
Efficient Quantum Hermite Transform

Siddhartha Jain1,2,*, Vishnu Iyer2,*, Rolando D. Somma1, Ning Bao3,4, and Stephen Jordan1

1Google Quantum AI, Venice, CA 90291, United States
2The University of Texas at Austin, Austin, TX 78712, United States

3Northeastern University, Boston, MA 02115, United States
4Brookhaven National Laboratory, Upton, NY 11973, United States

*These authors contributed equally to this work.

Abstract

We present a new primitive for quantum algorithms that implements a discrete Hermite
transform efficiently, in time that depends logarithmically in both the dimension and the inverse
of the allowable error. This transform, which maps basis states to states whose amplitudes are
proportional to the Hermite functions, can be interpreted as the Gaussian analogue of the Fourier
transform. Our algorithm is based on a method to exponentially fast forward the evolution of
the quantum harmonic oscillator, which significantly improves over prior art. We apply this
Hermite transform to give examples of provable quantum query advantage in property testing
and learning. In particular, we show how to efficiently test the property of being close to a low-
degree in the Hermite basis when inputs are sampled from the Gaussian distribution, and how
to solve a Gaussian analogue of the Goldreich-Levin learning task efficiently. We also comment
on other potential uses of this transform to simulating time dynamics of quantum systems in
the continuum.
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1 Introduction
Hermite polynomials and their corresponding Hermite functions are central in physics, signal anal-
ysis, statistics, and beyond. For example, Hermite functions are the well-known eigenfunctions of
one of the fundamental models in quantum mechanics known as the quantum harmonic oscillator
(QHO) [GS18]. Hermite functions can also be used to approximate arbitrary functions or probabil-
ity distributions, since they form an orthonormal basis of functions weighted by a Gaussian envelope
(cf. [BM98]). Therefore, an efficient Hermite transform that performs a change of basis to the Her-
mite functions would provide a fundamental tool to quickly switch into the “natural” basis of many
quantum systems and functions. Moreover, the number of primitives from which most quantum
algorithms are constructed, such as the quantum Fourier transform (QFT) and amplitude amplifi-
cation, is relatively limited [NC00]. This scarcity restricts the range of problems for which quantum
algorithms offer speedups, thereby motivating the search of other novel quantum primitives. Given
that the QFT represents a quantization of a pre-existing classical numerical transform, it is logical
to attempt to quantize other classical transforms, such as the Hermite transform [LRP+08], and to
consider its applications in quantum computing.

This work is concerned with a quantum Hermite transform (QHT): constructing a quantum
circuit that maps basis states into ‘Hermite’ states. These Hermite states are superposition states
with amplitudes given by the Hermite functions. While formally a Hermite transform would be
defined in the continuum (i.e., a mapping L2(R) → L2(R)), we consider a discrete and finite-
dimensional version that can be implemented by a quantum circuit.

For a QHT to be useful and provide quantum advantage, we require it to be efficient and hence
implemented using a quantum circuit of complexity that is logarithmic in the dimension of the
Hilbert space on which it acts. It is also desirable to achieve complexity scaling polylogarithmically
in the inverse of the allowable error. Remarkably, we are able to achieve this: our main result is a
quantum circuit U of O((logN + log 1/ε)3× log(1/ε)) gates that performs the desired basis change
into the Hermite states labeled by n ∈ {0, . . . , N} to within additive error ε. Note that a classical
discrete Hermite transform would require time polynomial in N to be implemented. Our result is
then comparable to the QFT, in that the QFT also transforms into another ‘natural’ basis given
by Fourier states, in time logarithmic in N .

Throughout this manuscript, we primarily consider the one-dimensional Hermite transform,
acting on an N -dimensional Hilbert space. That is, we consider the position basis on a line,
discretized as a one-dimensional lattice of N points, and convert to the the Hermite functions of
degree zero to N−1, which are also interpretable as the N lowest-energy eigenstates of the quantum
Harmonic oscillator. In some contexts, particularly property testing of oracles, it is also useful to
apply the n-dimensional Hermite transform. This is the n-fold tensor power of the one-dimensional
Hermite transform, much as the n-dimensional Fourier transform is the n-fold tensor power of the
one-dimensional Fourier transform.

The existence of an efficient QHT is also a fundamental algorithmic question in Harmonic anal-
ysis, since it allows one to perform Hermite sampling. That is, given a quantum state ∑x⃗ f(x⃗) |x⃗⟩
for some function f : Rn → R, one can use the (n-dimensional) QHT to sample from the probability
distribution Pr(k⃗) = |f̂(k⃗)|2, where f̂(k⃗) is the coefficient of the Hermite polynomial with index
k⃗ in the expansion. In the finite field setting of QFT, the analogous Fourier sampling subroutine
features in many of the most prominent quantum algorithms [Sim97, Sho97, Reg09, Aar10, RT22,
YZ24, JSW+25]. Using the QHT we expect that one can design continuous analogues of problems
with quantum query advantage like Forrelation [AA18, Wu20]. We also expect QHT to be useful
for learning geometric concepts over the Gaussian distribution [KOS08], and simulating nonlinear
differential equations with Gaussian noise which wecan be done by projecting onto low-degree Her-
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mite polynomials [BMSZZ25]. A recent work of Marwaha et al. [MFGH25] also showed that the
recent DQI algorithm [JSW+25] can be thought of as performing a Kravchuk transform, which is
a particular discretization of the Hermite transform. While closely related, we do not believe our
work easily gives an efficient Kravchuk transform, which would scale logarithmically in the degree.

1.1 Problem statement

In the continuum, a Hermite transform is a basis transformation that maps into the Hermite
functions defined as

ψn(x) := (−1)n√
2nn!
√
π
e−x2/2Hn(x) , (1)

where Hn(x) is the nth Hermite polynomial1. The goal of a QHT is then to construct a quantum
circuit that performs a similar basis transformation but in a discrete, finite dimensional space. To
this end, we introduce the Hermite states

|ψn⟩ :=
(2π
M

)1/4 M/2−1∑
j=−M/2

ψn(xj) |j⟩ ∈ CM , (2)

where xj := j
√

2π/M and M = 2m is the dimension. These can be interpreted as discretizations
of the Hermite functions, where the discretization size is

√
2π/M . We labeled the M basis states

of CM from −M/2 to M/2 − 1 for convenience. Note that the above states both discretize and
truncate the Hermite functions. The above choice of lattice spacing ensures that the truncation
only cuts off a region in which the first M Hermite functions all have exponentially decaying tails.

The problem of a QHT is to find a quantum circuit that maps |n⟩ 7→ |ψn⟩. By taking the gate-
by-gate inverse one also obtains a quantum circuit for the inverse quantum Hermite transform, of
the same complexity.

Quantum Hermite Transform Problem. Let N > 0 be the dimension and ε > 0 the error. The
goal of a QHT is to construct a quantum circuit U that performs the map

N−1∑
n=0

αn |n⟩ 7→
N−1∑
n=0

αn |ψn⟩ (3)

within additive error ε, where αn ∈ C are arbitrary and satisfy ∑N
n=0 |αn|2 = 1. The quantum

circuit acts on a Hilbert space of dimension M ≥ N .
In principle, such transformations cannot be exactly unitary since the states |ψn⟩ are not ex-

actly orthonormal. However, for sufficiently large M = Ω(N), they can be shown to be almost
orthonormal within error that is exponentially small in M , due to [Som16]. Hence, by fixing the
error ε and the dimension N where the QHT occurs, we can choose M properly and satisfy (3)
within the precision requirements. For our specific construction, we will require M = poly(N, 1/ε).

1There are two widely used normalizations for the Hermite polynomials: the physicist’s Hermite polynomials and
the probabilist’s Hermite polynomials. We use the physicist’s normalization throughout.
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1.2 Summary of results

Our QHT relies on a novel result to fast-forward the evolution of the QHO. In this context, a
bounded Hamiltonian H is said to be fast-forwardable if one can construct a quantum circuit
W that approximates the time-evolution operator e−iHt for time t as ∥W − e−iHt∥ ≤ ε, using a
number of quantum gates that scales sublinearly in ∥H∥t [AA17, GSŞ21]. Such result would bypass
a number of no-fast-forwarding theorems that show that this is not always possible [BACS07, CK10,
AA17, HHKL21]. However, the lower bound Ω(∥H∥t) applies only to the worst case and, in contrast,
quantum systems like the QHO can indeed be fast-forwarded. In the continuum, the QHO models
a particle in a quadratic potential with Hamiltonian Ĥ = (x̂2 + p̂2)/2, where x̂ is the position
operator and p̂ is the momentum operator. We introduce a discretized, M -dimensional version of
the QHO with Hamiltonian H, and show the following.

Theorem 1 (Exponential fast-forwarding of the QHO). Let N be the target dimension for fast-
forwarding, H ∈ CM×M be the Hamiltonian of a discrete QHO , and t ∈ [−π, π]. Then, we
can choose M = Θ(N logN) such that the evolution operator e−iHt can be simulated within error
O(exp(−N/10)) in the subspace spanned by the first N eigenvectors of H using O(log2N) gates.

Note that we don’t lose any generality due to the condition t ∈ [−π, π] since the eigenvalues of
the Harmonic oscillator are of the form n+1/2 with integer n, and hence e−iH(t+2π) = −e−iHt. Since
∥H∥ = Θ(M) and N = poly(M), Theorem 1 shows that exponential fast-forwarding of the QHO is
possible. This result significantly improves over prior art [Som16], where a quantum algorithm for
simulating e−iHt of complexity ∼ exp

(√
logN

)
was given, only describing a form of subexponential

fast-forwarding. Theorem 1 is based on a succinct factorization of the evolution operator in the
continuum that can be extended to the evolution operator in the finite-dimensional case, and
contrasts the method in [Som16] based on product (Trotter-Suzuki) formulas. The complexity
in Theorem 1 is dominated by that of multiplication using coherent arithmetic, which is O(log2N)
using schoolbook multiplication, and might be improved using sophisticated techniques.

The ability to fast forward a Hamiltonian also allows one to perform tasks like quantum phase
estimation (QPE) more efficiently [AA17, GSŞ21]. Our efficient QHT relies on fast QPE and hence
builds upon Theorem 1.

Theorem 2 (Efficient QHT, informal). There exists a quantum circuit of complexity O((logN +
log(1/ε))3 × log(1/ε)) that can perform an ε-approximate QHT of dimension N .

Being equipped with an efficient QHT, we then consider some problems where it can be applied.

Property testing and learning. One main application of an efficient QHT is Hermite sampling,
discussed in detail in Section 5. In this setting we are given black-box access to a function f : Rn →
R and we want to sample from its Hermite spectrum. To do so, we must first use queries to the
black box to construct a state whose amplitudes are proportional to f . Then we use the (inverse)
QHT n times, to map Hermite states to basis states.

Using Hermite sampling as a subroutine, we are also able to show that quantum algorithms can
solve all the following tasks efficiently over the Gaussian distribution:

(1) Test if f is close to a product of k sign functions;
(2) Test if f is close to being degree d;
(3) Test if f is close to a Hermite polynomial;
(4) Agnostically learn what we call sparse concepts.
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We describe quantum algorithms for (1–3) in Section 5.3 and give the learning application (4)
in Section 5.4. We also prove that we have quantum advantage for tasks (1) and (2) in Section 5.3.
A recent independent work of Lewis et al. [LGM25] also gave quantum advantage in learning real-
valued functions, but our work is the first to show quantum advantage for property testing with
real-valued functions.

We note that these quantum advantages are already attained in the limit of large n with
N = poly(n). Consequently, the polylogarithmic scaling in N that we achieve with our QHT circuit
only achieves a polynomial quantum advantage in circuit size for property testing. Now that we
have shown that the quantum Hermite transform can be efficiently applied at exponentially large N ,
we invite others to use this as a building block for new quantum algorithms achieving exponential
advantage.

Hamiltonian simulation. Hamiltonian simulation is the problem of simulating quantum dynamics,
induced by a Hamiltonian H and for time t, on a quantum computer. In particular, the Hermite
functions represent what in physics are known as Fock states. Such states appear naturally in many
quantum systems, where the QHO is only one example, and we expect the QHT to be generally
applicable for Hamiltonian simulation in these systems.

Quantum systems defined in the continuum involve the position x̂ and momentum p̂ operators.
These become sparse when represented using the Fock states or Hermite functions. Our QHT can
then perform the change of basis efficiently, allowing us to work with sparse representations of the
Hamiltonians. As the most efficient quantum algorithms for quantum dynamics or Hamiltonian
simulation assume the sparse matrix access model (cf. [BCC+15, LC17]), our efficient QHT might
be used to reduce the complexity of Hamiltonian simulation in these systems.

Similarly, the QHT is expected to bring novel examples of fast-forwarding. Consider for example
the well-known Jaynes-Cummings model that models the interaction of a two-level atom with the
electromagnetic field (in the continuum) [JC05]. When described in the Fock basis, the Hamiltonian
simply becomes a direct sum of 2× 2 blocks that can be simply diagonalized. Hence, our QHT can
also exponentially fast-forward the discrete version of this model.

Like the QFT, our efficient QHT opens the path to other case studies and potential applications.
To this end, in Section 6 we list open problems, charting the path for more examples of quantum
advantage.

2 Technical overview
Our main result is an efficient quantum circuit for an M -dimensional unitary U , that transforms
from the computational basis to the basis of Hermite states given in (2), with arbitrary accuracy.
Hermite states are also accurate approximations of the eigenvectors of the ‘discrete’ QHO [Som16].
That is, we approximate the transformation defined by U |n⟩ 7→ |ψn⟩, where the Hermite states
|ψn⟩ are a discretization of the nth eigenstate of the QHO Hamiltonian in the continuum Ĥ =
(x̂2 + p̂2)/2. Here, x̂ is the position operator and p̂ is the momentum operator: x̂f(x) = xf(x) and
p̂f(x) = −i d

dxf(x), for arbitrary f(x) ∈ L2(R).
The steps in our efficient QHT are as follows. First, given index n ∈ {0, . . . , N} for some N > 0,

we prepare the Hermite state |ψn⟩ ∈ CM while keeping a copy of |n⟩ in some register. The actual
dimension M = 2m satisfies M > N and has to be chosen properly, as we discuss. This is done
via a unitary transformation conditional on |n⟩. To reset |n⟩ to |0⟩⊗m, i.e., to ‘uncompute’ |n⟩, we
infer the value of n from |ψn⟩. That is, the sequence of state preparation steps to define the QHT
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is
|n⟩ → |n⟩ |0⟩⊗m adjoin m ancillas

→ |n⟩ |ψn⟩ Hermite state preparation
→ |0⟩⊗m |ψn⟩ uncomputation
→ |ψn⟩ discard m ancillas.

We give an overview of how the main steps are accomplished.

Hermite state preparation. Given n, to prepare the state |ψn⟩ ∈ CM we proceed in two steps:
First, we prepare an approximation |ϕn⟩ ∈ CM such that ⟨ϕn|ψn⟩ = Ω(1), and second, we use
fixed-point quantum search [YLC14] to transform |ϕn⟩ 7→ |ψn⟩ efficiently. Amplitude amplification
requires a sequence of reflections over |ψn⟩ and |ϕn⟩. The latter can be efficiently implemented
because the state |ϕn⟩ can also be efficiently prepared, but the reflection over |ψn⟩ is more intricate.
To this end, we design a ‘filtering’ algorithm that flags |ψn⟩ and allows us to simulate this reflection
by a reflection over a state |0⟩ of an ancilla qubit. This filtering is based on fast QPE; it uses our
fast-forwarding result for the QHO and can be implemented efficiently.

The states |ϕn⟩ are chosen as follows. A useful result for this task is that of Plancherel–Rotach
asymptotics [Sze39], which gives approximate expressions for the Hermite functions ψn(x) with a
provable error bound. Such approximations are only valid in the domain |x| <

√
2n+ 1, where the

points ±xtp = ±
√

2n+ 1 are known as the ‘turning’ points in physics. Explicitly, these approxi-
mations read:

ψn(x) = (−1)n2 1
4

π
1
2n

1
4

1√
sinφ(x)

(
sin
[(
n

2 + 1
4

)
(sin(2φ(x))− 2φ(x)) + 3π

4

]
+O

( 1
n

))
, (4)

where φ(x) := arccos
(
x/
√

2n+ 1
)

is such that π > φ(x) > 0.
We show how to use this approximation formula to construct the states |ϕn⟩ efficiently, which

are now simply superposition states with amplitude modulated by 1√
sin φ(x)

and also a phase that
depends on φ(x). We also show that the states |ϕn⟩ have nonzero, constant overlap with the |ψn⟩.

Fixed-point search
+ filtering

Plancherel-Rotach
functions

Hermite functions

Figure 1: A visualization of the Quantum Hermite Transform. On the left we have the Plancherel-
Rotach functions (visualized without the decaying envelope for simplicity), we prepare states corre-
sponding to these, which is then fed into the fixed-point search algorithm using our fast-forwarding
result as a subroutine. This allows us to prepare the states corresponding to the Hermite functions
in superposition to arbitrary precision. Both the functions are visualized for n = 10.

Uncomputation. For the uncomputation step where we reset |n⟩ 7→ |0⟩⊗m, we use a version of
Kitaev’s QPE algorithm [Kit95]. The Hermite functions are known eigenfunctions of the QHO
Hamiltonian Ĥ of eigenvalue n + 1/2. Similarly, the Hermite states |ψn⟩ can be shown to be
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accurate approximations of the eigenvectors |ψn⟩ of the discrete QHO H, with eigenvalues that are
very close to n + 1/2 [Som16]. For a bounded Hamiltonian H satisfying ∥H∥ ≤ 1, QPE is able
to distinguish eigenvalues separated by a difference ∆ by implementing unitary time evolutions of
the form e−iHt up to evolution times t ∼ 1/∆. In our case, if H = H/M is the rescaled version
of H, we have ∆ ∼ 1/M and hence t ∼ M . Then, to avoid any complexity polynomial in M , we
use Theorem 1 that allows us to fast forward this time evolution and to perform fast QPE.

Last, we give an overview for the proof of Theorem 1, which is used in the state preparation for
both filtering and uncomputation.

Fast-forwarding. Central to this result is a factorization of the evolution operator e−iĤt, where
Ĥ = (p̂2 + x̂2)/2 is the QHO Hamiltonian in the continuum. We exploit the canonical commutation
relations, namely [x̂, p̂] = iI, where I is the identity such that If(x) = f(x). Then [QA07]

exp
(
−iĤt

)
= exp

(
− i tan(t/2)p̂2

2

)
exp

(
− i sin(t)x̂2

2

)
exp

(
− i tan(t/2)p̂2

2

)
. (5)

We then consider a discrete version of the QHO, referred to as H, and analyze the time complexity
and the discretization error of this factorization. To this end, we define x and p to be a specific
choice of discretizations of x̂ and p̂, defined in [Som16], and let H := (p2 + x2)/2. We show that
the factorization of (5), when replacing x̂→ x and p̂→ p, reproduces the evolution operator e−iHt

within accuracy that is exponentially small in N in the low-energy subspace, where N ≤ M =
poly(N), and M is the Hilbert dimension of H. The low-energy subspace is that spanned by the
N eigenvectors of H of smallest eigenvalue.

To prove this result, we consider the commutation relations of the discrete operators x and p and
show they approximate those between x̂ and p̂, in the low-energy subspace, the space spanned by
the first N eigenvectors of H. For example, in that subspace, [x, p]− iI can be shown to have norm
exponentially small in N , where I is now the N -dimensional identity. We also need to bound the
errors of the nested commutators. Let

[
x2, p2]

k =
[
x2,

[
x2, p2]

k−1

]
be the k-th nested commutator,

where
[
x2, p2]

1 =
[
x2, p2]. We cannot directly use the fact that the norm of [x, p] − iI is small

on the low-energy subspace, because when nesting one would naively incur a cost which scales as
≈Mk−1 due to the multiplication of k− 1 matrices after using the relation once. We show how to
control the growth of these terms within the low-energy subspace by proving that (i) polynomials
in the operators with degree t have norm which scale as N t in the low-energy subspace, and (ii)
certain operators which capture the discretization errors have norm poly(M) on the entire space
whose growth can be controlled by t! when t is sufficiently greater than N . See Section 3 for more
details. We believe this technique would be useful for more Hamiltonian simulation results as well.

The approximated evolution operator of the discrete QHO also involves three exponentials. The
exponential of i sin(t)x2/2 is a diagonal unitary that can be simply implemented with O(log2N)
two-qubit arbitrary gates regardless of t. (For simplicity throughout this paper we assume that
arbitrary gates can be implemented perfectly, without any overhead in precision.) To this end, we
use coherent arithmetic for multiplication and then use phase kickback. Since p is obtained from x
via conjugation with the (centered) QFT, the exponentials involving p2 can also be implemented
with O(log2N) two-qubit arbitrary gates. This is then an example of exponential fast-forwarding,
since it avoids the no-fast-forwarding bound Ω(∥H∥t), which would be linear in Nt in this case.
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3 Fast-forwarding of the QHO
In this section we discuss Theorem 1 and present the formal results on the evolution of the QHO.
First, let us discuss the algebraic factorization of the time-evolution of the quantum harmonic
oscillator in the infinite-dimensional case. Since the Hamiltonian is the sum of two terms, Ĥ =
(x̂2 + p̂2)/2, if the operators were commuting, we could simply factor by breaking up the sum.
But the position and momentum operator do not commute. What we do know is the canonical
commutation relation between them, [x̂, p̂] = iI. Combined with the Baker–Campbell–Hausdorff
formula, this allows us to factor the time-evolution of the Hamiltonian. First, we notice these
relations which can be checked by computation:

1. [x̂2, p̂2] = 2i {x̂, p̂}
2. [x̂2, {x̂, p̂}] = 4ix̂2

3. [p̂2, {x̂, p̂}] = −4ip̂2

Further, Item 2 implies that
[
x̂2,

[
x̂2, {x̂, p̂}

]]
= 0. Item 3 implies the symmetric statement

about momentum. One thus finds that the Lie algebra generated by x̂2 and p̂2 is three dimensional,
namely the span of x̂2, p̂2, and {x̂, p̂}. These facts about the nested commutators ‘kill off’ infinite
terms in the BCH expansion and give us the following factorization for the evolution operator, also
discussed in [QA07].
Theorem 3 (Factorization of the QHO evolution [QA07]). The evolution operator of the QHO admits
the following factorization:

exp
(
−iĤt

)
= exp

(
− i tan(t/2)p̂2

2

)
exp

(
− i sin(t)x̂2

2

)
exp

(
−i tan(t/2)p̂2

2

)
. (6)

For completeness, we include an independent proof of this in Appendix A.
Now, if we want to fast-forward on a digital quantum computer, then we need to pick a dis-

cretization of the infinite dimensional Hamiltonian. We use the same definition of the discretization
as the previous work on fast-forwarding the QHO [Som16]. This sets x to be a diagonal matrix of
size M ×M , and p as its conjugation by a centered discrete Fourier transform. Then we can set
H = (x2 +p2)/2. It is not at all clear a priori that this factorization is still faithful. In particular, it
is no longer true that [x, p] = iI. Remarkably, we are able to carry the factorization to the case of
the discrete QHO. Moreover, our error is doubly-exponentially small! We recall Theorem 1 below.
Theorem 1 (Exponential fast-forwarding of the QHO). Let N be the target dimension for fast-
forwarding, H ∈ CM×M be the Hamiltonian of a discrete QHO , and t ∈ [−π, π]. Then, we
can choose M = Θ(N logN) such that the evolution operator e−iHt can be simulated within error
O(exp(−N/10)) in the subspace spanned by the first N eigenvectors of H using O(log2N) gates.

We now formally define our discretized QHO. We use the same conventions as [Som16], but
change the notation slightly.

Discrete QHO. For given dimension M > 0, we discretize the space with a grid of discretization
size

√
2π/M . We define the discretized position operator as

x :=
√

2π
M


−M

2 0 ... 0
0 −M

2 + 1 ... 0
...

...
. . .

...

0 0 ... M
2 − 1

 , (7)
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and the discrete momentum operator p := F−1xF , where F is the centered M -dimensional discrete
Fourier Transform. (The centered Fourier transform is equivalent to the standard discrete Fourier
transform up to relabeling the indices j, as described in Appendix B.) Then, the discrete QHO
Hamiltonian is

H = 1
2
(
x2 + p2

)
. (8)

We let |ψn⟩ be the eigenstates of H, for 0 ≤ n ≤M − 1. In [Som16] it was shown that |ψn⟩ are
very close to the Hermite states

|ψn⟩ :=
(2π
M

)1/4 M/2−1∑
j=−M/2

ψn(xj) |j⟩ , (9)

where ψn(x) is the nth Hermite function. Below, we collect some facts about this discretization.
We introduce |Ψn⟩ as the bra-ket representation of the nth continuum QHO eigenstate.

Fact 4 ([Som16]). There exist constants γ, c ∈ (0, 1) such that for all M sufficiently large and all
k, ℓ ≤ cM ,

1. |⟨ψk|ψℓ⟩ − δk,ℓ| ≤ exp(−γM).

2. For a, b ≤ 4,
∣∣∣⟨ψk|xapb |ψℓ⟩ − ⟨Ψk| x̂ap̂b |Ψℓ⟩

∣∣∣ ≤ exp(−γM).

In other words, this discretization is highly effective in a subspace with bounded energy. We
will prove that in a subspace within this one, we can perform the fast-forwarding with provably
small error, as visualized in Figure 2.

0 N cM M

Low-energy: subspace with
rigorous guarantees

Medium-energy:
discretization still works

High-energy:
discretization fails

Figure 2: Visualization of discretization error for the QHO. Here N = Θ(M/ logM), as specified
in Theorem 5. In the “low-energy” subspace, the fast-forwarding algorithm provably works. Mean-
while, in the “medium-energy” subspace Fact 4 still holds, although we no longer obtain rigorous
guarantees on fast-forwarding.

Remark. You might notice that these statements do not necessarily imply that the kth eigenstate
of the discrete Hamiltonian H is close to the kth discrete Hermite state, in the case that eigenvalue
gaps are exponentially small. We point out that we do not have a rigorous proof that the eigenvalue
gaps are not exponentially small; in principle one could worry that eigenstates from the high energy
subspace, upon discretization, could jump down to the low energy subspace and land exponentially
close to a low eigen-energy. In fact, numerically one observes that the high eigen-energies, though
less accurately conforming to their continuum values than the low eigen-energies, never cross all
the way into the low energy subspace. Nonetheless, since we only care about the closeness to the
discrete Hermite states, our claims about fast-forwarding are true irrespective of the eigenvalue
gaps.
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Note that our convention for basis states is such that j ∈ {−M/2, . . . ,M/2 − 1}, which dif-
fers from the standard convention where j ∈ {0, . . . ,M − 1}. This simplifies the exposition, since
Hermite functions are defined in a domain where x ∈ R and we can directly associate j with a
position in space. Transforming from one convention to the other is a cyclic permutation, i.e.,
|−M/2⟩ 7→ |0⟩, |−M/2 + 1⟩ 7→ |1⟩, and so on. However, we do not need to perform this permu-
tation in the algorithm; the relevant observation is that F is not exactly the QFT, as explained
in Appendix B, but can still be implemented with O(log2M) gates.

The following result shows that the factorization of the QHO’s evolution operator in the con-
tinuum of Theorem 3 can be carried to this discrete case.

Theorem 5. There is a constant η such that for N = ηM/ logM , we have the following. Let H be
the discretization with grid size

√
2π
M and for |t| ≤ π/2,∥∥∥ΠN

(
e−iHt − e−ia(t)p2

e−ib(t)x2
e−ia(t)p2)ΠN

∥∥∥ ≤ exp(−N/2).

where
a(t) = tan(t/2)

2 and b(t) = sin(t)
2 .

We next comment on how to apply Theorem 5 to decompose e−iĤt for arbitrary t. We first
recall that, in the continuum, all eigenvalues of H are of the form n + 1/2 for integer n. Hence,
the time evolution of the quantum harmonic oscillator is periodic in the sense that e−iH2π = −I.
Therefore, we can always subtract an integer multiple of 2π from t to bring t into the range −π to π.
As noted in Theorem 3, the formal identity (6) holds for arbitrary t but one must be careful since
the tangent function has divergences, in particular at argument t/2 = ±π/2. In the discretized
case it becomes important to keep the coefficients a(t) and b(t) bounded in order to keep the error
bounded. To achieve this, whenever |t| > π/2, we use the factorization

e−iĤt =
(
e−iĤ(t/2)

)2
(10)

=
(
e−ia(t/2)p̂2

e−ib(t/2)x̂2
e−ia(t/2)p̂2)2

(11)

= e−ia(t/2)p̂2
e−ib(t/2)x̂2

e−2ia(t/2)p̂2
e−ib(t/2)x̂2

e−ia(t/2)p̂2 (12)

This factorization then translates to a quantum circuit to approximate e−iH̄t using a total of five
steps. Each step implements either the diagonal operator e−ibx2 by phase kickback, or implements
the operator e−iap2 using the quantum Fourier transform to change to its eigenbasis, then applying
phase kickback, and then transforming back. When |t| ≤ π/2 we would apply Theorem 5 directly,
which requires only three phase-kickback steps.

To prove Theorem 5 it would suffice show that the total contribution of the nested commutators
like

(∑∞
t=3

1
t!
[
x2, p2]

t

)
vanishes as the Hilbert space dimension goes to ∞. This is in fact not true,

but in Theorem 14 we show this is true when we project down to the subspace corresponding to
energy levels N = O(M/ logM) for a Hilbert space of dimension M . We show a similar bound
on the terms involving

[
p2, x2]

t and
[
p2, {x, p}

]
t, which suffices to prove Theorem 5. Since we

pay a logM cost to compute up to M , we can always run the discretization for an M such that
N = O(M/ logM) and project back down. More precisely, we prove the following theorem about
the norm of the nested commutators. Below, γ is a constant to be declared later.

11



Theorem 6. For any constants c1, c2 such that max(|c1| , |c2|) ≤ 1, and N = γM/(40 log(2M)), we
have ∥∥∥∥∥ΠN

( ∞∑
t=3

1
t!
[
c1x

2, c2p
2
]

t

)
ΠN

∥∥∥∥∥ ≤ exp(−γN/2).

∥∥∥∥∥ΠN

( ∞∑
t=3

1
t!
[
c1p

2, c2x
2
]

t

)
ΠN

∥∥∥∥∥ ≤ exp(−γN/2)

∥∥∥∥∥ΠN

( ∞∑
t=2

1
t!
[
c1p

2, c2 {x, p}
]

t

)
ΠN

∥∥∥∥∥ ≤ exp(−γN/2).

The main technical difficulty in proving this statement comes from the fact that when we have
a nested commutator [A,B]t with a very large t, then the naive bound on this scales with an
exponential in t, since we repeatedly use the norm of the matrices as a bound. We use a trick
to split the sum into few-nestings and many-nestings to control the growth of these terms when
projected to a low-energy subspace. In the next section, we discuss the explicit algorithm for the
QHO and prove it is correct using this theorem. Then in Section 3.2 we prove this theorem.

3.1 The algorithm

From the statement of Theorem 5, the algorithm for fast-forwarding is simple, as given in Algo-
rithm 1.

Algorithm 1 Fast-forwarding QHO
1: t2 ← t− 2π⌊t/2⌉ ▷ Shift t into the range [−π, π)
2: if |t2| > π/2 then ▷ If t2 is too big halve it and use two repetitions.
3: α← tan(t2/4)/2
4: β ← sin(t2/2)/2
5: Compute e−iαp2

e−iβx2
e−i2αp2

e−iβx2
e−iαp2

6: else ▷ Otherwise use one repetition.
7: α← tan(t2/2)/2
8: β ← sin(t2)/2
9: Compute e−iαp2

e−iβx2
e−iαp2

So let us now prove Theorem 5 using Theorem 6. We will give the proof of Theorem 6 in the
next subsection.

Proof of Theorem 5. Let H = 1
2(x2 + p2) be the discretized quantum harmonic oscillator Hamilto-

nian. We will denote U(t) = exp
(
−iHt

)
. Further, denote

Ũ(t) = exp
(
−i tan(t/2)p2

2

)
exp

(
−i sin(t)x2

2

)
exp

(
−i tan(t/2)p2

2

)

We show in Appendix A, Lemma 70 that for α′ = tan(t/2)/2, β′ = sin(t)/2,

Ũ(t)
−1dŨ(t)

dt
= −iH+β̇′

∞∑
t=3

1
t!2t/2

[
β′ix2, ip2

]
t
+α̇′

∞∑
t=3

1
t!2t/2

[
α′ip2, ix2

]
t
+α̇′

∞∑
t=2

1
t!2t/2

[
α′ip2, i {x, p}

]
t

12



Now we can use Theorem 6, but we need a bound on α′, β′. Assume without loss of generality that
t ∈ [−π, π]. If |t| < π/2 then we have that |α′| , |β′| ≤ 1/2. We also have α̇′, β̇′ ≤ 2. Hence we can
conclude

∥ΠN

(
Ũ(t)

−1dŨ(t)
dt

+ iH
)

ΠN∥ ≤ 6 exp(−γN/2)

Let us represent this quantity in the brackets by η. Then by the Baker-Campbell-Hausdorff theorem
we know that,

exp(η)Ũ(t) = exp
(
η + iHt+ it

2
[
η,H

]
+ it

12
[
η,H

]
2

+ . . .

)
Thus, we have that

∥ΠN

(
U(t)− Ũ(t)

)
ΠN∥ ≤ 6 exp(−γN/4)

It remains to bound the case when |t| is in (π/2, π). In this case, we can divide t by 2 and repeat
the factorization twice. So define Ũ(t)2 =

(
exp

(
i tan(t/4)p2

2

)
exp

(
i sin(t/2)x2

2

)
exp

(
i tan(t/2)p2

2

))2
. Now

we have the same bounds on the nested commutators. Hence we can derive that

∥ΠN

(
U(t)− Ũ(t)2

)
ΠN∥ ≤ 12 exp(−γN/4)

This proves that for all t the discrete Hamiltonian evolution can be factorized into 3 or 6 terms
while being doubly-exponentially accurate. We use that γ ≥ 1/2 to conclude the quantative bound
in our theorem.

Now, the size of the circuit to compute these factorizations in Algorithm 1 is enough to perform
fast-forwarding. Hence we are ready to prove Theorem 1.

Proof of Theorem 1. Computing these factorizations has error exp(−N/10) due to Theorem 5.
Thus Algorithm 1 is correct. We can compute these factorizations in O(log2N) time because we
can prepare exp(−ix) of dimension M in O(log2N) time using the technique of phase kickback
since x is diagonal. Further, we can perform QFT in Õ(logN) time [CW00] to prepare p from x,
which is diagonal in the Fourier basis so allows us to prepare exp(−ip) in O(log2N) time. Adding
the trignometric functions in the expression costs constant time by our assumption. Hence the
total runtime is O(log2N).

3.2 Bounding nested commutators

In this section we prove the aforementioned bounds on the nested commutators of x2, p2 and {x, p}.
Going forward, we define

∆ =
[
x2, p2

]
2
− 4ix2 (13)

to be the discretization error. Indeed, in the continuous case,
[
x̂2, p̂2]

2 − 4ix̂2 = 0. Choose

N ′ = γM

8 log(2M) (14)

for some suitably small constant γ > 0 to be chosen later, and take

N = N ′/5. (15)
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We define ΠN to be the projector onto the the subspace spanned by the discrete eigenstates |ψk⟩
for k ≤ N , and ΠN ′ is defined analogously. Formally,

ΠN =
N∑

k=1
|ψk⟩⟨ψl| , ΠN ′ =

N ′∑
k=1
|ψk⟩⟨ψl|

We argue that, analogously to the continuous case, the discretized xa operators do not cause
significant leakage from the bottom N eigenstates to eigenstates above level N ′, provided that a
is sufficiently small. First we show that the corresponding matrix elements in the discrete and
continuous cases are close.

Lemma 7. Let a ≤ γM
10 log(2M) . Then whenever M is sufficiently large,

max
k≤N ′

ℓ≤N

∣∣∣⟨ψk|xa |ψℓ⟩ − ⟨Ψk| x̂a |Ψℓ⟩
∣∣∣ ≤ exp(−γM/4)

Proof. We will first bound the distance between ⟨ψk|xa |ψℓ⟩ and ⟨Ψk| x̂a |Ψℓ⟩ then later show that
the former is close to ⟨ψk|xa |ψℓ⟩. We can write ⟨Ψk| x̂a |Ψℓ⟩ =

∫
R x

aψk(x)ψℓ(x)dx. Recall that
our discretization has the limits [−L,L], where L =

√
πM

2 . Define the strip S = {z ∈ C :
max{|Re(z)| , |Im(z)|} ≤ L}. Within this region, applying Plancherel-Rotach asymptotic arguments
(see, e.g. [Sze39]), we have the bound

sup
z∈S
|ψk(z)| ≤ K · k−1/4 sup

z∈S

∣∣∣e−z2
/2
∣∣∣ ≤ K · sup

z∈S

∣∣∣ eIm(z)2
/2
∣∣∣ ≤ K · eL2/2. (16)

This readily gives us the bound

sup
z∈S
|xaψk(z)ψk(z)| ≤ (L

√
2)a · eL2

for some suitably large constant K. Thus, employing the exponentially convergent trapezoid rule
[TCW14], we have∣∣∣∣∣⟨ψk|xa |ψℓ⟩ −

∫ L

−L
xaψk(x)ψℓ(x)dx

∣∣∣∣∣ ≤ 2(L
√

2)a exp
(
L2 − 2πM

)
= 2(L

√
2)a exp(−πM). (17)

Since a ≤M/10 log(2M) we can bound this term by exp(−M). Now we compute the error accrued
from imposing the limits ±L. That is,∣∣∣∣∣

∫ L

−L
xaψk(x)ψℓ(x)dx−

∫
R
xaψk(x)ψℓ(x)dx

∣∣∣∣∣ = 2
∣∣∣∣∫ ∞

L
xaψk(x)ψℓ(x)dx

∣∣∣∣ .
We can bound |xaψk(x)ψℓ(x)| ≤ π−1/4 |xaψk(x)|. Now, L is much larger than the turning point of
ψk(x). By standard results (such as, say [Som16, Eq. (A4)], there exists a constant c such that

|xaψk(x)| ≤ c |xa| · e
√

2kx−x2/2 = ce
√

2kx−a log x−x2/2 ≤ e−x2/3

whenever M is sufficiently large. This gives us the bound∣∣∣∣∫ ∞

L
xaψk(x)ψℓ(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫ ∞

L
e−x2/3dx

∣∣∣∣ ≤ e−L2/6 ≤ e−πM/12.
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We now show that ⟨ψk|xa |ψℓ⟩ is close to ⟨ψk|xa |ψℓ⟩. Indeed, we have∣∣∣⟨ψk|xa |ψℓ⟩ − ⟨ψk|xa |ψℓ⟩
∣∣∣ =

∣∣∣⟨ψk|xa |ψℓ⟩ − ⟨ψk|xa |ψℓ⟩
∣∣∣+ ∣∣∣⟨ψk|xa |ψℓ⟩ − ⟨ψk|xa |ψℓ⟩

∣∣∣ (18)

=
∣∣∣⟨ψk|xa

(
|ψℓ⟩ − |ψℓ⟩

)∣∣∣+ ∣∣∣(⟨ψk| − ⟨ψk|
)
xa |ψℓ⟩

∣∣∣ (19)

≤
∥∥∥xa |ψk⟩

∥∥∥ · ∥∥∥|ψℓ⟩ − |ψℓ⟩
∥∥∥+

∥∥∥|ψk⟩ − |ψk⟩
∥∥∥ · ∥xa |ψℓ⟩∥ (Cauchy-Schwarz)

≤ ∥xa∥ ·
∥∥∥|ψℓ⟩ − |ψℓ⟩

∥∥∥+ (1 + exp(−γM)
∥∥∥|ψk⟩ − |ψk⟩

∥∥∥ · ∥xa∥ (Fact 4)

≤ exp
(
−a log(πM/2)

2

)
·
(∥∥∥|ψℓ⟩ − |ψℓ⟩

∥∥∥+ 2
∥∥∥|ψk⟩ − |ψk⟩

∥∥∥) (20)

≤ 3 exp(γM/10− γM) (Fact 4)
= 3 exp(−9γM/10). (21)

Putting everything together, the overall bound we obtain is

(2M)a/2 exp(−πM/2) + 2e−πM/12 + 3e−9γM/10 ≤ e−γM/4

for all M sufficiently large.

We use the above bound to show that low degree position operators result in very little leakage
from energy at most N to energy above N ′.

Lemma 8. For all M sufficiently large and whenever a ≤ 4N , ∥(I −ΠN ′)xaΠN∥ ≤ exp(−γM/9),
where N ′ and N are as defined in (14) and (15).

Proof. Define

δa = max
k≤N ′

ℓ≤N

∣∣∣⟨ψk|xa |ψℓ⟩ − ⟨Ψk| x̂a |Ψℓ⟩
∣∣∣ , κa = max

k≤N

∣∣∣⟨ψk|x2a |ψk⟩ − ⟨Ψk| x̂2a |Ψk⟩
∣∣∣

We claim that
∥(I −ΠN ′)xaΠN∥ ≤

(√
N ′ · δ2N +√κ2N

)
·
√
M

Indeed, we need only show that

max
N ′<k≤M

ℓ≤N

∣∣∣⟨ψk|xa |ψℓ⟩
∣∣∣ = max

N ′<k≤M
ℓ≤N

∣∣∣⟨ψk|xa |ψℓ⟩ − ⟨Ψk| x̂a |Ψℓ⟩
∣∣∣ ≤ √N ′ · δ4N +√κ4N .

We can write
xa |ψℓ⟩ = β |ψ⟩+

∑
j≤N ′

α′
j |ψj⟩ , x̂a |Ψℓ⟩ =

∑
j≤N ′

αj |Ψj⟩

where we have used the fact that a ≤ 4N , and doesn’t push the support above energy level N ′. We
have the bound

∣∣∣⟨ψk|xa |ψℓ⟩
∣∣∣ ≤ |β|. We have

∣∣∣αj − α′
j

∣∣∣ ≤ δa and∣∣∣∣∣∣β2 +
N ′∑
j=1

(αj − α′
j)2

∣∣∣∣∣∣ ≤ κ4N

From this we have the desired bound

|β| ≤
√
N ′ · δ4N +√κ4N
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By Lemma 7, since a ≤ 4N ≤ γM/(10 log(2M)), we can bound

δ4N ≤ exp(−γM/4), κ4N ≤ exp(−γM/4)

Thus we have the bound

|β| ≤
√
N ′ · e−γM/4 + e−γM/8 ≤ 2e−γM/8. (22)

Since ∥(I −ΠN ′)xaΠN∥ ≤ |β| ·N ′, we have the bound

∥(I −ΠN ′)xaΠN∥ ≤ 2
√
Me−γM/8 ≤ e−γM/9

for all M sufficiently large.

We now prove a number of desirable properties of the discretization error ∆. In particular, we
show that ∆ is small on the subspace spanned by the first N ′ eigenvectors, and then bound its
overall operator norm. First, we recall a fundamental fact about Hermite polynomials.

Fact 9.
xHk(x) = kHk−1(x) + 1

2Hk+1(x)

Lemma 10. For all M sufficiently large:

1. ∥ΠN ′∆ΠN ′∥ ≤ exp(−γM/3)
2. ∥∆∥ ≤ 17M3.

Proof. We have the bound

∥ΠN ′∆ΠN ′∥ ≤
√
M · max

k≤N ′

ℓ≤N ′

∣∣∣⟨ψk|∆ |ψℓ⟩
∣∣∣ =
√
M · max

k≤N ′

ℓ≤N ′

∣∣∣⟨ψk|∆ |ψℓ⟩ − ⟨Ψk|
[
x̂2, p̂2

]
2
− 8ix2 |Ψℓ⟩

∣∣∣ ,
where we recall that

[
x̂2, p̂2]

2 = 8ix2. We expand

∆ = x4p2 − 2x2p2x2 + p2x4 − 8ix2.

We can use the triangle inequality to match terms of ∆ and
[
x̂2, p̂2]

2 − 8ix2. In what follows, we
make ample use of Fact 4. For the first such term, we bound∣∣∣⟨ψk|x4p2 |ψℓ⟩ − ⟨Ψk| x̂4p̂2 |Ψℓ⟩

∣∣∣ ≤ exp(−γM).

The same argument shows that∣∣∣⟨ψk| p2x4 |ψℓ⟩ − ⟨Ψk| p̂2x̂4 |Ψℓ⟩
∣∣∣ ≤ exp(−γM).

Furthermore, we have ∣∣∣⟨ψk| 8ix2 |ψℓ⟩ − ⟨Ψk| 8ix̂2 |Ψℓ⟩
∣∣∣ ≤ 8 exp(−γM).

The most challenging term to bound is∣∣∣⟨ψk|x2p2x2 |ψℓ⟩ − ⟨Ψk| x̂2p̂2x̂2 |Ψℓ⟩
∣∣∣ .
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Our solution will be to write x2 |ψk⟩ as a linear combination of other states. Indeed, in the con-
tinuum, we can apply Fact 9 twice to obtain x̂2 |Ψk⟩ = k(k − 1) |Ψk−2⟩ + k |Ψk⟩ + 1

4 |Ψk+2⟩. We
write

x2 |ψk⟩ = α1 |ψk−2⟩+ α2 |ψk⟩+ α3 |ψk+2⟩+ β |ψ⟩ . (23)

By Fact 4, we have |α1 − k(k − 1)| ≤ exp(−γM), |α2 − k| ≤ exp(−γM), and |α3 − 1/4| ≤ exp(−γM).
Similarly, we have ∣∣∣⟨ψk|x4 |ψk⟩ − ⟨Ψk| x̂4 |Ψk⟩

∣∣∣ ≤ exp(−γM).

This implies that

(α2
1 − k2(k − 1)2) + (α2

2 − k2) +
(
α2

1 −
1
16

)
+ β2 ≤ exp(−γM).

We can factor the left hand side as

(α1 + k(k − 1))(α1 − k(k − 1)) + (α2 + k)(α2 − k) + (α3 + 1/4)(α3 − 1/4) + β2

This factorization gives us the bound

|β|2 ≤ exp(−γM) + (α1 + k(k − 1)) |α1 − k(k − 1)|+ (α2 + k) |α2 − k|+ (α3 + 1/4) |α3 − 1/4|
≤ exp(−γM) + (2k(k − 1) + exp(−γM)) exp(−γM)
+ (2k + exp(−γM)) exp(−γM) + (1/2 + exp(−γM)) exp(−γM)

≤ 3
(
k2 + 1

16

)
exp(−γM) + exp(−γM) ≤ 4k2 exp(−γM),

so |β| ≤ 2k exp(−γM/2).
To bound the term

∣∣⟨ψk|x2p2x2 |ψℓ⟩ − ⟨Ψk| x̂2p̂2x̂2 |Ψℓ⟩
∣∣ we first use the canonical comutator

relation to expand x2p2x2 = x4p2 − 4ix3p − 2x2 + x2∆′′ where ∆′′ = p2x2 − (x2p2 − 4ixp − 2I).
After applying triangle inequality by splitting on the discrete minus the continuum operators, the
same argument as the other terms implies an O(exp(−γM)) bound on the other 3 terms. The only
non-trivial term here is x2∆′′.

To bound this term, we expand
∣∣∣⟨ψk|x2p2x2 |ψℓ⟩

∣∣∣ using (23). We get∣∣∣(α1 ⟨ψk−2|+ α2 ⟨ψk|+ α3 ⟨ψk+2|+ β ⟨ψ|
)

∆′′ |ψl⟩
∣∣∣ ≤ exp(−γM) + |β| ∥∆′′∥

But we know |β| ≤ 2k exp(−γM/2) and ∥∆′′∥ ≤ 7M2. Overall, we have that∣∣∣⟨ψk|x2p2x2 |ψℓ⟩ − ⟨Ψk| x̂2p̂2x̂2 |Ψℓ⟩
∣∣∣ ≤ 40kM2 exp(−γM/2).

Putting everything together, ∥ΠN ′∆ΠN ′∥ ≤ exp(−γM/3) for all M sufficiently large.
To see the second point, we simply write ∆ = x4p2− 2x2p2x2 + p2x4− 8ix2. Now, ∥x∥ = ∥p∥ =√

πM
2 . Thus we have

∥∆∥ ≤
∥∥∥x4p2

∥∥∥+ 2
∥∥∥x2p2x2

∥∥∥+
∥∥∥p2x4

∥∥∥+ 8
∥∥∥x2

∥∥∥ (24)

= 4 ·
(
πM

2

)3
+ 8

(
πM

2

)
(25)

≤ 16M3 + 4πM ≤ 17M3.
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Our strategy to bound each level of the nested commutator tail will be to break the t-th order
commutator into a noncommutative polynomial of x2 and ∆. First, we provide a bound on each
monomial appearing in this expansion.

Lemma 11. Let a+ b = t. For all M sufficiently large,

∥∥∥ΠNx
2a∆x2bΠN

∥∥∥ ≤ {(51M3 + 1
)
· (2N)t · exp(−γM/9) t ≤ (N ′ −N)/2(

51M3 + 1
)
· (2N)t t > (N ′ −N)/2

Proof. Our strategy will be to introduce the projector ΠN ′ onto the “medium energy” subspace
spanned by the first N ′ eigenstates of H. We write∥∥∥ΠNx

2a∆x2bΠN

∥∥∥ =
∥∥∥ΠNx

2a(ΠN ′ + (I −ΠN ′))∆(ΠN ′ + (I −ΠN ′))x2bΠN

∥∥∥
We can break this up into four terms using the triangle inequality:

T1 =
∥∥∥ΠNx

2aΠN ′

∥∥∥ · ∥ΠN ′∆ΠN ′∥ ·
∥∥∥ΠN ′x2bΠN

∥∥∥ (26)

T2 =
∥∥∥ΠNx

2a(I −ΠN ′)
∥∥∥ · ∥(I −ΠN ′)∆ΠN ′∥ ·

∥∥∥ΠN ′x2bΠN

∥∥∥ (27)

T3 =
∥∥∥ΠNx

2aΠN ′

∥∥∥ · ∥ΠN ′∆(I −ΠN ′)∥ ·
∥∥∥(I −ΠN ′)x2bΠN

∥∥∥ (28)

T4 =
∥∥∥ΠNx

2a(I −ΠN ′)
∥∥∥ · ∥(I −ΠN ′)∆(I −ΠN ′)∥ ·

∥∥∥(I −ΠN ′)x2bΠN

∥∥∥ (29)

The overall norm is upper bounded by T1 +T2 +T3 +T4. We first consider T1. Applying Lemma 10,
we have

T1 ≤ (2N)a · exp(−γM/3) · (2N)b ≤ (2N)t · exp(−γM/3).

For T2, T3, T4, we will use the trivial bound on the norm ∆ – that is, we won’t use the projector.
Applying Lemma 8 and Lemma 10, we have

T2 ≤ exp(−γM/9) · 17M3 · (2N)b ≤ 17M3 · (2N)t · exp(−γM/9)

whenever t ≤ (N ′ −N)/2. When t > (N ′ −N)/2 we recover the bound

T2 ≤ (2N)a · 17M3 · (2N)b ≤ 17M3 · (2N)t

By symmetry, we recover the same bounds on T3. Finally, we use similar techniques to obtain the
bounds

T4 ≤ exp(−γM/9) · 17M3 · exp(−γM/9) ≤ 17M3 · exp(−2γM)

when t ≤ (N ′ −N)/2 and

T2 ≤ (2N)a · 17M3 · (2N)b ≤ 17M3 · (2N)t

when t > (N ′ −N)/2.

Next we bound the t-th order commutator by applying the triangle inequality along with the
monomial bounds above.

Lemma 12. For all M sufficiently large,

∥∥∥ΠN

[
x2,∆

]
t
ΠN

∥∥∥ ≤ {(51M3 + 1
)
· (4N)t · exp(−γM/9) t ≤ (N ′ −N)/2(

51M3 + 1
)
· (4N)t t > (N ′ −N)/2
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Proof. We can expand [
x2,∆

]
t

=
t∑

s=0

(
t

s

)
(−1)sx2s∆x2(t−s).

Applying the triangle inequality, we have

∥∥∥ΠN

[
x2,∆

]
t
ΠN

∥∥∥ ≤ t∑
s=0

(
t

s

)∥∥∥ΠNx
2s∆x2(t−s)ΠN

∥∥∥ .
We use the identity ∑t

s=0
(t

s

)
= 2t and Lemma 11 to obtain the result.

Before proving our bounds on the nested commutator tail of x2 and p, we recall a useful fact
about the tail of the power series of the exponential function.

Proposition 13.
∞∑

k=3a

ak

k! ≤ exp(−a/4).

Proof. The sum is exactly ea times the tail of the Poisson distribution with parameter a. Thus,
from standard formulae for Poisson tail bounds, we have

∞∑
k=3a

ak

k! ≤ e
aPr[Poissona ≥ 3a] ≤ ea exp(−3a ln 3 + 2a) ≤ exp(−3(ln 3− 1)a) ≤ exp(−a/4).

We are now ready to prove the key technical ingredient of our fast-forwarding algorithm: that
the higher-order nested commutators of x and p fall off sufficiently fast.

Theorem 14. Choose N = γM/(40 log(2M)). Then∥∥∥∥∥ΠN

( ∞∑
t=3

1
t!
[
x2, p2

]
t

)
ΠN

∥∥∥∥∥ ≤ exp(−γN/2).

Proof. We observe that
[
x2, p2]

2 = ∆ + 8ix2. Thus, for t ≥ 3, we can write[
x2, p2

]
t

=
[
x2,∆

]
t−2

.

Thus,∥∥∥∥∥ΠN

∞∑
t=3

[
x2, p2]

t

t! ΠN

∥∥∥∥∥ =
∥∥∥∥∥ΠN

∞∑
t=3

[
x2, p2]

t−2
t! ΠN

∥∥∥∥∥ (30)

≤
∞∑

t=1

∥∥ΠN

[
x2, p2]

t ΠN

∥∥
(t+ 2)! (31)

≤ (51M3 + 1)

e−γM/9 ·
(N ′−N)/2∑

t=1

(4N)t

t! +
∞∑

t=(N ′−N)/2+1
(4N)t

 (Lemma 12)

≤ (51M3 + 1)
(
e−γM/9 ·

∞∑
t=0

(4N)t

t! +
∞∑

t=12N

(4N)t

)
(32)

≤ (51M3 + 1)
(
e4N−γM/9 + e−N

)
(Proposition 13)

≤ 2(51M3 + 1)e−γN ≤ e−γN/2.
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As a consequence of our proof technique, the analogous statement holds if we swap position
and momentum in the nested commutator.

Corollary 15. Choose N = γM/(40 log(2M)). Then∥∥∥∥∥ΠN

( ∞∑
t=3

1
t!
[
p2, x2

]
t

)
ΠN

∥∥∥∥∥ ≤ exp(−γN/2).

Proof. The bounds in the proofs of Lemmas 8, 10 and 12 remain unchanged when swapping position
and momentum. Thus, following the proof of Theorem 14, we obtain the exact same bound on the
projected higher-order nested commutators of p2 and x2.

Theorem 16. Choose N = γM/(40 log(2M)). Then∥∥∥∥∥ΠN

( ∞∑
t=2

1
t!
[
p2, {x, p}

]
t

)
ΠN

∥∥∥∥∥ ≤ exp(−γN/2).

Just as in the proof of Corollary 15, the proofs of Lemmas 8, 11 and 12 hold with the same scaling
if p2 is nested instead of x2. What remains is to bound the new defect ∆′ =

[
p2, {x, p}

]
− 4ip2 =

p2xp+p3x−4ip2. In the continuum, the corresponding operator is 0, and we now prove an analogous
statement to Lemma 10 for this defect.

Lemma 17. Let M be sufficiently large.

1. ∥ΠN ∆′ΠN∥ ≤ exp(−γM/2).
2. ∥∆′∥ ≤ 5M2

Proof. The proof will be very similar to that of Lemma 10. First we show the the second point:

∥∥∆′∥∥ ≤ ∥∥∥p2xp
∥∥∥+

∥∥∥p3x
∥∥∥+ 4

∥∥∥p2
∥∥∥ ≤ 2

(
πM

2

)2
+ 4

(
πM

2

)
≤ 5M2

whenever M is sufficiently large.

To bound this quantity we will need the following bound.

Lemma 18.
∣∣∣⟨ψk| p2xp |ψl⟩ − ⟨Ψk| p̂2x̂p̂ |Ψl⟩

∣∣∣ ≤ 10 exp(−γM)

Proof. We use the canonical commutation relation to derive p2xp = p3x − ip2 + p2∆′ where ∆′ =
px − iI − xp. Now, using the Fact 4 we can bound the first two terms after applying triangle
inequality. Thus, the only remaining task is to bound

∣∣⟨ψk| p2∆′ |ψl⟩
∣∣ is small.

To do this we use the expansion,

p2 |ψk⟩ = α1 |ψk−2⟩+ α2 |ψk⟩+ α3 |ψk+2⟩+ β |ψ⟩ (33)

where |β| ≤ 2 exp(−γM), as in the proof of Lemma 10. Using this we can rewrite the above as

∣∣∣(α1 ⟨ψk−2|+ α2 ⟨ψk|+ α3 ⟨ψk+2|+ β ⟨ψ|
)

∆′ |ψl⟩
∣∣∣ ≤ 5 exp(−γM) + 7M2 exp(−γM) (34)

where the second term is just bounded using |β| ∥∆′∥.

Now we are ready to prove Theorem 6. We recall it below.
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Theorem 6. For any constants c1, c2 such that max(|c1| , |c2|) ≤ 1, and N = γM/(40 log(2M)), we
have ∥∥∥∥∥ΠN

( ∞∑
t=3

1
t!
[
c1x

2, c2p
2
]

t

)
ΠN

∥∥∥∥∥ ≤ exp(−γN/2).

∥∥∥∥∥ΠN

( ∞∑
t=3

1
t!
[
c1p

2, c2x
2
]

t

)
ΠN

∥∥∥∥∥ ≤ exp(−γN/2)

∥∥∥∥∥ΠN

( ∞∑
t=2

1
t!
[
c1p

2, c2 {x, p}
]

t

)
ΠN

∥∥∥∥∥ ≤ exp(−γN/2).

Proof of Theorem 6. Notice that the bound in Lemma 12 holds when replacing the operator x (or
p) with cx where |c| ≤ 1. Nothing else changes in the proofs.

4 Quantum Hermite transform
Building on our fast-forwarding result, we can implement an efficient QHT if we can implement the
state preparation, filtering, and QPE algorithms efficiently. We now discuss these steps and then
present the algorithm. The main result of this section is the formal version of Theorem 2.

Theorem 19 (Quantum Hermite transform, formal). Let N be the dimension for the quantum
Hermite transform and ε > 0 be the error. Then, there exists a quantum circuit that performs the
transformation

N−1∑
n=0

αn |n⟩ 7→
N−1∑
n=0

αn |ψn⟩ (35)

within additive error ε, where the coefficients αn are arbitrary and satisfy
∑N−1

n=0 |αn|2 = 1. The
quantum circuit acts on a Hilbert space of dimension M = poly(N, 1/ε) and, if N > log(1/ε), the
complexity of the quantum circuit is

O
(
(logN + log(1/ε))3 × log(1/ε)

)
. (36)

This result is based on the state preparation steps outlined in Section 2. More generally, we
can choose any dimension M ≥ cN9/4/ε13/4, where c > 0 is some constant. The cost of the QHT
is then O(log3M × log(1/ε)), and choosing M = poly(N, 1/ε) gives Theorem 19.

4.1 State preparation

We first show how to efficiently prepare a set of quantum states that have constant overlap with
the Hermite states |ψn⟩ of (2) in a low-energy subspace of interest. We will then used fixed-
point amplitude amplification to increase the overlap with |ψn⟩ arbitrarily. Our strategy is based
on the Plancherel-Rotach approximation, which approximates the Hermite functions ψn(x) in the
‘oscillatory’ region, specified by the domain |x| < xtp :=

√
2n+ 1.

Lemma 20 (Plancherel-Rotach asymptotics for Hermite functions, Thm. 8.22.9 [Sze39]). Let φ(x) =
arccos(x/

√
2n+ 1). Let c > 0 be any fixed positive constant and define the domain

Dc = {x ∈ R : |x| <
√

2n+ 1 and c ≤ φ(x) ≤ π − c}. (37)
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Then, for each n > 0 and all x ∈ Dc, we have

ψn(x) = (−1)n2 1
4

π
1
2n

1
4

1√
sinφ(x)

(
sin
[(
n

2 + 1
4

)
(sin(2φ(x))− 2φ(x)) + 3π

4

]
+O

( 1
n

))
. (38)

In Appendix C we describe other properties of these approximations. For the case n = 0, it will
suffice to approximate ψ0(x) by a constant like ψ0(0) ≈ .75, assuring constant overlap.

Hence, the Hermite functions can be approximated by an oscillatory term and an amplitude
that depends on x via 1/

√
sin(φ(x)), in the oscillatory region. This motivates the definition of a

set of quantum states that have constant overlap with the finite-dimensional Hermite states |ψn⟩
by considering, for example, a domain included in the oscillatory region and far from the ‘turning
points’ ±xtp where, for example, |x| ≤

√
(3/4)(2n+ 1). In the following we disregard the phase

(−1)n in the definition of ψn(x) to ease the exposition.
Lemma 21 (Plancherel-Rotach states). Let N > 0 be the dimension for the QHT and and ε > 0 be
the error. For all 0 ≤ n ≤ N − 1, let

ϕn(x) := 2 1
4

π
1
2n

1
4

1√
sinφ(x)

(
sin
[(
n

2 + 1
4

)
(sin(2φ(x))− 2φ(x)) + 3π

4

])
× gn(x) , (39)

where φ(x) := arccos
(
x/
√

2n+ 1
)
, be the Plancherel-Rotach approximation of the nth Hermite

function. The function gn(x) is some smooth approximation to the indicator function and satisfies

gn(x) :=


0 if |x| ≥

√
(3/4)(2n+ 1) + 1/(10

√
2n+ 1) ,

1 if |x| ≤
√

(3/4)(2n+ 1) ,
∈ (0, 1) if

√
(3/4)(2n+ 1) + 1/(10

√
2n+ 1) > |x| >

√
(3/4)(2n+ 1) .

(40)

For any M > N , define the M -dimensional ‘Plancherel-Rotach’ quantum states

|ϕn⟩ :=
(2π
M

)1/4 J(n)−1∑
j=−J(n)

ϕn(xj) |j⟩ , 0 ≤ n ≤ N − 1 , (41)

where xj := j
√

2π/M denotes the discretized space coordinate, and

J(n) :=


√

3
4

(2n+ 1)M
2π

 (42)

is such that J(n)
√

2π/M ≈
√

(3/4)(2n+ 1) and J(n) < M/2. Let |ψn⟩ be Hermite states of (2),
that is,

|ψn⟩ :=
(2π
M

)1/4 M/2−1∑
j=−M/2

ψn(xj) |j⟩ , 0 ≤ n ≤ N − 1 . (43)

Then, there exist constants c > 0 and c′ > 0 such that, for all M ≥ c(N)9/4/ε13/4 and all 0 ≤ n ≤
N − 1, the overlap is

⟨ψn|ψn⟩ ≥ c′ . (44)

For every such M there exists Nhigh = O(N/ε) satisfying N < Nhigh < M and, for all n ≤ N − 1,

∥Π>Nhigh |ϕn⟩ ∥2 ≤ ε , (45)

where Π>Nhigh is a ‘high-energy’ projector onto the subspace orthogonal to the subspace spanned by
{|ψn⟩}0≤n≤Nhigh. (Note that Nhigh ≪M asymptotically.)
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Proof. The quantum states |ϕn⟩ are suggested by the Plancherel-Rotach approximation of Lemma 20.
Asymptotically, they can be shown to be subnormalized for n ≤ N−1 because we are cutting off the
domain by choosing J(n) < M/2. Our goal is then to carry the Plancherel-Rotach approximation
to the discrete space, which involves approximating integrals by finite sums. We also note that in
the subspace of interest, where n ≤ N − 1, we will satisfy n≪M asymptotically.

For each n ≤ N − 1, we are selecting as the domain of interest one where |x| ≤ xmax :=√
(3/4)(2n+ 1). In the definition of |ϕn⟩, we let xj run up to ±J(n)

√
2π/M , and our choice of

J(n) is such that |xj | is upper bounded by xmax up to an asymptotically small correction. This
domain is purposely far from, and does not include, the turning points ±xtp = ±

√
(2n+ 1) where

the Plancherel-Rotach approximations are known to fail (e.g., φ(x) = 0 at x = xtp).
We will start by obtaining some properties of these approximations in the domain of interest.

Note that rather than considering Lemma 20 directly in this domain, we are modifying the ap-
proximations slightly to avoid issues when considering the momentum operator and the Fourier
transform. For example, rather than assuming the functions to be exactly 0 for all x such that
|x| > xmax and oscillating otherwise, we introduced smooth envelope functions gn(x) in the defini-
tion with the following properties (for each n ≥ 0):

gn(x) :=


0 if |x| ≥ xmax + 1/(10

√
2n+ 1) ,

1 if |x| ≤ xmax ,
∈ (0, 1) if xmax + 1/(10

√
2n+ 1) > |x| > xmax .

(46)

There is nothing special about the term 1/(10
√

2n+ 1), other that it still guarantees the relevant
x to be far from the turning points, and that the magnitudes of the derivatives of gn(x) can be
properly bounded. A good choice for these functions is given in Ref. [Som19] and obtained by
convolving the indicator function with the bump function. Formally, if δ := 1/(20

√
2n+ 1), these

are the convolutions

gn(x) := 2a
δ

∫ xmax+δ

−xmax−δ
dx′ exp

(
− 1

1− 4(x′ − x)2/δ2

)
(47)

The constant is a ≈ 2.25. We will use these to prove Lemma 21, but note that other choices
can also work. Besides the properties in (46), they also satisfy d

dxgn(x) = d2

dx2 gn(x) = 0 for |x| >
xmax + 1/(10

√
2n+ 1) and |x| < xmax. Also, | d

dxgn(x)| = O(
√

2n+ 1) and | d2

dx2 gn(x)| = O(2n+ 1).
From now on the domain where |x| ≤ xmax + 1/(10

√
2n+ 1) will be referred to as the ‘domain of

interest’.
We will first establish the desired properties by working in the continuum, and use the follow-

ing properties of the relevant functions. In the domain of interest, the Hermite functions satisfy
|ψn(x)| = O(1/n1/4) and we can use the property d

dxψn(x) = 1√
2(
√
nψn−1(x)−

√
n+ 1ψn+1(x)) to

show that | d
dxψn(x)| = O(n1/4), and Schrödinger equation d2

dx2ψn(x) = (x2−(2n+1))ψn(x) to show
that | d2

dx2ψn(x)| = O(n3/4). According to Lemma 20, we have ϕn(x) = ψn(x) + O(1/n5/4) in this
domain. Also, we can use the bounds in Appendix C and the chain rule for ϕn(x) = ϕ̃n(x)× gn(x)
to determine |ϕn(x)| = O(1/n1/4), | d

dxϕn(x)| = O(n1/4), and | d2

dx2ϕn(x)| = O(n3/4) in the domain
of interest.
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These properties allow us to establish a lower bound on the overlap:∫ ∞

−∞
dx ψn(x)ϕn(x) =

∫ xmax+1/(10
√

2n+1)

−xmax−1/(10
√

2n+1)
dx ψn(x)ϕn(x) (48)

=
∫ xmax+1/(10

√
2n+1)

−xmax−1/(10
√

2n+1)
dx ψn(x)(ψn(x) +O(1/n5/4)) (49)

=
∫ xmax

−xmax
dx |ψn(x)|2 +O (1/(n+ 1/2)) . (50)

In addition, ∫ xmax

−xmax
dx |ψn(x)|2 = 1− 2

∫ ∞

xmax
dx |ψn(x)|2 (51)

≥ 1− 2
(xmax)2

∫ ∞

xmax
dx x2|ψn(x)|2 (52)

≥ 1− 2
(xmax)2

∫ ∞

0
dx x2|ψn(x)|2 (53)

= 1− 1
2(xmax)2 (2n+ 1) (54)

= 1/3 . (55)

Hence, the overlap is lower bounded by 1/3+O(1/n). Numerical calculations show that this overlap
actually approximates 2/3 and remains close to 2/3 for all n ≥ 0.

Next, we show that the functions ϕn(x) have negligible overlap with the high-energy sector,
defined by some Nhigh. This proof is the one that will use the smoothness property of gn(x) (i.e.,
a bounded second derivative); otherwise, a sharp cutoff could result in high energies. Recall that
in the continuum, the QHO Hamiltonian is 1

2(− d2

dx2 + x2). The expected value of x2 on ϕn(x),
corresponding to the potential term, satisfies∫ ∞

−∞
dx x2|ϕn(x)|2 ≤

∫ xmax

−xmax
dx x2|ϕn(x)|2 (56)

=
∫ xmax

−xmax
x2|ψn(x) +O(1/n5/4)|2 (57)

=
∫ xmax

−xmax
dx x2|ψn(x)|2 +O((xmax)3/n3/2) (58)

=
∫ xmax

−xmax
dx x2|ψn(x)|2 +O(1) , (59)

and we also know for the Hermite functions∫ xmax

−xmax
dx x2|ψn(x)|2 ≤

∫ ∞

−∞
dx x2|ψn(x)|2 = n+ 1/2 . (60)

It follows that ∫ ∞

−∞
dx x2|ϕn(x)|2 = O(n+ 1/2) . (61)

The expected value of the kinetic term satisfies

−
∫ ∞

−∞
dx ϕn(x) d2

dx2ϕn(x) = −
∫ xmax+1/(10

√
2n+1)

−xmax−1/(10
√

2n+1)
dx ϕn(x) d2

dx2ϕn(x) (62)

= O(n+ 1/2) , (63)
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where we used the above properties of ϕn(x). It follows that the energy given by these functions,
which is the expectation of the QHO Hamiltonian on ϕn(x), satisfies

E
[

1
2(− d2

dx2 + x2)
]
≤ C(n+ 1/2) , (64)

for some C > 0 that can be determined. We can then use Markov’s inequality to bound the support
of ϕn(x) in the high-energy space, spanned by Hermite functions with n′ > Nhigh; that is

∞∑
n′=Nhigh+1

(∫ ∞

−∞
dx ϕn(x)ψn′(x)

)2
≤ C(n+ 1/2)
Nhigh + 1/2 . (65)

We readily proved some desired features of the approximated Hermite functions ϕn(x) in the
oscillatory domain of interest. Our next goal is to prove that the finite-dimensional Plancherel-
Rotach states of (41) satisfy similar properties: their overlaps with the discrete Hermite states
|ψn⟩ is bounded by a constant, and their support on the high-energy subspace can be arbitrarily
bounded. We will obtain these results via approximations of integrals by finite sums. We will make
repeatedly use of a standard trapezoidal rule:∣∣∣∣∣

∫ b

a
dx f(x)− h

M∑
k=1

f(xk−1) + f(xk)
2

∣∣∣∣∣ ≤ (b− a)h2

12 max
x∈(a,b)

∣∣∣∣∣ d2

dx2 f(x)
∣∣∣∣∣ . (66)

Here h is the size of the discretization, M = (b−a)/h, and xk = a+ kh. While this rule will suffice
because the scaling of the algorithm is only logarithmic in the dimension, we note that improved
results could be obtained with a detailed analysis that uses exponentially convergent trapezoidal
rules, since the functions are smooth. Nevertheless, we follow the standard trapezoidal rule to
simplify the proof.

Consider the overlap

⟨ψn|ϕn⟩ =
(2π
M

)1/2 M/2∑
j=−M/2

ψn(xj)ϕn(xj) , (67)

which approximates (48) using a discretization of size
√

2π/M . Indeed, using the trapezoidal rule
above we can show that ⟨ψn|ϕn⟩ ≈

∫∞
−∞ dx ψn(x)ϕn(x) within additive error

O
(
n+ 1/2
M

)
(68)

since ϕn(x) is zero for |x| ≥ xmax + 1/(10
√

2n+ 1). For this we used the properties of the functions
to show ∣∣∣∣∣ d2

dx2 (ψn(x)ϕn(x))
∣∣∣∣∣ ≤

∣∣∣∣∣ d2

dx2ψn(x)ϕn(x)
∣∣∣∣∣+ 2

∣∣∣∣ d
dxψn(x) d

dxϕn(x)
∣∣∣∣+

∣∣∣∣∣ψn(x) d2

dx2ϕn(x)
∣∣∣∣∣ (69)

= O(n1/2) (70)

Then, a lower bound to ⟨ψn|ϕn⟩ is

1/3 +O
(
n+ 1/2
M

)
+O

( 1
n+ 1/2

)
. (71)

25



Figure 3: The overlap between the Plancherel-Rotach states and the Hermite states for dimension
M = 105 and 0 ≤ n ≤ 100. The overlap approaches 2/3, which corresponds to the probability mass
of the Hermite functions in the domain |x| ≤

√
(3/4)(2n+ 1).

Note that we obtained a constant lower bound in the asymptotic regime, which suffices for our goal
of the efficient Hermite transform (i.e., we will always choose M large enough to make (n+1/2)/M
very small), but a suitable value of c > 0 in (44) for all n ≥ 0 can be obtained with a detailed
analysis. Indeed, numerical simulations show that this overlap is approximately 2/3 for many n’s.
See Figure 3.

Our next goal is to prove that the support of the Plancherel-Rotach states |ϕn⟩, where 0 ≤ n ≤
N − 1, is arbitrarily small in the subspace of the discrete QHO states specified by an Nhigh > N .
In the continuum we already proved that, expressing ϕn(x) = ∑∞

n′=0 αn,n′ψn′(x), then

∑
n′>Nhigh

|αn,n′ |2 ≤ C n+ 1/2
Nhigh + 1/2 . (72)

This is equivalent to (65) since Hermite functions are orthogonal. Consider now |ϕn⟩ and |ψn′⟩ for
0 ≤ n ≤ N − 1 and 0 ≤ n′ ≤ Nhigh. Note that, in general for all x ∈ R,

|ψn′(x)| ≲ 1.086 ,
∣∣∣∣ d
dxψn′(x)

∣∣∣∣ ≤ c(2n′ + 1)1/4 ,

∣∣∣∣∣ d2

dx2ψn′(x)
∣∣∣∣∣ ≤ c′(2n′ + 1)3/4 . (73)

for some constants c > 0 and c′ > 0. Since n′ can be larger than n, then we cannot use improved
bounds for these functions. It follows that∣∣∣∣∣ d2

dx2 (ψn′(x)ϕn(x))
∣∣∣∣∣ = O

(
(Nhigh + 1/2)3/4

)
. (74)

Then, using the trapezoidal rule we have ⟨ψn′ |ϕn⟩ ≈
∫∞

−∞ dx ψ′
n(x)ϕn(x) within additive error

O
(

(n+ 1/2)1/2(Nhigh + 1/2)3/4

M

)
= O

(
(Nhigh + 1/2)5/4

M

)
. (75)

26



since we only need to integrate in the domain of interest. Then,

⟨ψn′ |ϕn⟩ = αn,n′ +O
(

(Nhigh + 1/2)5/4

M

)
. (76)

The trapezoidal rule also implies

∥ |ϕn⟩ ∥2 =
∫ xmax+1/(10

√
2n+1)

−xmax−1/(10
√

2n+1)
dx |ϕn(x)|2 +O

(
(n+ 1/2)5/4

M

)
(77)

=
∞∑

n′=0
|αn,n′ |2 +O

(
(n+ 1/2)5/4

M

)
, (78)

since the prior bounds imply | d2

dx2ϕn(x)| = O(n3/4) in the domain of interest.
Let M > Nhigh > N . Consider the subspace spanned by {|ψn⟩}0≤n≤Nhigh and its orthogonal

complement; both span CM . Let Π>Nhigh be the projector onto the latter. Without loss of generality
we can write

|ϕn⟩ =
Nhigh∑
n′=0

βn,n′ |ψn′⟩+ |ϕ⊥
n ⟩ (79)

where |ϕ⊥
n ⟩ = Π>Nhigh |ϕn⟩ is subnormalized and the amplitudes are ∑Nhigh

n′=0 |βn,n′ |2 ≤ 1. Note that
⟨ψn′ |ϕn⟩ = βn,n′ +O(Nhigh exp(−Ω(M))) for n′ ≤ Nhigh. Our goal is to bound ∥ |ϕ⊥

n ⟩ ∥. Combining
the prior results we have

∥ |ϕ⊥
n ⟩ ∥2 = ∥ |ϕn⟩ ∥2 − ∥

Nhigh∑
n′=0

βn,n′ |ψn⟩ ∥2 (80)

=
∞∑

n′=0
|αn,n′ |2 +O

(
(n+ 1/2)5/4

M

)
−

Nhigh∑
n′=0
|βn,n′ |2 +O(Nhigh exp(−Ω(M))) (81)

=
∞∑

n′=0
|αn,n′ |2 +O

(
(n+ 1/2)5/4

M

)
−

Nhigh∑
n′=0
| ⟨ψn′ |ϕn⟩|2 +O((Nhigh)2 exp(−Ω(M))) (82)

=
∞∑

n′=0
|αn,n′ |2 +O

(
(n+ 1/2)5/4

M

)
−

Nhigh∑
n′=0
|αn,n′ |2 +O

(
Nhigh

(Nhigh + 1/2)5/4

M

)
(83)

=
∑

n′>Nhigh

|αn,n′ |2 +O

N9/4
high
M

 (84)

= O
(

N + 1/2
Nhigh + 1/2

)
+O

(
(Nhigh + 1/2)9/4

M

)
. (85)

We dropped the term exponentially small in M since it is asymptotically subdominant. To establish
∥ |ϕ⊥

n ⟩ ∥2 = O(ε) it suffices to choose Nhigh = Ω(N/ε) and M = Ω((Nhigh)9/4/ε). This shows (45)
and completes the proof.
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Efficient preparation of the Plancherel-Rotach states. Thus far we considered the Plancherel-
Rotach states defined in (41) as good initial states to prepare the corresponding |ψn⟩, since they
have overlap bounded by a positive constant. For the quantum Hermite transform to be efficient,
we need to show that these states can be efficiently prepared. Note that it suffices to produce
O(ε)-approximations to the |ϕn⟩ since this will imply a QHT with error O(ε). Unfortunately, we
cannot allow for a constant-error approximation to |ϕn⟩ because we need to make sure that the
support of the state in the high-energy space is still bounded by O(ε).

Lemma 22 (Efficient state preparation). Let 0 ≤ n ≤ N − 1 and ε the error. Then there is a
quantum circuit that performs the map

|n⟩ 7→ |n⟩ |ϕn⟩
∥|ϕn⟩∥

(86)

within error ε using O((logN + log(1/ε))3) gates.

Proof. The states |ϕn⟩ admit a simple form, being a linear combination of basis states with ampli-
tudes proportional to

An(x) := 1√
sinφ(x)

× gn(x) = 1√
1− x2

2n+1

× gn(x) (87)

and phases

±Θn(x) := ±
[(
n

2 + 1
4

)(
sin(2φ(x)− 2φ(x)) + 3π

4

)]
, (88)

where φ(x) = arccos
(
x/
√

2n+ 1
)
. That is, ϕn(x) ∝ An(x)(e+iΘn(x) − e−iΘn(x)). We will describe

a method to prepare a state with one of these phases, say +Θn(x), and the linear combination
can be obtained via a simple Hadamard gate. This is because, while |ϕn⟩ are subnormalized, they
have norm bounded by a positive constant. There are several known state preparation methods
that can be useful for our context. For example, we could repurpose the algorithm of conditional
rotations [Zal98, GR02] and, to restrict the domain to within the oscillatory region we can use
quantum rejection sampling [ORR12]. A more recent approach is that based on inequality testing
in [SLSB19] and is the one we will follow here.

For each 0 ≤ n ≤ N − 1, the states |ϕn⟩ are superpositions over basis states |j⟩ where, in our
convention, −J(n) ≤ j ≤ J(n) − 1, and J(n) is described in Lemma 21. They are in the space
CM , where the number of qubits is m = log2M . To simplify the details of state preparation, we
are going to use the standard convention where basis states are labeled as {|0⟩ , |1⟩ , . . . , |M − 1⟩}.
As mentioned, we can go from one convention to the other via a cyclic permutation (see below).
Initially, we will consider setting the amplitudes proportional to An(x) and then we set the phases
eiΘn(x). For the amplitudes we assume access to an oracle amp that computes A(x) with r bits
of precision in an additional register. Note that A(x) is bounded by a constant in the oscillatory
region of interest. We are going to introduce ancillary registers in many steps, but the relevant
parts are flagged by the states |0⟩.

• Step 1: Given n, compute the smallest integer q that satisfies 2q ≥ 2J(n). Apply q Hadamard
gates to map |0⟩⊗m 7→ 1√

2q

∑2q−1
j=0 |j⟩. Apply an inequality test to obtain 1√

2q (∑2J(n)−1
j=0 |j⟩ |0⟩+∑2q−1

j=2J(n) |j⟩ |1⟩, which flags the relevant support.
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• Step 2: Use amp and inequality test to perform the map |j⟩ 7→ |j⟩ |Ān(xj)⟩ 1√
2r (∑Ān(xj)−1

z=0 |z⟩ |0⟩+∑2r

Ān(xj) |z⟩ |1⟩), where Ān(xj) is an r-bit approximation of An(xj) (rescaled by a constant).

• Step 3: Apply r Hadamard gates and the inverse of amp to map the prior state to |j⟩ Ān(xj)
2r |0⟩⊗r+1+

|ω⊥
j ⟩, where |ω⊥

j ⟩ is orthogonal to |0⟩⊗r+1 and subnormalized.

Following this steps we have essentially prepared the state

1√
2q

2J(n)−1∑
j=0

Ān(xj)
2r

|j⟩ |0⟩⊗r+2 + |ω⊥
n ⟩ (89)

where again |ω⊥
n ⟩ is subnormalized and orthogonal to |0⟩⊗r+2. We can use fixed point amplitude

amplification to select the desired part of this state and obtain an O(ε) approximation to∑2J(n)−1
j=0

Ān(xj)
2r |j⟩

∥
∑2J(n)−1

j=0
Ān(xj)

2r |j⟩ ∥
. (90)

Amplitude amplification introduces a multiplicative cost that is O(log(1/ε)), since the relevant
overlaps are constant.

We discuss the relevant complexities of this approach. First note that it suffices to prepare
an O(ε) approximation to |ϕn⟩, since the QHT is performed within this precision and |ϕn⟩ has
overlap with |ψn⟩ bounded by a constant. It then suffices to compute the amplitudes A(x) within
multiplicative error O(ε), but since these are bounded from above by a constant, we can compute
them within additive error O(ε). It follows that the number of bits of precision is r = O(log(1/ε)).
We can then construct amp using coherent arithmetics; one procedure would involve first computing
φ(x) within error O(ε), which follows if x/

√
2n+ 1 is obtained within that complexity, and then

computing 1/
√

sinφ(x) within this error. For this step it suffices to first compute
√

2π/M/
√

2n+ 1
within error O(ε/M), which can be accomplished with cost O((logM + log(1/ε))2). Then we
multiply with j, and since j is expressed with logM bits, this is subdominant. We also need to
compute gn(x) within error O(ε). Since gn(x) can be obtained by rescaling some g(x) [Som19], this
translates to computing g(x) within error O(ε/

√
n). This function involves the bump function and

for this precision the cost is Õ((logn+ log(1/ε))2), hiding a doubly logarithmic cost. This function
is smooth and also involves an integral, and this increases the cost by a factor of O(log(1/ε)). So
the total cost of computing gn(x) is O((logn+ log(1/ε))2 log(1/ε)).

There are additional gates used in the procedure, the Hadamard gates and those for inequality
tests, which are also subdominant.

The next step involves including the phases. Again, it suffices to compute these phases within
r′ = O(log(1/ε)) bits of precision. We can construct an oracle phase that performs the map
|j⟩ 7→ |j⟩ |Θ̄(xj)⟩ and then use phase kickback and the inverse of phase and obtain eiΘ̄(xj) |j⟩. To
this end it suffices to compute φ(x) within additive error O(ε/N). This follows if x/

√
2n+ 1 is

computed with that error which again can be done with cost O((logM + log(1/ε))2), as explained
in the construction of amp.

The last step is to perform the cyclic permutation, since in the standard convention the states
|ϕn⟩ involve a superposition of basis states from −J(n) + M/2 to J(n) − 1 + M/2. This can be
accomplished with gate cost that is log2M using the standard QFT, as explained in [Som16].

According to Lemma 21, M = poly(N, 1/ε) and including the cost of amplitude amplification
to obtain the normalized state, the result follows.
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Fast eigenstate filtering. The next step in the QHT is that of state ‘filtering’, which is a transfor-
mation that ideally would flag the Hermite state and perform the map

|ϕn⟩ 7→ βn |ψn⟩ |0⟩⊗m + |0⊥
n ⟩ , (91)

where βn = ⟨ψn|ϕn⟩ is the (bounded) overlap, and |0⟩⊗q and |0⊥
n ⟩ are orthogonal states of the

ancilla qubits. Since we would like to implement this transformation for an exponentially large
set of values of 0 ≤ n ≤ N − 1, we will combine the fast-forwarding results for the discrete QHO
in Section 3 with the conventional QPE algorithm [Kit95].
Lemma 23. Let 0 ≤ n ≤ N − 1 and ε the error, where N > log(1/ε). Then there is a quantum
circuit that performs the map in (91) within error ε using O((logN + log(1/ε))3) gates.

Proof. For given N and ε, we set M and Nhigh according to Lemma 21. We also write M = 2m

and let U(t) = e−iHt be the time-evolution unitary for the discrete QHO H ∈ CM×M , where
|t| ≤ 2π. Plancherel-Rotach states are mostly supported in the subspace where n ≤ Nhigh. For all
0 ≤ n ≤ Nhigh define Un := U(2π/M)ei(2π/M)(n+1/2). In the low-energy subspace of interest, where
n ≤ Nhigh, we already proved U(t) |ψn⟩ = e−i(n+1/2)t |ψn⟩+O(exp(−Ω(M))) and hence,

1
M

(1l + U2m−1
n ) . . . (1l + Un) |ψn′⟩ = O(exp(−Ω(M))) , (92)

for all 0 ≤ n, n′ ≤ Nhigh and n ̸= n′. It follows that if we were to run the standard QPE
algorithm with m ancillas and controlled-U2j−1

n unitaries, we would already be performing the
desired eigenstate filtering within exponentially small errorO(exp(−Ω(M))), which is subdominant.
This approach, however, requires implementing U a number of times that is exponential and scales
with N or M .

To fast forward eigenstate filtering, we are going to replace

U2j

n →Wn,j := V (2j(2π/M))ei2j(2π/M)(n+1/2) , (93)

where V (t) is the approximation to U(t) = e−iHt using the sequence of three exponentials as in
Theorem 5. The new QPE circuit would then have controlled-Wn,j operations rather than the
controlled-U2j−1

n . Our fast-forwarding results also imply
1
M

(1l +Wn,m−1) . . . (1l +Wn,1) |ψn⟩ = |ψn⟩+O(exp(−Ω(N))) (94)
1
M

(1l +Wn,m−1) . . . (1l +Wn,1) |ψn′⟩ = O(exp(−Ω(N))) , (95)

again for 0 ≤ n, n′ ≤ Nhigh and n ̸= n′.
Consider now an arbitrary input Plancherel-Rotach state |ϕn⟩. We have shown |ϕn⟩ = ∑Nhigh

n=0 βn |ψn⟩+
|ϕ⊥

n ⟩, where ∥ |ϕ⊥
n ⟩ ∥ = O(ε), for our choice of parameters in Lemma 21. Hence, for this state our

QPE algorithm performs

|ϕn⟩ 7→ βn |ψn⟩ |0⟩⊗m + |0⊥
n ⟩ (96)

within error that is O(ε + exp(−Ω(N))). Assuming N > log(1/ε), the O(ε) term dominates, and
this is the desired eigenstate filtering operation of (91).

The number of operations for eigenstate filtering can be estimated as follows. Each Wj involves
three exponentials, and there are m−1 calls to them. We already established that each exponential
requires O((logM)2) gates (using schoolbook arithmetics). Then, the gate cost is O((logM)3) =
O((logN + log(1/ε))3).
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Fixed-point amplitude amplification. As a next step we need to show that amplitude amplification
enables the efficient preparation of the Hermite states from the Plancherel-Rotach states, even when
the overlaps for different n ≤ N are different, but still bounded from below by a positive constant.
After eigenstate filtering, our goal is to implement the map

N−1∑
n=0

αn

∥ |ϕn⟩ ∥
|n⟩ (βn |ψn⟩ |0⟩⊗m + |0⊥

n ⟩) 7→
N−1∑
n=0

αn |n⟩ |ψn⟩ , (97)

where the αn are arbitrary and βn = ⟨ψn|ϕn⟩. To this end we start from results on fixed-point
amplitude amplification in Refs. [YLC14, GSLW19]. These will ultimately give the desired mapping
even when the overlaps βn are different.

Lemma 24. Let N > 0 and ε the error. Let R0 = (1l− 2 |0⟩⟨0|⊗m) be the reflection over the ancilla
state |0⟩⊗m and U := ∑N−1

n=0 |n⟩⟨n|⊗Un +∑M−1
n=N |n⟩⟨n|⊗ 1l be a conditional unitary, where Un is the

unitary that prepares the Plancherel-Rotach states |ϕn⟩ /∥ |ϕn⟩ ∥, and let V := ∑N−1
n=0 |n⟩⟨n| ⊗ Vn +∑M−1

n=N |n⟩⟨n| ⊗ 1l be another conditional unitary, where Vn is the unitary that performs eigenstate
filtering. Then there is a quantum circuit that performs the map in (97) within error ε using U , V,
R0, their inverses, and arbitrary one qubit gates O(log(1/ε)) times.

Before providing the proof, we note that our result relies on, and generalizes the following
fixed-point amplitude amplification.

Lemma 25 (Fixed-point amplitude amplification, Thm. 27 of Ref. [GSLW19]). Let U be a unitary
and Π be an orthogonal projector such that a |ΨG⟩ = ΠU |Ψ0⟩, and a > δ > 0. There is a uni-
tary circuit Ũ such that ∥ |ΨG⟩ − Ũ |Ψ0⟩ ∥ ≤ ε, which uses a single ancilla qubit and consists of
O(log(1/ε)/δ) U , U †, CΠNOT , C|Ψ0⟩⟨Ψ0|NOT , and eiϕσZ one qubit gates.

Here, a is unknown but the lower bound δ is known. The operation CΠNOT is simply an
operation that coherently checks whether the state is supported in Π or not, and flips the state
of another qubit based on the outcome. Similarly, C|Ψ0⟩⟨Ψ0|NOT performs a flip on the qubit
depending on whether the state is |Ψ0⟩ or not. Also, fixed point amplitude amplification uses an
ancillary qubit, which starts in |0⟩ and ends in |0⟩ within error ε. This is important for (97) to
avoid changing the amplitudes αn. A generalization of this lemma, which we give below as it can
be of independent interest, is used in the proof of Lemma 24.

Lemma 26 (Fixed-point amplitude amplification in subspaces). Let N > 0 be the dimension. For
all 0 ≤ n ≤ N − 1, let Un be a unitary, Πn be an orthogonal projector such that an |Ψn

G⟩ =
ΠnUn |Ψn

0 ⟩, and an > δ > 0. There is a unitary quantum circuit Ũ such that ∥
∑N−1

n=0 αn |n⟩ |Ψn
G⟩ −

Ũ
∑N−1

n=0 αn |n⟩ |Ψn
0 ⟩ ∥ ≤ ε, where the amplitudes αn are arbitrary and

∑
n |αn|2 = 1, which uses a

single ancilla qubit and consists of O(log(1/ε)/δ) U , U†, CΠNOT , CΠ0NOT , and eiϕσZ one qubit
gates, where U = ∑

n |n⟩⟨n| ⊗ Un, Π = ∑
n |n⟩⟨n| ⊗Πn, and Π0 = ∑

n |n⟩⟨n| ⊗ |Ψn
0 ⟩⟨Ψn

0 |.

Proof. Fixed-point amplitude amplification is based on Chebyshev approximations; in the case
of Lemma 25, we can assume these to be, for example, linear combinations of Chebyshev polynomials
of

B =
(

0 A
A† 0

)
, A := |Ψ0⟩⟨Ψ0|U †Π = ā |Ψ0⟩ ⟨ΨG| , (98)

where ā is the complex conjugate. The linear combination can be implemented with techniques like
QSVT and implements the map |Ψ0⟩ 7→ |ΨG⟩. The complexity is determined by the degree of the
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Chebyshev polynomials in the approximation, and this is O(log(1/ε)/δ); even when a is unknown
(but δ is known), the polynomial allows for the correct mapping.

To work in subspaces, we simply replace B by the direct sum: B := ⊕
nBn, where

Bn :=
(

0 An

A†
n 0

)
, An := |Ψn

0 ⟩⟨Ψn
0 |U †

nΠn = ān |Ψn
0 ⟩ ⟨Ψn

G| . (99)

The Chebyshev polynomial approximation in each subspace will perform the mapping |Ψn
0 ⟩ 7→

|Ψn
G⟩, within error ε, and the transformation carries to an arbitrary state ∑N−1

n=0 αn |n⟩ |Ψn
0 ⟩ due to

linearity. Note that while fixed-point amplitude amplification uses an ancilla qubit, the ancilla state
stays in |0⟩ at the end, within error O(ε), for all n. Since we are using the same approximation,
the degree is unchanged and still O(log(1/ε)/δ).

We also note that B ≡∑n |n⟩⟨n| ⊗Bn, and accordingly we can define

A :=
(∑

n

|n⟩⟨n| ⊗ |Ψn
0 ⟩⟨Ψn

0 |
)(∑

n

|n⟩⟨n| ⊗ U †
n

)(∑
n

|n⟩⟨n| ⊗Πn

)
=
∑

n

|n⟩⟨n| ⊗An . (100)

It follows that we can build the walk operator to implement the Chebyshev polynomials using U ,
CΠNOT , CΠ0NOT , their inverses and arbitrary gates, a constant number of times. The result
follows from multiplying these complexities with the degree.

Proof of Lemma 24: Given N and ε, the dimension M is set according to Lemma 21. As
mentioned, the proof relies on Lemma 26 and we need to define the corresponding operations. For
all 0 ≤ n ≤ N − 1, we let |Ψn

0 ⟩ = |0⟩⊗2m and |Ψn
G⟩ = |ψn⟩ |0⟩⊗m. The unitaries Un are a sequence

of two unitaries, the unitary Un to prepare the Plancherel-Rotach state |ϕn⟩ /∥ |ϕn⟩ ∥ and another
unitary Vn that performs eigenstate filtering as in Lemma 23:

βn

∥ |ϕn⟩ ∥
|ψn⟩ |0⟩⊗m = (1l⊗ |0⟩⟨0|⊗m)Un |0⟩⊗2m . (101)

The projectors are then Πn = |0⟩⟨0|⊗m for all n. The subspace where M − 1 ≥ n ≥ N is irrelevant
since we only need to perform the right transform when n ≤ N − 1. Hence, we can freely define Un

and Πn in that subspace; for example we can set Un = 1l and Πn = |0⟩⟨0|⊗m for n ≥ N .
With these definitions we fit the framework of Lemma 26. Note that, since we showed βn/∥ |ϕn⟩ ∥

is bounded from below by a positive constant, the number of amplitude amplification rounds is
O(log(1/ε)). This is the largest degree of the Chebyshev polynomial in the approximation to
implement fixed-point amplitude amplification. The overall complexity, as determined by the uses
of U = ∑

n |n⟩⟨n| ⊗ Un, V = ∑
n |n⟩⟨n| ⊗ Vn, R0 = 1l − 2 |0⟩⟨0|⊗m, and their inverses, is then

O(log(1/ε)). The number of one-qubit gates scales similarly due to Lemma 25.
Last we comment on the complexity of implementing the conditional unitaries. The unitary

Un is discussed in Lemma 22. It requires performing a sequence of computations that depend
on n, including J(n), xj/

√
2n+ 1, and it uses amp. We can run these computations coherently

without adding a relevant factor to the gate cost and produce a version of amp that now is not
only conditional on |j⟩ but also on |n⟩. Hence the gate complexity of the conditional gate U is
dominated by the largest gate complexity of the Un’s, which is the one of Lemma 22. The unitary
Vn is discussed in Lemma 23. It requires implementing a version of QPE with unitaries Wn,j that
depend on n in that there is a phase ei2j(2π/M)(n+1/2), but all other operations are independent of
n; see (93). This is a simple phase gate on |n⟩ that needs to be performed for 0 ≤ j ≤ m− 1, but
does not add a relevant factor to the overall gate complexity either. Hence, implementing U and V
can also be done with complexity O((logN + log(1/ε))3). For more general results on constructing
conditional unitaries efficiently, Cf. [BFGH10].
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Uncomputation via quantum phase estimation. The last step is to ‘uncompute’ the register that
contains |n⟩, that is, to perform the map

|n⟩ |ψn⟩ 7→ |0⟩⊗m |ψn⟩ . (102)

Similar to eigenstate filtering, we can leverage the fast-forwarding property to perform exponentially-
precise QPE that would allows us to obtain |n⟩ on input |ψn⟩. QPE can then be used to uncompute.

Lemma 27. Let 0 ≤ n ≤ N − 1 and ε the error, where N > log(1/ε). Then there is a quantum
circuit that performs the map in (102) within error ε using O((logN + log(1/ε))3) gates.

Proof. As before, for given N and ε, we set the dimension M = 2m and Nhigh as in Lemma 21. Let
Vj := V (2j(2π/M))ei2j(2π/M)/2 for 0 ≤ j ≤ m− 1, where V (t) is the approximation to U(t) = e−iHt

using the three exponentials in Theorem 5. Consider the action of the QPE algorithm using m
ancilla qubits initially in uniform superposition and using controlled-Vj , on the Hermite state. Prior
to the action of the QFT, the state is transformed as

1√
M

∑
l0,...,lm−1∈{0,1}

|l0 . . . lm−1⟩ |ψn⟩ 7→
1√
M

∑
l0,...,lm−1∈{0,1}

|l0 . . . lm−1⟩ (Vm−1)lm−1 . . . (V0)l0 |ψn⟩ ,

(103)

and using Theorem 5 this is

1√
M

∑
l0,...,lm−1∈{0,1}

e−i(2πn/M)(l0+...+2m−1lm−1) |l0 . . . lm−1⟩ |ψn⟩+O(exp(−Ω(N))) . (104)

We now apply the QFT to complete the QPE. Since the ancillary system is a superposition over basis
states |j⟩ with phases e−i2πnj/M , then the QFT maps it to |n⟩ |ψn⟩ within error O(exp(−Ω(N)))
that is subdominant under the assumption N > log(1/ε). QPE applied then the inverse of (102),
so the quantum circuit for uncomputation is the inverse of this QPE procedure.

Like in eigenstate filtering, the gate complexity of this approach is given by that of all the V ′
j s.

This is also O(log3(M)), since each Vj involves three exponentials of complexity O(log2(M)) each.
Since M = poly(N, 1/ε), the result follows.

4.2 The algorithm

We are now ready to provide a quantum algorithm that implements the QHT. This essentially
follows the steps outlined in Section 2.

Algorithm 2 Quantum Hermite Transform
1: Let N > 0 be the dimension of the QHT and ϵ > 0 be the error. Set M = O(N9/4/ε13/4)

according to Lemma 21 and let m = log2M .
2: For an m-qubit state ∑N−1

n=0 αn |n⟩, use Lemma 22 to prepare ∑N−1
n=0 αn |n⟩ |ϕn⟩ /∥ |ϕn⟩ ∥.

3: Use eigenstate filtering and fixed-point amplitude amplification in Lemma 25 to prepare∑N−1
n=0 αn |n⟩ |ψn⟩.

4: Use uncomputation in Lemma 27 to reset the state |n⟩ and prepare ∑N−1
n=0 αn |ψn⟩.
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Proof of Theorem 19. The combination of the above steps and results allows us to perform the map

N−1∑
n=0

αn |n⟩ 7→
N−1∑
n=0

αn |ψn⟩ , (105)

within additive error ε, and hence imply the QHT. Before using amplitude amplification, for
both the preparation of Plancherel-Rotach states and eigenstate filtering, the size of the circuit
is O

(
(logN + log(1/ε))3). Combining this with the complexity of amplitude amplification itself,

we have an overall complexity of

O
(
(logN + log(1/ε))3 × log(1/ε)

)
. (106)

In Theorem 19 we assumed N > log(1/ε). This implies that all error terms O(exp(−Ω(N)))
are subdominant. As N is exponentially large in some problem size, this assumes ε not to be
double-exponentially small. Nevertheless, it is also possible to avoid this assumption and follow the
same steps of our proofs, while keeping track of all errors that are exponentially small in N .

5 Hermite sampling
In this section we discuss an application of the Hermite transform in theoretical computer science.
We solve problems in property testing and learning using Hermite sampling as a subroutine. The
goal here is to return a sample v ∈ Nn with probability |f̂v|2, where f̂v is the coefficient of the
Hermite polynomial corresponding to v in the representation of f . This gives a simple algorithm
to solve the Gaussian Goldreich-Levin problem, an analogue of the well-known Goldreich-Levin
problem in boolean functions and cryptography, in the Hermite function basis. We also show some
property testing results which also hold for boolean functions using QFT as a subroutine, although
we do not elaborate on that here.

Suppose we have a function f : Rn → [−1, 1] and a discrete set of input points S ⊆ R. We
fix P ∈ N assume that f is constant over subcubes of Rn whose endpoints are integer multiples of
2−P1 . In other words, f acts with P1 bits of precision. Furthermore, we assume the output of f
is recorded with P2 bits of precision. Finally, we assume that f is “well-conditioned” in the sense
that there exists a distortion κ > 0 such that ∥f∥ ≥ κ−1. This distortion parameter captures the
“spikiness” of f , it is the max value of f (one can imagine the tails are cut off) divided by the
average ℓ2-norm of f under the Gaussian distribution. The dependence on this parameter comes
from the complexity of preparing a state whose amplitudes are proportional to the values of f using
phase kickback, conditional rotations, and postselection.

We note that technically we do not need the full power of the Hermite transform in this section.
In particular, we do not need to perform the uncomputation step (Lemma 27) to be able to sample
proportional to |f̂v|2, since the absolute value is agnostic to the relative phase.

In the following section, we give an algorithm that takes an oracle to f : Rn → {−1, 1} and
implements Hermite sampling, for a cleaner exposition. Later in Section 5.2, we generalize this to
general functions f : Rn → R. Finally, in Sections 5.3 and 5.4 we give applications in property
testing and learning, respectively.
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5.1 Boolean-output functions

In this section we restrict our attention to Boolean-output functions – that is, functions whose
outputs are in {−1,+1}. Since there is no output precision, we write P , as opposed to P1, to be
the input precision of f , for simplicity.

For a resolution parameter h and bound L > 0 define

Sh[−L,L] = {kh : k ∈ Z,−L ≤ kh < L} .

This constitutes a set of points with log(1/h) bits of precision over which we will discretize the
QHO eigenstates. Define M = |Sh[−L,L]| = ⌊2L/h⌋. This is the number of evaluation points. We
will use the state preparation algorithm from Section 4.1 to construct approximate hermite states
of dimension

M = max{2C−1L · 2PP · (n+ logn+ log(8/ε)), 40γD log(2D)}.
For simplicity, we first give an algorithm for the case where the output of f is {−1,+1}.

Algorithm 3 Approximate Boolean Hermite Sampling
1: Let P be the number of bits of precision that f acts with.
2: Choose M = max{2γ−1L · 2PP · (n+ logn+ log(8/ε)), 40γD log(2D)}, let m = log2M .
3: Let V that implements the Hermite transform up to degree D and ambient dimension M .
4: Prepare the state |ψ0⟩

⊗n = (V |0m⟩)⊗n

5: Apply the oracle Uf to |ψ0⟩
⊗n.

6: Apply V †⊗n to the state Uf |ψ0⟩
⊗n

7: Measure in the computational basis and return the result.

In the remainder of the section, we will prove the correctness of Algorithm 3. For succinctness
we write for some x ∈ {0, 1}n, |ψx1⟩ ⊗ . . . |ψxn⟩ as |ψx⟩ in the rest of this section. We begin by
employing a standard result in approximation theory which states that Riemann sums converge
exponentially fast for analytic functions such as the hermite functions.
Fact 28 ([TCW14]). Let f : C→ C be analytic on a strip S = {z ∈ C : Re(z) ∈ [a, b], |Im(z)| ≤ a}
and suppose further that |f(z)| ≤ Q for z in this strip. Then we have∣∣∣∣∣ 1

M

M−1∑
ℓ=0

f

(
a+ (b− a)ℓ

M

)
−
∫ b

a
f(t)dt

∣∣∣∣∣ ≤ 2πQ
e2πaM − 1 ≤ 4πQe−2πaM .

We show that the product of convergent univariate Riemann sums converges to the product of
the corresponding integrals.

Proposition 29. Let {a(k)
i }Mi=1 be finite sequences for k ∈ [n]. For each k choose a bk such that∣∣∣∣∣

M∑
i=1

a
(k)
i − bk

∣∣∣∣∣ ≤ ε.
Furthermore, suppose that there exists an Q such that for all k∣∣∣∣∣

M∑
i=1

a
(k)
i

∣∣∣∣∣ ≤ L, |bk| ≤ Q.

Then we have ∣∣∣∣∣
n∏

k=1

M∑
i=1

a
(k)
i −

n∏
k=1

bk

∣∣∣∣∣ ≤ nQn−1ε.
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Proof. The proof proceeds via a simple hybrid argument. Let

H0 =
n∏

k=1

M∑
i=1

a
(k)
i , H1 = b1 ·

n∏
k=2

M∑
i=1

a
(k)
i , ..., Hn =

n∏
k=1

bk.

For ℓ ∈ [n] we bound the difference between the hybrids Hℓ and Hℓ−1. We have

|Hℓ −Hℓ−1| =

∣∣∣∣∣∣
ℓ∏

k=1
bk ·

n∏
k=ℓ+1

M∑
i=1

a
(k)
i −

ℓ−1∏
k=1

bk ·
n∏

k=ℓ

M∑
i=1

a
(k)
i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ℓ−1∏
k=1

bk ·
n∏

k=ℓ+1

M∑
i=1

a
(k)
i

∣∣∣∣∣∣ ·
∣∣∣∣∣

M∑
i=1

a
(ℓ)
i − bℓ

∣∣∣∣∣
= Qℓ−1 ·Qn−ℓ ·

∣∣∣∣∣
M∑

i=1
a

(ℓ)
i − bℓ

∣∣∣∣∣ ≤ Qn−1ε.

Since this holds for any choice of ℓ ∈ [n], we have∣∣∣∣∣
n∏

k=1

M∑
i=1

a
(k)
i −

n∏
k=1

bk

∣∣∣∣∣ = |H0 −Hn| ≤
n∑

ℓ=1
|Hℓ+1 −Hℓ| ≤ nQn−1ε.

Next, we bound the probability mass of hermite functions outside the region L. In the sections
that follow, we denote by ν the Gaussian probability density function e−x2

/
√

2π. Recall that∫
RHk(x)Hℓ(x)ν(x)dx = δkℓ.

Proposition 30. Fix L > 1 and let R = [−L,L]. We have∫
Rn\Rn

f(x)Hv(x)ν(x) ≤ e−nL2/4

Proof. Define R = [−L,L]n. We have∣∣∣∣∣
∫
Rn\R

f(x)Hv(x)ν(x)dx
∣∣∣∣∣ =

∣∣∣∣∣
∫
Rn\R

f(x)ν1/2(x)Hv(x)ν1/2(x)dx
∣∣∣∣∣

≤
√∫

Rn\R
f(x)2ν(x)

√∫
Rn\R

Hv(x)2ν(x) (Cauchy-Schwarz)

≤
√∫

Rn\R
ν(x)

√∫
Rn
Hv(x)2ν(x)

≤
(

2
∫ ∞

L
ν(x)

)n/2
≤ e−nL2/4.

As our first major step towards proving the correctness of Algorithm 3, we show that Riemann
sums that are approximately induced by the discretized QHO eigenstates converges to the correct
quantity.

Proposition 31. Let f : Rn → [−1, 1] be constant on subsets of the form [2−Pk, 2−P (k + 1)]. For a
sufficiently large M ∈ N, take h =

√
2π
M , L =

√
πM

2 , and S1 = Sh[−L,L]. Then for any v ∈ Nn,∣∣∣∣∣∣
∑

x∈Sn
1

M−nf(x)Hv(x)ν(x)−
∫
Rn
f(x)Hv(x)ν(x)

∣∣∣∣∣∣ ≤ 2n · (2L · 2P )ne−2−P ·(M/2L)2 + e−nL2/4
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Proof. For each x ∈ S, define S2(x) = Sh[x − 2−P , x] and T2(x) = {[x, x + h] : x ∈ S2(x)}. We
remark that the T2(x)n are cubes over which f is constant, by assumption. We denote

R =
∑

x∈Sn
1

M−nf(x)Hv(x)ν(x).

This is a Riemann sum that approximates the integral f(x)Hv(x)ν(x) within the region [−L,L].
First we bound the error of this approximation and later show using Proposition 30 that restricting
to this region accrues very little error.∣∣∣∣∣R−

∫
[−L,L]n

f(x)Hv(x)ν(x)dx
∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈Sn
2

M−n
∑

y∈S2(x)n

f(y)Hv(y)ν(y)−
∫

T2(x)
f(y)Hv(y)ν(y)dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

x∈Sn
2

f(x)

M−n
∑

y∈S2(x)n

Hv(y)ν(y)−
∫

T2(x)
Hv(y)ν(y)dy

∣∣∣∣∣∣
≤
∑

x∈Sn
2

∣∣∣∣∣∣M−n
∑

y∈S2(x)n

Hv(y)ν(y)−
∫

T2(x)
Hv(y)ν(y)dy

∣∣∣∣∣∣
We will bound the inner term of the above sum. First, we observe that the both the sum and the
integral can be expressed as products of individual sums and integrals. Thus, applying Proposi-
tion 29, we have∣∣∣∣∣∣M−n

∑
y∈S2(x)n

Hv(y)ν(y)−
∫

T2(x)
Hv(y)ν(y)dy

∣∣∣∣∣∣ ≤ n ·max
i∈[n]

∣∣∣∣∣∣ 1
M

∑
z∈S2(xi)

Hvi(z)ν(z)−
∫

T2(xi)
Hvi(z)ν(z)dz

∣∣∣∣∣∣
Note that the variable z above is univariate. We can now use Fact 28 to bound the inner term.
Indeed, invoking the application of the trapezoid rule in (17), we have for any i ∈ [n]∣∣∣∣∣∣ 1

M

∑
z∈S2(xi)

Hvi(z)ν(z)−
∫

T2(xi)
Hvi(z)ν(z)dz

∣∣∣∣∣∣ ≤ e−2−P ·(M/2L)2

whenever M > 3 · 2P . The sum over Sn
2 results in an additional multiplicative factor of (2L2P )n.

As such, we have ∣∣∣∣∣R−
∫

[−L,L]n
f(x)Hv(x)ν(x)dx

∣∣∣∣∣ ≤ 2n · (2L · 2P )ne−2−P ·(M/2L)2

We now conclude the proof by showing that the exclusion of the region Rn \ [−L,L]n results in
a very small additive error. Indeed, applying Proposition 30 we have∣∣∣∣R− ∫

Rn
f(x)Hv(x)ν(x)

∣∣∣∣ ≤
∣∣∣∣∣R−

∫
[−L,L]n

f(x)Hv(x)ν(x)dx
∣∣∣∣∣+

∣∣∣∣∣
∫
Rn\[−L,L]n

f(x)Hv(x)ν(x)dx
∣∣∣∣∣

≤ 2n · (2L · 2P )ne−2−P ·(M/2L)2 +
∣∣∣∣∣
∫
Rn\[−L,L]n

f(x)Hv(x)ν(x)dx
∣∣∣∣∣

≤ 2n · (2L · 2P )ne−2−P ·(M/2L)2 + e−nL2/4.

Now we show that applying the oracle to the discrete, unnormalized ground state |ψ0n⟩ and
measuring in the |ψv⟩ basis corresponds to a Riemann sum that converges to f̂(v).
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Lemma 32. For each v ∈ [D]n, let |ψv⟩ = ⊗n
i=1 |ψvi⟩, where each |ψvi⟩ is formed with resolution

parameter h = M−1 and limit L. We have, for every v ∈ [D]n∣∣∣⟨ψv|Uf |ψ0n⟩ − f̂(v)
∣∣∣ ≤ ε/4.

Proof. We can write
⟨ψv|Uf |ψ0n⟩ = M−n

∑
x∈Sn

1

f(x)Hv(x)ν(x).

By Proposition 31, we have the bound∣∣∣∣∣∣⟨ψv|Uf |ψ0n⟩ − f̂(v)
∣∣∣∣∣∣ ≤ 2n · (2L · 2P )ne−2−P ·(M/2L)2 + e−nL2/4.

For our choice of M we have that the right hand side of this is bounded by ε/8 + ε/8 = ε/4.

Since the (orthonormal) approximations |ψ⟩ of the discrete QHO eigenstates are very close in
trace distance to the |ψ⟩ above, we can show that they satisfy a similar property.
Corollary 33. For each v ∈ [D]n, let |ψv⟩ = ⊗n

i=1 |ψvi⟩, where each |ψvi⟩ is formed with resolution
parameter h = M−1. We have, for every v ∈ [D]n∣∣∣⟨ψv|Uf |ψ0n⟩ − f̂(v)

∣∣∣ ≤ ε/2.
Proof. Now we argue that replacing |ψ0n⟩ with |ψ0n⟩ doesn’t result in too much error. Recall that
we assume the existence of a constant γ such that

disttr
(
|ψ0n⟩ , |ψ0n⟩

)
≤ n disttr

(
|ψ0⟩ , |ψ0⟩

)
≤ n exp(−γM).

Thus we have∣∣∣⟨ψv|Uf |ψ0n⟩ − f̂(v)
∣∣∣ ≤ ∣∣∣⟨ψv|Uf |ψ0n⟩ − ⟨ψv|Uf |ψ0n⟩

∣∣∣+ ∣∣∣⟨ψv|Uf |ψ0n⟩ − f̂(v)
∣∣∣

=
∣∣∣⟨ψv|Uf

(
|ψ0n⟩ − |ψ0n⟩

)∣∣∣+ ∣∣∣⟨ψv|Uf |ψ0n⟩ − f̂(v)
∣∣∣

≤ n exp(−γM) +
∣∣∣⟨ψv|Uf |ψ0n⟩ − f̂(v)

∣∣∣
≤ ε/12 +

∣∣∣⟨ψv|Uf |ψ0n⟩ − ⟨ψv|Uf |ψ0n⟩
∣∣∣+ ∣∣∣⟨ψv|Uf |ψ0n⟩ − f̂(v)

∣∣∣
≤
∣∣∣⟨ψv|Uf |ψ0n⟩ − ⟨ψv|Uf |ψ0n⟩

∣∣∣+ ε/3

=
∣∣∣(⟨ψv| − ⟨ψv|

)
Uf |ψ0n⟩

∣∣∣+ ε/3

≤ n exp(−γM) + ε/3 ≤ ε/2.

Now, we are ready to prove the correctness of Algorithm 3.

Theorem 34. For each v ∈ [D]n, Algorithm 3 outputs v with a probability pv such that
∣∣∣pv − f̂(v)2

∣∣∣ ≤
ε. Furthermore, it runs in time O(n polylog(n,D, 1/ε)).
Proof. The correctness of the algorithm follows from Corollary 33. Indeed, for every v ∈ [D]n we
have ∣∣∣pv − f̂(v)2

∣∣∣ =
∣∣∣∣∣∣∣⟨ψS |Uf |ψ0n⟩

∣∣∣2 − f̂(v)2
∣∣∣∣

=
∣∣∣∣∣∣⟨ψS |Uf |ψ0n⟩

∣∣∣+ f̂(v)
∣∣∣ · ∣∣∣∣∣∣∣⟨ψS |Uf |ψ0n⟩

∣∣∣2 − f̂(v)2
∣∣∣∣

≤ 2
∣∣∣∣∣∣∣⟨ψS |Uf |ψ0n⟩

∣∣∣2 − f̂(v)2
∣∣∣∣ ≤ ε. Corollary 33
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We now analyze the time complexity. We will prepare the QHO ground states |ψ0n⟩ with preci-
sion M and approximation error ε/3n. Using Theorem 19 this can be done in time O((logn +
logD + log(1/ε))3 logn log(1/ε)). Then, after applying the oracle, we apply the unitary that
maps |ψk⟩ to |k⟩ for k in the low-energy subspace for each qubit, with approximation error
ε/6n. Since these states lie in a Hilbert space of dimension M this also takes O((logn + logD +
log(1/ε))3 logn log(1/ε)) time for each i ∈ [n]. Overall, the runtime is O(n polylog(n,D, 1/ε)), and
the additional error from implementing the states |ψ0n⟩ and inverse Hermite transform unitary is
ε/2, for an overall error of ε.

Furthermore, with a slight overhead in runtime, we can guarantee that our Hermite sampling
procedure approximates the true distribution in total variation distance.

Corollary 35. Let f be υ-concentrated on Hermite coefficients with univariate degree at most D.
With a runtime overhead of O(n logD), Algorithm 3 returns a distribution D = {pv}v∈[D]n such
that the total variation distribution between D and the true Hermite distribution is at most ε+ υ.

Proof. This follows easily from Theorem 34 by choosing an error ε′ = ε ·(D+1)−n and applying the
union bound over all elements in {0, 1, ..., D}n. The overhead in incurred runtime is n logD.

5.2 General functions

In this section, we describe how to generalize our algorithm to functions whose output is now in
[−1, 1]. We remark that the algorithm is effectively the same as in the Boolean case, with the
addition of a quantum multiplication step that multiplies the amplitude of each |x⟩ by f(x). This
involves controlled rotations and postselection. These steps require a more careful analysis and
increase the query and time complexity by a factor depending on the “well-behavedness” of f . This
property is what we call distortion, as defined below.

Definition 36 (Distortion).

κ(f) =

∥∥∥f(x)
√
ν(x)

∥∥∥
∞∥∥∥f(x)

√
ν(x)

∥∥∥
2

We denote this by κ when f is clear from context. Note that κ = 1 for all functions f : Rn →
{−1,+1}.

We first show that the probability distribution generated by Algorithm 4 is close to the true
Hermite distribution pointwise. Recall that, when the output of f is non-Boolean, the Hermite
distribution qv is defined to be f̂(v)2/ ∥f∥2 for all v ∈ Nn.

Lemma 37. Define qv to be the distribution induced on Nn by the Hermite coefficients of f and let
pv be the probability of sampling v ∈ [D]n in Algorithm 4.

|pv − qv| ≤ ε.

Proof. Let |ψ⟩ represents the state of the algorithm after the postselection step, assuming the initial
state was instead |ψ0n⟩ ⊗ |0P2⟩ |0⟩. We have that

|ψ⟩ =
∑

x∈Sn
1
M−n/2f(x)ν1/2(x) |x⟩√∑

x∈Sn
1
M−nf(x)2ν(x)

.
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Algorithm 4 Approximate Hermite Sampling
1: Let P1 and P2 be the number of input and output bits of precision, respectively, for f . Fur-

thermore, let κ be the distortion parameter for f .
2: Choose M = max{2P1 · (n+ P1 + log(24κ/ε)) log(1/ε), 40γD logD}, let m = log2M .
3: Let V that implements the Hermite transform up to degree D and ambient dimension M .
4: repeat
5: Prepare the state |ψ0⟩

⊗n |0P2⟩ |0⟩
6: Apply the oracle Uf controlled on register 1 to register 2.
7: Define the controlled rotation R |f(x)⟩ |0⟩ →

√
1− f(x)2 |f(x)⟩ |0⟩+ f(x) |f(x)⟩ |1⟩.

8: Apply R controlled by register 2 onto register 3.
9: Measure register 3 in the computational basis.

10: until |1⟩ is measured
11: Uncompute by applying Uf controlled on register 1 to register 2.
12: Measure register 2 in the computational basis and let |ψ̃⟩ be the state of register 1.
13: Prepare a unitary V that takes |ψk⟩ to |k⟩ for all k ∈ [D].
14: return The result of applying V ⊗n to |ψ⟩, and measuring in the computational basis.

The denominator (call it
√
P ) is the normalization factor, and we show that it is very close to ∥f∥.

Applying Proposition 31, we have∣∣∣∣∣∣
∑

x∈Sn
1

M−nf(x)2ν(x)− ∥f∥2
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈Sn
1

M−nf(x)2ν(x)−
∫
Rn
f(x)2dx

∣∣∣∣∣∣ ≤ ε · ∥f∥
12

Thus, we can bound∣∣∣∣∣∣
√ ∑

x∈Sn
1

M−nf(x)2ν(x)− ∥f∥

∣∣∣∣∣∣ =

∣∣∣∑x∈Sn
1
M−nf(x)2ν(x)−

∫
Rn f(x)2dx

∣∣∣√∑
x∈Sn

1
M−nf(x)2ν(x) + ∥f∥

≤ ε · ∥f∥
12 · ∥f∥ ≤

ε

12 .

We can write:
⟨ψv|ψ⟩ = 1√

P

∑
x∈Sn

1

M−nf(x)Hv(x)ν(x).

We show using Proposition 31 that this is a Riemann sum which well-approximates f̂(v)
∥f∥ .

∣∣∣∣∣⟨ψv|ψ⟩ −
f̂(v)
∥f∥

∣∣∣∣∣ =

∣∣∣∣∣∣ 1√
P

∑
x∈Sn

1

M−nf(x)Hv(x)ν(x)− f̂(v)
∥f∥

∣∣∣∣∣∣
≤ 1√

P

∣∣∣∣∣∣
∑

x∈Sn
1

M−nf(x)Hv(x)− f̂(v)

∣∣∣∣∣∣−
∣∣∣f̂(v)

∣∣∣ ∣∣∣∣ 1√
P
− 1
∥f∥

∣∣∣∣
≤ ε

12 +
∣∣∣∣ 1√
P
− 1
∥f∥

∣∣∣∣
≤ ε

12 + ε

12 ≤
ε

6 .

Now, let |ψ̃⟩ be the actual state of the algorithm after Line 12. We compute
∥∥∥|ψ⟩ − |ψ̃⟩∥∥∥. Recall that∥∥∥|ψ0n⟩ − |ψ0n⟩

∥∥∥ ≤ n√2 exp(−γM). It is a standard fact that postselection which occurs successfully
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with probability p blows up this distance by a factor of p−1. The postselection in Line 10 of the
algorithm succeeds with probability at least 1

2∥f∥ , so we have that∥∥∥|ψ⟩ − |ψ̃⟩∥∥∥ ≤ 2
√

2n ∥f∥ · exp(−γM) ≤ ε/12

We replace |ψv⟩ with |ψv⟩, which gives us∣∣∣∣∣⟨ψv|ψ⟩ −
f̂(v)
∥f∥

∣∣∣∣∣ ≤ ∣∣∣⟨ψv|ψ⟩ − ⟨ψv|ψ⟩
∣∣∣+ ∣∣∣∣∣⟨ψv|ψ⟩ −

f̂(v)
∥f∥

∣∣∣∣∣ ≤ ε/4
Finally, we replace |ψ0n⟩ with |ψ0n⟩, which swaps and bound:∣∣∣∣∣⟨ψv| ψ̃⟩ −

f̂(v)
∥f∥

∣∣∣∣∣ ≤ ∣∣∣⟨ψv| ψ̃⟩ − ⟨ψv|ψ⟩
∣∣∣+ ∣∣∣∣∣⟨ψv|ψ⟩ −

f̂(v)
∥f∥

∣∣∣∣∣ ≤ ε

3

Recalling that the probability of sampling v ∈ [D]n in Algorithm 4 is exactly
∣∣∣⟨ψv| ψ̃⟩

∣∣∣2 and that

qv = f̂(v)2

∥f∥2 , we conclude by bounding

|pv − qv| =
∣∣∣∣∣∣∣∣⟨ψv| ψ̃⟩

∣∣∣2 − f̂(v)2

∥f∥2

∣∣∣∣∣
=
∣∣∣∣∣∣∣∣⟨ψv| ψ̃⟩

∣∣∣+ f̂(v)
∥f∥

∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣⟨ψv| ψ̃⟩

∣∣∣− f̂(v)
∥f∥

∣∣∣∣∣
≤ 3

∣∣∣∣∣∣∣∣⟨ψv| ψ̃⟩
∣∣∣− f̂(v)
∥f∥

∣∣∣∣∣ ≤ ε.
The proof of the above lemma also gives us the following stronger result:

Lemma 38. Let |ψ̃⟩ be the state of Algorithm 4 after Line 11. Then∣∣∣∣∣⟨ψv|ψ⟩ −
f̂(v)
∥f∥

∣∣∣∣∣ ≤ ε

6 .

We are now ready to prove the correctness of Algorithm 4.

Theorem 39. Let pv be the distribution induced by the Hermite spectrum of a function f with
distortion κ. Algorithm 4 succeeds in sampling v ∈ [Dn] with probability pv such that |pv − qv| ≤ ε.
Moreover it runs in time O(κn polylog(n,D, 1/ε)) and makes O(κ) queries in expectation to f .

Proof. By Lemma 37, we recover the bound |pv − qv| ≤ ε. It remains to analyze the runtime and
query complexity of the algorithm. The postselection step in Line 10 succeeds with probability at
least ∥f∥

2 ≥
1

2κ . Each attempts makes a single query to f and the only other time a query is made
to f is in the uncomputation in Line 11. Thus the query complexity is O(κ).

Now we analyze the computational complexity. Preparing each initial state using Theorem 19
this can be done in time O((logn + log(1/ε))3 logn log(1/ε)). So, overall, this step takes time
O(κn polylog(n, 1/ε)). The remainder of the complexity is dominated by the preparation of V ,
which takes circuit complexity at most O(n logM) = O(n polylog(n,D, 1/ε)). Thus the overall
runtime is O(κn polylog(n,D, 1/ε)).
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Again, we can boost the guarantee to total variation distance with an additional factor of
O(n logD).

Corollary 40. Let f be υ-concentrated on Hermite coefficients with univariate degree at most D.
With a runtime overhead of O(n logD), Algorithm 4 returns a distribution D = {pv}v∈[D]n such
that the total variation distribution between D and the true Hermite distribution is at most ε+ υ.

The proof is identical to that of Corollary 35.

Applications. Inspired by the work of Klivans et al. [KOS08], we give applications of our algorithm
in the form of learning and property testing algorithms. In PAC learning, we are given samples
of the form f(x) where f belongs to some known concept class C and x is drawn from a known
distribution D. For us D will always be the Gaussian distribution. The goal is to learn some g
which agrees with f with high probability on a random input from D. Sometimes learning tasks are
also studied assuming query access to f instead of samples. In property testing, we have an easier
task. We are given query access to f , and we simply want to test if f is in C or disagrees with all
functions in C with high probability. For more background, we refer readers to surveys on learning
theory [KV94, AW17] and property testing [Can22, MW16]. We go over some preliminaries needed
for this section below.

We will use a seminal result in the theory of Sobolev spaces, specialized for the Gaussian
distribution. This is known as the Gaussian Poincaré inequality.

Lemma 41 (Gaussian Poincaré inequality [Poi90, BLM13]). For x ∼ N (0, I), and a differentiable
function f : Rn → R we have that

Var(f(x)) ≤ E ∥∇f(x)∥22

The quantity on the right is known as the Hardy-Krause variation of f (σHK(f)) in the lit-
erature on Quasi Monte-Carlo methods [Fis06]. This inequality tells us that for the Gaussian
distribution vanilla MC suffices to get a good sample complexity. We will also need a result about
the approximation of smooth functions by Hermite polynomials. We state it below.

Lemma 42 (Polynomial approximation of smooth functions ([DKK+24, KTZ19])). Denote by P>mf
the Hermite expansion of f truncated to only include terms with total degree greater than m. Then
for all almost-everywhere differentiable functions, we have that

E
x∼N

[P>mf(x)2] ≤ O( 1
m

) E
x∼N
∥∇f(x)∥22

For this section we will also need some lemmas about the classical complexity of computing for
Hermite coefficients of restricted functions, which we prove below.

Definition 43. For a function f : Rn → R, set J ⊆ [n] and z ∈ RJ̄ . Then define fJ |z(y) : RJ → R
to be the function where the scalars in J̄ is restricted to z.

Definition 44. For a differentiable function f : Rn → R, define γf := Ex∼N ∥∇f∥22. We will denote
this by γ when f is clear from context.

Lemma 45. Let f : Rn → R and S ∈ NJ , then we say J ⊆ [n] is the set of indices where Si > 0.
For z ∈ RJ̄ , write FSf(z) = f̂J |z(S). Then we have that

F̂Sf(T ) = f̂(S ∪ T )
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Proof. For every U ∈ Nn we write U = S ∪ T where S ∈ NJand T ∈ NJ̄ . We also use the notation
hU = hShT where hU is the Hermite polynomial with coefficient U and hS , hT are defined so that
they only contain variables in S and T respectively. Then we have that

f(x) =
∑

U∈Nn

f̂(U)hU =
∑

S∈NJ ,T ∈NJ̄

f̂(S ∪ T )hShT =
∑

S∈NJ

 ∑
T ∈NJ̄

f̂(S ∪ T )hT

hS

If the variables in T are fixed to z then as a function of the variables in S the coefficient on the
polynomial hS is ∑T ∈NJ̄ f̂(S ∪ T )hT (z). Thus, we have that F̂Sf(T ) = f̂(S ∪ T ) as desired.

We can use Lemma 45 to derive a quantity which we can estimate efficiently.

Definition 46. Let
WS(f) =

∑
T ∈NJ̄

f̂(S ∪ T )2

Corollary 47 (Corollary of Lemma 45).

WS(f) =
∫
RJ̄
f̂J |z(S)2ν(z)dz

Proof. ∫
RJ̄
f̂J |z(S)2ν(z)dz =

∫
RJ̄
FSf(z)2ν(z)dz

=
∑

T ∈NJ̄

F̂S(T )2 (Parseval’s)

=
∑

T ∈NJ̄

f(S ∪ T )2

Using our corollary, we can estimate WS(f) efficiently.

Lemma 48. For any S ∈ Nn an algorithm with query access to a differentiable function f : Rn → R
can compute an estimate of WS(f) that is accurate to within ±ε with probability 1 − δ using
poly(γ/ε) log(1/δ) queries.

Proof. We rewrite WS(f) in a way which can be estimated using Monte-Carlo integration.

WS(f) =
∫
RJ̄
f̂J |z(S)2ν(z)dz =

∫
RJ̄

(∫
RJ
f(y, z)hS(y)ν(y)dy

)2
ν(z)dz

=
∫
RJ̄

(∫
RJ
f(y, z)f(y′, z)hS(y)hS(y′)ν(y)ν(y′)dydy′

)
ν(z)dz

= E
z∼N J̄

E
y,y′∼N J

[f(y, z)f(y′, z)hS(y)hS(y′)]

This quantity can be estimated by a Monte-Carlo method, and due to Lemma 41 we know
that Var(f(x)) ≤ γ2, so we can get an estimate of this quantity which is accurate up to ±ε with
probability 1− δ using γ2

ε2 log(1/δ) samples.
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5.3 Property testing

In this section, we give quantum algorithms for property testing using our Approximate Hermite
Sampling subroutine. In our first two examples, we give provable quantum advantage. Throughout
this section, our notion of distance will be Gaussian inner product.

Definition 49 (Distance). We say that f, g : Rn → R are ε-close if we have that∫
Rn
f(x)g(x)ν(x) ≥ 1− ε

Conversely, we say that f, g are ε-far if the inequality does not hold.

5.3.1 Provable quantum advantage for sign functions

The problem we consider here is to test if a given function f is close to a product of k sign function
or far from every product of k sign functions.

Definition 50 (Product sign functions).

χS(x) = Πi∈S sgn(xi)

Definition 51 (Testing k-product sign functions). Given black-box access to f : Rn → R and given
ε2 > ε1 > 0 determine whether

• f(x) is ε1-close to χS(x) for some S ⊆ [n] such that |S| = k, or
• f(x) is ε2-far from all k-product sign functions.

Let ε = ε2 − ε1.

Lemma 52. Product sign functions can be tolerantly tested with O(1/ε2) quantum queries.

Proof. Note that if f(x) = χS(x) for some S ⊆ [n] then the only non-zero Hermite coefficients
of f are the ones which non-zero on indices in S. We can use Approximate Hermite Sampling
(Algorithm 3) setting the TV distance to be less than ε/2 (Corollary 35) and observe a sample T ,
then let S be its support. Set S∗(i) = ∗ whenever i ∈ S and 0 otherwise. Then we can estimate
WS∗(f) upto ±ε/4 using O(1/ε2) queries by Lemma 48 and accept if it is at least 1− ε1+ε2

2 .

We prove a classical lower bound of Ω(k) for this problem. We use the framework of Blais et
al. [BBM11], and use a reduction in the communication setting from Disjointness, for which we
know tight lower bounds.

Theorem 53. Any classical algorithm for testing k-product sign functions requires Ω(k) queries.

Proof. It proceeds by starting from a hard distribution for Disjointness where we sample two sets
A,B such that |A| = |B| = k

2 + 1 and with probability 1/2 A∩B = ϕ and with probability 1/2 we
have |A ∩B| = 1.

For our reduction, given such sets A,B Alice produces χA = Πi∈A sgn(xi) and Bob produces
χB = Πi∈B sgn(xi) and they want to test χAB = χA · χB.

We have

deg(χAB) =
{
k + 2, if A ∩B = ϕ

k, if |A ∩B| = 1

because if i ∈ A∩B then χA ·χB does not depend on xi, since sgn(xi)2 = 1. To prove our property
testing lower bound, it sufffices to prove the following claim.
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Lemma 54. For any set S : |S| = k + 2 and T : |T | = k, the functions χS and χT are Ω(1)-far wrt
to the Gaussian distribution.

Proof.

d(χS , χT ) = 1−
∫
Rn
χS(x)χT (x)ν(x)dx

= 1−
∫
Rn
χS∆T (x)ν(x)dx

= 1

Here we used that S∆T is non-empty since S is strictly larger than T .

Therefore, deciding whether the input is close to a product sign function on k variables or not
allows us to decide the output of the Disjointness function. This must take Ω(k) queries.

Using the lower bound for testing sign functions, we can infer a Ω(n) lower bound on the classical
query complexity of Gaussian Goldreich-Levin. We recall that it is known that one can solve the
Goldreich-Levin problem with constant success probability with O(n/τ2) classical queries [Gol01].
The factor 1/τ2 is optimal since Parseval’s only gaurantees that the list L of τ -correlated functions
is of size O(1/τ2). In the quantum case, we can do much better and get O(1/τ2) queries. Here, we
ask a similar question but for functions over the domain Rn.

Definition 55 (Gaussian Goldreich-Levin). Given query access to a function f : Rn → R, return a
list L of indices of Hermite polynomials such that

• |f̂(S)| ≥ τ =⇒ S ∈ L
• S ∈ L ⇐= |f̂(S)| ≥ τ/2

To derive this we will need a observation about the Hermite expansion of sign functions.

Lemma 56. For f(x) = Πi∈T sgn(xi) we have that for any S ∈ Nn, f̂(S) ≤ 1/ exp(k) where k is the
max degree of a variable in S from T .

Proof. Let f(x) = sgn(x), and let f̂(k) be the coefficient of f for the degree k univariate Hermite
polynomial. Then we first show that f̂(k) ≤ 1/ exp(k). Note that for even k, this coefficient is
always 0 since hk(x) is an even function. For odd k, hk(x) is an odd function and thus we have the
following.

f̂(k) =
∫
R

sgn(x)hk(x)ν(x)dx =
∫ ∞

0
hk(x)ν(x)dx−

∫ 0

−∞
hk(x)ν(x)dx

= 2
∫ ∞

0
hk(x)ν(x)dx

≤ 1/ exp(k)

In general, if f(x) = Πi∈T sgn(xi) then for any S ∈ Nn with non-zero number in any index
outside of T , the coefficient f̂(S) = 0. For any S supported entirely on T , we can factor the
integral for computing the Hermite coefficient based on each variable in T and infer a lower bound
from the univariate case.

Corollary 57. Any classical algorithm for Gaussian Goldreich-Levin requires Ωε(n) queries.
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Proof. Using Lemma 56, we can see that any algorithm for Gaussian Goldreich-Levin with param-
eter τ = 1

log(1/ε) can be used to test if a function f is ε-close to a product of k sign functions. But
we know that for k = Ω(n) this problem requires Ω(n) queries classically.

We also give a classical algorithm that has a matching linear dependence on n for the number
of queries, but we defer this to Appendix D. Using the Quantum Hermite Transform, we can get
rid of the dependence on n entirely which gives quantum query advantage for this problem. Bel

5.3.2 Tolerant low-degree testing

We are now concerned with testing if a function f : Rn → {−1,+1} is well-approximated by a
low-degree Hermite expansion.

Definition 58. We say that f is (ε, d)-low-degree if∑
S∈Nn

|S|≤d

|f̂(S)|2 ≥ 1− ε.

Definition 59 (Testing degree-d). Given black-box access to f : Rn → {−1,+1} and given ε2 >
ε1 > 0 determine whether

• f is (ε1, d)-low-degree, or
• f fails to be (ε2, d)-low-degree

With Hermite sampling, the idea is once again simple: use samples from the Hermite distribution
and compute the empirical fraction of samples below degree d. This will be a low-bias estimate
of the low-degree mass, using which we can distinguish the two cases. Denoting ε = ε2 − ε1, this
approach yields an algorithm with query complexity poly(1/ε). Moreover, by importing the lower
bound for sign functions (Theorem 53) we can prove that any classical algorithm requires Ω( d

log 1/ε)
queries, giving provable quantum advantage in the regime where d is large.

Algorithm 5 Tolerant Low-Degree Testing
1: Define X = 0 and ε = ε2 − ε1.
2: Set m = O(log(1/δ)/ε2).
3: for i = 1 to m do
4: Perform Hermite sampling on f to obtain S = (v1, ..., vn) ∈ Nn.
5: if |S| ≤ d then
6: Update X = X + 1/m.
7: if X > (ε1 + ε2)/2 then
8: accept
9: else

10: reject

Theorem 60. Algorithm 5 makes O(log(1/δ)/ε2) quantum queries to f and succeeds with probability
at least 1− δ.

Proof. We will run Approximate Hermite Sampling (Algorithm 3) with TV distance ε/10 which
requires a poly(n, log d, log(1/ε)) runtime (Corollary 35) and constant query complexity. Since we
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need to perform Hermite sampling m times and each sampling takes O(1) queries, the total number
of queries is O(m).

To see that the algorithm outputs the correct answer with probability 1−δ notice that X would
be an unbiased estimator of the distance of f to being (ε, d)-low-degree if we were getting perfect
samples. Since we are using approximate Hermite sampling, X has bias b = ε/10. Therefore, by
a Chernoff bound m = O(log(1/δ)/ε2) independent samples suffice to get an estimate which is
(ε/4 + b)-close with probability 1− δ. This distinguishes the two cases.

Corollary 61. Any classical algorithm for testing if f is (ε, d)-low-degree requires Ωε(d) queries.

Proof. We can get a lower bound by considering the special case of product of sign functions. Let
k = d, then a product of k sign functions is (ε, ck log 1/ε)-low-degree by Lemma 56. Also note that
k + 2 product functions are not (ε, ck log 1/ε)-low-degree. Since we have a Ω(k) lower bound for
distinguishing these two cases, we have a lower bound for testing if f is (ε, ck log 1/ε)-degree.

5.3.3 Tolerant testing Hermite polynomials

For this subsection, we consider the problem of testing closeness to a product of Hermite polyno-
mials.

Definition 62 (Testing product of Hermite polynomials). Given black-box access to f : Rn → R
and given ε2 > ε1 > 0 such that either

• f(x) is ε1-close to hS for some S ∈ Nn such that S has k non-zero entries, or
• f(x) is ε2-far from every Hermite polynomial on k variables.

Let ε = ε2 − ε1.

Lemma 63. Hermite polynomials can be tolerantly tested using O(1/ε2) quantum queries.

Proof. If f is ε-close to a Hermite polynomial, then for some S we have that f̂(S) ≥ 1 − ε. If
we perform Hermite sampling O(log 1/ε) times then we see it with high probability. We can then
estimate it to ±ε/2 and accept if it’s at least 1− ε1+ε2

2 .

We conjecture that classically this problem requires Ω(k) queries like in the case of product
sign functions. Note that using a classical Gaussian Goldreich-Levin algorithm, we can solve it
classically using O(n) queries so this would be tight for k = Ω(n).

Conjecture 64. Testing Hermite polynomials on k variables requires Ω(k) queries classically.

5.4 Agnostic learning of sparse concepts

We define sparse concepts over real-valued functions, for which we give quantum and classical
learning algorithms. First, we define cutoff weight.

Definition 65 (Cutoff weight). For a parameter τ ∈ R, we define the cutoff weight of a function f
as

Wτ (f) =
∑

S:f̂(S)≥τ

f̂(S)2

Definition 66 ((s, ε)-sparse concepts). Let C be a concept comprising of functions f : Rn → R such
that Ex∼N ∥∇f∥22 ≤ γ. We say that C is (s, ε)-sparse if for all f ∈ C, if there exists a τ(s, ε) =
poly(ε/s) such that there are at most s Hermite coefficients larger than τ and Wτ (f) ≥ 1− ε.

47



As a consequence of Algorithm 3 we get learning algorithms for sparse concepts.

Lemma 67. For any (s, ε)-sparse concept C let κ be the max distortion for any f ∈ C, and let γ
be the max L2-norm of ∇f for f ∈ C. Then there is an agnostic learner with poly(sκ/ε) quantum
queries and poly(nsγ/ε) classical queries.

Proof. Since we know the concept is (s, ε)-sparse we know that for every f ∈ C there is a τ such
that running an algorithm for the Gaussian Goldreich-Levin problem gives us an improper agnostic
learner for the function. We know that we can do this in poly(κ/τ) = poly(sκ/ε) quantum queries
and poly(nγ/τ) = poly(nγκ/ε) classical queries.

Corollary 68 (Learning juntas). Let C be the class of f : Rn → {−1,+1} such that f is a polynomial
on k variables with individual degree 1. Then C can be agnostically learned with error ε using
poly(1

ε

k) quantum queries and poly(n1
ε

k) classical queries.

6 Open problems and outlook
The most pressing question regarding our work is to find additional practical problems for which
the QHT gives quantum advantage. To give more precise directions, we consider the following
problems.

• To realize the promise of quantum advantage for learning geometric concepts [KOS08], we
ask: are there other examples of natural concept classes which are sparse concepts as in
Definition 66?

• Can the QHT be used to obtain learning algorithms for Linear Threshold Functions, or
generally Polynomial Threshold Functions that beat the classical query lower bounds?

• Is there a large class of differential equations that can be simulated on a quantum computer
efficiently using the QHT, while being hard for classical computers?

• Can other quantum systems be fast forwarded using the QHT?
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A Factorization of the QHO evolution operator
In this appendix we prove Theorem 3.

Theorem 3 (Factorization of the QHO evolution [QA07]). The evolution operator of the QHO admits
the following factorization:

exp
(
−iĤt

)
= exp

(
− i tan(t/2)p̂2

2

)
exp

(
− i sin(t)x̂2

2

)
exp

(
−i tan(t/2)p̂2

2

)
. (6)
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We will first prove a general algebraic claim, from which we will infer our required factorization.

Claim 69. Let K1,K2,K3 be three operators obeying

[K1,K2] = −2K3, [K3,K1] = 2K2, [K3,K2] = −2K1.

Then for all t ∈ R,
e(K1+K2)t = eαK1eβK2eαK1 ,

where

α =
tan

(
t/
√

2
)

√
2

, β =
sin
(√

2t
)

√
2

.

Proof. Let
U(t) = eαK2eβK1eαK2 .

If we can prove
U(t)−1dU

dt
= K1 +K2,

then the claim follows.
By direct calculation,

dU

dt
= α̇K2e

αK2eβK1eαK2 + eαK2 β̇K1e
βK1eαK2 + eαK2eβK1α̇K2e

αK2 .

Hence,
U−1dU

dt
= e−αK2e−βK1e−αK2

(
dU

dt

)
.

Using the Campbell–Hausdorff lemma

eXY e−X =
∞∑

j=0

1
j! [X,Y ]j , [X,Y ]0 = Y, [X,Y ]1 = [X,Y ], [X,Y ]2 = [X, [X,Y ]], . . . ,

we compute the conjugations step by step:

e−αK2K1e
αK2 = K1 − 2αK3 + 2α2K2,

e−βK1K2e
βK1 = K2 + 2βK3 + 2β2K1,

e−αK2K3e
αK2 = K3 − 2αK2.

Substituting these into the expression for U−1dU/dt and collecting terms yields

U−1dU

dt
= A1K1 +A2K2 +A3K3,

with

A1 = 2αβ̇ + β̇, A2 = 2α̇− 4α̇βα+ 4α̇βα2 + 2β̇α2, A3 = 2α̇β − 4α̇β2α− 2β̇α.

Differentiating α, β gives

α̇ = 1
2 sec2

(
t√
2

)
, β̇ = cos

(
t
√

2
)
.
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Substituting back and simplifying trigonometrically shows that

A1 = 1, A2 = 1, A3 = 0.

Thus
U−1dU

dt
= K1 +K2,

which implies
U(t) = e(K1+K2)t.

Proof of Theorem 3. Define K1 = i√
2 x̂

2,K2 = i√
2 p̂

2,K3 = i
2 {x̂, p̂}. Then we get the factorization

exp
(
i√
2

(
x̂2 + p̂2

))
= exp

(
αi√

2
x̂2
)

exp
(
βi√

2
p̂2
)

exp
(
αi√

2
x̂2
)

This implies that for Ĥ = 1
2
(
x̂2 + p̂2) we have

exp
(
−iĤt

)
= exp

(
i tan(t/2)p̂2

2

)
exp

(
i sin(t)x̂2

2

)
exp

(
i tan(t/2)p̂2

2

)
.

We can similarly infer that in the discretized case, this factorization is accurate upto the
weighted sum of the nested commutators.

Lemma 70. Let Ũ(t) = exp
(
i tan(t/2)p2

2

)
exp

(
i sin(t)x2

2

)
exp

(
i tan(t/2)p2

2

)
, then we have that

Ũ(t)
−1dŨ(t)

dt
= −iH + β̇

∞∑
t=3

1
t!2t/2

[
β′ix2, ip2

]
t
+ α̇

∞∑
t=3

1
t!2t/2

[
α′ip2, ix2

]
t

+ α̇
∞∑

t=2

1
t!2t/2

[
α′ip2, i {x, p}

]
t
+ η′

where ∥ΠNη
′ΠN∥ ≤ exp(−N/4), α′ = tan(t/2)/2, β′ = sin(t)/2, α̇ = 1

2 sec2( t
2
)
, β̇ = cos(t).

Proof. We instantiate the operators as above but with the discretized versions, that is K1 =
i√
2x

2,K2 = i√
2p

2,K3 = i
2 {x, p}. Now, the proof does not go through as is but we do the same

substitutions but keep the terms that ‘went to 0’ due to the commutator relations.

e
− αi√

2
p2 i√

2
x2e

αi√
2

p2
= K1 − 2αK3 + 2α2K2 +

∞∑
t=3

1
t!2t/2

[
αip2, ix2

]
t
,

e
− iβ√

2
x2 i√

2
p2e

iβ√
2

x2
= K2 + 2βK3 + 2β2K1 +

∞∑
t=3

1
t!2t/2

[
βix2, ip2

]
t
,

e
− αi√

2
p2 i

2 {x, p} e
αi√

2
p2

= K3 − 2αK2 +
∞∑

t=2

1
t!2t/2

[
αip2, i {x, p}

]
t
.

Substituting this into the expression

dŨ

dt
= α̇K2e

αK2eβK1eαK2 + eαK2 β̇K1e
βK1eαK2 + eαK2eβK1α̇K2e

αK2 + η
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yields that upto an additive term multiplied by η with ∥η∥ exponentially small,

Ũ(t)
−1dŨ(t)

dt
= −iH + β̇

∞∑
t=3

1
t!2t/2

[
β′ix2, ip2

]
t
+ α̇

∞∑
t=3

1
t!2t/2

[
α′ip2, ix2

]
t

+ α̇
∞∑

t=2

1
t!2t/2

[
α′ip2, i {x, p}

]
t
+ η′.

B Centered discrete Fourier transform
The centered discrete Fourier transform F ∈ CM×M used in [Som16], where M = 2m, is defined
via its entries:

Fjk = 1√
M

exp
(

i2πjk
M

)
, (107)

where −M/2 ≤ j, k ≤M/2− 1 label the rows and columns of the matrix. The difference with the
standard QFT is only due to the shifting of these labels, where 0 ≤ j, k ≤M − 1, and hence these
transforms are related via cyclic permutations. In particular, if m ≥ 2, we can write

F = σ0
z .QFT.σ

0
z , (108)

where σ0
z is the diagonal Pauli matrix acting on the last of the m qubits; i.e., σ0

z = 1l2⊗ . . .⊗1l2⊗σz

with 1l2 =
(

1 0
0 1

)
and σz =

(
1 0
0 −1

)
.

The complexity of F is then that of the QFT plus two single qubit gates. For the schoolbook
version of the QFT, this complexity is also O(m2). Using the quasilinear time algorithm for
QFT [CW00] this can be implemented with Õ(m) gates.

C Some properties of the Plancherel-Rotach asymptotics
For n ≥ 1, consider the Plancherel-Rotach asymptotic functions

ϕ̃n(x) := 2 1
4

π
1
2n

1
4

1√
sinφ(x)

(
sin
[(
n

2 + 1
4

)
(sin(2φ(x))− 2φ(x)) + 3π

4

])
, (109)

in a domain Dc where |x| ≤ c′√2n+ 1 and 0 ≤ c′ < 1. Here, φ(x) := arccos
(
x/
√

2n+ 1
)

satisfies
π − c ≥ φ(x) ≥ c. It follows that

√
sinφ(x) is bounded from below by a constant and, in this

domain, we can be simply bounde the magnitude as

|ϕ̃n(x)| = O(1/n1/4) . (110)

Next we consider the derivative. We obtain

d
dxϕ̃n(x) = 2 1

4

π
1
2n

1
4

(
−

cos(φ(x)) d
dxφ(x)

2(sinφ(x))3/2 sin
[(
n

2 + 1
4

)
(sin(2φ(x))− 2φ(x)) + 3π

4

]
+

1√
sinφ(x)

cos
[(
n

2 + 1
4

)
(sin(2φ(x))− 2φ(x)) + 3π

4

](
n

2 + 1
4

)
(cos(2φ(x))− 2) d

dxφ(x)
)
.

(111)
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Since cos(φ(x)) and sin(φ(x)) are bounded by constants, and noting

d
dxφ(x) = 1√

2n+ 1− x2
=⇒

∣∣∣∣ d
dxφ(x)

∣∣∣∣ = O(1/n1/2) for x ∈ Dc , (112)

we obtain ∣∣∣∣ d
dxϕ̃n(x)

∣∣∣∣ = O(n1/4) (113)

in Dc.
Last, we consider the magnitude of the second derivative. To this end we note

d2

d2x
φ(x) = x

(2n+ 1− x2)3/2 =⇒
∣∣∣∣∣ d2

d2x
φ(x)

∣∣∣∣∣ = O(1/n) for x ∈ Dc . (114)

Using the chain rule it is possible to show that∣∣∣∣∣ d2

d2x
ϕ̃n(x)

∣∣∣∣∣ = O(n3/4) (115)

in Dc. The term that determines this upper bound is a term that contains

2 1
4

π
1
2n

1
4

(
n

2 + 1
4

)2 ( d
dxφ(x)

)2
= O(n3/4) . (116)

D Gaussian Goldreich-Levin
In this section, we study a fundamental learning problem first introduced by Goldreich-Levin [GL89]
in the context of cryptography.

Definition 71 (Goldreich-Levin problem, informal). Given query access to f : Fn
2 → F2, output a

list of all the linear functions which are τ -correlated with f .

It is known that one can solve the Goldreich-Levin problem with constant success probability
with O(n/τ2) classical queries [Gol01]. The factor 1/τ2 is optimal since Parseval’s only gaurantees
that the list L of τ -correlated functions is of size O(1/τ2). In the quantum case, we can do much
better and get O(1/τ2) queries. Here, we ask a similar question but for functions over the domain
Rn.

Definition 72 (Gaussian Goldreich-Levin). Given query access to a function f : Rn → R, return a
list L of indices of Hermite polynomials such that

• |f̂(S)| ≥ τ =⇒ S ∈ L
• S ∈ L ⇐= |f̂(S)| ≥ τ/2

The main claim of this section is that this real-analogue of the Goldreich-Levin problem is
also tractable. To prove this, we will need to build some machinery analogous to the classical
Goldreich-Levin algorithm, a great exposition for which can be found in the book by O’Donnell
[O’D14]. We now prove an analogue of the Godlreich-Levin theorem for Hermite coefficients. Below
γf = Ex∼N ∥f(x)∥2, and we drop the subscript f when it’s clear from context.
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Algorithm 6 Gaussian Goldreich-Levin learning algorithm
1: Set m = O(γ2

τ )
2: L← (∗, ∗, . . . , ∗)
3: for k = 1 to n do
4: for each S ∈ L, S = (a1, . . . , ak−1, ∗, . . . , ∗) do
5: for ak = 0 to m do
6: Let Sak

= (a1, . . . , ak−1, ak, ∗, . . . , ∗)
7: Estimate WSak (f) to within ±τ2/4 with probability at least 1− δ Lemma 48
8: if the estimate of WSak (f) is at least τ2/2 then
9: Add Sak

to L
10: Remove S from L
11: return L

Theorem 73 (Gaussian Goldreich-Levin). Given query access to a function f : Rn → R, Algorithm 6
runs in time poly(nγ/τ). It returns a list L of indices of Hermite polynomials such that

• |f̂(S)| ≥ τ =⇒ S ∈ L
• S ∈ L ⇐= |f̂(S)| ≥ τ/2

Proof. Because (τ/2)2 + τ2/4 ≤ τ2/2, the only Hermite coefficients in L are ones which are at
least τ/2. Since τ2 − τ2/4 > τ2/2, all Hermite coefficients which are at least τ are in the set L.
The runtime can be analysed by multiplying the runtime of all three loops and the complexity of
estimation.

• The outermost loop runs for n steps,
• The middle loop runs in O(1/τ2) steps since at any given point |L| ≤ O(1/τ2),
• The runtime of the inner loop is m = θ(γ2/τ),
• The query complexity of estimation is poly(γ/τ) by Lemma 48.

Thus, the overall query complexity and runtime is poly(nγ/τ).

Note that while our algorithm assumes knowledge of γf , one can always estimate γf by simu-
lating gradient queries.
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[Sze39] Gabor Szegö. Orthogonal polynomials, volume 23. American Mathematical Soc., 1939.

[TCW14] Lloyd N. Trefethen, J. A. C., and Weideman. The exponentially convergent trapezoidal
rule. SIAM Review, 56(3):385–458, 2014. arXiv:https://doi.org/10.1137/130932132, doi:
10.1137/130932132.

[Wu20] Xinyu Wu. A stochastic calculus approach to the oracle separation of BQP and PH,
2020. URL: https://arxiv.org/abs/2007.02431, arXiv:2007.02431.

[YLC14] Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. Fixed-point quantum search
with an optimal number of queries. Phys. Rev. Lett., 113:210501, Nov 2014. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.113.210501, doi:10.1103/PhysRevLett.113.210501.

[YZ24] Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage without struc-
ture. J. ACM, 71(3):Art. 20, 50, 2024.

[Zal98] Christof Zalka. Simulating quantum systems on a quantum computer. Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 454(1969):313–322, 1998. arXiv:quant-ph/9603026.

57
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il

https://arxiv.org/abs/https://doi.org/10.1137/130932132
https://doi.org/10.1137/130932132
https://doi.org/10.1137/130932132
https://arxiv.org/abs/2007.02431
https://arxiv.org/abs/2007.02431
https://link.aps.org/doi/10.1103/PhysRevLett.113.210501
https://link.aps.org/doi/10.1103/PhysRevLett.113.210501
https://doi.org/10.1103/PhysRevLett.113.210501

