
Upper and Lower Bounds for the Linear Ordering Principle

Edward A. Hirsch∗ Ilya Volkovich†

October 4, 2025

Abstract

Korten and Pitassi (FOCS, 2024) defined a new1 complexity class LP
2 as the polynomial-

time Turing closure of the Linear Ordering Principle. They put it between MA (Merlin–Arthur
protocols) and SP

2 (the second symmetric level of the polynomial hierarchy).
In this paper we sandwich LP

2 between PprMA and PprSBP. (The oracles here are promise
problems, and SBP is the only known class between MA and AM.) The containment in
PprSBP is proved via an iterative process that uses a prSBP oracle to estimate the average
order rank of a subset and find the minimum of a linear order.

Another containment result of this paper is PprOP
2 ⊆ OP

2 (where OP
2 is the input-oblivious

version of SP
2). These containment results altogether have several byproducts:

• We give an affirmative answer to an open question posed by Chakaravarthy and Roy
(Computational Complexity, 2011) whether PprMA ⊆ SP

2 , thereby settling the relative
standing of the existing (non-oblivious) Karp–Lipton–style collapse results of [CR11] and
[Cai07],

• We give an affirmative answer to an open question of Korten and Pitassi whether a Karp–
Lipton–style collapse can be proven for LP

2 ,

• We show that the Karp–Lipton–style collapse to PprOMA is actually better than both
known collapses to PprMA due to Chakaravarthy and Roy (Computational Complexity,
2011) and to OP

2 also due to Chakaravarthy and Roy (STACS, 2006). Thus we resolve the
controversy between previously incomparable Karp–Lipton collapses stemming from these
two lines of research.

∗Department of Computer Science, Ariel University, Israel. This research was conducted with the support of
the State of Israel, the Ministry of Immigrant Absorption, and the Center for the Absorption of Scientists. Email:
edwardh@ariel.ac.il

†Computer Science Department, Boston College, Chestnut Hill, MA. Email: ilya.volkovich@bc.edu
1Note that this notation had been used in the past [Sch83] for a very different class, which has been apparently

forgotten after that.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 142 (2025)

Contents

1 Introduction 3
1.1 Background . 3

1.1.1 Classes Based on Symmetric Alternation 3
1.1.2 Classes Based on Merlin-Arthur Protocols 4

1.2 Promise Problems as Oracles . 4
1.3 Our Contribution . 5

1.3.1 A New Lower Bound for LP
2 and the Strongest Non-Input-Oblivious Karp–

Lipton Collapse . 5
1.3.2 A New Upper Bound for LP

2 . 5
1.3.3 Aggregation of prOP

2 queries and the Strongest Input-Oblivious Karp–
Lipton Collapse . 6

1.4 Our Techniques . 7
1.4.1 Approximate Counting, Set Size Estimation and SBP 7
1.4.2 Approximate Counting and the Order Rank Approximation 8
1.4.3 Derandomization in LP

2 . 9
1.4.4 Input-Oblivious Symmetric Alternation 10

1.5 Organization of the Paper . 10

2 Definitions 10
2.1 Classes of Promise Problems as Oracles . 10
2.2 Problems Avoid and LOP . 12
2.3 Complexity Classes . 12

3 LP
2 ⊆ PprSBP 14

3.1 Approximate Counting . 14
3.2 Estimating the Average Order Rank w.r.t. a Linear Order 16
3.3 Finding the Minimum Using a prSBP Oracle . 17

4 Which Karp–Lipton–style Collapse is Better? 18
4.1 A Karp–Lipton–style Collapse to PprOMA . 19
4.2 Promise Oblivious Merlin–Arthur Protocols are in Promise OP

2 20
4.3 Merging input-oblivious promise queries . 20

5 PprMA ⊆ LP
2 22

5.1 The non-input-oblivious setting . 22
5.2 The Input-Oblivious Setting . 23
5.3 An even better Karp–Liption–style collapse? . 25

6 Discussion and Further Research 25

2

1 Introduction

The seminal theorem of Richard M. Karp and Richard J. Lipton [KL80] connected non-uniform
and uniform complexity by demonstrating a collapse of the Polynomial Hierarchy assuming NP
has polynomial-size Boolean circuits. This collapse has since been very instrumental in transferring
lower bounds against Boolean circuits of fixed-polynomial2 size to smaller classes of the Polyno-
mial Hierarchy. Since then, these results were strengthened in many ways leading to “minimial”
complexity classes that have such lower bounds and to which the Polynomial Hierarchy collapses.

1.1 Background

1.1.1 Classes Based on Symmetric Alternation

An important notion in this context is that of symmetric alternation. Namely, one of the best
collapses was based on the following idea ([Cai07], attributed to Sengupta): if polynomial-size
circuits for SAT exist, two provers (defending the answers ‘yes’ and ‘no’, respectively) send such
circuits to a polynomial-time bounded verifier who can, in turn, use them to verify membership
in any language in PH. The corresponding class SP

2 [Can96, RS98] was thus shown to have fixed-
polynomial circuit lower bounds. (In Section 2 we provide formal definitions for all less known
classes we use.)

Indeed, since NP ⊆ SP
2 , if SAT requires superpolynomial circuits, we are done. Otherwise,

the Polynomial Hierarchy, which is known to contain “hard” languages (that is, for every k ∈ N,
PH ̸⊆ Size[nk]) by Kannan’s theorem [Kan82], collapses to SP

2 and so do these hard languages. This
technique has been known as a win-win argument in the literature [Kan82, BCG+96, KW98, Vin05,
Cai07, San09, CR11, Vol14, IKV23]. Chen et al. [CMMW19] prove that there is a bidirectional
relationship between fixed-polynomial lower bounds and Karp–Lipton–style theorems. In the linear-
exponential regime, while the win-win argument can be extended to obtain superpolynomial lower
bounds for SE

2 (the linear-exponential version of SP
2), it falls short of achieving truly exponential

lower bounds, as it encounters the so-called “half-exponential” barrier (see [MVW99]).
Upon further inspection, one can observe that the presumed polynomial-size circuits for SAT

do not actually depend on the input itself, but rather on its length. Based on this observation,
the collapse was deepened to the input-oblivious version of SP

2 , called OP
2 [CR06]. Yet, since OP

2

is not known and, in fact, not believed to contain NP, the fixed-polynomial lower bounds do not
(immediately) carry over to OP

2 .
This state of affairs remained unchanged for about fifteen years until a significant progress was

made when Kleinberg et al. [KKMP21] initiated the study of total functions beyond TFNP. While
Karp–Lipton’s theorem has not been improved, lower bounds against Size[nk] were pushed down
to OP

2 [GLV24] and LP
2 [KP24], a new1 important class which we describe in more detail below.

At the same time, truly exponential lower bounds were established for SE
2 [Li24] (as it turns out,

SE
2 = OE

2 [GLV24]) and LE
2 [KP24].

An important feature of these new results was that they were based on reducing finding a hard
function to a total search problem. Namely, the works of Korten [Kor22] and Li [Li24] reduced
the question to the so-called Range Avoidance problem: given a function f : {0, 1}n → {0, 1}m
with m > n, represented by a Boolean circuit, find a point outside its image. In [CHR24, Li24],

2That is, for any k ∈ N, the class contains a language that cannot be computed by Boolean circuits of size nk, i.e.
a language outside of Size[nk].

3

Range Avoidance has been reduced to symmetric alternation. Subsequently, Korten and Pitassi
[KP24] reduced Range Avoidance to the Linear Ordering Principle: given an implicitly described
ordering relation, either find the smallest element or report a breach of the linear order axioms. A
polynomial-time Turing closure of this principle gave rise to a new class LP

2 ⊆ SP
2 : a version of SP

2

where the two provers provide points of a polynomial-time verifiable linear order on binary strings
of a certain length (each point starting with the corresponding answer 0 or 1), and the prover that
provides the smaller element wins.

1.1.2 Classes Based on Merlin-Arthur Protocols

In a parallel line of research, the same questions were considered for classes based on Merlin–
Arthur proofs: Santhanam [San09] has shown fixed-polynomial lower bounds for promise problems
possessing such proofs (i.e. the class prMA). In [CR11], Chakaravarthy and Roy have shown a
Karp–Lipton–style collapse and thus fixed-polynomial size lower bounds for the class PprMA. In
particular, they presented a new upper bound for SP

2 by showing that SP
2 ⊆ PprAM. Nonetheless,

the relationship between PprMA and the classes of symmetric alternation (including SP
2 , O

P
2 , and

then-unknown LP
2) remained open.

Combining their upper bound for SP
2 with a result of [AKSS95], that NP ⊆ P/poly implies an

“internal collapse” MA = AM3, [CR11] concluded that the Polynomial Hierarchy collapses all the
way to PprMA. Subsequently, by applying the win-win argument, they obtained fixed-polynomial
bounds for PprMA, which (unlike prMA) is a class of languages. It is to be noted though that
since prMA is not a class of languages — while PprMA is, there is no immediate way to carry any
lower bound against prMA over to PprMA: it is not clear how to leverage (even) Turing reductions
to construct a specific language consistent with a given promise problem.

Babai, Fortnow, and Lund [BFL91] prove that if EXP ⊆ P/poly, then EXP = MA. Although
this is a much larger class, the proof has the advantage that it does not relativize. More collapses
in the exponential regime have been proved since then [IKW02, BH92], and the win-win argument
yields superpolynomial lower bounds for some of them: MAEXP ⊈ P/poly [BFT98].

1.2 Promise Problems as Oracles

An important note is due on the use of a promise problem as an oracle, because the literature
contains several different notions for this. The collapse result of Chakaravarthy and Roy that we
use follows the loose oracle access mode adopted in [CR11]. Namely, oracle queries outside of
the promise set are allowed and no particular behaviour of the computational model defining the
promise class is expected on such queries. At the same time, the answer of the (base) machine using
this oracle must be correct irrespective of the oracle’s answers to such queries and no assumption
is made on the internal consistency of the answers outside of the promise set.

For deterministic polynomial-time oracle machines this approach is equivalent to querying any
language consistent with the promise problem, that is, a language that contains all the “yes”
instances and does not contain the “no” instances of the promise problem. One can also extend it
to complexity classes: a class C of languages is consistent with a class D of promise problems if for
every problem Π ∈ D there is a language L ∈ C consistent with Π. The equivalence between the
approaches follows from the works of [GS88, BF99], where the latter approach has been adopted.

3The internal collapse goes through for the promise versions of the classes as well.

4

Nonetheless, we include a formal proof of this equivalence in Section 2.1 for the sake of completeness
and for further reference.

1.3 Our Contribution

In this paper we prove the inclusions PprMA ⊆ LP
2 ⊆ PprSBP and PprOP

2 ⊆ OP
2 , which not only

give new upper and lower bounds for LP
2 , but also demonstrate that the Karp–Lipton–collapse to

PprOMA is currently the best one both for symmetric–alternation–based and Merlin–Arthur–based
classes of languages.

1.3.1 A New Lower Bound for LP
2 and the Strongest Non-Input-Oblivious Karp–

Lipton Collapse

Two open questions regarding symmetric alternation have been stated explicitly:

• whether PprMA is contained in SP
2 [CR11] (note that for these two classes Karp–Lipton style

theorems have been proved by [CR11] and by Samik Sengupta [unpublished], respectively),

• whether a Karp–Lipton–style theorem holds for LP
2 [KP24].

In this paper we resolve both these questions affirmatively by showing the following containment.
(Recall that LP

2 ⊆ SP
2 .)

Theorem 1. PprMA ⊆ LP
2 .

Combining this theorem with a result of Chakaravarthy and Roy [CR11] that NP ⊆ P/poly
implies the collapse PH = PprMA, we obtain a Karp–Lipton–style collapse theorem for LP

2 , thus
resolving an open question posed in [KP24].

Corollary 2. If NP ⊆ P/poly, then PH = LP
2 = PprMA.

Together with the result of [Cai07], it lines up all known non-input-oblivious classes for which
a Karp–Lipton–style collapse has been shown:

PprMA ⊆ LP
2 ⊆ SP

2 ⊆ ZPPNP ⊆ ΣP
2 .

1.3.2 A New Upper Bound for LP
2

Another important result of this work is a new upper bound on LP
2 : we prove that LP

2 ⊆ PprSBP.
The best known upper bound prior to our result followed from [KP24, CR11]: LP

2 ⊆ SP
2 ⊆ PprAM.

Theorem 3. LP
2 ⊆ PprSBP.

In summary, our two new inclusions (Theorems 1 and 3) yield the “normal” (non-input-oblivious)
part of Figure 1.

5

MA SBP AM

PprMA LP
2 PprSBP

SP
2

PprAM
Theorem 1 Theorem 3

PprOMA P
OLP

2 ,prONP
OP

2 ∩ LP
2

PprOP
2

OP
2

Cor. 5.6 Cor. 5.6

Theorem 5

Figure 1: Containments of classes based on Merlin–Arthur protocols and on symmetric alternation.

Switching to the linear-exponential regime, in [KP24], Korten and Pitassi have shown that LE
2

— the exponential version of LP
2 — contains a language of circuit complexity 2n/n. By translation,

our upper bound scales as LE
2 ⊆ EprSBP 4. As a corollary we obtain a new circuit lower bound

for the class EprSBP. To the best of our knowledge, the strongest previously established bound for
this class was “half-exponential” that followed from the bound on MAEXP [MVW99].

Corollary 4. EprSBP contains a language of circuit complexity 2n/n.

It is to be noted that Corollary 4 could be viewed as an unconditional version of a result
of Aydinliog̃lu et al. [AGHK11] as it recovers and strengthens their conclusion. In particular,
[AGHK11] have shown the following5: if PNP is consistent with prAM or even prSBP, then
ENP contains a language of circuit complexity 2n/n. Indeed, given the premises we obtain that

EprSBP ⊆ EPNP
= ENP from which the claim follows directly by Corollary 4.

1.3.3 Aggregation of prOP
2 queries and the Strongest Input-Oblivious Karp–Lipton

Collapse

Theorem 1 shows that PprMA is currently the smallest non-input-oblivious class for which a Karp–
Lipton–style collapse is known. On the other hand, such a collapse was also shown for OP

2 [CR06],
which is input-oblivious. However, since the precise relationship between OP

2 and PprMA remains
unknown, one may ask: what is the strongest Karp–Lipton–style collapse? Our next result assists
in navigating this question.

Theorem 5. PprOP
2 ⊆ OP

2 .

We note that the “non-promise” version of this inclusion, i.e. POP
2 ⊆ OP

2 , was already es-
tablished in [CR06]. However, this result does not carry over to the promise case. A similar phe-

4As is turns out, this class is also equal EprBPPpath . See Section 1.4.1 for more details.
5The corresponding claims in [AGHK11] were stated using slightly different terminology.

6

nomenon arises in the non-input-oblivious analogue of this question: while we know that PSP
2 ⊆ SP

2

[CR06], it still remains open whether PprSP
2 ⊆ SP

2 .
With this tool in hand, we can identify and show the strongest Karp–Lipton–style collapse that

currently known. Namely, the collapse can be extended to PprOMA ⊆ PprMA, where prOMA
is the input-oblivious version of prMA and therefore is contained in prMA. At the same time,
Theorem 5 allows us to show that PprOMA is also contained in OP

2 , thus making PprOMA smaller
than both PprMA and OP

2 !

Theorem 5 also allows us to refine the chain of containments between PprOMA and OP
2 by

introducing a newly defined class, OLP
2 , an input-oblivious analogue of LP

2 (see Figure 1). Note

that this chain proceeds via PONP,OLP
2 rather than OLP

2 itself, since OLP
2 is not guaranteed either

to share the convenient closure properties of LP
2 or to contain ONP. Still we prove that

PprOMA ⊆ POLP
2 ,prONP ⊆ OP

2 ∩ LP
2 .

That is, POLP
2 ,ONP can serve as an input-oblivious analogue of LP

2 (= PLP
2 ,NP [KP24]).

1.4 Our Techniques

1.4.1 Approximate Counting, Set Size Estimation and SBP

Computing the number of accepting paths of a given non-deterministic Turing machine is a funda-
mental problem captured by the “counting” class #P. Yet, this class appears to be too powerful
since, by Toda’s Theorem [Tod91], even a single query to it suffices to decide any language in
the polynomial hierarchy, PH ⊆ P#P[1]! Given that, it is natural to explore approximations.
To this end, one can consider the problem of Approximate Counting (ApproxCount for short)
which refers to the task of approximating the number of accepting paths (within a constant factor).
Equivalently, this problem can be framed as approximating the size of a set S represented as the set
of satisfying assignments of a Boolean circuit C. Previously, it was shown that this task could be
carried out by a randomized algorithm using an NP oracle (FBPPNP) [Sto85, JVV86] and by a
deterministic algorithm using a prAM oracle (FPprAM) [Sip83, GS86]. Shaltiel and Umans [SU06]
show how to accomplish this task in FPNP, yet under a derandomization assumption. We note
that all of these algorithms can be implemented using parallel (i.e. non-adaptive) oracle queries.
That is, in FBPPNP

∥ ,FPprAM
∥ and FPNP

∥ , respectively. Approximate counting has also recently

attracted considerable attention in the quantum literature [OS18, AKKT20, AR20, MAD25].

The decision version of the problem is to distinguish between two constant-factor estimates of
the set size. For concreteness, consider the following problem called set-size estimation (or SSE
for short): Given a set S (via a Boolean circuit C) and an integer m with the promise that either
|S| ≥ m or |S| ≤ m/2, our goal is to decide which case holds. Interestingly, this problem is
complete for the class SBP6 introduced in [BGM06] by Böhler et al. as a relaxation of the class
BPP to the case when the acceptance probability is not required to be bounded away from 0.
This relaxation, as was shown in [BGM06], yields additional power: MA ⊆ SBP ⊆ AM. The
class SBP, which stands for small bounded-error polynomial-time, thus sits strictly between the

6Strictly speaking, the problem is complete for prSBP, the corresponding class of promise problems, and is
therefore hard for SBP.

7

two fundamental classes based on Arthur–Merlin protocols, yet its definition is not based on these
protocols. Moreover, SBP remains the only known natural class that lies between MA and AM.

In terms of upper bounds, in a seminal paper [GS86], Goldwasser and Sipser have exhibited an
Arthur–Merlin protocol not only for this problem, but also for the case when the set S is represented
by a non-deterministic circuit7! This more general version of the problem (WSSE, where the set
S is given via a non-deterministic circuit), is complete for the class prAM. (See Definition 3.1 for
the formal definition of the problems; in fact, the factor-of-two gap in the estimates is arbitrary
and can be replaced by any positive constant.) In fact, Goldwasser–Sipser’s protocol proves the
containment both for languages (SBP ⊆ AM) and for promise problems (prSBP ⊆ prAM). At
the same time, it is important to highlight the distinction between the two versions of the problem
— i.e. for the “standard” (SSE) vs non-deterministic (WSSE) Boolean circuits — which appears
to be (at the very least) non-trivial. Notably, the work of [BGM06] established an oracle separation
between SBP and AM.

On a similar note, by combining some of the previous techniques, we observe thatApproxCount
can be carried out in FPprSBP rather than FPprAM, and, in fact, even in FPprSBP

∥ . Given this

observation, it is natural to study the computational power of PApproxCount, that is, deterministic
algorithms with oracle access to ApproxCount. Indeed, an immediate corollary of the above
is that PApproxCount = PprSBP and PApproxCount

∥ = PprSBP
∥ . At the same, O’Donnell and Say

[OS18] previously showed that PApproxCount
∥ = BPPpath, a complexity class defined earlier by

Han et al. [HHT97]. One can think of BPPpath as a version of BPP in which different computa-
tional paths (of the same probability) may have different lengths. Incidentally, it was established
in [BGM06] that BPPpath can be obtained from BPP via the so-called “postselection” and that
SBP ⊆ BPPpath (and resp. prSBP ⊆ prBPPpath). Putting all together, one arrives at the
following three clusters of complexity classes associated with approximate counting:

SBP ⊆ BPPpath = PApproxCount
∥ = PprSBP

∥ ⊆ PApproxCount = PprSBP = PprBPPpath ,

where both inclusions are believed to be strict.

1.4.2 Approximate Counting and the Order Rank Approximation

The upper bound LP
2 ⊆ PprSBP is obtained by developing a process that, given an arbitrary element

in a linearly ordered set, rapidly converges to the set’s minimum.

Approximate counting using a prSBP oracle. We show how to deterministically approxi-
mate the number of satisfying assignments of a Boolean circuit, given oracle access to prSBP (i.e.
in FPprSBP), using parallel queries. Our algorithm is based on SBP amplification that was used
in [BGM06, Vol20]. A crucial observation is that, as we need a multiplicative approximation (up to
the factor 1+ε), it suffices to place the desired number between two consecutive powers of two; the
correct place then could be found by either querying a prSBP oracle O(n/ε) times in parallel or
(using binary search) O(log2(n/ε)) times sequentially. This result could be on independent interest.
See Lemma 3.4 for the formal statement.

7A non-deterministic circuit C(x,w) accepts x if there exists a witness w for which C(x,w) = 1.

8

Approximating the order rank w.r.t. a linear order. The order rank of an element α of a
linearly ordered set U is the number of elements in this set that are strictly less than α (in particular,
α is the minimum if and only if rank(α) = 0). We can extend this definition to non-empty subsets
S ⊆ U , where rank(S) is the average order rank of elements in S.

We reduce the problem of approximately comparing the average order ranks of two sets to
approximate counting. To see how, consider a strict linear order <E implicitly defined on U = {0, 1}n
using a Boolean circuit E, and observe that for a non-empty subset S ⊆ U , the average order rank
of S is exactly the size of the set of pairs {(υ, α) ∈ U ×S | υ <E α} divided by the size of S. Hence,
this task can be carried out using a prSBP oracle.

An upper bound for the Linear Ordering Principle. As was mentioned, we develop a
process that, given an arbitrary element in a linearly ordered set U = {0, 1}n, rapidly converges to
the set’s minimum.

Given an element α ∈ U , we first define the set S as the set of all the elements less or equal to
α. Formally, S := {x | x ≤ α}. Observe that rank(S) = rank(α)/2. We then iteratively partition
S into two disjoint sets, starting from i = 1:

S0 = {x ∈ S | xi = 0} and S1 = {x ∈ S | xi = 1}.

By averaging argument, min {rank(S0), rank(S1)} ≤ rank(S). We then take S to be the subset (S0

or S1) with the smaller order rank and continue to the next value of i. That is, we fix the bits
of the elements of S one coordinate at a time. Therefore, once i = n, our “final” set S contains
exactly one element β and thus at that point rank(S) = rank(β). On the other hand, as the order
rank of the “initial” S was rank(α)/2 and the overall order rank could only decrease, we obtain
that rank(β) ≤ rank(α)/2. We can then invoke the same procedure this time with β as its input.
As the there are 2n elements in U , this process will converge to the set’s minimum after invoking
the procedure at most n times, given any initial element.

The algorithm described above requires computing (or at least comparing) the average order
ranks of two sets. Our analysis demonstrates that a procedure for approximate comparison, devel-
oped before, is sufficient for the implementation of this idea (though the factor at each step will be
a little bit less than 2).

1.4.3 Derandomization in LP
2

In [KP24], Korten and Pitassi show that MA ⊆ LP
2 . The inclusion PprMA ⊆ LP

2 essentially
follows their argument with the additional observation that since LP

2 is a syntactic class, not only it
contains MA (as was shown) but it is also consistent with prMA. Thus one can first construct a
pseudorandom generator using an LP

2 oracle [Kor22, KP24] and then leverage it to fully derandomize

the prMA oracle not just in prNP, but actually in NP ⊆ LP
2 ! Therefore, P

prMA ⊆ PLP
2 = LP

2 .
We also observe that since the pseudorandom generator depends only on the input length (and

not the input itself), derandomization also helps settling the relations between input-oblivious
classes to a certain extent. The main difference is that unlike their non-oblivious counterparts,
they do not posses all the desired properties w.r.t. Turing closure and natural containments.
However, Theorem 5 (its technique is described below) eventually helps us building the chain from
PprOMA to OP

2 in two different ways: both directly and through derandomization and intermediate
classes using OLP

2 .

9

1.4.4 Input-Oblivious Symmetric Alternation

A Karp–Lipton–style collapse to PprOMA follows from [CR11] by combining several previously
known techniques. However, is this collapse stronger than the known collapse to OP

2 [CR06]? The
inclusion prOMA ⊆ prOP

2 can be transferred from a somewhat similar statement that was proven

in [CR06]; however, in order to prove PprOMA ⊆ OP
2 we need also the inclusion PprOP

2 ⊆ OP
2 ,

which seems novel. The main idea is that the two provers corresponding to the oracle give their
input-oblivious certificates prior to the whole computation, and the verification algorithm performs
a cross-check not only between the certificates of different provers but also between the certificates
of the same prover, which allows us to simulate all oracle queries to prOP

2 in a single OP
2 algorithm.

Indeed, our approach is made possible by the input-oblivious nature of the computational model:
while the oracle queries may be adaptive and not known in advance (due to potential queries
outside of the promise set), the certificates are universal for the whole computation and nothing
else is required.

1.5 Organization of the Paper

The paper is organized as follows: In Section 2 we give the necessary definitions and also discuss
oracle access modes in a more formal way. Section 3 contains the proof of Theorem 3 – a new
upper bound on LP

2 . Section 4 contains the proof of Theorem 5 which implies that collapse to
PprOMA subsumes both collapses to PprMA and to OP

2 . Section 5 contains the proof of Theorem
1 answering the open questions of Korten and Pitassi [KP24] and Chakaravarthy and Roy [CR11].
We also include a version of this theorem for input-oblivious classes. We discuss multiple research
directions in Section 6.

2 Definitions

2.1 Classes of Promise Problems as Oracles

Before defining complexity classes, we first clarify what we mean by oracle access to classes of
promise problems. A promise problem is a relaxation of (the decision problem for) a language.

Definition 2.1 (promise problem). Π = (ΠYES,ΠNO) is a promise problem if ΠYES ∩ΠNO = ∅.

Similarly to [CR11], when an oracle is described as a promise problem, we use loose access to
the oracle. The outer Turing machine is allowed to make queries outside of the promise set, and
the oracle does not need to conform to the definition of the promise oracle class for such queries.
However, the outer Turing machine must return the correct answer irrespective of oracle’s behavior
for queries outside of the promise set in particular, the oracle does not need to be consistent in its
answers to the same query. Let us now formulate it in a more precisely to avoid misunderstanding:

Loose Oracle Access vs Access Through a Consistent Language One must be very careful
when arguing about oracle access to promise classes. Several modes of access have been considered
in the literature including guarded access [LR94], loose access (e.g., [CR11, HS15]), and access
through a consistent language [GS88, BF99].

In this paper we use the same mode of access as in [CR11]. Fortunately, when the underlying
computational model is a polynomial-time Turing machine [with a specific polynomial-time alarm

10

clock], loose access is equivalent to access through a consistent language. In order to make this
connection very clear, below we define both of them rigorously and show the equivalence. Note
that for other computational devices, such as those corresponding to OP

2
• or SP

2
•, the connection

between the modes is much less clear.

Access through a consistent language. The following definition is from [GS88].

Definition 2.2 (consistency). Consider a promise problem Π = (ΠYES,ΠNO), where ΠYES∩ΠNO = ∅.
We say that a language O is consistent with Π, if ΠYES ⊆ O and ΠNO ⊆ O. Let us denote it as
O ⊂∼ Π. Note that the containment of O outside of ΠYES ∪ΠNO can be arbitrary.

In one line of the literature [GS88, BF99], when an oracle is described as a promise problem, the
following mode of access is used (access through a consistent language): the outer Turing machine
queries a language L consistent with this promise problem. In particular, it is allowed to make
queries outside of the promise set. However, the outer Turing machine must return a correct answer
for every possible choice of L.

Let us formalize it in the simplest case of PΠ:

Definition 2.3. A language L is in PΠ according to the consistent language mode, if there is a
deterministic oracle Turing machine M• with polynomial-time alarm clock stopping it in time p(n)
such that for every O ⊂∼ Π and for every input x, MO(x) = L(x).

One can observe that for every such language O, PΠ ⊆ PO, therefore the following holds as
well, and in fact can be considered as an alternative definition.

Definition 2.4 (promise problems as oracles). PΠ :=
⋂

ΠYES⊆O
ΠNO⊆O

PO.

For more details and discussion see e.g. [GS88, BF99].

Loose access. In the loose access mode, one considers oracle as a black box (physical device)
that is only guaranteed to work correctly on the promise set. Outside this set it can produce any
answer, in particular, it can give different answers to the same query, either during one deterministic
computation, or for different witnesses if the computational model uses them, or for different inputs.

Let us define it rigorously in the simplest case of PΠ:

Definition 2.5. A language L is in PΠ according to the loose access mode, if there is a deterministic
oracle Turing machine M• with polynomial-time alarm clock stopping it in time p(n) such that for
every input x M•(x) produces the answer L(x) if the oracle answers “yes” on queries in ΠY and
answers “no” on queries in ΠN . (No hypothesis is made on its behaviour outside ΠY ∪ ΠN , in
particular, its answers may be inconsistent for the same query.)

Equivalence for PΠ. Fortunately, it is very easy to verify the equivalence of these two definitions
in the case of PΠ.

Proposition 2.6. Let Π be a promise problem. A language L belongs to PΠ according to the loose
access mode if and only if it belongs to PΠ according to access through a consistent language.

11

Proof. The “only if” direction is trivial since a consistent language is a particular case of a black
box. For the “if” direction, consider M• from the definition of access through a consistent language.
To make it tolerant to the loose access mode, maintain a table of oracle answers, and if M• attempts
to repeat the same query, use the answer from the table instead. The definition of the machine will
not change if its oracle is a language, thus it will still produce the same answer. On the other hand,
its behaviour on input x when given a blackbox oracle is the same as its behaviour when given the
following language Lx as an oracle: Lx = ΠY ∪ Yx, where Yx is the set of all queries for which the
blackbox oracle gave the answer “yes” when asked for the first time. Since Lx is consistent with
Π, MLx(x) = L(x) according to the definition of access through a consistent language.

2.2 Problems Avoid and LOP

Definition 2.7 (Avoid, Range Avoidance, [KKMP21, Kor22]).
Avoid is the following total search problem.
Input: circuit C with n inputs and m > n outputs.
Output: y ∈ {0, 1}m \ ImC.

Korten [Kor22] proved that for a stretch of n+1 this problem is equivalent to a stretch of O(n)
(and, of course, vice versa) using PNP reductions.

The following definition is due to Korten and Pitassi [KP24]:

Definition 2.8 (LOP, Linear Ordering Principle).
LOP is the following total search problem.
Input: ordering relation <E given as a Boolean circuit E with 2n inputs.
Output: either the minimum for <E (that is, x such that ∀y ∈ {0, 1}n \ {x} x <E y) or a counterex-
ample, if <E is not a strict linear order. A counterexample is either a pair satisfying x <E y <E x or
a triple satisfying x <E y <E z <E x.

2.3 Complexity Classes

The following two definitions have been suggested by Korten and Pitassi who also proved their
equivalence [KP24].

Definition 2.9 (LP
2 via reductions). A language L ∈ LP

2 if it can be reduced to LOP using a PNP-
Turing reduction. (Polynomial-time Turing reductions and polynomial-time many-one reductions
have the same effect, as proved in [KP24].)

The following is an alternative definition of LP
2 , which was shown in [KP24] to be equivalent.

Definition 2.10 (LP
2 via symmetric alternation). A language L ∈ LP

2 if there is a ternary relation
R computable in time s(n), where s is a polynomial,

R ⊆ {0, 1}n × {0, 1}s(n) × {0, 1}s(n),

denoted Rx(u, v) for x ∈ {0, 1}n, u, v ∈ {0, 1}s(n), such that, for every fixed x, it defines a linear
order on s(|x|)-size strings such that:

• for every x ∈ L, the minimal element of this order starts with bit 1,

• for every x /∈ L, the minimal element of this order starts with bit 0.

12

It is immediate that the latter version of the definition is a particular case of the definition of
SP
2 [Can96, RS98]:

Definition 2.11. A language L ∈ SP
2 if there is a polynomial-time computable ternary relation

R ⊆ {0, 1}n × {0, 1}s(n) × {0, 1}s(n), denoted Rx(u, v) for x ∈ {0, 1}n, u, v ∈ {0, 1}s(n), such that:

• for every x ∈ L, there exists w(1) such that ∀v Rx(w
(1), v) = 1,

• for every x /∈ L, there exists w(0) such that ∀u Rx(u,w
(0)) = 0.

We now formally define the class OP
2 [CR06], which is the input-oblivious version of SP

2 . Since
we will need also a promise version of it, we start with defining this generalization.

Definition 2.12. A promise problem Π = (ΠYES,ΠNO) belongs to prOP
2 if there is a polynomial-

time deterministic Turing machine A such that for every n ∈ N, there exist w
(0)
n , w

(1)
n (called

irrefutable certificates) that satisfy for every x ∈ {0, 1}n:

• If x ∈ ΠYES, then for every v, A(x,w
(1)
n , v) = 1,

• If x ∈ ΠNO, then for every u, A(x, u, w
(0)
n) = 0.

No assumption on the behaviour of A is made outside the promise set except that it stops (accepts
or rejects) in polynomial time.

OP
2 is the respective class of languages (that is, it corresponds to the case of ΠYES = ΠNO).

We remind the definition of another oblivious promise class.

Definition 2.13. A promise problem Π = (ΠYES,ΠNO) belongs to prOMA if there is a polynomial-
time deterministic Turing machine A and, for every n ∈ N, there exists wn (a witness that serves
for every positive instance of length n), that satisfy the following conditions for every x ∈ {0, 1}n:

• If x ∈ ΠYES, then ∀r A(x, r, wn) = 1,

• If x ∈ ΠNO, then ∀w Prr[A(x, r, w) = 1] < 1/2.

Finally, we define also an input-oblivious version of LP
2 .

Definition 2.14. A language L belongs to OLP
2 if there is a polynomial p, polynomial-time de-

terministic Turing machine V computing a ternary predicate {0, 1}n × {0, 1}p(n) × {0, 1}p(n) (we
use the notation Vx(u, v) to denote its result), and two sequences of length-p(n) bit strings (yn)n∈N,
(zn)n∈N such that

• for every x, Vx is a strict linear order (define u <x v iff Vx(u, v) = 1),

• ∀x ∈ L ∩ {0, 1}n 1yn = min <x,

• ∀x ∈ L ∩ {0, 1}n 0zn = min <x.

Remark 2.15. One may further require that not only the minimal element but also the entire
ordering, for inputs of the same lengths, to coincide. Our results still hold true under this definition
as well, although it is unclear whether the two definitions are equivalent or which will ultimately
prove more useful.

Remark 2.16. Note that unlike NP ⊆ LP
2 , it is unclear whether ONP ⊆ OLP

2 . Therefore, when
we need both these input-oblivious classes, we need to specify both oracles.

13

3 LP

2 ⊆ PprSBP

In this section we prove Theorem 3. Our proof strategy is as follows: Given a point in a linear
order, we aim to move “down the order” (i.e. towards “smaller” points). At each stage we will
skip over a constant fraction of the points remaining on our way to the minimum. In order to find
the next point, we will employ a binary-search-like procedure to determine the bits of the desired
point, one coordinate at a time. Here is where our prSBP oracle comes into play: At each step, we
look at the remaining set of points partitioned into two subsets: the points where the appropriate
bit is 0 and where that bit is 1, and select the subset with the (approximately) smaller average
order rank.

Before we proceed with the main algorithm, we show how to approximate the size of a set using
a prSBP oracle. This procedure could be of independent interest.

3.1 Approximate Counting

In this section we observe that one can approximate deterministically the number of satisfying
assignments for a Boolean circuit using a prSBP oracle (i.e. FPprSBP). Previously, it was shown
that this task could be carried out by a randomized algorithm using an NP oracle (FBPPNP)
[Sto85, JVV86] and by a deterministic algorithm using a prAM oracle (FPprAM) [Sip83, GS86].
Note that queries to prSBP/prAM can be thought of as queries to specific promise problems.

Definition 3.1 (Set-Size Estimation, SSE and WSSE). Let C be a Boolean circuit and m ≥ 1 be
an integer given in binary representation. Then SSE := (SSEYES,SSENO), where

SSEYES = {(C,m) | #xC(x) ≥ m},
SSENO = {(C,m) | #xC(x) ≤ m/2}.

If C is a non-deterministic circuit, we denote the corresponding problem by WSSE.

These two promise problems are complete for promise classes prSBP and prAM, respectively.
This is what is proved essentially in [BGM06] and [GS86] and formulated explicitly in [Vol20].

Lemma 3.2 (Implicit in [BGM06]). SSE is prSBP-complete.

Lemma 3.3 (Implicit in [GS86]). WSSE is prAM-complete.

In particular, these complete problems showcase that prSBP ⊆ prAM. The following lemma
implies that ApproxCount ∈ FPprSBP

∥ and, in fact, provides a slightly stronger result in the
form of one-sided approximation.

Lemma 3.4. There exists a deterministic algorithm that given a Boolean circuit C on n variables
and a rational number ε > 0 outputs an integer number t satisfying

#xC ≤ t ≤ 4ε/3 ·#xC ≤ (1 + ε)#xC

in time polynomial in n, the size of C and 1
ε , making non-adaptive oracle queries to SSE.

The result appears to follow from a combination of previous techniques (and may be considered
“folklore”). For completeness, we now provide its proof. We begin with a definition and a useful

14

inequality.

For a unary relation R(x), we denote the number of elements in R as #xR(x) := |{x | x ∈ R}|.
We will also abbreviate this notation to #xR. For k ∈ N, we define R⊗k – the k-th tensor power
of R as

R⊗k((x1, . . . , xk)) := R(x1) ∧R(x2) ∧ . . . ∧R(xk),

where x1, . . . , xk are k disjoint copies of the argument x of R, respectively.

Observation 3.5. Then #x(R
⊗k) = (#xR)k.

Observation 3.6 (Bernoulli’s inequality). Let 0 ≤ ε ≤ 1. Then 4ε/3 ≤ 1 + ε.

Lemma 3.7 (Lemma 3.4 rephrased). There exists a deterministic algorithm that given a Boolean
circuit C on n variables and a rational number ε > 0 outputs an integer number t satisfying

#xC ≤ t ≤ 4ε/3 ·#xC ≤ (1 + ε)#xC

in time polynomial in n, the size of C and 1
ε , making non-adaptive oracle queries to SSE.

Proof. Let O be a language consistent with SSE. Set k :=
⌈
3
ε

⌉
and define Ĉ := C⊗k. Consider the

following algorithm:

1. If (C, 1) ̸∈ O return t = 0 // #xC = 0

2. Find i as the smallest j between 1 and nk + 1 such that
(
Ĉ, 2j

)
̸∈ O

3. return t =
⌊
2i/k

⌋
If #xC = 0 then (C, 1) ̸∈ O and the algorithm outputs t = 0. Otherwise, #xĈ ≥ 1 and hence(
Ĉ, 1

)
∈ O. On the other hand, by definition #xĈ ≤ 2nk and hence

(
Ĉ, 2nk+1

)
̸∈ O. Therefore, i

is well-defined and we have that:

•
(
Ĉ, 2i

)
̸∈ O =⇒ #xĈ < 2i =⇒ (#xC)k < 2i =⇒ #xC < 2i/k =⇒ #xC ≤ t,

•
(
Ĉ, 2i−1

)
∈ O ⇒ #xĈ > 2i−1

2 ⇒ (#xC)k > 2i−2 ⇒ 41/k ·#xC > 2i/k ⇒ 41/k ·#xC > t.

In conclusion,
#xC ≤ t ≤ 41/k ·#xC ≤ 4ε/3 ·#xC ≤ (1 + ε)#xC.

For the running time, the algorithm finds i by either querying the oracle O at most nk+2 times
in parallel or (using binary search) O(log2(nk)) times sequentially, and thus the computation of t
can be carried out in time poly(nk).

15

3.2 Estimating the Average Order Rank w.r.t. a Linear Order

Let U = {0, 1}n. A single-output Boolean circuit E with 2n inputs induces an ordering relation <E

on U as
x <E y ⇐⇒ E(x, y) = 1.

If <E is a strict linear order, we call E a linear order circuit.

Observation 3.8. There exists a deterministic Turing machine with SAT oracle that, given a
circuit E on 2n variables, stops in time polynomial in n and the size of E and does the following:
if E is a linear order circuit, it outputs “yes”; otherwise, it outputs a counterexample: a pair
satisfying x <E y <E x or a triple satisfying x <E y <E z <E x.

Fix any strict linear order < on U .

Definition 3.9. For an element α ∈ U we define its order rank as rank(α) := |{x ∈ U | x < α}|.
We can extend this definition to non-empty subsets S ⊆ U of U by taking the average order rank:

define rank(S) :=
∑

x∈S rank(x)

|S| . If S = {x ∈ U | C(x) = 1} is described by a circuit C, we use the

same notation: rank(C) = rank(S).

Below are some useful observations that we will use later.

Observation 3.10.

• For a non-empty subset S ⊆ U , |{(υ, α) ∈ U × S | υ < α}| = |S| · rank(S).

• For any α ∈ U , rank{υ | υ ≤ α} = rank(α)/2.

• Let S0, S1 ⊆ U be two non-empty disjoint subsets of U . Then

rank(S0 ∪ S1) =
|S0| · rank(S0) + |S1| · rank(S1)

|S0|+ |S1|
.

In the following lemma the rank is defined w.r.t. the order <E described by a linear order circuit
E. This lemma allows us to estimate the order rank of a set using a prSBP oracle.

Lemma 3.11. There exists a deterministic algorithm that given a Boolean circuit C on n variables,
a linear order circuit E on 2n variables, and an ε > 0, outputs a rational number r satisfying:

4−ε · rank(C) ≤ r ≤ 4ε · rank(C)

in time polynomial in n, the sizes of C and E, and in 1
ε , given oracle access to SSE.

Proof. Consider a circuit D(x, y) := C(y) ∧ E(x, y). That is, y is accepted by C and x <E y. By
Observation 3.10, #(x,y)D = #xC · rank(C). By Lemma 3.4 we can compute integers tC and tD
that approximate the numbers #xC and #(x,y)D, respectively. Formally,

#xC ≤ tC ≤ 4ε ·#xC and #(x,y)D ≤ tD ≤ 4ε ·#(x,y)D.

Therefore we obtain:

4−ε · rank(C) ≤
#(x,y)D

4ε ·#xC
≤ tD

tC
≤

4ε ·#(x,y)D

#xC
= 4ε · rank(C).

16

3.3 Finding the Minimum Using a prSBP Oracle

We use the approximation algorithms developed above in order to find an element that is much
closer to the minimum than a given element. The following lemma describes the procedure Back
that given an element α finds another element β whose order rank is smaller by a constant factor.
We will use this procedure afterwards in order to find the minimum in a polynomial number of
iterations.

The procedure proceeds by determining the bits of the new element, one coordinate at a time,
using a prSBP oracle. The order rank is w.r.t. the order <E described by a linear order circuit E.

Lemma 3.12. There exists a deterministic algorithm Back that given a linear order circuit E
on 2n variables and an element α ∈ {0, 1}n, outputs an element β ∈ {0, 1}n such that rank(β) ≤
rank(α)√

2
, in time polynomial in n and the size of E, given oracle access to SSE.

Proof. Consider the following procedure:

Back(E,α) :

1. Define C(x) := E(x, α) ∨ x = α. // The set of all elements that are <E than or equal to α

2. Set ε = 1/(8n).

3. For i = 1 to n:

(a) For b ∈ {0, 1}: define Cb := C|xi=b

(b) For b ∈ {0, 1}: if #xCb = 0 then set C := C1−b, βi := 1− b; continue to the next i

// If one of the sets is empty, we choose the other one

(c) For b ∈ {0, 1}: use Lemma 3.11 to approximate rank(Cb) with ε into rb

(d) If r1 ≥ r0 then C := C0, βi := 0 else C := C1, βi := 1

// Choose the set with smaller approximate order

After each iteration one more variable xi gets its value βi and is substituted into C, that is,
in the current circuit C variables x1, . . . , xi are replaced by the corresponding constants β1, . . . , βi.
We claim that after each iteration the order rank of the resulting circuit is bounded from the above:
rank(C) ≤ 42εi · rank(α)

2 .

Indeed, by Observation 3.10, before the first iteration, we have that rank(C) = rank(α)
2 . Now

consider any iteration. If C1 or C0 are empty, then rank(C) remains the same and 42εi ≤ 42ε(i+1).
Otherwise, by Lemma 3.11, for b ∈ {0, 1} :

4−ε · rank(Cb) ≤ rb ≤ 4ε · rank(Cb).

If r1 ≥ r0 then rank(C1) ≥ r1 · 4−ε ≥ r0 · 4−ε ≥ rank(C0) · 4−2ε and therefore by Observation 3.10:

rank(C) =
#xC0 · rank(C0) + #xC1 · rank(C1)

#xC0 +#xC1

≥ #xC0 · rank(C0) + #xC1 · rank(C0) · 4−2ε

#xC0 +#xC1
≥ rank(C0) · 4−2ε.

17

Equivalently, rank(C0) ≤ rank(C) · 42ε. Similarly, if r1 < r0 then rank(C1) ≤ rank(C) · 42ε.
Therefore, at each step the order rank is multiplied at most by 42ε.

Consequently, after the n-th iteration, C represents the set that contains only the element β
and we have that

rank(β) ≤ 42εn · rank(α)/2 ≤
√
2 · rank(α)/2 = rank(α)/

√
2.

For the runtime, all the steps can be carried out in time polynomial in n and 1
ε = O(n).

Note that the procedure Back has a unique fixed point, namely, the minimal element.

Observation 3.13. Back(E,α) = α if and only if α is the minimal element in E.

Proof. rank(α) = 0 ⇐⇒ rank(α) ≤ rank(α)/
√
2.

We are now ready to prove the main result of this section.

Theorem 3.14. LP
2 ⊆ PprSBP.

Proof. It suffices to construct a deterministic polynomial-time algorithm that solves LOP given
oracle access to prSBP. Let E be a circuit on 2n inputs. We describe an algorithm for LOP.

1. Check that E is indeed a linear order using Observation 3.8.

2. Let α := 0n, β := 1n.

3. While α ̸= β repeat: α := β, β := Back(E,α).

4. Output α.

Given Observation 3.8, we can assume w.l.o.g. that E is a linear order circuit. We claim that
the algorithm will output the minimal element after at most 2n iterations. Indeed, by Lemma 3.12,
the order rank of the element α after 2n iterations satisfies rank(α) ≤ rank(1n)√

2
2n ≤ 2n−1

2n < 1, thus

the “While” cycle will be terminated before that.

4 Which Karp–Lipton–style Collapse is Better?

Chakaravarthy and Roy proved two Karp–Lipton–style collapses: down to OP
2 [CR06] and down

to PprMA [CR11]. These two classes seem to be incomparable thereby rising the question: which
collapse result is stronger? We observe that the collapse to PprMA can actually be deepened
to PprOMA, where prOMA is the oblivious version of prMA — and subsequently show that
latter class is contained in both previous classes. That is, PprOMA ⊆ PprMA ∩OP

2 . Indeed, the
“internal collapse” of prMA (and, in fact, even prAM) to prOMA, under the assumption that
NP ⊆ P/poly, is implicit in [AKSS95]. Nonetheless, we include a formal proof in Section 4.1
below (Proposition 4.1) in order to present a self-contained argument:

If NP ⊆ P/poly, then prAM ⊆ prOMA and PH = PprOMA.

To show that this class is not only included in PprMA but also in OP
2 , we use two inclusions:

18

1. PprOMA ⊆ PprOP
2 .

2. PprOP
2 ⊆ OP

2 .

For the first inclusion it suffices to show

prOMA ⊆ prOP
2 ,

which is essentially proved in [CR06, Theorem 3]: MA ⊆ NOP
2 , where NOP

2 is a less known
class that combines SP

2 with OP
2 : one certificate is input-oblivious, while the other one is not. To

“upgrade” this proof one needs to notice that the proof goes through for promise classes with all
certificates being input-oblivious. As it is not difficult, we include a formal proof of this proposition
in Section 4.2 below (Proposition 4.2). However, later (in Section 5.2) we give a tighter chain

of containments that uses a different method for proving PprOMA ⊆ PprOP
2 (= OP

2), namely, the
derandomization technique. It goes through newly introduced input-oblivious classes based on
symmetric alternation.

The second inclusion
PprOP

2 ⊆ OP
2

seems novel, we prove it in Section 4.3 (Theorem 4.3). The containment result

PprOMA ⊆ OP
2

follows (Corollary 4.4).

4.1 A Karp–Lipton–style Collapse to PprOMA

The following proposition shows that the collapse of [CR11] can be actually pushed down to
PprOMA. For this, we observe that by standard techniques (e.g. [AKSS95]) prAM ⊆ prOMA
under NP ⊆ P/poly.

Proposition 4.1. If NP ⊆ P/poly, then prAM ⊆ prOMA and PH = PprOMA.

Proof. If NP ⊆ P/poly, then Merlin’s proof in prMA can be made input-oblivious. Let us show
it first for a larger class: prAM. If (ΠYES,ΠNO) ∈ prAM, then there is a polynomial-time Turing
machine A such that

∀x ∈ ΠYES ∀r ∃w A(x, r, w) = 1,

∀x ∈ ΠNO Pr
r
[∃w A(x, r, w) = 1] < 1/2.

Let us ask Merlin to send a family Sn of CircuitSAT circuits of appropriate input sizes (slightly
abusing the notation: Sn contains circuits for a polynomial range of input sizes, not just n); one
can assume that they compute a correct satisfying assignment or say “no” (they can lie only if they
say “no” for a satisfiable formula). Consider the Boolean circuit Ax,r obtained by embedding x
and r into A, its variables are the bits of the witness w. Now Arthur can use Sn to produce proofs
by himself instead of Merlin’s original proofs, because the following holds:

∀n ∈ N ∃Sn ∀x ∈ ΠYES ∀r A(x, r, Sn(Ax,r)) = 1,

∀x ∈ ΠNO Pr
r
[∃Sn A(x, r, Sn(Ax,r)) = 1] < 1/2.

19

The first condition is true because Merlin can send correct CircuitSAT circuits. The second
condition is true because if such a circuit Sn existed, then the original Merlin could have sent
w = Sn(Ax,r). Note that in this case although Sn may depend on x and r, A will able to catch a
cheating Merlin.

Formally, a new Arthur A′ expects Sn as a proof, applies Sn to Ax,r itself and runs A on the
resulting witness. Therefore, we get exactly the definition of prOMA (Def. 2.13):

∀n ∈ N ∃Sn ∀x ∈ ΠYES ∀r A′(x, r, Sn) = 1,

∀x ∈ ΠNO ∀S Pr
r
[A(x, r, S) = 1] < 1/2.

Therefore, if NP ⊆ P/poly, then prAM ⊆ prOMA. In [CR11], it is shown that under the
same premises PH = PprAM and hence the claim follows by combining these results.

4.2 Promise Oblivious Merlin–Arthur Protocols are in Promise OP
2

The following proof essentially repeats the proof of [CR06, Theorem 3], which says that MA ⊆
NOP

2 , we need to verify that it holds for promise problems as well, and Merlin’s advice remains
oblivious if it was oblivious before, that is, prOMA ⊆ prOP

2 .

Proposition 4.2. prOMA ⊆ prOP
2 .

Proof. Consider a promise problem Π = ΠY ∪̇ ΠN ∈ prOMA. There is a polynomial-time
deterministic machine A such that

∀n ∈ N ∃wn ∀x ∈ ΠYES ∀r A(x, r, wn)) = 1, (1)

∀x ∈ ΠNO ∀w Pr
r
[A(x, r, w) = 1] < 1/2. (2)

Condition (2) can be replaced by

∀n ∈ N ∃r′n ∀x ∈ ΠN ∩ {0, 1}n ∀w ∈ {0, 1}p(n) A(x,w, r′n) = 0 (2’)

because of the Adleman’s trick (similarly to the treatment of RP ⊆ ONP in [GM15] or MA ⊆
NOP

2 in [CR06]): given x and w, the new verifier can apply the old one as A(x,w, ri) for np(n)
independent random strings ri ∈ {0, 1}t(n) in order to reduce the error from 1

2 to 1
2 ·

1
2np(n) . Since for

every pair (x,w) there are at most a 1
2 ·

1
2np(n) fraction of strings r′n ∈ {0, 1}tnp(n) results in an error,

there exists r′ that satisfies (2’). It does not harm the condition (1) as well. Therefore, Merlin’s
proof w remains input-oblivious, whereas Arthur’s universal random string r′n is input-oblivious
and w-oblivious.

4.3 Merging input-oblivious promise queries

Theorem 4.3 (Theorem 5, restated). PprOP
2 ⊆ OP

2 .

Remark: Formally, we show that PΠ ⊆ OP
2 for every promise problem Π ∈ prOP

2 .

Proof. Let L ∈ PΠ and let M• be a deterministic oracle machine that decides L correctly given
loose oracle access to Π (i.e. irrespective of the answers to its queries outside of the promise set),
in time p(n) (for a polynomial p). Consider the polynomial-time deterministic verifier A(q, u, v)

20

from the definition of Π ∈ prOP
2 . For n ∈ N, let 1, . . . , p(n) be all possible lengths of oracle queries

made by M given an input of length n. Define

Wn := (w
(0)
1 , . . . , w

(0)
p(n), w

(1)
1 , . . . , w

(1)
p(n))

as a vector containing the irrefutable certificates (both “yes” and “no”) of A for the appropriate
input lengths. We now construct a new polynomial-time deterministic verifier A′(x, U, V) that
will demonstrate that L ∈ OP

2 and will show that, for any x, the string8 W|x| constitutes an

irrefutable certificate that can be used both as U = (u
(0)
1 , . . . , u

(0)
p(n), u

(1)
1 , . . . , u

(1)
p(n)) and as V =

(v
(0)
1 , . . . , v

(0)
p(n), v

(1)
1 , . . . , v

(1)
p(n)).

Given (x, U, V) as an input, A′ will simulate M . Whenever M makes an oracle query q to Π,
A′ will compute four bits:

a := A(q, u
(1)
|q| , v

(0)
|q|), b := A(q, v

(1)
|q| , u

(0)
|q|),

c := A(q, u
(1)
|q| , u

(0)
|q|), d := A(q, v

(1)
|q| , v

(0)
|q|),

and will proceed with the simulation of M as if the oracle answered ℓ := (a ∧ c) ∨ (b ∧ d).
By definition, for any x, the machine M computes L(x) correctly given the correct answers to

the queries in the promise set (i.e. q ∈ ΠYES ∪ΠNO) and irrespective of the oracle’s answers outside
of the promise set. Thus it suffices to prove that the oracle’s answers to the queries in the promise
set are computed correctly, which we show now by inspecting the four possible cases.

• Suppose x ∈ L and U = W|x|.

– If q ∈ ΠYES then u
(1)
|q| is a ‘yes’-irrefutable certificate and hence a = c = 1 =⇒ ℓ = 1.

– If q ∈ ΠNO then u
(0)
|q| is a ‘no’-irrefutable certificate and hence b = c = 0 =⇒ ℓ = 0.

• Suppose x ̸∈ L and V = W|x|.

– If q ∈ ΠYES then v
(1)
|q| is a ‘yes’-irrefutable certificate and hence b = d = 1 =⇒ ℓ = 1.

– If q ∈ ΠNO then v
(0)
|q| is a ‘no’-irrefutable certificate and hence a = d = 0 =⇒ ℓ = 0.

Corollary 4.4. PprOMA ⊆ OP
2 .

Proof. By Proposition 4.2 and Theorem 4.3.

Remark 4.5. When a semantic class without complete problems is used as an oracle, it may
be ambiguous. However, prAM does have a complete problem WSSE (see Definition 3.1). By
inspecting the proof of the collapse (Prop. 4.1) one can observe that WSSE actually belongs to
prOMA under NP ⊆ P/poly, and the oracle Turing machine that demonstrates PH = PprOMA

still queries a specific promise problem.
For the inclusion of PprOMA in OP

2 , the first part (Prop. 4.2) transforms one promise problem

into another promise problem, thus in the inclusion PprOMA ⊆ PprOP
2 it is also the case that a

single oracle is replaced by (another) single oracle.

8There might be different versions of this string as the irrefutable certificates need not to be unique.

21

5 PprMA ⊆ LP

2

In this section we prove Theorem 1 by, essentially, expanding the proof of MA ⊆ LP
2 in [KP24].

We use the following statements from that paper and an earlier paper by Korten [Kor22]. We then
proceed to the input-oblivious setting.

5.1 The non-input-oblivious setting

Definition 5.1 ([Kor22, Definitions 6, 7], [Kor21, Definitions 7, 8]). PRG is the following search
problem: given 1n, output a pseudorandom generator9 R = (x1, . . . , xm), that is, an array of strings
xi ∈ {0, 1}n such that for every n-input circuit C of size n:∣∣∣∣ Pr

x←U(R)
{C(x) = 1} − Pr

y←U({0,1}n)
{C(y) = 1}

∣∣∣∣ ≤ 1

n
.

Korten demonstrates that such a generator containing m = n6 strings can be constructed with
a single oracle query to Avoid10 (actually, the stretch is even larger than “plus 1 output wire”).

Proposition 5.2 ([Kor22, Theorem 2], [Kor21, Theorem 3]). PRG reduces in polynomial time to
a single Avoid query.

Korten and Pitassi demonstrate that Avoid (which they call Weak Avoid) can be solved with
one oracle query to LOP.

Proposition 5.3 ([KP24, Theorem 1]). Avoid is polynomial-time many-one reducible to LOP.

The main result of this section is the following theorem.

Theorem 5.4 (Theorem 1, restated). PprMA ⊆ LP
2 .

Proof. We show how to replace the oracle prMA by LP
2 . Since PLP

2 = LP
2 by Definition 2.9, the

result follows.
One can assume that calls to the prMA oracle are made for input lengths such that Arthur

can be replaced by a circuit A(x,w, r) of size at most s(n) for a specific polynomial s. One can
assume perfect completeness for A, that is, for x in the promise set “YES”, there is w such that
∀r A(x,w, r) = 1.

Before simulating the prMA oracle, our deterministic polynomial-time Turing machine will
make oracle calls to LP

2 in order to build a pseudorandom generator sufficient to derandomize
circuits of size s(n). By Proposition 5.2, such a pseudorandom generator G, which is a sequence
G(1s(n)) of pseudorandom strings g1, . . . , gm ∈ {0, 1}s(n) for m bounded by a polynomial in s(n),
can constructed (for m = s(n)6 and error 1

s(n)) using a reduction to Avoid. Subsequently, by

Proposition 5.3, Avoid is reducible to LOP. As a result, {gi}mi=1 can be computed in deterministic
polynomial time by querying an LP

2 oracle.
After G is computed, each call to the prMA oracle can be replaced by an NP ⊆ LP

2 query
∃w C(w) for the circuit C that computes the conjunction of the circuits A(x,w, gi) with hardwired

9Korten does not say that m has a polynomial dependence on n though we think it is assumed, and anyway his
theorem provides a construction with m = n6.

10In the paper the Avoid problem is refered to as “Empty”.

22

x and gi, for every i. Note that such queries constructed for x outside of the promise set are still
valid NP queries even if Arthur does not conform to the definition of MA in this case. These oracle
answers are irrelevant, because the original PprMA machine must return the correct (in particular,
the same) answer irrespectively of the oracle’s answer.

5.2 The Input-Oblivious Setting

Korten proves (Prop. 5.2) that PRG (Def. 5.1) reduces to Avoid, and Korten and Pitassi [KP24]

compute Avoid in LP
2 = PLP

2 . Since PRG has a unary input, one can observe that PRG can
be computed using an input-oblivious oracle. This gives raise to tighter containments. In the
non-input oblivious setting they are equalities, but input-oblivious classes lack some of the nice
closureness properties and need a separate treatment.

Proposition 5.5. PRG can be computed in deterministic polynomial time with an OLP
2 oracle.

Proof. It is shown in [Kor22] (see Prop. 5.2) that PRG consisting of m = n6 strings can be com-
puted in deterministic polynomial time with a single oracle query to Avoid; denote the algorithm
generating this query by K, let us assume w.l.o.g. that it outputs a circuit of bit size nd with nc

inputs, for certain integer constants d > c > 2. Since the input to this problem is unary, for each
n, a single instance Cn of Avoid is to be solved, and its solution (i.e. any string outside of the
image of Cn) solves PRG (in fact, without further processing). A specific solution to Avoid can
be computed using a deterministic polynomial-time truth-table reduction to a language L ∈ LP

2

[KP24], that is, there is a polynomial p, a p-time DTM R computing the reduction, a p-time DTM
T computing the truth table, a language L ∈ LP

2 with a polynomial-time verifier V computing an
order <V such that T [a1, a2, . . . ar] is a correct solution to Avoid, where r is the number of queries
made by R (w.l.o.g. they are of the same size), and for each i, ai is the first bit of the minimum
certificate wrt <V applied to the i-th query.

Our oracle language L′ ∈ OLP
2 is verified by the following verifier U (defining its order <U),

which merges queries using a construction similar to [KP24].

For two bit strings α, β we define the relation: α <lex β to be 1 iff α is lexicographically smaller
than β (and 0, otherwise).

Input: w
Certificates: y, z

Algorithm:

1. If y = z as bit strings, then return 0. // y ≮U z

2. Compute t := |w|.

3. Compute n := ⌊ d
√

|w|⌋.

4. Compute i := t− w.

5. Let a be the first bit of y, and b be the first bit of z.
// Informally, this bit is a claim for the value of the i-th bit of PRG.

23

6. If i > nc then // Out of range.
if a ̸= b, then return the result of comparison a < b, otherwise return y <lex z.

7. Run K(1n), denote the resulting circuit by Cn.
// Note that the length of its description is nd.

8. Run R(Cn) to compute queries q1, q2, . . . , qr.

9. Parse y as axy1 . . . yr and z as bx′z1 . . . zr, where a, b ∈ {0, 1}, x, x′ ∈ {0, 1}nd
,

y1, . . . , yr, z1, . . . , zr ∈ {0, 1}s, where s is the bit size of elements of <V for the queries com-
puted by R.
// x, x′ are candidates for the solution of Avoid computed by R, T .

10. Call y syntactically incorrect if either x[i] (the i-th bit of x) differs from a or T [y1[1], . . . , yr[1]] ̸=
x.
// That is, y does not claim that the answer is x[i], or its sub-certificates do not yield x as
T ’s answer.

Define syntactically incorrect z similarly.

11. If both y and z are syntactically incorrect, return y <lex z.

12. If exactly only one of y, z is syntactically incorrect, state that it is greater than the other
certificate, return 1 or 0 accordingly.

13. Now y, z are syntactically correct.
If y1 . . . yr ̸= z1 . . . zr then find the first j such that yj ̸= zj and return V (qj , yj , zj).

14. We are done and never get to this point: the certificates are different, but the sub-certificates
are equal, thus x ̸= x′ so one of the certificates had to be recognized as syntactically incorrect
by T lookup.

Our verifier U is input-oblivious (it simply ignores the input and only uses its length), it computes
a linear order, and its minimal element starts with the bit equal to the i-th bit of the pseudorandom
generator computed by the composition of K, R, and T . Thus U defines a language in OLP

2 , and

consequent queries 1n
d+i to it reveal the bits of the pseudorandom generator.

Corollary 5.6.

1. PprMA ⊆ POLP
2 ,NP ⊆ LP

2 .

2. PprOMA ⊆ POLP
2 ,prONP ⊆ OP

2 ∩ LP
2 .

Proof. The first inclusion follows similarly to the proof of Theorem 5.4: the lower DTM can compute
PRG using its OLP

2 oracle (Prop. 5.5) and then use it to derandomize prMA (resp., prOMA)
using its NP (resp., prONP) oracle.

The second inclusion in all the items follows fromNP ⊆ LP
2 , prONP ⊆ prOP

2 , OLP
2 ⊆ LP

2

(syntactically), OLP
2 ⊆ OP

2 (similarly to LP
2 ⊆ SP

2), P
LP
2 = LP

2 [KP24](= PprLP
2 , because LP

2 is a

syntactic class), POP
2 = OP

2 (= PprOP
2 (Theorem 4.3)).

24

5.3 An even better Karp–Liption–style collapse?

One can define a promise version of prOMA where the machine satisfies the bounded-error promise
on the promise set but it has to satisfy the input-oblivious promise everywhere.

Definition 5.7. A promise problem Π = (ΠYES,ΠNO) belongs to OprMA if there is a polynomial-
time deterministic Turing machine A and, for every n ∈ N, there exists wn (a witness that serves
for every positive instance of length n), that satisfy the following conditions:

• If x ∈ ΠYES ∩ {0, 1}n, then ∀r A(x, r, wn) = 1,

• If x ∈ ΠNO, then ∀w Prr[A(x, r, w) = 1] < 1/2,

• If x /∈ ΠYES, then ∀w Prr[A(x, r, w) = 1] < 1.

We conjecture that by careful inspection of the proof of [CR11] one can check that the only
reason to use promise problems is a lack of guarantee for bounded probability of error, therefore:

Conjecture 5.8. The Karp–Lipton–style collapse of Proposition 4.1 to PprOMA is actually to
POprMA.

Anyway, this definition gives rise to an even nicer corollary than Corollary 5.6.

Corollary 5.9. POprMA ⊆ POLP
2 ,ONP ⊆ OP

2 ∩ LP
2 .

Proof. The second inclusion is already proved in Corollary 5.6, we need to show only the first one.
It’s also analogous: similarly to the proof of Theorem 5.4: the lower DTM can compute PRG
using its OLP

2 oracle (Prop. 5.5) and then use it to derandomize OprMA using its ONP oracle
(we do not need a prONP oracle here, because the promise in OprMA does not concern the
input-obliviousness).

6 Discussion and Further Research

Some Unresolved Containments

1. Can one strengthen our inclusion LP
2 ⊆ PprSBP to SP

2 ⊆ PprSBP? One can try combining
our techniques with the proof of SP

2 ⊆ PprAM by Chakaravarthy and Roy [CR11].

Note that in the other direction it is open even whether SBP ⊆ SP
2 .

2. Chakaravarthy and Roy [CR11] asked whether PprMA and PprSP
2 are contained in SP

2 . While
we resolved the first question, the second one remains open. We note that, although in the
input-oblivious world both inclusions hold (PprOMA ⊆ PprOP

2 ⊆ OP
2 , Corollary 4.4), the

proof of the latter inclusion (Theorem 5) is essentially input-oblivious (one needs to give all
the certificates for the oracle non-adaptively, and queries cannot be predicted because oracle
answers cannot be predicted for promise problems).

3. As was mentioned, the FPprSBP procedure for approximate counting can be implemented
in FPprSBP

∥ — that is, using parallel (i.e. non-adaptive) oracle queries. On the other hand

the containment LP
2 ⊆ PprSBP, which uses approximate counting as a black-box subroutine,

seems to require sequential, adaptive queries. Could one implement the latter containment

25

using parallel queries (i.e. show that LP
2 ⊆ PprSBP

∥)? In particular, as PP is consistent with

prSBP [BGM06] and is closed under non-adaptive Turing reductions [FR96], this would
imply that LP

2 ⊆ PP. Note that it is unknown even whether PNP ⊆ PP, while PNP ⊆ LP
2 .

Moreover, there is an oracle separating the former two classes [Bei94].

4. A recent work of Gajulapalli et al. [GGLS25] places LP
2 in the class11 UEOPLNP, which

appears to be incomparable to our result (Theorem 3). Can one determine the relative status
of UEOPLNP and PprSBP?

5. Similarly to LP
2 , one could define a class of languages reducible to Avoid. A similar class

of search problems, APEPP, has been defined by [KKMP21, Kor22] (and Korten [Kor22]
proved that constructing a hard truth table is a problem that is complete for this class under
PNP-reductions); however, we are asking about a class of languages. Korten and Pitassi have
shown that LP

2 can be equivalently defined using many-one, Turing, or PNP-reductions, thus
there are several options. One can observe that the containment PprMA ⊆ LP

2 (Theorem 5.4)
is essentially proved via the intermediate class PAvoid,NP that uses both an oracle for Range
Avoidance (a single-valued or an essentially unique [KP24] version) and an oracle for SAT.
Can one prove that one of the containments in PprMA ⊆ PAvoid,NP ⊆ LP

2 is in fact an
equality?

6. We defined an input-oblivious version OLP
2 of LP

2 , however, contrary to NP ⊆ LP
2 , it is not

obvious whether ONP ⊆ OLP
2 or even ONP ⊆ PprOLP

2 .

Relations between collapse results and “hard” functions. Starting from Karp–Lipton’s
paper [KL80], Kannan’s fixed-polynomial circuit complexity lower bounds [Kan82] were improving
accordingly to new collapses: if a new collapse NP ⊆ P/poly =⇒ PH = C is shown for a class C
containing NP, it immediately implies lower bounds for this class, because if NP ̸⊆ P/poly, we
are already done.

However, a collapse to OP
2 [CR06] did not imply lower bounds for OP

2 , because NP is unlikely
to be contained in it (after all, OP

2 ⊆ P/poly). It was not until nearly two decades later that lower
bounds for OP

2 have been shown by Gajulapalli, Li, and Volkovich [GLV24] building on recent
progress for the range avoidance problem [Kor22, Li24], thus matching the progress on the two
questions again.

Korten and Pitassi [KP24] have shown fixed-polynomial lower bounds for their new class LP
2

without showing a collapse result, thereby introducing a misalignment once again, yet this time in
the opposite direction. Our paper’s inclusion PprMA ⊆ LP

2 restores the balance.
However, the observation that in the input-oblivious world the currently best collapse PprOMA

reopens this question. Does this class possess fixed-polynomial circuit lower bounds? One can
observe that Santhanam’s proof [San09] of Size[nk] lower bounds for promise problems in prMA is
input-oblivious. Indeed, the presented hard promise problems are actually in prOMA! However,
these promise problems do not yield a language in PprOMA that is hard for Size[nk], and we
leave this question for further research.

11UEOPL consists of problems that are many-one polynomial-time reducible to
Unique-End-of-Potential-Line, see [FGMS20, GGLS25].

26

The best class for which fixed-polynomial circuit lower bounds can be proved (trivially) is
Pε-Hard-tt (for any particular fixed ε > 0), where ε-Hard-tt, asks12 given 12

n
, to output a truth

table of a function {0, 1}n → {0, 1} of circuit complexity at least 2εn. Can one prove a collapse to
this class (or at least to PAvoid)? Note that for the purpose of fixed-polynomial lower bounds even
a limited version of ε-Hard-tt suffices where the truth table is non-empty for a number of entries
greater than any polynomial and its complexity is only superpolynomial.

Acknowledgement

The authors are grateful to Yaroslav Alekseev for discussing and to Dmitry Itsykson for discussing
and proofreading a preliminary version of this paper.

References

[AGHK11] B. Aydinliog̃lu, D. Gutfreund, J. M. Hitchcock, and A. Kawachi. Derandomizing
arthur-merlin games and approximate counting implies exponential-size lower bounds.
Comput. Complex., 20(2):329–366, 2011.

[AKKT20] S. Aaronson, R. Kothari, W. Kretschmer, and J. Thaler. Quantum lower bounds
for approximate counting via laurent polynomials. In 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Confer-
ence), volume 169 of LIPIcs, pages 7:1–7:47. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[AKSS95] V. Arvind, J. Köbler, U. Schöning, and R. Schuler. If NP has polynomial-size circuits,
then MA=AM. Theor. Comput. Sci., 137(2):279–282, 1995.

[AR20] S. Aaronson and P. Rall. Quantum approximate counting, simplified. In Martin
Farach-Colton and Inge Li Gørtz, editors, 3rd Symposium on Simplicity in Algorithms,
SOSA 2020, Salt Lake City, UT, USA, January 6-7, 2020, pages 24–32. SIAM, 2020.

[BCG+96] N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries
that are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421–433, 1996.

[Bei94] R. Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational Complexity,
4:339–349, 1994.

[BF99] H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic com-
putation. In STACS, pages 100–109, 1999.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

[BFT98] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Proceedings
of the 13th Annual IEEE Conference on Computational Complexity (CCC), pages 8–
12, 1998.

12Korten [Kor22] defines a smoother version of it where the input length is not necessarily a power of two.

27

[BGM06] E. Böhler, C. Glaßer, and D. Meister. Error-bounded probabilistic computations be-
tween MA and AM. J. Comput. Syst. Sci., 72(6):1043–1076, 2006.

[BH92] H. Buhrman and S. Homer. Superpolynomial circuits, almost sparse oracles and the
exponential hierarchy. In Foundations of Software Technology and Theoretical Com-
puter Science, 12th Conference, New Delhi, India, December 18-20, 1992, Proceedings,
pages 116–127, 1992.

[Cai07] J.-Y. Cai. S2P ⊆ ZPPNP . Journal of Computer and System Sciences, 73(1):25–35,
2007.

[Can96] R. Canetti. More on BPP and the polynomial-time hierarchy. Inf. Process. Lett.,
57(5):237–241, 1996.

[CHR24] L. Chen, S. Hirahara, and H. Ren. Symmetric exponential time requires near-
maximum circuit size. In Proceedings of the 56th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2024, to appear. Association for Computing Machinery,
2024.

[CMMW19] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Relations and
equivalences between circuit lower bounds and Karp-Lipton theorems. In CCC-2019,
LIPICS, pages 30:1–21, 2019.

[CR06] V. T. Chakaravarthy and S. Roy. Oblivious symmetric alternation. In STACS, pages
230–241, 2006.

[CR11] V. T. Chakaravarthy and S. Roy. Arthur and Merlin as oracles. Comput. Complex.,
20(3):505–558, 2011.

[FGMS20] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of po-
tential line. Journal of Computer and System Sciences, 114:1–35, 2020.

[FR96] L. Fortnow and N. Reingold. PP is closed under truth-table reductions. Inf. Comput.,
124(1):1–6, 1996.

[GGLS25] K. Gajulapalli, S. Ghentiyala, Z. Li, and S. Saraogi. Downward self-reducibility in the
total function polynomial hierarchy. Electron. Colloquium Comput. Complex., TR25-
121, 2025.

[GLV24] K. Gajulapalli, Z. Li, and I. Volkovich. Oblivious classes revisited: Lower bounds and
hierarchies. Electron. Colloquium Comput. Complex., TR24-049, 2024.

[GM15] O. Goldreich and O. Meir. Input-oblivious proof systems and a uniform complexity
perspective on P/poly. ACM Transactions on Computation Theory (TOCT), 7(4):1–
13, 2015.

[GS86] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof
systems. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing
(STOC), pages 59–68, 1986.

28

[GS88] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems.
SIAM J. Comput., 17(2):309–335, 1988.

[HHT97] Y. Han, L. A. Hemaspaandra, and T. Thierauf. Threshold computation and crypto-
graphic security. SIAM J. Comput., 26(1):59–78, 1997.

[HS15] E. A. Hirsch and D. Sokolov. On the probabilistic closure of the loose unambiguous
hierarchy. Inf. Process. Lett., 115(9):725–730, 2015.

[IKV23] R. Impagliazzo, V. Kabanets, and I. Volkovich. Synergy between circuit obfuscation
and circuit minimization. In Nicole Megow and Adam D. Smith, editors, Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA, volume
275 of LIPIcs, pages 31:1–31:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023.

[IKW02] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: expo-
nential time vs. probabilistic polynomial time. J. of Computer and System Sciences,
65(4):672–694, 2002.

[JVV86] M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

[Kan82] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information
and Control, 55(1-3):40–56, 1982.

[KKMP21] R. Kleinberg, O. Korten, D. Mitropolsky, and C. Papadimitriou. Total Functions in
the Polynomial Hierarchy. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference (ITCS 2021), volume 185 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 44:1–44:18, Dagstuhl, Germany, 2021. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

[KL80] R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, April 28-30, 1980, Los Angeles, California, USA, pages 302–309, 1980.

[Kor21] O. Korten. The hardest explicit construction. CoRR, abs/2106.00875, 2021.

[Kor22] O. Korten. The hardest explicit construction. In 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science (FOCS), pages 433–444. IEEE, 2022.

[KP24] O. Korten and T. Pitassi. Strong vs. Weak Range Avoidance and the Linear Ordering
Principle. Electron. Colloquium Comput. Complex., TR24-076, 2024.

[KW98] J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits.
SIAM J. Comput., 28(1):311–324, 1998.

[Li24] Z. Li. Symmetric exponential time requires near-maximum circuit size: Simplified,
truly uniform. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2024, to appear. Association for Computing Machinery, 2024.

29

[LR94] K.-J. Lange and P. Rossmanith. Unambiguous polynomial hierarchies and exponential
size. In Structure in Complexity Theory Conference, pages 106–115. IEEE Computer
Society, 1994.

[MAD25] S. C. Marshall, S. Aaronson, and V. Dunjko. Improved separation between quantum
and classical computers for sampling and functional tasks. In 40th Computational
Complexity Conference, CCC 2025, August 5-8, 2025, Toronto, Canada, volume 339
of LIPIcs, pages 5:1–5:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2025.

[MVW99] P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe. Super-polynomial versus
half-exponential circuit size in the exponential hierarchy. In COCOON, pages 210–220,
1999.

[OS18] R. O’Donnell and A. C. C. Say. The weakness of CTC qubits and the power of
approximate counting. ACM Trans. Comput. Theory, 10(2):5:1–5:22, 2018.

[RS98] A. Russell and R. Sundaram. Symmetric alternation captures BPP. Comput. Com-
plex., 7(2):152–162, 1998.

[San09] R. Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009.

[Sch83] U. Schöning. A low and a high hierarchy within NP. Journal of Computer and System
Sciences, 27:14–28, 1983.

[Sip83] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the
15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, pages 330–335. ACM, 1983.

[Sto85] L. J. Stockmeyer. On approximation algorithms for #p. SIAM J. Comput., 14(4):849–
861, 1985.

[SU06] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling.
Comput. Complex., 15(4):298–341, 2006.

[Tod91] S. Toda. PP is as hard as the polynomial time hierarchy. SIAM J. on Computing,
20(5):865–877, 1991.

[Vin05] N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci.,
347(1-2):415–418, 2005.

[Vol14] I. Volkovich. On learning, lower bounds and (un)keeping promises. In Proceedings of
the 41st ICALP, pages 1027–1038, 2014.

[Vol20] I. Volkovich. The untold story of SBP. In Henning Fernau, editor, The 15th Interna-
tional Computer Science Symposium in Russia, CSR, volume 12159 of Lecture Notes
in Computer Science, pages 393–405. Springer, 2020.

30

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

