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Abstract

We investigate two resources whose effects on quantum interactive proofs remain poorly under-
stood: the promise of unentanglement, and the verifier’s ability to condition on an intermediate
measurement, which we call post-measurement branching. We first show that unentanglement
can dramatically increase computational power: three-round unentangled quantum interactive
proofs equal NEXP, even if only the first message is quantum. By contrast, we prove that if the
verifier uses no post-measurement branching, then the same type of unentangled proof system
has at most the power of QAM. Finally, we investigate post-measurement branching in two-round
quantum-classical proof systems. Unlike the equivalence between public-coin and private-coin
classical interactive proofs, we give evidence of a separation in the quantum setting that arises
from post-measurement branching.

1 Introduction

Quantum proof systems are one framework for studying quantum mechanical effects on computa-
tional complexity. They allow us to ask how uniquely quantum resources—such as superposition,
entanglement, and measurement—affect our ability to efficiently verify that certain statements are
true. A broad goal in this area is understanding which resources increase computational power,
which restrict it, and which turn out to be irrelevant.

In this work, we focus on two such resources: the promise of unentanglement, and the verifier’s
ability to perform post-measurement branching. At a high level, we show that each of these resources
can fundamentally alter the computational power of interactive proof systems.

1.1 Unentanglement

Whether entanglement increases or decreases the computational power of quantum proof systems
is subtle. A striking example is the separation between MIP∗ and MIP, the classes of problems
decidable by multiprover interactive proof systems with and without entanglement between provers,
respectively. Whereas MIP = NEXP [BFL91], it took considerable additional effort to show that the
entangled-prover variant MIP∗ contains NEXP [IV12], because entangled provers could potentially
cheat in ways that unentangled provers cannot. On the contrary, we now know that entanglement
adds vastly more power to multiprover interactive protocols: MIP∗ was recently shown to equal
RE [JNVWY22], and thus can solve undecidable problems.

Conversely, it is widely believed that in certain proof systems, unentanglement affords additional
computational power. This is perhaps best captured by the QMA vs. QMA(2) question [KMY01],
which asks whether two unentangled quantum proofs are more powerful than one. Despite considerable
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effort (e.g., [ABDFS09; CD10; BT12; GNN12; CF13; CS12; HM13]), nothing beyond the trivial
containments QMA ⊆ QMA(2) ⊆ NEXP has been established since QMA(2)’s introduction over two
decades ago [KMY01]. Moreover, unlike for questions such as P vs. BPP or even BQP vs. PH, there
is little consensus in the community about what the answer should be.

Underlying the QMA vs. QMA(2) problem is a more basic question: can we exhibit examples where
the promise of unentanglement grants quantum proof systems exponentially more computational
power? More recent work has attempted to study this question by defining variants of QMA and
showing them equal to NEXP [JW23; BFM24; JW24; AGIMR24; BM25; BFLMW24]. For example,
Jeronimo and Wu [JW23] introduced the class QMA+(2), where the verifier receives two unentangled
messages that are additionally promised to consist of real nonnegative amplitudes. Their main theorem
QMA+(2) = NEXP showed that the combination of unentanglement and nonnegative amplitudes
can give exponentially more power. However, this evidence for the power of unentanglement was
called into question shortly thereafter, when Bassirian, Fefferman, and Marwaha [BFM24] showed
that nonnegative amplitudes alone, without any promise of unentanglement, give the same power:
QMA+ = NEXP.

In fact, the only one of these works that showed how unentanglement specifically grants compu-
tational power is by Bassirian, Fefferman, Leigh, Marwaha, and Wu [BFLMW24]. There, they define
“internally separable” variants QMAIS and QMAIS(2) of QMA and QMA(2), respectively, in which
the quantum witnesses satisfy a certain multipartite entanglement condition. They then show that
QMAIS ⊆ EXP while QMAIS(2) = NEXP. (Note that their QMAIS(2) = NEXP is highly sensitive to
the completeness and soundness parameters, which cannot (apparently) be generically amplified.)
On the whole, these works identify nontraditional sources of computational power (e.g., non-negative
amplitudes and non-collapsing measurements), which have little to do with unentanglement.

In this work, we take a different approach to studying the power of unentanglement. Rather
than considering new computational resources on top of unentanglement, we take a well-studied
quantum proof system and investigate how it changes with an additional promise of unentanglement.
We start with QIP[3], the class of problems decidable by a three-round quantum interactive proof
system. Here the [3] denotes the number of rounds, unlike the (2) in QMA(2), which refers to the
number of unentangled proofs; hence the careful difference in notation. It is a celebrated result
that QIP[3] = QIP = IP = PSPACE [JJUW11], showing that three-round quantum interactive proofs
characterize polynomial space. Because quantum and classical interactive proof systems are so well
understood, QIP[3] serves as a natural baseline for exploring the effects of unentanglement.

We introduce an unentangled variant of QIP[3], denoted QIPunent[3], that differs from QIP[3] in
exactly one respect: the prover is restricted to apply channels that generate no entanglement between
their private workspace qubits and any messages sent to the verifier. We formalize QIPunent[3] using
so-called entanglement-breaking channels [HSR03], which are precisely the set of channels whose
action on one half of any bipartite state yields a separable state across the bipartition. These channels
are also known as measure-and-prepare channels, because they can be equivalently described as first
measuring the input state and then preparing a new quantum state conditioned on the classical
measurement outcome. Our definition of QIPunent[3] trivially captures QMA(2) as a special case: the
prover sends the first witness in the first round, the verifier does nothing in the second round, and
the prover sends the second witness (unentangled with the first) in the third and final round.

Our first result establishes that the promise of unentanglement in QIPunent[3] yields dramatically
greater power than QIP[3] = PSPACE:

Theorem 1.1. QIPunent[3] = NEXP.

Note that, unlike prior comparable work [JW23; BFM24; BFLMW24], our result is insensitive to
the precise completeness-soundness gap. In particular, Theorem 1.1 holds for any constant gap less
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than 1.
For the upper bound, we argue that an NEXP machine can nondeterministically guess an

exponentially-large description of the prover’s strategy and then verify whether it causes the verifier
to accept with high probability or not. To prove the complementary lower bound, we make use
of a certain quantum PCP for NEXP introduced by Raz some 20 years ago [Raz05]. Raz showed
that any NEXP language admits a polynomial-time quantum verifier that receives two inputs: a
polynomial-length quantum witness, and an exponentially-large classical proof (readable by query
access). The verifier measures the quantum witness and, based on the measurement outcome, queries
a single polynomial-size block of the proof. We argue that this PCP can be simulated by a QIPunent[3]
protocol: the prover sends the quantum witness in the first round, the verifier measures it and sends
the resulting classical query to the prover in the second round, and the prover responds with the
answer to the classical query in the final round.

One can view Theorem 1.1 as popularizing and modernizing Raz’s quantum PCP result in the
context of QMA(2) and the power of unentanglement, as the proof is not particularly difficult with
Raz’s result in hand. Indeed, Raz’s discussion briefly mentions something close to Theorem 1.1:
that an interactive prover with quantum power in the first round and classical power thereafter can
convince a verifier of the solution to an NEXP problem [Raz05, Section 1.5]. Nevertheless, we found
that Theorem 1.1 surprised every expert in the field with whom we consulted.

It is striking that the containment of NEXP in QIPunent[3] makes only partial use of the proof
system’s quantum capabilities, as the second and third messages are purely classical. Naturally, one
might wonder why we need the promise of unentanglement at all: if the verifier knows that the final
message is classical, then doesn’t that already guarantee zero entanglement between the prover’s first
and last messages? The key observation is that the source of power is not unentanglement between
the messages, but rather from the unentanglement between the prover’s workspace qubits and the
messages.

The following simple example illuminates the situation: consider a QIP[3] protocol in which the
verifier challenges the prover to a version of the CHSH game [CHTW04], with the verifier playing
both the role of the referee and one of the players. In the first round, the prover sends the verifier
a single qubit. The verifier then uniformly samples x ∼ {0, 1} and sends it to the prover, who
responds with a single classical bit a. Next, the verifier uniformly samples y ∼ {0, 1}. If y = 0,
the verifier measures the qubit sent by the prover in the {|0⟩ , |1⟩} basis; else they measure in the
{|+⟩ , |−⟩} basis. Calling the measurement outcome b, the verifier accepts if and only if xy = a⊕ b.
An entangled prover can succeed with probability cos2(π/8) ≈ 0.85 by sending one half of a Bell
pair in the first round, and, in the final round, measuring the other half according to the optimal
CHSH strategy. By contrast, an unentangled prover can make the verifier accept with probability
at most 0.75. Hence, even with only a single quantum message in the first round, the promise of
unentanglement places a nontrivial restriction on the set of valid QIP[3] prover strategies.

1.2 Post-Measurement Branching and Unentanglement

One key difference between QIPunent[3] and QMA(2) is adaptivity: a QIPunent[3] verifier can condition
their round-2 challenge to the prover on the result of a measurement, possibly applied to the round-1
message. By contrast, a QMA(2) verifier receives a pair of unentangled witnesses simultaneously,
without the ability for either witness to depend on a chosen challenge. In the interest of isolating the
source of QIPunent[3]’s exponential power, it is natural to ask whether the quantum-classical-classical
unentangled proof system for NEXP necessitated this sort of adaptivity. For example, if instead the
verifier simply sent the prover random coin tosses in round 2, could they still verify solutions to
NEXP problems?

3



In the context of quantum proof systems, we refer to this type of adaptivity as post-measurement
branching, which means the ability to condition on a partial measurement of a state while retaining
the residual post-measurement state. Our proposal to study the same quantum proof system with
and without post-measurement branching mirrors the difference between AM[k] and IP[k]: in AM[k]
the verifier’s messages to the prover consist of public coin tosses, whereas in IP[k] the messages
can be arbitrary polynomial-time randomized computations on the prior transcript of the protocol.
Classically, we know that adaptivity cannot help much: IP[k] ⊆ AM[k + 2] [GS86], and for constant
k, AM[k] ⊆ AM[2] [Bab85; BM88]. But should we expect the analogous equivalence to hold for
quantum protocols, unentangled or otherwise?

Concretely, consider the subclass of QIPunent[3] in which the round-2 message consists of public
coin tosses and the round-3 message is classical. We call this subclass QMACMunent because it
behaves like QMAM [MW05], except that the prover’s private and message registers are always
unentangled and the last message is classical. Then does QMACMunent = QIPunent[3] = NEXP? Our
second result gives strong evidence that the answer is no:

Theorem 1.2. QMACMunent ⊆ QAM.

Here, QAM is the set of problems verifiable by an interaction in which the verifier (Arthur)
sends public coin tosses and the prover (Merlin) responds with a quantum message [MW05]. In
contrast to QIPunent[3] = NEXP, where restricting to unentangled provers significantly increased
computational power compared to QIP[3] = PSPACE, here the unentangled variant QMACMunent is
quite plausibly weaker than its entangled variant QMACM. Indeed, whereas QMACMunent ⊆ QAM =
BP ·QMA ⊆ BPPPP (where BP ·QMA denotes problems that have a randomized many-one reduction
to QMA), we know of no better upper bound on the corresponding entangled proof system than
QMACM ⊆ QMAM = QIP[3] = PSPACE [JJUW11]. QMACMunent is possibly equal to QMA, and in
fact the classes coincide with polynomial-size advice: QMA/poly = QAM/poly = QMACMunent/poly,
because QAM = BP · QMA and the BP· operator can be derandomized with advice (cf. [Aar06;
AH23]). Thus, Theorem 1.2 illustrates both the necessity of post-measurement branching for making
certain proof systems equal to NEXP, and the surprising fact that unentanglement may hinder the
power of an interactive proof system.

The proof of Theorem 1.2 involves simulating the QMACMunent proof system in two rounds by
combining Merlin’s first and last messages into one. In the QAM protocol, Arthur first sends Merlin
polynomially many independent challenges that he could have sent in round 2 of the QMACMunent

protocol. Then Arthur asks for both Merlin’s quantum proof that he would have sent in round 1, and
Merlin’s classical answers that he would have given in round 3 in response to each of the challenges.
We argue that the soundness of the protocol is approximately preserved if Arthur runs his original
QMACMunent check on a random one of the challenges. This strategy is somewhat analogous to the
AM[k] ⊆ AM[2] collapse theorem [BM88], but requires heavier tools to handle the quantum part of
the message. For example, a crucial ingredient in our proof comes from one-way communication
complexity: any n-qubit quantum state ρ can be “compressed” into a poly(n)-bit message, from
which the expectation of exp(n) different measurements on ρ may be later estimated [Aar05a]. We
do not directly use this compression scheme in the QAM protocol, but it indirectly allows us to apply
a union bound over the set of n-qubit states as if there were only 2poly(n) of them, instead of 2exp(n).

1.3 Post-Measurement Branching with Classical Messages

Finally, we turn to the simplest setting in which the effect of post-measurement branching can be
studied: two-round interactive proofs with classical messages and a quantum verifier. Specifically,
we study the complexity classes QCAM and QCIP[2]. In QCAM, the verifier’s sole message consists
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of random coin tosses. In QCIP[2], by contrast, the verifier may send an arbitrary classical message
generated through a partial measurement of a quantum state; both the classical outcome and the
corresponding post-measurement state can then be used later in the verification procedure.

Recall that AM and IP[2] coincide, and more generally, constant-round public-coin (AM) and
private-coin (IP) protocols have the same computational power [Bab85; GS86; BM88]. In contrast,
we show that the quantum setting exhibits an apparent separation: QCIP[2] potentially has greater
power than QCAM. Our findings are summarized in the following theorem.

Theorem 1.3. QCAM = BP · QCMA ⊆ BQ · QCMA ⊆ QCIP[2] ⊆ BQPNPPP
.

BP · QCMA (resp. BQ · QCMA) is the class of promise problems that admit a randomized (resp.
quantum) many-one reduction to a promise problem in QCMA. We note that QCAM = BP · QCMA
was originally proven by Marriott [Mar03], but we include a complete proof in Section 4 in more
standard notation.

The containments involving BP·QCMA and BQ·QCMA are reasonably straightforward applications
of the definitions. Placing an upper bound on QCIP[2], however, takes more effort. Intuitively,
it works as follows: first, use the base BQP machine to generate the verifier’s round-1 message.
Then, we will use the NPPP machine to simulate the prover. The idea is to nondeterministically
guess the prover’s round-2 message and then verify using the PP oracle whether that message
would be accepted by the verifier. PP suffices for this step because of Aaronson’s PP = PostBQP
theorem [Aar05b], which shows that PP equals the set of problems decidable by an efficient quantum
machine with postselection. Using postselection, one can condition on producing the same message
that the verifier sampled in round 1, resulting in the same residual state that the verifier uses to
decide acceptance or rejection at the end.

Unlike the classical equivalence IP[2] = AM, Theorem 1.3 hints that QCIP[2] is more powerful
than QCAM, because the set of problems quantumly reducible to QCMA is plausibly larger than
the set classically reducible to QCMA. However, this distinction alone does not make full use of
QCIP[2]’s extra power, as BQ · QCMA is a class that uses no post-measurement branching. Looking
at the higher end of the containments, we found it considerably more challenging to place an upper
bound on QCIP[2] than QCAM precisely because the former uses post-measurement branching, and
thus simulating Merlin requires a handle on the post-measurement state.

1.4 Open Problems

We conclude with some directions for future work.

1. We proved that QIPunent[3] = NEXP. Are there quantum proof systems between QMA(2) and
QIPunent[3] that capture NEXP? An unentangled version of QMAM is a natural candidate to
study.

2. A key difference between QCAM and QCIP[2] (and even between BQ · QCMA and QCIP[2]) is
the power of post-measurement branching. What more can be said about this power? For
instance, can one show stronger containments than BQ · QCMA ⊆ QCIP[2]?

3. It is known that IP[k] = IP[2] = AM for every constant k ≥ 2 [Bab85; GS86; BM88]. Is an
analogous collapse true for QCIP[k]?

4. Are there oracles relative to which any of the containments in Theorem 1.3 are strict?
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2 Unentangled Quantum Interactive Proofs

In this section, we introduce an unentangled three-round quantum interactive proof system, denoted
QIPunent[3]. Our definition mirrors QIP[3], except that Merlin’s actions are restricted to entanglement-
breaking channels. After defining our model, we prove that QIPunent[3] = NEXP. The result adapts
a certain type of quantum PCP for NEXP introduced by Raz [Raz05] (quoted below in Lemma 2.7).

We begin by recalling the definition of QIP[3]. A QIP[3] verification procedure is specified by a
polynomial-time uniformly generated family of quantum circuits V = {V x

1 , V
x
2 : x ∈ {0, 1}∗}. On

an input x of length n, these circuits determine the actions of the verifier across the three-message
interaction. Each circuit acts on poly(n)-sized registers partitioned into message qubits M, exchanged
with the prover, and verifier workspace qubits V, retained by the verifier throughout.

The prover is an unrestricted family P = {P x1 , P x2 : x ∈ {0, 1}∗} of arbitrary quantum operations
that likewise act on the same message qubits M and prover workspace qubits P (which need not be
polynomially-bounded in size). The interaction proceeds as follows:

1. The three registers V, M, P are each initialized to the all-zeros state.

2. The prover applies P x1 to P and M.

3. The verifier applies V x
1 to V and M.

4. The prover applies P x2 to P and M.

5. Finally, the verifier applies V x
2 to V and M and measures a designated output qubit to decide

acceptance or rejection.

Sometimes the prover and verifier are called “Merlin” and “Arthur” respectively. We will typically
only use these names in interactive protocols where the verifier’s messages consist of public coin
tosses, consistent with the distinction between the complexity classes AM[k] and IP[k].

We now formally define the class QIP[3].

Definition 2.1 (QIP[3]). A promise problem A = (Ayes, Ano) is in QIP[3, c, s] for polynomial-time
computable functions c, s : N → [0, 1] if there exists a QIP[3] verification procedure V with the
following properties:

• Completeness. For all x ∈ Ayes, there exists a quantum prover P that causes V to accept x
with probability at least c(|x|).

• Soundness. For all x ∈ Ano, every quantum prover P causes V to accept x with probability at
most s(|x|).

We define QIP[3] := QIP[3, 2/3, 1/3].

It is known that any polynomial-round quantum interaction can be parallelized to three rounds
[KW00] and that QIP[3, 2/3, 1/3] = QIP[3, 1, 2−poly] = PSPACE [JJUW11].

Remark 2.2 (Entanglement between registers). A key feature of QIP[3]—one that is central to this
work—is that the private workspaces of both the prover and verifier may be entangled with the
message registers exchanged during the interaction.

We turn to defining our unentangled variant of QIP[3], which adds an additional restriction on
the prover involving entanglement-breaking channels [HSR03]. These channels are so-called because
they are precisely the set of channels Φ with the property that for any input density matrix ρ,
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P x1 P x2

P \ S |0⟩ /

Λx1 Λx2S |0⟩ /
{Ex1,ℓ}

|0⟩
{Ex2,ℓ}

|0⟩

M |0⟩ / |ϕ1,ℓ⟩
V x
1

|ϕ2,ℓ⟩
V x
2

V |0⟩ /

Figure 1: The general form of a QIPunent[3] interaction between an unentangled prover P = {P x1 , P x2 }
and verifier V = {V x

1 , V
x
2 }.

(I ⊗ Φ)(ρ) is separable (across the cut between the output of Φ and the tensored identity factor).
An equivalent characterization of an entanglement-breaking channel Φ is one that takes the form

Φ(ρ) =
∑
ℓ

tr(Eℓρ) |ϕℓ⟩⟨ϕℓ| .

for some POVM {Eℓ} and set of states |ϕℓ⟩. Operationally, this means that an entanglement-breaking
channel applies a measurement to the input state and prepares a new state conditioned on the
classical outcome of the measurement. For this reason, entanglement-breaking channels are sometimes
called measure-and-prepare channels.

An unentangled QIP[3] prover is a family P = {P x1 , P x2 : x ∈ {0, 1}∗} of quantum operations that
likewise act on P and M, subject to the restriction that each P xi is the sequential composition of:

1. Applying some arbitrary channel Λxi to P and M;

2. Applying an entanglement-breaking channel Φxi whose input qubits are S ∪ M and output
qubits are M, for some S ⊆ P;

3. Reinitializing the qubits in S to |0⟩. (This step is only needed to preserve the size of P.)

Use of the entanglement-breaking channel Φxi ensures that after completion of the prover’s
operation P xi , the message register M is unentangled from the prover’s workspace qubits P.

Figure 1 depicts the interaction between an unentangled prover and verifier. This type of
interaction underlies QIPunent[3], whose formal definition replaces the prover in QIP[3] with an
unentangled prover.

Definition 2.3 (QIPunent[3]). A promise problem A = (Ayes, Ano) is in QIPunent[3, c, s] for polynomial-
time computable c, s : N → [0, 1] if there exists a QIP[3] verification procedure V with the following
properties:

• Completeness. For all x ∈ Ayes, there exists an unentangled prover P that makes V accept
with probability at least c(|x|).

• Soundness. For all x ∈ Ano, every unentangled prover P makes V accept with probability at
most s(|x|).

We define QIPunent[3] := QIPunent[3, 2/3, 1/3].
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When defining such complexity classes, one should always ask whether the the choices of
completeness 2/3 and soundness 1/3 are arbitrary—in particular, can they be amplified, say by
parallel repetition? It will follow from our results that the completeness and soundness parameters
can be amplified to 1 and o(1), respectively (Corollary 2.10).

Notice that QIPunent[3] places no restrictions on the verifier’s ability to send entangled messages
to the prover; the promise merely guarantees that the prover never maintains entanglement with
their sent messages.

2.1 Upper Bounding QIPunent[3]

To place an upper bound on QIPunent[3], we first make note of some useful properties of entanglement-
breaking channels that allow us to reduce the complexity of the prover. This first lemma shows
that one can straightforwardly upper bound the description complexity of an entanglement-breaking
channel, which is a priori infinite.

Lemma 2.4. Suppose Φ is an entanglement-breaking channel from m qubits to n qubits. Then Φ
admits a decomposition in terms of a POVM {Eℓ} and a set of pure states {|ϕℓ⟩} with at most 4m+n

terms:

Φ(ρ) =
4m+n∑
ℓ=1

tr(Eℓρ) |ϕℓ⟩⟨ϕℓ| .

Proof. The proof follows [HSR03, Theorem 4] exactly, with the sole addition of some extra accounting.
[HSR03, Theorem 4] shows that if Φ is entanglement-breaking, then its Choi state

(I ⊗ Φ)(|β⟩⟨β|)

is separable (i.e., a mixture of product states), where |β⟩ = 1√
2m

∑
j∈{0,1}m |j⟩ |j⟩. By a result of

Horodecki [Hor97], every separable state on m+ n qubits is a convex combination of at most 4m+n

pure product states, and therefore the Choi state admits a decomposition:

(I ⊗ Φ)(|β⟩⟨β|) =
4m+n∑
ℓ=1

pℓ |vℓ⟩⟨vℓ| ⊗ |wℓ⟩⟨wℓ| ,

where {pℓ} are probabilities summing to 1 and {|wℓ⟩}, {|vℓ⟩} are lists of normalized pure states.
Now let Ω be the map

Ω(ρ) :=

4m+n∑
ℓ=1

tr(dpℓ |vℓ⟩⟨vℓ| ρ) |wℓ⟩⟨wℓ| ,

which has the form required by the lemma. Using |vℓ⟩ =
∑

j |j⟩ ⟨j|vℓ⟩, one easily verifies that

(I ⊗ Ω)(|β⟩⟨β|) =
∑
jkℓ

|j⟩⟨k| ⊗ |wℓ⟩⟨wℓ| pℓ⟨j|vℓ⟩⟨vℓ|k⟩

=
∑
ℓ

pℓ |vℓ⟩⟨vℓ| ⊗ |wℓ⟩⟨wℓ|

= (I ⊗ Φ)(|β⟩⟨β|).

Two channels are equal if and only if their Choi states are the same, so Φ = Ω.
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To complete the proof, one must verify that {dpℓ |vℓ⟩⟨vℓ|} is a POVM. This follows by taking a
partial trace of the Choi state:

tr2[(I ⊗ Φ)(|β⟩⟨β|)] = I

d

=

4m+n∑
ℓ=1

pℓ |vℓ⟩⟨vℓ| .

Next, we argue that the prover can further simplify their strategy by eliminating the use of
private qubits:

Lemma 2.5. Suppose there exists a QIPunent[3] prover P that makes V accept with probability at
least p(|x|). Then there exists a prover P that also makes V accept with probability at least p(|x|),
but for which

1. The output of P x1 is a pure state on M,

2. P uses no prover workspace qubits, and

3. P x1 and P x2 are themselves entanglement-breaking channels.

Proof. After the prover applies P x1 to |0⟩PM the state of registers P and M has the form∑
ℓ

pℓ σℓ,P ⊗ |ψℓ⟩⟨ψℓ|M ,

for some probabilities {pℓ}, mixed states {σℓ}, and pure states {|ψℓ⟩} parameterized by the possible
outcomes ℓ of the POVM underlying the entanglement-breaking channel Φx1 . Consider postselecting
on a particular outcome ℓ. By convexity, there must exist a choice ℓ = ℓ∗ such that replacing P x1 with
direct preparation of σℓ∗,P ⊗ |ψℓ∗⟩⟨ψℓ∗ |M causes the interaction between prover and verifier to accept
with probability at least p(|x|). Let P ′ be the prover derived from P by making this replacement,
which causes it to satisfy Item 1. To avoid confusion with notation later in the proof, we drop the ℓ∗

subscript and call the initial state simply σP ⊗ |ψ⟩⟨ψ|M.
Next, we observe that one can eliminate the need to prepare σP on a second register, and thus

remove the private workspace qubits. Let {Eℓ} be the POVM and {|ϕℓ⟩} be the set of states
underlying Φx2 , for which

Φx2(ρPM) =
∑
ℓ

tr(EℓρPM) |ϕℓ⟩⟨ϕℓ|M .

Now define P by
P
x
1(ρM) := tr(ρM) |ψ⟩⟨ψ|M

and
P
x
2(ρM) :=

∑
ℓ

tr(EℓΛ
x
2(σP ⊗ ρM)) |ϕℓ⟩⟨ϕℓ| .

Then clearly P satisfies Item 2, since P x1 and P x2 both map M to M. Additionally, the interaction
between P and V has the same acceptance probability as that between P ′ and V , because we
essentially deferred initializing σP until P x2 , and then traced out P afterwards.
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P x1 P x2

M |ψ⟩ /
V x
1

{Eℓ} |ϕℓ⟩
V x
2

V |0⟩ /

Figure 2: The simplified form of QIPunent[3] interaction between an unentangled prover P = {P x1 , P x2 },
in canonical form that derives from Lemma 2.5, and verifier V = {V x

1 , V
x
2 }.

The last condition we must verify is that P x1 and P x2 are entanglement-breaking channels. This is
immediate for P x1 . To see that P x2 is entanglement-breaking, first let Ψx

2(ρM) := Λx2(σP ⊗ ρM). Then

P
x
2(ρM) =

∑
ℓ

tr(EℓΨ
x
2(ρM)) |ϕℓ⟩⟨ϕℓ|

=
∑
ℓ

tr(Ψx∗
2 (Eℓ)ρM) |ϕℓ⟩⟨ϕℓ| ,

where Ψx∗
2 is the channel adjoint of Ψx

2 . This satisfies the definition of entanglement breaking because
Ψx∗

2 (Eℓ) is a POVM, since the adjoint of a CPTP map is completely positive and unital.

Figure 2 shows the canonical form of an unentangled prover that derives from Lemma 2.5 This
simplification lets us simulate QIPunent[3] in nondeterministic exponential time.

Theorem 2.6. For any c(n)− s(n) ≥ 1
2poly(n) , QIPunent[3, c, s] ⊆ NEXP.

Proof. Given A ∈ QIPunent[3], let V be a corresponding QIPunent[3] verification procedure with
completeness c and soundness s. On input x ∈ {0, 1}n, to decide whether x ∈ Ayes or x ∈ Ano, the
NEXP procedure is to nondeterministically guess classical descriptions of the entanglement-breaking
channels Pn1 , Pn2 that act on M (up to some small error in diamond norm, say c(|x|)−s(|x|)

100 , which
requires poly(n) bits of precision), and then verify in exponential time whether the interaction
between Pn1 , Pn2 and V n

1 , V
n
2 causes the verifier to accept with probability at least c(|x|)+s(|x|)

2 . Note
crucially by Lemma 2.4 that the descriptions of Pn1 and Pn2 require at most 2poly(n) bits, as the
NEXP machine can guess the lists of POVM elements and pure states that describe the channels. For
any optimal prover, restricting attention to entanglement-breaking Pn1 , Pn2 with no prover workspace
qubits is without loss of generality, by Lemma 2.5. As long as the total error incurred by the
finite-precision approximation is less than c(|x|)− s(|x|), the completeness/soundness guarantee of
the QIPunent[3] verifier ensures that “yes” instances have an accepting witness to the NEXP verifier,
while “no” instances do not.

One could analogously define QIPunent[k] for any polynomially-bounded k, and hope to show the
same containment in NEXP. Unfortunately, it appears that Lemma 2.5 does not directly generalize
beyond three rounds in showing that workspace qubits are superfluous. For example, one could
imagine a scenario in which the prover sends the verifier one half of an EPR pair in round 2, and
then in rounds k − 1 and k plays a sort of CHSH game with the prover. This would require the
prover to retain their half of the EPR pair until round k.
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2.2 Lower bounding QIPunent[3]

In this section, we prove a complementary lower bound on QIPunent[3], implying that QIPunent[3] =
NEXP. The proof relies on the following quantum PCP for NEXP, due to Raz [Raz05].

Lemma 2.7. For any language L ∈ NEXP, there exists a polynomial-time quantum oracle algorithm
Q(·) that makes a single classical1 query to the oracle such that

• Completeness. For every x ∈ L, there exists a state |ψ⟩ on poly(|x|) qubits and an oracle
f : {0, 1}poly(|x|) → {0, 1}poly(|x|) for which Qf (x, |ψ⟩) accepts with probability 1.

• Soundness. For every x ̸∈ L, for every state |ψ⟩ on poly(|x|) qubits and oracle f : {0, 1}poly(|x|) →
{0, 1}poly(|x|), Qf (x, |ψ⟩) accepts with probability o(1) (as a function of |x|).

The QIPunent[3] containment of NEXP amounts to a direct simulation of this PCP.

Theorem 2.8. NEXP ⊆ QIPunent[3, 1, o(1)].

Proof. Consider a QIPunent[3] verifier in which V x
1 initially treats the register M as the input |ψ⟩ to

the algorithm Q(.) from Lemma 2.7, then performs the intermediate measurement of Q(.)(x, |ψ⟩) to
obtain the input y ∈ {0, 1}poly(n) to the classical query, and finally sends y over M to the prover.
In the final round, V x

2 views M as the classical response to the oracle query f(y), measures M in
the computational basis, and then performs the final measurement of Q to decide acceptance or
rejection.

This protocol has completeness 1, as witnessed by the unentangled prover P for which P x1 prepares
the state |ψ⟩ and P x2 evaluates the function f that causes Qf (x, |ψ⟩) to accept with probability
1. For soundness, after putting the prover in the canonical form of Lemma 2.5, notice that we
can further simplify the description of the prover by assuming without loss of generality that P x2
evaluates some classical function, because the verifier measures M in the computational basis both
at the end of P x1 and at the start of P x2 . Thus, such a prover strategy is fully specified by the state
|ψ⟩ sent at the start and the classical function f : {0, 1}poly(n) → {0, 1}poly(n) applied at the end.
It follows that the QIPunent[3] soundness matches that of the underlying quantum PCP for NEXP,
which Lemma 2.5 shows to be o(1).

Combining Theorems 2.6 and 2.8 gives:

Corollary 2.9. QIPunent[3] = NEXP

Together, Theorems 2.6 and 2.8 also show that the completeness/soundness gap of any QIPunent[3]
protocol can be amplified from inverse-exponential to arbitrarily big:

Corollary 2.10. For any c(n)− s(n) ≥ 1
2poly(n) , QIPunent[3, c, s] ⊆ QIPunent[3, 1, o(1)].

3 Post-Measurement Branching in Unentangled Proof Systems

The preceding section established that NEXP ⊆ QIPunent[3], in sharp contrast to QIP[3] = PSPACE.
This result highlights that the restriction to unentangled proofs can yield proof systems of significantly
greater computational power. On the other hand, it is surprising that the containment of NEXP
in QIPunent[3] made only partial use of the proof system’s quantum capabilities, as the second and

1Meaning, the verifier measures a register to obtain y ∈ {0, 1}poly(n), and then queries the value of f(y).
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third messages were purely classical. To better understand the power of unentangled proof systems,
in this section we consider placing further restrictions related to the adaptivity of the verifier.

Concretely, we define a subclass QMACMunent of QIPunent[3] in which the round-2 message consists
of public coin tosses and the round-3 message is classical. A key distinction between QIPunent[3] and
QMACMunent is that after the first round the verifier can measure part of the prover’s first message
|ψ⟩, obtaining a classical outcome ℓ together with the corresponding post-measurement state |ψℓ⟩
on the remaining qubits. The verifier’s subsequent actions can then depend on ℓ and make use
of |ψℓ⟩. We refer to this capability—measuring part a state to extract classical information while
retaining the residual post-measurement state—as post-measurement branching. Broadly, our goal in
this section is to better understand the power of post-measurement branching in unentangled proof
systems.

We formally define QMACMunent below:

Definition 3.1 (QMACMunent). A promise problem A = (Ayes, Ano) is in QMACMunent[c, s] for
polynomial-time computable functions c, s : N → [0, 1] if there exists a QIP[3] verification procedure
V with the following properties:

• Public coin tosses. V x
1 samples a random x ∼ {0, 1}poly(n), records the result in V, and copies

it into M.

• Classical final message. P x2 sends a classical message. Equivalently, V x
2 measures M in the

computational basis before any other processing.

• Completeness. For all x ∈ Ayes, there exists an unentangled prover P that makes V accept
with probability at least c(|x|).

• Soundness. For all x ∈ Ano, every unentangled prover P makes V accept with probability at
most s(|x|).

We define QMACMunent := QMACMunent[2/3, 1/3].

It is not immediately clear whether QMACMunent admits amplification of the completeness and
soundness parameters, although we will show its containment in a class that does (Theorem 3.5).

3.1 Upper Bounding QMACMunent

We now turn to the main result of this section: QMACMunent ⊆ QAM. For completeness, we also
include the definition of QAM, following Marriott and Watrous [MW05].

Definition 3.2 (QAM). A promise problem A = (Ayes, Ano) is in QAM[c, s] if there exists a
polynomial-time quantum algorithm Q(x, y, |ψ⟩) such that:

• Completeness. For all x ∈ Ayes, there exists a collection of poly(n)-qubit states {|ψy⟩ : y ∈
{0, 1}poly(|x|)} such that Pry[Q(x, y, |ψy⟩) = 1] ≥ c(|x|).

• Soundness. For all x ∈ Ano, for every collection of poly(n)-qubit states {|ψy⟩ : y ∈
{0, 1}poly(|x|)}, Pry[Q(x, y, |ψy⟩) = 1] ≤ s(|x|).

We define QAM := QAM[2/3, 1/3].

12



The definition differs stylistically from our definition of QIP[3] (Definition 2.1), which involved
the prover and verifier applying alternating quantum channels, only because it is easier to abstract
the prover’s strategy into a single mapping from strings y to states |ψy⟩. In particular, the string y
represents Arthur’s random coin tosses sent to Merlin, and |ψy⟩ is Merlin’s response. We also remark
that QAM admits amplification by parallel repetition: QAM[c, s] = QAM[1− 2−poly, 2−poly] as long
as c− s is inverse-polynomially bounded [MW05, Theorem 4.2].

Our proof relies on the existence of an algorithm that compresses a quantum state into a
polynomial-sized classical description from which the expectation values of many observables can
later be estimated. This algorithm derives from a theorem of Aaronson about simulating bounded-
error one-way quantum communication with classical communication, which was in turn used to
show that BQP/qpoly ⊆ PP/poly [Aar05a]. In fact, the lemma below is essentially equivalent to the
non-existence of a superpolynomial quantum advantage in one-way communication complexity for a
decision problem.

Lemma 3.3. Let M1, . . . ,MK be m-qubit measurement operators (i.e., PSD matrices with 0 ⪯Mi ⪯ 1
for each i), and fix an error parameter ε. There exist functions Stat(ρ, ε) and Est(s, i) with the
following properties:

1. Stat(ρ, ε) takes as input a classical description of an m-qubit state ρ and an error parameter ε,
and outputs a classical string of length O(logK m

ε2
log m

ε ).

2. For any m-qubit ρ and any i ∈ [K], Est(Stat(ρ, ε), i) outputs a number that is ε-close to
tr(ρMi).

Proof. Consider a one-way communication problem between two parties, Alice and Bob, in which
Alice receives a description of an m-qubit state ρ, and Bob receives an index i ∈ [K] and a
parameter t ∈ [0, 1] that is described to O(log 1

ε ) bits of precision. Their goal is to decide whether
tr(Miρ) ≥ t+ ε/10 or tr(Miρ) ≤ t− ε/10, promised that one of these is the case.

Observe that this problem admits a bounded-error one-way communication protocol with com-
plexity O(m

ε2
): Alice sends Bob O( 1

ε2
) copies of ρ, Bob measures Mi on each of the copies, and

accepts if and only if the sample mean is greater than t. By the simulation theorem for quantum
one-way communication with classical communication [Aar05a, Theorem 3.4], this same problem
admits a deterministic classical communication protocol in which Alice sends O(logK m

ε2
log m

ε ) bits
to Bob.

The two functions Stat and Est derive directly from this classical communication protocol. The
encoding function Stat is simply the function that Alice uses to map ρ to a classical message. The
decoding function Est runs Bob’s half of the computation for O(1ε ) different values of t to find one
that is within ε of tr(ρMi). The correctness of these two functions follows from the correctness of
the classical communication protocol.

We use the compression lemma above to argue that Arthur can “subsample” from the second-
round messages while approximately maintaining the QMACMunent acceptance probability. In this
next lemma, the maxρ, Ey, and maxz operators correspond respectively to the first-, second-, and
third-round messages of the QMACMunent protocol. In plain words, the lemma says that if Arthur
samples his message y from a random polynomial-size subset of {0, 1}m instead of uniformly over
{0, 1}m, then with high probability over the chosen subset, the completeness probability of the
protocol is approximately unchanged.
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Lemma 3.4. Let My,z be an m-qubit quantum measurement for each y, z ∈ {0, 1}m. Then except
with probability at most exp(O(m

2

ε2
log m

ε )− 2ε2r/9)) over y1, . . . , yr ∼ {0, 1}m,∣∣∣∣ max
|ψ⟩∈D(m)

E
y∼{0,1}m

max
z∈{0,1}m

⟨ψ|My,z|ψ⟩ − max
|ψ⟩∈D(m)

E
i∼[r]

max
z∈{0,1}m

⟨ψ|Myi,z|ψ⟩
∣∣∣∣ ≤ ε. (1)

Proof. Define
f(|ψ⟩) := E

y∼{0,1}m
max

z∈{0,1}m
⟨ψ|My,z|ψ⟩

and
g(|ψ⟩) := max

|ψ⟩∈D(m)
E
i∼[r]

max
z∈{0,1}m

⟨ψ|Myi,z|ψ⟩.

(The latter is a slight abuse of notation, because g additionally depends on y1, . . . , yr.)
Let Stat and Est be the functions from Lemma 3.3. For any string s, we claim that except with

probability at most exp
(
−2ε2r/9

)
over the choices of y1, . . . , yr,

E
y∼{0,1}m

max
z∈{0,1}m

Est(s, (y, z)) ≤ E
i∼[r]

max
z∈{0,1}m

Est(s, (yi, z)) +
ε

3
.

This is a straightforward consequence of Hoeffding’s inequality. Thus, for any state |ψ⟩ satisfying
Stat(|ψ⟩⟨ψ| , ε/3) = s, we have

f(|ψ⟩) ≤ E
y∼{0,1}m

max
z∈{0,1}m

Est(s, (y, z)) +
ε

3

≤ E
i∼[r]

max
z∈{0,1}m

Est(s, (yi, z)) +
2ε

3

≤ g(|ψ⟩) + ε,

except with probability at most exp
(
−2ε2r/9

)
, because of the correctness guarantee of Stat and

Est. We similarly obtain g(|ψ⟩) ≤ f(|ψ⟩) + ε with probability at most exp
(
−2ε2r/9

)
, which implies

|f(|ψ⟩) − g(|ψ⟩)| ≤ ε with probability at most 2 exp
(
−2ε2r/9

)
. Now, apply a union bound over

all possible strings s of length O(m
2

ε2
log m

ε ) that can be output by Stat(|ψ⟩ , ε/3) to conclude that,
except with probability at most exp(O(m

2

ε2
log m

ε ) − 2ε2r/9)), for every |ψ⟩, |f(|ψ⟩) − g(|ψ⟩)| ≤ ε.
From this it follows that |max|ψ⟩∈D(m) f(|ψ⟩)−max|ψ⟩∈D(m) g(|ψ⟩)| ≤ ε, which is equivalent to the
statement of the lemma.

Note that in the above lemma, the only use of Lemma 3.3 is in arguing that we can “union bound”
over all m-qubit quantum states |ψ⟩ as if there were only 2poly(m) possible choices of ρ, instead of
22

poly(m) . If |ψ⟩ were an m-bit string rather than an m-qubit quantum state, then one could directly
union bound over the choices of |ψ⟩ instead of going through Stat(|ψ⟩⟨ψ| , ε).

We now use Lemma 3.4 to place QMACMunent in QAM by combining Merlin’s first and third
messages into one. The idea is for Arthur to choose a poly(m)-size subsample of second-round
random challenges, to which Merlin responds with both his original first-round quantum message
and third-round responses to each of Arthur’s random challenges.

Theorem 3.5. For any c(n)− s(n) ≥ 1
poly(n) , QMACMunent[c, s] ⊆ QAM[c, (c+ s)/2] ⊆ QAM.

Proof. Suppose a promise problem A = (Ayes, Ano) admits a QMACMunent[c, s] protocol in which
given an input x of length n, the message register M has exactly m = poly(n) qubits. As a
consequence of Lemma 2.5 and the classical final message, it is without loss of generality that
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Merlin initially sends Arthur an m-qubit state |ψ⟩, Arthur responds with a challenge y ∼ {0, 1}m,
and Merlin lastly sends Arthur z ∈ {0, 1}m that is a deterministic function of y. Let My,z be the
measurement that Arthur applies to |ψ⟩ given y and z, so that his acceptance probability is exactly
⟨ψ|My,z|ψ⟩. Then, Merlin’s best strategy achieves acceptance probability exactly

max
|ψ⟩∈D(m)

E
y∼{0,1}m

max
z∈{0,1}m

⟨ψ|My,z|ψ⟩. (2)

Now consider the following QAM protocol for A. For some r = poly(n) to be chosen later, Arthur
starts by sending Merlin m · r random bits, which we interpret as challenge strings y1, . . . , yr each of
length m. Merlin’s response consists of an m-qubit state |ψ⟩ and strings z1, . . . , zr ∈ {0, 1}m. Arthur
picks i ∈ [r] at random, then measures Myi,zi on ρ. The maximum acceptance probability of this
QAM protocol is

E
y1,...,yr∼{0,1}m

max
|ψ⟩∈D(m)

z1,...,zr∈{0,1}m

E
i∈[r]

⟨ψ|Myi,zi |ψ⟩.

This is evidently equal to

E
y1,...,yr∼{0,1}m

max
|ψ⟩∈D(m)

E
i∈[r]

max
z∈{0,1}m

⟨ψ|Myi,z|ψ⟩ (3)

because for fixed ρ, the choice of zi only affects the ith term in the inner expectation, so to maximize
the expectation it is optimal to maximize each term separately.

We claim that the QAM protocol has completeness at least c. Given Merlin’s optimal strategy
for the QMACMunent protocol, Merlin’s strategy for the QAM protocol is to choose the same |ψ⟩ that
he would in the QMACMunent protocol, and then for each i ∈ [r] to let zi be the string z that he
would send upon receiving y = yi from Arthur. This strategy for the QAM protocol causes Arthur
to accept with probability c given any fixed i ∈ [r], so the acceptance probability is certainly still c
when averaging over i ∈ [r].

It remains to bound the soundness. We do so by upper bounding the acceptance probability of
the QAM protocol (Equation (3)) in terms of that of the QMACMunent protocol (Equation (2)), via
application of Lemma 3.4. Let p ≤ exp(O(m

2

ε2
log m

ε )− 2ε2r/9)) be the probability that Equation (1)
fails to hold in Lemma 3.4. Then the QAM acceptance probability is bounded by

E
y1,...,yr∼{0,1}m

max
ρ∈D(m)

E
i∈[r]

max
z∈{0,1}m

tr(ρMyi,zi) ≤ p+ ε+ max
ρ∈D(m)

E
y∼{0,1}m

max
z∈{0,1}m

tr(ρMy,z).

Choose ε = (c− s)/4 and r = O(m
2

ε4
log m

ε ) ≤ poly(|x|) so that p ≤ ε. Then assuming x ∈ Ano, the
right hand side is at most (c− s)/4 + (c− s)/4 + s = (c+ s)/2.

To summarize, we have shown that A admits a QAM[c, (c + s)/2] protocol. The complete-
ness/soundness can be amplified to [2/3, 1/3], or even further to [1− 2−poly, 2−poly] as shown by
Marriott and Watrous [MW05, Theorem 4.2].

Observe that nowhere in the proof was it crucial for Arthur’s message to consist of uniformly
random public coins. One could instead envision a class “qcc-QIPno-pmb

unent [3]” between QMACMunent

and QIPunent[3] in which the verifier’s initial classical message is produced by an efficient quantum
procedure acting only on the register V, but the final prover message remains classical. Formally,
that would mean V x

1 performs a measurement on V independent of the received message on M, then
swaps the measurement with the prover’s message in M. Intuitively, qcc-QIPno-pmb

unent [3] is like QIP[3]
except that only the first message is quantum and the verifier is not allowed to use post-measurement
branching on the first quantum message. Then the same proof above would show containment of
qcc-QIPno-pmb

unent [3] in QIP[2]. We did not attempt to define such a complexity class formally because it
seems impossible to give it a short but sufficiently descriptive name.
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4 Constant-Round Quantum-Classical Interactive Proofs

Section 2 and Section 3 illustrate that post-measurement branching is an interesting feature of
quantum proof systems, and in particular one of the key ingredients that enables three-round
unentangled protocols to capture NEXP. In this section, we turn to the simplest setting where
post-measurement branching can be isolated: the classes QCAM and QCIP[2].

Both QCAM and QCIP[2] are two-round interactions initiated by Arthur. In QCAM, Arthur’s
message consists of uniformly random classical bits, whereas in QCIP[2] Arthur may prepare a state
|ψ⟩, measure part of it to obtain a message ℓ and the post-measurement state |ψℓ⟩, and then use
both in the remainder of the verification procedure.

The main results of this section are summarized in the following theorem.

Theorem 4.1. QCAM = BP · QCMA ⊆ BQ · QCMA ⊆ QCIP[2] ⊆ BQPNPPP
.

We will record formal definitions shortly.

4.1 Quantum-Classical Arthur-Merlin Games

We begin by establishing that QCAM = BP · QCMA. This equivalence is not new: as far as we
can tell, it first appeared in Marriott’s Master’s thesis [Mar03, Theorem 8]. The upper bound
QCAM ⊆ BP · QCMA was later reproved in [LG17, Proposition 33], and the equivalence was stated
without proof or citation in [AH23]. We include the argument here to present a complete proof in
more standard notation than that of Marriott’s thesis.

We start by defining QCAM and the BP operator.

Definition 4.2 (QCAM). A promise problem A = (Ayes, Ano) is in QCAM[c, s] if there exists a
polynomial-time quantum algorithm Q(x, y, z) such that:

• Completeness. For all x ∈ Ayes, there exists a collection of poly(n)-length bit strings {zy : y ∈
{0, 1}poly(|x|)} such that Pry[Q(x, y, zy) = 1] ≥ c(|x|).

• Soundness. For all x ∈ Ano, for every collection of poly(n)-length bit strings {zy : y ∈
{0, 1}poly(|x|), Pry[Q(x, y, zy) = 1] ≤ s(|x|).

We define QCAM := QCAM[2/3, 1/3].

Similar to QAM (Definition 3.2), the string y represents Arthur’s random coin tosses sent to
Merlin, and zy is Merlin’s response. One can more generally define QCAM[k] with k ≥ 2 rounds of
interaction. However, this class collapses to QCAM [KGN19, Theorem 7(iv)], in analogy with the
collapse of the AM hierarchy [Bab85; BM88]. QCAM also admits amplification by running many iid
trials in parallel and taking the majority vote: QCAM[c, s] = QCAM[1− 2−poly, 2−poly] as long as
c− s is inverse-polynomially bounded. A proof of this amplification trick is straightforward, and is
also a special case of [KGN19, Lemma 20].

We now define the BP operator, which has a few essentially equivalent definitions in the literature
(see [BGW24, Section 3.1]). For our purposes, the following definition is most convenient.

Definition 4.3 (BP operator). Let C be any class of promise problems. Then BP · C consists of all
promise problems A = (Ayes, Ano) for which there exist a promise problem B = (Byes, Bno) ∈ C and
a polynomial p such that, for every input x of length n,

• Completeness: If x ∈ Ayes, then Pry[(x, y) ∈ Byes] ≥ 2/3,
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• Soundness: If x ∈ Ano, then Pry[(x, y) ∈ Bno] ≥ 2/3,

where y ∈ {0, 1}p(n) is uniformly distributed.

Theorem 4.4. QCAM = BP · QCMA.

Proof. Let A be a promise problem in BP · QCMA and let B be the corresponding promise problem
in QCMA to which A reduces under Definition 4.3. Consider a QCMA verifier Q(x, y, z) for B where
(x, y) is the input to B and z is the witness. Suppose without loss of generality that completeness
and soundness parameters of Q are amplified to 0.9 and 0.1, respectively. We claim that Q is also a
QCAM verifier for A with completeness 0.6 and soundness 0.4. In particular:

1. If x ∈ Ayes, then Pry[(x, y) ∈ Byes] ≥ 2/3, and therefore Ey[maxz Pr[Q(x, y, z) = 1)]] ≥
2/3 · 0.9 = 0.6.

2. If x ∈ Ano, then Pry[(x, y) ∈ Bno] ≥ 2/3, and therefore Ey[maxz Pr[Q(x, y, z) = 1)]] ≤
1/3 · 1 + 2/3 · 0.1 = 0.4.

Put another way, the QCAM protocol is for Arthur to send Merlin random coin tosses y for which
(x, y) forms an instance of B, and then to run the QCMA verifier on (x, y) and Merlin’s response
z. Hence A ∈ QCAM[0.6, 0.4] ⊆ QCAM because one can amplify (0.6, 0.4) to (2/3, 1/3) by parallel
repetition. This establishes BP · QCMA ⊆ QCAM.

For the converse, let A be a promise problem in QCAM. Take a QCAM verifier Q(x, y, z) with
completeness 0.9 and soundness 0.1. Let B be the QCMA promise problem parameterized by Q,
where (x, y) is interpreted as the input to B and z is the witness. That is, (x, y) ∈ Byes if there is a
z that causes Q(x, y, z) to accept with probability at least 2/3, and (x, y) ∈ Bno if every z causes
Q(x, y, z) to accept with probability at most 1/3. We claim that B shows A ∈ BP · QCMA. In
particular:

• If x ∈ Ayes, then Ey[maxz Pr[Q(x, y, z) = 1]] ≥ 0.9. Because Pr[Q(x, y, z)] ∈ [0, 1], it must be
the case that Pry[maxz Pr[Q(x, y, z) = 1] ≥ 2/3] ≥ 0.7, and therefore Pry[(x, y) ∈ Byes] ≥ 0.7.

• If x ∈ Ano, then Ey[maxz Pr[Q, x, y, z) = 1]] ≤ 0.1. Because Pr[Q(x, y, z)] ∈ [0, 1], it must be
the case that Pry[maxz Pr[Q(x, y, z) = 1] ≤ 1/3] ≥ 0.7, and therefore Pry[(x, y) ∈ Bno] ≥ 0.7.

This shows that B satisfies Definition 4.3 with respect to A.

We note that a similar result, QAM = BP · QMA, was also shown in Marriott’s thesis [Mar03,
Theorem 12]. A proof follows from an identical argument to that of Theorem 4.4.

4.2 Quantum-Classical Interactive Proofs

Here we establish BQ · QCMA ⊆ QCIP[2] ⊆ BQPNPPP
. We start with some definitions.

A QCIP[2] verification procedure is specified by a polynomial-time uniformly generated family
of quantum circuits V = {V x

1 , V
x
2 : x ∈ {0, 1}∗. On input x of length n, these circuits determine

the verifier’s actions across the two-round interaction. Each circuit acts on registers of size poly(n),
partitioned into a message register M, exchanged with the prover, and a verifier workspace register
V, retained by the verifier. The prover is modeled by an unrestricted family of quantum operations
P = {P x : x ∈ {0, 1}∗} that act on the same message register M and a prover workspace register P

(which need not be polynomially-bounded in size).
The defining restriction of QCIP[2] is that the message register is measured in the computational

basis before transmision. Equivalently, the final operation of both V x
1 and P x on M is a computational

basis measurement. The interaction proceeds as follows:
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1. The three registers V,M,P are initialized to the all-zeros state.

2. The verifier applies V x
1 to P and M. The register M is then measured in the computational

basis and sent as a classical message.

3. The prover applies P x to P and M. Again, M is measured in the computational basis before
being sent back.

4. Finally, the verifier applies V x
2 to (V, M) and measures a designated output qubit to decide

acceptance or rejection.

We now formally define the class QCIP[2].

Definition 4.5 (QCIP[2]). A promise problem A = (Ayes, Ano) is in QCIP[2, c, s] for polynomial-time
computable functions c, s : N → [0, 1] if there exists a QCIP[2] verification procedure V with the
following properties:

• Completeness: For all x ∈ Ayes, there exists a quantum prover P that causes V to accept x
with probability at least c(|x|).

• Soundness: For all x ∈ Ano, every quantum prover P causes V to accept x with probability at
most s(|x|).

We define QCIP[2] := QCIP[2, 2/3, 1/3].

We note that error reduction in QCIP(2) can be achieved by parallel repetition: running multiple
independent instances of the protocol in parallel and deciding acceptance by a majority vote.

Next, we define the BQ operator, which was recently formalized by Buhrman, Le Gall, and
Weggemans [BGW24].Intuitively, BQ · C consists of those promise problems that admit polynomial-
time quantum reductions to problems in C.

Definition 4.6 (BQ operator). Let C be any class of promise problems. Then BQ · C consists of all
promise problems A = (Ayes, Ano) for which there exist a promise problem B = (Byes, Bno) ∈ C and
a polynomial-time quantum algorithm A such that, for every input x of length n,

• Completeness: If x ∈ Ayes, then Pry∼A(x)[(x, y) ∈ Byes] ≥ 2/3,

• Soundness: If x ∈ Ano, then Pry∼A(x)[(x, y) ∈ Bno] ≥ 2/3.

Here the distribution y ∼ A(x) is obtained by running A on input x and measuring a designated
polynomial-size output register in the computational basis.

We will now prove lower and upper bounds on QCIP[2].

Theorem 4.7. BQ · QCMA ⊆ QCIP[2].

Proof. Let A be a promise problem in BQ · QCMA. Let B be the corresponding promise problem
in QCMA to which A reduces via the polynomial-time quantum algorithm A under Definition 4.3.
Consider a QCMA verifier Q(x, y, z) for B where (x, y) is the input to B and z is the witness.
Suppose without loss of generality that completeness and soundness parameters of Q are amplified
to 0.9 and 0.1, respectively. We claim that Q is also a QCIP[2] verifier for A with completeness 0.6
and soundness 0.4. In particular:

1. If x ∈ Ayes, then Pry∼A(x)[(x, y) ∈ Byes] ≥ 2/3, and therefore Ey∼A(x)[maxz Pr[Q(x, y, z) =
1)]] ≥ 2/3 · 0.9 = 0.6.
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2. If x ∈ Ano, then Pry∼A(x)[(x, y) ∈ Bno] ≥ 2/3, and therefore Ey∼A(x)[maxz Pr[Q(x, y, z) =
1)]] ≤ 1/3 · 1 + 2/3 · 0.1 = 0.4.

The protocol is for Arthur to send to Merlin y = A(x) for which (x, y) forms an instance of B, and
then to run the QCMA verifier on (x, y) and Merlin’s response z. Hence A ∈ QCIP[2, 0.6, 0.4] ⊆
QCIP[2] because one can amplify (0.6, 0.4) to (2/3, 1/3) by parallel repetition. This establishes
BQ · QCMA ⊆ QCIP[2].

Theorem 4.8. QCIP[2] ⊆ BQPNPPP
.

Proof. Let V = {V x
1 , V

x
2 } be a verifier with completeness 0.9 and soundness 0.1 for some promise

problem A ∈ QCIP[2]. The PP language will be specified by a PostBQP promise problem, because
PP = PostBQP [Aar05b] and any PP promise problem can be extended to a PP language, as PP is a
syntactic class. Given a tuple (x, y, z), consider a QCIP[2] interaction between verifier and prover in
which we postselect on V x

1 sending the classical message y, and the prover responds with z. Then
deciding whether this postselected interaction between prover and verifier causes V to accept with
probability at least 2/3 (yes) or at most 1/3 (no) is clearly in PostBQP = PP. The NPPP language,
then, will be: given (x, y), decide whether there exists a string z for which (x, y, z) is a yes instance
of the PP language. Finally, consider the following BQPNPPP

machine that we claim decides A: run
V x
1 to obtain y ∈ {0, 1}poly(|x|), query the NPPP language on (x, y), and accept if and only if (x, y) is

a yes-instance. This machine works because:

• If x ∈ Ayes, then Ey∼V x
1
[maxz Pr[V accepts z | y]] ≥ 0.9, and therefore Pry∼V x

1
[maxz Pr[V accepts z |

y] ≥ 2/3] ≥ 0.7. Hence, with probability at least 0.7 over the y sampled by the BQP machine,
there exists a z for which (x, y, z) is a yes-instance of the PP language, and thus the BQP
machine accepts.

• If x ∈ Ano, then Ey∼V x
1
[maxz Pr[V accepts z | y]] ≤ 0.1, and therefore Pry∼V x

1
[maxz Pr[V accepts z |

y] ≤ 1/3] ≥ 0.7. Hence, with probability at least 0.7 over the y sampled by the BQP machine,
for every z (x, y, z) is a no-instance of the PP language, and thus the BQP machine rejects.

So, the BQPNPPP
machine decides A with error probability at most 0.4, which can of course be

amplified to arbitrarily small error.

We conclude with several remarks regarding Theorem 4.7. First, unlike BP · QCMA = QCAM,
the class QCIP[2] is not characterized by BQ · QCMA. The reason is that BQ · QCMA does not
capture the additional power conferred by post-measurement branching. In fact, one can show that
the subclass of QCIP[2] in which post-measurement branching is disallowed is precisely equal to
BQ · QCMA.

Second, our upper bound generalizes straightforwardly to k-round interactions. Specifically, one
can show that QCIP[2k] is contained in a tower of classes of the form

BQPNPPPNP
PP...

,

which in particular implies that QCIP[k] ⊆ CH for any constant k.
Finally, by the same reasoning as in Theorem 4.7, one can show that BQ · QMA ⊆ QIP[2].

However, obtaining an upper bound on QIP[2] stronger than PSPACE is unclear: our proof technique
in Theorem 4.8 breaks when Merlin’s message is quantum, as it is in QIP[2].
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