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Abstract

In coding theory, a common question is to understand the threshold rates of various local
properties of codes, such as their list decodability and list recoverability. A recent work Levi,
Mosheiff, and Shagrithaya (FOCS 2025) gave a novel unified framework for calculating the
threshold rates of local properties for random linear and random Reed–Solomon codes.

In this paper, we extend their framework to studying the local properties of subspace des-
ignable codes, including explicit folded Reed-Solomon and univariate multiplicity codes. Our
first main result is a local equivalence between random linear codes and (nearly) optimal sub-
space design codes up to an arbitrarily small rate decrease. We show any local property of
random linear codes applies to all subspace design codes. As such, we give the first explicit
construction of folded linear codes that simultaneously attain all local properties of random
linear codes. Conversely, we show that any local property which applies to all subspace design
codes also applies to random linear codes.

Our second main result is an application to matroid theory. We show that the correctable
erasure patterns in a maximally recoverable tensor code can be identified in deterministic poly-
nomial time, assuming a positive answer to a matroid-theoretic question due to Mason (1981).
This improves on a result of Jackson and Tanigawa (JCTB 2024) who gave a complexity char-
acterization of RP∩ coNP assuming a stronger conjecture. Our result also applies to the generic
bipartite rigidity and matrix completion matroids.

As a result of additional interest, we study the existence and limitations of subspace designs.
In particular, we tighten the analysis of family of subspace designs constructioned by Guruswami
and Kopparty (Combinatorica 2016) and show that better subspace designs do not exist over
algebraically closed fields.
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1 Introduction

One of the biggest success in modern mathematics and theoretical computer science is use
randomness to understand discrete and continuous structures. In combinatorics, the probabilistic
method [AS16], pioneered by Erdős, has been used to prove existence of various mathematical
objects, such as Ramsey graphs, lossless expanders, and many more. In algorithm design and
computational complexity theory, the use of randomness has been the key to providing efficient
solutions to many computational problems, such as polynomial identity testing (PIT).

However, for both theoretical and practical considerations, it is often desirable to remove the use
of randomness through derandomization. From this perspective, randomization can be viewed as
the first step toward the resolution of a mathematical problem. For example, in combinatorics, we
often seek explicit constructions of mathematical objects we only know to exist via the probablistic
method. Likewise, in algorithm design, often one seeks a deterministic algorithm after a randomized
algorithm has been identified.

However, in many cases, derandomization proves to be quite formidable, and the existence
of a derandomization is often still remain open. To name two examples from combinatorics and
algorithm design, respectively, first it is an easy exercise to check that random graphs are loss-
less two-sided vertex expanders, but explicit constructions were long-standing open problems until
two breakthroughts [RVW00] (one-sided expansion) and [HLM+25] (two-sided expansion). Second,
randomized PIT algorithm easily follows from Schwarz–Zippel lemma, but a deterministic PIT al-
gorithm remains one of the most significant open problems in theoretical computer science, and
perhaps the most key stepping stone toward proving that P = BPP.

In this paper, we use subspace designs introduced by Guruswami and Xing [GX13] in novel
ways to achieve derandomizations in two different problems from combinatorial constructions and
algorithm design respectively: Local properties of linear codes and Independence testing of birigidity
and maximally recoverability matroids. We now give a brief overview of each of the subfields of
mathematics and computer science our work touches upon.

Subspace Designs. The concept of subspace designs was first introduced by Guruswami and
Xing [GX13] to (randomly) construct the first family of positive-rate rank-metric codes that are
list-decodable beyond half their minimum distance, as well as efficiently list-decodable Hamming-
metric codes of optimal rate over constant-size alphabets with nearly constant list size. Informally,
a subspace design is a family of linear subspaces with the property that any subspace of fixed
dimension has only small total overlap with the family (see Definition 1.1 for more details).

While the probabilistic method establishes the existence of subspace designs with both large
size and dimension [GX13, GK16], Guruswami and Kopparty [GK16] subsequently provided the
first explicit construction attaining the similar parameters over large fields via the idea of folded
Reed–Solomon codes and univariate multiplicity codes. As an application, these explicit subspace
designs yield a full derandomization of the code constructions from [GX13]. Later, by employing
techniques from algebraic function fields, Guruswami, Xing, and Yuan [GXY18] constructed explicit
subspace designs with comparable parameters over significantly smaller fields. Besides their use in
list-decodable code constructions, subspace designs have also been instrumental in constructing
explicit lossless dimension expanders of constant degree [GRX21], which can be viewed as the
linear-algebraic analogue of classical expander graphs. For a more fine-grained historical overview,
we refer the reader to the recent survey by Santonastaso and Zullo [SZ23].

All the aforementioned list-decodable codes (e.g., [GX13, GK16, GX22]) that make use of the
notion of subspace designs are subcodes of classical algebraic codes such as Reed–Solomon, folded
Reed–Solomon, algebraic–geometry, univariate multiplicity, and Gabidulin codes. However, a major
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recent turning point was achieved by the work of Chen and Zhang [CZ25], who proved that explicit
folded Reed–Solomon and univariate multiplicity codes themselves attain optimal list-decodability.
In particular, they showed that any code admitting sufficiently good subspace designs enjoys near-
optimal list-decodability (see [CZ25, Appendix B] for further details). These codes, known as
subspace designable codes in [CZ25], will play a central role in our paper.

Local Properties of Linear Codes. List-decodability and list-recoverability are two properties
people care the most in the theory of error-correcting codes. Given a code C ⊆ Σn over alphabet
Σ, a radius ρ, an input list size ℓ, and an output list size L, we say C is (ρ, ℓ, L) list-recoverable iff
for any received table S1, . . . , Sn ∈

(
Σ
≤ℓ

)
, there are at most L codewords c ∈ C such that at most ρ

fraction of coordinates i ∈ [n] satisfy ci /∈ Si. List-decoding is a special case of list-recovery when
ℓ = 1. Motivated by understanding these two basic combinatorial properties of various families
of error-correcting codes, Mosheiff, Resch, Ron-Zewi, Silas, and Wootters [MRR+20] introduced a
more generalized framework local property. In this broader perspective, One can define the notion
local profile as the forbidden pattern of codes that can be certified by a small list of codewords. A
local property P is defined as a family of local profiles, and a code has the property P iff it does
not contain any certificate for any local profile in P. In this language, both list-decodability and
list-recoverability are just special cases of local properties.

The study of local properties mostly starts from analyzing random linear codes, which can be
seen the “(nearly) optimal benchmark”1 in many scenarios. For any local property, people first
characterize its rate threshold below which random linear codes satisfy the local property with high
probability. Then, people make use of this characterization to show that various specific families of
linear codes has (almost) the same rate threshold. In particular, [MRR+20] showed that random
LDPC codes behaves the same as random linear codes. Guruswami, Li, Mosheiff, Resch, Silas,
and Wootters [GLM+22] use this framework to show interesting lower bounds for list-decoding and
list-recovery. After that, Guruswami and Mosheiff [GM22] proved randomly punctured low-biased
codes locally simulate random linear codes. Most recently, a great work by Levi, Mosheiff and
Shagrithaya [LMS25] generalized the previously mentioned characterization of rate thresholds to
large alphabet, and used this novel characterization to show random Reed–Solomon codes are local
equivalence to random linear codes.

However, all of the above results are about randomness-efficient families of linear codes. Al-
though compared to uniformly random linear codes, these certain families of linear codes requires
fewer random bits to sample from, they are not explicit constructions. For some special cases of local
properties such as list-decoding, there are explicit constructions with the same quality as random
linear codes [ST23,BDG24b,CZ25, JMST25]. However, explicit constructions that match random
linear codes in terms of general local properties, or even the special case of list-recoverability, are
unknown before. In this paper we provide the first explicit construction that simulate all local
properties of random linear codes and address this open problem.

Maximally Recoverability and Rigidity Matroids. The quest for explicit constructions
matching random ones has deep connections to matroid theory. Informally, matroids are combina-
torial objects which generalize the behavior of collections of vectors in a vector space (see Section 5
for a formal definition). We now describe two families of matroids which, while seemingly unre-
lated, both demand an improved theory of derandomization: maximal recoverability and structural

1In some cases non-linear codes can provably outperform linear codes. However, linearity of codes is useful in
many applications, and many explicit constructions of specific families of codes are linear. Another work [GMR+22]
builds the framework of local properties for random (non-linear) codes.
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rigidity.
In the distributed storage community, much effort over the last couple of decades [CHL07,HCL13,

BPS13, SAP+13, GHJY14, PD14, HY16, GHK+17, KLR19, MPK19, GGY20, HPYWZ21, CMST21,
KMG21, GG22, BGM22, DG23, BDG25] has been put into studying data storage solutions which
information-theoretically maximize their resilience from data loss. Error-correcting codes which
satisfy such problems are described as maximum recoverable (MR). In a strong sense, the construc-
tion of MR codes is a derandomization problem, as a random code can correct any particular error
with high probability, but guaranteeing tolerance to all possible errors simultaneously requires an
explicit construction.

From a mathematical perspective, a rather fascinating family of MR codes is the MR tensor
codes introduced by Gopalan et al. [GHK+17], where the error-correcting code is the tensor product
of two linear codes. Unlike many other architectures for which MR has been studied, we lack a
basic understanding of which failures (i.e., erasure errors) we should even be able to recover from
(e.g., [HPYWZ21]), much less explicit constructions of MR tensor codes [BDG24b]. Recently, the
construction of maximally recoverable tensor codes has also been linked to optimal list-decodable
codes [ST23,BGM23,AGG+25]. A comprehensive understanding of derandomizing the properties
of random linear codes could be of much use in answering such questions.

In combinatorics, a long-standing area of study is structural rigidity theory.2 A landmark ques-
tion open question in rigidity theory is that of graph rigidity. Consider an undirected graph
G = (V,E) and an ambient space Rd, when does there an embedding3 ψ : V → Rd such that
the graph cannot be flexed (i.e., an infinitesimal isometry which is not a translation/rotation)? If
such an embedding exists, a random embedding (e.g., random sampled from a multivariate normal
distribution) will work probability 1. A simple description for the case R2 has been known for nearly
100 years [PG27,Lam70]. However, finding deterministic polynomial time description for rigidity in
R3 has been open since the days of James Clerk Maxwell [Max64,GSS93]!

Although MR and structural rigidity are seemingly unrelated, Brakensiek, Dhar, Gao, Gopi,
and Larson [BDG+24a] proved a number of equivalence results between maximal recoverability and
structural rigidity. For example, understanding the maximal recoverability of a linear code tensored
with itself is (roughly speaking) to this classical graph rigidity question. For our purposes, we
build on a different equivalence proven by [BDG+24a] that the maximal recoverability of the tensor
product of two different linear codes is equivalent to understanding the bipartite rigidity (birigidity)
of graphs, an adaptation of classical rigidity proposed by Kalai, Nevo, and Novik [KNN15].

We seek to be the first work which takes advantage of this new-found equivalence by using
our “random-to-explicit” perspective to make simultaneous progress in the theory of both maximal
recoverability and rigidity. We point the interested reader to Section 1.1.2 and Section 5 for a more
details. We also recommend the recent survey by Cruickshank, Jackson, Jordán, and Tanigawa for
many rich connections between rigidity matroids and other problems [CJJT25].

1.1 Our Results

In order to formulate our main results, we first introduce the notions of subspace designs [GX13,
GK16] and subspace designable codes [GK16,CZ25].

Definition 1.1 (Subspace Design, [GK16, Definition 3]). A collection H of F-linear subspaces
H1, . . . ,Hn ⊆ Fk is called an (ℓ, A) subspace design over F, if for every F-linear space W ⊆ Fk of

2In this paper “rigidity” always refers to geometric structural rigidity, there is no known link between these
questions and the well-studied matrix rigidity problems in TCS (e.g., [Ram20]).

3We assume that ψ maps the vertices to “general position,” no three points on a line, etc.

4



dimension ℓ, we have
n∑

i=1

dimF (Hi ∩W ) ≤ A.

.

Definition 1.2 (Subspace Designable Code, [CZ25, Definition B.2]). For any s ≥ 1, given an F-
linear code C ⊆ (Fs)n with message length k and block length n, we use C : Fk → (Fs)n to denote
the F-linear encoder of C. For any i ∈ [n], let Hi ⊆ Fk denote the F-linear subspace such that for
any message f ∈ Fk, there is C(f)i = 0 iff f ∈ Hi. We say C is a (ℓ, A) subspace designable code if
H := {H1, . . . ,Hn} is an (ℓ, A) subspace design.

We call an s-folded F-linear code C ⊆ (Fs
q)

n with rate R d-subspace designable iff for all
1 ≤ d′ ≤ d, C is a (d′, Rd′n+ 1) subspace designable code.

Since we will establish a negative bound Theorem 1.11 later in this paper, and it indicates that
for algebraically closed field, the quality of d-dimensional subspace design cannot be better than
d(k−d)
s−d+1 ≥ Rdsn

s−d+1 − d2

s−d+1 = R(1 + d−1
s−d+1)dn − d2

s−d+1 . For fixed d ≥ 1 and large enough n, this
lower bound is strictly larger than Rdn. Therefore, the d-subspace designable codes actually yield
optimal subspace designs for subspaces with dimension at most d.

We also need a slacked version for “nearly optimal” subspace designable codes. Namely, for any
real µ > 0 and integer d ≥ 1, we say the code C ⊆ (Fs)n µ-slacked d-subspace designable if for all
1 ≤ d′ ≤ d, C is (d′, (R+ µ)d′n) subspace designable.

1.1.1 Local Equivalence Between Random Linear Codes and Subspace Designs

Our first main result is to build a local equivalence between random linear codes and nearly opti-
mal subspace designable codes. Since explicit folded Reed–Solomon codes and univariate multiplicity
codes yield nearly optimal subspace designs [GK16], our result gives the first explicit construction
of folded linear codes that simultaneously preserves all local properties of random linear codes.

We will formally define the concept local profile later. For readers unfamiliar with this notion, a
good intuition is to think a local profile as a certain list-decodability or list-recoverability of codes
as special cases of our general reduction4.

Theorem 1.3 (Informal). Fix b, q ≥ 1, ε, R ∈ (0, 1) and any b-local profile V = (V1, . . . , Vn) ∈
L(Fb

q)
n. The following holds.

• (Theorem 3.1) If random Fq-linear codes with rate R does not contain V with high probability,
then all Fq-linear ε-slacked b-subspace designable codes with rate at most R− ε do not contain
V.

• (Theorem 4.2) For any d ≥ 1, if for all large enough block length n, all Fq-linear, d-subspace
designable code with rate R does not contain V, then random Fq-linear code with rate R −
on(1)− ε does not contain V with probability at least 1− q−εn+b2.

As a direct corollary of Theorem 1.3, we give a reduction from list-recoverability of optimal
subspace designable codes to list-recoverability of random linear codes as stated in Corollary 4.3.
In a follow-up work [BCDZ25], the authors use this reduction to prove the nearly-optimal list-
recoverability of random linear codes. See Table 1 for a comparison with previous work.

It was known from the pioneer work of Guruswami and Kopparty [GK16] that when s ≥ b(R/ε+
1), the explicit s-folded Reed–Solomon codes and s-univariate multiplicity codes are ε-slacked b-
subspace designable codes as discussed later in Remark 1.9.

4Actually, list-decoding and list-recovery corresponds to a family of local profiles rather than a single one.
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Codes attain thresholds of RLC List-decoding List-recovery All local properties
Random LDPC codes [MRR+20] [MRR+20] [MRR+20]

Randomly punctured low-bias codes [GM22] [GM22] [GM22]
Random RS codes [ST23,BGM23,GZ23,AGL24] [LMS25] [LMS25]

Explicit Constructions [ST23,BDG24b,CZ25,JMST25] This work This work

Table 1: This table compares various randomness-efficient families of linear codes as well as explicit
codes that behave like random linear codes in terms of list-decoding, list-recovery, and the most
general local properties. See also our discussion on the concurrent work of [JS25].

Therefore, as a corollary, we give the first explicit construction of codes that simultaneously
simulate all local properties of random linear codes. Concretely, it follows that

Theorem 1.4. Fix b, q ≥ 1, ε, R ∈ (0, 1), s ≥ b(R/ε+ 1), there are explicit s-folded Reed–Solomon
codes and s-order univariate multiplicity codes C ⊆ (Fs

q)
n, where q = Θ(sn), with rate R − ε, such

that for any b-local profile V = (V1, . . . , Vn) ∈ L(Fb
q)

n, if random Fq-linear code with rate R does not
contain V with high probability, then C does not contain V.

In particular, for any ℓ, L ≥ 1, if random Fq-linear codes with rate R are (ρ, ℓ, L)-list recoverable,
then C is (ρ, ℓ, L) list-recoverable.

Since it was previously shown by [BGM23, AGL24, LMS25] that random linear codes achieve
generalized singleton bound, Theorem 1.4 directly gives an alternative proof of the main theorem
of [CZ25] that folded RS codes achieves generalized singleton bound [ST23] as a special case.

Interestingly, since the main theorem of [CZ25] only uses the subspace design property (This
generalization is presented in [CZ25, Appendix B]), [CZ25] actually proves that all optimal subspace
designable codes achieve generalized singleton bound. Therefore, combined with [CZ25], the second
item of Theorem 1.3 actually conversely provides an alternative proof that random linear codes
achieve generalized singleton bounds originally by [BGM23,AGL24,LMS25].

Remark 1.5 (List-recoverability). Fix radius 1 − R − ε and input list size ℓ ≥ 2, the best known
(1−R−ε, ℓ, L) list-recoverability of random linear codes is L = (ℓ/ε)O(ℓ/ε) by [LS25]. As an algebraic
miracle, the bound for explicit folded RS codes is L = (ℓ/ε)O(1+log (ℓ)/ε) by [KRZSW23, Tam24],
which is better! As we have seen before that [CZ25] plus our reduction implies the same bound for
random linear codes [BGM23,AGL24,LMS25], it is tempting to use Theorem 1.3 on the bound in
[KRZSW23,Tam24] to improve the bound of [LS25]. Regrettably, this cannot work. The reason is
that, unlike [CZ25], the proof of [KRZSW23,Tam24] is not “subspace-design-only”. Concretely, their
proof intrinsically relies on the fact that bad list resides in some low-dimensional affine subspace,
which was proved in [GW13] using an interpolation technique that is tailored for algebraic codes,
This does not apply to merely optimal subspace designable codes and we cannot apply Theorem 1.3
on their bound.

However, in a follow-up work [BCDZ25], the authors prove a better bound ( ℓ
R+ε)

O(R/ε) in a
“purely subspace-design” way. This directly improves the bound of [KRZSW23,Tam24] for folded RS
codes. Moreover, this “subspace design nature” of their proof unlocks the full power of Theorem 1.3
and enables them to use this reduction to transfer the same bound directly to random linear codes,
which improves the bound of [LS25].

Concurrent Work. Concurrently and independently, in an exciting work by Jeronimo and Shagrithaya
[JS25], the authors use the AEL-type constructions [AEL95] to get explicit constructions of folded
linear codes over constant-sized alphabet that simulates any fixed “reasonable local property”.
We comment and compare their results with ours as follows.
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• For any fixed family of b-local profiles V1, . . . ,Vm, if each of them has at most T distinct
linear subspaces within it, then [JS25] constructs explicit codes with alphabet qΘ(T 3) that
simulates all these local profiles when m = qo(n). However, for the most general family of local
profiles, these parameters could be m = qΘ(b2n) and T = min(qΘ(b2), n). Although this makes
[JS25] inaccessible in the most general setting, it is not an issue when q is a large constant
independent of n, which is the primary case of interest in [JS25]. By contrary, our construction
uses a single algebraic code to simulate all possible b-local profiles simultaneously.

• As the cost of simultaneous simulation of all local profiles, our explicit construction requires
alphabet size q = Θ(bn), while the construction of [JS25] requires only constant alphabet
when the previous conditions are met, which is better in these cases. We further comment
that in Theorem 4.1 we prove that there exists nearly optimal subspace designs over constant
alphabet. Therefore, future improvement on explicit constructions of subspace designs over
smaller fields would reduce the alphabet size required.

• Before our work, local properties are primarily interested for the reasons of list-decoding and
list-recovery of linear codes. For these two major applications, the conditions in the first item
are met so both [JS25] and our results can handle list-decoding and list-recovery when the
input and output list sizes are constants. However, in our second part of results relating to
tensor codes, T and q could be enormous so we have to simulate local profiles in the most
general setting.

1.1.2 Applications to Tensor Codes and Matroid Theory

As mentioned earlier, two commonly study local properties correspond to the list-decodability
and list-recoverability of linear codes. A novel conceptual contribution we make in this paper is
that the theory of local properties (with slight modification) can be used to study the tensoring of
linear codes. Given a column code Ccol ⊆ Fm

q and a row code Crow ⊆ Fn
q , we define their tensor

product Ccol⊗Crow ⊆ Fm×n
q to be the set of all m×n matrices such that each column is a codeword

in Ccol and each row is a codeword in Crow. In particular, dim(Ccol ⊗Crow) = dim(Ccol) dim(Crow).
As a fundamental linear algebraic operation, tensor products are a key operation in many

constructions within coding theory as well as more broadly in TCS [GHK+17, PK22, DEL+22,
CCS25,KP25,BGI+25]. In this paper, we use the theory of local properties to understand better
the correctability of tensor products with respect to erasures. That is, given an erasure pattern
E ⊆ [m]× [n], when can we recover a codeword c ∈ Ccol ⊗ Crow when only given the symbols c|Ē?
This is equivalent to asking whether there exists a codeword c ∈ Ccol ⊗ Crow supported on E. Of
course, the answer depends on the precise structure on the precise structure of Ccol and Crow, but
there is much interest in understanding best-case scenario. More formally, Gopalan et al. [GHK+17]
asked the following.

Question 1.6. Given parameters m,n, a, b as well as a pattern E ⊆ [m] × [n]. When does there
exist (for sufficiently large q) a m− a-dimensional column code Ccol ⊆ Fm

q and a n− b-dimensional
row code Crow ⊆ Fn

q such that E is a correctable pattern in Ccol ⊗ Crow?

In the case a = 1, Gopalan et al. [GHK+17] gave a combinatorial description, which was
later turned into a deterministic5 polynomial-time checkable condition by Brakensiek, Gopi, and
Makam [BGM22, BGM23]. However, the approach used in those works cannot extend to a ≥
2 [HPYWZ21]. Although Question 1.6 may seem like a niche coding theory question on the sur-
face, a recent characterization by Brakensiek et al. [BDG+24a] shows that answering Question 1.6 is

5We note that Question 1.6 lies in RP by picking Ccol and Crow to be random linear codes and invoking Schwarz-
Zippel [Sch80,Zip79]. The core challenge is to derandomize this special case of Polynomial Identity Testing (PIT).
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equivalent to resolving some long-standing questions in matroid theory, including understanding the
structural rigidity of bipartite graphs [KNN15] as well as when partially revealed matrices can be
completed to low-rank matrices [SC10]. See Section 5 as well as the recent survey by Cruickshank
et al. [CJJT25] for a more thorough discussion of these connections.

We give a novel plan of attack toward resolving Question 1.6 by studying correctability in a
tensor code as a a slight variant of a local property in the sense of [LMS25]. By adapting a suitable
potential function designed in [LMS25], (see Section 5.2) we give a one-sided test for checking
whether E is a correctable pattern in Question 1.6. By “one-sided,” we mean than the potential test
might report than E is correctable when E is actually uncorrectable, but the opposite can never
occur. By suitably adapting Theorem 1.3 (see Section 5.3), we can replace Ccol and Crow with two
explicit folded Reed-Solomon codes (with the caveat the folding parameters are poly(m,n)-sized)
and use those to deterministically check the correctability conditions.

To understand the accuracy of this algorithm, one needs to know whether there exists patterns E
which are uncorrectable in Question 1.6, but are correctable according to the folded Reed-Solomon
codes. We connect this question to a long-standing question6 by Mason [Mas81] on the structure of
the tensor products of matroids. Informally, Mason asks whether the linear algebraic tensor product
of two random linear codes (over a large field) is the most general matroid which “looks like” a tensor
product. See Conjecture 5.5 for the precise assumption we make, which is a modern reformulation
oif Mason’s question by Cruickshank et al. [CJJT25] which is more convenient for our purposes.
With this assumption, we can prove that the potential function we construction is a zero-error test
for correctability (see Corollary 5.11 and Lemma 5.18). As such, we prove the following result.

Theorem 1.7 (Informal, see Theorem 5.2). Assuming a positive answer to a question of Ma-
son [Mas81], Question 1.6 can be answered in deterministic polynomial time.

This result improves over a recent result of Jackson and Tanigawa [JT24] who conditionally
showed than Question 1.6 lies in RP ∩ coNP. We note however their conditional assumption was
different (and stronger), see Section 5.1 for further discussion. See also Remark 5.6 for a thorough
discussion on evidence for and against Conjecture 5.5.

The recent work of Bérczi et al. [BGI+25] also studies products between matroids, although they
are interested in constructing products for an arbitrary pair of matroids, whereas we are interested
in studying more deeply the tensor products of linear matroids.

1.1.3 Tight Bounds for the Quality of Subspace Designs

Given the aforementioned applications of subspace designable codes, a natural topic to inves-
tigate is the optimal parameters of explicit subspace designs. In Section 6, we make new progress
toward answering such questions. As a baseline, we first present parameters of the explicit con-
struction of subspace designable codes in [GK16].

Theorem 1.8 ([GK16]). For any s, n ≥ 1, q ≥ sn ≥ k, there are explicit constructions of Fq-linear
codes C ⊆ (Fs

q)
n such that for all d ∈ {0, 1, . . . , s}, C is a (d, d(k−1)

s−d+1 ) subspace designable code. In
particular, explicit folded RS codes and univariate multiplicity codes are such constructions.

Remark 1.9. This parameter implies that, for any b ≥ 1, ε ∈ (0, 1) and rate R = k/(sn), when
s ≥ b(R/ε+ 1), explicit s-folded Reed–Solomon codes and s-order univariate multiplicity codes are
ε-slacked b-subspace designable since we can calculate d(k−1)/(s−d+1) ≤ (R+ε)dn for all d ∈ [b]
under this choice of s.

6This question on the tensor products of matroids should not be confused with Mason’s log-concavity conjectures
which were recently resolved [AHK18,HSW21,BH20,Huh22,ALOGV24].
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Our first contribution is a more fine-grained analysis of Theorem 1.8 that slightly improves its
parameters.

Theorem 1.10 (Informal, see Theorem 6.1). Assume that q > ns, then there are explicit construc-
tions of Fq-linear codes C ⊆ (Fs

q)
n such that for all d ∈ {0, 1, . . . , s}, C is a (d, d(k−d)

s−d+1 ) subspace
designable code. In particular, explicit folded RS codes are such constructions.

The proof of Theorem 1.10 largely follows the proof of Theorem 1.8, except we correct one
inefficiency in the root-counting bound of [GK16] which leads to the slightly tighter parameters.
More surprisingly, we show that the bound is Theorem 1.10 is exactly tight, as long as the base field
F is algebraically closed (e.g., C or the algebraic closure of F2).

Theorem 1.11 (Informal, see Theorem 6.2). Let F be an algebraically closed field (of any charac-
teristic). Consider any F-linear codes C ⊆ (Fs)n and parameter d ∈ {1, . . . , s}. If n ≤ d(k−d)

s−d+1 then
C is not a (d, d(k−d)

s−d+1 − 1) subspace designable code.

In particular, any improvements over Theorem 1.10 must crucially use the fact that Fq fails
to be algebraically closed. In Section 6.3, we give a simple example over F3 of a (constant-sized)
subspace design utilizing this property to beat Theorem 1.10.

Remark 1.12. A recent work by Santonastaso and Zullo [SZ23] also studies the optimal parameters
for subspace designs over finite fields, with the motivation of achieving a better understanding of
the parameters sum-rank codes. However, the regime they work in is rather different from ours. In
particular, they are primarily interested in the regime for which d = k− 1, although they allow the
test space U to be a vector space over an extension field. They also allow dim(U) + dim(Hi) > k,
which we do not allow. In the most comparable regime of s = d = k − 1, they get that C is not
(k − 1, k − 2) subspace designable over any field, which matches our bound for algebraically closed
fields. Of note, Theorem 1.8 by [GK16] constructs a (k − 1, (k − 1)2) design in this regime, which
is improved to the tight bound of (k − 1, k − 1) by our Theorem 1.10.

The proof of Theorem 1.11 makes nontrivial use of algebraic geometry. More precisely, we
observe that the space of d-dimensional subspaces W ⊆ Fk can be viewed as the d(k−d)-dimensional
Grassmannian projective variety (see [LB15]). A subspace design constraint of the form dim(Hi ∩
W ) ≥ 1, carves out a what is known as a Schubert subvariety of the Grassmannian. The key property
of this Schubert subvariety is that it has codimension s− d+1. A key property of subvarieties over
algebraically closed fields is that the codimension of the intersection of subvarieties is a a subadditive
function of the codimensions of the respective subvarieties (e.g., [Har77]). Thus, if we seek to rule
out all W in the Grassmanian as counterexamples to Definition 1.1, we need to intersect at least
⌊d(k−d)
s−d+1 ⌋ + 1 Schubert subvarieties, implying the subspace design parameter shouild be at least

⌊d(k−d)
s−d+1 ⌋ >

d(k−d)
s−d+1 − 1.

Open Questions

Given the many connections between our work and various parts of mathematics and computer
science, there are a variety of directions to pursue.

• Theorem 4.1 shows that near-optimal subspace designable codes exist over constant-sized
fields. Can such codes be explicitly constructed?

9



• Conversely, can Theorem 1.11 be extended to the setting of finite fields? Recall we show in
Section 6.3 the the lower bound must to degrade to some extent, but is a lower bound of
(1− o(1))d(k−d)

s−d+1 possible?

• From our connection between local properties and rigidity matroids, a key open question is
to prove or disprove Conjecture 5.5. Either outcome has interesting ramifications for both
coding theory and rigidity theory, see Remark 5.6 for further discussion.

• We also emphasize the long-standing open question (since the 1800s [Max64,GSS93]) of giving
a deterministic polynomial time algorithm for detecting (non-bipartite) rigid graphs in R3.
The methods used in this paper likely are insufficient to resolve this question, but further
understanding on derandomizing (not necessarily local) properties of random linear codes
could be critical to its resolution.

Organization

In Section 2, we present some basic notation as well as discuss the theory of local properties
by Levi, Mosheiff, and Shagrithaya [LMS25]. In Section 3, we show that subspace design codes
of slacked rate capture all local properties of random linear codes, establishing the first half of
Theorem 1.3. In Section 4, we show that local properties shared by all subspace design codes also
apply to random linear codes, proving the second half of Theorem 1.3. In Section 5, we adapt
the theory of local properties to the study of quesitons in matroid theory, proving Theorem 1.7.
In Section 6, we study the optimal parameters of subspace designs, proving Theorem 1.11 and
Theorem 1.10.

2 Preliminaries

Notation. For a matrix M ∈ Σn×m, we let M [i, j] ∈ Σ, i ∈ [n], j ∈ [m] denote the entry at the
i-th row and j-th column. We use M [i :] ∈ Σm to denote the i-th row of M and M [: j] ∈ Σn to
denote the j-th column of it. Assume U, V are two linear spaces over field F. We use dim(U) to
denote F-dimension of U . For a set of vectors f1, . . . fm ∈ U , we use Span(f1, . . . , fm) to denote the
linear subspace of U F-spanned by f1, . . . , fm. Given a linear map ψ : U → V , we let ker(ψ) : =
{f ∈ U : ψ(f) = 0} denote the kernel of ψ. By the first isomorphism theorem, ker(ψ) is an F-linear
subspace of U .

Definition 2.1 (Folded Wronskian, see [GK16]). Let f1(X), . . . , fs(X) ∈ Fq[X] and γ ∈ F×
q . We

define their γ-folded Wronskian Wγ (f1, . . . , fs) (X) ∈ (Fq[X])s×s by

Wγ (f1, . . . , fs) (X)
def
=


f1(X) . . . fs(X)
f1(γX) · · · fs(γX)

...
. . .

...
f1
(
γs−1X

)
· · · fs

(
γs−1X

)
 .

It is well known that the nonsingularity of the folded Wronskian of a set of vectors characterizes
the linear independence of these vectors, as stated below.

Lemma 2.2 (Folded Wronskian criterion for linear independence, see [GK16,GW13]). Let k < q
and f⃗1, . . . , f⃗s ∈ Fk

q . Let γ be a generator of F×
q . Then f⃗1, . . . , f⃗s are linearly independent over Fq if

and only if the folded Wronskian determinant detWγ (f1, . . . , fs) (X) ̸= 0.
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2.1 Local Profiles and Thresholds of Random Linear Codes

In this section, we describe the work Levi, Mosheiff, and Shagrithaya [LMS25] on the theory of
local profiles for random linear codes. We closely follow their notation.

Fix a finite field Fq, block length n and configuration parameter b ≥ 1. Let L(Fb
q) denote the set

of all linear subspaces of Fb
q. Let LDist(Fb

q) denote the set of all linear subspaces U of Fb
q whose basis

matrix BU ∈ Fb×dim(U)
q (This means columns of BU form a basis of U) does not contain repeated

rows. This is equivalent to say that for any i ̸= j ∈ [b], there exists some f ∈ U such that fi ̸= fj .
We call V = (V1, . . . , Vn) ∈ L(Fb

q)
n a b-local profile. For any b-local profile V and linear subspace

U ∈ L(Fb
q), [LMS25] use MV,U to denote the set of matrices M ∈ Fn×b

q such that

(1) M has pairwise distinct columns.

(2) for any i ∈ [n], the i-th row Mi of M satisfies Mi ∈ Vi ∩ U .

(3) The row span of M is U .

They use M∗
V,U to denote the set of matrices that satisfy condition (2). For any Fq-linear code

C ⊆ Fn
q , we say C contains (V, U) if there is some M ∈ MV,U such that each column of M is in C.

We say C contains V if there is some U ∈ L(Fb
q) such that C contains (V, U). [LMS25] defines the

potential function of (V, U) as

Φ(V, U,R) = −n dim(U) +

n∑
i=1

dim(Vi ∩ U) +Rndim(U). (1)

Moreover, [LMS25] defines RV of a b-local profile V as follows.

RV = max{R ∈ [0, 1] : ∀U ∈ LDist(Fb
q), ∃W ⊊ U, s.t. Φ(V, U,R)− Φ(V,W,R) ≤ 0}.

We observe the following simple fact about RV .

Fact 2.3. For any b-local profile V, rate R ∈ [0, 1], and subspace U ∈ LDist(Fb
q), if R ≤ RV , there

exists a proper subspace W ⊊ U such that Φ(V, U,R)− Φ(V,W,R) ≤ 0.

Proof. It follows from the definition of RV and the fact that for any W ⊊ U , d(Φ(V,U,R)−Φ(V,W,R))
dR =

n(dim(U)− dim(W )) ≥ 0.

One of the main contributions of [LMS25] is that they show RV is exactly the rate threshold for
random Fq-linear code to contain V, which we quote as follows.

Theorem 2.4 ([LMS25, Theorem 4.4]). Let V = (V1, . . . , Vn) ∈ L(Fb
q)

n be a b-local profile. Let
C ⊆ Fn

q be a random Fq-linear code of rate R. The following holds.

(1) If R ≥ RV + ε, then Pr[C contains V] ≥ 1− q−εn+b2 .

(2) If R ≤ RV − ε, then Pr[C contains V] ≤ q−εn+b2.

11



3 All Subspace Designable Codes Locally Simulate RLCs

Fix s, b, n ≥ 1 and finite field Fq. For any s-folded Fq-linear code C ⊆ (Fs
q)

n and b-local profile
V = (V1, . . . , Vn) ∈ L(Fb

q)
n, let C′ ⊆ Fsn

q denote the “unfolded” Fq-linear code C with block length sn
and define the s-duplicated b-local profile V(s) := (V1, . . . , V1, V2, . . . , V2, . . . , Vn, . . . , Vn) ∈ L(Fb

q)
sn

to be the b-local profile with length sn derived from V such that each Vi is repeated s times. We
say C contains V iff C′ contains V(s).

The main result of this section is that nearly-optimal subspace designable codes simultaneously
avoid all local profiles that a random linear code could avoid with high probability, with a cost
of an arbitrarily small rate decrease. This establishes the harder direction of the local equivalence
between subspace desgins and random linear codes.

For any b-local profile V = (V1, . . . , Vn) ∈ L(Fb
q)

n, from Theorem 2.4 we know that random
Fq-linear code with rate arbitrarily close to RV could avoid V with high probability. Therefore, our
target is the following.

Theorem 3.1. Let s, b ≥ 1, µ > 0 and C ⊆ (Fs
q)

n be a µ-slacked b-subspace designable code with
rate R = k/(sn). For any b-local profile V = (V1, . . . , Vn) ∈ L(Fb

q)
n, if R ≤ RV − µ − 1/n, then C

does not contain V.

Technical Overview. Our proof is initially inspired by the similarity between the definition of
potential function (1) and the defining inequaliltes of subspace designs. When the rate R < RV is
smaller than the threshold, we know that for any “coordinate configuration” linear subspace U ⊆ Fb

q,
it must have a proper linear sbuspace W such that Φ(U,V, R) < Φ(W,V, R). In previous work on
local properties [LMS25], the main proof strategy was to exclude the possibility that the “bad list
of codewords” could span U using their “vectors on coordinates” simultaneously for all U . They
use the critical subspace W ⊊ U to project the original local profile V onto W⊥ to get a new local
profile V ′, and then reduce the original problem to the smaller linear subspace W⊥ with respect to
V ′, and calculate the potentials for this case and complete the proof.

However, if we wish to establish the result from subspace designs, we have to find a linear space
N ⊆ Fk

q in the message space, which resides in Fk
q , to trigger the defining inequality of subspace

designs. As discussed above, [LMS25] primarily works over the coordinate configuration linear
subspace U ⊆ Fb

q, which resides in Fb
q. Therefore, it was not clear how to find the “working

linear subspace” in the message space, so we need a different proof strategy. Unlike [LMS25] that
simultaneously7 avoids all “coordinate subspace” U ⊆ Fb

q, we would only work on a specific U ⊆ Fb
q

depending on any potential “bad list of messages” that we would like to exclude. Concretely, suppose
for the sake of contradiction there exists some “bad list of messages” that certifies V, we will define an
“associated coordinate subspace” U ⊆ Fb

q generated from the bad list. Guaranteed by the definition
of the threshold rate RV , there exists a proper linear subspace W ⊊ U ⊆ Fb

q with larger potential.
Then, from U and W , we can construct some linear subspace N ⊆ Fk

q in the message space. Finally,
if we calculate the defining inequality of subspace designs on N , it will lead to a contradiction and
concludes that the bad list of messages does not exist. Our main technical novelty is the way to
find the specific U ⊆ Fb

q and N ⊆ Fk
q such that the potential functions Φ(U,V, R)−Φ(W,V, R) can

be perfectly transformed to “subspace intersections” between N ⊆ Fk
q and the subspace design.

Proof of Theorem 3.1. Let π1, . . . , πn : Fk
q → Fs

q be linear maps corresponding to C such that for

7In the random RS code setting, [LMS25] starts from the single “whole coordinate space” Fb, but it is still not in
the message space.
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any i ∈ [n], f ∈ Fk
q , there is πi(f) = C(f)[i] ∈ Fs

q. Since C is a µ-slacked b-subspace designable code,
we know that for any 1 ≤ d′ ≤ d, ker(π1), . . . , ker(πn) ⊆ Fk

q form a (d′, (R+µ)d′n) subspace design.
Suppose by contrapositive C contains V, we have distinct f1, . . . , fb ∈ Fk

q such that for any
i ∈ [n] and j ∈ [s], there is (πi(f1)[j], . . . , πi(fb)[j]) ∈ Vi. At least one of f1, . . . , fb is non-zero. Let
F = Span(f1, . . . , fb) and dimF = t ≥ 1. Let g1, . . . , gt ∈ Fk

q be an arbitrary basis of F , we define
a matrix K ∈ Ft×k

q such that the i-th row of K is gi for each i ∈ [t]. Let φF : Ft
q → F denote the

linear map defined as φF (v) = KT v,∀v ∈ Ft
q. Since rank(K) = t, φF is actually an isomorphism

from Ft
q to F . For each fi, i ∈ [b], there is a unique way to write fi =

∑t
j=1mijgj as a Fq-linear

combination of the basis g1, . . . , gt.
Let M = (mij) ∈ Fb×t

q be the matrix corresponding these coefficients. Since g1, . . . , gt form a
basis, so the linear subspace spanned by rows of M is exactly F , which implies rank(M) = t. Also,
since g⃗1, . . . , g⃗t are linear independent and f⃗1, . . . , f⃗b are distinct, it is clear that M has distinct rows.
Therefore, let U ⊆ Fb

q denote the linear subspace spanned by columns of M . Namely, let d1, . . . , dt ∈
Fb
q the columns of M such that di = M [: i], i ∈ [t], we know that U = Span(d1, . . . , dt). We claim

that U ∈ LDist(Fb
q). To show this, for any u ̸= v ∈ [b], since M has distinct rows, M [u :] ̸= M [v :].

This means for some w ∈ [t] there is M [u,w] ̸= M [v, w], so the w-th column M [: w] = dw ∈ U
satisfies that dw,u ̸= dw,v. Therefore, we know U ∈ LDist(Fb

q). Since rank(M) = dim(U) = t, we
know d1, . . . , dt form a basis of U . We define the linear map φ : Fb

q → Ft
q as φ(v) = M⊤v for all

v ∈ Fb
q. Since rank(M) = t, φ is surjective (epimorphism).

Then, let R′ = R+µ+1/n, from Fact 2.3 we know there is some proper linear subspace W ⊊ U
such that

Φ(V, U,R′)− Φ(V,W,R′) ≤ 0.

Let m = dim(W ) ≥ 0. Note that m < t since W is a proper linear subspace of U . There must
be some surjective linear map (epimorphism) ψ : F⊤

q → Fm
q such that ker(ψ◦φ) ⊆ Fb

q is exactly W⊥.
To show the existence of ψ, there are two cases. If m = 0, then ψ must be trivial and we are done.
Otherwise, let w1, . . . , wm ∈ W ⊊ U ⊆ Fb

q denote a basis of W . There is a unique way to write
wi =

∑t
j=1 hijdj as an Fq-linear combination for each i ∈ [m]. Let H = (hij) ∈ Fm×t

q , the linear map
ψ : Ft

q → Fm
q defined as ψ(v) = Hv, ∀v ∈ Ft

q satisfies the requirement since (HM⊤)[i] = wi, ∀i ∈ [m],
which means ker(ψ ◦ φ) = Span(w1, . . . , wm)⊥ = W⊥. ψ is surjective since the rows of H are
w1, . . . , wm, which are linearly independent.

Let N = ker(ψ) ⊆ Ft
q, we know dim(N) = t−m ≥ 1 since ψ is surjective. we consider the linear

space N ′ = φF (N) ⊆ F ⊆ Fk
q . Since φF is injective, it follows that dim(N ′) = t−m ≤ b.

Recall that V = (V1, . . . , Vn) ∈ L(Fb
q)

n is the interested b-local profile, we have the following
claim

Claim 3.2. For any i ∈ [n], there is φF (φ(V
⊥
i ) ∩N) ⊆ N ′ ∩ ker(πi).

Proof. Fix any i ∈ [n], our proof is splitted into two pieces.

(1) φF (φ(V
⊥
i ) ∩N) ⊆ N ′: Since N ′ = φF (N), this part is trivial.

(2) φF (φ(V
⊥
i ) ∩N) ⊆ ker(πi): For any v ∈ V ⊥

i , it suffices to prove (πi ◦ φF ◦ φ)(v) = 0. By the
definition of πi, let Hi ∈ Fs×k

q denote the matrix such that πi(f) = Hif, ∀f ∈ Fk
q . Therefore,

the target is equivalent to HiK
⊤M⊤v = 0. It suffices to show that for any j ∈ [s], the j-th row

zj ∈ Fb
q of HiK

⊤M⊤ ∈ Vi. Actually, since j-th row of HiK
⊤ is (πi(g1)[j], . . . , πi(gt)[j]) ∈ Ft

q
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by definition, and fu =
∑t

v=1M [u, v]gv,∀u ∈ [b], by Fq-linearity of C, we know that

zj = (

t∑
v=1

πi(gv)[j]M
⊤[v, 1], . . . ,

t∑
v=1

]πi(gv)[j]M [v, b])

=

(
πi

(
t∑

v=1

gvM [1, v]

)
[j], . . . , (πi

(
t∑

v=1

gvM [b, v]

)
[j]

)
= (πi(f1)[j], . . . , πi(fb)[j]) ∈ Vi.

This completes the proof of the claim.

Since φF is injective. dim(φF (φ(V
⊥
i ) ∩ N)) = dim(φ(V ⊥

i ) ∩ N). By Claim 3.2, it follows
that dim(N ′ ∩ ker(πi)) ≥ dim(φ(V ⊥

i ) ∩N). Since dim(N ′) ≤ b and π1, . . . , πn are (dim(N ′), (R +
µ) dim(N ′)n)-subspace designable, it follows that

(R+ µ) dim(N ′)n ≥
n∑

i=1

dim(N ′ ∩ ker(πi)) ≥
n∑

i=1

dim(φ(V ⊥
i ) ∩N) (2)

Let us calculate dim(φ(V ⊥
i ) ∩N). Since N = ker(ψ), we have,

dim(ψ(φ(V ⊥
i ))) = dim(φ(V ⊥

i ))− dim(N ∩ φ(V ⊥
i ))

This implies
ci = dim(φ(V ⊥

i ) ∩N) = dim(φ(V ⊥
i ))− dim(ψ(φ(V ⊥

i )))

For each i ∈ [n] let Di ∈ Fb×(b−dim(Vi))
q denote the matrix such that the linear subspace spanned

by its columns is exactly V ⊥
i and define the linear map ϕi : Fb

q → Fb−dim(Vi)
q such that ϕi(v) =

D⊤
i v,∀v ∈ Fb

q, then ker(ϕi) = Vi. We compute ci by definition as follows:

dim(φ(V ⊥
i ))− dim(ψ(φ(V ⊥

i ))) = rank(M⊤Di)− rank(HM⊤Di)

= rank(D⊤
i M)− rank(D⊤

i MH⊤)

= dim(ϕi(U))− dim(ϕi(W ))

= (dim(U)− dim(U ∩ ker(ϕi)))− (dim(W )− dim(W ∩ ker(ϕi)))

= (dim(U)− dim(U ∩ Vi))− (dim(W )− dim(W ∩ Vi))

Note that the third line above relies on the facts that the linear subspace spanned by columns of
M is U and the linear subspace spanned by columns of MH⊤, which is the subspace spanned by
rows of HM⊤, is exactly W , as discussed in previous paragraphs. It follows that

n∑
i=1

ci ≥
n∑

i=1

(dim(U)− dim(U ∩ Vi))− (dim(W )− dim(W ∩ Vi))

= Φ(V,W,R′)− Φ(V, U,R′)−R′n(dim(W )− dim(U))

≥ R′n(dim(U)− dim(W ))

= (R+ µ+ 1/n)n dim(N ′) > (R+ µ) dim(N ′)n.

This contradicts to (2), so the assumed pairwise distinct f1, . . . , fb do not exist. We conclude
that C does not contain V.
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4 RLCs Simulate Local Properties Shared by all Optimal Subspace
Designable Codes

In this section, we show the easier direction of the local equivalence between subspace designs
and random linear codes. Namely, our target is to prove that for any local profile V, if it can be
guaranteed to be avoided by all optimal subspace designs, then it can be avoided by random linear
code with high probability. As a direct corollary, we show in Corollary 4.3 that list-recoverability
guaranteed by optimal subspace designs also holds for random linear codes. In a follow-up work
[BCDZ25], the authors use this reduction to prove the nearly-optimal list-recoverability of random
linear codes, as well as random RS codes by a further reduction established in [LMS25].

Technical Overview. The proof framework is as follows. In Theorem 4.1, we prove random
folded linear codes yield nearly-optimal subspace designs with high probability, so all local prop-
erties guaranteed by optimal subspace designs also hold for random folded linear codes with high
probability. Then, for any folding parameter s and local profile V, we observe that the values of
potential functions (1) satisfy sΦ(U,V, R) = Φ(U,V(s), R), where V(s) is the s-duplicated version of
V which matches the s-folded codes. Therefore, the rate thresholds satisfy RV = RV(s) so local prop-
erties of random folded linear codes also hold for the plain random linear codes, which completes
the reduction from subspace designs to random linear codes.

Theorem 4.1. Fix positive integers k, n, s, q, d where k ≤ sn, d < s, ε ∈ (0, 1) and let rate R =
k/(sn). A random Fq-linear C ⊆ (Fs

q)
n is a (d, (R+ ε)dn) subspace designable code with probability

at least 1− q−εsdn+3d2n+3n.

Proof. The generator matrix of the random Fq-linear code C can be seen as a random matrix of
shape k×sn whose entries are uniformly and independently sampled from Fq. Let Mi ∈ Fk×s

q , i ∈ [n]
denote the sub-matrix of this random matrix consisting of its ((i − 1)s + 1)-th to (is)-th column.
We need to show that, with probability at least 1 − q−εsdn+3d2n+3n, for any d-dimensional linear
subspace of Fk

q encoded as a matrix W ∈ Fk×d
q with rank d, there is

f(W ) :=
n∑

i=1

rank(M⊤
i W ) ≥ (1−R− ε)dn.

We fix an arbitrary matrix W ∈ Fk×d
q with rank d. By union bound, since the number of different

W is at most qkd = qRdsn, it suffices to prove that with probability at most q−(ε+R)dsn+3d2n+3n,
there is f(W ) < (1−R− ε)dn.

For any sequence A = (a1, . . . , an) ∈ {0, 1, . . . , d}n, we call A a valid sequence if the sum
S(A) :=

∑n
i=1 ai < (1− R − ε)dn. Let EA denote the event that rank(M⊤

i W ) = ai for all i ∈ [n].
We only need to bound the probability that EA happens for some valid sequence A. The number
of valid sequences is at most

(
(2−R−ε)n

n

)
≤ (e(2− R − ε))n ≤ (2e)n ≤ q3n. If we fix some arbitrary

valid sequence A, by union bound, we only need to show that EA happens with probability at most
q−(ε+R)dsn+3d2n.

We can directly compute Pr[EA] as follows

Pr[EA] =

n∏
i=1

Pr[rank(M⊤
i W ) = ai].

Fix any i ∈ [n], our target is to compute Pr[rank(M⊤
i W ) = ai]. since Mi is a uniformly random

matrix and W has full column rank. Pr[rank(M⊤
i W ) = ai] is the same as the probability that
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a uniformly random matrix P ∈ Fs×d
q has rank ai. It suffices to bound the number of matrices

P ∈ Fs×d
q with rank ai. If P has rank ai, then there exists a subset S ⊆ [d] of columns of size

|S| = ai such that columns in S are linearly independent, and all the other columns are linear
combinations of columns in S. Fix such an S, the number of matrices P satisfying above conditions
is at most qsai+ai(d−ai). Since there are

(
d
ai

)
choices of S, it follows that

Pr[rank(M⊤
i W ) = ai] = Pr[rank(P ) = ai] ≤

(
d

ai

)
q−sdqsai+ai(d−ai) ≤ qd logq d−(s−ai)(d−ai)

Since
∑n

i=1(d− ai) ≥ (R+ ε)dn, there is

Pr[EA] =
n∏

i=1

Pr[rank(M⊤
i W ) = ai] ≤ qnd logq d−(s−d)(ε+R)dn ≤ qd

2n−(ε+R)sdn+2d2n ≤ q−(ε+R)sdn+3d2n

Then we show that if all optimal subspace designable codes does not contain a local profile V,
then random linear codes also do not contain V.

Theorem 4.2. Fix n, b, q, d ≥ 1, R ∈ (0, 1) and any b-local profile V = (V1, . . . , Vn) ∈ L(Fb
q)

n. If
for all large enough s, we have that all d-subspace designable s-folded Fq-linear codes C ⊆ (Fs

q)
n

with rate R does not contain V, then it follows that RV ≥ R− (b2 + 1)/n.

Proof. We can choose a large enough s ≥ Ω(d3n) such that a random Fq-linear code C ⊆ (Fs
q)

n

is a (d′, Rd′n + 1) subspace designable code for all 1 ≤ d′ ≤ d with probability at least 2/3 by
Theorem 4.1.

let C′ ⊆ Fsn
q denote the “unfolded” random Fq-linear code C with block length sn and define the

s-duplicated b-local profile V(s) := (V1, . . . , V1, V2, . . . , V2, . . . , Vn, . . . , Vn) ∈ L(Fb
q)

sn to be the b-local
profile with length sn derived from V such that each Vi is repeated s times. From the statement,
we know that C′ does not contain V(s) with probability at least 2/3.

Then we observe that the threshold rate RV(s) = RV . The reason is that for any U ∈ L(Fb
q), by

the definition of the potential function there is Φ(V(s), U,R) = sΦ(V, U,R), and the rate threshold
RV(s) only depends on signs of Φ(V(s), U,R)−Φ(V(s),W,R) where W ⊊ U,U ∈ L(Fb

q). These signs
do not change by replacing V(s) with V.

However, suppose by contrapositive that RV(s) = RV < R−(b2+1)/n, we know that the random
Fq-linear code C′ with length sn contains V(s) with probability at least 1 − q−1 ≥ 1/2 by the first
item of Theorem 2.4, which contradicts the fact that C′ does not contain V(s) with probability at
least 2/3.

The second item of Theorem 1.3 is proved by combining Theorem 4.2 and the second item of
Theorem 2.4.

As a corollary, we conclude that list-recoverability guaranteed by optimal subspace designable
codes can also be attained by random linear codes if the alphabet size q is large enough.

Corollary 4.3. Fix constants ℓ, L, d ≥ 1, ε, ρ, R ∈ (0, 1), q ≥ (3ℓ)2(L+1)/ε. Suppose for all large
enough n, all d-subspace designable codes with rate R are (ρ, ℓ, L) list-recoverable, then random Fq-
linear codes with rate R − (L2 + 2L+ 2)/n− ε are (ρ, ℓ, L) list-recoverable with probability at least
1− on(1).
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Proof. By [LMS25, Proposition 2.2], we can construct a series of (L + 1)-local profiles V1, . . . ,Vm,
where m =

(
n
ρn

)L+1
ℓ(L+1)n ≤

(
n

n/2

)L+1
ℓ(L+1)n ≤ (2e)(L+1)n/2ℓ(L+1)n ≤ (3ℓ)(L+1)n, such that Fq-

linear code C ⊆ (Fq)
n is (ρ, ℓ, L) list-recoverable iff C does not contain all these (L+1)-local profiles.

Note that for any s-folded Fq-linear code C′ ⊆ (Fs
q)

n, we also know that C′ is (ρ, ℓ, L) list-recoverable
iff C′ does not contain V1, . . . ,Vm. (Recall that C′ does not contain some Vi means the unfolded
version of C′ does not contain V(s)

i ). Then, by Theorem 4.2, we know that for any Vi, i ∈ [m], it
follows that RVi ≥ R− (L2 +2L+2)/n. Therefore, from Theorem 2.4, for a random Fq-linear code
C ⊆ (Fq)

n, we know that

∀i ∈ [m], Pr[C contains Vi] ≤ q−εn+(L+1)2 ≤ (3ℓ)−2(L+1)n+2(L+1)3/ε

By a union bound over all these local profiles, it implies that

Pr[C is not (ρ, ℓ, L) list-recoverable] ≤
m∑
i=1

Pr[C contains Vi]

≤ (3ℓ)(L+1)n(3ℓ)−2(L+1)n+2(L+1)3/ε

= (3ℓ)−(L+1)n+2(L+1)3/ε ≤ on(1).

5 Applications to Matroid Theory

A primary application of our random-to-explicit reduction is contribute new algorithms in ma-
troid theory. We now present a few standard definitions in matroid theory (e.g., [Oxl06]).

A matroid is a pair M = (X, I), where X is a ground set and I is a set of subsets of X known
as independent sets subject to the conditions (1) that ∅ ∈ I, (2) if A ∈ I and B ⊆ A then B ∈ I,
and (3) if A,B ∈ I, with |B| > |A|, then there is x ∈ B \A with A∪{x} ∈ I. Maximal independent
sets are called bases. Any set A ⊆ X with A ̸∈ I is dependent. In particular, a dependent set A is
a circuit if every proper subset of A is independent (that is A is a minimal dependent set). We say
that any A ⊆ X containing a basis is spanning.

Every matroid M has an associated rank function rM, where for any A ⊆ X, rM(A) is the size
of the largest independent set B ∈ I which is a subset of A. In particular, A ⊆ X is independent if
and only if rM(A) = |A|. We define rM(X) (i.e., the size of every basis) to be the rank of M. Given
two matroids M1 := (X, I1) and M2 = (X, I2) on the same ground set, we say that M1 ⪯ M2 if
I1 ⊆ I2. In other words, rM1(A) ≤ rM2(A) for all A ⊆ X. Given matroids M on the same ground
set, we say that M ∈ M is maximal if N ̸≻ M for all N ∈ M.

By interpreting certain matroid properties as local profiles, we apply our random-to-explicit
reduction to obtain novel conditional deterministic algorithms for computing the rank functions of
various matroids. In this paper, we focus on the following three families of matroids.

Maximally Recoverable (MR) Tensor Code Matroid. Given a field F, an [n, k]-code is a
k-dimensional subspace C of Fn. Motivated by applications in distributed storage, Gopalan et
al. [GHK+17] studied the following code architecture. Pick parameters, m,n, a, b ∈ N and consider
a [m,m − a]-column code Ccol and a [n, n − b] row code Crow. The tensor product of these codes
Ccol ⊗ Crow := span{ccol ⊗ crow | ccol ∈ Ccol, crow ∈ Crow} ⊆ Fm×n is the set of all m × n matrices
with entries from F where every row is a codeword in Crow and every column is a codeword in Ccol.
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The tensor code Ccol⊗Crow has an associated correctability matroid on the ground set [m]× [n],
where a pattern E ⊆ [m] × [n] is independent in the matroid if and only if one can recover from
erasing the symbols associated with E. In other words, the punctured8 code (Ccol ⊗ Crow)|E has
dimension (m− a)(n− b). We call this matroid M(Ccol, Crow).

For a fixed choice of m,n, a, b, there are many possible matroids M(Ccol, Crow). However, there
is a provably unique maximal matroid of this form, which corresponds to the setting in which F is a
characteristic zero field (e.g., Q,R, or C) and Ccol and Crow are chosen uniformly from a continuous
distribution, which we call generic9 codes. In this paper, we denote this unique maximal matroid
by MR(m,n, a, b). Since Ccol ⊗ Crow has dimension (m − a)(n − b), the rank of this matroid is
mn− (m− a)(n− b) = bm+ an− ab.

Bipartitie Rigidity (Birigidity) Matroid. Kalai et al. [KNN15] posed the following geometric
question, which is a variant of the classical graph rigidity problem studied since the 19th cen-
tury [Max64]. Consider a bipartite graph G = (V,E) where V is the disjoint union of [m] and [n]
and E ⊆ [m] × [n]. Consider two embedding maps α : [m] → Rb × {0a} and β : [n] → {0b} × Ra.
Kalai et al. [KNN15] say this embedding is rigid if no infinitesimal change to α and β can preserve
the (ℓ2) length of every edge E. It turns out such rigid graphs correspond to the spanning sets of a
bipartite rigidity matroid with parameters (m,n, a, b). Like in the case of MR, if α and β are chosen
generically, there is a unique maximal generic birigidity matroid, which we denote by BR(m,n, a, b)
in this paper. See [KNN15,JT24,BDG+24a,CJJT25] for a more precise description of this matroid.

Recently Brakensiek et. al. [BDG+24a] proved all the MR and BR matroids are equal, so any
properties of one such matroid apply to the other.

Theorem 5.1 (Theorem 1.1(3) of [BDG+24a], restated). For all m,n, a, b ∈ N with m ≥ a and
n ≥ b, we have that MR(m,n, a, b) = BR(m,n, a, b).

Matrix Completion. In the case where a = b, BR(m,n, a, a) has an alternative interpretation
as the matrix completion problem (see [SC10,CJJT25]). In particular, for E ⊆ [m] × [n], imagine
that the entries indexed by E are revealed in a (say, complex-valued) m× n matrix. For a generic
(aka random) choice of these revealed entries, does there exist a rank a matrix M ∈ Cm×n which
corresponds to the revealed entries? Such questions are closely related to the Netflix problem in
machine learning (e.g., [NKS19,DGN+25]).

For all three of these families of matroids, it is a substantial open question to give a deterministic
polynomial time algorithm for detecting whether a pattern E ⊆ [m] × [n] is independent in these
matroids (e.g., [GHK+17, HPYWZ21, BGM22, JT24, BDG+24a, CJJT25]). Such an algorithm is
only known when a = 1 [Whi89, KNN15, GHK+17, BGM22, BGM23] or m − a ≤ 3 [BDG+24a].
We emphasize that all three of these matroids have efficient randomized algorithms by invoking
the Schwarz-Zippel lemma. In particular, the case a = b = 2 (aka rank 2 matrix completion) is
unresolved [Ber17,BDG+24a,CJJT25]. However, barring the resolution of RP = P, this approach
will not yield an efficient deterministic algorithm.

In an alternative direction, Jackson and Tanigawa [JT24] recently proved that the computa-
tional complexity of these rank functions lies in coNP if one makes a conditional assumption on the
structure of these rigidity matroids (see [JT24, Conjecture 6.4]). Improving on this result, we con-
ditionally show (under a weaker assumption) that detecting independence lies in P. More precisely,

8Given a code C ⊆ Fn and a set A ⊆ [n], we let C|A := {c|A : c ∈ C} ⊆ FA denote a puncturing of C.
9More precisely, “generic” refers to properties which are Zariski dense (in the sense of algebraic geometry). For our

purposes, a “generic” code is a random linear code for which the relevant matroid properties hold with probability 1.
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our matroid-theoretic assumption is a positive answer to a open question of Mason [Mas81], which
is formalized in Conjecture 5.5.

Theorem 5.2. Assuming Conjecture 5.5, Algorithm 1 computes whether E ⊆ [m]× [n] is indepen-
dent in MR(m,n, a, b) = BR(m,n, a, b) in deterministic poly(m,n) time.

By a standard oracle reduction (e.g., [Oxl06]), this also implies a deterministic poly(m,n)-time
algorithm for the rank function of MR(m,n, a, b).

Proof Overview

The proof of Theorem 5.2 has a number of components which we outline as follows. Building on
Section 3, our high-level goal is to show that the tensor product of two explicit folded Reed-Solomon
codes “simulates” the MR(m,n, a, b) matroid. However, the accuracy of this simulation is contingent
on the validity of Conjecture 5.5.

Section 5.1. First, we build up the necessary background needed to formally discuss Conjec-
ture 5.5. In particular, we define the notion of an abstract birigidity matroid [JT24,CJJT25] which
captures matroids which “look like” birigidity matroids. Conjecture 5.5 formalizes the intuition
of matroid theorists that MR(m,n, a, b) is the (unique) maximal abstract birigidity matroid. We
remark that Conjecture 5.5 is equivalent to a positive answer to a much older question due to
Mason [Mas81].

Section 5.2. Inspired by the potential functions of [LMS25], we define a potential function that is
(unconditionally) at least the rank function of MR(m,n, a, b). We show this potential function sat-
isfies the axioms of a matroid and that this matroid is an (m,n, a, b) abstract birigidity matroid. As
such, by Conjecture 5.5, we have that this potential function is the rank function of MR(m,n, a, b).

Section 5.3. Even with these facts in hand, directly computing this potential function is still
difficult, as it corresponds to the behavior of the tensor product of two random linear codes. By
adapting the framework of Section 3, we show that this potential function can be approximated
by the tensor product of two explicit folded10 Reed-Solomon codes. To do this, we actually need a
two-phase approach. First, we show that the tensor product of two random linear codes is closely
approximated by the tensor product of one random linear code with a folded Reed-Solomon code.
Then, we swap the roles of the two codes being tensored and construct a new potential function
which allows us to replace the remaining random linear code with another folded Reed Solomon
code. Unlike most applications of folded Reed Solomon codes, the folding parameters need to be of
size poly(m,n) so that the folded Reed-Solomon sufficiently approximate the worst-case rank loss
by the FRS codes.

Section 5.4. Finally, we present Algorithm 1, which constructs two folded Reed-Solomon codes,
takes their tensor product, and performs a (linear algebra) rank computation to obtain the rank
function of MR(m,n, a, b). The analysis is a straightforward combination of the tools built in the
previous sections.

10Although we are using the theory of folded Reed–Solomon codes, in the actual analysis we “unfold” the Reed–
Solomon codes and adjust the erasure patterns accordingly through what we call scaling.

19



5.1 Abstract Bipartite Rigidity Matroids

For the remainder of this section, we assume F is a field with characteristic 0 (e.g., Q,R,C). To
properly discuss Conjecture 5.5, we need to introduce the notion of an abstract birigidity matroid
(see [JT24,CJJT25]). There are a few equivalent definitions (see Theorem 5.29 of [CJJT25]), but
the following is the most convenient for our use case.

Definition 5.3 (e.g., [JT24, CJJT25]). For parameters (m,n, a, b), we say that a matroid M on
round set [m]× [n] is an (m,n, a, b)-abstract birigidity matroid if it meets the following conditions.

• The rank of M is bm+ an− ab.

• For every A ⊆ [m] of size a+ 1 and every B ⊆ [n] of size b+ 1, we have A×B is a circuit.

To gain some intuition, we first prove that ordinary tensor codes are an example of abstract
birigidity matroids if we make the assumption that Ccol and Crow are MDS codes. In particular, an
[n, k]-code C ⊆ Fn is MDS it attains the Singleton bound: every nonzero codeword has Hamming
weight at least n − k + 1. In matroid theory, such MDS codes correspond to uniform matroids,
where every subset of [n] of size n− k is a basis.

Proposition 5.4. For any [m,m − a]-MDS code Ccol and [n, n − b]-MDS code Crow, we have
that the correctability matroid for Ccol ⊗ Crow is an (m,n, a, b) abstract birigidity matroid. Thus,
MR(m,n, a, b) is an (m,n, a, b) abstract birigidity matroid.

Proof. As previously discussed, the rank of the correctability matroid is mn − (m − a)(n − b) =
bm + an − ab, as desired. It suffices to check for every A ⊆ [m] of size a + 1 and B ⊆ [n] of size
b+ 1 that A×B is a circuit.

First, too see that A×B is dependent in Ccol ⊗Crow, note that since Ccol is m− a-dimensional,
there exists at least one nonzero u ∈ Ccol supported on A. Likewise, there is at least one v ∈ Crow

supported on B. The codeword u⊗ v is supported entirely on A×B. Thus, erasing A×B makes
u⊗ v unrecoverable. Therefore, A×B is dependent.

However, consider any (a, b) ∈ A × B, we claim that A × B \ {(a, b)} is independent. The bth
column has exactly a erasures. Thus, by using the column parity checks of Ccol, we can recover the
entire column [m]×{b}. This leaves our erasure pattern as A× (B \{b}). Every row of this pattern
has at most b erasures, so we can use the parity checks of Crow to recover the rest of the codeword.
Thus, A×B \ {(a, b)} is independent.

Conjecture 5.5 (Conjecture 5.30 [CJJT25], restated). BR(m,n, a, b) = MR(m,n, a, b) is the max-
imal (m,n, a, b) abstract birigidity matroid.

This conjecture is equivalent to an affirmative answer to an open question raised by Ma-
son [Mas81] over 40 years ago on the most general possible tensor product of two uniform matroids.
We also note that the conditional assumption made by Jackson and Tanigawa [JT24] is a stronger
assumption than Conjecture 5.5 that particular rank estimation techniques in the generic bipartite
rigidity matroid are perfectly accurate [Lar25].

Remark 5.6. We now discuss the current evidence in the literature for and against Conjecture 5.5.
Much of this evidence is presented in Section 5 of the recent rigidity survey [CJJT25].

Currently, the strongest evidence for Conjecture 5.5 being true is that it has been proved in
the special cases when a = 1 [Whi89, KNN15, GHK+17] or m − a ≤ 3 [BDG+24a] (with other
parameters arbitrary). Of note, the truth of Conjecture 5.5 when a = 1 led [BGM23] to connect the
structure of higher order MDS codes to the recent algorithms for computing non-commutative ranks
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[GGOW20]. We note that the resolution of these cases a = 1 and m − a ≤ 3 imply Algorithm 1
is unconditionally correct in these settings, although efficient deterministic algorithms were already
known in such cases [BGM22,BDG+24a].

Conversely, the strongest evidence against Conjecture 5.5 is that the natural analogue of the
conjecture for (traditional) non-bipartite rigidity (where the entire graph is embedded into the same
space) is false when the ambient dimension is 4 or greater. In fact, such counterexamples have been
known for over 30 years–see the discussion surrounding Conjecture 5.7.1 in [GSS93] as well as the
discussion in Section 5.3.2 of [CJJT25]. However, no analogue of these constructions has been found
in the non-bipartite setting which disproves Conjecture 5.5.

To mitigate such concerns, we do not need the full power of Conjecture 5.5 to prove Theorem 5.2.
In particular, the maximality of MR(m,n, a, b) is not strictly required; rather, we merely need that
MR(m,n, a, b) is equal to the corresponding “potential matroid” which we construct in Section 5.2.
Thus, if one is pessimistic about the validity of Conjecture 5.5, one could use the novel matroid
construction in Section 5.2 as a new plan of attack toward generating counterexamples toward
Conjecture 5.5 and negatively answering the question of Mason [Mas81].

We also briefly touch on the coding theory implication if the fragment of Conjecture 5.5 we use is
false. In short, it would imply that the tensor product of two (random) folded linear codes has strictly
better11 maximally recoverability guarantees than the tensor product of two (random) linear codes.
In other words, for practical applications (see discussion in [GHK+17]), it may be preferable to
consider a folded linear architecture when designing tensor codes. For example, in [CCS25, Section
6], the authors use the tensor product of two explicit folded linear codes to construct graph codes.

5.2 The Potential Matroid

Fix parameters m,n, a, b ∈ N. Fix an [m,m − a] code Ccol ∈ Fm. Given a set A ⊆ [m], we
let FA ⊆ Fm denote the vector space spanned by the indicator vectors indexed by A. Inspired by
[LMS25], we now define the following potential function Φ on subsets E ⊆ [m]× [n] as follows.

Φ(E) := max
U⊆Ccol

−bdim(U) +
n∑

j=1

dim(U ∩ FEj )

 , (3)

where for all j ∈ [n], Ej := {i ∈ [m] | (i, j) ∈ E}. Further define

r(E) := |E| − Φ(E). (4)

Our first goal is to prove that r is the rank function of a matroid. Toward this, we need the following
subspace inequality.

Claim 5.7. For any subspaces X1, X2, Y1, Y2 ⊆ Fm
q , we have that

dim(X1 ∩ Y1) + dim(X2 ∩ Y2) ≤ dim((X1 ∩X2) ∩ (Y1 ∩ Y2)) + dim((X1 +X2) ∩ (Y1 + Y2)).

Proof. Observe that

dim(X1 ∩ Y1) + dim(X2 ∩ Y2)− dim((X1 ∩X2) ∩ (Y1 ∩ Y2)) = dim((X1 ∩ Y1) + (X2 ∩ Y2))
≤ dim((X1 +X2) ∩ (Y1 + Y2)),

11In fact, the folded RS codes will have a slightly smaller rate. However, it is a general phenomenon in coding
theory that explicitly simulating random linear codes requires a slack from the threshold, so an arbitrarily small rate
decrease as in our case should be in expectation. See Section III of [BDGZ25] for a theory of approximate MR tensor
codes with a rate slack.
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where the last inequality follows from the fact that X1 ∩ Y1 ⊆ (X1 +X2)∩ (Y1 + Y2) and X2 ∩ Y2 ⊆
(X1 +X2) ∩ (Y1 + Y2).

We now prove that r is the rank function of a matroid.

Lemma 5.8. There exists a matroid M(Ccol, n, b) over [m]× [n] with rank function r.

Proof. To show that r is the rank function of a matroid, we have to prove the following properties
(see Corollary 1.3.4 from [Oxl06])

1. r(E) ≤ |E| for all E ⊆ [m]× [n].

2. r(E) ≥ 0 for all E ⊆ [m]× [n].

3. For all E ⊆ F , we have that r(E) ≤ r(F ).

4. r is submodular: for all E,F ⊆ [m]× [n], we have that r(E ∩ F ) + r(E ∪ F ) ≤ r(E) + r(F ).

Item 1. First, by picking U = 0, we can see that Φ(E) ≥ 0. Thus, Item 1 immediately holds.

Item 2. Further, for any U ⊆ Ccol, we have that

−bdim(U) +
n∑

j=1

dim(U ∩ FEj ) ≤
n∑

j=1

|Ej | = |E|.

So, Φ(E) ≤ |E|, or r(E) ≥ 0, proving Item 2.

Item 3. For E ⊆ F , to show that r(E) ≤ r(F ), note that for any U ⊆ Ccol, we have that

−bdim(U) +
n∑

j=1

dim(U ∩ FEj ) ≥ −bdim(U) +
n∑

j=1

[
dim(U ∩ FFj )− |Fj \ Ej |

]
= −|F \ E| − bdim(U) +

n∑
j=1

dim(U ∩ FFj ).

This implies that Φ(E) ≥ Φ(F )− |F \ E|, which implies that r(E) ≤ r(F ), proving Item 3.

Item 4. Pick UE , UF ⊆ Ccol such that

Φ(E) = −bdim(UE) +

n∑
j=1

dim(UE ∩ FEj )

Φ(F ) = −bdim(UF ) +

n∑
j=1

dim(UF ∩ FFj )

Further observe that

Φ(E ∩ F ) ≥ −bdim(UE ∩ UF ) +

n∑
j=1

dim((UE ∩ UF ) ∩ FEj∩Fj )

Φ(E ∪ F ) ≥ −bdim(UE + UF ) +

n∑
j=1

dim((UE + UF ) ∩ FEj∪Fj ).
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Note that FEj∩Fj = FEj ∩ FFj and FEj∪Fj = FEj + FFj . Using Claim 5.7, we have that

Φ(E ∩ F ) + Φ(E ∪ F ) ≥ −bdim(UE ∩ UF ) +
n∑

j=1

dim((UE ∩ UF ) ∩ (FEj ∩ FFj ))

− bdim(UE + UF ) +

n∑
j=1

dim((UE + UF ) ∩ (FEj + FFj ))

≥ −bdim(UE)− bdim(UF ) +

n∑
j=1

[
dim(UE ∩ FEj ) + dim(UF ∩ FFj )

]
= Φ(E) + Φ(F ).

Since |E| + |F | = |E ∩ F | + |E ∪ F |, we have that r(E ∩ F ) + r(E ∪ F ) ≤ r(E) + r(F ), proving
Item 4.

Thus, r is indeed the rank function of a matroid.

We remark that Φ(E) = |E|− r(E) is called the corank function of M(Ccol, n, b). We next show
that M(Ccol, n, b) has more independent sets than M(Ccol, Crow).

Lemma 5.9. Let Crow ⊆ Fn be an arbitrary [n, n− b] code. If E is a correctable erasure pattern for
Ccol ⊗ Crow, then E is an independent set of M(Ccol, n, b).

Proof. We prove the contrapositive: assume that E is a dependent set of M(Ccol, n, b), we seek to
show that the erasure pattern E is not correctable in Ccol ⊗ Crow. Thus, Φ(E) ≥ 1. This means
there exists U ⊆ Ccol such that

−bdim(U) +
n∑

j=1

dim(U ∩ FEj ) ≥ 1.

We now invoke the a dimension-counting argument. Let Fm ⊗ Crow be the set of m × n matrices
each of whose m rows lies in Crow. Let

⊕n
j=1(U ∩ FEj ) be the set of m× n matrices, such that for

all j ∈ [n], the jth row lies in U and is supported on Ej . We see that

dim

Fm ⊗ Crow ∩
n⊕

j=1

(U ∩ FEj )


= dim

U ⊗ Crow ∩
n⊕

j=1

(U ∩ FEj )


= dim(U ⊗ Crow) +

n∑
j=1

dim(U ∩ FEj )− dim

U ⊗ Crow +
n⊕

j=1

(U ∩ FEj )


≥ (n− b) dim(U) + (bdim(U) + 1)− dim(U ⊗ Fn)

= 1,

Thus, there exists a nonzero codeword c ∈ Fm ⊗ Crow ∩
⊕n

j=1(U ∩ FEj ) ⊆ Ccol ⊗ Crow. In other
words, Ccol⊗Crow has a nonzero codeword supported on E. Therefore, E is not a correctable erasure
pattern in Ccol ⊗ Crow, as desired.

Next, we prove that M(Ccol, n, b) is an abstract rigidity matroid when Ccol is MDS.
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Lemma 5.10. If Ccol is an MDS [m,m − b] code, then M(Ccol, n, b) is an (m,n, a, b) abstract
rigidity matroid.

Proof. First, we need to show that the rank of M(Ccol, n, b) is bm+ an− ab. To see why, observe
that for all U ⊆ Ccol, we have that

−bdim(U) +
n∑

j=1

dim(U ∩ F[m]) = (n− b) dim(U).

Thus, Φ([m]× [n]) = (n−b) dim(Ccol) = (n−b)(m−a). Thus, r([m]× [n]) = mn− (m−a)(n−b) =
bm+ an− ab, as desired.

Second, we seek to show that for any A ⊆ [m] of size a+1 and B ⊆ [n] of size b+1 that A×B
is a circuit of M(Ccol, n, b). First, to see why A × B is dependent, let UA ⊆ Ccol be the set of
codewords supported on A. Since Ccol is an [m,m − a] MDS code and |A| = a + 1, we have that
dim(UA) = 1. Thus,

Φ(A×B) ≥ −bdim(UA) +
∑
j∈B

dim(UA ∩ FA) = −b+ (b+ 1) = 1.

Thus, r(A×B) < |A×B|, so A×B is dependent.
Pick any a ∈ A and b ∈ B. By Proposition 5.4, we have that A×B \ {(a, b)} is an independent

set of Ccol × Crow for any [n, n − b] MDS code Crow ⊆ Fn. Thus, by Lemma 5.9, we have that
A×B \ {(a, b)} is an independent set of M(Ccol, n, b).

We conclude this section with the following observation. If Ccol ⊆ Fm is a generic [m,m−a] code
and Crow ⊆ Fn is a generic [n, n− b] code, then both codes are MDS (e.g., [BGM22]). Further, we
have by Lemma 5.9 that M(Ccol, n, b) ⪰ M(Ccol, Crow) = MR(m,n, a, b). Since M(Ccol, n, b) is an
(m,n, a, b) abstract tensor matroid by Lemma 5.10, we have the following corollary of Conjecture 5.5.

Corollary 5.11. Assume Conjecture 5.5. Let Ccol ⊆ Fm be a generic [m,m − a] code, then
M(Ccol, n, b) = MR(m,n, a, b).

This corollary will be of use in the next section, where we seek to replace Crow (and later Ccol)
with a folded Reed-Solomon code.

5.3 Replacing Generic Codes with FRS

Building on the techniques of Section 3, we show how to replace the generic codes Ccol and
Crow with suitable (folded) Reed-Solomon codes. More precisely, fix parameters m,n, a, b ∈ N. Fix
parameters t := 2m2n and d := mn and construct the following datum:

• Let b′ := bt+ d.

• Pick β1, . . . , βn ∈ F and γ ∈ F such that the set Z := {αiγ
j | i ∈ [n], j ∈ {0, 1, . . . , t− 1}} has

exactly tn elements.

• Let CRS
row ⊆ Ftn be the [tn, tn − b′] Reed-Solomon code with evaluation points from Z. That

is, CRS
row = RSFtn,tn−b′(β1, γβ1, . . . , γ

t−1β1, . . . , βn, γβn, . . . , γ
t−1βn).

One acceptable choice of parameters (as done in Line 1) is to set γ = 2 and let β1, . . . , βn be
consecutive odd integers.

We seek to compare the matroid M(Ccol, Crow) with M(Ccol, C
RS
row). However, the matroids are

on different ground sets. To correct for this, we need to “scale” an erasure pattern E ⊆ [m]× [n] as
follows.
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Definition 5.12 (Pattern scaling). Given E ⊆ [m] × [n] and parameter s, t ∈ N, we define the
(s, t)-scaling of E to be the pattern Es,t ⊆ [sm]× [tn] such that

• if (i, j) ∈ E then (s(i− 1) + x, t(j − 1) + y) ∈ Es,t for all (x, y) ∈ [s]× [t], and

• if (i, j) ̸∈ E then (s(i− 1) + x, t(j − 1) + y) ̸∈ Es,t for all (x, y) ∈ [s]× [t].

The main goal of this section is to prove the following key “scaling” lemma.

Lemma 5.13. For all E ⊆ [m] × [n] we have that E is an independent set of M(Ccol, n, b) if and
only E1,t is an independent set of M(Ccol, C

RS
row).

The proof of Lemma 5.13 requires a careful adaptation of the techniques of Section 3. In some
sense, the adapted argument in this section is simpler, as we do not require the distinctness condition
needed in Section 3.

5.3.1 Dependent Sets Are Preserved

As a first step toward proving Lemma 5.13, we show that if E is a dependent set of M(Ccol, n, b),
then E1,t is a dependent set of M(Ccol, C

RS
row). The proof is an application of Lemma 5.9.

Proposition 5.14. If E is a dependent set of M(Ccol, n, b) then E1,t is a dependent set of M(Ccol, nt, b
′)

and thus a dependent set of M(Ccol, C
RS
row).

Proof. Since E is a dependent set of M(Ccol, n, b), we have that Φ(E) ≥ 1. In other words, for all
U ⊆ Ccol, we have that

n∑
j=1

dim(U ∩ FEj ) ≥ bdim(U) + 1 ≥
(
b+

1

m

)
dim(U).

Let Φ′ be the corresponding corank function of the matroid M(Ccol, tn, b
′). Note then that

Φ′(E1,t) = max
U⊆Ccol

−b′ dim(U) +

tn∑
j=1

dim(U ∩ FE1,t
j )


= t max

U⊆Ccol

−b′
t
dim(U) +

n∑
j=1

dim(U ∩ FEj )


≥ t max

U⊆Ccol

[
−b

′

t
dim(U) +

(
b+

1

m

)
dim(U)

]
= tm

(
b+

1

m
− b′

t

)
> 0,

where we use the fact that b′ = bt + d < bt + t
m . Thus, E1,t is dependent in M(Ccol, nt, b

′). By
Lemma 5.9, we have that E1,t is dependent in M(Ccol, C

RS
row), as desired.

5.3.2 Independent Sets Are Preserved

Next, we show the converse of Proposition 5.14, which is sufficient to prove Lemma 5.13.

Proposition 5.15. If E1,t is a dependent set of M(Ccol, C
RS
row) then E is a dependent set of

M(Ccol, n, b).
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Similar to argument in Section 3, the proof of Proposition 5.15 crucially uses the subspace design
properties underlying CRS

row. We use the following variant of the subspace design conditions proved
in Section 6.

Proposition 5.16. For j ∈ [n], let Ij := {(j − 1)t+1, (j − 1)t+2, . . . , jt}. For any linear subcode
V ⊆ CRS

row for which dim(V ) ≤ t, we have that

n∑
j=1

dim(V |Ij ) ≥ n dim(V )− dim(V )(tn− b′ − dim(V ))

t− dim(V ) + 1
.

We defer the proof of Proposition 5.16 to Section 6.1.4.

Proof of Proposition 5.15. Assume that E1,t is a dependent set of M(Ccol, C
RS
row). Thus, there is a

nonzero matrix M ∈ Ccol × CRS
row which is supported on E1,t. Let UM := colspan(M) ⊆ Ccol. We

seek to show that

−bdim(UM ) +

n∑
j=1

dim(UM ∩ FEj ) > 0, (5)

as this would prove that E is a dependent set of M(Ccol, n, b). Let VM := rowspan(M) ⊆ CRS
row, and

note that dim(UM ) = dim(VM ) = rankM ≤ m < t. By Proposition 5.16, we have that

n∑
j=1

dim(VM |Ij ) ≥ n dim(UM )− dim(UM )(tn− b′ − dim(UM ))

t− dim(UM ) + 1
.

For all j ∈ [n], let M |Ij be the restriction of M to the columns indexed by Ij . Since VM |Ij is
precisely the rowspan of M |Ij we have that dim(VM |Ij ) ≤ dim colspan(M |Ij ) ≤ dim(UM ∩ FEj ).
Therefore, we have that

−bdim(UM ) +
n∑

j=1

dim(UM ∩ FEj )

≥ (n− b) dim(UM )− dim(UM )(tn− b′ − dim(UM ))

t− dim(UM ) + 1

≥ dim(UM )

[
n− b− tn− b′ − dim(UM )

t− dim(UM ) + 1

]
≥ n− b− tn− b′ − 1

t−m+ 1
(since UM ̸= 0)

=
(n− b)(t−m+ 1)− tn+ tb+ d+ 1

t−m+ 1

=
d+ 1− (m− 1)(n− b)

t−m+ 1
> 0,

since d = mn > (m− 1)(n− b), as desired. This proves (5), completing the proof.

5.3.3 Tensoring Two Reed-Solomon Codes

As a near-immediate corollary of Lemma 5.13, we show that both Ccol and Crow can be replaced
by suitable RS codes. To do this, let s = 8m5n4 and d′ = 2m3n2.
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• Let a′ := sa+ d′.

• Pick α1, . . . , αm ∈ F and γ ∈ F such that the set Y := {αiγ
j | i ∈ [n], j ∈ {0, 1, . . . , s − 1}}

has exactly sm elements.

• Let CRS
col ⊆ Fsm be the [sm, sm− a′] Reed-Solomon code with evaluation points from Z.

Again, we may set γ = 2 and α1, . . . , αm to be consecutive odd integers. Since s = 2(2m2n2)2n
and d′ = (2m2n2)m, by Lemma 5.13, we have the following corollary.

Corollary 5.17. Let C ′
row be any [tn, tn − b′] code. For all E ⊆ [2m2n2] × [m] we have that E is

an independent set of M(C ′
row,m, a) if and only E1,s is an independent set of M(C ′

row, C
RS
col ).

By the theory of Section 5.2, we have our key structural result.

Lemma 5.18. Assuming Conjecture 5.5, E ⊆ [m] × [n] is an independent set of MR(m,n, a, b) if
and only if Es,t is an independent set of M(CRS

col , C
RS
row).

Proof. Pick (generic) [m,m − a] code Ccol and [n, n − b] code Crow such that M(Ccol, Crow) =
MR(m,n, a, b). By Lemma 5.9, any independent set E of MR(m,n, a, b) is an independent set of
M(Ccol, n, b). By Lemma 5.13, we have that E1,t is an independent set of M(Ccol, C

RS
row). Let

F ⊆ [n] × [m] be the “transpose” of E. Then, F t,1 is an independent set of M(CRS
row, Ccol). Thus,

by Lemma 5.9, we have that F t,1 is an independent set of M(CRS
row,m, a). By Corollary 5.17 with

C ′
row = CRS

row, we have that F t,s is an independent set of M(CRS
row, C

RS
col ), so Es,t is an independent

set of M(CRS
row, C

RS
col ).

For the other direction, assume E is dependent in M(Ccol, Crow). By Corollary 5.11, assuming
Conjecture 5.5, we have that E is dependent in M(Ccol, n, b). Pick a generic [tn, tn− b′] code C ′

row

such that we have M(Ccol, C
′
row) = MR(m, tn, a, b′). By Proposition 5.14, we have that E1,t is a

dependent set of M(Ccol, tn, b
′) ⪰ MR(m, tn, a, b′) = M(Ccol, C

′
row). Thus, F t,1 is a dependent set of

M(C ′
row, Ccol) = MR(tn,m, b′, a) = M(C ′

row,m, a), where the latter equality holds by Corollary 5.11
assuming Conjecture 5.5. By Proposition 5.14, we have that F t,s is a dependent set of M(C ′

row, C
RS
col ).

Thus, Es,t is a dependent set of M(CRS
col , Crow) and thus is a dependent set of M(CRS

col , C
RS
row).

5.4 Proof of Theorem 5.2

We next present Algorithm 1 which attempts to compute the rank function MR(m,n, a, b). In the
algorithm, we assume that F = Q. The correctness of this algorithm is conditional on Conjecture 5.5.

To complete the proof of Theorem 5.2, we need to prove that Algorithm 1 is correct (assuming
Conjecture 5.5) and that Algorithm 1 it indeed runs in deterministic polynomial time.

Correctness. The correctness follows immediately by Lemma 5.18.

Runtime Analysis. We note that this algorithm runs in polynomial time unconditionally, as
checking whether Es,t is independent in CRS

col ⊗ CRS
row is equivalent to checking that the dimension

of (CRS
col ⊗ CRS

row)|Es,t is (sm − a′)(tn − b′). This is equivalent to computing the rank of a matrix
with poly(m,n) entries each of which is an integer representable in poly(m,n) bits. The rank of
this matrix can be computed in polynomial time as Gaussian elimination can be done in strongly
polynomial time over Q [Sch86].
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Algorithm 1: (Conditional) Independence Oracle
Input: Parameters m,n, a, b ∈ N. Pattern E ⊆ [m]× [n].
Output: Whether E is independent in MR(m,n, a, b)

1 s := 8m5n4;
2 t := 2m2n;
3 a′ := sa+ 2m3n2;
4 b′ := sb+mn;
5 α1, . . . , αm := 1, 3, . . . , 2m− 1;
6 β1, . . . , βn := 1, 3, . . . , 2n− 1;
7 γ := 2;
8 CRS

col := RSQsm,sm−a′(α1, γα1, . . . , γ
s−1α1, . . . , αn, γαn, . . . , γ

s−1αm) ;
9 CRS

row := RSQtn,tn−b′(β1, γβ1, . . . , γ
t−1β1, . . . , βn, γβn, . . . , γ

t−1βn) ;
10 if Es,t is independent in CRS

col ⊗ CRS
row then

11 return INDEPENDENT;
12 end
13 return DEPENDENT ;

6 Improvements and Limitations for Subspace Designs

We now return to F representing an arbitrary field (possibly finite). Recall that a collection
of vector spaces H1, . . . ,Hn ⊆ Fk each of codimension s form an (ℓ, A)-strong subspace design for
some ℓ ≤ s if for all ℓ-dimensional U ⊆ Fk, we have that

n∑
i=1

dim(Hi ∩ U) ≤ A.

Likewise, we say that these spaces form an (ℓ, A)-weak subspace design if for all ℓ-dimensional
U ⊆ Fk, we have that

n∑
i=1

1[Hi ∩ U ̸= 0] ≤ A.

As shown by this paper, and many prior works (e.g., [GK16, GXY18, Tam24, CZ25]), strong and
weak subspace designs have proved important in near-optimal explicit constructions for various
coding theory problems. Thus, we seek to better understand what is the optimal choice of A for
various choices of F, n, k, ℓ. Toward this problem, we present two results, the first improves on the
well-known bound of Guruswmai and Kopparty [GK16].

Theorem 6.1. Assume that |F| > ns, then there exists an explicit choice of H1, . . . ,Hn ⊆ Fk of
codimension s which forms an (ℓ, ⌊ ℓ(k−ℓ)

s−ℓ+1⌋) strong subspace design.

This improves on Guruswami and Kopparty’s bound of ⌊ ℓ(k−1)
s−ℓ+1 ⌋ by using a near-identical con-

struction and a slightly more refined analysis.
Our second result, more surprisingly, shows that Theorem 6.1 is tight when F is an algebraically

closed field and n is sufficiently large.

Theorem 6.2. Let F be an algebraically closed field (of any characteristic), then for any H1, . . . ,Hn ⊆
Fk of codimension s (possibly with repetition), if n ≤ ℓ(k−ℓ)

s−ℓ+1 , then there exists an ℓ-dimensional sub-
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space U ⊆ Fk which has nontrivial intersection with each Hi. In other words, if n ≥ ⌊ ℓ(k−ℓ)
s−ℓ+1⌋ then

a (ℓ, ⌊ ℓ(k−ℓ)
s−ℓ+1⌋ − 1) weak subspace design does not exist.

The main technique toward proving Theorem 6.2 is to use Schubert calculus to analyze how
the conditions U ∩ Hi affect the structure of the projective variety induced by all ℓ-dimensional
subspaces of Fk (a.k.a., the Grassmannian). We prove Theorem 6.1 and Theorem 6.2 in Section 6.1
and Section 6.2, respectively. However, Theorem 6.2 does not apply over non-algebraically closed
fields. See Section 6.3 for a counterexample.

6.1 An Improved Analysis of Guruswami–Kopparty

Toward proving Theorem 6.1, we begin by discussing the subspace design construction of
Guruswami–Kopparty [GK16] and then explaining how to improve upon their analysis. First,
observe that Fk is in bijection with the vector space of polynomials f ∈ F[x]<k of degree less than k.
Pick a nonzero element γ ∈ F of order at least k, as well as nonzero α1, . . . , αn, we call this choice
of γ, α1, . . . , αn appropriate if all of

{γj−1αi : (i, j) ∈ [n]× [s]}

are distinct. Given an appropriate choice, Guruswami–Kopparty construction H1, . . . ,Hn ⊆ Fk as
follows. For each i ∈ [n], let Hi be the set of all polynomials f ∈ F[x]<k with α1, γα1, . . . , γ

s−1α1

as roots. By the appropriate condition, each Hi has codimension s.
We now seek to show that (H1, . . . ,Hn) form a strong subspace design with the parameters of

Theorem 6.1. Fix an ℓ-dimensional U ⊆ F[x]<k as well as a polynomial basis f1, . . . , fℓ of U . Recall
from Definition 2.1, the Wronskian of this basis is as follows

Wγ (f1, . . . , fℓ) (X)
def
=


f1(X) . . . fℓ(X)
f1(γX) · · · fℓ(γX)

...
. . .

...
f1
(
γℓ−1X

)
· · · fℓ

(
γℓ−1X

)
 ,

where X is a symbolic variable (i.e., the entries of the matrix lie in F[X]). Note our application is
a bit more general than Definition 2.1, as we no longer assume γ is a multiplicative generator. The
following lemma is key.

Lemma 6.3. Let p(X) = detWγ(f1, . . . , fℓ)(X). Then, p has the following properties.

(a) If the multiplicative order of γ is at least k, then p(X) ̸= 0.

(b) The degree of p(X) is at most ℓk −
(
ℓ+1
2

)
.

(c) X(ℓ2) is a factor of p(X).

(d) If dim(Hi ∩ U) = di, then (X − α1)
di , . . . , (X − γs−ℓα1)

di are factors p(X).

Note that (a), (b), (c) improve upon Guruswami–Kopparty in various ways, while (d) is identical.
more precisely, for (a), Guruswami–Kopparty assume that γ is a multiplicative generator of F,
although we relax that to just needing a lower bound on the order of γ. For (b), we improve over
their bound of ℓ(k − 1), and no observation like (c) appears in [GK16]. Assuming Lemma 6.3,
Theorem 6.1 follows easily.
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Proof of Theorem 6.1. Construct H1, . . . ,Hn ⊆ Fk as indicated above. Consider any ℓ-dimensional
W ⊆ Fk as well as a corresponding nonzero polynomial p(X) of Lemma 6.3. By Lemma 6.3(b), we
know that deg p ≤ ℓk −

(
ℓ+1
2

)
. By Lemma 6.3(c) 0 is a root of p(X)

(
ℓ
2

)
times. By Lemma 6.3(d)

we know that each of αi, . . . , γ
s−ℓαi is are roots of p with multiplicity at least dim(Hi ∩ U) each.

Thus, since α1, . . . , αn, γ are appropriate, we have that

ℓk −
(
ℓ+ 1

2

)
≥ deg p ≥

(
ℓ

2

)
+

n∑
i=1

(s− ℓ+ 1) dim(Hi ∩ U).

Thus,
ℓ(k − ℓ)

s− ℓ+ 1
≥

n∑
i=1

dim(Hi ∩ U),

as desired.

We now proceed to prove the various parts of Lemma 6.3.

6.1.1 Proof of Lemma 6.3(a) and (b)

This proof technique appears in [Gur11], but we give the argument for completeness.12 Recall
that Wγ(f1, . . . , fℓ)(X) depends on the choice of basis f1, . . . , fℓ of U . However, any two bases
f1, . . . , fℓ and g1, . . . , gℓ of U are related by an invertible matrix Q ∈ Fℓ×ℓ where gi =

∑ℓ
j=1Qi,jfj .

As such, it is not hard to see then that

Wγ(g1, . . . , gℓ)(X) =Wγ(f1, . . . , fℓ)(X)Q⊤,

In particular,
detWγ(g1, . . . , gℓ)(X) = detWγ(f1, . . . , fℓ)(X) detQ,

where detQ is a nonzero element of F. Thus, for any of (a)-(d) in Lemma 6.3, we may freely pick
a basis of U which is most convenient for that part. For parts (a) and (b), we consider a basis
f1, . . . , fℓ of U for which deg f1 < deg f2 < · · · < deg fℓ < k. For each i ∈ [ℓ], let di = deg fi.
Furthermore, let c1, . . . , cℓ ∈ F× be the leading coefficients of f1, . . . , fℓ.

It is clear that if p(X) = detWγ(f1, . . . , fℓ)(X) is nonzero, then deg p ≤ d1 + · · · + dℓ ≤
(k − ℓ) + (k − (ℓ − 1)) + · · · + (k − 1) = ℓk −

(
ℓ+1
2

)
. Thus, (a) implies (b). To show (a), we prove

that the coefficient Xd1+···+dℓ of p(X) is nonzero. To see why, note that the coefficient of Xd1+···+dℓ

in the expansion of detWγ(f1, . . . , fℓ)(X) is

∑
σ∈Sℓ

(−1)σ
ℓ∏

i=1

ci(γ
σ(i)−1X)di = γ−ℓ

ℓ∏
i=1

ciX
di ·

[∑
σ∈Ss

(−1)σγd1σ(1)+···+dℓσ(ℓ)

]
,

where Sℓ is the set of permutations of [ℓ] and (−1)σ is the sign of a particular permutation σ ∈ Sℓ.
Now observe that

∑
σ∈Sℓ

(−1)σγd1σ(1)+···+dℓσ(ℓ) = det


1 1 · · · 1
γd1 γd2 · · · γdℓ

...
...

. . .
...

γ(ℓ−1)d1 γ(ℓ−1)d2 · · · γ(ℓ−1)dℓ

 .

This is nonzero only if γdi = γdj for some i and j. But, since the order of γ is at least k, this cannot
happen. Thus, we have proved (a) and also (b).

12See also https://www.cnblogs.com/Elegia/p/18738181/wronskian
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6.1.2 Proof of Lemma 6.3(c)

As mentioned in Section 6.1.1, we may pick a most convenient basis to prove this part. By
computing a suitable row-echelon form of U , we may assume that our basis f1, . . . , fs of U has the
property that fi is divisible by Xi−1 for all i ∈ [ℓ]. Thus, p(X) must be divisible by

∏ℓ
i=1X

i−1 =

X(ℓ2), as desired.

6.1.3 Proof of Lemma 6.3(d)

Assume that dim(Hi∩U) = di. Thus, there exists a basis f1, . . . , fℓ of W for which f1, . . . , fdi ∈
Hi. Now for any β ∈ {αi, . . . , γ

s−ℓαi}, observe that the first di columns of Wγ(f1, . . . , fℓ)(β) are
identically zero. That is, each of the first di columns of Wγ(f1, . . . , fℓ)(X) are divisible by X − β.
Thus, p(X) must be divisible by (X − β)di for all β ∈ {αi, . . . , γ

s−ℓαi}, as desired.

Remark 6.4. If dim(Hi ∩ U) ≥ 2, then we can identify additional roots of p(X) (e.g., γ−1αi).
This allow for a tighter analysis in various applications, although we defer such arguments to future
work.

6.1.4 Proof of Proposition 5.16

We now prove Proposition 5.16, which we state in more generality as follows.

Proposition 6.5. Let CRS ⊆ Fsn be an [sn, k] Reed-Solomon code with evaluation points

(α1, γα1, . . . , γ
s−1α1, . . . , αn, γαn, . . . , γ

s−1αn).

For i ∈ [n], let Ii := {s(i − 1) + 1, s(i − 1) + 2, . . . , si}. For any subcode V ⊆ CRS for which
dim(V ) ≤ s, we have that

n∑
i=1

dim(V |Ii) ≥ n dim(V )− dim(V )(k − dim(V ))

s− dim(V ) + 1
. (6)

Proof. Let ψ : F<k[x] → CRS be the canonical encoding map of CRS . That is,

ψ(f) = (f(α1), f(γα1), . . . , f(γ
s−1α1), . . . , f(αn), f(γαn), . . . , f(γ

s−1αn)).

Since V ⊆ CRS is a subcode, there exists a unique U ⊆ F<k[x] with dim(U) = dim(V ) for which
ψ(U) = V .

Let H1, . . . ,Hn ⊆ F<k[x] be spaces of codimension s such that Hi corresponds to polynomials
of degree less than k with {αi, γαi, . . . , γ

s−1αi} as roots. By Theorem 6.1, we have that

n∑
i=1

dim(Hi ∩ U) ≤ dim(U)(k − dim(U))

s− dim(U) + 1
=

dim(V )(k − dim(V ))

s− dim(V ) + 1
.

Thus, to prove (6), it suffices to prove that dim(V |Ii) = dim(U)−dim(U ∩Hi) for all j ∈ [n]. Given
u ∈ U , we have that ψ(u)|Ii = 0s if and only if u ∈ Hi. In other words, dimV |Ii = dimψ(U)|Ii =
dim(U)− dim(Hi ∩ U), as desired.

6.2 Lower Bounds over Algebraically Closed Fields

We now turn toward proving limitations on subspace designs. To prove Theorem 6.2, we first
need some machinery from algebraic geometry.
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6.2.1 Grassmaniann and Plücker Coordinates

Note that a subspace design is a list of algebraic conditions for all ℓ-dimensional W ⊆ Fk. The
set of all such subspaces is known as the Grassmannian Gr(ℓ,Fk) (see [LB15] for a comprehensive
reference). To study Gr(ℓ,Fk) algebraically, we use what are known as Plücker coordinates. More
precisely, we can identify any ℓ-dimensional U ⊆ Fk with a matrix MU ∈ Fℓ×k whose ℓ rows form
a basis of U . For each S ∈

([k]
ℓ

)
, we define the Sth Plücker coordainte to be pS(U) := det(MU |S),

where |S is the restriction to the columns indexed by S. Now, observe that different bases MU of
U may produce different Plücker coordinates. However, one can show that any two sets of Plücker
coordiantes of W have the same up to a global nonzero scalar (i.e., pS(U) = λqS(U) for some λ ∈ F×

for all S ∈
([k]
ℓ

)
). In other words, we think of Gr(ℓ,Fk) as a projective variety. A crucial fact we

shall use is that the dimension of Gr(ℓ,Fk) is ℓ(k − ℓ) [Har92,LB15].

6.2.2 Schubert Variety

Recall that a weak subspace design consists of a number of constraints of the form dim(H ∩
U) ≥ 1, where H is a fixed subspace and U is selected from the Grassmannian Gr(ℓ,Fk). The set
VH ⊆ Gr(ℓ,Fk) of U which satisfy this condition is a special case of a Schubert (sub)variety.

Definition 6.6 (Schubert Variety, (e.g., [LB15])). Given a vector space Fk = ⟨e1, . . . , ek⟩ and an
integer ℓ ∈ {0, 1, . . . , k}, consider a sequence a⃗ = (a1, . . . , aℓ) be a sequence of integers 1 ≤ a1 <
a2 < · · · < aℓ ≤ k. We then define

Scha⃗(ℓ, e1, . . . , ek) := {U ∈ Gr(ℓ,Fk) : ∀i ∈ [ℓ],dim(W ∩ ⟨ej : j ∈ [ai]⟩) ≥ i}.

In particular, if a⃗ = (k − ℓ + 1, k − ℓ + 2, . . . , k), then Scha⃗(ℓ, e1, . . . , ek) = Gr(ℓ,Fk) because
every U ∈ Gr(ℓ,Fk) satisfies

dim(U ∩ ⟨ej : j ∈ [k − ℓ+ i]⟩) ≥ dim(U) + dim(⟨ej : j ∈ [k − ℓ+ i]⟩)− k

= ℓ+ k − ℓ+ i− k ≥ i. (7)

Besides the fact that each Scha⃗ is a projective variety, we also need the following formula for
the (Krull) dimension (see [Har77] for a precise definition) of each variety.

Theorem 6.7 (e.g., Theorem 5.3.7 [LB15]). For all a⃗ = (a1, . . . , aℓ) with 1 ≤ a1 < a2 < · · · < aℓ ≤
k, we have that

dimScha⃗(ℓ, e1, . . . , ek) =
ℓ∑

i=1

(ai − i).

In particular, the choice a⃗ = (k − ℓ + 1, k − ℓ + 2, . . . , k) implies that dimGr(ℓ,Fk) = ℓ(k − ℓ)
(Corollary 5.3.8 [LB15]). As an immediate corollary of Theorem 6.7, we can compute the dimension
of each VH := {U ∈ Gr(ℓ,Fk) : VH ∩ U ̸= 0} we need for analyzing subspace varieties.

Corollary 6.8. For any H ⊆ Fk of dimension k−s with s ≥ ℓ, we have that VH = {U ∈ Gr(ℓ,Fk) :
VH ∩ U ̸= 0} is projective variety of dimension ℓ(k − ℓ)− (s− ℓ+ 1).

Proof. Let b1, . . . , bk be a basis of Fk such that b1, . . . , bk−s is a basis of H. Let a⃗ = (k − s, k − ℓ+
2, · · · , k). We claim that Scha⃗(ℓ, b1, . . . , bk) = VH . To see why, note that for i ≥ 2, the condition
that dim(U ∩ ⟨bj : j ∈ [ai]⟩) ≥ i in Scha⃗ is immediate from (7). Furthermore, by the choice of basis,
the condition dim(U ∩ ⟨bj : j ∈ [k − s]⟩) ≥ 1 is exactly dim(U ∩H) ≥ 1, i.e., U ∩H ̸= 0. Thus, VH
is a projective subvariety of Gr(ℓ,Fk).
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To finish, we apply Theorem 6.7 to get that

dim(VH) = a1 − 1 +
ℓ∑

i=2

(ai − i) = (k − s− 1) + (ℓ− 1)(k − ℓ) = ℓ(k − ℓ)− (s− ℓ+ 1),

as desired.

6.2.3 Proof of Theorem 6.2

To prove Theorem 6.2, we use a standard fact of algebraic geometry that dimensions of inter-
sections of projective varieties behave analogously to that of vector spaces.

Proposition 6.9 (Lemma 43.13.14 [Aut] and Theorem I.7.2 [Har77], adapted). Let X,Y, Z be
projective varieties over an algebraically closed field with X,Y ⊆ Z. If dim(X)+dim(Y ) ≥ dim(Z),
then X ∩ Y is nonempty and has dimension13 at least dim(X) + dim(Y )− dim(Z).

Theorem 6.10 (Theorem 6.2 restated). Let F be an algebraically closed field (of any characteristic),
then for any H1, . . . ,Hn ⊆ Fk of codimension s (possibly with repetition), if n ≤ ℓ(k−ℓ)

s−ℓ+1 , then there
exists an ℓ-dimensional subspace U ⊆ Fk which has nontrivial intersection with each Hi. In other
words, if n ≥ ⌊ ℓ(k−ℓ)

s−ℓ+1⌋ then a (ℓ, ⌊ ℓ(k−ℓ)
s−ℓ+1⌋ − 1) weak subspace design does not exist.

Proof of Theorem 6.2. Let VHi be the subvariety of Gr(ℓ,Fk) corresponding to the U for which
Hi∩U ̸= 0. It suffices to prove that if n ≤ ℓ(k−ℓ)

s−ℓ+1 then
⋂n

i=1 VHi ̸= ∅. By Corollary 6.8, we have that
dim(VHi) = ℓ(k− ℓ)− (s− ℓ+1) for all i ∈ [n]. We claim by induction for all m ∈ [n] that

⋂m
i=1 VHi

is nonempty with each irreducible component having dimension at least ℓ(k − ℓ) −m(s − ℓ + 1).
The base case of m = 1 is precisely Corollary 6.8. For m ≥ 2, assume the inductive hypothesis for
m− 1 and apply Proposition 6.9 with X =

⋂m−1
i=1 VHi , Y = VHm and Z = Gr(ℓ,Fk). Then, observe

that

dim(X)+dim(Y )−dim(Z) ≥ ℓ(k−ℓ)−(m−1)(s−ℓ+1)+ℓ(k−ℓ)−(s−ℓ+1)−ℓ(k−ℓ) = ℓ(k−ℓ)−m(s−ℓ+1).

Therefore, since m ≤ n ≤ ℓ(k−ℓ)
s−ℓ+1 , we have that dim(X) + dim(Y ) − dim(Z) ≥ 0, so

⋂m
i=1 VHi is

nonempty with dimension at least ℓ(k− ℓ)−m(s− ℓ+1). In particular, when m = n, we have that⋂n
i=1 VHi is nonempty, so (H1, . . . ,Hn) cannot be an (ℓ, n− 1) weak subspace design.

6.3 Theorem 6.2 does not apply to F3

We now show that Theorem 6.2 does not apply when F is not algebraically closed. Let e1, . . . , e4
be a basis of F4

3 and let

H1 = ⟨e1, e2⟩
H2 = ⟨e3, e4⟩
H3 = ⟨e1 + e3, e2 + e4⟩
H4 = ⟨e1 + e4, e2 − e3⟩.

Proposition 6.11. H1, . . . ,H4 form a (2, 3)-weak subspace design.

Thus, Theorem 6.2 cannot be extended to F3

13Technically, the result applies to the each irreducible component of the respective varieties, but here we define
the dimension of a variety to be the maximum dimension of its irreducible components.
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Proof. We seek to show that there is no 2-dimensional U ⊆ F4
3 which intersects every Hi. Assume

for sake of contradiction that there exists a U for which Hi ∩W ̸= 0. Since H1 and H2 are disjoint
and U is 2-dimensional, there exist λ1, . . . , λ4 ∈ F3 with (λ1, λ2), (λ3, λ4) ̸= (0, 0) such that

U = ⟨λ1e1 + λ2e2, λ3e3 + λ4e4⟩.

Now, in order for U ∩H3 ̸= 0, we must have that (λ1, λ2) is a scalar multiple of (λ3, λ4). Since U
is invariant to the scaling of its basis, we may assume without loss of generality that λ3 = λ1 and
λ4 = λ2. Now, since U ∩H4 ̸= 0, there exists a, b, c, d ∈ F3 with (a, b) ̸= (0, 0) and (c, d) ̸= (0, 0)
such that

a(λ1e1 + λ2e2) + b(λ1e3 + λ2e4) = c(e1 + e4) + d(e2 − e3).

As such, we get the following system of equations

aλ1 = c

aλ2 = d

bλ1 = −d
bλ2 = c.

Thus, aλ1 = bλ2 and aλ2 = −bλ1. Since (λ1, λ2) ̸= (0, 0). We break into cases.
First, if λ1 ̸= 0, we have that a = bλ2/λ1, so we get that bλ22 = −bλ21. If b = 0, then a = 0 which

contradicts that (a, b) ̸= (0, 0). Thus, b ̸= 0 so λ21 + λ22 = 0, but the only solution to this equation
over F3 is (λ1, λ2) = (0, 0), a contradiction.

Likewise, if λ2 ̸= 0, we get a = −bλ1/λ2 so −bλ21 = bλ22. We then proceed by identical logic to
the previous case. Thus, (H1, . . . ,H4) is a (2, 3) weak subspace design.

Remark 6.12. If we look at a quadratic extension of F3, then the equation λ21+λ22 = 0 has nonzero
solutions, from which we can then construct a subspace U intersecting all four spaces.
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