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Abstract

Can the n-party broadcast channel, where any symbol sent by one party is received

by all, be made resilient to noise with low overhead? Namely, is it possible to construct

interactive error-correcting codes that convert any protocol designed for the noiseless

broadcast channel into one that works over the noisy broadcast channel and is not

much longer than the original protocol?

[EKS18, STOC 2018] showed that such interactive codes with constant multiplica-

tive overhead are possible under the assumption that the noiseless protocol being sim-

ulated is non-adaptive, meaning that it is restricted to have a pre-determined order

of turns. Their noise resilient simulating protocols, however, require adaptivity, where

each party can decide whether or not to broadcast given all the information available

to them, including their input and received transcript. The question of whether such

a simulation is possible for general, potentially adaptive, noiseless protocols was left

open.

We resolve this question negatively, proving that any interactive code that converts

adaptive noiseless broadcast protocols into adaptive broadcast protocols resilient to

stochastic errors must incur a multiplicative overhead of Ω(log n/ log log n), which is

nearly tight.
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1 Introduction

A set of n parties, each holding a private input, wish to communicate over a noisy binary

broadcast channel that flips each bit with probability ϵ > 0, independently. Is it possible

to design error-correcting codes with constant rate for this setting? In this context, “error-

correcting codes” means a scheme that converts a protocol intended for a noiseless broadcast

channel into one that ensures the same output with high probability, even in the presence of

noise. By “constant rate”, we mean that the length of the noise-resilient simulating protocol

is linear in the length of the noiseless protocol.

Broadcast channels are an abstraction of highly distributed wireless systems and the

feasibility of high-rate codes for such channels has been explored since the 1980s [Gam87,

Gal88], with both positive and negative results. Recently, it was shown that constant-rate

codes are impossible in the non-adaptive broadcast setting [EKPS21b]. Non-adaptive (a.k.a,

oblivious or static) protocols are a restricted class of protocols where the order of turns is

fixed in advance and does not depend on the parties’ inputs or their received transcript.

While non-adaptive protocols are useful, they do not fully leverage the capabilities of

many practical wireless broadcast channels, and in fact, communication-efficient protocols

for certain central problems are adaptive (e.g., the well-known Decay protocol for computing

network size [BGI92]). In adaptive protocols, parties can decide whether to broadcast based

on all available information, including their input and the received transcripts. These pro-

tocols are known to be much more powerful than non-adaptive protocols in the context of

error correcting codes [Hae14, GHS14, GH14, AGS16, EKS18, EKS20a, EKS21]. For exam-

ple, [EKS18] were able to circumvent the [EKPS21b] lower bound and design constant-rate

codes for settings where the noiseless protocol is non-adaptive, assuming that the simulation

protocol is allowed to be adaptive. The general case, where both the noiseless and simulation

protocols can be adaptive, was left open.

A partial answer to the question of adaptive-to-adaptive simulation was provided by

[EKPS23], which showed that under the stochastic message drops (a.k.a, erasures) model1

proposed by [CHHHZ19], constant-rate codes exist. [EKPS23] also note that most interactive

coding lower bounds for multi-party protocols under stochastic corruptions (bit-flips) extend

to the erasure model (e.g., [BEGH16, EKS19, EKPS21b]), suggesting that proving a lower

bound for corruptions may require new techniques.

1.1 Our Result

We resolve the general case of adaptive-to-adaptive simulation over the binary broadcast

channel with corruptions, proving that constant-rate codes do not exist for this channel.

Theorem 1.1 (Informal, see Theorem 3.2). Let ϵ ∈ (0, 1/2], n ≥ 1, and T (n) = nΘ(1).

There exists a deterministic adaptive protocol Π with T (n) rounds over the n-party (noiseless)

1In this model, each party receives the broadcast bit with probability 1− ϵ, independently, and receives
‘⊥’ to indicate an erasure with probability ϵ.

1



broadcast channel, such that any randomized adaptive protocol that simulates Π over the n-

party ϵ-noisy broadcast channel with constant error probability has Ω(T (n) · logn
log logn

) rounds.

The overhead in Theorem 1.1 is optimal up to O(log log n) factors, as polynomial-length

protocols can be simulated with Ω(log n) overhead by repeating each round Θ(log n) times

and having each party take the majority of the symbols it receives. This process effectively

reduces the error rate to 1
poly(n)

.

Ruling out adaptive simulations. Theorem 1.1 proves a lower bound against adaptive

simulation protocols. Such lower bounds are tricky, as when a message is corrupted, it may

not only cause the parties to alter the content of their future messages, but it can also lead

them to change the set of rounds in which they choose to broadcast. For instance, they can

decide to dynamically allocate more rounds to the parties that were corrupted the most (see,

e.g., [GHS14]).

A key technical challenge in proving lower bounds against adaptive simulations is that

most techniques for proving communication lower bounds rely on the assumption that, at

any point during the execution of the protocol, conditioned on the execution so far, the set of

possible inputs forms a combinatorial rectangle (in other words, a ‘product set’). This holds

true for multi-party non-adaptive protocols, as exactly one party broadcasts in each round

and the identity of this party is known. However, in adaptive protocols, new dependencies

between the inputs can arise, implying that they are no longer a combinatorial rectangle.

The hard-to-simulate adaptive protocol. Lower bounds on the rate of interactive codes

are often proved for the pointer-chasing problem (see Section 2.1.2). While pointer-chasing

is “complete” for non-adaptive protocols, in the sense that every non-adaptive protocol can

be viewed as a pointer chasing protocol, the pointer-chasing problem admits a non-adaptive

protocol and therefore is subject to the [EKS18] scheme. Thus, it is not a good candidate

for a hard-to-simulate protocol in our case.

Instead, the noiseless protocol used by the proof of Theorem 1.1 is a protocol for the

pointer-chasing with unique secrets communication problem. In this problem, the previously

communicated edges in the underlying pointer-chasing tree do not determine the next party

to broadcast an edge, but merely select a large group of parties that contains this next party.

In the noiseless protocol, selecting the next party out of the group is done via very short

adaptive sub-protocol that identifies the group member that has the “unique secret” (see

Section 2), but requires more communication in the noisy setting.

The adaptive broadcast model. We now describe the model assumed by Theorem 1.1.

An adaptive protocol over the n-party (noiseless) broadcast channel is a communication

protocol where n parties communicate in synchronous rounds. In each round, each party

can choose to either broadcast a bit or remain silent. If exactly one party broadcasts a bit,

each party receives the broadcast bit. However, if more than one party broadcasts in a given
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round (a collision), or if no party broadcasts (a silent round), all parties receive the ‘⊥’

symbol. This model is known as the (single-hop) collision-as-silence radio networks model,

as the same ‘⊥’ symbol is received in both collision and silent rounds, and it is the most

commonly used collision-handling model in the literature2.

When running an adaptive protocol over an n-party ϵ-noisy broadcast channel, in each

round, each party receives the symbol from {0, 1,⊥} that it would have received if this round

had been run over the n-party (noiseless) broadcast channel with probability 1 − ϵ, and a

random symbol from {0, 1,⊥} with probability ϵ, independently for each round and party.

1.2 Related Work

Interactive coding. Interactive error-correcting codes encode interactive communication

protocols designed for noiseless channels into protocols that can also work over noisy chan-

nels. The study of interactive codes began with a landmark paper by Schulman [Sch92],

which focused on two-party protocols and sparked numerous follow-up works. Over the

last decade, interactive codes for multi-party distributed channels have garnered significant

attention. This includes codes for peer-to-peer channels [RS94, JKL15, HS16, ABE+16,

BEGH16, GK19, GKR19] and codes for various broadcast channels [Gal88, Yao97, KM05,

FK00, New04, GKS08, CHHHZ17, EKS18, CHHHZ19, EKS19, EKS20b, AGL20, EKPS21a,

MG21, EKPS21b, EKPS23, EKP+24]. Our work contributes to the literature on the latter.

In the context of coding for broadcast channels, prior work has explored both adap-

tive and non-adaptive protocols. We next survey the most relevant results on simulating

non-adaptive/adaptive protocols by non-adaptive/adaptive noise resilient protocols over the

broadcast channel. Naturally, if the noiseless protocols being considered are adaptive, the

simulation should also be adaptive. However, simulations of non-adaptive noiseless protocols

by adaptive noise-resilient protocols have also been considered.

Non-adaptive to non-adaptive simulation. The study of the noise resilience of broad-

cast channels was initiated by El Gamal [Gam87], who introduced the noisy broadcast model.

This is a noisy version of the non-adaptive broadcast model (a.k.a., the shared blackboard

model), where a set of n parties, each holding a private input, communicate in synchronized

rounds. In each round, a pre-specified party broadcasts a bit to all the other parties. How-

ever, the bit received by each party is randomly flipped with some fixed constant probability

ϵ > 0, independently for each party and round. This model was later popularized by [Yao97]

as a simple abstraction for understanding the impact of noise on highly distributed wireless

systems.

El Gamal posed the following challenge: How many rounds are needed to solve the

bit-exchange problem, where each party has a bit input and needs to learn the inputs of

2Another widely used model is the collision detection model, where collisions and silence are received as
different symbols. We define our channel as collision-as-silence, but Theorem 1.1 also applies to the collision
detection model and other related models.
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all other parties? Gallager [Gal88] gave an elegant O(n log log n)-round protocol for this

problem, which was later proved to be optimal by [GKS08]. The bit-exchange problem

under erasure noise was considered by [GHM18], who gave an O(n log∗ n)-round protocol.

The bit-exchange problem is equivalent to computing the identity function, and the round

complexity of other specific n-bit functions, such as or, majority, and parity, has been

studied under related noise models [Yao97, KM05, FK00, New04, GKS08].

The general case of simulating any non-adaptive protocol with a noise-resilient non-

adaptive protocol was recently studied by [EKPS21b]. Their main result shows that for

protocols of length polynomial in n, such a simulation requires Θ̃(
√
log n) multiplicative

overhead in the number of round. We note that the question of non-adaptive to non-adaptive

simulation with low overhead and the question of adaptive-to-adaptive simulation with low

overhead are incomparable. While the simulation protocols in the latter case are more

powerful, so are the noiseless protocols they attempt to simulate.

Non-adaptive to adaptive simulation. [EKS18] gave a scheme for converting any non-

adaptive noiseless protocol into an adaptive, noise-resilient one with only a constant multi-

plicative overhead. Theorem 1.1 shows that their scheme cannot be extended to simulate

adaptive protocols as well.

Adaptive to adaptive simulation with erasures. [EKPS23] designed a constant-rate

scheme for converting any adaptive noiseless protocol into an adaptive, noise-resilient one

with only a constant multiplicative overhead under erasures. Theorem 1.1 shows that their

result cannot be extended to handle corruptions.

2 Proof Sketch

In this section, we give a detailed outline of the proof of Theorem 1.1. In Section 2.1, we

motivate the design of our hard-to-simulate problem, pointer-chasing with unique secrets,

by discussing the limitations of the non-adaptive to adaptive simulation of [EKS18] (this

subsection can be skipped as the rest of the section is self-contained). We then outline our

lower bound proof for this problem.

2.1 Designing the Hard-to-Simulate Protocol

2.1.1 The [EKS18] Scheme

The scheme in [EKS18] employs the rewind-if-error framework, which was originally devel-

oped for the two-party interactive coding setting [Sch92]. Rewind-if-error coding schemes

involve multiple iterations, with each iteration consisting of two phases: a simulation phase,

in which a small number of rounds of the noiseless protocol are executed, and a consistency

check phase, where the parties check whether they have the same received transcript or if an
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error occurred (e.g., by comparing hashes of their received transcripts). If the check phase

succeeds, the parties proceed with the simulation; otherwise, they rewind and re-simulate

the last few rounds.

One key reason the [EKS18] scheme fails when applied to adaptive protocols is due to

repeated rewinds: With a noise rate of ϵ, we can expect approximately ϵn parties to receive an

incorrect bit in each round of the simulation phase. Since ϵ is constant, ϵn ≫ 1. This means

that the consistency check phase will almost always fail and trigger a rewind, preventing any

progress from being made.

While the total number of parties, n, is large, the [EKS18] simulation successfully by-

passed the repeated rewinds problem. This is achieved by observing that the non-adaptivity

of Π could be used to identify a small subset S of parties that critically need to know the

simulated transcript. These parties are those that will broadcast in the rounds immediately

following the current one. The other parties broadcast later and thus have more time to

decode the bit broadcast in the current round. [EKS18] showed that it suffices to ensure

that the parties in S are not affected by noise. However, in the adaptive case, where any of

the n parties may broadcast next, this approach is not feasible.

2.1.2 Failed Attempt: Weakly Adaptive Pointer-Chasing

Recall that the pointer-chasing communication problem involves an underlying (possibly non-

binary) tree. Each layer of this tree is “owned” by one of the communicating parties, and each

party gets a single edge going out of each of the vertices in the layers they own. The parties’

objective is to find a root-to-leaf path that only uses edges in the union of their input edge

sets. As discussed in Section 1.1, while lower bounds against non-adaptive simulations are

typically shown for the pointer-chasing protocol3, this protocol is non-adaptive and therefore

can be simulated with low overhead using the [EKS18] scheme.

Building on the discussion above regarding the shortcomings of the [EKS18] scheme, our

hard-to-simulate protocol should ensure that the identity of the next party to send an edge

is unknown. To achieve this, we can modify the standard pointer-chasing problem so that

different parties own different vertices at the same level. Specifically, assume that each party

owns one vertex in the underlying pointer-chasing tree and has an outgoing edge from this

vertex. In this setup, the identity of the second party to send an edge is only determined

after the party owning the root node sends the first edge.

While this version of the pointer-chasing protocol is adaptive, as the order of turns is not

pre-determined, it is only “weakly adaptive” in the sense that exactly one party broadcasts

in each round and the order of turns only depends on the transcript (and not on the private

inputs of the parties, unless those inputs have been communicated). A more careful analysis

of the [EKS18] scheme shows that it can be expected to work for such weakly adaptive

noiseless protocols. The reason is that, although the identity of the party that speaks in

3The owner of the root v0 broadcasts their edge (v0, v1), then the owner of v1 broadcasts their edge
(v1, v2), etc.
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round t + 1 is unknown ahead of time, after round t, the identity of this party is known

to all. Thus, if the simulation until round t was (roughly) correct, round t + 1 effectively

becomes (close to) non-adaptive, and the idea of [EKS18] still applies.

2.1.3 Hard-to-Simulate: Pointer-Chasing with Unique Secrets

The previous attempt at changing the pointing-chasing problem failed as the identity of

the next speaker is determined by the transcript so far. This will no longer be the case

if the identity of the next speaker also depends on their private input. Motivated by this,

in our pointer-chasing with unique secrets problem, the previous edges communicated only

determine a large “group” (set of size nΘ(1)) of parties that contains the party who has the

next edge, and act as a disguise to the identity of this party.

Unique secrets. We next explain how the party that broadcast the next edge is selected

out of the group, while making sure that its identity is not implied by the communication.

An easy way to do so is to select a random party i ̸= 1 in the group and a random bit b, and

give parties i and party 1 (who we refer to as the “leader” of the group) the bit b, while all

the other parties get b̄. We refer to those additional input bits as “secrets” (recall each party

also has an edge as input). Observe that there is exactly one party whose secret is unique

among the non-leader parties. We call this party the “unique party”. Also observe that the

leader knows the unique secret, but not the identity of the unique party.

In the noiseless protocol, the leader broadcasts their secret, which immediately allows

the party with the matching secret to know that they are the unique party. This party then

broadcasts their edge to determine the next group. Note that the identity of the unique

party cannot be deduced from the communication and requires knowing the private secret

of that party. Therefore, this protocol is not weakly adaptive.

Longer secrets. Finding the unique party can also be done by a different short adaptive

sub-protocol that does not rely on the leader: In the first round, all non-leader parties

with secret 0 broadcast 0, and in round 2, all non-leader parties with secret 1 broadcast 1.

Notice that if, for instance, b = 1 is the unique secret, the unique party will be the only

one broadcasting in round 2, while all other non-leader parties will broadcast in round 1,

leading to a collision. It is straightforward to deduce the unique secret from the protocol’s

transcript—only one of the rounds will have a non-‘⊥’ value, and this value is the unique

secret.

To simplify the lower bound proof, we aim to eliminate this second sub-protocol for

identifying the unique party. To achieve this, we assign each party a secret that is a bit

string of length Θ(log log n), rather than a single bit, while still ensuring there is one unique

party whose secret matches the leader’s. Each of the other possible secrets is given to many

other parties (there are nΘ(1) parties in a group and only poly log n possible secrets). Note

that the second protocol can be adapted to work with any set of secrets {s1, . . . , sk}, by
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having parties with secret sℓ broadcast in round ℓ. However, the length of this protocol

increases with k, the size of the set. By choosing secrets of length Θ(log log n), we make the

length of the protocol k = poly log n, which is too large.

Why is it hard to simulate? Intuitively, the difficulty in solving the pointer-chasing

with unique secrets problem over a noisy channel arises from the fact that when the leader

of the current group broadcasts their secret, each bit of the broadcast is likely to be received

incorrectly by a constant fraction of the parties. Given that the secret is relatively short

and there are many parties in the group, it is expected that several parties j will receive

a noisy version of the leader’s secret that coincidentally matches their own secret. Each of

these parties j may mistakenly believe they are the unique party and proceed to broadcast

their own edge, leading to collisions and preventing meaningful information transmission4.

The remainder of this section gives a detailed outline of our lower bound proof.

2.2 Lower Bound

As discussed above, for our lower bound, we consider an instance of pointer-chasing with

unique secrets. Here is a more formal description of this problem: The n parties are divided

into B = nΘ(1) blocks and each block is divided into G = (log n)Θ(1) groups. One of the

players in every group is the leader of the group (for concreteness, the first party in the

group), and each party has as input a “secret” s and a “key” k ∈ [G]. It is promised that in

every group, there is exactly one other party with the same secret as the leader. We call this

party the unique party. The key of the unique party is called the groupkey and it identifies

a group in the next block. The goal of the parties is to start from the first group in the first

block and compute its groupkey, then compute the groupkey of the group it identifies in the

second block, and so on for all the B blocks.

Our lower bound shows that a protocol with o(B · log n) rounds over the noisy channel

cannot compute all the B groupkeys. Very roughly, we show this by proving that in any

chunk of TCh = Θ(log n) rounds, the protocol can only identify at most a constant number

of groupkeys in expectation. As the total number of chunks is o(B), so is the total number

of groupkeys identified by the protocol, and the lower bound follows. To see why any chunk

can only identify a constant number of groupkeys, consider first what happens in the first

chunk of the protocol. We will later generalize this to all the other chunks.

Analyzing the first chunk. We show that after the first chunk, which is the first TCh

rounds of the protocol, the parties do not know the groupkey of the first group. Assuming

this for now, note that this means that the parties do not know which group is the “correct”

group in the future blocks, which implies that even if they identify groupkeys of some of the

groups in the future blocks, they are unlikely to be relevant to the output of the protocol.

4We point out that, as suggested by [EKPS23], under erasures, a simulation protocol with constant
overhead is possible, as such parties j will no longer be misled into thinking they are the unique party.
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A bit more formally, if the groupkey of the first group is completely random after the first

chunk, each of the groups in the future blocks is likely to be correct with probability 1
G
,

and so is any groupkey computed for these groups. As the number of groupkeys computed

cannot exceed the length of the chunk, we get that the total number of relevant groupkeys

computed for the future blocks is at most TCh

G
= o(1). Combined with the groupkey of the

first block, we get that this chunk only revealed 1+o(1) many relevant groupkeys, as desired.

We now argue why the parties do not know the groupkey of the first group in the first TCh

many rounds of the protocol. For this, consider each round z ∈ [TCh] and consider for all

parties j in the first group, what are the possible inputs and transcripts for which party j

will speak in round z. We say that a secret s is energizing (for round z) if for polynomially

many parties j, there exists an input of the form (s, ·) and a received transcript that will

make party j broadcast5 in round z. We consider two cases:

1. There is at most one value of s that is energizing, call it s∗. In this case, for all other

values of s, very few parties with secret s can potentially speak in round z. Thus, if

the leader’s secret is anything other than s∗, it is unlikely that the unique party (who

is a uniformly random party among all non-leader parties in the group) will speak in

round z. This implies that unless the leader’s secret is s∗, the groupkey is not revealed

in round z, with high probability.

2. There are at least two different values of s that are energizing. In this case, fix any

secret s′ for the leader and consider the energizing value of s that is not s′. As our

groups are large, there are polynomially many parties whose input is the input (s, ·)
that can make them broadcast, and as the chunks are small, we also have that a

polynomially large number of these parties will get the transcript that makes them

broadcast on this input, with high probability. Thus, regardless of the leader’s secret,

this round z will have at least two parties broadcasting, resulting in a collision and the

groupkey will not be revealed.

Combining these two cases, we get that the only way the groupkey can possibly be reveal

in this chunk is if the leader’s secret is s∗ (as defined in Item 1) for some round z in this

chunk. As the number TCh of rounds is small and the leader’s secret is uniformly random,

this is unlikely, and we are done.

Analyzing the other chunks. The first chunk in the protocol was easy to analyze as the

distribution of the parties’ inputs was known before the chunk. Thus, it was known that the

leader’s secret is uniformly random, the unique player is uniformly random independently

of the leader’s secret, etc. This may not be true in the later chunks, as the transcript so far

may have distorted the distribution of the parties’ inputs before the future chunk. Roughly

5This is done by going over all possible inputs and received transcripts for party j, and therefore overcounts
the number of parties that may broadcast in round z (as their actual input may not be the one that will
make them broadcast). Our analysis works with this overcount as well.
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speaking, the way we analyze these chunks is to show that our proof for the first chunk is

“robust”, in the sense that it goes through even if the distributions are slightly distorted.

To formalize this, for every group in every block, we keep track of how much its dis-

tribution differs from the initial distribution, measured in terms of KL divergence (relative

entropy). For the groups whose distributions are close, i.e., whose relative entropy is upper

bounded by 1
poly logn

, we show that the analysis above still goes through. On the other hand,

for the groups whose distributions have changed a lot, we argue that these groups must be

few in number. This is because whenever the relative entropy is large, it means the protocol

has revealed a lot of “information” about this group. However, the total amount of informa-

tion revealed cannot exceed the length of the protocol, and thus the number of groups for

which it is large must be small.

We handle these groups separately using the fact that these groups are independent of

the groupkey the parties are trying to compute in this chunk. Thus, these small number

of revealed groups are unlikely to be correct, and contribute little to the computation the

parties are trying to perform.

Revealing blocks. To finish this sketch, we note that the actual distribution we consider

differs slightly from the distribution above. Specifically, in our proof we also require that

the groupkeys for all the groups in the same block are distinct, ensuring that it possible for

every group in the next block to be the correct one. This is because if not, then it could

be possible for the parties to find out the groups that cannot possibly be correct in the

future blocks, and focus only on the other groups. This could make the task much easier,

and render the lower bound impossible.

However, ensuring that every group in any block has a distinct groupkey leads to another

difficulty. Namely, if one knows the groupkey of any group in a block, one also knows that

the groupkeys of the other groups are different from this one. Similarly, if one knows the

groupkey of a lot of the groups in a block, then one has a lot of information about the

groupkeys of the remaining blocks, making them easier for the protocol to solve. In our

analysis, we show that we can afford to ignore all the blocks for which we know a lot of

groupkeys. In other words, whenever it is the case that we know groupkeys for many groups

in any block, we will reveal the entire block. This would leave us with blocks for which we

have a small number of groupkeys, meaning the remaining groupkey are still very random,

and the previous argument would go through.

3 Model and Preliminaries

Let ε denote the empty string or the empty tuple. For integers a, b, we let [a, b] denote the

set of all integers i satisfying a ≤ i ≤ b. We change the square brackets to parenthesis

when the inequality is strict and define the notations (a, b), [a, b), and (a, b]. As usual we

abbreviate (0, n] = {1, 2, . . . , n} to [n].
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3.1 Concentration Inequalities

Lemma 3.1 (Multiplicative Chernoff bound). Suppose X1, · · · , Xn are independent random

variables taking values in [0, 1]. Let X denote their sum and let µ = E[X] denote the sum’s

expected value. Then,

Pr(X ≥ µ · (1 + δ)) ≤ e−
δ2µ
2+δ , ∀0 ≤ δ,

Pr(X ≤ µ · (1− δ)) ≤ e−
δ2µ
2 , ∀0 ≤ δ ≤ 1.

3.2 The Noisy Broadcast Model

The noisy broadcast model is defined by a number n > 0 of parties and a noise parameter

ϵ ∈ [0, 1]. When ϵ = 0, we say that the broadcast model is noiseless and may drop ϵ from

the notation. A (deterministic) protocol over the (n, ϵ)-noisy broadcast model is defined by

a tuple:

Π =
(
T, (Xi)i∈[n],Y , (msgi)i∈[n], out

)
, (1)

where: (1) T = ∥Π∥ > 0 is a parameter denoting the length of the protocol. (2) For all i ∈ [n],

Xi is the set of inputs of party i. (3) Y is the set of possible outputs for the protocol. (4) For

all i ∈ [n], msgi : Xi × ({0, 1,⊥})∗ → {0, 1,⊥} is a function that computes the message sent

by party i based on its input and the received transcript so far. (5) out : ({0, 1,⊥})T → Y
is a function that computes the output of the protocol from its transcript. We suppress

items on the right hand side of Equation (1) when they are clear from context. We define a

randomized protocol to be a distribution over deterministic protocols.

Execution of a protocol. We now define the execution of a protocol in the presence of

random noise. Fix a protocol Π as above and let N = (N i
t )i∈[n],t∈[T ] be a noise vector such

that for all i ∈ [n] and t ∈ [T ], the value N i
t = ⋆ with probability 1− ϵ and with probability

ϵ, we have that N i
t is a uniformly random symbol from the set {0, 1,⊥}. Furthermore, N i

t is

sampled independently for all i ∈ [n] and t ∈ [T ].

Given such a Π and N , the protocol Π starts with all parties having an inputs xi ∈ Xi

and proceed in T rounds, maintaining the invariant that before round t ∈ [T ], all parties

i ∈ [n] have received a transcript Πi
<t ∈ {0, 1,⊥}t−1. In round t ∈ [T ] all parties i ∈ [n]

compute msgi(xi,Π
i
<t) ∈ {0, 1,⊥}. We say party i speaks (or broadcasts) in round t if

msgi(xi,Π
i
<t) ̸= ⊥. If the number of parties speaking in round t is different from 1, define

Πtrue
t = ⊥. Otherwise, there is exactly one party i∗ ∈ [n] speaking in round t and we define

Πtrue
t = msgi∗

(
xi∗ ,Π

i∗
<t

)
. For all parties i ∈ [n], the symbol Πi

t received by party i in round

t equals Πtrue
t if N i

t = ⋆ and equals N i
t otherwise. All parties i ∈ [n] append Πi

t to Πi
<t and

continue executing the protocol. After T rounds are over, party 1 outputs out
(
Π1

≤T

)
.

Observe that the execution of the protocol is determined by the inputs X = (xi)i∈[n] and

the noise N . In particular, the output of party 1 is determined by X and N . Due to this,

10



we sometimes write the output of the protocol as outΠ(X,N).

3.3 The Hard Instance

We divide the n parties into B = n0.1 blocks of n
B

parties each. Each block of parties is

further subdivided into G = (log n)10 groups of n
BG

parties each. For convenience, we define

m = n
BG

− 1 ≥ n0.89 so that there are m + 1 parties in any group. Thus, each group can

be given a unique index (b, g) ∈ [B] × [G] and each party can be given a unique index

i = (b, g, j) ∈ [B]× [G]× [0,m]. we interpret i to be a number in [n] in the natural way. We

omit writing [B] × [G] and [B] × [G] × [0,m] when it is clear from context. For all groups

(b, g), we define the party (b, g, 0) to be the “leader” of the group (b, g). Let S = G be a

parameter. For all parties i ∈ [n], the input of party i is a pair xi = (si, ki) ∈ [S] × [G]

consisting of a “secret” and a “groupkey”. We will only consider inputs that satisfy the

following two promises:

1. For all groups (b, g), there is exactly one party in the group (b, g) whose secret matches

the leader. Formally, we have:

∀(b, g) : |{j ∈ [m] | sb,g,j = sb,g,0}| = 1. (2)

We will use uqb,g ∈ [m] to denote the unique value in the set above and call player(
b, g, uqb,g

)
the unique player in the group (b, g). Also, we define gkeyb,g = kb,g,uqb,g to

be the groupkey of the unique player in the group (b, g), and also call it the groupkey

of the group (b, g).

2. We also require that gkeyb,g is different for all the groups in the same block. This

is equivalent to saying that the values gkeyb,g for the groups in any block form a

permutation over [G]. Formally,

∀(b, g) ̸= (b, g′) : gkeyb,g ̸= gkeyb,g′ . (3)

We define the distribution D to be the uniform distribution on all inputs X ∈ ([S]× [G])n

that satisfy Equations (2) and (3). We write Xb when we restrict attention to inputs in a

given block b ∈ [B] and Xb,g when we restrict attention to inputs in the group (b, g). Observe

that the random variables (Xb)b∈[B] are mutually independent.

We now define the function gkeys the parties want to compute. Roughly speaking, this

is just the sequence of groupkeys of all groups starting from the first group in the first

block. Formally6, for any inputs X ∈ ([S]× [G])n for the parties, any group (b, g) and any

6While the parties need to compute the groupkeys starting from the first group in the first block, our
formal definition is more general and assumes they are starting from an arbitrary group (b, g). This means
that the “base case” is b′ = b− 1.
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coordinate b′ ∈ [b− 1, B], we recursively define:

gkeysb′(X, b, g) =

{
g, if b′ = b− 1

gkeyb′,gkeysb′−1(X,b,g), otherwise
. (4)

We omit writing b, g when b = g = 1 and adopt the convention that gkeysB(X,B + 1, g) = g

for all g ∈ [G] and all inputs X.

3.4 Main Result

Let n > 0. Observe that when party i has input xi as defined in Section 3.3, there exists an

O(B · log log n) round protocol that computes7 gkeys[B](X) when the noise parameter ϵ = 0.

The protocol divides the rounds into B blocks of O(log log n) rounds each and satisfies the

property that at the end of block b, for all 0 ≤ b ≤ B, party 1 knows gkeys[b](X).

This property is trivially satisfied for b = 0. Suppose that b > 0 and the property is

satisfied for b− 1. As the protocol is noiseless, all the parties have the same transcript and

they all know gkeys[b−1](X) before block b. Let g = gkeysb−1(X). In block b, the leader

(b, g, 0) of the group (b, g) takes O(log log n) rounds to broadcast sb,g,0. Then, all the other

parties, i.e., party (b, g, j) for j ∈ [m], check if sb,g,j = sb,g,0 which they just received. If this

check passes (which only happens for party uqb,g by Equation (2)), party j takes O(log log n)

rounds to broadcast kb,g,j = gkeyb,g. By Equation (4), this equals gkeysb(X), as desired.

With this protocol, in order to show Theorem 1.1, it suffices to show that any noisy

protocol computing gkeys[B](X) requires Ω(B · log n) rounds. This is captured in the theorem

below, which implies Theorem 1.1. We state the theorem below with ϵ = 3
10

but this choice

only affects the constants in the theorem statement.

Theorem 3.2. Fix n > 0 large enough and ϵ = 3
10
. For any (possibly randomized) protocol

Π in the (n, ϵ)-noisy broadcast channel with ∥Π∥ ≤ 10−6 ·B · log n, it holds that:

Pr
X∼D,N∼N

(
outΠ(X,N) = gkeys[B](X)

)
≤ 0.1.

4 The Lower Bound: Proof of Theorem 3.2

We devote this section to proving Theorem 3.2. Let n > 0 be large enough and Π be a

protocol satisfying T = ∥Π∥ ≤ 10−6 ·B · log n as in the theorem statement. As we work with

a specific distribution D, we can assume without loss of generality that Π is deterministic.

Recall that N ∼ N is the random variable for the noise in the channel and is independent

of D. All our probabilities and events would be defined in terms of the distribution D ×N .

We omit writing the distributions when it is clear from context.

7Throughout this work, for a tuple x = (x1, . . . , xn) and a set S ⊆ [n], we use xS = (xi)i∈S to denote the
coordinates for the tuple that are in S.
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We will use sans-serif letters X, s, k, etc. to denote random variables and the corresponding

letters to denote the realizations. For example, the random variable corresponding to the

input of a party i ∈ [n] is denoted using xi = (si, ki). Observe from our definitions that

the random variables Xb are mutually independent. As all the randomness in our setting

comes from the distributions D and N , once we fix an input X ∼ D and a noise vector

N ∼ N , we also fix the entire execution of the protocol Π (as it is determined by X and N).

Additionally, for all t ∈ [T ], fixing X ∼ D and a noise vector N≤t ∼ N≤t fixes the execution

of Π in the first t rounds and also fixes what every party is broadcasting in round t + 1.

Thus, for all t ∈ [T ], we can define:

Spkt(X,N<t) =
{
i | msgi

(
xi,Π

i
<t

)
̸= ⊥

}
, (5)

to be the set of parties speaking in round t. For our analysis, we divide the protocol Π

into chunks of TCh = 1
500

· log n rounds each and let C = T/TCh ≤ B
2000

denote the total

number of chunks. This means that any round t ∈ [T ] can be equivalently written as a pair

(c, z) ∈ [C]× [TCh], where c is the current chunk and z in the index of t in the current chunk.

We use these two interchangeably.

Let c ∈ [C] be a chunk and define T̂Ch = 2 · TCh and L = T̂Ch + BG. We now define

several functions of the inputs X for the parties and the noise N≤c·TCh
in the first c chunks.

For notational convenience, we keep the dependence on X and N≤c·TCh
implicit. We will

define five functions, namely,
(
Φ(c,l),Φ

sm
(c,l),Φ

gk
(c,l),Γ(c,l),Υ(c,l)

)
l∈[L]

. Intuitively, these functions

capture the information we “reveal” or “condition on” in our proof to ensure independence

between certain random variables. For each round z ∈ [TCh], we reveal up to two parties that

are speaking in that round along with their inputs. This information is enough to determine

if the round is a silent round or a collision round and if it is neither, the bit sent in that

round. Because of this factor of two, we have that T̂Ch is twice TCh. After the chunk is

over, we also reveal all the groups that are not sufficiently random. These can be up to BG

in number so L is that much larger than T̂Ch. The exact information we need to reveal is

different for different parts of the proof and is captured in the functions that are formally

defined inductively as follows. For any l ∈ [L], suppose that the functions have been defined

for all l′ < l.

1. For all l ∈
[
T̂Ch

]
, if l is odd, let i = (b, g, j) be the smallest element in Spk(c,⌈l/2⌉)

(
X,N<(c,⌈l/2⌉)

)
(if it exists, or equivalently, if the set is non-empty). Set:

Φ(c,l) = ((b, g), Xb,g), Φsm
(c,l) = (i, xi), Φgk

(c,l) =
(
i, xi, gkeyb,g

)
. (6)

If the set is empty, then we set each element in the tuples above to ⊥. The definition

for even l is analogous except that we use the second smallest element instead of the

smallest.

2. For all l ∈
(
T̂Ch, L

]
, if there exists a group (b, g) /∈ Γ<(c,l) that satisfies one of the
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following conditions (we useDb,g to denote the marginal distribution ofD corresponding

to the group (b, g)):

D
((

D | Υ<(c,l)

)
b,g

|| Db,g

)
≥ 1

(log n)4
,

∣∣Γ<(c,l) ∩ ({b} × [G])
∣∣ ≥ G

4
,

(7)

then, we let (b, g) denote the smallest such group and define

Φ(c,l) = ((b, g), Xb,g), Φsm
(c,l) = (⊥,⊥), Φgk

(c,l) = (⊥,⊥,⊥). (8)

If no such group exists, we set each element in the tuples above to ⊥.

In both cases, we define:

Γ(c,l) =
(
Γ<(c,l) ∪

{
Φ(c,l),1

})
\ {⊥},

Υ(c,l) =
(
Φ(c,l), N≤(c,min(⌈l/2⌉,TCh))

)
.

(9)

We will view these functions as random variables determined by the inputs X and N≤c·TCh
.

To emphasize this, we will use sans-serif letters Φ(c,l), etc. when we look at them as random

variables and the corresponding normal letters Φ(c,l) for their realizations. Because of our

definitions, we have:

Lemma 4.1. Let c ∈ [C] be a chunk and Υ≤(c,L) be arbitrary
8. For all groups (b, g) /∈ Γ≤(c,L),

we have that:

D
((

D | Υ≤(c,L)

)
b,g

|| Db,g

)
<

1

(log n)4
and

∣∣Γ≤(c,L) ∩ ({b} × [G])
∣∣ < G

4
.

Proof. Observe from Equation (7) that if Φ(c,l) = (⊥,⊥) for some l ∈
(
T̂Ch, L

]
, then Φ(c,l′) =

(⊥,⊥) for all l′ ∈ [l, L]. On the other hand, if Φ(c,l) ̸= (⊥,⊥), then a new element is added

to Γ≤(c,l). As L = T̂Ch + BG, we have that (b, g) /∈ Γ≤(c,L) implies that Φ(c,L) = (⊥,⊥). It

follows that both conditions in Equation (7) are not satisfied for the group (b, g) and we

have the lemma.

A potential function. We now define a potential function and state our main lemma.

For all blocks b ∈ [B], inputs X, and subsets G ⊆ [B]× [G] of groups, we define:

Ψb(X,G ) =

1, if (b, gkeysb−1(X)) ∈ G

min
(
1, 1

(logn)10
· |G ∩ ({b} × [G])|

)
, otherwise

. (10)

8Recall that fixing Υ≤(c,L) also fixes Φ≤(c,l) and Γ≤(c,L).
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Our main lemmas are:

Lemma 4.2. For all 0 ≤ c ≤ C, we have:

B∑
b=1

E
[
Ψb

(
X, Γ≤(c,L)

)]
≤ 2c+

1

(log n)8
· E
[∣∣Γ≤(c,L)

∣∣].
Lemma 4.3. For all 0 ≤ c ≤ C, we have:

E
[∣∣Γ≤(c,L)

∣∣] ≤ 20c · (log n)7.

Before showing Lemmas 4.2 and 4.3, we first show why they imply Theorem 3.2. The

rest of this section is dedicated to proving Lemma 4.2.

Proof of Theorem 3.2 assuming Lemmas 4.2 and 4.3. From Lemmas 4.2 and 4.3, we have

that
∑B

b=1 E
[
Ψb

(
X, Γ≤(C,L)

)]
≤ 3C ≤ B

500
. It follows that there exists b ∈ [B] such that

Pr
(
Ψb

(
X, Γ≤(C,L)

)
= 1
)
≤ 1

500
. From Equation (10), we have that Pr

(
(b, gkeysb−1(X)) ∈ Γ≤(C,L)

)
≤

1
500

. For the rest of this proof, we fix this b and define the event E to be the event that

(b, gkeysb−1(X)) ∈ Γ≤(C,L). Note that whether or not E occurs is determined by the pair(
X<b,Υ≤(C,L)

)
allowing us to view E as the set of pairs for which it occurs. By a union

bound, we have:

Pr
(
outΠ(X,N) = gkeys[B](X)

)
≤ 1

500
+

∑
(X<b,Υ≤(C,L))/∈E

Pr
(
X<b,Υ≤(C,L)

)
· Pr
(
outΠ(X,N) = gkeys[B](X) | X<b,Υ≤(C,L)

)
.

It suffices to bound each conditional probability term above by 0.05. Fix an arbitrary(
X<b,Υ≤(C,L)

)
/∈ E and consider the corresponding term above. Note that fixing X<b fixes

the value of gkeysb−1(X) and let g denote the fixed value. Moreover, observe that fixing

Υ≤(C,L) fixes the transcript received by all the parties during the execution of the protocol

(and thus the output) and that, conditioned on Υ≤(C,L), the random variable gkeyb,g is

independent of X<b. (This is formally shown in Lemma 4.16 below.) Letting k be the b-th

coordinate of this fixed output, we have by Equation (4) that:

Pr
(
outΠ(X,N) = gkeys[B](X) | X<b,Υ≤(C,L)

)
≤ Pr

(
gkeyb,g = k | X<b,Υ≤(C,L)

)
= Pr

(
gkeyb,g = k | Υ≤(C,L)

)
.

As E does not occur, we have (b, g) /∈ Γ≤(C,L) and by Lemma 4.1, it follows that we have

D
((

D | Υ≤(C,L)

)
b,g

|| Db,g

)
< 1

(logn)4
. From Fact A.15, this gives that for all k ∈ [G], we

have:

Pr
(
outΠ(X,N) = gkeys[B](X) | X<b,Υ≤(C,L)

)
≤ Pr

(
gkeyb,g = k | X<b,Υ≤(C,L)

)
15



≤ Pr
(
gkeyb,g = k

)
+

1

(log n)2

≤ 0.05.

4.1 Technical Lemmas

Lemma 4.4. Let 0 ≤ c ≤ C and Υ≤(c,L) be an arbitrary realization9 of Υ≤(c,L). It holds that:

1

5
·
∣∣Γ≤(c,L)

∣∣− c · T̂Ch ≤ (log n)4 ·
c∑

c′=1

L∑
l=T̂Ch+1

D
((

D | Υ<(c′,l)

)
Φ(c′,l),1

|| DΦ(c′,l),1

)
.

Proof. We analyze how the set Γ≤(c′,l) changes. Define the set:

G =
{
(c′, l) ∈ [c]× [L] | Φ(c′,l),1 /∈ Γ<(c′,l) ∪ {⊥}

}
,

and note from Equation (9) that |G | =
∣∣Γ≤(c,L)

∣∣. For every (c′, l) ∈ G , if l /∈
[
T̂Ch

]
, we have

that one of the two conditions in Equation (7) must hold. We define:

G ′ =

{
(c′, l) ∈ G | l /∈

[
T̂Ch

]
∧
∣∣Γ<(c′,l) ∩

({
Φ(c′,l),1,1

}
× [G]

)∣∣ ≥ G

4

}
,

to be the subset of G , where the second condition holds. Now, observe that, for any (c′, l) ∈
G ′, there exists G

4
values in G \ G ′ that are both determined by Φ(c′,l),1,1 and different for

different values of Φ(c′,l),1,1. This means that 1
4
· |G ′| ≤ |G \ G ′|. It follows that:

1

5
·
∣∣Γ≤(c,L)

∣∣ = 1

5
· |G | ≤ |G \ G ′|.

Finally, note that for all (c′, l) ∈ G \G ′ for which l /∈
[
T̂Ch

]
, the first condition in Equation (7)

must hold. This means that for all these (c′, l), we have:

D
((

D | Υ<(c′,l)

)
Φ(c′,l),1

|| DΦ(c′,l),1

)
≥ 1

(log n)4
.

As the number of such values is at least |G \ G ′|−c·T̂Ch and the KL divergence is non-negative

(Lemma A.11), the lemma follows.

Lemma 4.5. For all blocks b ∈ [B], inputs X, and subsets G ,G ′ ⊆ [B]× [G] of groups, we

have:

Ψb(X,G ∪ G ′) ≤ Ψb(X,G ) + Ψb(X,G ′).

9Observe that fixing any such realization fixes the value of Γ≤(c,L) and Φ≤(c,L).
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Proof. This is straightforward if (b, gkeysb−1(X)) ∈ G ∪ G ′ so we assume otherwise. We get:

Ψb(X,G ∪ G ′) = min

(
1,

1

(log n)10
· |(G ∪ G ′) ∩ ({b} × [G])|

)
≤ min

(
1,

1

(log n)10
· |G ∩ ({b} × [G])|+ 1

(log n)10
· |G ′ ∩ ({b} × [G])|

)
≤ min

(
1,

1

(log n)10
· |G ∩ ({b} × [G])|

)
+min

(
1,

1

(log n)10
· |G ′ ∩ ({b} × [G])|

)
≤ Ψb(X,G ) + Ψb(X,G ′).

Lemma 4.6. For all blocks b ∈ [B], inputs X, and subsets G ⊆ [B]× [G] of groups, we have:

Ψb(X,G ) ≤ 1((b, gkeysb−1(X)) ∈ G ) +
1

(log n)10
· |G ∩ ({b} × [G])|.

Proof. Direct from Equation (10).

Corollary 4.7 (Corollary of Lemmas 4.5 and 4.6). For all blocks b ∈ [B], inputs X, and

subsets G ,G ′ ⊆ [B]× [G] of groups, we have:

Ψb(X,G ∪ G ′)−Ψb(X,G ) ≤ 1((b, gkeysb−1(X)) ∈ G ′ \ G )+
1

(log n)10
·|(G ′ \ G ) ∩ ({b} × [G])|.

4.1.1 The Marginal Distribution for One Group

Throughout this section, for all s ∈ [S], we define the set X|s = {s} × [G]. Thus, we have

X|s = ([S] \ {s}) × [G]. Also, for all groups (b, g) and all s′ ∈ [S], and j′ ∈ [m], we define

the event Eb,g
s′,j′ to be the event that sb,g,0 = s′ ∧ uqb,g = j′.

Lemma 4.8. Let (b, g) be a group, s′ ∈ [S], and j′ ∈ [m]. We have Pr
(
Eb,g
s′,j′

)
= 1

mS
.

Further, if for all j ∈ [0,m], we have a set of inputs Xj ⊆ [S]× [G], then:

Pr
(
∀j ∈ [0,m] : xb,g,j ∈ Xj | Eb,g

s′,j′

)
=

∣∣X0 ∩ X|s′
∣∣

G
·
∣∣Xj′ ∩ X|s′

∣∣
G

·
∏

j ̸=j′∈[m]

∣∣Xj ∩ X|s′
∣∣

G · (S − 1)
.

Moreover, conditioned on Eb,g
s′,j′, the random variables (Xb,g,j)j ̸=j′∈[m] are mutually independent

and are independent of all the other inputs.

Proof. The first part is by symmetry. For the second part, note that Items 1 and 2 of our

promise on the distribution D implies that sampling from D conditioned on Eb,g
s′,j′ is the same

as sampling from the uniform distribution conditioned on sb,g,0 = sb,g,j′ = s′ and sb,g,j ̸= s′

for all j ̸= j′ ∈ [m]. For the “moreover” part, note that Item 2 of our promise only depends

on the input of player (b, g, j′) in group (b, g).
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Lemma 4.9. Let (b, g) be a group and j ∈ [0,m]. Let Xj ⊆ [S]× [G] be a set of inputs. We

have:

Pr(xb,g,j ∈ Xj) ≤
1

GS
· |Xj|.

Proof. If j = 0, we have from Lemma 4.8 that:

Pr(xb,g,0 ∈ X0) ≤
1

S
·

S∑
s′=1

∣∣X0 ∩ X|s′
∣∣

G
=

|X0|
GS

.

Otherwise, we have from Lemma 4.8 that:

Pr(xb,g,j ∈ Xj) ≤
1

mS
·

S∑
s′=1

(∣∣Xj ∩ X|s′
∣∣

G
+ (m− 1) ·

∣∣Xj ∩ X|s′
∣∣

G · (S − 1)

)
≤ 1

mGS
· |Xj|+

m− 1

mGS
· |Xj|

≤ 1

GS
· |Xj|.

Lemma 4.10. Let (b, g) be a group and for all j ∈ [m], let Xj ⊆ [S]× [G] be a set of inputs.

We have:

2 · ln
(

S

S − 1
· Pr(∀j ∈ [m] : xb,g,j ∈ Xj)−

1

S − 1

)
≤ 2− 1

GS
·

m∑
j=1

∣∣Xj

∣∣.
Proof. We have:

Pr(∀j ∈ [m] : xb,g,j ∈ Xj) =
S∑

s′=1

m∑
j′=1

Pr
(
Eb,g
s′,j′

)
· Pr
(
∀j ∈ [m] : xb,g,j ∈ Xj | Eb,g

s′,j′

)
≤ 1

mS
·

S∑
s′=1

m∑
j′=1

∏
j ̸=j′∈[m]

∣∣Xj ∩ X|s′
∣∣

G · (S − 1)
(Lemma 4.8)

≤ 1

mS
·

S∑
s′=1

m∑
j′=1

e−
∑

j ̸=j′∈[m]

|X|s′ \Xj|
G·(S−1) (As x ≤ ex−1 for all x)

≤ 1

S
·

S∑
s′=1

max
j′∈[m]

e−
∑

j ̸=j′∈[m]

|X|s′ \Xj|
G·(S−1) .

To continue, for all s′, let τ(s′) be the term corresponding to s′ above and note that τ(s′) ≤ 1

for all s′ ∈ [S]. Order all the s′ in decreasing order of τ(s′) (breaking ties arbitrarily). For
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both s′ in the first two positions in this order we have:

Pr(∀j ∈ [m] : xb,g,j ∈ Xj) ≤
1

S
+

S − 1

S
·

S∑
s′=1

max
j′∈[m]

e−
∑

j ̸=j′∈[m]

|X|s′ \Xj|
G·(S−1)

≤ 1

S
+

S − 1

S
· e1−

∑m
j=1

|X|s′ \Xj|
G·(S−1)

≤ 1

S
+

S − 1

S
· e1−

∑m
j=1

|X|s′ \Xj|
GS .

Rearranging and adding for both these s′, we get:

2 · ln
(

S

S − 1
· Pr(∀j ∈ [m] : xb,g,j ∈ Xj)−

1

S − 1

)
≤ 2− 1

GS
·

m∑
j=1

∣∣Xj

∣∣.

Lemma 4.11. Let (b, g) be a group and for all j ∈ [0,m], let Xj ⊆ [S] × [G] be a set of

inputs. Suppose that
∑m

j=1

∣∣Xj

∣∣ ≤ 5 · GS and that |Xj| ≥ GS
2

for all j ∈ [0,m]. Then, for

all g′ ∈ [G] and all sets S ⊆ [S] with |S | ≥ 3S
4
, we have:

H∞
(
uqb,g | sb,g,0 ∈ S ∧ gkeyb,g = g′ ∧ ∀j ∈ [0,m] : xb,g,j ∈ Xj

)
≥ 0.9 · logm.

Proof. Note that, for all j′ ∈ [m], we have:

Pr
(
uqb,g = j′ ∧ sb,g,0 ∈ S ∧ gkeyb,g = g′ ∧ ∀j ∈ [0,m] : xb,g,j ∈ Xj

)
=
∑
s′∈S

Pr
(
Eb,g
s′,j′ ∧ gkeyb,g = g′ ∧ ∀j ∈ [0,m] : xb,g,j ∈ Xj

)
=

1

mS
·
∑
s′∈S

∣∣X0 ∩ X|s′
∣∣

G
· 1((s

′, g′) ∈ Xj′)

G
·
∏

j ̸=j′∈[m]

∣∣Xj ∩ X|s′
∣∣

G · (S − 1)
. (Lemma 4.8)

Now, as |Xj| ≥ GS
2

for all j ∈ [0,m] and S = (log n)10, we have that

∣∣Xj ∩ X|s′
∣∣ ≥ ∣∣X|s′

∣∣ ·(1− ∣∣Xj

∣∣∣∣X|s′
∣∣
)

≥
∣∣X|s′

∣∣ · e−2·
|Xj|
|X|s′ | ≥

∣∣X|s′
∣∣ · e− 4

GS
·|Xj|.

This is because 1− x ≥ e−2x for all 0 ≤ x ≤ 0.75. From this, we have:

Pr
(
uqb,g = j′ ∧ sb,g,0 ∈ S ∧ gkeyb,g = g′ ∧ ∀j ∈ [0,m] : xb,g,j ∈ Xj

)
≥ 1

mSG2
· e−

4
GS

·
∑m

j=1|Xj| ·
∑
s′∈S

1((s′, g′) ∈ Xj′) ·
∣∣X0 ∩ X|s′

∣∣.
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Using this lower bound, we get for all m̃ ∈ [m] that:

Pr
(
uqb,g = m̃ | sb,g,0 ∈ S ∧ gkeyb,g = g′ ∧ ∀j ∈ [0,m] : xb,g,j ∈ Xj

)
≤

Pr
(
uqb,g = m̃

)∑m
j′=1 Pr

(
uqb,g = j′ ∧ sb,g,0 ∈ S ∧ gkeyb,g = g′ ∧ ∀j ∈ [0,m] : xb,g,j ∈ Xj

)
≤ SG2∑m

j′=1

∑
s′∈S 1((s′, g′) ∈ Xj′) ·

∣∣X0 ∩ X|s′
∣∣ · e 4

GS
·
∑m

j=1|Xj|

≤ 2 · SG2

m ·
∑

s′∈S

∣∣X0 ∩ X|s′
∣∣ · e20 (As

∑m
j=1

∣∣Xj

∣∣ ≤ 5 ·GS)

≤ G

m
· 250. (As |S | ≥ 3S

4
and |X0| ≥ GS

2
)

The lemma follows.

Lemma 4.12. For all i ∈ [n], let Xi ⊆ [S] × [G] be a set of inputs and (b, g) be a group.

Suppose that Xb,g,j = ∅ for at least m −m2/3 many j ∈ [0,m]. Then, for all sets J ⊆ [m]

with |J | ≥ 10 ·m2/3 and all s ̸= s′ ∈ [S], k ∈ [G], and j′ ∈ [m], we have:

Pr

(∑
j∈J

1(xb,g,j = (s, k)) < m1/3 | Eb,g
s′,j′ ∧ ∀i ∈ [n] : xi ∈ Xi

)
≤ e−

1
8
·m1/3

.

Proof. By our assumptions, there exists a subset J ′ ⊆ J with |J ′| ≥ 8 ·m2/3 such that j′ /∈ J ′

and Xb,g,j = ∅ for all j ∈ J ′. We have:

Pr

(∑
j∈J

1(xb,g,j = (s, k)) < m1/3 | Eb,g
s′,j′ ∧ ∀i ∈ [n] : xi ∈ Xi

)

≤ Pr

(∑
j∈J ′

1(xb,g,j = (s, k)) < m1/3 | Eb,g
s′,j′ ∧ ∀i ∈ [n] : xi ∈ Xi

)

≤ Pr

(∑
j∈J ′

1(xb,g,j = (s, k)) < m1/3 | Eb,g
s′,j′

)
(Lemma 4.8)

≤ e−
1
8
·m1/3

(As S = (log n)10 and Lemmas 3.1 and 4.8)

4.1.2 Information Theory Lemmas

Lemma 4.13. Let n > 0 and X = (X1, . . . ,Xn) be identically distributed (possibly correlated)

random variables and H = log(|supp(X1)|). Let Y be another random variable such that for

all y ∈ supp(Y), there exists a set Sy ⊆ [n] such that setting Y = y fixes the value of Xi for
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all i ∈ Sy. We have:

H(X | Y) ≤ H · (n− E[|Sy|]).

Proof. We have:

H(X | Y) =
∑

y∈supp(Y)

Pr(y) ·H(X | y) (Definition A.2)

=
∑

y∈supp(Y)

Pr(y) ·H
(
XSy

| y
)

≤
∑

y∈supp(Y)

Pr(y) ·
∑
i/∈Sy

H(Xi | y) (Corollary A.5)

≤
∑

y∈supp(Y)

Pr(y) · H · (n− |Sy|)

(Lemma A.6 and that Xi are identically distributed)

= H · (n− E[|Sy|]).

Lemma 4.14. Let n > 0 and X = (X1, . . . ,Xn) be identically distributed (possibly correlated)

random variables and H = log(|supp(X1)|). Let S,T ⊆ [n] be (set-valued) random variables

such that S ⊆ T almost surely. Let Y,Z be random variables such that Z determines T and

for all y ∈ supp(Y), there exists a set Sy ⊆ [n] such that setting Y = y implies S = Sy and

fixes the value of Xi for all i ∈ Sy. We have:

H(X | Y,Z) ≤ H · E[|T| − |S|] +
∑
y,z

Pr(y, z) ·H(XT | y, z).

Proof. We have:

H(X | Y,Z) =
∑
y,z

Pr(y, z) ·H(X | y, z) (Definition A.2)

=
∑
y,z

Pr(y, z) ·H
(
XSy

| y, z
)

≤
∑
y,z

Pr(y, z) ·H
(
XT\Sy | y, z

)
+
∑
y,z

Pr(y, z) ·H(XT | y, z) (Corollary A.5)

≤ H · E[|T| − |S|] +
∑
y,z

Pr(y, z) ·H(XT | y, z). (Lemma A.6)
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4.1.3 Lemmas about Our Random Variables

Lemma 4.15. Let G ⊆ [B] × [G] be a set of groups and
(
gkb,g

)
(b,g)∈G

be elements of [G].

Define the event E to be the event that for all (b, g) ∈ G , we have gkeyb,g = gkb,g. The

(|G |+ 1) random variables
(
(Xb,g)(b,g)∈G ,XG

)
are mutually independent conditioned on E.

Proof. Proof by induction on |G |. The base case |G | = 0 is trivial. For the inductive case,

consider an arbitrary G with |G | > 0. Let (b∗, g∗) be the smallest element of G and define

G ′ = G \ {(b∗, g∗)}. Define the event E ′ to be the event that for all (b, g) ∈ G ′, we have

gkeyb,g = gkb,g and the event E∗ to be the event that gkeyb∗,g∗ = gkb∗,g∗ so that we have

E = E ′ ∧ E∗. First, note that for all (b, g) ∈ G ′, we have:

Pr(Xb,g | E) = Pr(Xb,g | E ′, E∗) = Pr(Xb,g | E ′),

as whether or not E∗ occurs is determined by Xb∗,g∗ which is independent of Xb,g conditioned

on E ′ (by our induction hypothesis). Next, note that:

Pr(X | E) = Pr(X | E ′, E∗)

=
Pr(X, E∗ | E ′)

Pr(E∗ | E ′)

=
Pr(Xb∗,g∗ , E∗ | E ′) · Pr(XG | Xb∗,g∗ , E∗, E ′)

Pr(E∗ | E ′)
·
∏

(b,g)∈G ′

Pr(Xb,g | E ′)

(Induction hypothesis and whether E∗ occurs is determined by Xb∗,g∗)

=
Pr(Xb∗,g∗ , E∗ | E ′) · Pr(XG | Xb∗,g∗ , E∗, E ′)

Pr(E∗ | E ′)
·
∏

(b,g)∈G ′

Pr(Xb,g | E).

Now, note that our distribution D has the property that, conditioned on Xb∗,g∗ , E∗, E ′, the

random variable XG is just a uniformly random element of set that is independent of Xb∗,g∗ .

We get:

Pr(X | E) = Pr(Xb∗,g∗ , E∗ | E ′) · Pr(XG | E∗, E ′)

Pr(E∗ | E ′)
·
∏

(b,g)∈G ′

Pr(Xb,g | E)

= Pr(Xb∗,g∗ | E) · Pr(XG | E) ·
∏

(b,g)∈G ′

Pr(Xb,g | E)

= Pr(XG | E) ·
∏

(b,g)∈G

Pr(Xb,g | E).

Lemma 4.16. Let c ∈ [C] and l ∈ [L]. For any realization Υ≤(c,l) of Υ≤(c,l) there exists a

noise vector N≤(c,min(⌈l/2⌉,TCh)) and sets (Xi)i∈[n] such that the following equivalence between
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events holds:

Υ≤(c,l) = Υ≤(c,l) ≡ N≤(c,min(⌈l/2⌉,TCh)) = N≤(c,min(⌈l/2⌉,TCh)) ∧ ∀i ∈ [n] : xi ∈ Xi.

Moreover, fixing any realization Υ≤(c,l) also fixes the transcript received by all the parties in

the first (c,min(⌊l/2⌋, TCh)) rounds.

Proof. Proof by induction on (c, l). The base case is straightforward. We show the result

for (c, l) assuming it holds for smaller values. First, consider the case that l ∈
(
T̂Ch, L

]
. In

this case, note from Equation (8) that, conditioned on Υ<(c,l), the first coordinate of Φ(c,l)

is already fixed. If this fixed value is ⊥, the second coordinate is also fixed to ⊥ and we are

done by the induction hypothesis. Otherwise, letting this fixed value be (b, g), we get that for

all Υ≤(c,l), there exists a value Xb,g such that conditioned on Υ<(c,l), the event Υ(c,l) = Υ(c,l)

is the same as Xb,g = Xb,g. We get:

Υ≤(c,l) = Υ≤(c,l) ≡ Υ<(c,l) = Υ<(c,l) ∧Υ(c,l) = Υ(c,l)

≡ Υ<(c,l) = Υ<(c,l) ∧ Xb,g = Xb,g.

We are done by the induction hypothesis which also implies the “moreover” part. Now,

consider the case l ∈
[
T̂Ch

]
. In this case, we assume that l is even as the proof when l is odd

is analogous. Let (b, g) be the last group in Υ≤(c,l). That is, we have:

Υ≤(c,l) =
(
Υ≤(c,l−1),

(
((b, g), Xb,g), N≤(c,min(⌈l/2⌉,TCh))

))
.

The group (b, g) may be ⊥, in which case we assume it is the pair (B + 1, G+ 1). Observe

from Equation (6) that the event Υ(c,l),1 = (b, g) is the same as saying that none of the

parties in the groups between Φ(c,l−1),1 and (b, g) spoke in round (c, l/2) and some party in

group (b, g) did speak. As the transcript received by all that parties in (c, l/2− 1) rounds is

fixed by the induction hypothesis, we can define a set X ′
i for all parties i in groups between

Φ(c,l−1),1 and (b, g), such that party i does not speak if and only if xi ∈ X ′
i . This takes care

of the former condition, while the latter is subsumed by the event Xb,g = Xb,g. Defining X ′
i

to be the set of all inputs for all other i, we have:

Υ≤(c,l) = Υ≤(c,l) ≡ Υ<(c,l) = Υ<(c,l) ∧Υ(c,l) = Υ(c,l)

≡ Υ<(c,l) = Υ<(c,l) ∧ Xb,g = Xb,g ∧ ∀i ∈ [n] : xi ∈ X ′
i .

We are done by the induction hypothesis. For the “moreover” part, observe that fixing

Υ≤(c,l), fixes the symbols sent by the parties in groups upto (b, g) in the round (c, l/2). As

Υ≤(c,l) also fixes the noise in this round, the moreover part follows.

Lemma 4.17. For all c ∈ [C] and l ∈ [L], the random variable Υ≤(c,l) determines the random

variables Φsm
≤(c,l) and Φgk

≤(c,l).

23



Proof. Note by Lemma 4.16 that Υ≤(c,l) fixes the transcript received by all the parties in the

first (c,min(⌊l/2⌋, TCh)) rounds and from Equation (9) that Υ≤(c,l) fixes Φ≤(c,l). Combining,

we get the result.

Lemma 4.18. Let c ∈ [C] and l ∈
[
T̂Ch

]
. For any ∆sm

(c,l) =
(
Υ≤(c−1,L),Φ

sm
≤(c,l), N≤(c,⌈l/2⌉)

)
,

there exist sets (Xi)i∈[n] such that, letting ∆(c,l) be the random variable associated with ∆sm
(c,l),

the following equivalence between events holds:

∆(c,l) = ∆sm
(c,l) ≡ N≤(c,⌈l/2⌉) = N≤(c,⌈l/2⌉) ∧ ∀i ∈ [n] : xi ∈ Xi.

Moreover, fixing any ∆sm
(c,l) also fixes the transcript Πi

≤(c,⌊l/2⌋) received by all the parties

i ∈ [n] in the first (c, ⌊l/2⌋) rounds. Finally, for all i ∈ [n], the set Xi equals the set

promised by Lemma 4.16 for Υ≤(c−1,L) unless there exists l′ ∈ [l] and inputs (s, k) such that

msgi

(
(s, k),Πi

<(c,⌈l′/2⌉)

)
̸= ⊥ and either Φsm

(c,l′),1 = ⊥ or i ≤ Φsm
(c,l′),1

Proof. Proof by induction on l. For the base case l = 0, note by Lemma 4.17 that Υ≤(c−1,L)

determines ∆sm
(c,l) and we are done by Lemma 4.16. For the inductive step, we proceed

similarly to the proof of Lemma 4.16. Assume that l is even as the proof when l is odd is

analogous. Let i = (b, g, j) be the last player in Φsm
≤(c,l). That is, we have:

Φsm
≤(c,l) =

(
Φsm

≤(c,l−1), (i, xi)
)
.

The player i may be ⊥, in which case we assume it is the player n + 1. Observe from

Equation (6) that the event Φsm
(c,l),1 = i is the same as saying that none of the parties between

Φsm
(c,l−1),1 and i spoke in round (c, l/2) and party i did speak. As the transcript received by

all the parties in the first (c, l/2− 1) rounds is fixed by the induction hypothesis, we can

define a set X ′
i′ for all parties i

′ between Φsm
(c,l−1),1 and i such that party i′ does not speak if

and only if xi′ ∈ X ′
i′ . Defining, X ′

i′ to be the set of all inputs for all other i′, we have that:

∆(c,l) = ∆sm
(c,l) ≡ ∆(c,l−1) = ∆sm

(c,l−1) ∧ Φsm
(c,l) = (i, xi)

≡ ∆(c,l−1) = ∆sm
(c,l−1) ∧ xi = xi ∧ ∀i′ ∈ [n] : xi′ ∈ X ′

i′ .

We are done by the induction hypothesis. For the “moreover” part, observe that fixing ∆sm
(c,l)

fixes the symbols sent by the parties upto i in the round (c, l/2). As ∆sm
(c,l) also fixes the noise

in this round, we are done. To finish, note that the “finally” part is because of the definition

of X ′
i′ .

Lemma 4.19. Let c ∈ [C] and l ∈
[
T̂Ch

]
. For any ∆gk

(c,l) =
(
Υ≤(c−1,L),Φ

gk
≤(c,l), N≤(c,⌈l/2⌉)

)
(fixing which fixes the value of Γ≤(c,l)), we have that, conditioned on ∆gk

(c,l), the random

variables XΓ≤(c,l)
and Υ≤(c,l) are independent.

Proof. Observe that conditioned on ∆gk
(c,l) also fixes Γ≤(c−1,L) and let Γ≤(c−1,L) be the fixed

value. Let Γ∗
(c,l) = Γ≤(c,l) \ Γ≤(c−1,L) for convenience and let ∆sm

(c,l) be as in Lemma 4.18.
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Next, note from Equation (6) that ∆gk
(c,l) is just ∆

sm
(c,l) along with some information about the

groupkeys for some groups. Any such group lies in Γ≤(c,l) by definition and if it also lies in

Γ≤(c−1,L), the information about the groupkey is implied by Υ≤(c−1,L). We get that there are

values
(
gkb,g

)
(b,g)∈Γ∗

(c,l)

such that, letting ∆gk
(c,l) be the random variable associated with ∆gk

(c,l),

we have:

∆gk
(c,l) = ∆gk

(c,l) ≡ ∆sm
(c,l) = ∆sm

(c,l) ∧ ∀(b, g) ∈ Γ∗
(c,l) : gkeyb,g = gkb,g (11)

By a similar reasoning, we have that, conditioned on ∆gk
(c,l), the random variable Υ≤(c,l) is

equivalent to the random variable XΓ∗
(c,l)

. The lemma now follows as we have for XΓ≤(c,l)
and

XΓ∗
(c,l)

that:

Pr
(
XΓ≤(c,l)

| ∆gk
(c,l)

)
= Pr

XΓ≤(c,l)
| ∆sm

(c,l),
∧

(b,g)∈Γ∗
(c,l)

gkeyb,g = gkb,g

 (Equation (11))

= Pr

XΓ≤(c,l)
| N≤(c,⌈l/2⌉),

∧
i∈[n]

xi ∈ Xi,
∧

(b,g)∈Γ∗
(c,l)

gkeyb,g = gkb,g


(Letting Xi be as promised by Lemma 4.18)

= Pr

XΓ≤(c,l)
|
∧
i∈[n]

xi ∈ Xi,
∧

(b,g)∈Γ∗
(c,l)

gkeyb,g = gkb,g


(As X is independent of N)

= Pr

XΓ≤(c,l)
| XΓ∗

(c,l)
,
∧
i∈[n]

xi ∈ Xi,
∧

(b,g)∈Γ∗
(c,l)

gkeyb,g = gkb,g


(Lemma 4.15)

= Pr

XΓ≤(c,l)
| XΓ∗

(c,l)
, N≤(c,⌈l/2⌉),

∧
i∈[n]

xi ∈ Xi,
∧

(b,g)∈Γ∗
(c,l)

gkeyb,g = gkb,g


(As X is independent of N)

= Pr

XΓ≤(c,l)
| XΓ∗

(c,l)
,∆sm

(c,l),
∧

(b,g)∈Γ∗
(c,l)

gkeyb,g = gkb,g

 (Lemma 4.18)

= Pr
(
XΓ≤(c,l)

| XΓ∗
(c,l)

,∆gk
(c,l)

)
. (Equation (11))
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4.2 Proof of Lemma 4.2

We prove Lemma 4.2 by induction on c. The base case c = 0 can be easily verified. We

prove the lemma for c > 0 assuming it holds for c − 1. By the induction hypothesis, it is

enough to show that:

B∑
b=1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)]
≤ 2 +

1

(log n)8
· E
[∣∣Γ≤(c,L)

∣∣− ∣∣Γ≤(c−1,L)

∣∣].
We will show this holds even when conditioned on any realization Υ≤(c−1,L) of Υ≤(c−1,L). In

fact, we will show by (backwards) induction that, for all 0 ≤ b̃ ≤ B, and any inputs X≤b̃ for

the players in the first b̃ blocks, we have that:

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃

]
≤ 2− 21+2·(b̃−B) +

1

(log n)8
· E
[∣∣Γ≤(c,L)

∣∣− ∣∣Γ≤(c−1,L)

∣∣ | Υ≤(c−1,L), X≤b̃

]
.

(12)

The base case b̃ = B is straightforward. We show it for 0 ≤ b̃ < B assuming it holds for

b̃ + 1. Fix an arbitrary Υ≤(c−1,L) and X≤b̃ and observe that this also fixes Γ≤(c−1,L) and

gkeysb̃(X). Let Γ≤(c−1,L) and g̃ be the values these are fixed to. First, consider the case when(
b̃+ 1, g̃

)
∈ Γ≤(c−1,L). In this case, it follows from Equation (10) that the term corresponding

to b = b̃ + 1 vanishes and we are done by the induction hypothesis. Henceforth, we assume

that
(
b̃+ 1, g̃

)
/∈ Γ≤(c−1,L).

Defining the event E1. We now define an event E1 that (under our conditioning) is

determined by Xb̃+1. For this, recall from Lemma 4.16 that fixing Υ≤(c−1,L) fixes the transcript

received by all the parties i ∈ [n] in the first (c− 1) chunks and denote this transcript by

Πi
≤(c−1)·TCh

. For all z ∈ [TCh], g ∈ [G] satisfying
(
b̃+ 1, g

)
/∈ Γ≤(c−1,L), and inputs (s, k) for

one party, define the set:

hitsz,g(s, k) =
{
j ∈ [m] | ∃Π′ ∈ {0, 1,⊥}z−1 : msgb̃+1,g,j

(
(s, k),Πb̃+1,g,j

≤(c−1)·TCh
◦ Π′

)
̸= ⊥

}
. (13)

For all z ∈ [TCh], we define a tuple (g, (s, k)) to be z-heavy if |hitsz,g(s, k)| > 10 ·m2/3 and

z-light otherwise. Also, for all j ∈ hitsz,g(s, k), we let Π′
z,g,(s,k)(j) to be an arbitrary Π′

satisfying the condition in Equation (13). For our proof, we will look at the first 10 ·m2/3

elements of hitsz,g(s, k). Define:

hitsfewz,g (s, k) =

{
hitsz,g(s, k), if (g, (s, k)) is z-light

min
({

J ⊆ hitsz,g(s, k) | |J | = 10 ·m2/3
})

, if (g, (s, k)) is z-heavy
. (14)
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Next, for all z ∈ [TCh], if there exists a tuple (g, (s, k)) that is z-heavy, define
(
g(z),

(
s(z), k(z)

))
to be the z-heavy tuple (g, (s, k)) minimizing

(
g,max

(
hitsfewz,g (s, k)

))
and let j(z) be the

second coordinate of the minimum value (the first coordinate must be g(z)) and i(z) =(
b̃+ 1, g(z), j(z)

)
. Otherwise, define these values to be ⊥. Define the event E1 as:

Definition 4.20. Define E1 to be the event that

∃z ∈ [TCh] : g
(z) ̸= ⊥ ∧ sb̃+1,g(z),0 = s(z).

For all g ∈ [G] such that
(
b̃+ 1, g

)
/∈ Γ≤(c−1,L), define the set Sg =

{
s(z) | z ∈ [TCh], g

(z) = g
}
.

With this definition observe that the event E1 is equivalent to the event that there exists such

a g with sb̃+1,g,0 ∈ Sg.

Lemma 4.21. We have:

Pr
(
E1 | Υ≤(c−1,L), X≤b̃

)
≤ 1

4
.

Proof. By a union bound, it suffices to fix an arbitrary z ∈ [TCh] such that g(z) ̸= ⊥ and

show that:

Pr
(
sb̃+1,g(z),0 = s(z) | Υ≤(c−1,L), X≤b̃

)
≤ 1

4 · TCh
.

For this, note that due to Lemma 4.16 and the fact that (Xb)b∈[B] and N are mutually

independent, we have can remove X≤b̃ from the conditioning above. Also, note from g(z) ̸= ⊥
that

(
b̃+ 1, g(z)

)
/∈ Γ≤(c−1,L). This gives:

Pr
(
sb̃+1,g(z),0 = s(z) | Υ≤(c−1,L)

)
≤ Pr

(
sb̃+1,g(z),0 = s(z)

)
+
∥∥∥(D | Υ≤(c−1,L)

)
b̃+1,g(z)

−Db̃+1,g(z)

∥∥∥
TV

≤ Pr
(
sb̃+1,g(z),0 = s(z)

)
+

1

(log n)2

(Lemma 4.1 and Fact A.15)

≤ 1

4 · TCh
. (As TCh =

1
500

· log n and S = (10 · log n)10)

Upper bounding the left side of Equation (12) when E1 occurs. In order to prove

Equation (12), we will use the law of total expectation and upper bound the expectation

on the left side conditioned on E1 and also upper bound it conditioned on E1. Recall that

whether or not E1 occurs is determined by Xb̃+1 allowing us to view E1 as just a set of values

of Xb̃+1 for which it occurs. We have:

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃, E1

]
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=
∑

Xb̃+1∈E1

Pr
(
Xb̃+1 | Υ≤(c−1,L), X≤b̃, E1

)
×

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃+1

]
≤

∑
Xb̃+1∈E1

Pr
(
Xb̃+1 | Υ≤(c−1,L), X≤b̃, E1

)
×
(
3− 21+2·(b̃+1−B) +

1

(log n)8
· E
[∣∣Γ≤(c,L)

∣∣− ∣∣Γ≤(c−1,L)

∣∣ | Υ≤(c−1,L), X≤b̃+1

])
(Induction hypothesis)

≤ 3− 21+2·(b̃+1−B) +
1

(log n)8
· E
[∣∣Γ≤(c,L)

∣∣− ∣∣Γ≤(c−1,L)

∣∣ | Υ≤(c−1,L), X≤b̃, E1
]
.

Upper bounding the left side of Equation (12) when E1 does not occur. Recall the

definitions in Equations (13) and (14) and Definition 4.20 and let Γ∗ =
({

b̃+ 1
}
× [G]

)
\

Γ≤(c−1,L) for convenience. As
(
b̃+ 1, g̃

)
∈ Γ∗, we have that Γ∗ is non-empty. From

Lemma 4.1, it follows that |Γ∗| > 3G
4

and for all
(
b̃+ 1, g

)
∈ Γ∗, we have:

D
((

D | Υ≤(c−1,L)

)
b̃+1,g

|| Db̃+1,g

)
<

1

(log n)4
.

Let N≤(c−1)·TCh
and sets (Xi)i∈[n] be as promised by Lemma 4.16 for Υ≤(c−1,L). From

Lemma A.12, this implies that Pr
(
∀j ∈ [0,m] : xb̃+1,g,j ∈ Xb̃+1,g,j

)
> 3

4
for all

(
b̃+ 1, g

)
∈ Γ∗.

Plugging this into Lemmas 4.9 and 4.10, we get that for all
(
b̃+ 1, g

)
∈ Γ∗, it holds that:

m∑
j=1

∣∣Xb̃+1,g,j

∣∣ ≤ 4 ·GS and ∀j ∈ [0,m] :
∣∣Xb̃+1,g,j

∣∣ ≤ GS

2
.

From the former, we conclude that for all
(
b̃+ 1, g

)
∈ Γ∗, it holds that Xb̃+1,g,j = ∅ at least

m− 4 ·GS many values of j ∈ [m]. Now, define:

I =
{
i ∈ [n] | Xi ̸= ∅

}
∪

(b̃+ 1, g, j
)
|
(
b̃+ 1, g

)
∈ Γ∗, j ∈

⋃
z∈[TCh]

⋃
(s,k)

hitsfewz,g (s, k)

. (15)

Let Ub̃+1 =
(
uqb̃+1,g

)
g∈[G]

be the random variable determining the unique players in block

b̃ + 1. Now, define the event E2 that occurs if and only if we have a realization Λ of Λ =(
Ub̃+1,XI ,X>b̃+1,N≤c·TCh

,Φsm
≤(c,T̂Ch)

)
for which at least one of the following two conditions

hold:
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1. There exists g ∈ [G] such that
(
b̃+ 1, g

)
∈ Γ∗ and

(
b̃+ 1, g, uqb̃+1,g

)
∈ I .

2. There exists z ∈ [TCh] such that g(z) ̸= ⊥ and we have:∑
j∈hitsfew

z,g(z)
(s(z),k(z))

1

(
xb̃+1,g(z),j =

(
s(z), k(z)

)
∧ Nb̃+1,g(z),j

((c−1,TCh),(c,z))
= Π′

z,g(z),(s(z),k(z))(j)
)
< 2.

Observe that whether or not E2 occurs is determined by Λ allowing us to view E2 as the set

of all Λ for which it occurs. We claim the following bound on the probability of E2.

Lemma 4.22. We have:

Pr
(
E2 | Υ≤(c−1,L), X≤b̃, E1

)
≤ 1

4B
.

We defer the proof of Lemma 4.22 to Section 4.2.1. Assuming it for now, we claim that:

Lemma 4.23. For all Λ /∈ E2, we have that:

H∞
(
gkeyb̃+1,g̃ | Υ≤(c−1,L), X≤b̃, E1,Λ

)
≥ logG− 1.

Proof. Fix an arbitrary Λ /∈ E2 and let Λ =

(
Ub̃+1, XI , X>b̃+1, N≤c·TCh

,Φsm
≤(c,T̂Ch)

)
. Recall

the notation ∆sm

(c,T̂Ch)
from Lemma 4.18 and let (Yi)i∈[n] be the sets promised by Lemma 4.18

for ∆sm

(c,T̂Ch)
. We get:

H∞
(
gkeyb̃+1,g̃ | Υ≤(c−1,L), X≤b̃, E1,Λ

)
= H∞

(
gkeyb̃+1,g̃ | X≤b̃, X>b̃+1, XI , E1, Ub̃+1, N≤c·TCh

∧ ∀i ∈ [n] : xi ∈ Yi

)
,

where, for all i ∈ [n], we have Yi = Xi unless there exists l′ ∈
[
T̂Ch

]
and inputs (s, k)

such that msgi

(
(s, k),Πi

<(c,⌈l′/2⌉)

)
̸= ⊥ and either Φsm

(c,l′),1 = ⊥ or i ≤ Φsm
(c,l′),1. In par-

ticular, we claim that we have Yi = Xi for all i ∈ I ′ where we define the set I ′ ={(
b̃+ 1, g, uqb̃+1,g

)
|
(
b̃+ 1, g

)
∈ Γ∗

}
.

Indeed, fix an arbitrary g ∈ [G] such that
(
b̃+ 1, g

)
∈ Γ∗ and let i =

(
b̃+ 1, g, uqb̃+1,g

)
for convenience. Also fix an arbitrary l′ ∈

[
T̂Ch

]
and inputs (s, k) and let z = ⌈l′/2⌉.

If msgi

(
(s, k),Πi

<(c,⌈l′/2⌉)

)
= ⊥, then there is nothing to show. Otherwise, we have from

Equation (13) that uqb̃+1,g ∈ hitsz,g(s, k). Now, note that uqb̃+1,g /∈ hitsfewz,g (s, k) as oth-

erwise, we have i ∈ I contradicting Item 1 in the definition of E2. This means that

hitsz,g(s, k) ̸= hitsfewz,g (s, k) which implies that (g, (s, k)) is z-heavy. It follows that we have(
g(z),max

(
hitsfewz,g(z)

(
s(z), k(z)

)))
<
(
g, uqb̃+1,g

)
. Combining this with the fact that Item 2 in
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the definition of E2 is false, we have that there are at least two parties smaller than i that

are speaking in round (c, z). This means that Φsm
(c,l′),1 ̸= ⊥ and Φsm

(c,l′),1 < i, and we are done.

Having proved the claim, we again use the fact that Item 1 in the definition of E2 to get

that for all i ∈ I ′, we have Yi = ∅. We will show the min-entropy bound hold even under

a stronger conditioning where we condition on the inputs of all players not in I ′, the value

(si)i∈I ′ and the noise N≤c·TCh
. In other words, the only randomness remaining in the inputs

is the randomness (ki)i∈I ′ . Observe that this conditioning is indeed stronger. Under this

stronger conditioning, we use the fact that Yi = ∅ for all i ∈ I ′ to get that the distribution

of gkeyb̃+1,g̃ is uniform over a set of size at least 3G
4
. The lemma follows.

To upper bounding the left side of Equation (12), note that we have from the law of total

expectation that:

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃, E1

]
≤ B · Pr

(
E2 | Υ≤(c−1,L), X≤b̃, E1

)
+
∑
Λ/∈E2

Pr
(
Λ | Υ≤(c−1,L), X≤b̃, E1

)
×

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃, E1,Λ

]
.

(16)

We focus on the last expectation above for an arbitrary Λ /∈ E2. We have from Corollary 4.7

that:

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃, E1,Λ

]
≤ 1 +

B∑
b=b̃+2

E
[
1
(
(b, gkeysb−1(X)) ∈ Γ≤(c,L) \ Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃, E1,Λ

]
+

1

(log n)10
·

B∑
b=b̃+2

E
[∣∣(Γ≤(c,L) \ Γ≤(c−1,L)

)
∩ ({b} × [G])

∣∣ | Υ≤(c−1,L), X≤b̃, E1,Λ
]
.

Now, we claim that for all b ∈
[
b̃+ 2, B

]
, our conditioning fixes the value of

(
Γ≤(c,L) \ Γ≤(c−1,L)

)
∩

({b} × [G]). That is, it fixes the groups in block b that are added to Γ≤(c,L). In fact, we will

show that not only does it fix the groups that are added, it also fixes the order in which these

groups are added. Indeed, for any prefix of this order, Equation (7) says the next element

to be added is determined by X and

(
Υ≤(c−1,L),Φ

sm
≤(c,T̂Ch)

, N≤c·TCh

)
. As this tuple forms a

“rectangle” (see Lemma 4.18), the next element is determined by Xb, which is fixed by our
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conditioning and we are done. Let this fixed value be Gb. We get:

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃, E1,Λ

]
≤ 1 +

1

(log n)10
·

B∑
b=b̃+2

|Gb|+
B∑

b=b̃+2

∑
(b,g′)∈Gb

Pr
(
gkeysb−1(X) = g′ | Υ≤(c−1,L), X≤b̃, E1,Λ

)
.

Now, use Equation (4) and Item 2 of our promise on the distribution D and our conditioning

to get that for all (b, g′) ∈ Gb there exists a unique g∗ ∈ [G] such that gkeysb−1(X) = g′ only

if gkeysb̃+1(X) = gkeyb̃+1,g̃ = g∗. Using this, we get that:

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃, E1,Λ

]
≤ 1 +

1

(log n)10
·

B∑
b=b̃+2

|Gb|+
2

G
·

B∑
b=b̃+2

|Gb| (Lemma 4.23)

≤ 1 +
1

(log n)8
·

B∑
b=b̃+2

|Gb|. (As G = (10 · log n)10)

Plugging this bound into Equation (16), we get:

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃, E1

]
≤ B · Pr

(
E2 | Υ≤(c−1,L), X≤b̃, E1

)
+
∑
Λ/∈E2

Pr
(
Λ | Υ≤(c−1,L), X≤b̃, E1

)
·

1 +
1

(log n)8
·

B∑
b=b̃+2

|Gb|


≤ 1 +B · Pr

(
E2 | Υ≤(c−1,L), X≤b̃, E1

)
+

1

(log n)8
· Pr
(
E2 | Υ≤(c−1,L), X≤b̃, E1

)
× E

[∣∣Γ≤(c,L)

∣∣− ∣∣Γ≤(c−1,L)

∣∣ | Υ≤(c−1,L), X≤b̃, E1, E2
]

≤ 1 +B · Pr
(
E2 | Υ≤(c−1,L), X≤b̃, E1

)
+

1

(log n)8
· E
[∣∣Γ≤(c,L)

∣∣− ∣∣Γ≤(c−1,L)

∣∣ | Υ≤(c−1,L), X≤b̃, E1
]

≤ 1 +
1

4
+

1

(log n)8
· E
[∣∣Γ≤(c,L)

∣∣− ∣∣Γ≤(c−1,L)

∣∣ | Υ≤(c−1,L), X≤b̃, E1
]
. (Lemma 4.22)
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Using the bounds above. We now use the two bounds for the left side of Equation (12)

proved above to get:

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃

]
≤ Pr

(
E1 | Υ≤(c−1,L), X≤b̃

)
·

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃, E1

]
+ Pr

(
E1 | Υ≤(c−1,L), X≤b̃

)
·

B∑
b=b̃+1

E
[
Ψb

(
X, Γ≤(c,L)

)
−Ψb

(
X, Γ≤(c−1,L)

)
| Υ≤(c−1,L), X≤b̃, E1

]
≤ 1 +

1

4
+
(
3− 21+2·(b̃+1−B)

)
· 1
4
+

1

(log n)8
· E
[∣∣Γ≤(c,L)

∣∣− ∣∣Γ≤(c−1,L)

∣∣ | Υ≤(c−1,L), X≤b̃

]
(Lemma 4.21)

≤ 2− 21+2·(b̃−B) +
1

(log n)8
· E
[∣∣Γ≤(c,L)

∣∣− ∣∣Γ≤(c−1,L)

∣∣ | Υ≤(c−1,L), X≤b̃

]
.

This proves Equation (12) and thus, also proves Lemma 4.2.

4.2.1 Proof of Lemma 4.22

We now show Lemma 4.22. By a union bound, it suffices to upper bound the probability of

Items 1 and 2 in the definition of E2 separately.

Upper bounding the probability of Item 1. By another union bound, it suffices to

consider a fixed g ∈ [G] such that
(
b̃+ 1, g

)
∈ Γ∗. Let Sg be as in Definition 4.20 and note

from S = (log n)10 that
∣∣Sg

∣∣ ≥ 3S
4
. By Lemma 4.11, we have that for all g′ ∈ [G], it holds

that:

H∞
(
uqb̃+1,g | sb̃+1,g,0 ∈ Sg ∧ gkeyb̃+1,g = g′ ∧ ∀j ∈ [0,m] : xb̃+1,g,j ∈ Xb̃+1,g,j

)
≥ 0.9 · logm.

Using Lemma 4.15 and the equivalent definition of E1 in Definition 4.20, we get that for all

g′ ∈ [G]:

H∞
(
uqb̃+1,g | E1 ∧ gkeyb̃+1,g = g′ ∧ ∀j ∈ [0,m] : xi ∈ Xi

)
≥ 0.9 · logm.

As this holds for all g′ ∈ [G] and as X is independent of N, we have:

H∞
(
uqb̃+1,g | Υ≤(c−1,L), X≤b̃, E1

)
≥ 0.9 · logm. (17)
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Item 1 now follows as we get:

Pr
((

b̃+ 1, g, uqb̃+1,g

)
∈ I | Υ≤(c−1,L), X≤b̃, E1

)
≤
∑
i∈I

Pr
((

b̃+ 1, g, uqb̃+1,g

)
= i | Υ≤(c−1,L), X≤b̃, E1

)
≤
∣∣∣I ∩

({(
b̃+ 1, g

)}
× [m]

)∣∣∣ ·m−0.9 (Equation (17))

≤
(
5GS + 10 · TCh ·GS ·m2/3

)
·m−0.9 (Equation (15))

≤ m−0.2.

Upper bounding the probability of Item 2. By another union bound, it suffices to

consider a fixed z ∈ [TCh] such that g(z) ̸= ⊥. Let E (z) be the event in Item 2 for this z. Also,

define that event E ′(z) as: ∑
j∈hitsfew

z,g(z)
(s(z),k(z))

1
(
xb̃+1,g(z),j =

(
s(z), k(z)

))
< m1/3.

To upper bound the probability of E (z) occuring, we first upper bound the probability of E ′(z)

occuring. For this, for all i ∈ [n], define the set X (z)
i as follows: If i is in the first b̃ blocks,

then define X (z)
i = {xi}. Otherwise, if there exists g′ ̸= g(z) satisfying

(
b̃+ 1, g′

)
∈ Γ∗,

define X (z)
i = Xi ∩

(
Sg′ × [G]

)
. If both these conditions fail, set X (z)

i = Xi. We apply

Lemma 4.12 on the sets X (z)
i to get that for all s′ ∈ Sg(z) and all j′ ∈ [m], we have:

Pr
(
E ′(z) | sb̃+1,g(z),0 = s′ ∧ uqb̃+1,g(z) = j′ ∧ ∀i ∈ [n] : xi ∈ X (z)

i

)
≤ e−

1
8
·m1/3

.

As s′ ∈ Sg(z) and j′ ∈ [m] were arbitrary, we get:

Pr
(
E ′(z) | sb̃+1,g(z),0 ∈ Sg(z) ∧ ∀i ∈ [n] : xi ∈ X (z)

i

)
≤ e−

1
8
·m1/3

.

From the definition of X (z)
i and using Definition 4.20, we get:

Pr
(
E ′(z) | X≤b̃ ∧ E1 ∧ ∀i ∈ [n] : xi ∈ Xi

)
≤ e−

1
8
·m1/3

.

As X is independent of N, we have Pr
(
E ′(z) | Υ≤(c−1,L), X≤b̃, E1

)
≤ e−

1
8
·m1/3

. Using a union

bound, this gives:

Pr
(
E (z) | Υ≤(c−1,L), X≤b̃, E1

)
≤ e−

1
8
·m1/3

+ Pr
(
E (z) | Υ≤(c−1,L), X≤b̃, E1, E ′(z)

)
.

We now analyze the second term above. For this, note that the event we condition on is

determined by X and the noise N≤(c−1)·TCh
in the first (c− 1) chunks. Thus, in order to
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upper bound this probability it suffices to fix an arbitrary X and N≤(c−1)·TCh
such that our

conditioning occurs and upper bound Pr
(
E (z) | X,N≤(c−1)·TCh

)
. For this, note that as E ′(z)

does not occur, we have a set J ⊆ hitsfewz,g(z)

(
s(z), k(z)

)
with |J | ≥ m1/3 such that xb̃+1,g(z),j =(

s(z), k(z)
)
for all j ∈ J . We get:

Pr
(
E (z) | Υ≤(c−1,L), X≤b̃, E1, E ′(z)

)
≤ Pr

(∑
j∈J

1

(
Nb̃+1,g(z),j

((c−1,TCh),(c,z))
= Π′

z,g(z),(s(z),k(z))(j)
)
< 2 | Υ≤(c−1,L), X≤b̃, E1, E ′(z)

)
(Item 2)

≤ 2−n0.2

. (Lemma 3.1 and as TCh =
1

500
· log n)

Plugging in, we get:

Pr
(
E (z) | Υ≤(c−1,L), X≤b̃, E1

)
≤ e−

1
8
·m1/3

+ 2−n0.2 ≤ 2−n0.15

.

Finishing the proof. To finish, we combine both the parts above and get Pr
(
E2 | Υ≤(c−1,L), X≤b̃, E1

)
≤

m−0.15 ≤ 1
4B

, as desired.

4.3 Proof of Lemma 4.3

This section is devoted to the proof of Lemma 4.3. For this, define H = H(X1,1) to be the

entropy of the inputs of the first group of players. By symmetry, this is also the entropy of

any group of players. We will prove that for all 0 ≤ c ≤ C, we have the following entropy

upper bound:

H ·BG− E
[∣∣Γ≤(c,L)

∣∣] · (H − 1

5 · (log n)4

)
− 9c · TCh · log n ≤ H

(
X | Υ≤(c,L)

)
. (18)

This is enough as we have from Lemma 4.13 that H
(
X | Υ≤(c,L)

)
≤ H ·

(
BG− E

[∣∣Γ≤(c,L)

∣∣]).
Lemma 4.3 now follows by a simple rearrangement. To prove Equation (18), note from

Lemma 4.4 that it suffices to show that, for all 0 ≤ c ≤ C, we have:

∑
Υ≤(c,L)

Pr
(
Υ≤(c,L)

)
·

c∑
c′=1

L∑
l=T̂Ch+1

D
((

D | Υ<(c′,l)

)
Φ(c′,l),1

|| DΦ(c′,l),1

)
≤ 8c · TCh · log n− H ·

(
BG− E

[∣∣Γ≤(c,L)

∣∣])+H
(
X | Υ≤(c,L)

)
.

We prove this by induction on c. The base case c = 0 is straightforward. We show the

statement for c > 0 assuming that it holds for c− 1. By the induction hypothesis, it suffices
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to show that:

∑
Υ≤(c,L)

Pr
(
Υ≤(c,L)

)
·

L∑
l=T̂Ch+1

D
((

D | Υ<(c,l)

)
Φ(c,l),1

|| DΦ(c,l),1

)
≤ 8 · TCh · log n+ H · E

[∣∣Γ≤(c,L)

∣∣− ∣∣Γ≤(c−1,L)

∣∣]− I
(
X : Υ≤(c,L) | Υ≤(c−1,L)

)
.

(19)

Analyzing the range l ∈
(
T̂Ch, L

]
. We divide the proof of Equation (19) into two parts

and first consider the values l ∈
(
T̂Ch, L

]
. For any such l, note that fixing any Υ≤(c−1,L) also

fixes the value of Γ<(c,L) and Γ≤(c,L). Let Γ
∗
(c,l) = Γ≤(c,L) \Γ<(c,L) for convenience and observe

that conditioned on Υ≤(c−1,L), the random variable Υ≤(c,l) determines and is determined by

XΓ∗
(c,l)

. This means that:

I
(
X : Υ≤(c,l) | Υ<(c,l)

)
= H

(
Υ≤(c,l) | Υ<(c,l)

)
−H

(
Υ≤(c,l) | X,Υ<(c,l)

)
(Definition A.7)

= H
(
Υ≤(c,l) | Υ<(c,l)

)
=
∑

Υ<(c,l)

Pr
(
Υ<(c,l)

)
·
∑

XΓ∗
(c,l)

Pr
(
XΓ∗

(c,l)
| Υ<(c,l)

)
· log 1

Pr
(
XΓ∗

(c,l)
| Υ<(c,l)

)
(Definition A.2)

=
∑

Υ<(c,l)

Pr
(
Υ<(c,l)

)
· H ·

(∣∣Γ≤(c,l)

∣∣− ∣∣Γ<(c,l)

∣∣)
−
∑

Υ<(c,l)

Pr
(
Υ<(c,l)

)
· D
((

D | Υ<(c,l)

)
Φ(c,l),1

|| DΦ(c,l),1

)
(Definition A.10)

= H · E
[∣∣Γ≤(c,l)

∣∣− ∣∣Γ<(c,l)

∣∣]
−
∑

Υ<(c,l)

Pr
(
Υ<(c,l)

)
· D
((

D | Υ<(c,l)

)
Φ(c,l),1

|| DΦ(c,l),1

)
.

Adding this for all l ∈
(
T̂Ch, L

]
gives:

I
(
X : Υ≤(c,L) | Υ≤(c,T̂Ch)

)
= H · E

[∣∣Γ≤(c,L)

∣∣− ∣∣∣Γ≤(c,T̂Ch)

∣∣∣]
−
∑

Υ≤(c,L)

Pr
(
Υ≤(c,L)

)
·

L∑
l=T̂Ch+1

D
((

D | Υ<(c,l)

)
Φ(c,l),1

|| DΦ(c,l),1

)
.

Plugging this into Equation (19), we have that it suffices to show:

I
(
X : Υ≤(c,T̂Ch) | Υ≤(c−1,L)

)
≤ 8 · TCh · log n+ H · E

[∣∣∣Γ≤(c,T̂Ch)

∣∣∣− ∣∣Γ≤(c−1,L)

∣∣]. (20)
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Proving Equation (20). We now focus on showing Equation (20). We have:

I
(
X : Υ≤(c,T̂Ch) | Υ≤(c−1,L)

)
= H

(
X | Υ≤(c−1,L)

)
−H

(
X | Υ≤(c,T̂Ch)

)
(Definition A.7)

= H
(
X | Υ≤(c−1,L),N≤c·TCh

)
−H

(
X | Υ≤(c,T̂Ch)

)
(Lemmas 4.16 and A.4 and as noise is independent across rounds)

= I
(
X : Φgk

≤(c,T̂Ch)
| Υ≤(c−1,L),N≤c·TCh

)
+H

(
X | Υ≤(c−1,L),Φ

gk

≤(c,T̂Ch)
,N≤c·TCh

)
−H

(
X | Υ≤(c,T̂Ch)

)
(Definition A.7)

≤ H
(
Φgk

≤(c,T̂Ch)
| Υ≤(c−1,L)

)
+H

(
X | Υ≤(c−1,L),Φ

gk

≤(c,T̂Ch)
,N≤c·TCh

)
−H

(
X | Υ≤(c,T̂Ch)

)
(Lemma A.4 and Fact A.8)

≤ 8 · TCh · log n+H
(
X | Υ≤(c−1,L),Φ

gk

≤(c,T̂Ch)
,N≤c·TCh

)
−H

(
X | Υ≤(c,T̂Ch)

)
.

(Lemmas 4.17 and A.6)

Analyzing the second term above, note that:

H
(
X | Υ≤(c−1,L),Φ

gk

≤(c,T̂Ch)
,N≤c·TCh

)
≤ H · E

[∣∣∣Γ≤(c,T̂Ch)

∣∣∣− ∣∣Γ≤(c−1,L)

∣∣]
+

∑
Υ≤(c−1,L)

Φgk

≤(c,T̂Ch)
N≤c·TCh

Pr

(
Υ≤(c−1,L),Φ

gk

≤(c,T̂Ch)
, N≤c·TCh

)
·H
(
XΓ

≤(c,T̂Ch)
| Υ≤(c−1,L),Φ

gk

≤(c,T̂Ch)
, N≤c·TCh

)

(Lemma 4.14)

≤ H · E
[∣∣∣Γ≤(c,T̂Ch)

∣∣∣− ∣∣Γ≤(c−1,L)

∣∣]
+

∑
Υ

≤(c,T̂Ch)

Pr
(
Υ≤(c,T̂Ch)

)
·H
(
XΓ

≤(c,T̂Ch)
| Υ≤(c−1,L),Φ

gk

≤(c,T̂Ch)
, N≤c·TCh

)
(Lemma 4.17)

≤ H · E
[∣∣∣Γ≤(c,T̂Ch)

∣∣∣− ∣∣Γ≤(c−1,L)

∣∣]+ ∑
Υ

≤(c,T̂Ch)

Pr
(
Υ≤(c,T̂Ch)

)
·H
(
XΓ

≤(c,T̂Ch)
| Υ≤(c,T̂Ch)

)
(Lemma 4.19)

≤ H · E
[∣∣∣Γ≤(c,T̂Ch)

∣∣∣− ∣∣Γ≤(c−1,L)

∣∣]+ ∑
Υ

≤(c,T̂Ch)

Pr
(
Υ≤(c,T̂Ch)

)
·H
(
X | Υ≤(c,T̂Ch)

)
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≤ H · E
[∣∣∣Γ≤(c,T̂Ch)

∣∣∣− ∣∣Γ≤(c−1,L)

∣∣]+H
(
X | Υ≤(c,T̂Ch)

)
. (Definition A.2)

Plugging in, we get

I
(
X : Υ≤(c,T̂Ch) | Υ≤(c−1,L)

)
≤ 8 · TCh · log n+ H · E

[∣∣∣Γ≤(c,T̂Ch)

∣∣∣− ∣∣Γ≤(c−1,L)

∣∣],
which is just Equation (20), and the proof is complete.
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A Information Theory Preliminaries

Recall that we use sans-serif letters to denote random variables. We reserve E to denote an

arbitrary event. All random variables will be assumed to be discrete and we shall adopt the

convention 0 log 1
0
= 0. When it is clear from context, we may abbreviate the event X = x

as just x. All logarithms are taken with base 2.

A.1 Entropy

Definition A.1 (Entropy). The (binary) entropy of X is defined as:

H(X) =
∑

x∈supp(X)

Pr(x) · log 1

Pr(x)
.

The entropy of X conditioned on E is defined as:

H(X | E) =
∑

x∈supp(X)

Pr(x | E) · log 1

Pr(x | E)
.

Definition A.2 (Conditional Entropy). We define the conditional entropy of X given Y and

E as:

H(X | Y, E) =
∑

y∈supp(Y)

Pr(y | E) ·H(X | y, E).

Henceforth, we shall omit writing the supp(·) when it is clear from context.

Lemma A.3 (Chain Rule for Entropy). It holds for all X, Y, Z and E that:

H(XY | Z, E) = H(X | Z, E) +H(Y | X,Z, E).

Lemma A.4 (Conditioning reduces Entropy). It holds for all X, Y, Z and E that:

H(X | Y,Z, E) ≤ H(X | Z, E).
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Equality holds if and only if X and Y are independent conditioned on Z, E.

Corollary A.5 (Corollary of Lemmas A.3 and A.4). It holds for all X, Y, Z and E that:

H(XY | Z, E) = H(X | Z, E) +H(Y | Z, E).

Lemma A.6. It holds for all X and E that:

0 ≤ H(X | E) ≤ log(|supp(X)|).

The second inequality is tight if and only if X conditioned on E is the uniform distribution

over supp(X).

A.2 Mutual Information

Definition A.7 (Mutual Information). The mutual information between X and Y is defined

as:

I(X : Y) = H(X)−H(X | Y) = H(Y)−H(Y | X).

The mutual information between X and Y conditioned on Z is defined as:

I(X : Y | Z) = H(X | Z)−H(X | YZ) = H(Y | Z)−H(Y | XZ).

Fact A.8. We have 0 ≤ I(X : Y | Z) ≤ H(X | Z) ≤ H(X).

Fact A.9 (Chain Rule for Mutual Information). If W, X, Y, Z are random variables, then

I(WX : Y | Z) = I(W : Y | Z) + I(X : Y | WZ).

A.3 KL Divergence

Definition A.10 (KL Divergence). If µ, ν are two distributions over the same (finite) set

Ω, the Kullback-Leibler (KL) Divergence between µ and ν is defined as:

D(µ || ν) =
∑
ω∈Ω

µ(ω) · log µ(ω)

ν(ω)
.

For a finite non-empty set S, we shall use unif(S) to denote the uniform distribution over

S. We omit S from the notation when it is clear from the context. We use dist(X | E) to

denote the distribution of the random variable X conditioned on the event E.

Lemma A.11. Let µ, ν be two distributions with the same support Ω. We have D(µ || ν) ≥ 0.

Lemma A.12. Let X be a random variable uniformly distributed over a set Ω and S1 ⊆
S2 ⊆ Ω be given. Let E be an event such that X conditioned on E is supported on S1, we
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have:

D(dist(X | E) || dist(X | X ∈ S2)) ≥ log
|S2|
|S1|

.

Lemma A.13. Let X be a random variable uniformly distributed over a set Ω and S1 ⊆
S2 ⊆ Ω be given:

D(dist(X | X ∈ S1) || dist(X | X ∈ S2)) = log
|S2|
|S1|

.

A.4 Total Variation Distance

Definition A.14 (Total variation distance). Let µ, ν be two distributions over the same

(finite) set Ω. The total variation distance between µ and ν is defined as:

∥µ− ν∥TV = max
Ω′⊆Ω

∑
ω∈Ω′

µ(ω)− ν(ω).

Fact A.15 (Pinsker’s inequality). Let µ, ν be two distributions over the same set Ω. It holds

that:

∥µ− ν∥TV ≤
√

1

2
· D(µ || ν).
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