
Strong (D)QBF Dependency Schemes via Pure
Universal Resolution Paths

Leroy Chew and Tomáš Peitl

TU Wien, Austria

Abstract. Certification for Quantified Boolean Formulas (QBF) and
Dependency Quantified Boolean Formulas is an ongoing challenge (DQBF).
Recent proof complexity work has shown that the majority of QBF and
DQBF techniques can be p-simulated by using the independent exten-
sion rule. In propositional logic, extension rules are supported by proof
checkers using a more general RAT (Resolution Asymmetric Tautology)
rule. The obvious next step in (D)QBF certification would be to update
these modern RAT formats to match the strength of this independent
extension rule.
In this paper we make a theoretical observation, that potentially makes
this next step in certification easier. We observe that adding a new de-
pendency scheme rule to the checking format DQRAT is p-equivalent
to the inclusion of the independent extension variable. Our new de-
pendency scheme rule, the pure-universal dependency scheme (D∀pure)
shares many similarities to tautology-free dependency schemes, but is
special enough not to be covered in the previous literature.
In addition to soundness we show D∀pure has two other properties that
have been found for previous dependency schemes, and each of these ob-
servations has potential in solving/checking. We demonstrate a strategy
extraction theorem for LD-Q-resolution equipped with D∀pure, mean-
ing it can be incorporated soundly into the dependency learning solver
Qute. And we also demonstrate how D∀pure can be incorporated in the
same way Extended Universal Reduction has used previous dependency
schemes.

1 Introduction

Our main motivation comes from the recent introduction of a new proof rule
known as independent extension [17], which has desirable certification properties.
The central observation of this paper is that we can readily simulate independent
extension, with only a quick “fix” of existing certification rules. The fix is a sound
relaxation of the order of quantification and also works with solvers. In this paper
we explore how, why and to what extent this works.

1.1 Background

The canonical NP-complete problem is propositional satisfiability (SAT), and if
we extend it with a prefix of Boolean quantifiers we get the Quantified Boolean

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 149 (2025)

2 Leroy Chew, Tomáš Peitl

Formula (QBF) problem which is then considered the canonical PSPACE-complete
problem. We can extend QBF even further into Dependency QBF (DQBF),
where Boolean quantification still occurs, but the quantification order is not
dictated by a linear prefix. Instead, every existentially quantified variable is
given an explicit set of variables that it comes ‘after’. DQBF is considered a
more expressive language than QBF as it is NEXPTIME-complete rather than in
PSPACE.

While research into DQBF is studied for its own sake, DQBFs often appear
in QBF research, because making changes to the quantification order in a QBF
can make a QBF easier to solve or prove, and occasionally such changes require
us to shift to a non-linear quantifier prefix. One common example is when solvers
and proof systems employ dependency schemes, which calculate whether a de-
pendency of one quantified variable to another is necessary or spurious. We can
think of this as a transformation from a QBF to a DQBF as the prefix is recalcu-
lated to remove spurious dependencies. An example of well-studied dependency
is the reflexive resolution path dependency scheme denoted by the symbol Drrs.
This detects that a dependency is spurious if there is no sufficient pair of res-
olution paths (see Section 2 for the definition of a resolution path) from the
universal to existential literals. Further investigation found the tautology-free
dependency scheme Dtf [6], where it was apparent that we were able to soundly
ignore a resolution path in Drrs if it traversed what was essentially a tautology,
thus we can remove more dependencies in Dtf than in Drrs. Tautology-free de-
pendency schemes can be generalised into implication-free dependency schemes
[7].

The use of a whole range of transformations from QBF to DQBF, which is
often done only implicitly, has made deciding a commonly agreed upon QBF
proof format more challenging. Theoretical proof systems such as the sequent
calculus G [30](named after Gentzen who pioneered sequent calculi) assume a
neat symmetry between true and false as QBF is closed under negation and
PSPACE is self-complementary, but DQBF is not alike in this way and has an
inherent asymmetry between ∃ and ∀. In addition, theoretical proof systems
make poor checking formats in a practical setting because they do not generalise
existing practical formats and often proofs with polynomial size upper bounds
are still considered too large in practice.

One noteworthy QBF format that attempts to tackle this issue is QRAT
(Quantified Resolution Asymmetric Tautology)[23]. In addition to generalising
the rules of the propositional proof system DRAT (Deletion Resolution Asymmet-
ric Tautology), which is the closest system propositional logic has to a standard
format, QRAT can detect the same side conditions that a dependency scheme de-
tects. Instead of modifying the quantifier prefix, QRAT modifies a clause instead.
Such a combination of rules ends up being incredibly powerful and QRAT can p-
simulate a majority of the solving and preprocessing techniques in QBF, despite
the large disparity of these techniques. This is incredibly fortunate overall, but it
is not directly possible in QRAT to treat a QBF with a dependency scheme as a
DQBF, as we soundly ought to be able to do. In fact, QRAT has been proven on

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 3

a theoretical level to be no stronger than G, so even its detection of dependency
schemes is no more than a sufficient combination of fundamental QBF steps. In
an attempt to build QRAT into a genuine DQBF proof system, Blinkhorn pro-
posed [12] the DQBF proof system DQRAT (Dependency Quantified Resolution
Asymmetric Tautology) and DQRAT can handle dependency schemes directly.
However, DQRAT has not been developed since its initial introduction, nor is
there a substantial body of proof complexity follow up work that discusses it.

Nonetheless, work into strong DQBF proof systems may yet be fruitful. Re-
cent developments in QBF proof complexity have shown that a new DQBF
proof system IndExtQURes (where the power comes from an Independent Ex-
tension rule) can p-simulate practically everything in QBF and DQBF includ-
ing G, QRAT, DQRAT and some dependency scheme rules such as Drrs [17].
IndExtQURes is not yet a practical format, and the proposed next step in the
paper by Chew and Peitl introducing IndExtQURes was to find a RAT version
which was p-equivalent or more powerful.

In this paper we show that finding such a system, does not require us to
rethink how RAT works in DQBF. In fact, it can be as straightforward as
adding one additional rule to the existing system DQRAT. This rule is sim-
ply a new dependency scheme, which we name the pure universal dependency
scheme (D∀pure). D∀pure works in the same conceptual way as tautology-free
dependency schemes, but has different side conditions. We cover the proof the-
oretical and proof complexity properties of D∀pure. Many of the properties, that
we show, strengthen the case for D∀pure in various practical settings. For ex-
ample, showing that D∀pure allows for strategy extraction in a resolution proof
system shows that D∀pure can soundly be integrated into the solver Qute. When
we show that D∀pure can be used for clause modification this means that the
proof checker QRAT-trim can be soundly generalised by changing a couple of
lines. As we have already emphasised, our major contribution is that D∀pure can
strengthen DQRAT to be at least as strong as all other well-studied QBF and
DQBF proof systems theoretical and practical. We avoid having to show each
of these p-simulations individually, instead we show that DQRAT+D∀pure and
IndExtQURes are p-equivalent, and rely transitively on the p-simulation results
on IndExtQURes shown in the paper by Chew and Peitl [17].

1.2 Related Work

QBF and DQBF proof complexity has been extensively studied, including work
on QBF clause learning proof systems systems [2,3,8], expansion-based proof
systems [24,11,10] and stronger proof systems that go beyond current solving
techniques [23,9,30]. One specific subtopic, the line of dependency scheme re-
search, has progressed over the last decade. The standard dependency scheme
was developed originally by Samer and Szeider [43]. The reflexive resolution path
dependency scheme was developed by Slivovsky and Szeider [44]. The tautology-
free dependency scheme was developed by Beyersdorff, Blinkhorn and Peitl [6].
Later the same set of authors developed a framework of an infinite number of
implication-free dependency schemes [7]. The schemes progress in difficulty and

4 Leroy Chew, Tomáš Peitl

trend towards conceptual dependency schemes that may not have polynomial-
time checkability.

The main motivation of this work was to capture the power of indepen-
dent extension clauses [17] for DQBF. Independent extension generalises weaker
forms of QBF extension in QBF [25,9]. Independent extension involves condi-
tioning on assignments, and similar ideas have been employed in other works
such as conditional autarkies [26,32]. There are many generalisations that cap-
ture extension clauses in other domains. Blocked clause elimination and addition
considers redundant clauses that can be safely added or removed without chang-
ing satisfiability [31]. Resolution asymmetric tautologies (RAT) [22] generalise
blocked clauses, and propagation redundancies generalise RAT even further [21].

This work involves the improvement of DQRAT to DQRAT+D∀pure . DQRAT
[12] is the result of generalising RAT addition rules in DQBF. Previously RAT
was generalised into QBF through QRAT [23] and QRAT+ [34], these are QBF
proof systems, but specifically designed for certification. As an alternative to
these formats, the qrp format [36] can be used to provide more straightforward
resolution type proofs, and recent work [40] aims to expand the potential of qrp
proofs.

2 Preliminaries

2.1 Propositional Logic

A propositional variable x is single variable that represents a Boolean value. A
literal is either a Boolean constant (0, 1), a propositional variable x or its negation
¬x. We use the x̄ notation to switch between a negated and non-negated literals
and acts as an involution: 0̄ = 1 , 1̄ = 0, x̄ = ¬x and (¬x) = x. A clause is a
disjunction (logical or) of propositional literals e.g. x∨¬y∨¬z. The empty clause
(⊥) is the clause that contains no variables, and should be interpreted as false.
Clauses that contain 1 are considered satisfied clauses, which are equivalent to
tautological clauses that contain a variable in both polarities as x ∨ ¬x implies
1. We typically will remove clauses that are satisfied or tautological. When a
clause contains more than one copy of the same literal we can use idempotence
to remove extra copies of that literal. We can also soundly remove any occurrence
of the falsified literal 0 from a clause. Clauses that contain only one literal are
known as unit clauses.

A conjunctive normal form (CNF) is a conjunction (logical and) of clauses.
We can represent all Boolean formulas on propositional variables with a CNF.
The CNF that contains no clauses is considered tautologically true, hence while
the empty clause is equivalent to 0, the empty CNF is equivalent to 1. Where
convenient, we can think of clauses as sets of literals, and CNFs as sets of clauses.
It is common to use both logical notation and set notation and we switch between
the two.

For CNF ϕ, var(ϕ) is the set of variables appearing in ϕ. A partial assignment
α on ϕ is a partial function that maps var(ϕ) to {0, 1}. We consider the restriction

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 5

of ϕ: ϕ|α to be the copy of ϕ where if α(x) = 0 literal x is replaced by 0 and
literal ¬x is replaced by 1 and likewise if α(x) = 1 literal x is replaced by 1 and
literal ¬x is replaced by 0. We can overload α’s functional notation to include
literals so α(¬l) = ¬α(l). Additionally we can represent a partial assignment as
a string of literals, i.e. xz̄ is the partial assignment that maps x to 1 and z to 0.

Clausal Inference The negation of a clause C, denoted by C̄ or ¬C is a partial
assignment, but we can treat it syntactically as a CNF containing only the unit
clauses of each of C’s literals but negated. Given the equivalence between partial
assignments, negated clauses and sets of unit clauses, we can simplify a CNF that
contains unit clauses with the unit propagation procedure Algorithm 1.

Algorithm 1 Unit Propagation

1: procedure UP(ϕ)
2: while ϕ contains a unit clause {a} do
3: ϕ← ϕ|a
4: ϕ← RemoveSatisfiedClauses(ϕ)
5: ϕ← RemoveFalsifiedLiterals(ϕ)
6: end while
7: return ϕ
8: end procedure

Definition 1. We say ϕ ⊢1 ⊥ if the resulting CNF of UP(ϕ) contains the empty
clause.

Unit propagation can reach fix-point in polynomial-time but it is not refu-
tationally complete, so for some unsatisfiable CNFs, unit-propagation reaches
fix-point before the empty clause is derived. We can generalise to a complete
proof system called resolution. A unit propagation procedure can be logged as
a series of resolution steps. The resolution rule is as follows; if a CNF contains
two clauses C1 and C2 such that literal l ∈ C1 and l̄ ∈ C2, we can create a new
clause C1 ∪C2 \ {l, l̄} and add it to our CNF. For all unsatisfiable CNFs we can
eventually add the empty clause in this way. A complete process that ends in
the empty clause is known as a resolution refutation. This proof can be repre-
sented as a DAG (directed acyclic graph). Typically in a resolution refutation
we omit all clauses that are not ancestors of the empty clause to concentrate on
a connected DAG.

Proof checkers generalise resolution even further. We can soundly derive a
clause C into a CNF ϕ if ϕ ∧ C̄ is a contradiction. However checking for a
contradiction is CoNP-complete. Instead we use the weaker condition ϕ∧C̄ ⊢1 ⊥.
This is often known as reverse unit propagation, here we call it ATA (asymmetric
tautology addition).

We can represent a CNF containing no tautological clauses as a multi graph.
Nodes are clauses. There is an edge from C1 to C2 whenever there is a variable

6 Leroy Chew, Tomáš Peitl

p such that p is in one clause and ¬p is in the other. We annotate the edge
with variable p. A resolution path is a sequence of edges {ei | 1 ≤ i ≤ k} that
form a path such that no two consecutive edges are annotated with the same
variable. Resolution paths are of semantic importance to formulas. If there is
no resolution path between two clauses D and E for a CNF ϕ, then for any
resolution refutation of ϕ both D and E cannot occur in the connected part
of the proof. And since resolution is a sound and complete proof system, this
indicates ϕ is unsatisfiable if and only if either ϕ\{D} is unsatisfiable or ϕ\{E}
is unsatisfiable.

It is useful to restrict a resolution path to a particular subset of variables
S. So that {ei | 1 ≤ i ≤ k} is a resolution path if all edges are annotated
with a variable from S and all consecutive edges coincide on a clause but have
different annotations. In particular when we introduce DQBF dependencies, we
may restrict S to dependent variables.

2.2 Quantified Boolean Formulas

A quantified Boolean formula in closed prenex conjunctive form Πϕ, contains a
CNF ϕ and quantifier prefix Π. Π is a sequence of pairs containing a quantifier
symbol from (∀,∃) and a propositional variable, i.e. Π = Q1x1 . . .Qkxk where
Qi ∈ {∀,∃} for 1 ≤ i ≤ k. var(Π) is the set of variables appearing in prefix Π.
No variable can occur in the prefix twice and every variable from var(ϕ) must
occur somewhere in the prefix (i.e. var(ϕ) ⊂ var(Π)).

var∃(Π) is the set of existential variables (variables bound by ∃) appearing
in prefix Π and var∀(Π) is the set of universal variables (variables bound by
∀) appearing in prefix Π. For assignment α, Π ↾α removes all variables from
dom(α) and their attached quantification from the prefix. The prefix order ≲Π

is a total pre-ordering of all variables in the prefix. x ≲Π y if and only if x
appears left of y, or x and y are in the same uninterrupted contiguous block of
variables with the same quantifier symbol.

We will define QBF semantics inductively. A quantifier free QBF, contains an
empty prefix and its truth is determined by the evaluation of the propositional
matrix ϕ, and given our restriction ϕ contains no variables and only constant
symbols. A QBF ∀xΠϕ is true if and only if Πϕ|x and Πϕ|x̄ are true. ∃xΠϕ is
false if and only if Πϕ|x and Πϕ|x̄ are false. Here the quantifier order matters,
so for example ∀x∃y(x∨ y)∧ (x̄∨ ȳ) is a true QBF, but ∃y∀x(x∨ y)∧ (x̄∨ ȳ) is
false.

Skolem functions Because we are working with closed prenex QBFs, the se-
mantics can be defined using Skolem functions. We say that an existential vari-
able x depends on u if u is quantified left of x in the prefix. In this way we can
build a dependency set DΠ

x for each existentially quantified variable x containing
exactly the universal variables that are left (≲Π) of x. A Skolem function for an
existential variable x is a Boolean function fx : DΠ

x → {0, 1}. A QBF is true if
and only if there is a set of Skolem functions for each existential variable, such

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 7

that the Skolem functions together would satisfy the propositional matrix under
all complete assignments to var∀(Π).

You can imagine a QBF as a game between ∃ and ∀ in which they set the
values of their variables from left to right in the prefix. ∃ wins if and only if the
matrix evaluates to 1 at the end of the game. The QBF is true if and only if
∃ has a winning strategy. Essentially this is no different to the idea of a set of
satisfying Skolem functions. This works dually for ∀ and falsity and we name
the dual of Skolem functions as Herbrand functions.

Universal Reduction If we have a QBF Πϕ and ϕ contains a clause C ∨ u
where var(u) is universal and not contained in the dependency set of any of the
variables of C nor is there any ū literal in C, then we can derive the clause C.
This is because any winning ∃ strategy that satisfies C ∨ u will do so before
arriving at u, hence C must be satisfied by the same winning strategy.

C ∨ u (UR)
C

One of the earliest observations about QBF was that if we combine the uni-
versal reduction rule with resolution, even when the resolution rule is restricted
to cutting over existential literals only, then we get a complete refutational proof
system for QBF known as Q-Res [29].

In the reduction rule, if C were to contain existential variables that had u in
their dependency sets, then a satisfaction of C ∨ u may not automatically mean
that C is satisfied regardless of u. In order to ensure that C is satisfied whenever
C ∨ u is, the existential player must be able to costlessly commit to a strategy
that determines the variables of C before u is reached. A basic example is if u is
pure in all clauses of the QBF Πϕ, then the existential player is effectively able
to ignore the actual play of u by assuming the worst case which is u = 0. This can
be generalised further, we can reduce C∨u when u is pure only in the Πϕ clauses
that can be affected by our switch from C ∨ u to C. We can efficiently exclude
some clauses from the set of relevant clauses by using resolution paths. Suppose
there is no resolution path in the ∃ variables right of u from C ∨ u to D, then
once the game is played up to u and we have current partial assignment α, then
(C∨u)|α andD|α cannot be in the same Q-Res refutation ofΠ ↾A′ ϕ|α if it exists.
Therefore, because the presence of any ū literal in D is syntactically irrelevant
to removing u from C ∨ u, the presence of any ū literal in D is semantically
irrelevant to removing u from C ∨ u.

C ∨ u (EUR)
C

This is how Extended Universal Reduction (EUR) works [23]. You may reduce
C ∨u to C as long as there is no S-resolution path from C to any clause D with
ū ∈ D. S here would be the set of existential variables that depend on u. EUR
can be checked in polynomial time, but requires global knowledge of the clauses,
it is therefore used in the QBF proof system QRAT [23] where a deletion rule
allows deletion of clauses that may prevent the use of EUR.

8 Leroy Chew, Tomáš Peitl

2.3 Dependency Quantified Boolean Formulas

Dependency quantified Boolean formulas (DQBF) extends the language of QBF.
We will concentrate on the S-form DQBFs (Skolem-form). Like a QBF, every
DQBF has two parts, a prefix and propositional matrix in CNF. Also like a QBF,
in a DQBF every variable is either existentially or universally quantified in said
prefix. In an S-form DQBF, each existential variable x has an arbitrary depen-
dency set DΠ

x , the only restriction is that DΠ
x is a subset of the universal variables

in the prefix Π. The prefix Π is written as Π = ∀u1 . . . up∃x1(Dx1
) . . . xq(Dxq

).
In a DQBF prefix the written ordering does not determine anything, because
the essential information is all contained in the specifications of the dependency
sets. Nonetheless any QBF can be represented by a DQBF by specifying the
QBF’s dependency sets explicitly.

A DQBF is true if and only if there is a set of Skolem functions, one for each ∃
variable x, such that for every complete assignment to all the universal variables
the universal assignment completed with the values of the Skolem functions
under that assignment, form a satisfying assignment to the proposition matrix.
For example ∀u∀v∃x(u)∃y(v)(v ∨ x) ∧ (v̄ ∨ x̄) ∧ (u ∨ y) ∧ (ū ∨ ȳ) is false because
the x Skolem function cannot respond to v. But ∀u∀v∃x(v)∃y(u)(v ∨ x) ∧ (v̄ ∨
x̄) ∧ (u ∨ y) ∧ (ū ∨ ȳ) is true because the x Skolem function can be v̄ and the y
Skolem function can be ū.

We sometimes informally write ∀U∃Eϕ for an arbitrary S-form DQBF, where
U is the set of universal variables, E the set of existential variables each with their
own dependency set that we may hide for the time being, and ϕ a propositional
matrix containing no quantifiers. We can define a subprefix and the relation
Π ⊂ Ω, whenever var∃(Π) ⊆ var∃(Ω), var∀(Π) ⊆ var∀(Ω) and if x ∈ var∃(Π)
then DΠ

x = DΩ
x .

Pre-ordering a DQBF Recall that a QBF prefix Π has a total pre-ordering
(≲Π) whose equivalence classes are quantifier blocks. Instead let Π be a DQBF
prefix. It turns out we can still define a preordering on Π, but it may not be
total.

We define the set of outer variables for each variable in Π. For an existen-
tial variable x in Π, the outer variables are the set of variables that that the
existential player can know the value of if they know the complete set of values
for the dependency set. For a universal variable u to find its outer variables, we
look at its inner existential variables, those existential variables that contain u
in its dependency set, and we include any universal variable that is common in
all of these, we also include any existential variable that depends only on these
common universal variables, though we make an exception and exclude it, if it
depends on u, in order to keep the notion the ∀ variable comes before the ∃
variables that depend on it.

We can define this all formally. First we overload the DΠ notation. For univer-
sal variables u we say DΠ

u = {u}. For formulas ϕ (including partial assignments)
we consider the dependency set DΠ

ϕ to be
⋃

x∈var(ϕ) D
Π
x .

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 9

For existential variable x, the outer variable set OΠ
x := {y ∈ var(Π) | DΠ

y ⊂
DΠ

x }. For a universal variable u the inner variables are all existential variables
that depend on u i.e. IΠu := {y ∈ var(Π) | DΠ

u ⊂ DΠ
y }. The outer variables are

defined as OΠ
u = {u} ∪

⋂
x∈IΠu

{y | DΠ
y ⊂ DΠ

x \ {u}}. With a DQBF prefix Π

we can restore the relation ≲Π , so x ≲Π y means x ∈ OΠ
y , or equivalently that

OΠ
x ⊆ OΠ

y . Since a proof that this was a pre-ordering was not included in the
original paper, we provide it in the Appendix (Corollary 5)1.

Example 1. Consider the prefix: ∀u, v, w∃a(u, v, w), b(), c(u, v), d(u,w), e(u). We
gain the following sets of outer variables (Figure 1):

OΠ
a = {u, v, w, a, b, c, d, e}

OΠ
c = {u, v, b, c, e} OΠ

d = {u,w, b, d, e}

OΠ
v = {u, v, b, e} OΠ

w = {u,w, b, e}

OΠ
e = {u, b, e}

OΠ
u = {u, b}

OΠ
b = {b}

Fig. 1. Hasse diagram of equivalence classes of outer variables of an example DQBF
prefix.

Dependency Schemes Dependency schemes are a method of evaluating indi-
vidual dependency pairs to see if they are really necessary. Let Πϕ be a DQBF
(or QBF). We consider pairs (u, x), with u a universal variable and x an ex-
istential variable. Spurious dependencies occur when u ∈ DΠ

x but it does not
change the truth of the DQBF to remove u from DΠ

x . Given a DQBF or QBF
Πϕ the trivial dependency scheme Dtrv(Πϕ) is the set of all pairs (u, x) where
u is universal, x is existential and u ∈ DΠ

x .
One of the most well used non-trivial dependency schemes is the reflexive

resolution path dependency scheme. To compute which dependencies actually are
required, which we denote as (u, x) ∈ Drrs(Πϕ), we use the notion of a resolution
path. Let ψ be a DQBF, χ a subset of the clauses in ψ and S a subset of variables
appearing in ψ. We define using a fixpoint a set of clauses Crrs(ψ, χ,S) as well

1 This fact is not necessary for any of the new proofs we present in the paper, but to
assist the reader with some intuition about the DQRAT proof system.

10 Leroy Chew, Tomáš Peitl

as a set of literals Lrrs(ψ, χ,S). Initially, Crrs(ψ, χ,S) contains all clauses from
χ and Lrrs(ψ, χ,S) contains all S-literals in χ. We expand these sets in the
following way: suppose p ∈ Lrrs(ψ, χ,S), we include any ψ clause E with p̄ ∈ E
to Crrs(ψ, χ,S) and include the literals {x ∈ E | x ̸= p̄, x ∈ S} to Lrrs(ψ, χ,S).
p̄’s non-inclusion is why we cannot just list the clauses.

We define ϕu to be the set of clauses that contain u, and ϕū to be those that
contain ū, (assume no clauses are tautological). Let S be the set of existential
variables that contain u in its dependency set. We say u has a reflexive resolution
path to literal x (denoted u ∼rrs x) if x ∈ Lrrs(Πϕ, ϕu,S), likewise ū ∼rrs x if
x ∈ Lrrs(Πϕ, ϕū,S). The purpose of u ∼rrs x is to identify that the existential
player may be required to satisfy an x literal while dealing with a falsified u
literal further back along the reflexive resolution path.

For the reflexive resolution path dependency scheme, (u, x) ∈ Drrs(Πϕ) if
u ∈ DΠ

x and either:

1. u ∼rrs x and ū ∼rrs x̄
2. ū ∼rrs x and u ∼rrs x̄

We sometimes omit Πϕ when the DQBF is clear i.e. (u, x) ∈ Drrs. The reader
should interpret membership (u, x) ∈ Drrs as dependence, and (u, x) /∈ Drrs as
independence.

DQBF Proof Systems While Q-Res has been proven incomplete for DQBFs it
is still sound [1], so we can use parts of Q-Res in a refutation. In order to make it
complete, so that every false DQBF has a refutation leading to the empty clause,
Chew and Peitl [17] discovered an extension rule that created new variables with
minimal dependency sets. This powerful calculus is known as IndExtQURes and
is given in Figure 2.

(Ax)
L

C ∨ u (Red)
C

E ∨ ¬x F ∨ x (Res)
E ∨ F

L is a clause in the propositional matrix ϕ. u is a ∀ literal. There is no ∃ literal l
in C such that var(u) ∈ DΠ

var(l), and there is no ū ∈ C.

(IndExt)
(ᾱ ∨ v ∨ y1), (ᾱ ∨ v ∨ y2), (ᾱ ∨ v̄ ∨ ȳ1 ∨ ȳ2)

v is a fresh ∃ variable, α is a conjunction of ∀ literals. DΠ
v = (DΠ

y1 ∪DΠ
y2) \D

Π
α .

As an additional rule, the prefix Π may be weakened to Π ′ to add a new variable.

Fig. 2. Proof rules of IndExtQURes .

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 11

Example 2. Consider the following DQBF from [1, Theorem 7]:

∀u∀v ∃x(u)∃y(v) (u ∨ x ∨ y) ∧ (ū ∨ v̄ ∨ x ∨ y) ∧ (ū ∨ v ∨ x ∨ ȳ)
∧ (u ∨ x̄ ∨ ȳ) ∧ (ū ∨ v̄ ∨ x̄ ∨ ȳ) ∧ (ū ∨ v ∨ x̄ ∨ y)

We can refute it by first adding the three clauses: (ū∨n∨x), (ū∨n∨x), (ū∨
n̄ ∨ x̄ ∨ x̄) using the IndExt rule, although two of these clauses are identical
and one can be simplified with idempotence. We can interpret the clauses as
conditionally defining n, (u → (n = x̄)), because n is defined only when u
is true, it can without penalty assume any value when u is false. This allows
IndExtQURes to soundly let n not depend on u despite x doing so, therefore
DΠ

n = {}.
We can resolve (ū∨n∨x) with two clauses to get (ū∨v̄∨n∨ȳ) and (ū∨v∨n∨y)

which reduce to (v̄ ∨ n ∨ ȳ) and (v ∨ n ∨ y). Likewise, we can resolve our other
extension clause (ū ∨ n̄ ∨ x̄) with two axiom clauses to get (ū ∨ v̄ ∨ n̄ ∨ y) and
(ū ∨ v ∨ n̄ ∨ ȳ) which become (v̄ ∨ n̄ ∨ y) and (v ∨ n̄ ∨ ȳ) after reduction.

We can resolve these over y pivots with more axioms to get (u ∨ v̄ ∨ n ∨ x),
(u ∨ v ∨ n ∨ x̄), (u ∨ v̄ ∨ n̄ ∨ x̄) and (u ∨ v ∨ n̄ ∨ x). Having removed y we can
reduce these to (u ∨ n ∨ x), (u ∨ n ∨ x̄), (u ∨ n̄ ∨ x̄) and (u ∨ n̄ ∨ x). These can
be resolved together over x to get (u∨n) and (u∨ n̄), once we resolve over n we
obtain (u) and that reduces to the empty clause. We show this derivation as a
DAG in Figure 3.

v ∨ n̄ ∨ ȳv̄ ∨ n̄ ∨ y v ∨ n ∨ y v̄ ∨ n ∨ ȳu ∨ x ∨ yu ∨ x̄ ∨ ȳ

u ∨ v ∨ n̄ ∨ xu ∨ v̄ ∨ n̄ ∨ x̄ u ∨ v ∨ n ∨ x̄ u ∨ v̄ ∨ n ∨ x

u ∨ n̄ ∨ xu ∨ n̄ ∨ x̄ u ∨ n ∨ x̄ u ∨ n ∨ x

u ∨ n̄ u ∨ n

n̄ n

⊥

Fig. 3. Proof DAG of the final resolution and reduction steps in Example 2 and Ex-
ample 3.

In reality, finding the optimal uses of the IndExt rule requires a high degree of
non-determinism. IndExtQURes is a DQBF generalisation of Extended Resolution
in propositional logic, which similarly allows the addition of extension clauses
as a rule. In propositional logic most checkers have moved on from an extension
clause checker to a RAT addition checker, so we are interested in the one RAT
based DQBF proof system DQRAT.

12 Leroy Chew, Tomáš Peitl

DQRAT is a combination of rules that have complicated checking criteria
(Figure 4). The attempt here is to generalise what was practically checked in
propositional proofs, but we have to bring in both the DQBF notion of outer
clauses and the reflexive resolution path from Section 2.3.

In all rules, let Π,Ω be DQBF prefixes, ϕ be a CNF, C be a clause and l be a
literal with var(ϕ), var(C), var(l) assumed to be subsets of var(Π).

Πϕ
(ATA)

Πϕ ∧ C

Πϕ ∧ C
(Del)

Πϕ

Πϕ ∧ (C ∨ l)
(UR)

Πϕ ∧ C

ATA: ϕ ∧ C̄ ⊢1 ⊥ is required. Del: there is no side condition on C.
UR: we require that var(l) /∈ DΠ

C .

Πϕ
(DQRAT∃)

Πϕ ∧ (C ∨ l)

Πϕ ∧ (C ∨ l)
(DQRAT∀)

Πϕ ∧ C

DQRAT: for all clauses D in ϕ with l̄ ∈ D, the following must hold:

(∃): ϕ∧¬C ∧ l̄∧
∧var(x)≲Πvar(l)

x∈D,x ̸=l̄
x̄ ⊢1 ⊥. (∀): ϕ∧¬C ∧ l∧

∧var(x)≲Πvar(l)

x∈D,x ̸=l̄
x̄ ⊢1 ⊥.

Πϕ
(BPM)

Ωϕ

Πϕ
(Drrs)

Ωϕ

BPM: Π ⊂ Ω.
Drrs: var∃(Π) = var∃(Ω), var∀(Π) = var∀(Ω), u /∈ DΩ

x only if (u, x) /∈ Drrs(Πϕ).

Fig. 4. Proof rules of DQRAT [12].

Example 3. Once again we should look at the DQBF from Example 2. We will
first use BPM to create a new ∃ variable n such that DΠ

n = {u}. In terms of
outer variables, n is in the same equivalence class as x and has outer variables
{u, x, n}. We can trivially add clause (n∨x) via DQRAT∃ as no clause contains
n̄. We can then add (n̄∨ x̄) via DQRAT∃. This time it has to check against one
clause with unit propagation but an easy contradiction between x and x̄ exists
on the left hand side so this is immediate.

Now we add the 4 clauses (ū∨ v̄ ∨ n∨ ȳ), (ū∨ v ∨ n∨ y), (ū∨ v̄ ∨ n̄∨ y) and
(ū∨v∨n̄∨ ȳ) which all can be done via ATA. The next part is important because
it diverges from the proof in IndExtQURes. We need to delete the clauses (n∨x),
(n̄ ∨ x̄). Only then can we apply the Drrs rule. Since u ≁rrs n and u ≁rrs n̄, we
can change the dependency set of n from {u} to the empty set. After this point
we can reduce the 4 clauses we added via ATA to get (v̄ ∨ n ∨ ȳ), (v ∨ n ∨ y),
(v̄ ∨ n̄ ∨ y) and (v ∨ n̄ ∨ ȳ). Since ATA can be used to add instances of the
resolution rules we can proceed to follow the same proof as in the end of the
IndExtQURes proof (Figure 3).

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 13

IndExtQURes and DQRAT are DQBF proof systems and can be compared via
p-simulation. We say a proof system f p-simulates a proof system g if there is a
polynomial time procedure that maps g proofs to f proofs of the same theorem.
A p-simulation is impossible if there is a separating family of theorems, whose
minimum proof size in f is bounded below by a super-polynomial function in the
minimum proof size in g. IndExtQURes p-simulates DQRAT, but the converse is
an open problem.

3 A New Dependency Scheme

In this section, we define an improvement on Drrs, which we call the pure univer-
sal dependency scheme. The idea is that we can exclude a resolution path from
u to x if it is merely an extension of a resolution path from ū to x, as only the
minimal path should be considered.

3.1 Definition of the Pure Universal Dependency Scheme

For a DQBF Πϕ, we will denote membership (u, x) ∈ D∀pure(Πϕ) to mean that
existential variable x really does depend on universal variable u after considering
the pure universal dependency scheme. Let ψ be a DQBF, χ a subset of the
clauses in ψ, S a subset of variables appearing in ψ and u a universal literal. We
define the sets C∀pure(u, ψ, χ,S) and L∀pure(u, ψ, χ,S). Initially C∀pure(u, ψ, χ,S)
contains all clauses from χ and L∀pure(u, ψ, χ,S) contains all S-literals in χ. We
expand these sets in a similar way as before, suppose p ∈ L∀pure(u, ψ, χ,S) we
include any ψ clause E with p̄ ∈ E and ū /∈ E into C∀pure(u, ψ, χ,S), and also
include the literals {x ∈ D | x ̸= p̄, x ∈ S} into L∀pure(u, ψ, χ,S), and as we
increase this set we can further propagate until we reach fix-point.

Definition 2. Given a DQBF Πϕ with CNF matrix ϕ. We say there is a pure
path from universal literal u to existential literal x (denoted u ∼∀pure x) if and
only if x ∈ L∀pure(u, ψ, ϕu,S). Where ϕu is the set of clauses that contain literal
u and S is the set of ∃ variables that contain u in its dependency set.

Definition 3. Given a DQBF Πϕ with CNF matrix ϕ, let (u, x) be a pair with a
∀ variable u and ∃ variable x. (u, x) ∈ D∀pure(Πϕ) (∈ D∀pure when unambiguous)
if and only if u ∈ DΠ

x and either:

1. u ∼∀pure x and ū ∼∀pure x̄, or
2. ū ∼∀pure x and u ∼∀pure x̄.

Example 4. Consider the following QBF:

∀u∀v∃x∃y∃z (u ∨ v ∨ y) ∧ (u ∨ v̄ ∨ x ∨ ȳ) ∧ (ū ∨ v ∨ z) ∧ (ū ∨ v̄ ∨ x̄ ∨ z̄).

We can first make some observations that are true for both Drrs and for
D∀pure. (v, x) /∈ D∀pure and (v, x) /∈ Drrs as v ≁rrs x nor v ≁rrs x̄, which means
v ≁∀pure x nor v ≁∀pure x̄, it is always the case that (v, x) /∈ Drrs entails (v, x) /∈

14 Leroy Chew, Tomáš Peitl

D∀pure. However (v, y), (v, z) ∈ D∀pure as we can make immediate paths, likewise
for (u, x) ∈ D∀pure.

Where D∀pure differs from Drrs can be seen for (u, y) and (u, z). (u, y) is in
Drrs because u ∼rrs y and ū ∼rrs ȳ (through x̄, first). However ū ≁∀pure ȳ as the
path from ū cannot use (u ∨ v̄ ∨ x ∨ ȳ) as it contains a positive u. We observe
a similar situation for (u, z) where u ∼rrs z̄ but as the path must go through
(ū ∨ v̄ ∨ x̄ ∨ z̄), u ≁∀pure z̄.

3.2 Pure Universal Dependency Scheme as a Prefix Modification
Rule

Definition of D∀pure Rule Given a universal literal u, we can calculate the
set of literals L∀pure(u, ψ, χ,S) in linear time in the total number of individual
literals appearing in ψ. Once we have found the variables that lack sufficient
paths for D∀pure, we can subtract u from their dependency sets, and this will
not affect the process if we repeat it for any different universal literals. Therefore
it takes polynomial time in ψ to completely recalculate the prefix according to
D∀pure and can be considered a polynomial-time checkable proof system. We
prove it sound in this section.

Example 5. We can take the QBF from Example 4 and modify its prefix accord-
ing to D∀pure to get the following DQBF:

∀u∀v ∃x(u)∃y(v)∃z(v)
(u ∨ v ∨ y) ∧ (u ∨ v̄ ∨ x ∨ ȳ) ∧ (ū ∨ v ∨ z) ∧ (ū ∨ v̄ ∨ x̄ ∨ z̄).

Soundness

Theorem 1 (Soundness). Let Πϕ be a true DQBF. Let Π ′ be the prefix where
var∃(Π) = var∃(Π

′), var∀(Π) = var∀(Π
′), u ∈ DΠ′

x if and only if (u, x) ∈
Drrs(Πϕ). Then Π ′ϕ is true.

Proof. Let f be a set of Skolem functions for Πϕ, Π ′ the D∀pure-reduced prefix.
We will show how to modify f to another set of f ′ of Skolem functions of Π ′ϕ.
f may require such modification because its functions may use dependencies no
longer allowed under Π ′. We say a dependency is used by a Skolem function fx
if there is an assignment α : DΠ

x → {0, 1} such that flipping the value of u (to
obtain αu) changes the value of fx, i.e, fx(α) ̸= fx(α

u). If no dependency absent
from Π ′ is used, then the unused inputs to f can simply be forgotten to obtain
a model for Π ′ϕ.

Assume that there is an existential variable x and universal u ∈ DΠ
x , but

u ̸∈ DΠ′

x , and an assignment α : DΠ
x such that fx(α) ̸= fx(α

u), without loss of
generality α(u) = 0. Extend α to an arbitrary total assignment β to all universal
variables. Define

f0x(τ) =

{
fx(τ) if τ ̸= α

1− fx(τ) otherwise,

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 15

and f0y = fy for all y ̸= x, i.e., flip the value of fx for α. Consider the full
assignment β, and the total response f0(β) of all Skolem functions f0. If β∪f0(β)
satisfies the matrix ϕ we continue the process with a new pair of variables u and
x, noting that we have removed an instance of dependency violation (u, x, α).

If β ∪ f0(β) violates some clause C ∈ ϕ, then, since β ∪ f(β) satisfies C,
and since f(β) and f0(β) differ only in the value of x, it must be the case that
a literal on x is in C and it is the only satisfied literal under β ∪ f(β). Since
f0(βu) = f(βu) and βu ∪ f(βu) satisfies C, we conclude that either u ∈ C, or
some other variable y that depends on u (according to Π) is in C. In the former
case, we have established a resolution path from some literal (the one satisfied
by fx(α)) on x to u. In the latter case, we will overwrite the value of fy(β|D(y))
by fy(β

u|D(y)) as we did for x, and continue the process with a new clause that
is falsified. As before with x, this new clause must contain ȳ, extending our
resolution path.

At each point the number of dependency violations (u, x, α) decreases, and
so the process must terminate. When it terminates, all clauses are satisfied, and
either we successfully modified the model, or found a resolution path. If we find
a resolution path, we restart the process from αu, overwriting the value in the
opposite way: if this process too terminates with a resolution path, we have a
pair of resolution paths as required by Definition 3.

It remains to be shown that these paths are universally pure. This follows
easily from the fact that in each execution of the above process, any currently
considered clause C is falsified under β∪f i(β). All of these assignments agree on
all universal variables: therefore only one polarity of u may ever be encountered
along any such path.

Strategy Extraction in Long Distance Q-Resolution Theorem 1 estab-
lishes semantic soundness of D∀pure: as a DQBF mapping it preserves both falsity
(trivially) and truth (Theorem 1). This means that D∀pure can be soundly used
in any DQBF proof system, and in fact the dependency scheme is not even ‘used
in’ the proof system any more, it operates entirely outside of it. This also covers
many scenarios in QBF solving and proof theory, where the use of a depen-
dency scheme is coupled to the underlying proof system more tightly. However,
an important case is left unaddressed by Theorem 1: long-distance Q-resolution
(LD-Q-Res) [2]. LD-Q-Res (proof rules in Figure 5) is a sound proof system for
QBF and is supported by the solvers DepQBF [33] and Qute [38], but it is not
sound for DQBF [4], and we cannot infer from Theorem 1 that LD-Q(D∀pure)-Res
(proof rules in Figure 6) is sound.

Our goal in this section is to prove the soundness of LD-Q(D∀pure)-Res. We
adapt the proof of [39], who showed soundness of the closely related LD-Q(Drrs)-
Res proof system.

Theorem 2. LD-Q(D∀pure)-Res is a sound and complete proof system for QBF.
There is a polynomial time algorithm that, given an LD-Q(D∀pure)-Res refutation
of a QBF Πϕ, computes a strategy for the universal player.

16 Leroy Chew, Tomáš Peitl

(Ax)
L

C ∨ u (Red)
C

L is a clause in the propositional matrix ϕ. u is a ∀ literal. There is no ∃ literal l
in C such that var(u) ∈ DΠ

var(l). In contrast to Figure 2, there may be ū ∈ C.

E ∨ ¬x F ∨ x (Res)
E ∨ F

There is no ∀ literal v in E such that v̄ ∈ F and var(v) ∈ DΠ
var(x).

Fig. 5. Proof rules of LD-Q-Res applied to an input QBF Πϕ.

(Ax)
L

C ∨ u (Red)
C

L is a clause in the propositional matrix ϕ. u is a ∀ literal. There is no ∃ literal l
in C such that (u, l) ∈ D∀pure(Πϕ). In contrast to Figure 2, there may be ū ∈ C.

E ∨ ¬x F ∨ x (Res)
E ∨ F

There is no ∀ literal v in E such that v̄ ∈ F and (v, x) ∈ D∀pure(Πϕ).

Fig. 6. Proof rules of LD-Q(D∀pure)-Res applied to an input QBF Πϕ.

The proof follows the proof outline of [39, Theorem 2]. In particular, we will
show that D∀pure is a normal dependency scheme. A dependency scheme D is
normal [39, Definition 7] if any LD-Q(D)-Res refutation of a QBF with outermost
universal variables contains outermost variables in at most one polarity (and
additionally the proofs are closed under application of partial existential assign-
ments in a natural way). This unique polarity prescribes the winning strategy
for the outermost variables, and this idea can be captured in a polynomial-size
circuit, yielding both soundness and strategy extraction for LD-Q(D)-Res for
normal D.

In order to prove that D∀pure is normal, we follow the recipe of [39, Section
5.2]. As in there, we restrict ourselves to QBFs of the form ∀u∃x1, . . . ,∃xnϕ:
with a single, outermost universal variable. It is easy to see that one can forget
all literals on other universal variables without changing the validity of an LD-
Q(D∀pure)-Res refutation.

Lemma 1. If a clause C is derived by LD-Q(D∀pure)-Res from a QBF ∀uΠϕ,
then (u, x) ∈ D∀pure(Πϕ) ⇐⇒ (u, x) ∈ D∀pure(Πϕ ∧ C) for all x, i.e., C can
be soundly used to calculate D∀pure dependencies of an outermost variable u as
if C were an input clause.

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 17

Proof. Clause addition clearly does not take away any resolution-path connec-
tions. We need to show that it does not create new connections either.

The case of resolution steps is identical to the case of Drrs [39, Lemma 1].
Suppose C1 and C2 are resolved on x to obtain C, and a path uses the clause
C and its two literals p1, p2. If {p1, p2} ⊆ Ci, replace C with Ci, and otherwise
replace C with C1, C2 connected by the pivot literals x, x̄. Either way, C can
be replaced by C1 and C2 to show the same connections. u-purity is trivially
preserved: if C does not contain u or ū, neither C1 nor C2 contain it.

The case of reduction steps, trivial for Drrs, requires some care. Suppose the
reduction step C ∨ u → C introduces pure paths. This means there is now a
path P from ū to some x that uses C but could not use C ∨ u (because of
universal impurity). So this path uses a literal p ∈ C via which the clause C is
entered. Consider the prefix of P that ends in p̄ ∈ C ′, just before a transition
from C ′ to C is made. This is a ū-pure path that shows ū ∼∀pure p̄. But since
both p, u ∈ (C ∨ u), also u ∼∀pure p, and thus (u, p) ∈ D∀pure, contradicting the
soundness of the reduction step C ∨ u → C. Thus, the reduced clause C is not
useful for any new resolution-path connections.

The rest of the proof is identical to the proof in [39].

Lemma 2. A clause C derived by LD-Q(D∀pure)-Res from a formula ∀uΠϕ can-
not contain both u and ū.

Proof. Consider the resolution step of C1 and C2 over the pivot variable x that
produced the first clause C with u and ū (axioms are not tautological, so such
a clause must have been produced by resolution). Without loss of generality
x, u ∈ C1, x̄, ū ∈ C2. But then by Lemma 1 u ∼∀pure x and ū ∼∀pure x̄. Thus,
the resolution step is not valid in LD-Q(D∀pure)-Res.

Proof (Proof of Theorem 2). Consider an LD-Q(D∀pure)-Res refutation of a for-
mula ∀uΠϕ in which both u and ū occur. Copy clauses to make the refutation
tree-like and take a minimal subderivation of some (not necessarily empty) clause
C that still contains both u and ū. Call this subderivation, which ends in the
clause C, P . By Lemma 2, u and ū do not occur in C: if u ∈ C, then omit all
reduction steps on u, otherwise omit all reduction steps on ū. Call the resulting,
still valid, LD-Q(D∀pure)-Res derivation P ∗ and its final clause C∗, without loss
of generality u ∈ C∗, ū ̸∈ C∗. P ∗ must have a reduction step on ū in the presence
of some literal x, so that (u, var(x)) ̸∈ D∀pure. Take the lowermost such reduction
step C0 ∨ ū→ C0. It follows that the bottom of P ∗ is shaped as follows:

C0 ∨ ū
C0 C ′

0

C1 C ′
1. . . Ck C ′

k

C∗

and no Ci, C
′
i contains ū. Let pi be the pivot for the resolution step producing

Ci. There is a resolution path from ū ∈ C∗, through the pivots pk, . . . , p1 to

18 Leroy Chew, Tomáš Peitl

C0 ∨ ū, establishing that ū ∼∀pure p1 and u ∼∀pure p̄1, a contradiction with the
soundness of the reduction step.

3.3 Pure Path Detection as a Reduction Rule

Definition of Loc∀pure-Red Let Πϕ by a DQBF and let C ∨ u be a clause in
ϕ with universal literal u, let S be the set of variables that depend on var(u).
In extended universal reduction we considered Crrs(ψ,C ∨u,S) to check that no
clause in it contained ū. This prevents any S literal l in C from having ū ∼rrs l̄,
and this was sufficient for u to be reduced in C ∨ u.

We can improve on this using pure paths. Consider C∀pure(ū, ψ, C∨u,S) and
check whether it contains a clause with ū in, if it does not then C ∨u can reduce
to C. We will formally define how this proof rule works.

Definition 4. Local Pure Literal Reduction Loc∀pure-Red allows us to make the
following derivation

Πϕ ∧ C ∨ u
(Loc∀pure-Red)

Πϕ ∧ C
Where Π is a DQBF prefix, ϕ is a CNF, C is a clause and u is a universal

literal and where var(u) is found in Π. S is the set of existential variables x in
Π such that u ∈ DΠ

x . For brevity, ψ is defined as the full DQBF Πϕ∧C∨u. The
main side condition is that C∀pure(ū, ψ, C ∨ u,S) does not contain any clause
that contains ū.

Soundness We have to demonstrate soundness which we will do in DQBF, we
can prove soundness by showing a p-simulation by a sound DQBF proof system
and we use IndExtQURes for this. While there my be a shorter proof of soundness
we will need this lemma for Section 5.

Lemma 3. We can p-simulate the Loc∀pure-Red rule with IndExtQURes, by adding
new variables and clauses to DQBF.

Proof. Let Π be the DQBF prefix and ϕ ∧ C ∨ u be the propositional matrix
of the DQBF ψ. Suppose we reduce from Πϕ ∧ C ∨ u to Πϕ ∧ C. Consider the
S-literals of C, where S is the set of existential variables that depend on u. In
order to make this p-simulate, for each x ∈ S we will replace x with x′ where
DΠ

x′ ⊆ DΠ
x . Essentially we will recreate Πϕ∧C as Π ′ϕ′ ∧C ′ by clause additions,

where we substitute each x′ for x to change Π to Π ′, ϕ to ϕ′ and C to C ′.
Technically there is no deletion rule in IndExtQURes, we consider “deletion” a
persistent ignoring of the clause, thereafter.

Recall that in the definition C∀pure(ū, ψ, χ,S), we had some subset of clauses
χ which we used as a start point. We will study pure path reachability from two
different start points, firstly the singular clause set {C ∨u}. Once we have found
all reachable clauses from {C∨u}, those remaining unreachable clauses form the
second start point. This way we have two “spheres” of reachable clauses that

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 19

cover the entire set of clauses. Counter-intuitively, these spheres are not necessar-
ily disjoint because reachability requires us not to immediately re-use literals on
the resolution path. The intersection of these spheres will be an important special
case that we must handle. Let L0 = L∀pure(ū, ψ, C ∨u,S), χ0 = C∀pure(ū, ψ, C ∨
u,S). Then let L1 = L∀pure(ū, ψ, ϕ \ χ0,S), χ1 = C∀pure(ū, ψ, ϕ \ χ0,S). We
introduce conditional definition ū → (xū ↔ x) using the IndExt rule for each
variable that has a literal in L0.

For each clause D in χ0 we replace each literal x ∈ S with xū ∨ u via
resolving with the definition clauses. Note that χ0 contains no ū literals by
the side condition of the rule, and no other clause except C ∨ u contains a u
literal by the path purity. Removing all S-literals, means we can reduce any u-
literals from what was once χ0, including the one originating from C and those
introduced from resolving away the S-literals. We call this set χū

0 because it is
what you would get in the ū expansion of χ0.

Now consider the literals x in L0 such that x ∈ L1. In χ
ū
0 we weaken all xū

literals to xū ∨ x and in χ1 we weaken all x literals to xū ∨ x. x̄ can only appear
in clauses in the intersection χ0 ∩ χ1, because if x in L0 all clauses with x̄ are
in χ0, and likewise with χ1. Furthermore, x̄ cannot be in L0 otherwise there is
a u-free path from C to x̄ and a u-free path from x to some D ∈ ϕ \χ0 meaning
D is actually in χ0. Likewise, x̄ cannot be in L1 otherwise there is a u-free path
from C to x and a u-free path from x̄ to some D ∈ ϕ \χ0 meaning D is actually
in χ0.

Each clause D ∈ χ0 ∩ χ1 has a unique entry literal x̄ which cannot be in L0

nor L1. This means its sufficient just to have two copies, one originating from
χ0 and one originating from χ1. Note that IndExtQURes p-simulates Frege rules
because it is p-equivalent to IndExtFrege +∀red, so after the weakening we can
use distributivity on the two copies of the intersection clause, to replace x̄ with
x̄ū ∧ x̄.

The full replacement scheme is as follows

x′ =


xū if x ∈ L0, x /∈ L1,

xū ∨ x if x ∈ L0, x ∈ L1,

xū ∧ x if x̄ ∈ L0, x̄ ∈ L1,

x otherwise.

x′ has dependency set DΠ
x′ ⊆ DΠ

x , and replaces x in all clauses, all extra
literals introduced have been reduced.

Therefore we have derived a set of clauses under a set of variables that
have the same structure as the original set such that the new set of clauses
is the correct substitution of variables of the original set of clauses, with the
exception that the substitution of C∨u is replaced by a substitution of C. Despite
IndExtQURes not having a deletion rule, we can ignore all variables replaced by
substitution and all original clauses and clauses used as in intermediate part of
of this proof. This is practically deletion. The only difference is that DΠ

x′ may be

20 Leroy Chew, Tomáš Peitl

strictly smaller than DΠ
x , but this does not prevent any future steps. One can

easily imagine IndExtQURes with a dependency weakening rule.

Corollary 1. Local Pure Literal Reduction (Loc∀pure-Red) is a sound QBF/DQBF
Rule.

For valid (Loc∀pure-Red) steps, note that a checker should, in theory, require
no more computation than an simple EUR checker, because the resolution paths
are shorter. Every valid EUR step is also an Loc∀pure-Red step, so a QRAT
checker (such as QRAT-trim) need only check for Loc∀pure-Red and not EUR.

The advantage of using Loc∀pure-Red over EUR is that when p-simulating
expansion based solving [23,28], one will not have to delete the definitions α →
(x = xα) in order to remove universal literals.

4 Separations

In Section 3.2 we showed how D∀pure can be combined with LD-Q-Res in the
same way that Drrs has worked with LD-Q-Res in the past. LD-Q(D∀pure)-Res
trivially p-simulates LD-Q(Drrs)-Res as all LD-Q(Drrs)-Res refutations are in fact
LD-Q(D∀pure)-Res refutations already. Not all LD-Q(D∀pure)-Res proofs are LD-
Q(Drrs)-Res proofs as some reduction and resolution steps could be prohibited
and in fact we show that there is no workaround.

In QBF, the QParity formulas are a family of false formulas which require
the ∀ player to play the parity function in order to win. The parity function’s
hardness on bounded-depth formulas usually translates [3,11] to proof size lower
bounds, but in some cases gadgets can be used to find short proofs depending
on the proof system. Therefore, by tuning these gadgets we can use variations
of QParity to separate different QBF proof systems.

Definition 5 (ts-LQParity(N)). Let xorl(o1, o2, o, z) be the set of clauses {(z∨
¬o1 ∨ ¬o2 ∨ ¬o), (z ∨ o1 ∨ o2 ∨ ¬o), (z ∨ ¬o1 ∨ o2 ∨ o), (z ∨ o1 ∨ ¬o2 ∨ o)}

∃x1, . . . , xN ∀z ∃t2, . . . , tN , s2, . . . , sN .
∧

xor
l
(x1, x2, t2, z) ∧

N∧
i=3

xor
l
(ti−1, xi, ti, z)

∧
∧

xor
l
(x1, x2, s2,¬z) ∧

N∧
i=3

xor
l
(si−1, xi, si,¬z) ∧ (z ∨ tN) ∧ (¬z ∨ ¬sN).

Lemma 4. The shortest LD-Q-Res refutations of ts-LQParity(N) are Q-Res
refutations.

Proof. At the beginning of the proof, every clause contains a z or z̄ literal block
by some inner existential literal. Every derived clause in LD-Q-Res that contains
an inner existential literal must therefore contain a z, z̄ or z∗ literal. This should
be intuitive as universal literals linger unless they can be reduced which they
cannot in the presence of these inner existentials. In addition any derived clause

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 21

that contains a z, z̄ or z∗ without a blocking existential literal can be immediately
reduced without cost to the proof size, so z, z̄, z∗ literals and inner existential
literals can only coincide in reduced clauses. For more details follow the argument
from [11].

As argued in [11], long distance steps (merge steps) are possible, but can never
be reduced as this can only be done after resolving the inner existential literal.
Resolving the inner existential literal cannot be done because it will always be
an illegal merge step.

Lemma 5. The shortest LD-Q-Res refutations of ts-LQParity(N) are expo-
nential in N .

Proof. Citing [11, Theorem 26] we use the well established strategy extraction
lower bound technique. The winning universal strategy extracted from a Q-Res
proof is always a bounded-depth circuit. In this case the winning strategy for
z is the parity function on x1 . . . xn. Parity has exponential lower bounds in
bounded-depth circuits [19,20], therefore since the strategy extraction was done
in polynomial time in the size of the proof, the proofs must be at least exponential
size. The shortest LD-Q-Res proofs are the shortest Q-Res proofs, so these are
exponentially bounded below as well.

We can observe that actually ts-LQParity(N) will not be a hard problem
when using the proof systems of LD-Q(Drrs)-Res or LD-Q(D∀pure)-Res because
Drrs and D∀pure are empty and the problem reduces to the SAT benchmark
Dubois which is a known easy family of formulas. While we could use this as a
separating example between LD-Q-Res and LD-Q(D∀pure)-Res, we can do better
and add a gadget so that it also becomes a separating family between LD-Q(Drrs)-
Res and LD-Q(D∀pure)-Res.

Definition 6 (Bridged ts-LQParity).

∃x1, . . . , xN ∀z ∃t2, . . . , tN , ∃s2, . . . , sN , ∃b (all clauses from ts-LQParity)∧
(z ∨ ¬tN ∨ b) ∧ (z ∨ tN ∨ ¬b) ∧ (¬z ∨ ¬sN ∨ b) ∧ (¬z ∨ sN ∨ ¬b)

The b variable must be equal to tN when z is false and equal to sN when
z is true, and that is the only condition needed to satisfy these clause. Making
this modification does not change the proofs of Lemmas 4 and 5. But previously
there were no resolution paths between t-variables and s-variables. But now b
acts as a bridge.

Lemma 6. Drrs and Dtrv are equivalent on Bridged ts-LQParity.

Proof. Induction hypothesis (on i): z ∼rrs tN−i and ¬z ∼rrs ¬tN−i.
Base Case: z ∨ tN is an axiom. (¬z ∨ sN ∨¬b) and (z ∨¬tN ∨ b) link ¬z to ¬b
and to ¬tN .
Induction step.: We can extend a path from tN+1−i to tN−i and from t̄N+1−i

to t̄N−i using the clauses of xorl(t̄N−i, xN+1−i, tN+1−i, z).
We can symmetrically do the same induction for the si variables. Finally,

although it is not necessary for hardness, b appears in an axiom with z and ¬b
appears with ¬z.

22 Leroy Chew, Tomáš Peitl

Corollary 2. LD-Q(Drrs)-Res requires exponential-size proofs of Bridged ts-LQParityN .

Lemma 7. There are short refutations of Bridged ts-LQParityN in LD-Q(D∀pure)-
Res.

Proof. Every clause with a t variable contains a positive z literal. Every clause
with an s variables contains a ¬z literal. Therefore, for 2 ≤ i ≤ N there are
no D∀pure resolution paths that go from ¬z to ti, from ¬z to ¬ti, from z to si
nor from z to ¬si. In fact the only dependency pair in D∀pure is (z, b). In the
derivation, with the exception of the new clause which we will not use anyway,
we can reduce all z and ¬z literals immediately. Now we have a false existential
formula with a known short resolution proof. Starting with t2 and s2 we induc-
tively derive ti ↔ si (as clauses ¬ti ∨ si and ¬si ∨ ti). Once we reach (¬ti ∨ si)
we can contradict this with ti and ¬si.

Corollary 3. LD-Q(Drrs)-Res does not p-simulate LD-Q(D∀pure)-Res.

5 P-Equivalence with IndExtQURes

In this section, we observe a new key connection between our new dependency
scheme D∀pure and the new proof system IndExtQURes by Chew and Peitl [17].
When looking at proof complexity, IndExtQURes has been proven to be very
powerful relative to the other proof systems for both QBF and DQBF. In fact
IndExtQURes has been shown to p-simulate the majority of QBF and DQBF
proof systems (see Figure 7 for QBF proof systems), despite IndExtQURes only
using a small number of simple rules. The p-simulation of many QBF and DQBF
techniques presents an opportunity to improve certification for both logics.

One way to do this is to adapt an existing certification format with new rules
so that it p-simulates IndExtQURes, therefore transitively p-simulating most of
the techniques in QBF and DQBF. Our main idea is that we can combine DQRAT
with the D∀pure prefix modification rule. Doing so gives a proof system that
we will show is p-equivalent to IndExtQURes. Recall the definition of DQRAT
(Figure 4), we introduce D∀pure as a replacement of the Drrs rule:

Πϕ
(D∀pure)

Ωϕ

Where Π and Ω are DQBF prefixes and ϕ is a CNF. The condition on Ω is
that it contains the same variables as Π, with a modification of the dependency
sets with the restriction that u /∈ DΩ

x only if u /∈ DΠ
x or (u, x) /∈ D∀pure(Πϕ).

Definition 7. (The refutational version of) DQRAT+D∀pure is a proof system
that allows proofs where each line is an S-form DQBF Πϕ. Refutation is shown
in the same way as DQRAT. Each subsequent line follows from the previous by
one of the seven rules: ATA, Del, UR, DQRAT∃, DQRAT∀, BPM and D∀pure.

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 23

IndExtQURes

G

G1

G∗
1

QRAT(Loc∀pure-Red)

QRAT(EUR)

QRAT(UR)

Frege+∀Exp

IR(Drrs)-calc

Frege+∀red

AC0Frege+∀red

LD-Q-Res \{∀red}

M-Res

QU-Res

Q-Res

LD-Q-Res

LQU-Res

LQU+-Res

Q(Dstd)-Res

Q(Drrs)-Res

LD-Q(Drrs)-Res

LDQ(D∀pure)

QCDCL ∀Exp+Res

IR-calc

IRM-calc

Known Strategy Extraction

Fig. 7. The p-simulation structure of refutational QBF proof systems
[2,3,5,8,9,11,15,16,18,17,23,28,29,30,39,42,45,46].

First we show that DQRAT+D∀pure p-simulates IndExtQURes. This direc-
tion is the more important of the two if we want to use DQRAT+D∀pure for
certification. It is the direction with the simpler proof as IndExtQURes only has
a small number of clause addition rules.

Theorem 3. DQRAT+D∀pure p-simulates IndExtQURes.

Proof. We consider an IndExtQURes refutation π of Πϕ as a sequence of clauses
C1 . . . Cn with Cn = ⊥. We will p-simulate π by creating a DQRAT+D∀pure

derivation L1 . . . Lm. Within that sequence there will be a subsequence (L′
f(i))

n
i=1

where L′
f(i) = Ωψ and ψ contains clauses C1 . . . Ci as well as any clauses from

ϕ and Ω quantifies all variables appearing ψ, with the same quantifiers and
dependency sets as in the IndExtQURes proof.

For the (Ax) rule we ensure that we keep all clauses from ϕ in ψ. For adding
variables to the prefix we can use BPM. For the (Red) rule if we want to
use clause C ∨u to get C we use the UR rule in DQRAT. Technically we need to
keep a copy of C ∨ u in ψ which can be returned by using ATA. For the (Res)
rule we can use ATA to add any resolvent since if D1 ∨ x̄ and D2 ∨ x are in ψ
then ψ ∧¬D1 ∧¬D2 is a propositional contradiction, furthermore we can derive
it via reverse unit propagation as the units of ¬D1 simplify D1 ∨ x̄ to just x̄
and the units of ¬D2 simplify D2 ∨ x to just x, we then propagate to the empty
clause.

24 Leroy Chew, Tomáš Peitl

Suppose we add independent extension clauses (ᾱ∨n∨a), (ᾱ∨n∨b), (ᾱ∨ n̄∨
ā∨ b̄). DΠ

n = DΠ
a ∪DΠ

b \DΠ
α using the (IndExt) rule. We first choose to add the

existential variables n with DΠ
n = DΠ

a ∪DΠ
b using BPM. Using DQRAT∃ we can

add the first two clauses (ᾱ∨n∨ a), (ᾱ∨n∨ b), provided n is a new variable. In
order to add the final clause, we need the outer variables of (ᾱ∨n∨a), (ᾱ∨n∨b)
to each have some non n literal to be opposite of a literal in (ᾱ∨ n̄∨ ā∨ b̄), this
can only be a and b. So in this case because we chose that DΠ

n = DΠ
a ∪DΠ

b , this
is sufficient to add the final clause (ᾱ ∨ n̄ ∨ ā ∨ b̄).

Finally we need to remove the dependencies of n that are in α. Suppose a
literal u is a conjunct in the assignment α. All paths from ū to n or n̄ pass
through u. Therefore we can drop var(u) from DΠ

n . We can do this for each
literal in α. At the end DΠ

n = DΠ
a ∪DΠ

b \DΠ
α .

We can also show the reverse, that IndExtQURes p-simulates DQRAT+D∀pure

. For the six original rules of DQRAT we already know how to do a p-simulation
[17]. So our efforts will be to p-simulate the D∀pure rule. Note that previously
IndExtQURes has been shown to p-simulate the Drrs rule and we use that proof
to construct ours here. In that proof, an important lemma was that IndExtQURes
could p-simulate the Extended Universal Reduction(EUR) rule. The EUR is a
localised form of Drrs that allows a reduction based on the Drrs scheme but does
not modify the prefix. For D∀pure the analogue to EUR is Loc∀pure-Red, and
fortunately we have proved its p-simulation by IndExtQURes in Lemma 3.

Theorem 4. IndExtQURes p-simulates DQRAT+D∀pure .

Proof. We know IndExtQURes p-simulates DQRAT already. What we have to
show is that IndExtQURes p-simulates the D∀pure rule. To do this we follow
a similar proof to IndExtQURes p-simulating the Drrs rule, for each spurious
dependency (u, x) we replace x with another variable x′ where Dx′ = Dx \ {u}.

Given a DQBF with propositional CNF matrix ϕ and let u be some uni-
versal variable in the prefix, and x be an existential variable such that x de-
pends on u, but only spuriously: u ∈ DΠ

x , (u, x) /∈ D∀pure. We define χu to
be the subset of ϕ where all clauses contain literal u and χū to be the sub-
set of ϕ where all clauses contain literal ū. Define Lu = L∀pure(u, ψ, χu,S),
Lū = L∀pure(ū, ψ, χū,S), where S is the set of existential variables that contain
u in its dependency set.

If (u, x) /∈ D∀pure(Πϕ) then we have four cases (up to symmetry) of x’s
membership in Lu and Lū:

1. x /∈ Lu, x̄ /∈ Lu, x /∈ Lū and
x̄ /∈ Lū

2. x ∈ Lu, x̄ /∈ Lu, x /∈ Lū and
x̄ /∈ Lū

3. x ∈ Lu, x̄ /∈ Lu, x ∈ Lū and
x̄ /∈ Lū

4. x ∈ Lu, x̄ ∈ Lu, x /∈ Lū and
x̄ /∈ Lū

For cases 1, 2 and 3, we can take advantage of the fact that x̄ has no pure
path to either u or ū. In fact there is no path at all from x̄ to either u or ū, as
a non-pure path could be minimised to a pure path of one of the polarities. We
replace x with xū∨xu. Variables xū, xu are defined by the conditional definitions

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 25

ū → (xū ↔ x), u → (xu ↔ x). We have to replace each x literal with xū ∨ xu,
this is quite straightforward as we can derive x̄ ∨ xū ∨ xu by resolving over u in
the definition clauses. Replacing x̄ is a more difficult matter. For a clause C we
can replace x̄ with x̄ū ∨ u but we would require a way to remove the u literal.
We can remove the u once we have replaced all variables in S that have spurious
dependencies on u. In this case there cannot be any l ∈ C such that there is a
resolution path from l̄ to ū , otherwise there would be a path from ū to x̄, nor
can there be a path from l̄ to u for the same reason. Hence l is also a case 1, 2
or 3 literal. This means we can reduce the u we introduce to clause C. Thus we
can replace x̄ with x̄ū and symmetrically we can do the same to create another
copy where we replace x̄ with x̄u. By using distributivity we get x̄ replaced by
x̄ū ∧ x̄u, which fortunately is the negation of what we replaced x with. Thus we
have x′ = xū ∨ xu

The remaining case 4, requires us to replace x with xū. Initially via resolution
we can replace x with xū ∨u in some clause C. In the case that u already was in
C we do not need to remove it. Otherwise we argue there are no other literals l
in C such that there is a pure path from l̄ to ū, because there would be a pure
path from ū to x. This means we can use local pure literal elimination to remove
said u, because there is no u-free path from C to ū.

Corollary 4. IndExtQURes and DQRAT+D∀pure are p-equivalent.

6 Practical Implications

The QBF solver Qute [38] already supports Drrs, and so we implemented D∀pure

support for Qute. One may think that D∀pure not only finds more independence
than Drrs, but it also makes calculations faster, the latter because resolution
paths that would need to be explored for Drrs might be aborted early due to
universal impurity. This is not quite as simple.

For both D ∈ {Drrs,D∀pure}, one can compute all x with (u, x) ∈ D in
linear time, and so all dependent pairs in overall quadratic time. For Drrs it is
additionally possible to compute all dependencies of some existential variable x
in quasilinear time with a Dijkstra-style algorithm [37]. The latter seems hard
for D∀pure as resolution paths from a fixed existential literal to many universal
targets may be polluted with different subsets of universal literals, leading to an
exponential blowup.

This affects the implementation ofDrrs andD∀pure in Qute. Qute uses QCDCL
(quantified conflict-driven clause learning) with dependency learning to learn
dependencies between variables dynamically. In dependency learning, the solver
starts branching and propagating as if there were no dependencies (equivalently,
implicitly reducing all universal literals). Only if this leads to a dependency con-
flict, which is a resolution step in LD-Q-Res that should have been valid but is
not because of forbidden v literals from Figure 6, does the solver learn missing
dependencies to prevent the conflict from taking place again. At this point a
dependency scheme D can be inserted: if all blocking literals v are found in-
dependent, the resolution step can soundly be carried out in LD-Q(D)-Res. In

26 Leroy Chew, Tomáš Peitl

order to avoid a quadratic blow up from computing upfront and storing all Drrs

dependencies, Qute only computes the required dependencies on demand during
dependency conflicts (and then stores them forever). Because multiple universal
variables v may be blocking in a dependency conflict, Qute computes all depen-
dencies of the pivot variable x. As shown in [37], all Drrs dependencies of an
existential variable can be found in quasilinear time with a Dijkstra-style algo-
rithm. The same, however, does not seem possible for D∀pure: in the search for
resolution paths, any currently explored path can be impure for any subset of
universal literals, and thus the actual number of paths to explore is in general
exponential. For this reason, our implementation of D∀pure computes all existen-
tial variables that depend on a given universal variable u, which can be done in
linear time with depth or breadth-first search. The price we pay (compared to
Qute’s Drrs implementation) is that in a dependency conflict we need to compute
dependencies on every blocker v. We evaluated Qute with D∀pure on the formulas
from Section 4. Even with Drrs, Qute’s running time scales exponentially, while
with D∀pure the formulas are solved instantly (Figure 8). This is all in line with
proof complexity; we note that such clean mirroring of proof complexity in solver
performance is far from given: previous work on QCDCL proof complexity found
this business to be tricky with Qute unable to solve theoretically easy formulas
quickly [13,14]. We also evaluated Qute on the PCNF track of QBFEval 2022,
but saw no improvement over Drrs or vanilla Qute.

Experimental details In 15 minutes and out of 434 instances of the PCNF
track of QBFEval 20222, vanilla Qute solved 74, with Drrs 72, and with D∀pure

70 instances. The set of instances solved with D∀pure was a subset of those
solved with Drrs, which in turn was a subset of those solved by vanilla Qute.
More experiments will be necessary to determine whether there are practical
instances on which D∀pure (or even Drrs for that matter) provides a boost.

10 11 12 13 14 15 16 17 18 19 20

0
200
400
600

T
im

e
(s
)

Dtrv Drrs D∀pure

Fig. 8. Vanilla Qute (Dtrv) vs Qute with Drrs and D∀pure on Bridged ts-LQParity.
The x-axis gives n. Dtrv and Drrs timed out at 10 minutes for n ≥ 19.

The experiments on Qute are somewhat tangential to the motivations of this
paper, which were mainly certification rather than solving, but we are interested
in the results regardless. Unfortunately, as there is no implementation of DQRAT
we were unable to implement any of the p-simulation ideas into a practical

2 https://www.qbflib.org/qbfeval2022_results.php [35,41]

https://www.qbflib.org/qbfeval2022_results.php

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 27

certification example. But we would like to do this in future work and one of our
next goals is to construct a DQRAT checker.

7 Conclusion

As we have shown that DQRAT+D∀pure is p-equivalent to IndExtQURes, we
therefore show a number of useful p-simulations via transitivity. What we cannot
show by transitivity is a p-simulation of the newly created LD-Q(D∀pure)-Res,
because long-distance resolution steps do not have a sound meaning in DQBF.
Nonetheless we conjecture such a p-simulation will exist and we point to the
work by Kiesl, Heule and Seidl [27] that shows how QRAT can p-simulate long
distance as well as the work by Chew [15], which shows how extension variables
can handle dependency schemes, as potential techniques.

Acknowledgments

Thanks to Joshua Blinkhorn and Martina Seidl for their discussions. This work
is supported by FWF Project ESP197.

References

1. Valeriy Balabanov, Hui-Ju Katherine Chiang, and Jie-Hong R Jiang. Henkin quan-
tifiers and Boolean formulae: A certification perspective of DQBF. Theoretical
Computer Science, 523:86–100, 2014.

2. Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its ap-
plications. Formal Methods in System Design, 41(1):45–65, 2012. doi:10.1007/

s10703-012-0152-6.
3. Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution sys-

tems and their proof complexities. In SAT 2014, pages 154–169, 2014.
4. O. Beyersdorff, J. Blinkhorn, L. Chew, R. A. Schmidt, and M. Suda. Reinterpret-

ing dependency schemes: Soundness meets incompleteness in DQBF. Journal of
Automated Reasoning, 63(3):597–623, 2019. doi:10.1007/s10817-018-9482-4.

5. Olaf Beyersdorff, Joshua Blinkhorn, and M. Mahajan. Building strategies into
QBF proofs. In Electron. Colloquium Comput. Complex., 2018.

6. Olaf Beyersdorff, Joshua Blinkhorn, and Tomáš Peitl. Strong (D)QBF dependency
schemes via tautology-free resolution paths. In Luca Pulina and Martina Seidl,
editors, Theory and Applications of Satisfiability Testing – SAT 2020, pages 394–
411, Cham, 2020. Springer International Publishing.

7. Olaf Beyersdorff, Joshua Lewis Blinkhorn, and Tomáš Peitl. Strong (D)QBF de-
pendency schemes via implication-free resolution paths. ACM Trans. Comput.
Theory, 16(4), November 2024. doi:10.1145/3689345.

8. Olaf Beyersdorff and Benjamin Böhm. Understanding the relative strength of QBF
CDCL solvers and QBF resolution. In James R. Lee, editor, 12th Innovations in
Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual
Conference, volume 185 of LIPIcs, pages 12:1–12:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITCS.2021.12.

https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1007/s10817-018-9482-4
https://doi.org/10.1145/3689345
https://doi.org/10.4230/LIPIcs.ITCS.2021.12

28 Leroy Chew, Tomáš Peitl

9. Olaf Beyersdorff, Ilario Bonacina, Leroy Chew, and Jan Pich. Frege systems for
quantified Boolean logic. J. ACM, 67(2), April 2020.

10. Olaf Beyersdorff, Leroy Chew, Judith Clymo, and Meena Mahajan. Short proofs
in QBF expansion. Electronic Colloquium on Computational Complexity (ECCC),
25:102, 2018. URL: https://eccc.weizmann.ac.il/report/2018/102.

11. Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. New resolution-based QBF
calculi and their proof complexity. ACM Trans. Comput. Theory, 11(4):26:1–26:42,
2019.

12. Joshua Blinkhorn. Simulating DQBF preprocessing techniques with resolution
asymmetric tautologies. Electron. Colloquium Comput. Complex., TR20, 2020.
URL: https://api.semanticscholar.org/CorpusID:221159787.

13. Benjamin Böhm, Tomás Peitl, and Olaf Beyersdorff. QCDCL with cube learn-
ing or pure literal elimination - what is best? Artif. Intell., 336:104194,
2024. URL: https://doi.org/10.1016/j.artint.2024.104194, doi:10.1016/J.
ARTINT.2024.104194.

14. Benjamin Böhm, Tomás Peitl, and Olaf Beyersdorff. Should decisions in QCDCL
follow prefix order? J. Autom. Reason., 68(1):5, 2024. URL: https://doi.org/
10.1007/s10817-024-09694-6, doi:10.1007/S10817-024-09694-6.

15. Leroy Chew. Proof simulation via round-based strategy extraction for QBF. In
Toby Walsh, Julie Shah, and Zico Kolter, editors, AAAI-25, Sponsored by the
Association for the Advancement of Artificial Intelligence, February 25 - March 4,
2025, Philadelphia, PA, USA, pages 11176–11184. AAAI Press, 2025. URL: https:
//doi.org/10.1609/aaai.v39i11.33215, doi:10.1609/AAAI.V39I11.33215.

16. Leroy Chew and Marijn J. H. Heule. Relating existing powerful proof systems for
QBF. Electron. Colloquium Comput. Complex., 27:159, 2020.

17. Leroy Chew and Tomáš Peitl. Better Extension Variables in DQBF via Inde-
pendence. In Jeremias Berg and Jakob Nordström, editors, 28th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2025),
volume 341 of Leibniz International Proceedings in Informatics (LIPIcs), pages
11:1–11:24, Dagstuhl, Germany, 2025. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/

LIPIcs.SAT.2025.11, doi:10.4230/LIPIcs.SAT.2025.11.

18. Leroy Chew and Friedrich Slivovsky. Towards uniform certification in QBF. Log.
Methods Comput. Sci., 20(1), 2024. doi:10.46298/lmcs-20(1:14)2024.

19. Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

20. J. H̊astad. Computational Limitations of Small Depth Circuits. MIT Press, Cam-
bridge, 1988.

21. Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new
variables. In Leonardo de Moura, editor, Automated Deduction – CADE 26, pages
130–147, Cham, 2017. Springer International Publishing.

22. Marijn J.H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refuta-
tions with extended resolution. In 24th International Conference on Automated
Deduction (CADE), pages 345–359, 2013.

23. Marijn J.H. Heule, Martina Seidl, and Armin Biere. A unified proof system for
QBF preprocessing. In 7th International Joint Conference on Automated Reasoning
(IJCAR), pages 91–106, 2014.

24. Mikoláš Janota and Joao Marques-Silva. Expansion-based QBF solving versus
Q-resolution. Theor. Comput. Sci., 577:25–42, 2015.

https://eccc.weizmann.ac.il/report/2018/102
https://api.semanticscholar.org/CorpusID:221159787
https://doi.org/10.1016/j.artint.2024.104194
https://doi.org/10.1016/J.ARTINT.2024.104194
https://doi.org/10.1016/J.ARTINT.2024.104194
https://doi.org/10.1007/s10817-024-09694-6
https://doi.org/10.1007/s10817-024-09694-6
https://doi.org/10.1007/S10817-024-09694-6
https://doi.org/10.1609/aaai.v39i11.33215
https://doi.org/10.1609/aaai.v39i11.33215
https://doi.org/10.1609/AAAI.V39I11.33215
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.11
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.11
https://doi.org/10.4230/LIPIcs.SAT.2025.11
https://doi.org/10.46298/lmcs-20(1:14)2024

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 29

25. Toni Jussila, Armin Biere, Carsten Sinz, Daniel Kröning, and Christoph M. Win-
tersteiger. A first step towards a unified proof checker for QBF. In SAT 2007,
pages 201–214, 2007.

26. Benjamin Kiesl, Marijn J. H. Heule, and Armin Biere. Truth assignments as condi-
tional autarkies. In Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza, editors,
Automated Technology for Verification and Analysis, pages 48–64, Cham, 2019.
Springer International Publishing.

27. Benjamin Kiesl, Marijn J. H. Heule, and Martina Seidl. A little blocked literal goes
a long way. In SAT 2017, volume 10491 of Lecture Notes in Computer Science,
pages 281–297. Springer, 2017.

28. Benjamin Kiesl and Martina Seidl. QRAT polynomially simulates ∀Exp+Res. In
SAT 2019, volume 11628 of Lecture Notes in Computer Science, pages 193–202.
Springer, 2019.

29. Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quan-
tified Boolean formulas. Inf. Comput., 117(1):12–18, 1995.

30. Jan Kraj́ıček and Pavel Pudlák. Quantified propositional calculi and fragments
of bounded arithmetic. Zeitschrift für mathematische Logik und Grundlagen der
Mathematik, 36:29–46, 1990.

31. O. Kullmann. On a generalization of extended resolution. Discrete Appl. Math.,
96–97(1):149–176, October 1999. doi:10.1016/S0166-218X(99)00037-2.

32. Oliver Kullmann and Ankit Shukla. Introducing autarkies for dqcnf, 07 2019.
doi:10.48550/arXiv.1907.12156.

33. Florian Lonsing and Armin Biere. DepQBF: A dependency-aware QBF solver.
JSAT, 7(2-3):71–76, 2010.

34. Florian Lonsing and Uwe Egly. Qrat+: Generalizing qrat by a more powerful qbf
redundancy property. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani,
editors, Automated Reasoning, pages 161–177, Cham, 2018. Springer International
Publishing.

35. Massimo Narizzano, Luca Pulina, and Armando Tacchella. The qbfeval web portal.
In European Workshop on Logics in Artificial Intelligence, pages 494–497. Springer,
2006.

36. Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin Biere.
Resolution-based certificate extraction for qbf. In Alessandro Cimatti and Roberto
Sebastiani, editors, Theory and Applications of Satisfiability Testing – SAT 2012,
pages 430–435, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

37. Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Combining resolution-path
dependencies with dependency learning. In Mikolás Janota and Inês Lynce, editors,
Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, volume
11628 of Lecture Notes in Computer Science, pages 306–318. Springer, 2019. doi:
10.1007/978-3-030-24258-9_22.

38. Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Dependency learning for
QBF. J. Artif. Intell. Res., 65:180–208, 2019.

39. Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Long-distance Q-Resolution
with dependency schemes. J. Autom. Reason., 63(1):127–155, 2019.

40. Mark Peyrer and Martina Seidl. QRP+Gen: A Framework for Checking Q-
Resolution Proofs with Generalized Axioms. In Jeremias Berg and Jakob Nord-
ström, editors, 28th International Conference on Theory and Applications of Satis-
fiability Testing (SAT 2025), volume 341 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 25:1–25:10, Dagstuhl, Germany, 2025. Schloss Dagstuhl

https://doi.org/10.1016/S0166-218X(99)00037-2
https://doi.org/10.48550/arXiv.1907.12156
https://doi.org/10.1007/978-3-030-24258-9_22
https://doi.org/10.1007/978-3-030-24258-9_22

30 Leroy Chew, Tomáš Peitl

– Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.SAT.2025.25, doi:10.4230/LIPIcs.SAT.2025.25.

41. Luca Pulina and Martina Seidl. The 2016 and 2017 QBF solvers evaluations (qbfe-
val’16 and qbfeval’17). Artif. Intell., 274:224–248, 2019. URL: https://doi.org/
10.1016/j.artint.2019.04.002, doi:10.1016/J.ARTINT.2019.04.002.

42. Markus N. Rabe. A resolution-style proof system for DQBF. In Serge Gaspers
and Toby Walsh, editors, Theory and Applications of Satisfiability Testing – SAT
2017, pages 314–325, Cham, 2017. Springer International Publishing.

43. Marko Samer and Stefan Szeider. Backdoor sets of quantified Boolean formulas.
J. Autom. Reasoning, 42(1):77–97, 2009.

44. Friedrich Slivovsky and Stefan Szeider. Variable dependencies and Q-Resolution.
International Workshop on Quantified Boolean Formulas, 2013.

45. Friedrich Slivovsky and Stefan Szeider. Variable dependencies and Q-resolution.
In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability
Testing - SAT 2014 - 17th International Conference, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, vol-
ume 8561, pages 269–284. Springer, 2014. URL: http://dx.doi.org/10.1007/
978-3-319-09284-3_21, doi:10.1007/978-3-319-09284-3_21.

46. Allen Van Gelder. Variable independence and resolution paths for quantified
Boolean formulas. In Jimmy Ho-Man Lee, editor, CP, volume 6876, pages 789–803.
Springer, 2011.

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.25
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.25
https://doi.org/10.4230/LIPIcs.SAT.2025.25
https://doi.org/10.1016/j.artint.2019.04.002
https://doi.org/10.1016/j.artint.2019.04.002
https://doi.org/10.1016/J.ARTINT.2019.04.002
http://dx.doi.org/10.1007/978-3-319-09284-3_21
http://dx.doi.org/10.1007/978-3-319-09284-3_21
https://doi.org/10.1007/978-3-319-09284-3_21

Strong (D)QBF Dependency Schemes via Pure Universal Resolution Paths 31

A Appendix

A.1 Further Details on Outer Variables in DQBF

Here we expand on the description of outer variables from Section 2.3.

Theorem 5. Let Π be a DQBF prefix. Let x and y be variables in Π. If y ∈ OΠ
x

then OΠ
y ⊆ OΠ

x .

Proof. We will assume throughout the proof that y ∈ OΠ
x

First suppose x is existential and y also existential. Then DΠ
y ⊆ DΠ

x . If

z ∈ OΠ
y then DΠ

z ⊂ DΠ
y and thus DΠ

z ⊂ DΠ
x meaning z ∈ OΠ

x .

Now suppose x is existential and y is universal, then y ∈ DΠ
x . Now consider

KΠ
y the set of universal variables in OΠ

y . Each of these also appears in every

dependency set y is in including DΠ
x , hence they also appear in OΠ

x . Now suppose
z ∈ OΠ

y and z is existential, then DΠ
z only contains variables in KΠ

y thus DΠ
z ⊆

DΠ
x and z ∈ OΠ

x .
Next suppose x is universal and y is universal. We say y is in KΠ

x , meaning y
is in all the dependency sets that x is in. If z ∈ OΠ

y then this is defined based on
all the dependency sets y is in, which contain all the dependency sets of x. So if
z is in the kernel of y it is in the kernel of x, and if DΠ

x contains only variables of
KΠ

y it contains only variables of KΠ
x . Thus, whether z is universal or existential

it is contained in OΠ
x .

Finally suppose x is universal and y is existential. Then Dy only contains
variables from KΠ

x . Let z be such that z ∈ OΠ
y . If z is existential then DΠ

z ⊆ DΠ
y

which contains only variables from KΠ
x . Neither contain x so z ∈ OΠ

x . If z is
universal then z is in the dependency set of y, and thus in the kernel of x.

Corollary 5. For a DQBF Πϕ, ≲Π is a pre-order.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

