exactly the
functionality guarantee of Lemma 5.17 with C = CNxt,1 and i∗ = i, and the second requirement is
the functionality guarantee with C = CNxt,2 and i∗ = v.b Hence, our machine will output C1, C2, R
such that the two requirements hold for all i, k.

aComputing bits of the description of C, in both cases, is done using the fixed seed and the algorithm from Corol-
lary 5.14. Similarly, providing virtual access to R is done using the fixed seed and Corollary 5.15.

bWhen comparing syntactically, for the first requirement we relied on the fact that CPrv,1(wi, Rt) = Ak ·
C2(wi, Rt) = Ak ·Si ·C1(wi, Rt) = Ak+qi ·C1(wi, Rt) = CNxt,1(wi, Rt) for all i ∈ [v−1]; and for the second requirement
we relied on the fact that C2(wv, u) = C1(wv, u) for all u (and hence CNxt,2 and CPrv,2 agree on {(wv, Rt)}t∈[|R|]).
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5.4.4 The main reconstruction algorithm

We are now ready to state and prove the main algorithm of the current section. This algorithm
uses O(log n) coins and O(log n) space, makes queries to x̂, and with high probability prints v⃗ ∈ Fv

q

and a circuit that computes the mapping y 7→ x̂(Ay · v⃗).

Proposition 5.21. There is an algorithm that gets input 1n and oracle access to x̂ and to a
collection of (ρ/2)-good predictors P⃗ = P (0), ..., P (v−1), uses space O(log n) + polylog(m), and

prints a circuit R0 : {0, ..., qv − 1} → Fq of size poly(m, log(n)) such that RP⃗
0 (y) = x̂(Ay · 1⃗) for all

y.

Proof. We first describe the circuit R0 and then explain how to construct it. The circuit has hard-
wired choices of curves C1, C2 and a set R ⊆ F∆−1

q0 , as well as the circuits CLrnNext,i from Lemma 5.20
with all values of i ∈ {0, ..., v − 1}. Let v⃗ = C1(1).

The circuit receives y ∈ {0, ..., qv − 1} and parses it in basis q as y =
∑v−1

i=0 yi · qi. Denote
y(−1) = 0, and for i ∈ {0, ..., v − 1}, let y(i) =

∑i
i′=0 yi′ ·qi

′
. The circuit works in v iterations, where

in iteration i ∈ {0, ..., v − 1} it has already obtained the values{
x̂
(
Ay(i−1)+j·qi · Cb(t)

)}
t∈Fq ,b∈{1,2},j∈[m−1]

and its goal is to compute the values of{
x̂
(
Ay(i−1)+j′·qi · Cb(t)

)}
t∈Fq ,b∈{1,2},j′∈{m,...,(m−1)·q}

,

where we denote A0 = Id and
∑−1

i′=0 yi′ · qi
′
= 0.

The values
{
x̂
(
Aj · Cb(t)

)}
t∈Fq ,b∈{1,2},j∈[m−1] will be hard-wired into R0, so the first iteration

has the values it needs to start its execution. Observe that after iteration i completes successfully,
the circuit has the values that it needs for iteration i+ 1. Also note that after iteration v − 1 the
circuit has learned the value x̂ (Ay · C1(1)), as we wanted.

Thus, it remains to describe how a single iteration i is executed. The circuit R0 uses the
circuit CLrnNext,i. For j′ ∈ {m, ..., (m− 1) · q}, we first use Item (1) of Lemma 5.20 with value
k = y(i−1) + (j′ − 1) · qi and then use Item (2) of Lemma 5.20 with value k = y(i−1) + j′ · qi. In
both cases, the circuit R0 gives CLrnNext,i access to its oracle P (i).

Tedious verification, which may be skipped. To carefully verify the correct use of Lemma 5.20,
for each j′ ∈ {m, ...,m · q}, denote CNxt,j′,1 as CNxt,1 when we use Item (1), and denote CNxt,j′,2 as
CNxt,2 when we use Item (2); analogously, denote CPrv,j′,1, CPrv,j′,2.

Now, fix j′ ∈ {m, ...,m · q}, and recall that we enter step j′ (of iteration i) having already learned{
x̂(Ay(i−1)+j·qi · Cb(t))

}
t,b,j∈[j′−1]

in previous steps (or in iteration i − 1). To reduce notational

clutter, for a curve C : Fq → Fv
q we will denote x̂(C) = {x̂(C(t))}t∈Fq

. We also use the shorthand

notation a⃗(j) = (a
(j)
t )t∈Fq .

• When we use Item (1), we have CNxt,j′,1 = Ay(i−1)+j′·qi ·C1 and CPrv,j′,1 = Ay(i−1)+(j′−1)·qi ·C2.

The evaluations we learned going into step j′ include
{
a⃗(j) = x̂(A−j·q

i · CNxt,j′,1)
}
j∈[m−1]

.

Also, in the previous step j′ − 1 we learned x̂(CNxt,j′−1,2) = x̂(Ay(i−1)+(j′−1)·qi · C2), so in

particular we learned
{
bt = x̂(CPrv,j′,1(wi, Rt))

}
t∈[r]

.
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• When we use Item (2), we have CNxt,j′,2 = Ay(i−1)+j′·qi · C2 and CPrv,j′,2 = Ay(i−1)+j′·qi · C1.

The evaluations we learned going into step j′ include
{
a⃗(j) = x̂(A−j·q

i · CNxt,j′,2)
}
j∈[m−1]

, and

in the most recent usage of Item (1) we learned x̂(CNxt,j′,1) ⊇
{
bt = x̂(CPrv,j′,2(wv, Rt))

}
t∈[r]

.

The execution of the two items yields the values x̂(Ay(i−1)+j′·qi · Cb) for b ∈ {1, 2}, so we can
continue to step j′ + 1.

Complexity and correctness. Note that R0 has O(m · q) elements of Fq hard-wired into it, as
well as two curves (i.e., 2q elements of Fv

q), a set of size r, and v circuits of size poly(q, 1/ρ). For its
execution, it works in v iterations, and in each iteration it simulates CLrnNext,i and stores O(m · q2)
values. Thus, overall, R0 can be implemented in size poly(m, log(n)).

Moreover, since the functionality of R0 (given the hard-wired information) can be implemented
by a uniform machine, the following holds: There is a (uniform) Turing machine that gets as input
the information that is supposed to be hard-wired into R0 (i.e., the elements of Fq for the first
iteration, the two interleaved curves, the sampled set of size r, and the v circuits CLrnNext,i) as well
as an input y, and computes the value of the corresponding circuit R0 (i.e., the R0 that is obtained
by the given “hard-wired” information) at y in time poly(m, log(n)). Thus, similarly to the proof
of Lemma 5.17, observe that the foregoing functionality can be computed by an O(log(m, log(n)))-
space-uniform circuit family

{
R′0,n

}
n∈N of size poly(m, log(n)).

The machine M that prints R0 simulates the machine that prints R′0 = R′0,n, which uses space
O(log(m,n log(n))) ≤ O(log(n)), and hard-wires the needed information into the corresponding
input gates of R′0. Specifically, M obtains C1, C2, R using the “moreover” part of Lemma 5.20,
queries x̂ at points

{
Aj · Cb(t)

}
j∈[m−1],t∈Fq ,b∈{0,1} , and hard-wires all of this information into the

corresponding input gates for R′0. (Recall that M can compute powers of A in space O(log n),
by Proposition 5.7, and note that M can evaluate Cb for any b ∈ {0, 1} and at any point t in space
O(log n) + polylog(m), using the “moreover” part of Lemma 5.20.) In addition, the machine M
computes the descriptions of CLrnNext,i for all i ∈ {0, ..., v − 1}, using Lemma 5.17, and hard-wires
them into the corresponding input gates of R′0. Thus, M runs in space O(log n) + polylog(m), and
the circuit that it prints computes the mapping y 7→ R0(y).

5.5 Putting It All Together: The Reconstruction Procedure

Our goal now is to prove the reconstruction part of Theorem 5.1. That is, we show an algorithm
RSU that gets input 1n, and gets oracle access to x ∈ {0, 1}n and to (1/m2)-next-bit-predictors{
Pi : {0, 1}ji → {0, 1}

}
i∈{0,...,v}, runs in spaceO(log n), and prints an oracle circuit C : {0, 1}log(n) →

{0, 1} of size poly(m) such that CP0,...,Pv(u) = xu for all u ∈ [n].

Discrete log. By Proposition 5.9, we can print in space O(log n) an oracle circuit Cdl of size
poly(m) such that CPv

dl (A
y · 1⃗) = y for all y ∈ {0, 1}v·log(q).

q-ary reconstruction. By Proposition 5.21, given oracle access to x̂, we can print in space

O(log n)+polylog(m) a circuit R0 : [q
v−1]→ Fq of size poly(m, log(n)) such that RP⃗

0 (y) = x̂(Ay1⃗),

when P⃗ is a sequence of (ρ/2)-good predictors for the L
(q)
i ’s. The queries to x̂ can be answered in

space O(log n), given our oracle access to x.
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List-decoding. Now, the list-decoder for EncSTV from Theorem 5.8 runs in time poly(m, log(n)),
and hence a circuit DecSTV of such size implementing its functionality can be printed in space
O(log(m, log(n))) = O(log n). By a standard argument (see, e.g., [SU05, Lemma 4.16], follow-
ing [TZS06]), given oracle access to a (1/m2)-next-bit-predictor Pi : {0, 1}ji → {0, 1} for Li, we can

compute a (ρ/2)-good predictor P
(q)
i : Fji

q → Fρ̄
q for L

(q)
i as follows:

• Given w1, ..., wji ∈ Fq, for each k ∈ [ℓq], compute rk = Pi(EncSTV(w1)k, ...,EncSTV(wij )k).

• Let r = (r1, ..., rℓq), and output the list of decoded messages that DecSTV outputs when given
access to the corrupt codeword r.

Observe that we can implement P
(q)
i by an oracle circuit C

(Dec)
j of size poly(m, log(n)) (which gets

oracle access to Pi), and that this circuit can be constructed in space O(log n).

Combining the ingredients. We print an oracle circuit Cx̂ that computes x̂, as follows:

• Given u ∈ Fv
q , use Cdl(u) to compute y ∈ {0, 1}v·log(q) ≡ [qv − 1] such that u = Ay · 1⃗. (Note

that for every u there exists such y, since A is a generator matrix.)

• Use R0(y) to compute x̂(Ay · 1⃗) = x̂. Whenever R0 queries one of its (ρ/2)-good predictors,

answer using C
(Dec)
j and our oracle access to the next-bit-predictors.

The size of Cx̂ is at most poly(m, log(n)), and it can be printed in space O(log n).

The final circuit C needs to compute the mapping u 7→ x(u). Recall that u represents the
coefficient of some monomial in x̂ : Fv

q → Fq, say ye11 · y
e2
2 · ... · yevv where

∑
k∈[v] ek ≤ d. The

coefficient of this monomial is determined by the evaluation of x̂ of at most d points, and thus the
circuit C invokes Cx̂ for d times and outputs the corresponding linear combination.

6 The Line and Tree Compressors

Before constructing the compressors, we recall (a black box version of) the distinguish to predictor
transformation for the Nisan PRG (Definition 3.9) of [DPTW25].

Theorem 6.1. For every n = 2ℓ, let t = 50ℓ. For every ROBP B of length and width n vertices,
there is a function TB : ({0, 1}2t)ℓ → {0, 1} such that:

1. Evaluability. The function TB can be computed in space O(log n), given B.

2. Usefulness. For every h⃗ = (h1, . . . , hℓ) such that TB (⃗h) = 1, it holds that∣∣∣E[B]− E
r
[B(NIS

h⃗
)(r)]

∣∣∣ ≤ n−2.

3. Likeliness. We have E[TB(Uℓ·2t)] ≥ 1− n−2.

4. D2P. There is a logspace algorithm that, given B, outputs a δ-distinguish to ρ-predict D2P
transformation (PRED1, . . . ,PREDb=polylog(n)) for TB, where δ = 1/2 and ρ = Ω(1/ log2(n)).

Moreover, there is a logspace algorithm that, given B, i ∈ [b], and x ∈ {0, 1}≤ℓ·2t, returns
PREDi(x).
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6.1 The Line Generator and Compressor

We first construct the line generator and compressor, which have the property that REC acts as a
read-once algorithm over the truth table f (and see further explanation in Section 2.2.1).

Theorem 6.2 (Line Generator and Compressor). There are algorithms

LINEGEN, LINEREClog, LINERECstr

that work as follows. For every ROBP B of length and width n and f ∈ {0, 1}n, the algorithm
LINEGEN(B, f) runs in space O(log n), and either outputs ⊥, or ρ such that

|ρ− E[B]| ≤ n−2.

If LINEGEN(B, f) =⊥, then there is a machine M of description size polylog(n), and M runs
in space polylog(n) and time poly(n) and M(B, j) = fj for every j ∈ [n], and the following occurs:

1. LINEREClog is a space O(log n) algorithm and LINEREClog(B, f) = M .

2. LINERECstr is a space polylog(n), time poly(n) algorithm and LINERECstr(B, f) = M , and
LINERECstr is read-once over f (see Definition 3.2).

Proof. Let TB : {0, 1}s → {0, 1} be the function of Theorem 6.1 applied to B, and recall that
s = O(log2 n).

Given f ∈ {0, 1}n, recall that f≤i constitutes the first i bits of f . Let Pi ∈ {0, 1}n be defined as

Pi = f≤i||0n−i

and let SU be the generator of Theorem 5.1 with N = n and M = s and ℓ = O(log(n)/loglog(n)).
Let Li,j be the jth list output by SUPi , and note that these lists can be computed in space O(log n)
with access to Pi (and thus also with oracle access to f).

The Generator. We first define LINEGEN. The generator enumerates over i ∈ [n] and for each
i computes the lists Li,1, . . . , Li,ℓ. If there is some element h⃗u ∈ Li,j such that TB (⃗hu) = 1, the

generator takes the first such h⃗u and computes

ρ = E
r
[B(NIS

h⃗u
(r))]

where r ∈ {0, 1}O(logn) is as in Theorem 6.1, and the correctness of these values ρu follows
from Item 2 of Theorem 6.1. Otherwise, LINEGEN outputs ⊥. The space complexity follows
directly from that of the SU generator and from Item 1 of Theorem 6.1, and from the explicitness
of the Nisan PRG Definition 3.9.

The Machines M1, . . . ,Mn. We define a series of machines M1, . . . ,Mn, each with description
size, space, and runtime equal to that of M in the theorem statement, where for every i we have
Mi(B, j) = fj for every j ≤ i. We then set M = Mn. Note that when LINEGEN returns ⊥, it must

be the case that for every Pi and j ∈ [ℓ], every element h⃗ of Li,j satisfies TB (⃗h) = 0, and therefore
by Item 3 of Theorem 6.1 ∣∣∣∣∣ E

h⃗←Li,j

[
TB (⃗h)

]
− E[TB(U)]

∣∣∣∣∣ ≥ 1− o(1).
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Hence, by Item 4 of Theorem 6.1, the D2P transform for B contains a ρ-predictor for Li,j for every
j, where ρ = Ω(1/ log2(n)). We let ki,j ∈ [polylog(n)] denote the index of the first such predictor,
and for i ∈ [n] let

k⃗i = (ki,1, . . . , ki,ℓ).

For a fixed Pi, consider the set of predictors

PRED
k⃗i

= PREDki,1 , ...,PREDki,ℓ ,

where PREDki,j is the ki,jth element of the D2P transform of B. When given oracle access to Pi

and to PRED
k⃗i
,35 the algorithm RSU outputs Ci of size polylog(n) such that for every j ≤ i,

C
PRED

k⃗i
i (j) = Pj = fj .

We then transform this circuit into the machine Mi as follows:

Claim 6.3. There is a space O(log n) algorithm that, given i, Ci, and k⃗i, prints a machine Mi of
description size polylog(n). On input j ∈ [n], Mi runs in poly(n) time and polylog(n) space and
Mi(B, j) = fj.

Proof. Consider the machine E that, on input

j, B,Ci, k⃗i

computes Ci(j), and when C makes an oracle call y to some predictor PREDk ∈ PRED
k⃗i
, invokes

the logspace machine of Item 4 that computes the map (y,B, k)→ PREDk(y). This machine E has
constant description size and runs in space polylog(n) and time poly(n).

Our final machine Mi is the output Mi = M ′ of Lemma 3.4 with M = E and m = (Ci, k⃗i).
Note that on input (j, B), Mi outputs E(j, B,Ci, k⃗i) = fj , and runs in space polylog(n) and space
poly(n) as desired, and by Lemma 3.4 can be printed in space O(log |m|) = O(log n).

The Reconstruction Algorithms. We now show how the algorithms compute the machines
Mi.

First note that we can determine ki,j in space O(log n) with access to B and Pi by enumerating
over the predictors in the D2P transform (each of which is evaluable in logspace) and testing the
advantage of each predictor on the jth output list of SUPi (which is computable in logspace).

• First, LINEREClog(B, f). LINEREClog invokes the algorithm of Claim 6.3 on input n,Cn, k⃗n
and prints its output. Whenever this machine queries a bit of Cn, we answer using the
machine RSU, where we give RSU oracle access to Pn = f and PRED

k⃗n
. Similarly, when

the machine queries a bit of k⃗n, we compute the relevant index in logspace as above. Using
emulative composition, the algorithm runs in logspace.

• Next, LINERECstr(B, f).

Claim 6.4. There is an algorithm STEP running in O(polylog n) and time poly(n) where
STEP(B,Mi−1, fi) = Mi for every i.

35We have that ρ > 1/M2 by our choice of parameters.
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Proof. Note that
Pi = Mi−1(B, 1)|| . . . ||Mi−1(B, i− 1)||fi||0n−i

and hence STEP can compute any bit of Pi in time poly(n) and space polylog(n) from its
inputs. The machine then computes k⃗i as above, then involves RSU with oracle access to Pi

and PRED
k⃗i
. Once we obtain the machine Ci (which we can store on the worktape directly),

we invoke Claim 6.3 and print the output.

We then define LINERECstr as follows. Let M = M0 =⊥ be stored in workspace, and iterate
from i = 1, . . . , n. For each iteration, compute M ′ = STEP(B,M, fi) and set M = M ′. It
is clear that after n steps, we have that M = Mn, which we can then output. The space
and time are immediate from that of STEP, and the fact that LINERECstr is read-once over
f follows from the fact that in each iteration i we only read the bit fi of f (to feed into
STEP).

6.2 The Tree Generator and Compressor

We now construct the tree generator and compressor. As explained in Section 2.2.2, the recon-
struction algorithm (i.e., the compressor) maintains the read-once property of the line compressor,
while obtaining almost-linear runtime in terms of the length of f .

Theorem 6.5 (Tree Generator and Compressor). There are algorithms GEN,REC such that for
every ROBP B of length and width n and f ∈ {0, 1}t:

• Generator: The algorithm GEN(B, f) runs in space O(log t), and outputs either ⊥, or ρ ∈
[0, 1] such that |ρ− E[B]| ≤ n−2.

• Reconstruction: The algorithm REC(B, f) runs in time t · poly(n) and space polylog(n),
and is read-once over f (see Definition 3.2). If GEN(B, f) =⊥, then REC(B, f) outputs a
machine M of description size polylog(n) that on input j ∈ [t] runs in time poly(n) and space
polylog(n), and satisfies M(B, j) = fj.

Proof. First note that we can assume without loss of generality that t ≤ nlogn, as otherwise we can
take GEN to be the Nisan PRG [Nis92] (which ignores the input f and always outputs an estimate
ρ), and REC can always return ⊥ without reading its input.

We define an n-ary tree on t leaves, where the depth is d
def
= ⌈logn(t)⌉ = O((log t)/(log n)). Each

node V in the tree is labeled by a bitstring val(V ) of size v = polylog(n), or by the symbol ⋆, as
follows.

For k ∈ [t], the kth leaf has label fk||0v−1. Given a non-leaf node V and i ∈ [n], we denote by
child(V, i) the ith child of V , and define the label of V as follows: If for some child i ∈ [n] it holds
that val(child(V, i)) = ⋆, then val(V ) = ⋆; otherwise, let

PV
def
= val(child(V, 1))|| · · · ||val(child(V, n))

be the concatenation of the values of the children. Next, let

val(V )
def
=

{
M LINEGEN(B,PV ) =⊥
⋆ LINEGEN(B,PV ) ̸=⊥

where M = Mn is the machine output by LINERECstr(B,PV ) and LINEREClog(B,PV ) (and note
that we can view B as size n · polylog(n)).
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Preliminary facts. First observe that, by the definition of the tree and Theorem 6.2, to estimate
E[B] it suffices to find a node with label ⋆ whose children are labeled by non-⋆:

Fact 6.5.1. For every tree node V , if val(V ) = ⋆ but child(V, i) ̸= ⋆ for every i ∈ [n], then
LINEGEN(B,PV ) outputs ρ that is n−2-close to E[B].

Next, both the generator GEN and the reconstruction REC will need to compute labels of node.
We will show two methods of doing so. The first method, which will be used by GEN, runs in space
O(log t) and in time tc, where the constant c may be large.

Claim 6.5.2. There is an algorithm running in space O(log t) that, given (B, V, f), returns val(V ).

Proof. Computing val(V ) reduces to computing LINEGEN and LINEREClog at input (B,PV ), where

PV = val(child(V, 1))|| · · · ||val(child(V, n)).

Both LINEGEN and LINEREClog run in space O(log n), and to simulate access to the input PV

we use emulative composition. Since there are d levels of composition, we can compute the map
(f, V ) → val(V ) for any node V in space O(d log(n)) = O(log t), and thus GEN has this space
consumption. 2

The second method to compute labels, which will be used by REC, uses higher space polylog(t)
but lower time t · nc for a universal constant c > 1. This method will only be used when assuming
that val(V ) ̸= ⋆ for every V (see below), and hence in this method we will not need to compute
LINEGEN (i.e., since we know that LINEGEN(B,PV ) =⊥ for all V ). Thus we will only need to
compute the machine M labeling the node. At a high level, we will do this using LINERECstr

instead of LINEREClog, and replace the naive emulative composition in the algorithm of Claim 6.5.2
with a more careful emulative composition, which exploits the fact that LINERECstr(B,PV ) is
read-once over PV to compose the d levels more time efficiently.

For a node V , we let fV be the interval of f corresponding to the leaves of the subtree rooted
at f .

Claim 6.5.3. Assume that val(V ) ̸= ⋆ for all V . Then, there is an algorithm running in time
t · poly(n) and space polylog(n) algorithm that, given (B, V, fV ), returns val(V ), and is read-once
over fV .

Proof. When V is a leaf, we can output the label in time O(n) and space O(log n) by reading fV .
For a non-leaf V , to compute val(V ) we do not need to simulate LINEGEN (since we know that
LINEGEN(V ′) =⊥ for all V ′), and thus our goal is to simulate LINERECstr at input (B,PV ).

Recall that LINERECstr(B,PV ) is read-once over PV , and in particular it reads all the bits of
val(child(V, i)) in PV before reading the first bit of val(child(V, i + 1)) in PV . We simulate
LINERECstr(B,PV ), and each time it queries the first bit of the label val(child(V, i)) of the next
child i ∈ [m], we discard the label of the previous child, recurse to compute the label of child(V, i),
store it, and continue simulating LINERECstr(B,PV ).

We prove by induction on the level j of V (where j = 1 corresponds to the leaves) that this
recursive algorithm runs in time and space at most

tj = (2n)j · nc, Sj = j · logc(n)

respectively, for some universal constant c, and that it is read-once over fV .
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The base case of j = 1 is trivial. For the inductive step, recall that LINERECstr runs in time
poly(n) and space polylog(n). Each time it queries the bits of val(child(V, i)) for some i ∈ [n],
the algorithm recurses with a node at level j − 1, so the runtime is

poly(n) + n · tj−1 = poly(n) + n · (2 · n)j−1 · nc ≤ (2n)j · nc

where the final step comes from choosing the universal cosntant c sufficiently large.
For space, LINERECstr runs in space polylog(n), and we additionally incur an additive space

overhead of polylog(n), corresponding to the size of one label (i.e., since we store one label at a
time). Finally, as LINEREC queries val(child(W, i)) in increasing order of i, we have that final
algorithm is read-once over fV .

The Generator. The generator GEN iterates over nodes in DFS order and for each node V
it computes the label val(V ) using Claim 6.5.2. For the first V such that val(V ) = ⋆, the
generator outputs LINEGEN(B,PV ); if no such V exists, the generator outputs ⊥. Note that the
first encountered node with label val(V ) = ⋆ must have all children labeled with non-⋆ (since the
algorithm processes nodes in DFS order, and leaves are labeled with non-⋆); hence, by Fact 6.5.1,
when the algorithm outputs LINEGEN(B,PV ), this is a value ρ that is n−2-close to E[B].

By Claim 6.5.2, computing the label at each node can be done in space O(log t). In addition,
the algorithm needs to perform DFS in an m-ary tree with d levels, and doing so yields an additive
space overhead of O(d · log(m)) = O(log t).

The Reconstruction. Now suppose that GEN(B, f) =⊥, which means that val(V ) ̸= ⋆ for

every node V . We first compute the label MR
def
= val(R) of the root R, using Claim 6.5.3. We

then show that given MR, there is a logspace algorithm to output M .

Claim 6.6. There is a space O(log n) algorithm that, given MR, outputs M .

Proof. Let E be the machine that on input

j, B,MR

computes the path j1, . . . , jd from R to the jth leaf in the tree, then sets MV0 = MR and iteratively
computes

MVi = val(child(Vi−1, ji))

by evaluating MVi−1(B, k) for the indices k that correspond to the jith child. This iterates until M ′

computes the label at leaf j, from which it outputs fj . This machine E has constant description
size and runs in time poly(n) and space polylog(n).

Our final machine M is the output of Lemma 3.4 with M = E and m = MR. Note that on input
(j, B), M outputs E(j, B,MR) = fj , and runs in space polylog(n) and space poly(n) as desired,
and by Lemma 3.4 can be printed in space O(logm) = O(log n).

The final reconstruction algorithm simply invokes this algorithm and prints its output.

7 Win-Win Algorithms and Derandomization

In this section we use the line generator and compressor and the tree generator and compressor
(from Sections 6 and 6.1) to prove the results in the introduction. In Section 7.1 we show two “win-
win pairs of algorithms”, which are more general technical statements of Theorems 1.8 and 2.3.
Then, in Section 7.2 we prove Theorems 1.3 and 1.4 and in Section 7.3 we prove Theorem 1.6.
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7.1 Win-win Pairs of Algorithms

We first prove a more general technical statement Theorem 2.3, from which our main results will
follow as corollaries. The proof follows the description in Section 2.2.

Theorem 7.1 (win-win pair of algorithms for composition and derandomization). For every R ∈
BPL, there is a constant c > 0 such that the following holds. For every d ∈ N, and k : N→ N such
that k(n) is computable in space O(log n), and length-preserving g : {0, 1}∗ → {0, 1}∗ computable in
quasilinear time and logspace, there are algorithms A1,A2 such that for every x ∈ {0, 1}n at least
one of the following occurs:

1. A1(x) computes g(k)(x||0nd
) in time nd · nc and space polylog(n).

2. A2(x) computes R(x) in space O(k(n) · log n).

Moreover, both algorithms report if they fail to compute the answer, and never exceed their resource
bounds.

Theorem 2.3 can be obtained from Theorem 7.1 by taking t(n) = nd to be a sufficiently large
polynomial as a function of R and of δ > 0, in which case nd+c < t(n)1+δ.

Proof of Theorem 7.1. For i ∈ {0, . . . , k}, let xi = g(i)(k), and let L = n+nd be the length of each
xi. LetM be the quasilinear time, logspace machine that computes g. For every x, let Bx be the
ROBP of size nc of Proposition 3.7 for the language R, and note that the map x → Bx can be
computed in space O(log n) (and hence time poly(n)).

Observe that when k ≥
√
log n, the algorithm A2 exists unconditionally [SZ99]. Hence, we may

assume without loss of generality that k <
√
log n.

The Algorithm A2. We define the algorithm as follows. Iterate over i = 1, . . . , k in sequence,
and run the logspace algorithm GEN(Bx, f = xi) of Theorem 6.5. If some invocation returns ρ, then
A2 returns 1 iff ρ > 1/2; if no iteration returns ρ, the algorithm aborts and returns ⊥. By Proposi-
tion 3.7 and the guarantee on ρ, whenever A2(x) returns a bit, it correctly computes R(x). Finally,
to answer the queries of GEN to xi, the algorithm uses k levels of emulative composition, and so it
runs in space O(k log n).

The Algorithm A1. We define the algorithm as follows. It iterates over i = 0, . . . , k, and in
each iteration i it obtains a machine machine Mi of size polylog(n) such that for every j ∈ [L],
Mi(x,B, j) runs in space polylog(n) and time poly(n) and

Mi(x,B, j) = (xi)j .

The machine M0 simply references x (and for j > n answers with 0 immediately, so it runs in the
claimed time and space). Then the iterative step from i to i+ 1 works as follows.

Assuming we have such a machine Mi, we prepare to simulate (on separate worktapes) the
machines REC(B, xi+1) of Theorem 6.5, and M(xi). We begin to simulate REC. Recall that this
simulation queries xi+1 in a read-once stream. When REC queries the next bit of xi+1, we progress
the simulation ofM until it produces the next output bit, then pause the simulation ofM. During
this simulation, whenM queries xi at position j, we evaluate Mi(x,B, j) in time poly(n) and space
polylog(n) and return this bit.

Once REC returns an output Mi+1, we first verify that Mi+1 is correct. We again simulate
M(xi), and each time it outputs bit j of xi+1, we verify that Mi+1(x,B, j) returns the correct
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value (and does not exceed time or space bounds). If this test fails, we return ⊥. Otherwise, we
delete Mi and proceed to the next phase. At the end, we have a machine Mk, and we output
Mk(x,B, 1), . . . ,Mk(x,B,L).

Observe that if A2 outputs ⊥, then for all i ∈ [k] the ith iteration of A1 computes a machine Mi

such that M(x,B, j) = (xi)j for all j, in which case A1 outputs g(k)(x||0nd
). We now analyze the

runtime of phase i. SimulatingM(xi) (which we do twice) requires Õ(nd) time for the simulation,
and each query to the inputM(xi) incurs a time overhead of poly(n), for a total time of nd ·poly(n).
Simulating REC likewise requires time nd · poly(n), so the total time is k · Õ(nd) · poly(n) = nd · nc

from choosing a large enough constant c (recall that k <
√
log n). The space consumption is

dominated by storing at most two machines Mi, and simulating REC, so it is polylog(n).

Using Theorem 7.1, we now prove Theorem 1.8, which gives a win-win pair of algorithms for
circuit evaluation vs derandomization. The insight going into the proof is that circuit evaluation
can be computed as a composition of low-space algorithms.

Theorem 1.8 (win-win pair of algorithms for derandomization and circuit evaluation). For every
ε > 0 and R ∈ BPL and C ∈ uniflogspaceNC1+ε,36 there are algorithms A1,A2 such that for every
x ∈ {0, 1}n, either:

1. A1(x) computes C(x) in time poly(n) and space polylog(n).

2. A2(x) computes R(x) in space O(log1+ε n).

Moreover, both algorithms report if they fail to compute the answer, and never exceed their resource
bounds.

Proof. Fix an arbitrary R ∈ BPL and C ∈ uniflogspaceNC1+ε and let c be the constant of The-
orem 7.1. Let Cn be the circuit of language C on inputs of size n. Choose d ∈ N such that
|Cn| ≤ nd−1 for every n. For an input x to Cn, let Vi = Vi(x) ∈ {0, 1}n

d−1
be the gate values in

layer i · log(n) (where if a layer is smaller than this we pad the values with zeroes). Moreover, we
assume wlog that the final layer values are Vℓ=O(logε n), and the output gate is the first entry.

We then define g as

g
(
x||0nd

)
= V1||0p||⟨1⟩

where the encoding ⟨1⟩ of the integer 1 is of length ⌈log(ℓ)⌉, and the padding length p = nd + n−
nd−1 − ⌈log(ℓ)⌉ makes g length preserving, and for i ∈ [ℓ− 1]

g(Vi||0p||⟨i⟩) = Vi+1||0p||⟨i+ 1⟩.

Claim 7.2. g can be computed in logspace.

Proof. Since Cn is logspace uniform, there is a logspace algorithm that given 1n and i, prints the
layers of Cn from i log(n) to (i + 1) log n. Letting Ci be the restriction of Cn to these layers, the
circuit evaluation problem (Vi, C

i) → Vi+1 can be computed in space O(log n), essentially via the
argument that NC1 ⊆ L.

36We say a language is in uniflogspaceNC1+ε if there is a logspace-uniform sequence of circuits {Cn}n∈N, where Cn

has size poly(n) and depth O(log1+ε n), and x ∈ {0, 1}n is in the language iff Cn(x) = 1.
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Finally, we apply Theorem 7.1 with k = ℓ. For every input x, either A2(x) = R(x) and A2 runs
in space O(k log n) = O(log1+ε n), or

A1(x) = g(k)(x||0nd
) = Cn(x)||z

for some z ∈ {0, 1}nd+n−1 and A1 runs in simultaneous time poly(n) and space polylog(n), and so
a trivial modification of A1 decides the language C(x) in the same time and space (both algorithms
do not exceed their resource bounds and report failure if they do not succeed).

Scaling up Theorem 1.8 to linear space and exponential time, we obtain a win-win result referring
to complexity classes (rather than to instance-wise algorithms).

Theorem 7.3 (scaled-up win-win result). For every ε > 0, at least one of the following hold.

1. uniflogspaceSIZEDEP[2n, n1+ε] ⊆ i.o.TISP[2O(n), poly(n)].

2. BPSPACE[n] ⊆ SPACE[O(n1+ε)].

Proof. For every R ∈ BPSPACE[n], denote by R′ =
{
x||y||02|x| : |x| = |y| ∧ x ∈ R

}
a padded

version such that R′ ∈ BPL. For every L ∈ uniflogspaceSIZEDEP[2n, n1+ε], denote by L′ ={
x||y||02|x| : |x| = |y| ∧ y ∈ L

}
a padded version such that L ∈ uniflogspaceNC1+ε.

We do a case analysis, based on whether or not the following assumption is true:

For every R ∈ BPSPACE[n] there is L ∈ uniflogspaceSIZEDEP[2n, n1+ε] such that, when
instantiating Theorem 1.8 with R′ and L′ and with the parameter value ε, for all but
finitely many inputs x there exists y ∈ {0, 1}|x| such that A1(x||y||02

|x|
) fails.

If the assumption above holds, we prove that BPSPACE[n] ⊆ SPACE[O(n1+ε)]. Specifically, for
every R ∈ BPSPACE[n], we instantiate Theorem 1.8 with R′ and with the corresponding L′ from
the assumption. Given input x ∈ {0, 1}n, we enumerate over all y ∈ {0, 1}n, and run A2(x||y||02

n
);

for the first y such that A2 does not fail, we report the outcome of A2 (and if no such y exists, we
abort). Correctness follows since, by our assumption, for all but finitely many inputs x, there will
be some y such that A1(x||y||02

n
) fails, meaning that A2(x||y||02

n
) does not fail, and hence our

algorithm outputs R′(x||y||02|x|) = R(x). This algorithm runs in space O(n1+ε).
Otherwise (if the assumption above does not hold), we prove that uniflogspaceSIZEDEP[2n, n1+ε] ⊆

i.o.TISP[2O(n),poly(n)]. Specifically, for every L ∈ uniflogspaceSIZEDEP[2n, n1+ε], we instanti-
ate Theorem 1.8 with R′ from the assumption and with L′. Given input y ∈ {0, 1}n, we enumerate
over all x ∈ {0, 1}n, and run A1(x||y||02

n
), reporting an outcome for the first x in which A1 does

not fail (otherwise aborting). By our assumption, there are infinitely many inputs x such that for
all y ∈ {0, 1}|x|, the algorithm A1 succeeds. For every input length n corresponding to one of those
x’s, our algorithm will correctly decide L(y) for all y ∈ {0, 1}n.

7.2 Consequences of Composition Lower Bounds

We now deduce Theorems 1.3 and 1.4 as corollaries of Theorem 7.1. The proofs amount to choosing
suitable parameters and to presenting the different composed functions A1, A2, ... as a single function
g that will be plugged into Theorem 7.1 (this is done by syntactic manipulations).
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Theorem 1.3 (hardness of composing low-space t-time algorithms implies derandomization). Sup-
pose that there is δ > 0 such that for every polynomial t(n) and constant ε > 0 the following holds.
There are two algorithms A1 and A2 running in time t and space O(log n) such that any algorithm
computing A2(A1(x)) successfully on an ε-fraction of inputs x ∈ {0, 1}n requires time-space product
t1+δ. Then BPL ⊆ ∩ε>0zavgεL.

Proof. Fix an arbitrary R ∈ BPL and ε > 0 and let c be the constant of Theorem 7.1. Choose
d ∈ N sufficiently large such that nd · nc < nd(1+δ)−1 and let t(n) = nd. Let A1, A2 be the time-t,
logspace algorithms guaranteed to exist per the assumption.

Defining the function g. We define g differently on inputs of the form x||0nd
, indicating that

A1 needs to be invoked on x, and on inputs whose last bit is 1 (see below), indicating that A2 needs
to be invoked on the prefix. Specifically, we define

g
(
x||0|x|d

)
= A1(x)||0∗||l||1|l|

where l = |A1(x)| ∈ {0, 1}log t, and the padding 0∗ is taken such that the function is length
preserving (and this is possible since A1 is computable in time t = nd and so n + nd ≥ |A1(x)| +
log(t) + 1). On inputs that end with the bit 1, we define

g
(
y||0p||l||1|l|

)
= A2(y)||0p+l+|l|+1−|A2(y)|.

where l = |y| and p is a parameter indicating the length of the 0-padding. On inputs not of the
forms above, g is defined trivially.

Note that g is computable in quasilinear time and logspace, by applying the algorithms A1 and
A2. Hence, we can invoke Theorem 7.1 with k = 2.

Correctness. We claim that on all but an ε fraction of inputs x ∈ {0, 1}n, the algorithm A2(x)
from Theorem 7.1 computes R(x) in space O(log n). If this did not occur, on an ε fraction of these
x we would have that

A1

(
x||0nd

)
= g(2)

(
x||0nd

)
= A2(A1(x))||0n

d+n−|A2(A1(x))|

and A1 runs in time-space product

polylog(n) · nd · nc < t1+δ

which contradicts the assumed hardness. Thus, for every R ∈ BPL and ε > 0 we have a deran-
domization which succeeds on all but an ε-fraction of inputs, so the result follows.

We now prove Theorem 1.4. We state the result for composing a single linear-time, logspace
algorithm k(n) times, where k can be superconstant. Note that composing k distinct algorithms
can be modeled as composing a single algorithm k times, since we can define the algorithm A′

where for i ∈ {0, 1}log k, A′(x||i) = Ai(x)||i+ 1.

Theorem 7.4. For every R ∈ BPL and ε > 0, there exists a polynomial p(n) such that the following
holds. Suppose there is k : N → N computable in space O(log n), and a linear time and logspace
algorithm A such that any algorithm computing A(k)(x) successfully on an ε-fraction of inputs x
requires time p for space polylog(n). Then R ∈ zavgεSPACE[O(k · log n)].
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Proof. Let c be the constant of Theorem 7.1 wth R = R. Choose d ∈ N sufficiently large such that
nd · nc < n2d−n and let p(n) = n2d. Let ⟨a⟩ be a in binary.

We define g as

g
(
x||0nd

)
= x||0∗||⟨|x|⟩||1|⟨|x|⟩|

where we choose the padding 0∗ such that g is length preserving. Moreover, define

g
(
y||0∗||⟨|y|⟩||1|⟨|y|⟩|

)
= A(y)||0∗||⟨|A(y)|⟩||1|⟨|A(y)|⟩.

where we again choose the padding to make g length preserving (and on all other inputs g is defined
trivially). We can do this as

yi = (A)(i)(x)

is of length at most O(1)k · n as A runs in linear time,37 so |xk| + 2 log |xk| < nd + n. Moreover,
g can be computed in quasilinear time and logspace by applying A. Finally, we set k = k + 1 and
apply Theorem 7.1.

We claim that on all but an ε fraction of inputs x ∈ {0, 1}n, the algorithm A2(x) computes
R(x) in space O(k · log n). If this did not occur, on an ε fraction of these x we would have that

A1

(
x||0nd

)
= g(k+1)

(
x||0nd

)
= A(k)||0∗||l||1|l|

and A1 runs in time nd · nc < p(n) and space polylog(n), which contradicts the assumed hardness
of computing A(k). Thus, we have that for every R ∈ BPL and ε > 0 we have a derandomization
which succeeds on all but an ε-fraction of inputs, so the result follows.

Finally, we prove the scaled-up result in Theorem 1.5, which only assumes a worst-case lower
bound.

Theorem 1.5 (worst-case hardness implies derandomization). Suppose there is δ > 0 such that
for every sufficiently large d ∈ N there is k ∈ N for which the following holds. There are algorithms
A1, . . . , Ak so that:

• On input x ∈ {0, 1}n, letting xi = Ai ◦ . . . ◦ A1(x), we have that Ai+1(xi) is computable in
time 2dn and space O(n) for every i.

• For every algorithm B running in time 2dn(1+δ) and space poly(n), for every sufficiently large
n there is x ∈ {0, 1}n such that B(x) ̸= Ak ◦ . . . A1(x).

Then BPSPACE[n] ⊆ SPACE[O(n)].

Proof. For arbitrary R ∈ BPSPACE[n], let R′ ∈ BPL be the padded language where for n = |x| =
|y|,

R′(x||y||02n) = R(x)

(and the language is defined trivially on inputs not of the foregoing form). Let c be the constant
of Theorem 7.1 with R = R′. Let d ∈ N be sufficiently large such that (1 + δ)d > c + 1, and let
A1, . . . , Ak be the algorithms that are guaranteed to exist per the assumption with parameter value
d.

37We can assume k = o(
√
logn) since otherwise the claimed derandomization unconditionally exists by [SZ99,

Hoz21], and hence even for superconstant k the final output is of length ck · n = n1+o(1), so the padding is valid.
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Note that for every y ∈ {0, 1}n, we have that yi = Ai ◦ . . . ◦ A1(y) is of length at most 2dn

(and WLOG we assume the length is exactly 2dn). Thus, let g be the length-preserving function
(defined analogously to the function g in Theorem 7.4) such that

g(k)(x||y||02n+(2n+2n)d) = Ak(. . . (A1(y))).

and note that g is computable in quasilinear time and space logarithmic in its input length.
Next, we apply Theorem 7.1 with

R = R′, k = k, d = d.

Let N ∈ N be the input length above which the second bullet of the assumption holds. We claim
that for every n > N , for every x ∈ {0, 1}n there is some y ∈ {0, 1}n where

A2(x||y||02
n
) = R(x)

and note A2 runs in space O(n). Given this claim, the derandomization works as follows. Given x,
if |x| ≤ N it returns a hard-coded answer and otherwise enumerates over y ∈ {0, 1}n in space O(n)
and once A2(x||y||02

n
) produces an output, returns.

Now assume this claim does not occur. Consider the algorithm B that, given y ∈ {0, 1}n,
enumerates over x ∈ {0, 1}n and invokes A1(x||y||02

n
), and returns the first non-⊥ output. We can

see that if B produces an output it returns

g(k)(x||y||02n+(2n+2n)d) = Ak(. . . (A1(y)))

and B runs in space poly(n) and time

(2n+ 2n)d · (2n+ 2n)c < 2(1+δ)n.

Thus, if there is x ∈ {0, 1}≥N where A2(x||y||02
n
) =⊥ for every y, then B(y) computes the correct

output for every y, contradicting the assumption.

7.3 Derandomization From Hardness for ROBPs

We give a formal statement of Theorem 1.6, which asserts that hardness of compression implies
derandomization.

Theorem 7.5 (derandomization from hardness of compression by ROBPs). There is c > 1 and
a sequence {Bn}n∈N of multi-output read-once branching programs38 where Bn has width 2n

c
and

length 2n such that the following holds.

• There is a space O(nc) algorithm sthat, on input 1n, outputs Bn (i.e. B is logspace uniform).

• There is an O(n)-space algorithm that, on input (1n, r), outputs the state vr reached in Bn
on (possibly partial) input r.39

Finally, suppose there is an algorithm that, given 1n, runs in space O(n) and outputs a list of strings
fn,1, . . . , fn,m such that B(fn,i) ̸= fn,i for some i ∈ [m]. Then BPSPACE[n] ⊆ SPACE[O(n)].

Proof. First, let Lderand be a prBPSPACE[n]-complete language nder O(n)-space reductions. For

x ∈ {0, 1}n, let Bx be the ROBP (of size and length S
def
= 2O(n)) of Proposition 3.7 applied with

R = Lderand and x = x. Let {Bx}x∈{0,1}n be all such ROBPs on input length n, and note that this
set can be produced by a space O(n) algorithm.

38Each state v in the final layer of the ROBP is labeled with a string py ∈ {0, 1}2
n

.
39If the input r is of length 2n, S likewise prints the label py.
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Defining the ROBP Family. We define the multi-output ROBP Bn as follows. In layer i ∈ [N ],
a state (M,x) corresponds to a 2polylog(S) + n bit string, and we add a special reject state ⊥.

Definition 7.6. We say a state (M,x) in layer i is valid if the following occurs. For some f ∈
{0, 1}i we have LINEGEN(Bx, f ||0S−i) =⊥, and M = LINEREClog(Bx, f ||0S−i). We say that (M,x)
represents f if this occurs, and (M,x) canonically represents f if for every y < x, (M,y) does not
represent f .

Note that if (M,x) is valid, it holds that M(Bx, j) = fj for every j ≤ i, and hence (M,x)
represents a unique f . We can verify if M is valid in small space:

Claim 7.7. There is a space poly(n) algorithm that determines if (M,x) is valid.

Proof. Note that we can run M(Bx, j) for every x, j in space poly(n) and time 2O(n) (and halt if
it exceeds the resource bounds of the machine printed by LINEREC). If the output is f ||0S−i for
some f ∈ {0, 1}i, we then test if LINEGEN(Bx, f ||0S−i) =⊥ (where we produce f via emulative
composition). If this holds, by definition (M,x) is valid and represents f .

If a state is invalid, we add 0, 1 edges from it to ⊥ (and we always add edges from ⊥ to itself).
For a valid state (M,x) in layer i, let f be the (unique) string it represents. For each b ∈ {0, 1},

if there a valid state (M ′, x′) in layer i+1 that canonically represents f ||b, we add an edge labeled
b from (M,x) to (M ′, x′), and otherwise add a b-edge to ⊥.

We can determine these edge relationships very space efficiently:

Claim 7.8. Given (M,x), f, b where (M,x) represents f , there is a space O(n) algorithm that
returns the canonical (M ′, x′) that represents f ||b, and ⊥ if no such state exists.

Proof. We iterate over x′ ∈ {0, 1}n and find the least value such that LINEGEN(Bx′ , f ||b||0S−i−1) =⊥,
and if no such x′ exists then no state represents f ||b and we return ⊥. Otherwise we store this x′ and
run LINEREClog(Bx′ , f ||b||0S−i−1), and denoting the output M ′, by definition (M ′, x′) canonically
represents f ||b.

Finally, for a valid state (M,x) in layer N , we let the label of (M,x) be the string f it represents.
We let the start state be (M0, 0

n), where M0 outputs 0 on every input.
We show that all strings f that do not reach a final state labeled with f must be useful for

derandomization:

Claim 7.9. For every f where Bn(f) ̸= f , there is j ∈ [N ] where for every x ∈ {0, 1}n,

LINEGEN(Bx, f≤j ||0S−j) = ρx.

Proof. Taking the contrapositive, let f ∈ {0, 1}N be such that for every j ≤ N , there is yj ∈ {0, 1}n
such that

LINEGEN(Byj , f≤j ||0S−j) =⊥ .

Assume yj is the lexicographically first y such that LINEGEN(By, f≤j ||0S−j) =⊥. Then by Theo-
rem 6.2, there is Mi where

Mi = LINEREClog(Byj , f≤i||0S−i),

and by the definition of Bn there is an edge labeled fi from (Mi−1, yi−1) to (Mi, yi) for every i.
Thus, f will reach a valid final state with label f .

Note that for every x, |ρx − E[Bx]| ≤ 1/10 by Theorem 6.2.
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Uniformity. The first algorithm enumerates over layers i ∈ [N ] and strings (M,x) of length
2polylog(S) + n. For each such state, we determine if (M,x) is valid in logspace via Claim 7.7, and
if it is we recover the string f it represents by evaluating M(Bx, j), and determine the edges to
the next layer via Claim 7.8. It is clear that this procedure ultimately prints the entire ROBP,
and runs in space poly(n), and by padding the ROBP to a larger 2poly(n) width we obtain that the
ROBP is logspace uniform.

The second algorithm checks if for each i ≤ |r|, the prefix r≤i reaches a (canonical) valid state
(Mi, xi). If this ever does not occur, we return ⊥ (as clearly then r must have traversed an edge to
⊥). Otherwise, we return (M|r|, x|r|). Since r||0S−|r| is of length S and LINEGEN, LINEREClog run
in space O(logS) = O(n) (and we can enumerate over Bx in space O(n)), S runs in space O(n).

Derandomization From Refutation. Finally, suppose there is an O(n)-space algorithmR such
that R(1n) outputs fn,1, . . . , fn,m where Bn(fn,i) ̸= fn,i for some i. By Claim 7.9, for some j ≤ N ,
LINEGEN(Bx, (fn,i)≤j ||0S−j) = ρx for every x ∈ {0, 1}n where ρx is a (1/10)-additive estimate of
E[Bx]. Thus, to derandomize Lderand on x, the final algorithm enumerates over i ∈ [m] and j ∈ [N ],
finds the first i, j for which this holds, computes ρx, and checks if ρx < 1/2. The correctness of the
derandomization follows from Theorem 6.2 and Claim 7.9.

Another improved reduction of derandomization to weak hardness assumptions. We
also improve on a second set of results from [DPT24,DPTW25] that deduce derandomization from
hardness for uniform deterministic procedures. Recall that the work of [DPT24] obtained deran-
domized from hardness of linear space for SPACE[O(n)]-uniform circuits of size 2εn, and [DPTW25]
obtained the same derandomization from hardness of TISP[2O(n), poly(n)]-uniform circuits of size
poly(n) (where the circuits have access to a SPACE[εn] oracle). Note that the latter result ob-
tains derandomization from hardness for exponentially smaller circuits, but at the cost of worse
uniformity. We prove a result whose assumption enjoys both relaxations simultaneously:

Theorem 7.10. There is a constant c > 1 such that the following holds. Suppose there exists a
constant ε > 0 such that SPACE[n] is hard for SPACE[cn]-uniform circuits of size nc with access
to SPACE[εn]. Then, BPSPACE[n] ⊆ SPACE[Oε(n)].

The proof is identical, mutatis mutandis, to [DPTW25, Theorem 4], except that we substitute
their reconstructive PRG (Theorem 5.1) with our Theorem 5.1.
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A Proof of Theorem 5.19

We restate Theorem 5.19 and prove it. The proof amounts to implementing Sudan’s list-decoding
algorithm for the Reed-Solomon code using appropriate (known) tools so that the algorithm is
implementable in logspace-uniform NC.

Theorem A.1. Let q, p, d : N→ N and µ : N→ [0, 1] be computable in logspace. There is a logspace-
uniform circuit family that gets as input 1n and a representation of a finite field Fq and p distinct
pairs

{
(ai, bi) ∈ F2

q

}
i∈[p] such that µ > 2

√
d/p, and outputs a list of at most 2/µ polynomials that

contains every polynomial τ of degree at most d satisfying Pri∈[m][τ(ai) = bi] ≥ µ. The circuit size
is poly(|Fq|) and its depth is polylog(|Fq|).

Proof. The algorithm is an implementation of Sudan’s algorithm [Sud97], following the imple-
mentation in [CT21b, Theorem B.13]. We follow the proof of the latter, and note the necessary
changes.40 In their statement, they assume that the field is prime and that the number of points is
sufficiently small, i.e. p < |F|/8d; and they only conclude the existence of a randomized algorithm,
rather than a deterministic one. (In addition, they bound the number of output polynomials by
poly(|F|), but their proof shows that every polynomial with agreement at least µ is included in the
output list, and by Sudan’s original result [Sud97], there are at most 2/µ such polynomials.)

The algorithm has two steps: Constructing a bivariate polynomial Q, and outputting all linear
factors of Q of a specific form. We mention the necessary changes in each step:

1. Constructing Q. This step amounts to constructing a certain homogeneous linear system
with p equations and O(p) variables (which can indeed be done in logspace-uniform determin-
istic NC, see [CT21b, Proof of Theorem B.13]) and then finding a solution for this system.

In [CT21b] the algorithm for solving the linear system is randomized (see Lemma B.4), where
the only randomized component is an algorithm computing the rank of a p × O(p) matrix
(see Lemma B.2). Computing the rank is repeated p times, for p different matrices.

We replace the randomized algorithm for computing rank with the deterministic algorithm
by Mulmuley [Mul86]. Given a matrix A, his algorithm works as follows:

(a) Transform A into a symmetric matrix Ā =

(
0 A
AT 0

)
, doubling the rank.

(b) Extend Fq to the field of fractions Fq(x) where x is a transcendental variable.

(c) Compute the characteristic polynomial p′(t) of the matrix C = X · Ā, where X is the
diagonal matrix such that Xii = xi−1.

(d) The rank of Ā is the largest u such that tu divides p′(t) (this is proved in [Mul86]).

Indeed, all of these operations can be done in logspace-uniform NC. To verify this, note that
the non-trivial steps are performing field arithmetic in Fq(x) (which reduces to polynomial
multiplication and division over Fq) and computing a determinant (to compute the character-
istic polynomial p′), both of which are well-known to be implementable in logspace-uniform
NC (see, e.g., the verification in [CT21b, Lemmas B.1 and B.2]).

We note that in [CT21b], several statements mentioning other algorithmic components used
in the proof assume that the field is prime (see Lemmas B.1 and B.3). This assumption is
not needed, as long as a representation of the field is given; specifically, the aforementioned

40For easy comparison, note that the notation in [CT21b] refers to absolute number t of elements in the list with
which τ agrees, whereas we use refer to relative agreement and use the notation µ = t/p.
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algorithmic components rely on the algorithms of Hesse, Allender, and Barrington [HAB02],
which perform arithmetic over the integers in dlogtime-uniform T C0. When we have a repre-
sentation of Fq (as a prime and an irreducible polynomial), we can use integer arithmetic to
perform computation over Fq (when elements are represented as polynomials).

2. Factoring Q. In this step we find all factors of Q of the form y − τ(x), using the Hensel
lifting technique. (The final output of the algorithm consists of all polynomials τ such that
y − τ(x) is a factor of Q.) In [CT21b] this is performed in logspace-uniform deterministic
NC, but the implementation relies on the fact that the field is prime and that p is small. We
modify their implementation to avoid this assumption.

In more detail, the Hensel lifting step relies on the assumption that Q factors as (y− τ(x)) ·h
where the two factors are coprime.41 To guarantee this, we first make Q monic in y by a
linear transformation of the variables, i.e. defining Qα,β(x, y) = Q(β · x, β · y + α · x) for
suitable α, β ∈ Fq. It is well-known that Qα,β is monic for some α, β ∈ Fq, assuming that
|Fq| > 4dp,42 and we can find α, β in logspace-uniform NC of size poly(|Fq|) by brute-force.
(We will justify the assumption |Fq| > 4dp below.) Factors of Qα,β can be transformed to
factors of Q in logspace-uniform NC by a linear transformation.

Next, we check whether ∂Qα,β/∂y ̸= 0. If this is indeed the case, then compute Q′ =

Qα,β/gcd(Qα,β,
∂Qα,β

∂y ), which is the square-free part ofQα,β; we compute the GCD in logspace-
uniform NC using the algorithm of Borodin, von zur Gathen, and Hopcroft [BvH82]. Other-
wise, if ∂Qα,β/∂y = 0, it must be the case that Qα,β(x, y) = yc·p0 where c is an integer and
p0 is the field’s characteristic (since Qα,β is monic in y), so we obtained a full factorization of
Qα,β.

Now, for each s ∈ Fq, let Q′s(x, y) = Q′(x, y + s). When Fq is sufficiently large, there exists
s ∈ Fq such that Q′s(x, 0) has no repeated factors. Specifically, we need |Fq| > poly(p), and
we will justify this assumption below. For each s ∈ Fq and for each t ∈ Fq (in parallel),
we run the Hensel lifting algorithm with Q′s and with a guess t for the value of Q′s(x, 0); an
implementation in logspace-uniform NC is spelled out in [CT21b, Proposition B.11].43

Let us now describe the entire algorithm, while justifying the assumptions. We will work over
a sufficiently large extension of Fq, to guarantee that the field size is at least poly(p, d); note that
p < |Fq|2, and thus a constant-degree extension suffices, which can be found by brute-force. Then
we construct the bivariate Q, by constructing the linear system described in [CT21b, Proof of
Theorem B.13] and finding a solution for the system using [CT21b, Lemma B.4], while replacing
the randomized algorithm for rank described there with the algorithm of Mulmuley described above.
Next, we pre-process Q in parallel as described above; and for each t ∈ Fq, we run the Hensel lifting
procedure in [CT21b, Proposition B.11] to recover a univariate τ (or ⊥). Let S be the set of τ ’s
given by the Hensel lifting procedures in all branches; we output the subset of S in which the
polynomials are over the original field Fq.

B Circuit Lower Bounds from Composition Lower Bounds

In this appendix we prove that lower bounds for non-deterministically computing the composition
of two algorithms (that run in super-polynomial time) imply strong circuit lower bounds. Com-

41In [CT21b], to guarantee this they performed a non-standard preprocessing step that relies on their assumptions
about Fq and p. We use a more standard preprocessing.

42This is because the degree of discx(f) is at most 4dp, since Q has individual degree at most
√
dp.

43The statement of [CT21b, Proposition B.11] assumes that the field is prime, but this is not used in the proof.
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pared with our main results, the hypothesized lower bound here is much stronger – it holds even
for non-deterministic machines that try to compute the composition – and the conclusion is also
much stronger (i.e., strong circuit lower bounds, rather than derandomization of bounded-space
machines). Indeed, known time-space lower bounds that hold even for non-deterministic machines
are weaker than those known for deterministic machines (see [BJS01]).

We first state and prove a general parameterized result, and then state two corollaries obtained
by instantiating the parameters to specific useful values.

Theorem B.1 (circuit lower bounds from composition lower bounds). Let s, t : N → N be time-
constructible functions. Assume that there are functions A1 and A2 such that:

1. On any input x ∈ {0, 1}n, the function A1(x) is computable in time t(n) and space O(log(t(n)),
and on input A1(x) the function A2 is computable in time t(n) and space O(log(t(n))).

2. For any non-deterministic algorithm B running in time O(t) + Õ(s(n+O(log t))) and space
Õ(s(n+ log t)) +O(log(t)) there exists x such that B(x) ̸= A2(A1(x)).

Then, SPACE[n] does not have circuits of size s.

Proof. Assume towards a contradiction that SPACE[n] has circuits of size s, and let A1 and A2

be two functions as in our hypothesis. Without loss of generality, assume that A1(x) always has
length t(|x|).

Define a1(x, i) = A1(x)i (i.e., when a1 gets input (x, i) ∈ {0, 1}n × {0, 1}log(t(n)) it outputs the
ith output bit of A1(x)), and note that on inputs of length n̄ = n + log(t(n)) the function a1 is
computable in space O(log(t(n))) ≤ O(n̄). By our assumption, a1 has circuits of size s(n̄).

Our algorithm for computing A2(A1(x)) first guesses a circuit C of size s(n̄) and stores it in
memory. Then it checks that for every i ∈ [t] we have C(x, i) = A1(x)i, as follows. It runs A1 on
input x, storing a counter for the index of the current output bit, and whenever A1 prints the next
bit i, the algorithm simulates C(x, i) and compares the outcomes. If this check fails, the algorithm
rejects the non-deterministic guess. Note that this step can be performed in non-deterministic time
O(t(n)) + Õ(s(n̄)) and space Õ(s(n̄)) +O(log(t(n))).

If the algorithm did not reject, at this point it has a circuit C ′(i) = C(x, i) whose truth-table
is A1(x). The algorithm simulates A2 on virtual input A1(x), keeping track of the input head, and
whenever A2 accesses input bit i the algorithm simulates C ′(i). This step can be performed in the
same time and space as the first step.

The following two corollaries are obtained by instantiating Theorem B.1 with the parameter
values noted in the statements below:

Corollary B.2 (composition lower bounds for exponential time imply lower bounds for exponen-
tial-sized circuits). If there are two functions computable in time t(n) = 2O(n) and space O(log t)
whose composition cannot be computed in non-deterministic time O(t) and space tε, for some con-
stant ε > 0, then SPACE[n] does not have circuits of size s(n) = 2δ·n, for some constant δ > 0.

Corollary B.3 (composition lower bounds for super-polynomial time imply lower bounds for
polynomial-sized circuits). If there are two functions computable in time t(n) = nω(1) and space
O(log t) whose composition cannot be computed in non-deterministic time O(t) and space to(1), then
SPACE[n] does not have circuits of size s(n) = nc, for any constant c ≥ 1. Consequently (relying
on the existence of a SPACE[n]-complete problem), SPACE[n] ̸⊂ P/poly.

Recall that a lower bound as in the conclusion of Corollary B.3 is not currently known even for
the class EXPNP, let alone for PSPACE.
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Context and related results. It is well-known that circuit lower bounds follow from lower
bounds for uniform machines that use randomness and non-determinism (i.e., for MA-type ma-
chines; this follows from standard Karp-Lipton-style results, and see, e.g., [Tel20] and [CRTY20,
Appendix B] for descriptions). However, there are fewer results along the lines of Theorem B.1,
which deduce circuit lower bounds from lower bounds for uniform non-deterministic machines that
do not use randomness (i.e., for NP-type machines).

The most relevant previous result is that of Korten [Kor22], who showed that if NTIME[T ]
is hard for one-tape non-deterministic machines running in time T 1+ε and space T ε, for some
T = 2O(n), then ENP is hard for circuits of essentially maximal size. In comparison, Theorem B.1
uses a stronger assumption (since the hard function arises specifically from the composition of two
low-space algorithms) and the conclusion is incomparable, but refers to a circuit lower bound in a
significantly smaller class (i.e., in SPACE[n] rather than in ENP).

For additional results deducing circuit lower bounds from lower bounds for NP-type machines
see [BKM+24,CKMS24], and for a recent work that deduces circuit lower bounds from lower bounds
for uniform machines that do not use non-determinism, see [Wil24].
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