
Alternation Depth of Threshold Decision Lists

Vladimir Podolskii and Morgan Prior

Tufts University

Abstract

Linear decision lists are a computational model for Boolean functions built from a se-
quence of linear threshold function queries. Each query is evaluated in order: if a query
returns true, the list outputs the value of the function, and if the answer is false, the process
continues to the next query. The size of a linear decision list is the number of queries in it.

Linear decision lists form a natural and nontrivial subclass of depth-2 threshold circuits,
the class of circuits that currently marks the frontier of explicit circuit lower bounds. While
some techniques exist for proving lower bounds against linear decision lists, they are quite
limited, leaving important open problems unresolved. Moreover, for the related model of
exact linear decision lists, no strong lower bounds are known.

We initiate the study of alternation depth of decision lists. The alternation depth is
defined as the number of alternations in the output values of the decision list within the
sequence of its queries.

We show that linear decision lists, with both bounded and unbounded query weights,
form fine hierarchies with respect to alternation depth. We establish a similar hierarchy for
rectangle decision lists, the model closely related to the communication complexity with NP
oracles. In all settings, we prove strong separations within these hierarchies and between
them.

Next, we give a lower bound for an explicit function for exact linear decision lists up to
depth n/ log n. Such lower bounds were not previously known and do not follow directly
from existing methods. We also establish a fine depth hierarchy for exact linear decision
lists.

To prove these hierarchy separations, we introduce an iterative technique, used in combi-
nation with existing techniques such as fooling sets and the analysis of blocky matrices. For
the lower bound on bounded-depth exact linear decision lists, we combine the discrepancy
method with an iterative analysis of blocky matrices.

1 Introduction

A Boolean function f : {0, 1}n → {0, 1} is a linear threshold function (LTF) if there exist weights
w0, w1, . . . , wn ∈ N such that

f(x) = sgn(w0 +

n∑
i=1

wixi),

where we let sgn(t) = 1 for t > 0 and sgn(t) = 0 otherwise. The class TC0 of polynomial-size,
constant-depth circuits with LTFs as gates is central in circuit complexity [26, 19, 9]. Proving
strong lower bounds for explicit functions even for the case of depth 2 is one of the main frontiers
in this area [26, 19, 5]. We denote the class of functions computable by polynomial-size, depth-2
threshold circuits by LTF ◦LTF. In attempts to prove lower bounds for LTF ◦LTF, researchers
have studied weight-restricted classes. Define L̂TF as the class of functions in LTF with the
additional restriction that for each i, |wi| = O(poly(n)).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 143 (2025)

In many cases, the weight-restricted class is weaker than its unbounded analogue. For
example, Myhill and Kautz [22] gave an explicit function that is computable by LTF not by L̂TF1.
On the other hand, larger depth can make bounded weight classes more powerful: PARITY
is computable in L̂TF ◦ L̂TF but not in LTF (see [26]). Hajnal et al. [13] proved a lower
bound against L̂TF ◦ L̂TF using essentially the discrepancy method (see also [20]). Surprisingly,
Goldmann, Håstad, and Razborov [10] showed that weight restrictions do not always weaken the
class. Specifically, they proved L̂TF ◦ L̂TF = L̂TF ◦ LTF, meaning that the weights on bottom
gates are irrelevant when the top weights are small. They further showed that L̂TF ◦ LTF ⊊
LTF◦ L̂TF, demonstrating that large weights on the top gates do increase computational power,
and that LTF ◦ L̂TF is the largest class among depth-2 threshold circuits with restrictions on
weights.

Forster et al. [8] obtained a lower bound against LTF◦L̂TF using the sign-rank method, which
has since become a standard lower bound technique in complexity theory [27, 7, 24]. However,
Chattopadhyay et al. [3] showed that sign-rank fails to prove lower bounds against LTF ◦ LTF:
they exhibited an explicit function with large sign-rank that is computable in LTF ◦LTF. From
this, it follows that LTF ◦ L̂TF ⊊ LTF ◦ LTF. Thus, the current picture of the threshold circuit
hierarchy up to LTF ◦ LTF is

L̂TF ⊊ LTF ⊊ L̂TF ◦ L̂TF = L̂TF ◦ LTF ⊊ LTF ◦ L̂TF ⊊ LTF ◦ LTF.

The challenge of proving lower bounds against LTF ◦ LTF motivates the study of other
restricted computational models related to threshold functions, such as linear decision lists [2, 5].

Linear decision lists are a specific case of the general computational model known as decision
lists [28]. An S-decision list L of size s computing a Boolean function f ∈ Bn is a sequence of s
3-tuples and a bit

(q1, a1, b1), (q2, a2, b2) . . . (qs, as, bs), bs+1.

Here, Bn is the set of all Boolean functions in n variables, each qi ∈ S ⊆ Bn is a query function,
and ai and bi are Boolean constants. Given any x ∈ {0, 1}n, the value of L(x) is bi if i is the
smallest index such that qi(x) = ai; if there is no such i, then L(x) = bs+1. A linear decision list
(LDL) is an S-decision list with S = LTF. It is not hard to see that the class of linear decision
lists is contained in LTF ◦ LTF [2].

Several techniques exist for proving lower bounds on LDL size. One such technique is
monochromatic rectangle size. To use this technique on a function f : {0, 1}n×{0, 1}n → {0, 1},
we consider its communication matrix Mf , the 2n×2n matrix with entries Mf [x, y] := f(x, y). It
was established in [2] that if f : {0, 1}n ×{0, 1}n → {0, 1} has no monochromatic combinatorial
rectangle of size greater than w · 2n, then any LDL computing f must have size at least 1√

w
.

In particular, a polynomial length LDL has at least one large (having size that is a polynomial
fraction of the communication matrix) rectangle.

Sign-rank can also be used to prove lower bounds against the size of LDLs. More specifically,
it is known that if a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} is computable by an LDL
of size s, then its communication matrix has sign-rank O(s)2.

Despite these techniques, our ability to prove lower bounds for LDL is still rather limited. For
example, it is unknown whether the bounded-weight class L̂DL is strictly weaker than LDL [2, 6],
or whether LDL is strictly weaker than the class of polynomial size linear decision trees.

1Because L̂TFs can be simulated by Majority (MAJ) gates without increasing circuit depth [26], the class L̂TF
is sometimes denoted MAJ.

2This follows from the fact that LDL ⊆ mpPTF (Lemma 18 in [6]) and the fact that sign-rank is a lower
bound technique against the class mpPTF (Lemma 7 in [16]).

2

Another related model (although not a subclass of LTF ◦ LTF) is the rectangle decision list,
whose query functions test membership in combinatorial rectangles. Formally, Rect be the set
of all functions f ∈ Bn such that f(x, y) = 1 ⇐⇒ (x, y) ∈ R where R is some combinatorial
rectangle in Mf . A rectangle decision list is an S-decision list with S = Rect; we call the class
of such decision lists Rect-DL. This class is related to those discussed above, since the rectangle
size technique applies to it [2, 17]. This class can also be viewed in light of its connection to
the communication complexity class PNPcc

, which allows oracle queries to functions in NPcc. In
particular, it is known that Rect-DL = PNPcc

for quasipolynomial-sized Rect-DLs and PNPcc

protocol trees [23, 11].
Finally, perhaps the most intriguing subclass of LTF ◦ LTF of this flavor is ELDL, the

class of decision lists whose query functions are exact threshold functions (ELTFs). We say a
function f : {0, 1}n → {0, 1} is an exact linear threshold function (ELTF) if there exist weights
w0, w1, . . . , wn ∈ N such that f(x) = 1 ⇔ w0 +

∑n
i=1wixi = 0. An ELDL is an S-decision

list with S = ELTF. The class ELDL contains LDL [5] and is strictly more powerful: the
Block-Equality function ORn ◦EQn requires an exponential-size LDL, but can be computed by
a linear-size ELDL [2].

Proving strong lower bounds against ELDL for an explicit function is therefore a natural
intermediate step toward lower bounds for LTF ◦ LTF. Unfortunately, known lower bound
techniques against LDLs do not work for ELDLs. It was observed in [2] that monochromatic
rectangle size does not work, as [17] showed that the Block-Equality function has no large
monochromatic rectangles. Sign-rank also cannot prove lower bounds against ELDLs, as [3]
gave an explicit function with sign-rank 2Ω(n1/4) which is computable by a linear-size ELDL.

At present, we lack techniques for proving strong lower bounds against ELDL, and more
broadly for understanding threshold decision lists and depth-2 threshold circuits. This motivates
the search for new methods to separate and characterize these classes.

Our results. To better understand linear decision lists and related computational models, we
introduce another parameter of decision lists, their alternation depth, and study them from this
perspective.

For a decision list L (of any type) described by the sequence

(q1, a1, b1), (q2, a2, b2), . . . (qs, as, bs), bs+1,

we define the alternation depth of L to be |L| where L := {i : bi ̸= bi−1}. Intuitively, we can
partition the decision list into contiguous blocks of queries where the outputs bi are constant
within each block. The alternation depth is simply the number of these blocks. For L ∈
{LDL, L̂DL,Rect-DL,ELDL} and b ∈ {0, 1}, we use the notation Lk,b to denote a L of depth k
with initial output b1 = b. When the initial output is irrelevant, we use simply Lk to denote an
L of depth k. When the context is clear, we often refer to “alternation depth” simply as “depth.”

The main motivation for studying the depth of decision lists is the pursuit of new lower
bound techniques. Existing measures such as sign-rank and monochromatic rectangle size are
agnostic to depth, so to prove depth-specific results—such as separations between classes of
functions computable by different depths—we must introduce new techniques.

In particular, for the size of ELDLs, no strong lower bound techniques for explicit functions
are currently known. A natural starting point is to restrict attention to bounded-depth ELDLs
and attempt to prove lower bounds for them, thereby enriching our arsenal of techniques.

Restricting depth is also useful for studying reductions between decision list classes. Let C
and C′ be classes of Boolean functions. If we would like to show that any function computable by
a small C-decision list is also computable by a small C′-decision list, a straightforward approach

3

is to try to substitute each query in the C-decision list decision list by a small C′-decision list
computing the same query. It is not difficult to see (Proposition 27 below) that this is possible
whenever C ⊆ C′

1,1 and C ⊆ C′
1,0.

Another motivation for studying depth is that it arises naturally in the study of rectangle
decision lists (Rect-DLs) and their connection to the communication complexity class PNPcc

. It
is not difficult to see that the depth of Rect-DL corresponds to the depth of PNPcc

protocols
(Proposition 31 below).

We first focus on LDLs, L̂DLs, and Rect-DLs of bounded depth, which form natural hier-
archies with respect to depth (see Figure 1). It is not hard to see that bounded-weight L̂DL
classes can be simulated by the corresponding LDL and Rect-DL classes. Our first results estab-
lish separations between these hierarchies. We show that the Parity function XORn is hard to
compute by low depth LDLs, but it can easily be computed by Rect-DL1s (this separation also
follows from the counting argument in Proposition 29). In the other direction, the Greater-Than
function is easy to compute by LDL1s (one query is enough), but we show that it is hard to
compute by L̂DL and Rect-DL of small depth. Note that analogous results are unknown without
depth restriction (aside from a counting argument separating Rect-DL from other classes).

We further show separations between classes at each level of these hierarchies, and hence
between all classes within them, for depths up to n/ log n. These results are obtained by com-
posing the Odd-Max-Bit function with functions exhibiting certain communication complexity
properties. Intuitively, our method can be viewed as an iterated application of the fooling set
technique.

...
...

LDLi+1,0 LDLi+1,1

LDLi,0 LDLi,1

LDLi−1,0 LDLi−1,1
...

...

...
...

L̂DLi+1,0 L̂DLi+1,1

L̂DLi,0 L̂DLi,1

L̂DLi−1,0 L̂DLi−1,1...
...

...
...

Rect-DLi+1,1

Rect-DLi,0 Rect-DLi,1

Rect-DLi−1,0 Rect-DLi−1,1
...

...

Rect-DLi+1,0

Figure 1: Hierarchy of L̂DL, LDL, and Rect-DL under various depths. Black lines represent inclusions
(where the class at the vertically higher endpoint contains the class at the vertically lower one). Dashed
lines indicate separations (in both directions). The separations within each hierarchy are provided in
Lemma 38 and Theorem 40. The separations between the hierarchies are provided in Theorem 34,
Theorem 36 and Corollary 37.

We then proceed to the study of ELDLs. Unlike the previous models, it remains an open
problem to show strong lower bounds for explicit functions in this class. Under bounded depth,
however, some lower bounds do follow from existing results. An ELDL1 is essentially an OR ◦
ELTF, and a lower bound follows since

OR ◦ ELTF ⊆ L̂TF ◦ ELTF = L̂TF ◦ L̂TF,

where the last equality was implicitly shown in [10] and was explicitly discussed in [15]. More
generally, for any constant k, Proposition 25 implies that an ELDLk can be expressed as L̂TF ◦
ELTF, resulting in the lower bound.

As our first result for ELDLs we show that any function with small discrepancy under the
uniform distribution cannot be computed by an ELDL of polynomial size and depth less than

4

n/ log n. To prove this result, we adapt the discrepancy technique to blocky matrices [14] and
apply it recursively.

Next, we consider the depth hierarchy of ELDL classes (see Figure 2). These classes can
simulate corresponding LDL classes (see Proposition 30). The strong separation from the LDL
hierarchy is known: the Block-Equality function ORn ◦ EQn is hard to compute by an LDL of
any depth [2, 17] and is easy to compute by an ELDL1. The separation from low-depth Rect-DLs
is provided by the Greater-Than function (see Proposition 29). For the separation in the other
direction, we only have a counting argument.

For ELDL hierarchy we show separations between classes on each level for depth up to
√
n.

Here, we consider a composition of the Odd-Max-Bit function with the Disjointness function.
This argument is the most technically heavy in the paper. The proof views queries as blocky
matrices and iteratively identifies submatrices of the communication matrix that avoid large
intersections with lower-depth queries.

...
...

ELDLi+1,0 ELDLi+1,1

ELDLi,0 ELDLi,1

ELDLi−1,0 ELDLi−1,1...
...

Figure 2: Hierarchy of ELDL under various depths. Solid lines represent inclusions (where the class
at the vertically higher endpoint contains the class at the vertically lower one). Dashed lines indicate
separations. The separations within the ELDL hierarchy are provided in Lemma 48 and Theorem 50.
Separations between the ELDL hierarchy and the ones from Figure 1 are provided in Proposition 29,
Lemma 32, and Theorem 34.

The remainder of the paper is organized as follows. Section 2 provides background. Section 3
presents preliminary observations about depth in decision lists. Section 4 gives our results for
linear and rectangle decision lists. Section 5 presents our results for exact linear decision lists.

2 Preliminaries

2.1 Communication Complexity

Our proofs rely on notions from communication complexity, which we define below. For more
background on communication complexity, see [20] or [25].

Definition 1 (Communication matrix). For a function f : {0, 1}n × {0, 1}n → {0, 1}, its com-
munication matrix Mf is the 2n × 2n matrix with entries Mf [x, y] := f(x, y).

Definition 2 (Combinatorial rectangle). Given a matrix M with rows X and columns Y , a
combinatorial rectangle is the Cartesian product A×B for some A ⊆ X and B ⊆ Y .

Definition 3 (Monochromatic combinatorial rectangle). Given a matrix M , a combinatorial
rectangle A×B in M is called b-monochromatic if M [x, y] = b for all (x, y) ∈ A×B.

Definition 4 (Function class Rect). Let Rect be the set of all functions f ∈ Bn such that
f(x, y) = 1 ⇐⇒ (x, y) ∈ R, where R is some combinatorial rectangle in the communication
matrix Mf .

5

Definition 5 (Discrepancy). Let f : X×Y → {0, 1} be a function, let R ⊆ X×Y be a rectangle
in the communication matrix Mf , and let µ be a probability distribution over X × Y .

Then the discrepancy of R with respect to µ is

Discµ(R, f) =
∣∣∣Pr

µ
[f(x, y) = 0 ∧ (x, y) ∈ R]− Pr

µ
[f(x, y) = 1 ∧ (x, y) ∈ R]

∣∣∣.
The discrepancy of f with respect to µ is Discµ(f) = maxRDiscµ(R, f).

In this paper, we are interested in discrepancy when µ = U , the uniform distribution.

Definition 6 (Fooling set). For b ∈ {0, 1}, a b-fooling set for f : {0, 1}n × {0, 1}n → {0, 1} is a
set F ⊆ {0, 1}n × {0, 1}n such that

1. For every (x, y) ∈ F , f(x, y) = b.

2. For all distinct pairs (x1, y1), (x2, y2) ∈ F , either f(x1, y2) ̸= b or f(x2, y1) ̸= b.

2.2 Complexity Classes

Here we provide formal definitions for complexity classes we are considering.
It will be convenient for us to define the function sgn : R → {0, 1} as follows:

sgn(x) =

{
1 if x > 0

0 if x ≤ 0.

Definition 7 (Linear threshold function). Linear threshold function LTF is the class of all
functions f : {0, 1}n → {0, 1} such that there exist weights w0, w1, . . . , wn ∈ N such that

f(x) = sgn(w0 +

n∑
i=1

wixi).

Definition 8 (Exact linear threshold function). Exact linear threshold function ELTF is the
class of all functions f : {0, 1}n → {0, 1} such that there exist weights w0, w1, . . . , wn ∈ N such
that

f(x) = 1 ⇔ w0 +
n∑

i=1

wixi = 0.

Definition 9 (Bounded weight linear threshold function). Bounded weight linear threshold
function L̂TF is the class of functions f : {0, 1}n → {0, 1} such that there exist weights
w0, w1, . . . , wn ∈ N with |wi| = O(poly(n)) such that

f(x) = sgn(w0 +

n∑
i=1

wixi).

Exact bounded weight linear threshold function ÊLTF is the class of functions f : {0, 1}n →
{0, 1} such that there exist weights w0, w1, . . . , wn ∈ N with |wi| = O(poly(n)) such that

f(x) = 1 ⇔ w0 +
n∑

i=1

wixi = 0.

6

Definition 10 (S-decision list, LDL, L̂DL, ELDL, Rect-DL, DL). Let Bn denote the set of all
Boolean functions in n variables and S ⊂ Bn be some function class. An S-decision list L of
size s computing a Boolean function f ∈ Bn is a sequence sequence of s 3-tuples and a bit

(q1, a1, b1), (q2, a2, b2) . . . (qs, as, bs), bs+1,

where each qi ∈ S is a query function, and the ai and bi are Boolean constants. Given any
x ∈ {0, 1}n, the value of L(x) is bi if i is the smallest index such that qi(x) = ai; if there is no
such i, then L(x) = bs+1.

From this definition, we introduce several complexity classes related to decision lists that are
important for our results:

• Linear decision list (LDL) is the class of functions computable by an S-decision list with
S = LTF.

• Bounded-weight linear decision list (L̂DL) is the class of functions computable by an S-
decision list with S = L̂TF.

• Exact linear decision list (ELDL) is the class of functions computable by an S-decision list
with S = ELTF.

• Rectangle decision list (Rect-DL) is the class of functions computable by an S-decision list
with S = Rect.

• Decision list (DL) is the class of functions computable by an S-decision list where S is the
set of Boolean functions that query exactly one bit of x.

We say that a query qi covers an input x ∈ {0, 1}n, if qi is the query producing the output
for x. That is, qi covers x if qi(x) = ai.

Remark 11. Without loss of generality, we can assume that bs ̸= bs+1. Indeed, if bs = bs+1,
then performing query qs does not change the output value and can be omitted.

When discussing decision lists, we sometimes use the same notation both for the computa-
tional model and for the class of functions that are efficiently (polynomial-size) computable by
this model. For example, we use LDL to refer both to the object of a linear decision list and to
the class of Boolean functions which are computable by an LDL of polynomial length.

It is often convenient to think of the decision lists in Definition 10 as outputting a value only
when the query function evaluates to true. The following lemma shows that, without loss of
generality, we can assume this is the case:

Lemma 12. Let f be a computable by an S-decision list of size s for some S ∈ {LDL, L̂DL,
Rect,ELDL}. Then f is computable by an S-decision list of size t = O(s · poly(n)) defined by

(q1, a1, b1), (q2, a2, b2), . . . , (qt, at, bt), bt+1,

where ai = 1 for all i.

Proof. Since LTF is closed under complement, the claim is clearly true for LDL and L̂DL: for
each i such that ai = 0, we can substitute qi with ¬qi and make ai = 1.

For ELDLs, let E be an ELDL computing f and q ∈ ELTF be a query in E that outputs a
value when q(x) = 0. Then, since q ∈ ELTF, there exist weights w0, w1, . . . , wn ∈ N such that
q(x) = 1 ⇔ w0+

∑n
i=1wixi = 0. Then for ¬q, we have that ¬q(x) = 1 ⇐⇒ (w0+

∑n
i=1wixi <

7

0)∨ (w0+
∑n

i=1wixi > 0). That is, ¬q ∈ OR◦LTF. It is known that an LTF can be represented
as a disjoint OR of polynomially many ELTFs [15, 4], and thus ¬q can be represented as an OR
of polynomially many ELTF functions.

Hence, for i such that ai = 0, we can replace (qi, ai, bi) with a polynomial-length sequence
(q′1, 1, bi), . . . , (q

′
j , 1, bi), without changing the output of E .

Finally, to see that it is true for Rect-DLs, note that the complement of a rectangle A × B
can be queried by two rectangles (X \A)× Y and A× (Y \B), where X and Y are the sets of
all rows and columns respectively; call these rectangle queries q′1 and q′2. Then, for each i such
that ai = 0, we can substitute (qi, ai, bi) with (q′1, 1, bi), (q

′
2, 1, bi).

Definition 13 (Blocky system of rectangles). Given a Boolean matrix M , a system of rectangles
R1, . . . , Rs with Ri = Ai × Bi is blocky if subsets A1, . . . , As are pairwise disjoint and subsets
B1, . . . , Bs are pairwise disjoint.

Definition 14 (Blocky matrix). A Boolean matrix M is a blocky matrix if there is a blocky
system of rectangles R1, . . . , Rs such that M(x, y) = 1 iff there is i such that (x, y) ∈ Ai × Bi.
In other words, ones of the blocky matrix form a set of row- and column-disjoint monochromatic
rectangles. A blocky matrix is also sometimes called an equality matrix.

Lemma 15. If f : {0, 1}n × {0, 1}n → {0, 1} is in ELTF, its communication matrix Mf is
blocky.

Proof. Let f be defined such that f(x, y) = 1 ⇐⇒ w0 +
∑n

i=1 aixi +
∑n

j=1 bjyj = 0. Let
α(x) :=

∑n
i=1 aixi, β(y) :=

∑n
j=1 bjyj , and t := −w0. Then Mf [x, y] = 1 ⇐⇒ α(x) + β(y) = t.

Now we can group sets of rows by the value of α(x) in the following way:

As := {x : α(x) = s},

and we can similarly group columns by the value of β(y):

Br := {y : β(y) = r}.

Since each row in As has a 1 exactly at cells for which the corresponding column has β(y) = t−s,
all rows in the same As are identical. Similar reasoning shows all columns in the same Br are
identical. To see that this induces a blocky structure, observe that since α(x) = s and β(y) = t−s
imply α(x)+β(y) = t, the rectangle As×Bt−s is a 1-monochromatic rectangle. Finally, observe
that outside of the rectangles As ×Bt−s, we have zeros.

Next, we introduce the notion of the alternation depth of a decision list.

Definition 16 (Alternation depth). For a decision list L (of any type) described by the sequence

(q1, a1, b1), (q2, a2, b2) . . . (qs, as, bs), bs+1

we define the alternation depth of L to be |L| where L := {i : bi ̸= bi−1}.

Intuitively, alternation depth of a decision list is the number of alternations in the outputs bi.
For a class C ∈ {LDL, L̂DL,Rect-DL,ELDL}, we use Ck to denote a subclass of C of alternation
depth at most k. If we wish to specify the first output of the decision list, we use the notation
Ck,b to denote a subclass of C and alternation depth k whose first query outputs b for b ∈ {0, 1}.
For brevity, when it is clear from context, we often refer to alternation depth as just depth.

We call a set of consecutive leaf nodes with the same output a depth layer or just a layer
when it is clear from context. If the queries in a depth layer output 1 (0), we call it a 1-layer
(resp. 0-layer). We use length of a depth layer to refer to the number of queries in it. We
sometimes call a query in the ith depth layer a query of depth i.

8

Remark 17. ANDn and ORn are clearly in DL1. Note that every Boolean function is computable
by L̂DL1 of exponential size. Indeed, every Boolean function can be simulated by a formula in
disjunctive normal form [19], and we can translate this formula into an L̂DL1 of exponential
length.

Next, we introduce a communication complexity version of PNPcc
.

Definition 18 (PNPcc
[12]). PNPcc

is a communication complexity class that allows oracle queries
to some function in NP. Formally, a protocol tree for a function in PNPcc

is such that each
internal node v is labeled with either

1. a 1-bit function of one player’s input in the usual way, or

2. an “NP oracle query” consisting of a collection of rectangles Sv,w : w ∈ {0, 1}kv , where the
indicator of whether (x, y) ∈

⋃
w Sv,w determines which child to descend to in the protocol

tree.

As usual, the output of the protocol is determined by the leaf reached.
The complexity measure for this class is the maximum over all root-to-leaf paths of the fol-

lowing: the length of the path plus the sum of kv over all type-2 nodes v on the path.

Since we are considering only the communication complexity version of standard complexity
classes in this paper, we will hereafter omit the indication that this is a communication com-
plexity class, denoting it simply PNP. We use depth of a protocol to refer to the depth of the
protocol tree

Remark 19. Without loss of generality, we can assume all nodes in the protocol tree for a PNP

protocol are type-2 (i.e., oracle queries), since type-1 nodes can be expressed as a query to a
single monochromatic rectangle.

2.3 Relevant Functions

Definition 20. We consider several well-known Boolean functions. Here x, y ∈ {0, 1}n and
x1, . . . , xn, y1, . . . , yn ∈ {0, 1}.

• The Odd-Max-Bit function, OMBn(x1, . . . , xn) = max{i : xi = 1} (mod 2).

• The Equality function, EQn(x, y) = 1[x = y].

• The Non-Equality function, NEQn(x, y) = 1[x ̸= y].

• The Disjointness function, DISJn(x, y) = 1[X ∩ Y = ∅] (where X and Y are the sets for
which x and y are respective indicator strings).

• The Intersection function, INTn(x, y) = 1[X ∩ Y ̸= ∅] (where X and Y are the sets for
which x and y are respective indicator strings).

• The Parity function XORn(x1, . . . , xn) =
∑n

i=1 xi (mod 2).

• The Greater-Than function, GTn(x, y) = 1[int(x) ≥ int(y)] where int(x) is the integer
given by x as its binary representation.

• The Inner Product function IPn(x, y) = ⟨x, y⟩ (mod 2) =
⊕n

i=1 xi ∧ yi.

We will need the following well-known property of Disjointness, which can be found in [20].

9

Claim 21. Let M be the communication matrix for DISJn. Then if R is a 1-monochromatic
rectangle in M , |R| ≤ 2n.

It will be more convenient for us to work with a roughly equivalent version of Odd-Max-Bit:

Definition 22 (Even-Min-Bit). For a positive integer n, the Even-Min-Bit function on n inputs,
denoted EMBn, is defined by

EMBn(x1, . . . , xn) = 1 ⇐⇒ min{i ∈ [n] | xi = 1} is even.

Define EMBn(0
n) = 0 if n is even and EMBn(0

n) = 1 if n is odd.

Next we introduce functions that we use for our separation results.

Definition 23 (k-Layer Non-Equality). For a positive integer n, the k-Layer Non-Equality
function on 2n inputs, denoted NEQ(k)

n (see Figure 3 in below), is the composition EMBk ◦
NEQn/k, defined by

NEQ(k)
n (x1, y1, . . . , xk, yk) = 1 ⇐⇒ min{i ∈ [n] | xi ̸= yi} is even.

Consistent with the definition of EMB, we say that NEQ(k)
n (x1, y1, . . . , xk, yk) = 0 in the case

that xi = yi for all i if k is even, and NEQ(k)
n (x1, y1, . . . , xk, yk) = 1 in the case that xi = yi for

all i if k is odd.

Definition 24 (k-Layer Intersection). For a positive integer n, the k-Layer Intersection function
on 2n inputs, denoted INT(k)

n (see Figure 4 below), is the composition EMBk ◦ INTn/k is defined
by

INT(k)
n (x1, y1, . . . , xk, yk) = 1 ⇐⇒ min{i ∈ [n] | xi ∩ yi ̸= ∅} is even.

Similar to NEQ(k), we say that INT(k)
n (x1, y1, . . . , xk, yk) = 0 in the case that xi ∩ yi ̸= ∅ for all

i if k is even, and INT(k)
n (x1, y1, . . . , xk, yk) = 1 in the case that xi ∩ yi ̸= ∅ for all i if k is odd.

Figure 3: Communication matrix for NEQ(k)
4 shown with depths 1, 2, and 4. Zero entries are white

and one entries are gray. Note that for depth = 1, we have NEQ(1)
4 = EQ4.

10

Figure 4: Communication matrix for INT(k)
4 on 4 bits, shown with depths 1, 2, and 4. Zero entries are

white and one entries are gray. Note that for depth = 1, we have INT(1)
4 = DISJ4.

3 Initial Observations

First we observe some depth-related connections between regular decision lists and linear decision
lists.

Proposition 25. For any constant k, we have DLk ⊆ L̂TF.

Proof. The idea of this argument is that we can sum up variables queried in a depth-d decision
list with weights decreasing with each successive query. We construct the weights such that they
only decrease substantially when we switch between depth layers of the decision list. If there
are constantly many layers, the weights are polynomial. Below, we provide a formal argument.

Let f : {0, 1}n → {0, 1} be computable by a depth-k decision list D. Let M denote the
length of the longest depth layer in D. For each query j, let

ℓj =

{
xj if ai = 1,

1− xj if ai = 0.

In other words, ℓj = 1 iff the answer to the query leads to an immediate output. For each depth
layer i, let Si =

∑
j ℓj , where the sum is over all queries in this layer. Clearly, 0 ≤ Si ≤ M and

the first layer with non-zero Si produces the output of the decision list.
Denote by bi for i = 1, . . . , k the output of queries on layer i, denote by bk+1 the output in

the case when none of the queries resulted in an output. Consider the following linear inequality:

2
k∑

i=1

(−1)bi+1(M + 1)k−iSi + (−1)bk+1+1 ≥ 0.

We claim that it defines an LTF computing f .
Indeed, consider the first Si that is not equal to 0 (if there is no such Si, the inequality is

correct iff bk+1 = 1 as desired). The signs of the terms are arranged so that it is enough to check
that the ith term of the sum dominates all subsequent terms in absolute value. Since Si ≥ 1,
the absolute value of this term is at least (M + 1)k−i. For all further terms, we have Si ≤ M ,
Thus, it suffices to verify that

(M + 1)k−i > (M + 1)k−i−1M + . . .+ (M + 1)k−kM.

11

Indeed, for the right-hand side we have

(M + 1)k−i−1M + . . .+ (M + 1)k−kM = M
(M + 1)k−i − 1

(M + 1)− 1
= (M + 1)k−i − 1

and the inequality follows.
Since M = poly(n) and k is constant, each weight in the constructed linear threshold function

has magnitude at most poly(n).

Proposition 26. DL ⊆ L̂DL1.

Proof. Consider a function f computable by a DL D. This function outputs 1, if there is a step
(qi, ai, bi) in D with bi = 1 such that qi(x) = ai and for all j < i we have qj(x) = ¬aj . By the
definition of DL, each qi is a function computing the value of exactly one input variable. For
each i, the condition ‘qi(x) = ai and for all j < i we have qj(x) = ¬aj ’ is an AND of literals,
and thus can be computed by an L̂TF. To compute f , it is enough to check if such an i exists,
thus f is computable by OR ◦ L̂TF, which is computable by L̂DL1.

The next observation shows how the notion of a depth-1 decision list is useful for reductions
between various classes of decision lists.

Proposition 27. Let C and C′ be classes of functions. Suppose C ⊆ C′
1,1 and C ⊆ C′

1,0. Then
any polynomial-size C-decision list can be converted into equivalent polynomial-size C′-decision
list. Moreover, the depth of the decision list does not change.

If C is closed under negation, it is enough to have C ⊆ C′
1,1 or C ⊆ C′

1,0 to reach the same
conclusions.

Proof. Let L be a C-decision list of polynomial size. Consider an arbitrary query q ∈ C, assume
that the output b is produced if the answer to the query is a. Consider a polynomial size C′

1,a-
decision list computing q, replace the outputs in each query by b and the default output by
¬b. Replace query q in L by the resulting decision list. It is not hard to see that the resulting
decision list computes the same function.

If C is closed under negation and C ⊆ C′
1,1, then C ⊆ C′

1,0 and vice versa. Indeed, assume
C ⊆ C′

1,1 and for any f ∈ C consider ¬f ∈ C. Consider C′
1,1-decision list computing ¬f . Negating

all of its outputs results in a C′
1,0-decision list computing f . The other direction is the same.

Now we can use this connection to show the following.

Proposition 28. L̂DL ⊆ Rect-DL and L̂DLk ⊆ Rect-DLk.

Proof. By Proposition 27, since L̂TF is closed under negation, it is enough to show that L̂TF ⊆
Rect-DL1,1. Consider f ∈ L̂TF and suppose it is represented by linear inequality

∑n
i=1 aixi +∑n

i=1 biyi ≥ t, where the ai and bi are polynomial weights. Now consider all integer pairs
A,B ≥ 0 such that A+B ≥ t and there are x ∈ {0, 1}n and y ∈ {0, 1}n such that

∑n
i=1 aixi = A

and
∑n

i=1 biyi = B. Since the weights ai and bi are polynomial in n, the absolute values of A
and B are also at most polynomial, and thus there are at most polynomially many such A,B
pairs.

We construct a Rect-DL computing f as follows. For each integer pair (A,B), we make the
query defined by the following rectangle: (

∑n
i=1 aixi = A) ∧ (

∑n
i=1 biyi = B). If the rectangle

query is true, the Rect-DL outputs 1, and otherwise it proceeds to the next pair. If none of
the queries are true, the Rect-DL outputs 0. This results in a Rect-DL1,1 of polynomial size
computing f .

12

Next, we note that the converse is not true even if we drop the restriction on the weights.

Proposition 29. Rect-DL ̸⊆ LDL and Rect-DL ̸⊆ ELDL.

Proof. This observation follows by a simple counting argument. If we consider the communica-
tion matrix for a Boolean function f : {0, 1}n × {0, 1}n → {0, 1}, there are 22

n subsets of rows
and 22

n subsets of columns, and hence 2Ω(2n) rectangles. However, there are only O(2poly(n))
linear threshold functions [21] and exact linear threshold functions [1], and hence O(2poly(n))
linear decision lists and exact linear decision lists of polynomial size. Thus, there are not enough
polynomial size linear decision lists, nor polynomial size exact linear decision lists, to compute
all functions in Rect-DL.

Another application of Proposition 27 gives a connection between LDL and ELDL.

Proposition 30. Any LDL of polynomial size can be converted into an ELDL with polynomial
size and of the same depth.

Proof. Since LTF ⊆ OR ◦ ELTF [15] we have that LTFs are computable by polynomial size
ELTF1,1 decision lists. Since LTF is closed under negation, the claim follows from Proposition 27.

Next, we show that the notion of the depth of rectangular decision lists has a natural meaning
in terms of communication complexity.

Proposition 31. For a Boolean function f : {0, 1}n×{0, 1}n → {0, 1}, the following statements
are equivalent:

• f is computable by a Rect-DLk of size 2polylog(n).

• f is computable by a PNPcc
protocol of size polylog(n) and depth log k.

Proof. We will start with a PNPcc
protocol with depth log k, and show how to construct a

Rect-DL of size 2polylog(n) and depth k. Suppose f is computable by a PNPcc
protocol tree T of

depth log k. Consider the branch of T in which all queries return true. Let the leaf node ℓ of
this branch output b. Since each query in the protocol tree is a union of rectangles, reaching
node ℓ means that the conjunction of all rectangle queries along this branch must be true. Let
qi =

∨2polylog(n)

j Rij be the ith query in this branch. Then we have that ℓ is reached on (x, y) if
and only if

(x, y) ∈
log k∧
i=1

qi =

log k∧
i=1

2polylog(n)∨
j

Rij .

We can distribute
∧

over
∨

to get an equivalent expression of the form OR of AND of rectan-
gles. The size of the OR here is

(
2polylog(n))log k = 2polylog(n) log k. Note that an intersection of

rectangles is a rectangle; thus, we actually have an expression of the form OR ◦ Rect. This is
computable by an Rect-DL1,b of size 2polylog(n) log k, which is 2polylog(n) since the depth of PNPcc

communication protocol is upper bounded by its size.
Now we extend the constructed decision list to account for other branches of T . For this,

note that given that all queries of the decision list up to this point were false, we can simplify
the tree T by removing the leaf ℓ. Indeed if all queries were false on some input, this input does
not reach ℓ. Thus, in the parent of ℓ, we can assume we travel to the other branch of the tree
without making a query. We remove this node of the tree and repeat the described procedure
again.

13

On each step, we reduce the size of the tree by 1 and add at most one additional depth layer
to our decision list. Thus, the resulting decision list Rect-DL has depth at most 2log k = k and
size 2polylog(n) log k.

For the other direction, suppose f is computable by a Rect-DLk called L. Now, by Lemma 12,
we can without loss of generality assume that L only outputs a value on true queries. Then
we construct a tree in the following way: we binary search for the furthest layer reached in L;
call this layer v. To start, we perform an oracle query to check membership in the union of all
rectangles up to the middle layer of L. If the query outputs true, we proceed recursively into
the first half of the list of L, and otherwise, we proceed recursively into the second half of list.
We can produce the output once we isolate one layer of the decision list. We need to do at
most log k queries to binary search over k layers, resulting in a tree of depth log k. The number
of rectangles in the union on each query is at most 2polylog(n), resulting in a protocol of size
log k · polylog(n), which is polylog(n), since the depth of a decision list is upper bounded by its
size.

Finally, the next lemma shows that the ELDL hierarchy is separate from the hierarchies for
LDL, L̂DL, and Rect-DL.

Lemma 32. There exists a function f such that f ∈ ELDL1,1, f /∈ LDL, and f /∈ Rect-DL.

Proof. Let f be the Block-Equality function ORn2◦EQn2(x, y) = 1 iff ∃i ∈ [n], ∀j ∈ [n], xij = yij ,
where zij is the (i · ℓ+ j)th bit of z. It is known that ORn2 ◦EQn2 is not in LDL nor in Rect-DL
because its communication matrix has no large monochromatic rectangles [2, 17]. To see that it
is in ELDL1, note that for a given i, we can check whether ∀j ∈ [n], xij = yij in a single ELTF
query since EQ ∈ ELTF. If it is true, we output 1; otherwise, we proceed to check i+1. Finally,
if there is no such i, we output 0. Thus, we have a list of n ELTF queries, each outputting 1.
This gives us an ELDL1,1 computing ORn2 ◦ EQn2 , as desired.

4 Bounds for LDL and Rect-DL

We start by analyzing the complexity of computing the XOR function by LDLs.

Lemma 33. The function XORn can be computed by an L̂DL of size n.

Proof. First, we query
∑

i xi ≥ n; this identifies whether the input is the all-ones vector. The
query is true, we output the value of XORn on the all-ones vector. Next, we query

∑
i xi ≥ n−1,

which covers all inputs of Hamming weight n− 1 and we output n− 1 (mod 2) if this query is
true.

On the ith step, we query
∑

i xi ≥ n− i+1, and output n− i+1 (mod 2). For all inputs of
weight greater than n− i+ 1, one of the previous queries already produced the output. Hence,
the current query will only produce an output for inputs of weight exactly n− i+1, and on this
subset of inputs XORn is constant.

The final query is
∑

i xi ≥ 1. If this query is false, the input must be the all-zeros vector, in
which case we output 0.

Note that the depth of this decision list is thus also at most n. It can be reduced to roughly
n/2 by considering vectors of large and small weights in parallel. That is, on ith iteration we
can query both

∑
i xi ≥ n − i + 1 and

∑
i xi ≤ i − 1. If we account for the parity of n, we get

an L̂DL of depth n/2.
Next we show that any small size LDL computing XORn must have linear depth.

14

Theorem 34. Any LDL of depth less than n/10 computing XORn has size 2Ω(n).

Proof. Consider an LDL of depth k computing XORn.
We say that a query q is generating if it covers some input a ∈ {0, 1}n, such that none of the

neighbors of a in the Hamming cube were covered by previous queries. We call a a generating
input. First we observe that a generating query q can cover none of the other inputs except a.
Indeed, suppose q is given by an inequality

w0 +
n∑

i=1

wixi ≥ 0.

This inequality must hold for a. Since the output of XORn is different for each of the neighbors
of a and since the neighbors were not covered by the previous queries, the inequality cannot
hold for the neighbors of a. Thus, a hyperplane w0 +

∑n
i=1wixi = 0 (in Rn) corresponding to

the query q intersects all edges of the Boolean cube adjacent to a. Due to the convexity of the
Boolean cube, it isolates a in one of its halfspaces.

Denote the number of generating queries in our decision list by t. By the argument above,
there are t generating inputs as well. We next show by induction on i that any input covered by
queries on layer i must be at distance at most i − 1 from some generating input. For the base
case, note that none of the inputs are covered before layer 1, thus any query on layer 1 must be
a generating query. For the induction step, consider an input a covered on layer i. It is either
covered by a generating query, in which case it is a distance 0 from generating input, or it has a
neighboring input b covered on some previous layer j < i. By the induction hypothesis, b is at
distance at most j − 1 from some generating input, and thus a is a distance at most i− 1 from
the same generating input.

Since the depth of the decision list is k, each covered input is a distance at most k − 1 from
some generating input. The number of inputs at distance at most k − 1 from a given input is
equal to

∑k−1
j=0

(
n
j

)
, which we can upper bound by

(
en
k

)k [18, Chapter 1].

Thus, the total number of inputs the queries of the LDL can cover is at most t
(
en
k

)k. At
the same time, note that at least 2n−1 inputs must be covered, since otherwise XORn is not
constant on the uncovered inputs. Thus, we have the following inequality:

t
(en
k

)k
≥ 2n−1

or
t ≥ 2n−k log(en

k
)−1.

If k ≤ n/10 we get
t ≥ 2n−k log(en

k
)−1 = 2n−

n
10

log(10e)−1 = 2Ω(n).

Thus, any LDL of depth at most n/10 computing XORn must have exponentially many gener-
ating queries, and thus exponential size.

Next we observe that XORn function is easy to compute by Rect-DL1s and ELDL1s.

Lemma 35. The function XORn can be computed by Rect-DL1 of size 2 and by ELDL1 of size
O(n).

Proof. For rectangle decision list, split the variables of XORn into two parts y = (x1, . . . , xn
2
) and

z = (xn
2
+1, . . . , xn). Note that XOR(y, z) = 1 iff XOR(y) = 0 and XOR(z) = 1 or XOR(y) = 1

and XOR(z) = 0. For each a, b ∈ {0, 1}, the pair of conditions XOR(y) = a and XOR(z) = b
describe a combinatorial rectangle, and thus XOR is representable as an OR of two rectangles.

15

For ELDL, note that XORn(x) = 1 iff there is an odd t such that
∑n

i=1 xi = t. Each equality
can be checked with one ELTF query and thus XORn can be represented as an OR of n/2 exact
threshold functions.

From Theorem 34 and Lemma 35 we get a strong separation between the LDL depth hierarchy
and the Rect-DL and ELDL depth hierarchies: we exhibit a function that requires linear depth
in LDL model, but is easily computable by a Rect-DL1 and an ELDL1.

Next we show a lower bound for GT function.

Theorem 36. The size of any Rect-DLk computing GT is Ω(2n/k).

Proof of Theorem 36. Let L be a depth-d Rect-DL of size S computing GT. Suppose, with-
out loss of generality, that the first depth layer is a 1-layer. Consider the (1-monochromatic)
rectangles R1, . . . Rt in this first layer. Note that since L has size S, t ≤ S.

Consider all entries (a, b) in the communication matrix for GT covered by rectangles R1, . . . Rt

and consider the following partial order on them: (a, b) ≤ (a′, b′) iff a ≥ a′ and b ≤ b′. Consider
all maximal entries in R1, . . . Rt in this order. Clearly, each rectangle contains at most one
maximal entry (see Figure 5).

Now consider the vertical gaps between successive maximal entries. That is, we sort maximal
entries (a1, b1), . . . , (at, bt) by a-coordinate, ai < ai+1, add (−1,−1) and (2n + 1, 2n + 1) to the
list. Note that bi < bi+1 for all i. For each two successive entries (ai, bi) and (ai+1, bi+1), consider
ai+1−ai. Let A be the set of rows between ai+1 and ai excluding ai+1 and ai. By the Pigeonhole
Principle, since there are at most S maximal entries, there exist two maximal entries (ai, bi) and
(ai+1, bi+1) whose vertical gap is at least 2n−S

S+1 ≥ 2n

2S (the inequality is true for S ≤ O(2n),
and if S ≥ Ω(2n), we are done). Consider the submatrix A × A. It is not hard to see that it
does not intersect with any of the rectangles in the first depth layer. Indeed, for each 1-entry
(a, b) ∈ A × A in this submatrix we have that a < aj for j ≥ i + 1 and b > ai ≥ bi ≥ bj for
j ≤ i. Thus, any such entry is either incomparable, or greater than any maximal entry, which
is impossible.

We found a submatrix of the same form as the original GT that does not intersect with the
first layer of the decision list. We repeat this argument on the new submatrix for each next depth
layer, obtaining a submatrix of size 2n

(2S)i
on the ith layer. If the size of the vertical submatrix is

at least 2, the computation is not finished since we have a non-monochromatic submatrix that
is not covered by any rectangles so far. This gives a bound of 2n

(2S)k
≤ 1 for the last layer and

the lower bound on the size follows.

Propositions 28 and 36 imply the following:

Corollary 37. Any L̂DLk computing GT has size at least 2Ω(n/k).

Since GT is an LTF, GT is computable by an LDL1 of size 1. Thus, the class L̂DLk is a
proper subset of LDLk and even LDL1. It remains open whether the inclusion is still proper
when depth is not restricted.

Next we proceed to the separation results within the depth hierarchies, for this we consider
the function NEQ(k)

n .
We define a cell on the ith layer of NEQ(k)

n to be a submatrix where the first i parts of the
inputs are fixed to some values (see Figure 6). That is, Xj = sj and Yj = tj for some fixed
strings sj , tj ∈ {0, 1}

n
k for all j ≤ i. Some cells are monochromatic, more specifically, the cell

becomes monochromatic once we fix a block in such a way that si ̸= ti. We call an ith layer of
NEQ(k)

n 0-dominant if the corresponding monochromatic cells are of all zeroes (this is the case
of odd i). 1-dominant layers are defined similarly (they correspond to even i). The intuition for

16

x

y

Figure 5: Step of the argument in Theorem 36: rectangles with maximal entries (note that some
rectangles might not have any) and the new submatrix at the location of the maximal vertical gap.

Lemma 38, Theorem 40 and Theorem 42 is that NEQ(k) can be computed more efficiently when
0-dominant layers in the communication matrix “align” with 0-layers of queries in the decision
list.

Lemma 38. NEQ(k)
n is computable by a Rect-DLk,0, L̂DLk,0, and an LDLk,0 each of length 2n.

Proof. Let xij (resp. yij) with 1 ≤ i ≤ k and 1 ≤ j ≤ n
k denote the jth element of the string

xi (resp. yi). We describe an Rect-DLk,0 of length 2n computing NEQ(k). We first query the
rectangle defined by x11 = 1 and y11 = 0. For each element of this rectangle, clearly x1 ̸= y1, so
we output 0 for all elements in this rectangle. Next, we query the rectangle defined by x11 = 0
and y11 = 1, and similarly output 0 for each element in this rectangle. We proceed this way for
each j ∈ n

k and b ∈ {0, 1}, querying the rectangle x1j = b and y1j = 1− b, outputting 0 for each
true query. We repeat this procedure for each i ∈ [k], outputting 1 on each true query if i is
even, and 0 otherwise. For a fixed layer i, we must do 2 · n

k rectangle queries, and there are k
layers, resulting in 2 · n

k · k = 2n queries total.
To see that it is computable by an L̂DLk,0 of the same length, note that a rectangle query

defined by (xij = 1) ∧ (yij = 0) can be expressed as a low-weight threshold query in the
following way: xij −yij ≥ 1. Since each of the rectangle queries in the rectangle decision list can
be expressed as a low-weight threshold query, we have that NEQ(k) is computable by an L̂DLk,0

of length 2n. The final claim about LDLk,0 follows trivially.

Next we prove the key lemma for the lower bound for NEQ(k)
n .

Lemma 39. Fix a depth k, and suppose NEQ(k)
n is computable by an Rect-DLk,1 L of size

< 2n/k. Then for all i, there exists a non-monochromatic cell on layer i in NEQ(k)
n such that

none of its entries are covered by L’s queries of depth at most i.

Proof. We use induction on i. In the base case, where i = 0, the claim trivially holds as L
restricted to queries of depth at most 0 is simply an empty Rect-DL.

17

NEQ(i+2)
n =

NEQ(i+1)
n

NEQ(i+1)
n0

0

0

0

0

0

NEQ(i)
n

NEQ(i)
n

NEQ(i)
n

1

1

1

1

1

1

Figure 6: Cell structure of NEQ(k)
n function: bigger cell NEQ(i+2)

n consists of smaller cells NEQ(i+1)
n

(zeroes off the diagonal indicate that this is the case of odd i), which in turn consist of smaller cells
NEQ(i)

n shown in the middle.

For the inductive step, we suppose the statement holds for i− 1; we show that it is true for i
as well. Without loss of generality, let the ith layer be a 0-dominant layer. Now consider the ith
depth layer of L. Since the size of L is < 2n/k, there are at most 2n/k − 1 queries in this depth
layer. Let q be any query in this depth layer. Since this a 0-dominant layer for the function, the
output for q in the decision list is 1 (due to mismatch between layers of the function and the
decision list).

Let Ci−1 be the cell guaranteed by the induction hypothesis. Now let the cell Cs,i be the set
of inputs such that for all j < i, xj = yj are fixed the same way as in Ci−1 and xi = yi = s. We
claim that q can intersect at most one of the 2

n
k Cs,i. To see this, suppose q covers both a 1-input

(X,Y) ∈ Cs,i and a 1-input (X ′, Y ′) ∈ Cs′,i. This implies that xi = yi = s, and x′i = y′i = s′.
But then if we consider the input (X,Y ′), it is also covered by q. On the other hand, we have
that xi = s ̸= s′ = y′i, and hence, by definition of NEQ(k), (X,Y ′) is a 0-input. Input (X,Y ′)
lies in Ci−1 and by induction hypothesis was not covered by queries on previous depths. Thus,
on query q the decision list outputs incorrect output on (X,Y ′), which is a contradiction. As a
result, q could not have covered both (X,Y) ∈ Cs,i and (X ′, Y ′) ∈ Cs′,i. Since this depth layer
contains at most 2n/k − 1 queries and there are 2n/k Cs,is, one of these cells must be uncovered,
as desired.

Theorem 40. The size of any Rect-DLk,1 computing NEQ(k)
n is at least 2n/k.

Proof. Suppose NEQ(k)
n is computable by an Rect-DLk,1 L of size < 2n/k. Then, by Lemma 39,

there exists a cell C in layer k (this cell has just 1 entry) of the matrix NEQ(k)
n which has

not been covered by any of L’s queries. The decision list gives an incorrect output on this cell
(because of the mismatch of the outputs on layers).

Next we provide the analogous results for LDLs.

18

Lemma 41. Fix a depth k, and suppose NEQ(k)
n is computable by an LDLk,1 L of size < 2n/k.

Then for all i, there exists a non-monochromatic cell on layer i in NEQ(k)
n such that none of its

entries have been covered by L’s queries of depth at most i.

Proof. We use induction on i. For the base case, we consider i = 0. For this case no parts of
inputs are fixed and thus there is only one cell, the whole matrix. Clearly, none of its entries
have been covered by L’s queries of depth at most 0.

For the inductive step, we suppose the statement holds for i − 1; we show that it is true
for i as well. Without loss of generality, let the ith layer be a 0-dominant layer. Now consider
the ith depth layer of L. Since the size of L is < 2n/k, there are at most 2n/k − 1 queries
L1(x, y) ≤ t1, L2(x, y) ≤ t2, . . . Lv(x, y) ≤ tv in this depth layer, v ≤ 2n/k − 1. Since this a
0-dominant layer for the function, the leaf node for q in the decision list is 1 (due to mismatch
between layers of the function and the decision list).

Let Ci−1 be the cell guaranteed by the induction hypothesis. Let the cell Cs,i be the set
of inputs such that for all j < i, xj = yj are fixed the same way as in Ci−1 and xi = yi = s.
We claim that as in the previous proof each query on this layer intersects at most one of the
Cs,i cells. Suppose, for the sake of contradiction, that a query Lj(x, y) ≤ tj is true on inputs
(X,Y) ∈ Cs,i and (X ′Y ′) ∈ Cs′,i where (X,Y) and (X ′, Y ′) are 1-inputs to NEQ(k)

n . This implies
that xi = yi = s, and x′i = y′i = s′. But then if we consider the input (X,Y ′), we have that
x1 = s ̸= s′ = y′1, and hence, by definition of NEQ(i−1), (X,Y ′) is a 0-input. Identical reasoning
shows that (X ′, Y) is a 0-input. Since (X,Y) and (X ′, Y ′) are both 1-inputs, we have that
Lj(X,Y) ≤ tj and Lj(X

′, Y ′) ≤ tj . However, note that

Lj(X
′, Y) + Lj(X,Y ′) = Lj(X,Y) + Lj(X

′, Y ′) ≤ 2tj .

Thus, at least one of the following two inequalities must be true: Lj(X
′, Y) ≤ tj or Lj(X,Y ′) ≤

tj . Then the decision tree outputs an incorrect output on this input, which is a contradiction.
Hence, each query on this layer intersects at most one of the Cs,i. Since this depth layer contains
at most 2n/k − 1 queries and there are 2n/k cells Cs,i, one of these cells must be uncovered, as
desired.

Theorem 42. The size of any LDLk,1 computing NEQ(k)
n has length at least 2n/k.

Proof. Suppose NEQ(k)
n is computable by an LDLk,1 L of size < 2n/k. Then, by Lemma 41, there

exists a cell C on layer k (this cell has just 1 entry) in the matrix NEQ(k)
n which has not been

covered by any of L’s queries. The decision list gives an incorrect output on this cell (because
of the mismatch of the outputs on layers).

Remark 43. Note that similar arguments show that the negation ¬NEQ(k)
n ∈ L̂DLk,1,Rect-DLk,1

and ¬NEQ(k)
n /∈ L̂DLk,0,Rect-DLk,0.

5 ELDL lower bounds

We start with showing that large discrepancy over the uniform distribution implies a bound on
depth of ELDLs.

In this argument it will be convenient to work with the notion of advantage of f on a subset
of its inputs S:

Adv(S, f) :=
∣∣∣ |{(x, y) ∈ S | f(x, y) = 1}| − |{(x, y) ∈ S|f(x, y) = 0}|

∣∣∣.
19

Advantage is closely related to discrepancy over the uniform distribution in the following way:
for any combinatorial rectangle R, we have Adv(R, f) = 22nDiscU (R, f).

First we prove the following lemma.

Lemma 44. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function such that DiscU (f) ≤ d, where U
is the uniform distribution. Then f has advantage of at most 22n+1

√
d on any blocky system of

rectangles.

Proof. Consider a rectangle R = A×B in M , and let DR := Adv(R, f). Note that

DR = 22nDiscU (R, f) ≤ 22nd.

At the same time DR ≤ |A||B|. Thus, at least one of the following is true for R: |A| ≥
√
DR

or |B| ≥
√
DR. Decompose M into two subsystems, Mwide and Mtall, where Mwide contains

rectangle R if the former condition is true, and Mtall contains R if the latter condition is true.
(In the case that both conditions are true, we arbitrarily select one of Mwide or Mtall for R to
belong to.)

Now consider some rectangle R : A × B in Mwide, Adv(R) = DR. Since there are at least√
DR rows in R, we have that the average advantage of a row in R is at most Adv(R)

|A| ≤ DR√
DR

=
√
DR ≤ 2n

√
d. Since this is true for each rectangle in Mwide and the rectangles are row-disjoint,

we obtain that Mwide has average advantage of a row at most 2n
√
d among all rows of the matrix.

Since there are 2n rows, we get Adv(Mwide) ≤ 2n · 2n
√
d = 22n

√
d. By a symmetric argument

with columns, Adv(Mtall) ≤ 22n
√
d, and hence the total Adv(M) is at most 22n+1

√
d.

Theorem 45. Let f : {0, 1}n × {0, 1}n → {0, 1} and DiscU (f) ≤ d, where U is the uniform
distribution on inputs. Assume that f is approximately balanced; specifically, |f−1(0)|, |f−1(1)| ≥
Ω(22n). Then the size of ELDL of depth k computing f is at least Ω(kd−1/2k).

Proof. Consider an ELDL of size s and depth k computing f . Denote the number of queries on
each layer by s1, . . . , sk. We have s1 + . . .+ sk = s.

We prove the following statement by induction on i. Consider queries on layer i; assume that
they output b ∈ {0, 1}. We will prove that these queries together cover at most 22n+i

√
d
∏i

j=1 sj
entries in f−1(b).

For the base case, consider the first layer, and denote its output by b. By Lemma 15, a query
on this layer defines a blocky matrix. Since DiscU (f) ≤ d, by Lemma 44 this blocky matrix
has advantage at most 22n+1

√
d. Since there are no previous layers, the query cannot cover any

inputs (x, y) with f(x, y) = ¬b. Thus, the blocky matrix is monochromatic and covers at most
22n+1

√
d b-outputs. There are at most s1 queries on the first layer, and together they cover at

most 22n+1
√
ds1 b-outputs.

For the induction step, assume that the statement is true for all layers before the ith layer.
Denote the output of this layer by b and consider a query on the ith layer. The corresponding
blocky matrix does not have to be monochromatic since it can contain ¬b-entries covered on the
previous layers. The number of ¬b-entries covered on the previous layers is upper bounded by

22n+i−1
√
d

i−1∏
j=1

sj + 22n+i−3
√
d

i−3∏
j=1

sj + 22n+i−5
√
d

i−5∏
j=1

sj + · · · ≤

(
2i−1 + 2i−3 + 2i−5 + · · ·

)
22n

√
d

i−1∏
j=1

sj ≤ (2i − 2)22n
√
d

i−1∏
j=1

sj

20

for all i ≥ 2. By Lemma 44, the number of b-entries covered by this blocky matrix is at most
22n+1

√
d larger. Then we get the following upper bound on the number of b-entries covered by

this blocky matrix:

22n+i
√
d

i−1∏
j=1

sj .

Since there are at most s queries on the ith layer, together they cover at most 22n+i
√
d
∏i

j=1 sj
b-entries, as needed.

Now, assume that the last layer outputs b. Then the number of inputs on which the decision
list outputs b is at most

22n+k
√
d

k∏
j=1

sj + 22n+k−2
√
d
k−2∏
j=1

sj + 22n+k−4
√
d
k−4∏
j=1

sj + · · · ≤ 22n+k+1
√
d

k∏
j=1

sj .

Since the function is approximately balanced, we have that

22n+k+1
√
d

k∏
j=1

sj ≥ Ω(22n)

using the AM-GM inequality and observing that s1 + . . .+ sk = s gives the bound

s ≥ Ω(kd−1/2k).

Since DiscU (IP) = 2−n/2 [20] we immediately get the following corollary.

Corollary 46. The size of ELDL of depth k computing IP is at least k2Ω(n/k).

Remark 47. Observe that since 2Θ(n/k) ≥ Θ(n/k), Corollary 46 gives a linear lower bound
on the size of ELDL for IP. However, note that this bound on the size also follows from the
standard argument based on the size of rectangles. For this, one can consider the first query and
consider a square submatrix of the communication matrix of size roughly 2n/2× 2n/2 such that
the first query does not produce an output on this rectangle. Then one can argue by induction.
This approach is very similar to the approach in [2].

Next we proceed to showing that ELDLs of fixed depth form a hierarchy. The separating
functions in this case are INT(k)

n .
We start with the upper bound.

Lemma 48. INT(k)
n is computable by an ELDLk,0 of length n.

Proof. Let xij (resp. yij) with 1 ≤ i ≤ k and 1 ≤ j ≤ n
k denote the jth element of the string

xi (resp. yi). We describe an ELDLk,0 of length n computing INT(k). We first make a query
defined by x11+ y11 = 2. For each element of this rectangle, clearly x1 ∩ y1 ̸= ∅, so by definition
of INT(k)

n , we output 0 for all elements in this rectangle. We proceed this way for each j ∈
[
n
k

]
,

making a query defined by x1j + y1j = 2, outputting 0 for each true query. We repeat this
procedure for each i ∈ [k], outputting 1 on each true query if i is even, and 0 otherwise. For
a fixed layer i, we must do n

k rectangle queries, and there are k layers, resulting in n
k · k = n

queries total.

21

Remark 49. Note that by replacing queries of the form xij + yij = 2 in Lemma 48 with
xij+yij ≥ 2, we have that INT(k)

n is computable by an L̂DLk,0 of length n, and thus is computable
by LDLk,0 and Rect-DLk,0.

The rest of the section is devoted to the proof of the following theorem.

Theorem 50. Any ELDLk,1 computing INT(k)
n has size 2Ω(n/k)−O(k).

Note that this lower bound is exponential for k = O(
√
n).

For the proof of this theorem, it is convenient to change the notation slightly and talk about
functions with 2nk input variables. That is, we will consider functions INT(k)

nk and the lower
bound we will prove is 2Ω(n)−O(k).

Note that the cells of INT(k)
n have essentially the structure of DISJn function. It is helpful

for this argument to restrict DISJn to a submatrix with the same number of ones in each row
and column. To do this, we restrict the input to DISJn to subsets of size exactly n

3 . In other
words, the inputs to DISJn are now restricted to (X,Y) such that |X| = |Y | = n

3 . The number
of n-bit strings satisfying this condition is(

n
n
3

)
= 2H(1/3)n(1+o(1)).

We will denote this number by N . Note also that for a fixed row (column) in the restricted
submatrix, the number of ones in it is(2n

3
n
3

)
= 2

2n
3 (1+o(1)).

We will denote this number by D. The size of the largest 1-monochromatic rectangle is still at
most 2n (see 21).

We propagate this restriction to INT(k)
nk . In other words, we view the input to INT(k)

nk as
((X1, Y1), . . . , (Xk, Yk)), where each Xi, Yi ∈ {0, 1}n have |Xi| = |Yi| = n

3 . In particular, the
number of rows and columns in INT(k)

nk is Nk. Hereafter, in this section, when we refer to INT(k)
nk

or DISJn, we actually mean these restricted versions.
We start by establishing some useful properties of the DISJn function.

Lemma 51. If we arbitrarily remove at most N/10 rows and at most N/10 columns from the
communication matrix of DISJn, the number of ones in the resulting matrix is at least 4ND/5.

Moreover, we can further remove additional rows and columns (of our choice) to get a matrix
with at least N/2 rows and at least N/2 columns such that any row and any column contains at
least 3D/8 ones.

Proof. Consider a communication matrix M of DISJn, and suppose that we remove rows with
labels in A and columns with labels in B, where A and B are of size at most N/10. Each
row and column contains D ones, thus rows in A contain ND/10 ones and the same is true for
columns in B. After removal of these rows and columns the remaining number of ones is at least
ND − 2ND

10 = 8ND
10 .

To prove the second part of the lemma we repeat the following process. Check if there is a
row or a column with the number of ones below 3D/8. If such a row or column exists, remove
it. If in this way we reduce the number of rows or columns below N/2, then we removed at
most 8N/10 rows and columns, that in total contain less than 8N

10 · 3D
8 = 3ND

10 ones. Thus,
the resulting matrix contains more than 8ND

10 − 3ND
10 = ND

2 . This is a contradiction, since this
matrix has less than half rows or columns of the original one and each row and column of the
original matrix contains only D ones.

22

B B

A

A

B′ B′

A′

A′

Figure 7: The notion of projection: a rectangle over the iterated matrix translates to a rectangle over
the cells in DISJ matrix.

Analogously to the case of NEQ(k)
n , we define a cell on the ith layer of INT(k)

nk to be a
submatrix where the first i parts of the inputs are fixed to some values. That is, Xj = sj and
Yj = tj for some fixed strings sj , tj ∈ {0, 1}n for all j ≤ i. Some cells are monochromatic, more
specifically the cell is monochromatic if one of its blocks is fixed in a way that Xi ∩ Yi ̸= ∅. We
call a layer of INT(k)

nk 0-dominant if the corresponding monochromatic cells are 0-monochromatic.
1-dominant layers are defined similarly. In particular, the first layer is 0-dominant for INTk

nk.
We say that a row or column of a cell is covered by a rectangle R if it has non-empty intersection
with R. When it is clear from context, we will refer to a column as covered if one of the rectangles
we are currently considering intersects it.

Next we state the key lemma needed for the proof of Theorem 50.

Lemma 52. Fix a depth k, and suppose INT(k)
nk is computable by an ELDLk,1 E of size S. Define

ε0 = 0 and εi = 11i · 83 ·
2n/2S
D for all 1 ≤ i ≤ k. Then for all i, there exists a non-monochromatic

cell on layer i in INT(k)
nk such that ≤ εi fraction of its rows and columns have been covered by

E’s queries of depth at most i.

The proof of Theorem 50 based on the Lemma 52 is analogous to the proofs from the previous
section.

Proof of Theorem 50. Suppose INT(k)
n is computable by an ELDLk,1 E of size S. Then, by

Lemma 52, there exists a cell on layer k such that at most εk = 11k · 83 ·
2n/2S
D fraction of its rows

and columns have been covered by E ’s queries of depth at most k. Note that the cells on kth
layer are 1× 1 matrices and if εk < 1, then the only entry of this matrix is not covered, and E
outputs an incorrect value on it (due to the mismatch between the outputs on the layers). From
that, we get that the decision list is incorrect if

11k · 8
3
· 2

n/2S

D
< 1

and given that D = 2
2n
3 (1+o(1)), the theorem follows.

Now it is only left to prove Lemma 52.

Proof of Lemma 52. We use induction on i. For the base case we consider i = 0. For this case,
no parts of inputs are fixed and thus there is only one cell, the whole matrix. Clearly, ε0 = 0
fraction of its rows and columns have been covered by E ’s queries of depth at most 0.

23

For the induction step, suppose the statement holds for the (i − 1)st layer of INT(k)
nk and

consider the corresponding cell M (i−1) on the (i − 1)st layer. We show that the statement is
true for the ith layer as well. The cell we are going to find is a submatrix of the cell on the
(i− 1)st layer. Without loss of generality, let the ith layer be a 0-dominant layer. We view the
matrix M (i−1) as a block-matrix, in which blocks correspond to cells of the ith layer and each
block is either a constant 0 matrix, or M (i) matrix corresponding to the non-monochromatic
cell on the next layer. That is, consider the part of input corresponding on the ith layer, (Xi,
Yi) and consider communication matrix MDISJ of DISJ on these inputs. This matrix reflects the
structure of the cells of layer i in M (i−1): each cell is labeled by specific values of (Xi, Yi) and
the cell is 0-monochromatic iff DISJ(Xi, Yi) = 0.

By the induction hypothesis, at most εi−1 fraction of rows and columns of M (i−1) is covered
by previous queries. First we remove block-rows and block-columns that has more than 10εi−1

of their rows and columns respectively covered. By Markov’s inequality, this way we remove at
most 1/10 fraction of all block-rows and block-columns.

As we observed, the block-matrix corresponds to Disjointness. By Lemma 51 we can further
remove constant fraction of block-rows and block-columns in such a way that the number of
rows and columns is still at least N/2 and each of the remaining block-rows and block-columns
contains at least 3D/8 non-monochromatic cells. For notation convenience denote the resulting
submatrix by M (i−1) again.

Now consider queries of the ith depth layer of E . Since the size of E is S, there are at most
S queries in this layer.

Since E is an ELDL, each of its queries can be expressed as a blocky system of rectangles.
Consider some query on the ith layer, and let M denote the corresponding blocky system (within
M (i−1)). Let R1, . . . Rt with Rj = Aj × Bj be rectangles in M . Note that since we removed
all rows and columns partially covered by the queries of the previous layer, these rectangles
must be 1-monochromatic. We want to show that the Rjs cannot cover too much of the matrix
M (i−1). For each rectangle Rj consider its projection R′

j = A′
j × B′

j to inputs (Xi, Yi) (see
Figure 7). That is, if Rj contains an entry with some specific values of (Xi, Yi), then these
values of (Xi, Yi) are in R′

j . Basically, R′
j represent the rectangle of cells in MDISJ that are

intersecting with Rj . Note, that since Rjs are 1-monochromatic, they cannot intersect 0-cells,
and thus R′

j are 1-monochromatic rectangles in MDISJ.
Note that we can decompose M into two disjoint matrices Mwide and Mtall based on the

dimensions of the rectangles R′
j . In particular, the rectangle Rj = Aj × Bj is in Mwide if

|A′
j | < 2

n
2 and in Mtall if |B′

j | < 2
n
2 . Intuitively, Mwide contains all rectangles that are short and

Mtall contains all rectangles that are narrow. Note, that by Claim 21 each rectangle is either
short, or narrow.

We will argue that Mwide has small intersection with a random non-monochromatic cell in
M (i−1). A symmetric argument shows that it is also true for Mtall, and hence for M .

Fix some column of cells cl in M (i−1). We make use of the following claim:

Claim 53. We have |B1 ∩ cl|+ · · ·+ |Bt ∩ cl| ≤ Nk−i.

Indeed, the claim holds since Mwide is blocky and therefore distinct rectangles do not overlap
in columns.

Pick a uniformly random multicolored cell C in cl. Let X be a random variable for the number
of C’s columns which have a non-empty intersection with one of the rectangles Rj ∈ Mwide.
We have the following upper bound on the expected number of covered columns in a non-
monochromatic cell C:

24

EC∼cl [X] ≤
t∑

j=1

|Bj ∩ cl| ·
A′

j
3D
8

≤
t∑

j=1

|Bj ∩ cl| · 2
n
2

3D
8

≤ Nk−i2
n
2

3D
8

. (1)

Let Xr be the random variable denoting the fraction of columns covered by Mwide in a
uniformly random non-monochromatic cell C in the matrix M (i−1). Similarly, let Xc be the
random variable denoting the fraction of rows covered by Mtall in a uniformly random non-
monochromatic cell in the matrix.

Since (1) holds for each column of cells cl, we have EC∼M(i−1) [Xr] ≤ 8
3 · 2n/2

D and the same
is true for Xc. We have this bound for each query on layer i and since there are at most S
queries in this layer the total expected fraction of rows and columns covered for a random cell
is bounded by 8

3 ·
2n/2S
D . By Markov’s inequality there is a cell on the ith layer that has both at

most 10 · 83 ·
2n/2S
D fraction of rows and at most 10 · 83 ·

2n/2S
D fraction of columns covered. Together

with rows and columns covered on the previous layers we have that for this cell at most

10εi−1 + 10 · 8
3
· 2

n/2S

D
≤ 10εi−1 + εi−1 ≤ εi

rows and columns covered, as needed.

References

[1] László Babai, Kristoffer Arnsfelt Hansen, Vladimir V. Podolskii, and Xiaoming Sun.
Weights of exact threshold functions. In Petr Hlinený and Antonín Kucera, editors, Math-
ematical Foundations of Computer Science 2010, 35th International Symposium, MFCS
2010, Brno, Czech Republic, August 23-27, 2010. Proceedings, volume 6281 of Lecture Notes
in Computer Science, pages 66–77. Springer, 2010. doi:10.1007/978-3-642-15155-2_8.

[2] Arkadev Chattopadhyay, Meena Mahajan, Nikhil S. Mande, and Nitin Saurabh. Lower
bounds for linear decision lists. Chic. J. Theor. Comput. Sci., 2020, 2020. URL: http:
//cjtcs.cs.uchicago.edu/articles/2020/1/contents.html.

[3] Arkadev Chattopadhyay and Nikhil Mande. A short list of equalities induces large sign rank.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages
47–58, 2018. doi:10.1109/FOCS.2018.00014.

[4] Lijie Chen and R. Ryan Williams. Stronger connections between circuit analysis and circuit
lower bounds, via pcps of proximity. In Amir Shpilka, editor, 34th Computational Com-
plexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of
LIPIcs, pages 19:1–19:43. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL:
https://doi.org/10.4230/LIPIcs.CCC.2019.19, doi:10.4230/LIPICS.CCC.2019.19.

[5] Yogesh Dahiya, Vignesh K., Meena Mahajan, and Karteek Sreenivasaiah. Linear threshold
functions in decision lists, decision trees, and depth-2 circuits. Information Processing Let-
ters, 183:106418, 2024. URL: https://www.sciencedirect.com/science/article/pii/
S0020019023000613, doi:10.1016/j.ipl.2023.106418.

[6] Mason DiCicco, Vladimir Podolskii, and Daniel Reichman. Nearest neighbor complexity
and boolean circuits. In Raghu Meka, editor, 16th Innovations in Theoretical Computer
Science Conference, ITCS 2025, January 7-10, 2025, Columbia University, New York, NY,
USA, volume 325 of LIPIcs, pages 42:1–42:23. Schloss Dagstuhl - Leibniz-Zentrum für

25

https://doi.org/10.1007/978-3-642-15155-2_8
http://cjtcs.cs.uchicago.edu/articles/2020/1/contents.html
http://cjtcs.cs.uchicago.edu/articles/2020/1/contents.html
https://doi.org/10.1109/FOCS.2018.00014
https://doi.org/10.4230/LIPIcs.CCC.2019.19
https://doi.org/10.4230/LIPICS.CCC.2019.19
https://www.sciencedirect.com/science/article/pii/S0020019023000613
https://www.sciencedirect.com/science/article/pii/S0020019023000613
https://doi.org/10.1016/j.ipl.2023.106418

Informatik, 2025. URL: https://doi.org/10.4230/LIPIcs.ITCS.2025.42, doi:10.4230/
LIPICS.ITCS.2025.42.

[7] Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication
complexity. Journal of Computer and System Sciences, 65(4):612–625, 2002.

[8] Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam Mubarakzjanov, Niels
Schmitt, and Hans Ulrich Simon. Relations between communication complexity, linear
arrangements, and computational complexity. In FSTTCS, pages 171–182, 2001. URL:
https://doi.org/10.1007/3-540-45294-X_15.

[9] Mikael Goldmann. Communication Complexity and Lower Bounds for Threshold Circuits,
pages 85–125. Springer US, Boston, MA, 1994. doi:10.1007/978-1-4615-2696-4_3.

[10] Mikael Goldmann, Johan Håstad, and Alexander Razborov. Majority gates vs. general
weighted threshold gates. Comput. Complex., 2(4):277–300, December 1992.

[11] Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. Query-to-
Communication Lifting for PNP . In Ryan O’Donnell, editor, 32nd Computational Com-
plexity Conference (CCC 2017), volume 79 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 12:1–12:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.CCC.2017.12, doi:10.4230/LIPIcs.CCC.2017.12.

[12] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication com-
plexity classes. Comput. Complex., 27(2):245–304, June 2018.

[13] András Hajnal, Wolfgang Maass, Pavel Pudlak, Mario Szegedy, and Gyorgy Turan. Thresh-
old circuits of bounded depth. J. Comput. Syst. Sci., 46:129–154, 04 1993. doi:
10.1109/SFCS.1987.59.

[14] Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. Dimension-free bounds and
structural results in communication complexity. Isr. J. Math., 253(2):555–616, March 2023.

[15] Kristoffer Arnsfelt Hansen and Vladimir V. Podolskii. Exact threshold circuits. In 2010
IEEE 25th Annual Conference on Computational Complexity, pages 270–279, 2010. doi:
10.1109/CCC.2010.33.

[16] Kristoffer Arnsfelt Hansen and Vladimir V. Podolskii. Polynomial threshold func-
tions and boolean threshold circuits. Information and Computation, 240:56–73,
2015. MFCS 2013. URL: https://www.sciencedirect.com/science/article/pii/
S0890540114001175, doi:10.1016/j.ic.2014.09.008.

[17] Russell Impagliazzo and Ryan Williams. Communication complexity with synchronized
clocks. In 2010 IEEE 25th Annual Conference on Computational Complexity, pages 259–
269, 2010. doi:10.1109/CCC.2010.32.

[18] Stasys Jukna. Extremal Combinatorics - With Applications in Computer Science. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2011. doi:10.1007/
978-3-642-17364-6.

[19] Stasys Jukna et al. Boolean function complexity: advances and frontiers, volume 27.
Springer, 2012.

26

https://doi.org/10.4230/LIPIcs.ITCS.2025.42
https://doi.org/10.4230/LIPICS.ITCS.2025.42
https://doi.org/10.4230/LIPICS.ITCS.2025.42
https://doi.org/10.1007/3-540-45294-X_15
https://doi.org/10.1007/978-1-4615-2696-4_3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.12
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.12
https://doi.org/10.4230/LIPIcs.CCC.2017.12
https://doi.org/10.1109/SFCS.1987.59
https://doi.org/10.1109/SFCS.1987.59
https://doi.org/10.1109/CCC.2010.33
https://doi.org/10.1109/CCC.2010.33
https://www.sciencedirect.com/science/article/pii/S0890540114001175
https://www.sciencedirect.com/science/article/pii/S0890540114001175
https://doi.org/10.1016/j.ic.2014.09.008
https://doi.org/10.1109/CCC.2010.32
https://doi.org/10.1007/978-3-642-17364-6
https://doi.org/10.1007/978-3-642-17364-6

[20] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

[21] P.M. Lewis and C.L. Coates. Threshold Logic. Wiley, 1967.

[22] J Myhill and W H Kautz. On the size of weights required for linear-input switching func-
tions. IEEE Trans. Electron. Comput., EC-10(2):288–290, June 1961.

[23] Periklis Papakonstantinou, Dominik Scheder, and Hao Song. Overlays and limited memory
communication. In 2014 IEEE 29th Conference on Computational Complexity (CCC), pages
298–308, 2014. doi:10.1109/CCC.2014.37.

[24] Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. Journal of
Computer and System Sciences, 33(1):106–123, 1986. URL: https://www.sciencedirect.
com/science/article/pii/0022000086900462, doi:10.1016/0022-0000(86)90046-2.

[25] Anup Rao and Amir Yehudayoff. Communication complexity: and applications. Cambridge
University Press, 2020.

[26] Alexander A Razborov. On small depth threshold circuits. In Scandinavian Workshop on
Algorithm Theory, pages 42–52. Springer, 1992.

[27] Alexander A Razborov and Alexander A Sherstov. The sign-rank of AC0. SIAM Journal
on Computing, 39(5):1833–1855, 2010.

[28] Ronald L Rivest. Learning decision lists. Mach. Learn., 2(3):229–246, November 1987.

27
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1109/CCC.2014.37
https://www.sciencedirect.com/science/article/pii/0022000086900462
https://www.sciencedirect.com/science/article/pii/0022000086900462
https://doi.org/10.1016/0022-0000(86)90046-2

