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Abstract

Can the n-party broadcast channel, where any symbol sent by one party is received
by all, be made resilient to noise with low overhead? Namely, is it possible to construct
interactive error-correcting codes that convert any protocol designed for the noiseless
broadcast channel into one that works over the noisy broadcast channel and is not
much longer than the original protocol?

[EKS18, STOC 2018] showed that such interactive codes with constant multiplica-
tive overhead are possible under the assumption that the noiseless protocol being sim-
ulated is mon-adaptive, meaning that it is restricted to have a pre-determined order
of turns. Their noise resilient simulating protocols, however, require adaptivity, where
each party can decide whether or not to broadcast given all the information available
to them, including their input and received transcript. The question of whether such
a simulation is possible for general, potentially adaptive, noiseless protocols was left
open.

We resolve this question negatively, proving that any interactive code that converts
adaptive noiseless broadcast protocols into adaptive broadcast protocols resilient to
stochastic errors must incur a multiplicative overhead of (logn/loglogn), which is
nearly tight.
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1 Introduction

A set of n parties, each holding a private input, wish to communicate over a noisy binary
broadcast channel that flips each bit with probability ¢ > 0, independently. Is it possible
to design error-correcting codes with constant rate for this setting”? In this context, “error-
correcting codes” means a scheme that converts a protocol intended for a noiseless broadcast
channel into one that ensures the same output with high probability, even in the presence of
noise. By “constant rate”, we mean that the length of the noise-resilient simulating protocol
is linear in the length of the noiseless protocol.

Broadcast channels are an abstraction of highly distributed wireless systems and the
feasibility of high-rate codes for such channels has been explored since the 1980s [Gam87,
Gal88], with both positive and negative results. Recently, it was shown that constant-rate
codes are impossible in the non-adaptive broadcast setting [FKXPS21b]. Non-adaptive (a.k.a,
oblivious or static) protocols are a restricted class of protocols where the order of turns is
fixed in advance and does not depend on the parties’ inputs or their received transcript.

While non-adaptive protocols are useful, they do not fully leverage the capabilities of
many practical wireless broadcast channels, and in fact, communication-efficient protocols
for certain central problems are adaptive (e.g., the well-known Decay protocol for computing
network size [BGI92]). In adaptive protocols, parties can decide whether to broadcast based
on all available information, including their input and the received transcripts. These pro-
tocols are known to be much more powerful than non-adaptive protocols in the context of
error correcting codes [Hael4d, GHS14, GH14, AGS16, EKS18, EKS20a, EKS21]. For exam-
ple, [EKS18] were able to circumvent the [EKPS21b] lower bound and design constant-rate
codes for settings where the noiseless protocol is non-adaptive, assuming that the simulation
protocol is allowed to be adaptive. The general case, where both the noiseless and simulation
protocols can be adaptive, was left open.

A partial answer to the question of adaptive-to-adaptive simulation was provided by
[EKPS23], which showed that under the stochastic message drops (a.k.a, erasures) model’
proposed by [CHHHZ19], constant-rate codes exist. [EKXPS23] also note that most interactive
coding lower bounds for multi-party protocols under stochastic corruptions (bit-flips) extend
to the erasure model (e.g., [BEGH16, EKS19, EKPS21b]), suggesting that proving a lower
bound for corruptions may require new techniques.

1.1 Our Result

We resolve the general case of adaptive-to-adaptive simulation over the binary broadcast
channel with corruptions, proving that constant-rate codes do not exist for this channel.

Theorem 1.1 (Informal, see Theorem 3.2). Let € € (0,1/2], n > 1, and T(n) = n®W).
There exists a deterministic adaptive protocol IT with T'(n) rounds over the n-party (noiseless)

'In this model, each party receives the broadcast bit with probability 1 — €, independently, and receives
‘L’ to indicate an erasure with probability e.



broadcast channel, such that any randomized adaptive protocol that simulates 11 over the n-
logn
loglogn

party e-noisy broadcast channel with constant error probability has Q(T(n) - ) rounds.

The overhead in Theorem 1.1 is optimal up to O(loglogn) factors, as polynomial-length

protocols can be simulated with €2(logn) overhead by repeating each round ©(logn) times
and having each party take the majority of the symbols it receives. This process effectively
reduces the error rate to m.
Ruling out adaptive simulations. Theorem 1.1 proves a lower bound against adaptive
simulation protocols. Such lower bounds are tricky, as when a message is corrupted, it may
not only cause the parties to alter the content of their future messages, but it can also lead
them to change the set of rounds in which they choose to broadcast. For instance, they can
decide to dynamically allocate more rounds to the parties that were corrupted the most (see,
e.g., [GHS14]).

A key technical challenge in proving lower bounds against adaptive simulations is that
most techniques for proving communication lower bounds rely on the assumption that, at
any point during the execution of the protocol, conditioned on the execution so far, the set of
possible inputs forms a combinatorial rectangle (in other words, a ‘product set’). This holds
true for multi-party non-adaptive protocols, as exactly one party broadcasts in each round
and the identity of this party is known. However, in adaptive protocols, new dependencies
between the inputs can arise, implying that they are no longer a combinatorial rectangle.

The hard-to-simulate adaptive protocol. Lower bounds on the rate of interactive codes
are often proved for the pointer-chasing problem (see Section 2.1.2). While pointer-chasing
is “complete” for non-adaptive protocols, in the sense that every non-adaptive protocol can
be viewed as a pointer chasing protocol, the pointer-chasing problem admits a non-adaptive
protocol and therefore is subject to the [EKS18] scheme. Thus, it is not a good candidate
for a hard-to-simulate protocol in our case.

Instead, the noiseless protocol used by the proof of Theorem 1.1 is a protocol for the
pointer-chasing with unique secrets communication problem. In this problem, the previously
communicated edges in the underlying pointer-chasing tree do not determine the next party
to broadcast an edge, but merely select a large group of parties that contains this next party.
In the noiseless protocol, selecting the next party out of the group is done via very short
adaptive sub-protocol that identifies the group member that has the “unique secret” (see
Section 2), but requires more communication in the noisy setting.

The adaptive broadcast model. We now describe the model assumed by Theorem 1.1.
An adaptive protocol over the n-party (noiseless) broadcast channel is a communication
protocol where n parties communicate in synchronous rounds. In each round, each party
can choose to either broadcast a bit or remain silent. If exactly one party broadcasts a bit,
each party receives the broadcast bit. However, if more than one party broadcasts in a given



round (a collision), or if no party broadcasts (a silent round), all parties receive the ‘1’
symbol. This model is known as the (single-hop) collision-as-silence radio networks model,
as the same ‘1’ symbol is received in both collision and silent rounds, and it is the most
commonly used collision-handling model in the literature?.

When running an adaptive protocol over an n-party e-noisy broadcast channel, in each
round, each party receives the symbol from {0, 1, 1.} that it would have received if this round
had been run over the n-party (noiseless) broadcast channel with probability 1 — ¢, and a
random symbol from {0,1, L} with probability ¢, independently for each round and party.

1.2 Related Work

Interactive coding. Interactive error-correcting codes encode interactive communication
protocols designed for noiseless channels into protocols that can also work over noisy chan-
nels. The study of interactive codes began with a landmark paper by Schulman [Sch92],
which focused on two-party protocols and sparked numerous follow-up works. Over the
last decade, interactive codes for multi-party distributed channels have garnered significant
attention. This includes codes for peer-to-peer channels [RS94, JKL15, HS16, ABET16,
BEGHI16, GK19, GKR19] and codes for various broadcast channels [Gal88, Yao97, KMO05,
FKO00, New04, GKS08, CHHHZ17, EKS18, CHHHZ19, EKS19, EKS20b, AGL20, EKPS21a,
MG21, EKPS21b, EKPS23, EKP24]. Our work contributes to the literature on the latter.

In the context of coding for broadcast channels, prior work has explored both adap-
tive and non-adaptive protocols. We next survey the most relevant results on simulating
non-adaptive/adaptive protocols by non-adaptive/adaptive noise resilient protocols over the
broadcast channel. Naturally, if the noiseless protocols being considered are adaptive, the
simulation should also be adaptive. However, simulations of non-adaptive noiseless protocols
by adaptive noise-resilient protocols have also been considered.

Non-adaptive to non-adaptive simulation. The study of the noise resilience of broad-
cast channels was initiated by El Gamal [Gam87], who introduced the noisy broadcast model.
This is a noisy version of the non-adaptive broadcast model (a.k.a., the shared blackboard
model), where a set of n parties, each holding a private input, communicate in synchronized
rounds. In each round, a pre-specified party broadcasts a bit to all the other parties. How-
ever, the bit received by each party is randomly flipped with some fixed constant probability
e > 0, independently for each party and round. This model was later popularized by [Yao97]
as a simple abstraction for understanding the impact of noise on highly distributed wireless
systems.

El Gamal posed the following challenge: How many rounds are needed to solve the
bit-exchange problem, where each party has a bit input and needs to learn the inputs of

2 Another widely used model is the collision detection model, where collisions and silence are received as
different symbols. We define our channel as collision-as-silence, but Theorem 1.1 also applies to the collision
detection model and other related models.



all other parties? Gallager [Gal88] gave an elegant O(nloglogn)-round protocol for this
problem, which was later proved to be optimal by [GIKS08]. The bit-exchange problem
under erasure noise was considered by [GHMI8], who gave an O(nlog” n)-round protocol.
The bit-exchange problem is equivalent to computing the identity function, and the round
complexity of other specific n-bit functions, such as OR, MAJORITY, and PARITY, has been
studied under related noise models [Yao97, KM05, FK00, New04, GKS08].

The general case of simulating any non-adaptive protocol with a noise-resilient non-
adaptive protocol was recently studied by [EKPS21b]. Their main result shows that for
protocols of length polynomial in n, such a simulation requires @(@) multiplicative
overhead in the number of round. We note that the question of non-adaptive to non-adaptive
simulation with low overhead and the question of adaptive-to-adaptive simulation with low
overhead are incomparable. While the simulation protocols in the latter case are more
powerful, so are the noiseless protocols they attempt to simulate.

Non-adaptive to adaptive simulation. [EKSI18] gave a scheme for converting any non-
adaptive noiseless protocol into an adaptive, noise-resilient one with only a constant multi-
plicative overhead. Theorem 1.1 shows that their scheme cannot be extended to simulate
adaptive protocols as well.

Adaptive to adaptive simulation with erasures. [EKPS23] designed a constant-rate
scheme for converting any adaptive noiseless protocol into an adaptive, noise-resilient one
with only a constant multiplicative overhead under erasures. Theorem 1.1 shows that their
result cannot be extended to handle corruptions.

2 Proof Sketch

In this section, we give a detailed outline of the proof of Theorem 1.1. In Section 2.1, we
motivate the design of our hard-to-simulate problem, pointer-chasing with unique secrets,
by discussing the limitations of the non-adaptive to adaptive simulation of [FKS18] (this
subsection can be skipped as the rest of the section is self-contained). We then outline our
lower bound proof for this problem.

2.1 Designing the Hard-to-Simulate Protocol
2.1.1 The [EKS18] Scheme

The scheme in [EKS18] employs the rewind-if-error framework, which was originally devel-
oped for the two-party interactive coding setting [Sch92]. Rewind-if-error coding schemes
involve multiple iterations, with each iteration consisting of two phases: a simulation phase,
in which a small number of rounds of the noiseless protocol are executed, and a consistency
check phase, where the parties check whether they have the same received transcript or if an



error occurred (e.g., by comparing hashes of their received transcripts). If the check phase
succeeds, the parties proceed with the simulation; otherwise, they rewind and re-simulate
the last few rounds.

One key reason the [EKS18] scheme fails when applied to adaptive protocols is due to
repeated rewinds: With a noise rate of €, we can expect approximately en parties to receive an
incorrect bit in each round of the simulation phase. Since € is constant, en > 1. This means
that the consistency check phase will almost always fail and trigger a rewind, preventing any
progress from being made.

While the total number of parties, n, is large, the [EKS18] simulation successfully by-
passed the repeated rewinds problem. This is achieved by observing that the non-adaptivity
of IT could be used to identify a small subset S of parties that critically need to know the
simulated transcript. These parties are those that will broadcast in the rounds immediately
following the current one. The other parties broadcast later and thus have more time to
decode the bit broadcast in the current round. [EKSI18] showed that it suffices to ensure
that the parties in S are not affected by noise. However, in the adaptive case, where any of
the n parties may broadcast next, this approach is not feasible.

2.1.2 Failed Attempt: Weakly Adaptive Pointer-Chasing

Recall that the pointer-chasing communication problem involves an underlying (possibly non-
binary) tree. Each layer of this tree is “owned” by one of the communicating parties, and each
party gets a single edge going out of each of the vertices in the layers they own. The parties’
objective is to find a root-to-leaf path that only uses edges in the union of their input edge
sets. As discussed in Section 1.1, while lower bounds against non-adaptive simulations are
typically shown for the pointer-chasing protocol®, this protocol is non-adaptive and therefore
can be simulated with low overhead using the [EKS18] scheme.

Building on the discussion above regarding the shortcomings of the [EKS18] scheme, our
hard-to-simulate protocol should ensure that the identity of the next party to send an edge
is unknown. To achieve this, we can modify the standard pointer-chasing problem so that
different parties own different vertices at the same level. Specifically, assume that each party
owns one vertex in the underlying pointer-chasing tree and has an outgoing edge from this
vertex. In this setup, the identity of the second party to send an edge is only determined
after the party owning the root node sends the first edge.

While this version of the pointer-chasing protocol is adaptive, as the order of turns is not
pre-determined, it is only “weakly adaptive” in the sense that exactly one party broadcasts
in each round and the order of turns only depends on the transcript (and not on the private
inputs of the parties, unless those inputs have been communicated). A more careful analysis
of the [EKS18] scheme shows that it can be expected to work for such weakly adaptive
noiseless protocols. The reason is that, although the identity of the party that speaks in

3The owner of the root vy broadcasts their edge (vg,v1), then the owner of v; broadcasts their edge
(v1,v2), ete.



round ¢ + 1 is unknown ahead of time, after round ¢, the identity of this party is known
to all. Thus, if the simulation until round ¢ was (roughly) correct, round t + 1 effectively
becomes (close to) non-adaptive, and the idea of [EIXS18] still applies.

2.1.3 Hard-to-Simulate: Pointer-Chasing with Unique Secrets

The previous attempt at changing the pointing-chasing problem failed as the identity of
the next speaker is determined by the transcript so far. This will no longer be the case
if the identity of the next speaker also depends on their private input. Motivated by this,
in our pointer-chasing with unique secrets problem, the previous edges communicated only
determine a large “group” (set of size n®Y)) of parties that contains the party who has the
next edge, and act as a disguise to the identity of this party.

Unique secrets. We next explain how the party that broadcast the next edge is selected
out of the group, while making sure that its identity is not implied by the communication.
An easy way to do so is to select a random party i # 1 in the group and a random bit b, and
give parties ¢ and party 1 (who we refer to as the “leader” of the group) the bit b, while all
the other parties get b. We refer to those additional input bits as “secrets” (recall each party
also has an edge as input). Observe that there is exactly one party whose secret is unique
among the non-leader parties. We call this party the “unique party’. Also observe that the
leader knows the unique secret, but not the identity of the unique party.

In the noiseless protocol, the leader broadcasts their secret, which immediately allows
the party with the matching secret to know that they are the unique party. This party then
broadcasts their edge to determine the next group. Note that the identity of the unique
party cannot be deduced from the communication and requires knowing the private secret
of that party. Therefore, this protocol is not weakly adaptive.

Longer secrets. Finding the unique party can also be done by a different short adaptive
sub-protocol that does not rely on the leader: In the first round, all non-leader parties
with secret 0 broadcast 0, and in round 2, all non-leader parties with secret 1 broadcast 1.
Notice that if, for instance, b = 1 is the unique secret, the unique party will be the only
one broadcasting in round 2, while all other non-leader parties will broadcast in round 1,
leading to a collision. It is straightforward to deduce the unique secret from the protocol’s
transcript—only one of the rounds will have a non-‘1’ value, and this value is the unique
secret.

To simplify the lower bound proof, we aim to eliminate this second sub-protocol for
identifying the unique party. To achieve this, we assign each party a secret that is a bit
string of length ©(loglogn), rather than a single bit, while still ensuring there is one unique
party whose secret matches the leader’s. Each of the other possible secrets is given to many
©() parties in a group and only poly logn possible secrets). Note
that the second protocol can be adapted to work with any set of secrets {sy,...,sx}, by

other parties (there are n



having parties with secret s, broadcast in round ¢. However, the length of this protocol
increases with k, the size of the set. By choosing secrets of length ©(loglogn), we make the
length of the protocol £ = poly log n, which is too large.

Why is it hard to simulate? Intuitively, the difficulty in solving the pointer-chasing
with unique secrets problem over a noisy channel arises from the fact that when the leader
of the current group broadcasts their secret, each bit of the broadcast is likely to be received
incorrectly by a constant fraction of the parties. Given that the secret is relatively short
and there are many parties in the group, it is expected that several parties j will receive
a noisy version of the leader’s secret that coincidentally matches their own secret. Each of
these parties 7 may mistakenly believe they are the unique party and proceed to broadcast
their own edge, leading to collisions and preventing meaningful information transmission®.
The remainder of this section gives a detailed outline of our lower bound proof.

2.2 Lower Bound

As discussed above, for our lower bound, we consider an instance of pointer-chasing with
unique secrets. Here is a more formal description of this problem: The n parties are divided
into B = n®® blocks and each block is divided into G = (logn)®" groups. One of the
players in every group is the leader of the group (for concreteness, the first party in the
group), and each party has as input a “secret” s and a “key” k € [G]. It is promised that in
every group, there is exactly one other party with the same secret as the leader. We call this
party the unique party. The key of the unique party is called the groupkey and it identifies
a group in the next block. The goal of the parties is to start from the first group in the first
block and compute its groupkey, then compute the groupkey of the group it identifies in the
second block, and so on for all the B blocks.

Our lower bound shows that a protocol with o(B -logn) rounds over the noisy channel
cannot compute all the B groupkeys. Very roughly, we show this by proving that in any
chunk of T, = ©(logn) rounds, the protocol can only identify at most a constant number
of groupkeys in expectation. As the total number of chunks is o(B), so is the total number
of groupkeys identified by the protocol, and the lower bound follows. To see why any chunk
can only identify a constant number of groupkeys, consider first what happens in the first
chunk of the protocol. We will later generalize this to all the other chunks.

Analyzing the first chunk. We show that after the first chunk, which is the first Tcy,
rounds of the protocol, the parties do not know the groupkey of the first group. Assuming
this for now, note that this means that the parties do not know which group is the “correct”
group in the future blocks, which implies that even if they identify groupkeys of some of the
groups in the future blocks, they are unlikely to be relevant to the output of the protocol.

4We point out that, as suggested by [EKPS23], under erasures, a simulation protocol with constant
overhead is possible, as such parties j will no longer be misled into thinking they are the unique party.



A bit more formally, if the groupkey of the first group is completely random after the first
chunk, each of the groups in the future blocks is likely to be correct with probability é,
and so is any groupkey computed for these groups. As the number of groupkeys computed
cannot exceed the length of the chunk, we get that the total number of relevant groupkeys
computed for the future blocks is at most 2 = o(1). Combined with the groupkey of the
first block, we get that this chunk only revealed 1+ 0(1) many relevant groupkeys, as desired.

We now argue why the parties do not know the groupkey of the first group in the first T¢;,
many rounds of the protocol. For this, consider each round z € [T¢,] and consider for all
parties j in the first group, what are the possible inputs and transcripts for which party j
will speak in round z. We say that a secret s is energizing (for round z) if for polynomially
many parties j, there exists an input of the form (s,-) and a received transcript that will
make party j broadcast® in round z. We consider two cases:

1. There is at most one value of s that is energizing, call it s*. In this case, for all other
values of s, very few parties with secret s can potentially speak in round z. Thus, if
the leader’s secret is anything other than s*, it is unlikely that the unique party (who
is a uniformly random party among all non-leader parties in the group) will speak in
round z. This implies that unless the leader’s secret is s*, the groupkey is not revealed
in round z, with high probability.

2. There are at least two different values of s that are energizing. In this case, fix any
secret s’ for the leader and consider the energizing value of s that is not s’. As our
groups are large, there are polynomially many parties whose input is the input (s, )
that can make them broadcast, and as the chunks are small, we also have that a
polynomially large number of these parties will get the transcript that makes them
broadcast on this input, with high probability. Thus, regardless of the leader’s secret,
this round z will have at least two parties broadcasting, resulting in a collision and the
groupkey will not be revealed.

Combining these two cases, we get that the only way the groupkey can possibly be reveal
in this chunk is if the leader’s secret is s* (as defined in Item 1) for some round z in this
chunk. As the number T¢y, of rounds is small and the leader’s secret is uniformly random,
this is unlikely, and we are done.

Analyzing the other chunks. The first chunk in the protocol was easy to analyze as the
distribution of the parties’ inputs was known before the chunk. Thus, it was known that the
leader’s secret is uniformly random, the unique player is uniformly random independently
of the leader’s secret, etc. This may not be true in the later chunks, as the transcript so far
may have distorted the distribution of the parties’ inputs before the future chunk. Roughly

5This is done by going over all possible inputs and received transcripts for party j, and therefore overcounts
the number of parties that may broadcast in round z (as their actual input may not be the one that will
make them broadcast). Our analysis works with this overcount as well.



speaking, the way we analyze these chunks is to show that our proof for the first chunk is
“robust”, in the sense that it goes through even if the distributions are slightly distorted.

To formalize this, for every group in every block, we keep track of how much its dis-
tribution differs from the initial distribution, measured in terms of KL divergence (relative
entropy). For the groups whose distributions are close, i.e., whose relative entropy is upper
bounded by m, we show that the analysis above still goes through. On the other hand,
for the groups whose distributions have changed a lot, we argue that these groups must be
few in number. This is because whenever the relative entropy is large, it means the protocol
has revealed a lot of “information” about this group. However, the total amount of informa-
tion revealed cannot exceed the length of the protocol, and thus the number of groups for
which it is large must be small.

We handle these groups separately using the fact that these groups are independent of
the groupkey the parties are trying to compute in this chunk. Thus, these small number
of revealed groups are unlikely to be correct, and contribute little to the computation the
parties are trying to perform.

Revealing blocks. To finish this sketch, we note that the actual distribution we consider
differs slightly from the distribution above. Specifically, in our proof we also require that
the groupkeys for all the groups in the same block are distinct, ensuring that it possible for
every group in the next block to be the correct one. This is because if not, then it could
be possible for the parties to find out the groups that cannot possibly be correct in the
future blocks, and focus only on the other groups. This could make the task much easier,
and render the lower bound impossible.

However, ensuring that every group in any block has a distinct groupkey leads to another
difficulty. Namely, if one knows the groupkey of any group in a block, one also knows that
the groupkeys of the other groups are different from this one. Similarly, if one knows the
groupkey of a lot of the groups in a block, then one has a lot of information about the
groupkeys of the remaining blocks, making them easier for the protocol to solve. In our
analysis, we show that we can afford to ignore all the blocks for which we know a lot of
groupkeys. In other words, whenever it is the case that we know groupkeys for many groups
in any block, we will reveal the entire block. This would leave us with blocks for which we
have a small number of groupkeys, meaning the remaining groupkey are still very random,
and the previous argument would go through.

3 Model and Preliminaries

Let ¢ denote the empty string or the empty tuple. For integers a, b, we let [a, b] denote the
set of all integers ¢ satisfying a < ¢ < b. We change the square brackets to parenthesis
when the inequality is strict and define the notations (a,b), [a,b), and (a,b]. As usual we
abbreviate (0,n] = {1,2,...,n} to [n].



3.1 Concentration Inequalities

Lemma 3.1 (Multiplicative Chernoff bound). Suppose X, --- , X,, are independent random
variables taking values in [0,1]. Let X denote their sum and let p = E[X]| denote the sum’s
expected value. Then,

Pr(X >p-(1+6) <e 2%,  Y0<4,

(52;1,

PrX <p-(1-9)) <e 7, VO<6<1.

3.2 The Noisy Broadcast Model

The noisy broadcast model is defined by a number n > 0 of parties and a noise parameter
e € [0,1]. When € = 0, we say that the broadcast model is noiseless and may drop € from
the notation. A (deterministic) protocol over the (n, €)-noisy broadcast model is defined by
a tuple:

Il = <T7 (Xi)ie[np Y, (msgi)ie[n]v 0Ut>7 (1)

where: (1) T' = ||II|| > 0is a parameter denoting the length of the protocol. (2) For all i € [n],
X; is the set of inputs of party . (3) ) is the set of possible outputs for the protocol. (4) For
all i € [n], msg; : X; x ({0,1, L})" — {0,1, L} is a function that computes the message sent
by party ¢ based on its input and the received transcript so far. (5) out : ({0, 1, J_})T — Y
is a function that computes the output of the protocol from its transcript. We suppress
items on the right hand side of Equation (1) when they are clear from context. We define a
randomized protocol to be a distribution over deterministic protocols.

Execution of a protocol. We now define the execution of a protocol in the presence of
random noise. Fix a protocol Il as above and let N = (Nf)ie[nLtE[T] be a noise vector such
that for all 7 € [n] and t € [T], the value N} = % with probability 1 — € and with probability
¢, we have that N/ is a uniformly random symbol from the set {0,1, L}. Furthermore, N} is
sampled independently for all ¢ € [n] and t € [T].

Given such a IT and N, the protocol II starts with all parties having an inputs x; € &;
and proceed in T rounds, maintaining the invariant that before round ¢ € [T7], all parties
i € [n] have received a transcript I, € {0,1, L}'"". In round ¢ € [T] all parties i € [n]
compute msg,(z;, II,) € {0,1, L}. We say party ¢ speaks (or broadcasts) in round ¢ if
msg, (z;,11Y,) # L. If the number of parties speaking in round ¢ is different from 1, define
[T = 1. Otherwise, there is exactly one party i* € [n]| speaking in round ¢ and we define
IIi" = msg,. (xi*, H?t). For all parties i € [n], the symbol II¢ received by party ¢ in round
t equals II™® if N} = x and equals N/ otherwise. All parties i € [n] append II} to IT*, and
continue executing the protocol. After T rounds are over, party 1 outputs out(ngT).

Observe that the execution of the protocol is determined by the inputs X = (z;) and

i€[n]
the noise N. In particular, the output of party 1 is determined by X and N. Due to this,
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we sometimes write the output of the protocol as outy (X, V).

3.3 The Hard Instance

We divide the n parties into B = n%! blocks of + parties each. Each block of parties is
further subdivided into G = (log n)lo groups of z& parties each. For convenience, we define

o _

BG
be given a unique index (b,g) € [B] x [G] and each party can be given a unique index

m = 1 > n%% so that there are m + 1 parties in any group. Thus, each group can
i=1(b,g,7) € [B] x [G] x [0, m]. we interpret i to be a number in [n] in the natural way. We
omit writing [B] x [G] and [B] x [G] x [0, m] when it is clear from context. For all groups
(b, g), we define the party (b, g,0) to be the “leader” of the group (b, g). Let S = G be a
parameter. For all parties ¢ € [n], the input of party i is a pair x; = (s;, ki) € [S] x [G]
consisting of a “secret” and a “groupkey”. We will only consider inputs that satisfy the
following two promises:

1. For all groups (b, g), there is exactly one party in the group (b, g) whose secret matches
the leader. Formally, we have:

v(b,g) : [{j € m] | sbgs = svg0tl =1. (2)

We will use uq,, € [m] to denote the unique value in the set above and call player
(b,g, UCIb,g) the unique player in the group (b, g). Also, we define gkeyy g = Kb,guq,,, 1O
be the groupkey of the unique player in the group (b, g), and also call it the groupkey
of the group (b, g).

2. We also require that gkey, , is different for all the groups in the same block. This
is equivalent to saying that the values gkey, , for the groups in any block form a
permutation over [G]. Formally,

V(b, g) 7é (b7 g,) : gkeyb,g 7é gkeyb,g" (3)

We define the distribution D to be the uniform distribution on all inputs X € ([S] x [G])"
that satisfy Equations (2) and (3). We write X}, when we restrict attention to inputs in a
given block b € [B] and X, , when we restrict attention to inputs in the group (b, g). Observe
that the random variables (Xj;) belp] A€ mutually independent.

We now define the function gkeys the parties want to compute. Roughly speaking, this
is just the sequence of groupkeys of all groups starting from the first group in the first
block. Formally®, for any inputs X € ([S] x [G])" for the parties, any group (b, g) and any

6While the parties need to compute the groupkeys starting from the first group in the first block, our
formal definition is more general and assumes they are starting from an arbitrary group (b, g). This means
that the “base case” is &/ =b— 1.
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coordinate V' € [b — 1, B], we recursively define:

g, iy =b—1

8KeYy gieys, ,(X.bg)» Otherwise

gkeysy (X, b, g) = { (4)

We omit writing b, g when b = g = 1 and adopt the convention that gkeysg(X,B+1,9) =g
for all g € [G] and all inputs X.

3.4 Main Result

Let n > 0. Observe that when party ¢ has input z; as defined in Section 3.3, there exists an
O(B -loglogn) round protocol that computes” gkeysip)(X) when the noise parameter ¢ = 0.
The protocol divides the rounds into B blocks of O(loglogn) rounds each and satisfies the
property that at the end of block b, for all 0 < b < B, party 1 knows gkeysp;(X).

This property is trivially satisfied for b = 0. Suppose that b > 0 and the property is
satisfied for b — 1. As the protocol is noiseless, all the parties have the same transcript and
they all know gkeysp_1)(X) before block b. Let g = gkeys,_1(X). In block b, the leader
(b, g,0) of the group (b, g) takes O(loglogn) rounds to broadcast s, 40. Then, all the other
parties, i.e., party (b, g,j) for j € [m], check if s, ,; = 5540 which they just received. If this
check passes (which only happens for party ug, , by Equation (2)), party j takes O(loglogn)
rounds to broadcast k4 ; = gkey, ,. By Equation (4), this equals gkeys,(X), as desired.

With this protocol, in order to show Theorem 1.1, it suffices to show that any noisy
protocol computing gkeys;p)(X) requires Q(B - logn) rounds. This is captured in the theorem
below, which implies Theorem 1.1. We state the theorem below with ¢ = % but this choice
only affects the constants in the theorem statement.

Theorem 3.2. Fizn > 0 large enough and € = 13—0. For any (possibly randomized) protocol
II in the (n, €)-noisy broadcast channel with |1|| < 107%- B -logn, it holds that:

XNDPJl:[NN(outH(X7 N) = gkeys(p)(X)) <0.1.

4 The Lower Bound: Proof of Theorem 3.2

We devote this section to proving Theorem 3.2. Let n > 0 be large enough and II be a
protocol satisfying T' = ||TT|| < 107%- B-logn as in the theorem statement. As we work with
a specific distribution D, we can assume without loss of generality that II is deterministic.
Recall that N ~ A is the random variable for the noise in the channel and is independent
of D. All our probabilities and events would be defined in terms of the distribution D x N.
We omit writing the distributions when it is clear from context.

"Throughout this work, for a tuple = (z1,...,,) and a set S C [n], we use zg = (7;),c5 to denote the
coordinates for the tuple that are in S.
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We will use sans-serif letters X, s, k, etc. to denote random variables and the corresponding
letters to denote the realizations. For example, the random variable corresponding to the
input of a party ¢ € [n] is denoted using x; = (s;,k;). Observe from our definitions that
the random variables X, are mutually independent. As all the randomness in our setting
comes from the distributions D and N, once we fix an input X ~ D and a noise vector
N ~ N, we also fix the entire execution of the protocol II (as it is determined by X and N).
Additionally, for all ¢ € [T, fixing X ~ D and a noise vector N¢; ~ N, fixes the execution
of II in the first ¢ rounds and also fixes what every party is broadcasting in round t + 1.
Thus, for all ¢t € [T], we can define:

Spk(X, Ney) = {i | msg, (21, 11%,) # 1}, (5)

to be the set of parties speaking in round ¢. For our analysis, we divide the protocol II
into chunks of T, = ﬁ - logn rounds each and let C' = T/T¢, < 20'% denote the total
number of chunks. This means that any round ¢ € [T] can be equivalently written as a pair
(¢, 2) € [C] x [Tch], where ¢ is the current chunk and z in the index of ¢ in the current chunk.
We use these two interchangeably.

Let ¢ € [C] be a chunk and define T\Ch = 2-Tcp and L = Ta] + BG. We now define
several functions of the inputs X for the parties and the noise N<.r, in the first ¢ chunks.

For notational convenience, we keep the dependence on X and N<.r implicit. We will

define five functions, namely, ((ID(CJ), @?Zl)’ CID%EZ), ey, T(C’Z)>IG[L]. Intuitively, these functions
capture the information we “reveal” or “condition on” in our proof to ensure independence

between certain random variables. For each round z € [T¢y], we reveal up to two parties that
are speaking in that round along with their inputs. This information is enough to determine
if the round is a silent round or a collision round and if it is neither, the bit sent in that
round. Because of this factor of two, we have that fc\h is twice Tcn. After the chunk is
over, we also reveal all the groups that are not sufficiently random. These can be up to BG
in number so L is that much larger than T\Ch The exact information we need to reveal is
different for different parts of the proof and is captured in the functions that are formally
defined inductively as follows. For any [ € [L], suppose that the functions have been defined
for all I < [.

1. Foralll € [TACh],ifhs odd, let i = (b, g, j) be the smallest element in Sk 1127, (X, N<(e, /27

(if it exists, or equivalently, if the set is non-empty). Set:

Piepy = ((b,9), Xpg), teny = (4, 2), O = (i, 7i,8keys ). (6)

If the set is empty, then we set each element in the tuples above to L. The definition
for even [ is analogous except that we use the second smallest element instead of the
smallest.

2. For all | € (@,L], if there exists a group (b,g) ¢ I'<(; that satisfies one of the
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following conditions (we use Dy, to denote the marginal distribution of D corresponding
to the group (b, ¢)):

1
logn)*’ (7)

D((D | Taen)yy | Db,g> >

=z

Teteny N ({0} x [G])] =
then, we let (b, g) denote the smallest such group and define

ey = ((b;9)s Xbg), (cl) = (L, 1), o

(e,)) — (Lv —L7 L)' (8)

If no such group exists, we set each element in the tuples above to L.

In both cases, we define:

Ceny = (Ceten U{Pena}) \ {1},

9)
Tew) = (Pet)s N<(emin(1/21. 7)) -

We will view these functions as random variables determined by the inputs X and N<..z, .
To emphasize this, we will use sans-serif letters ®.;), efc. when we look at them as random
variables and the corresponding normal letters ®(.; for their realizations. Because of our
definitions, we have:

Lemma 4.1. Let ¢ € [C] be a chunk and Y < 1) be arbitrary®. For all groups (b, g) ¢ I'<(c,1),
we have that:

1
(logn)*

and  |Peery N (10}  [G)] < %

]DD((D | TS(C,L))ILQ | Db,g) <

Proof. Observe from Equation (7) that if ®(.; = (L, L) for some ! € (fc\h, L], then @y =
(L, L) for all ' € [I, L]. On the other hand, if ®(;) # (L, L), then a new element is added
to P<(ep). As L = Ten + BG, we have that (b,9) ¢ I'<(,ry implies that & 1) = (L,L). It
follows that both conditions in Equation (7) are not satisfied for the group (b, g) and we
have the lemma. O

A potential function. We now define a potential function and state our main lemma.
For all blocks b € [B], inputs X, and subsets ¢ C [B] x [G] of groups, we define:

1, if (b, gkeys,_1(X)) € ¢4

\I/b(X, g) = min(l . |g ) ({b} X [G])|>, otherwise

. (10)
" (logn)™°

8Recall that fixing T<(c,r) also fixes ®<(.;) and I'<(c 1)-
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Our main lemmas are:

Lemma 4.2. For all 0 < ¢ < C, we have:

B

E[T, (X, T<er)] < 2¢+
; [ b( <( L))] (logn)S

E[|M<en]]-

Lemma 4.3. For all 0 < ¢ < C, we have:
E[|Il<(1)|] < 20c- (logn)”.

Before showing Lemmas 4.2 and 4.3, we first show why they imply Theorem 3.2. The
rest of this section is dedicated to proving Lemma 4.2.

Proof of Theorem 3.2 assuming Lemmas 4.2 and 4.53. From Lemmas 4.2 and 4.3, we have
that ZszlE[\Ifb(X, M<cn)] < 3C < & It follows that there exists b € [B] such that
Pr(W,(X,T<(c,1)) = 1) < =5. From Equation (10), we have that Pr((b, gkeys,—1(X)) € F<(c,1)) <
ﬁ. For the rest of this proof, we fix this b and define the event £ to be the event that
(b, gkeysy—1(X)) € T<(cr).- Note that whether or not £ occurs is determined by the pair
(X<b, T<c, L)) allowing us to view & as the set of pairs for which it occurs. By a union

bound, we have:

Pr(outy; (X, N) = gkeysz (X))

1
<ot > Pr(X<p, T<(c,r)) - Proutn(X,N) = gkeysz)(X) | X, T<ion))-
(X<b7T§(C,L))¢g

It suffices to bound each conditional probability term above by 0.05. Fix an arbitrary
(X<b, T<c, L)) ¢ £ and consider the corresponding term above. Note that fixing X, fixes
the value of gkeys, 1(X) and let g denote the fixed value. Moreover, observe that fixing
T<(c,1) fixes the transcript received by all the parties during the execution of the protocol
(and thus the output) and that, conditioned on Y<( ), the random variable gkey,, , 1s
independent of X_,. (This is formally shown in Lemma 4.16 below.) Letting k be the b-th
coordinate of this fixed output, we have by Equation (4) that:

Pr(outH(X, N) = gkeysz(X) | X<, Tg(C,L)) < Pr(gkeybyg =k | X, TS(C’L))
= Pr(gkey,, = k| T<cn)).

As & does not occur, we have (b,g) ¢ I'<(¢,r) and by Lemma 4.1, it follows that we have
D((D | TS(C,L))I,Q I Db,g> < (lTln)‘f' From Fact A.15, this gives that for all k& € [G], we

have:
PI‘(OUtH(X7 N) = gkeys[B} (X) | Xv<b7 TS(C’,L)) S Pr(gkeyw = k? | X<b, Tg(C,L))
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< Pr(gkeybg = k:) + (log n)2

< 0.05.

4.1 Technical Lemmas

Lemma 4.4. Let 0 < ¢ < C and T<(.r) be an arbitrary realization’ of T<(c,r)- It holds that:

1 . c L

¢'=11=Tey+1

Proof. We analyze how the set I'<( ;) changes. Define the set:
G ={(d, 1) €] x [L] | D1 & Dy U{L}},

and note from Equation (9) that || = |T<(.r,|. For every (¢,1) € 4, if | ¢ [C//E}, we have
that one of the two conditions in Equation (7) must hold. We define:

—~ G
9= {0 €9 1¢ [T Alraenn ({enad < fa) = .

to be the subset of ¢, where the second condition holds. Now, observe that, for any (c,1) €

4’ there exists % values in ¢ \ ¢’ that are both determined by ®( ;) 1, and different for

different values of ®(v ) 11. This means that 1 -|9'| < |9\ ¢’|. It follows that:

1

1
5 T<en| = g' 9| <9 \9"|.

Finally, note that for all (¢, 1) € 4\¥’ for which [ ¢ [fa]] , the first condition in Equation (7)

must hold. This means that for all these (¢, 1), we have:

1
(logn)"

D((D | T<(c’,l))¢(cl7l)71 || D@(c/,l)J) =

As the number of such values is at least |¥4 \ ¢/| —cTen and the KL divergence is non-negative
(Lemma A.11), the lemma follows. O

Lemma 4.5. For all blocks b € [B], inputs X, and subsets 4,9" C [B] x [G] of groups, we
have:

Uy(X, 9 UD") < Uy(X,9) + Uy(X, "),

90bserve that fixing any such realization fixes the value of M<(e,r) and P<(c 1.
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Proof. This is straightforward if (b, gkeys,_1(X)) € ¥ U¥’ so we assume otherwise. We get:

U, (X, 9 U9 = min(l, m (G uUg)n ({b} x [G])|)
< mm(l, ﬁ 19 A ({0} x (G + ﬁ 19 ({5} [Gm)
. 1 _ 1 ,
< mln(l, W 19 N0 ({b} x [G])]) +m1n(1, W 19" N ({b} x [G])|)

< \Ilb(Xa g) + \Pb(Xv g/)

O]

Lemma 4.6. For all blocks b € [B], inputs X, and subsets 4 C [B] x [G] of groups, we have:
1
Uy(X, ) < 1((b, gkeysp1 (X)) € 9) + ——5 - |4 N ({b} x [G])].
(logn)

Proof. Direct from Equation (10). O
Corollary 4.7 (Corollary of Lemmas 4.5 and 4.6). For all blocks b € [B], inputs X, and
subsets 4,9" C [B] x [G] of groups, we have:

1

(X, 9 UG )—0,(X,9) < 1((b, gkeysy_1 (X)) € 9"\ %>+W

1@\ 9) N ({b} < [G])].

4.1.1 The Marginal Distribution for One Group

Throughout this section, for all s € [S], we define the set 2|, = {s} x [G]. Thus, we have
Zs = ([S]\ {s}) x [G]. Also, for all groups (b,g) and all s’ € [S], and j' € [m], we define

the event Sf,’f;-, to be the event that s, 40 = s’ A uq, , = j'.

Lemma 4.8. Let (b,g) be a group, s' € [S], and j' € [m]. We have Pr(é’f;%,) = L
Further, if for all j € [0, m|, we have a set of inputs Z; C [S] x [G], then:

_1mos oz g lsnT

: . ) : b,g
Pr(Vj €0,m] x4, € Z; | ES,J,> e e G 5-1)

J#j'€lm]

Moreover, conditioned on Ef;f’j,, the random variables (X4 ;) m) O7€ mutually independent

i#i'e
and are independent of all the other inputs.

Proof. The first part is by symmetry. For the second part, note that Items 1 and 2 of our
promise on the distribution D implies that sampling from D conditioned on ES;QJ., is the same
as sampling from the uniform distribution conditioned on s;,0 = sp45 = s’ and sp4; # '
for all j # j' € [m]. For the “moreover” part, note that Item 2 of our promise only depends

on the input of player (b, g, j') in group (b, g). O
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Lemma 4.9. Let (b, g) be a group and j € [0,m]. Let Z; C [S] x [G] be a set of inputs. We
have:

1
Pra0, € %)) < o5 1251
Proof. If j = 0, we have from Lemma 4.8 that:

ZoN Zis| _ |2
P(xbgoeﬁ‘fo)<§2‘ e G;.

s'=1

Otherwise, we have from Lemma 4.8 that:

1 s/ j |s!
. ) < . 1775 7S —_1). 775
Pr(xpq; € Z;) < 3 E ( G + (m—1) G'(S—1)>
1

s'=1
-1
< e 12 2
<—- il
< o 3

]

Lemma 4.10. Let (b, g) be a group and for all j € [m], let Z; C [S] x [G] be a set of inputs.
We have:

S . 1 1
2.ln(S_1-Pr(VjE[m]:xbngE%)—m) S2_@Z|%|

Proof. We have:

S m
Pr(Vj € [m] i %y, € Z5) = Z ZPI(ES,’Z,) - Pr (Vj €[m]:xpg; € Z; | 55;?)

s'=1j'=1
1
< 5 ZZ H (Lemma 4.8)
s'=1j'=1j#j'€[m
1 |Ts’\‘%j|
< el Z Ze i#3'€lm] "G-(5=T) (As z < e”! for all )

s ]
—S |
- E max e —I7i'€lml G(S-1)

IN

To continue, for all &', let 7(s’) be the term corresponding to s’ above and note that 7(s") < 1
for all s € [S]. Order all the s’ in decreasing order of 7(s’) (breaking ties arbitrarily). For
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both s in the first two positions in this order we have:

1 5 |7\ 2|
Pr(Vje|m|:xp,: € Z5) < =+ ax e 2itielm] TG-E-T)
(V7 € Iml 6.0, J>_S 2:1]6[171]
. %/\‘%
<l S 1. IZJ 1’G(S 1)|
- S S
L S—1 45n I%/\%I
+ pDyia
=5t s "

Rearranging and adding for both these s', we get:

S , 1 1 —
2.ln<S_1 -Pr(Vj € [m]:xpq; € %)—ﬁ> <2—@Z|3{]|

Lemma 4.11. Let (b,g) be a group and for all j € [0,m], let Z; C [S] x [G] be a set of
inputs. Suppose that 2721‘7‘ <5-GS and that | 25| > &2 for all j € [0,m]. Then, for
all ¢ € [G] and all sets # C [S] with |.7| > 22, we have:

Hioo (udy g | Shg0 € 7 Agkey,, =g AVj € [0,m] :x,4; € 2;) >0.9-logm.
Proof. Note that, for all j* € [m], we have:

Pr(uqy, = j Aspg0 € Agkey,, =g AVj € [0,m] : x4, € Z5)

= Z Pr(é’, s Agkey,, =g AVj€[0,m]:x,; € 5&2)
s'es

_ 1 200 2is| 1((s',9) € 25)
_mS.Z e . - . H

s'es J#j'€lm]

m. (Lemma 48)

Now, as | 2| > <2 for all j € [0,m] and S = (log n)", we have that

Z e
( |2« |> | 2 7l > (2] e 17

This is because 1 — x > 2% for all 0 < 2 < 0.75. From this, we have:

R
£

Ziv| 2|2

Pr(uy, =5 Asigo € S Agkeyy, = ¢ AV] € [0.m] 309 € 25)
1 4 m |
~as 21| . N
> —ezm o o BRIBL YT ) € 25) - | 200 20

s'es
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Using this lower bound, we get for all m € [m] that:

Pr(uq,, =m | syg0 € & Agkey,, =g AVj € [0,m]: x4, € Z;)

< Pr(uqbvg = rh)
- Z?}:l Pr(uqb’g =7 Nspgo €S Ngkey,, =g AVj € [0,m] : x4, € 3&”])
SG2 4 Nm |7|
S — . @GS Lj=1|"i
Zj’:l Zs/ey :H'((S,7g/> € %’) : }% N %s’
2. SG? 20 S
: A "2 <5-GS
_m'Zs’€,7|%m‘%is’ ‘ ( SZJ—1| J|_ )
G
< —-2% (As |.7] = % and | 20] 2 )
m
The lemma follows. O

Lemma 4.12. For all i € [n], let Z; C [S] X [G] be a set of inputs and (b, g) be a group.
Suppose that 244 = 0 for at least m — m*?3 many j € [0,m]. Then, for all sets J C [m]
with |J| > 10-m?3 and all s # s' € [S], k € [G], and j' € [m], we have:

Pr (Z L(xhgs = (5, k) < m¥/3 | £49, AVi € [n] 1 x; € %> <o bmil

jeJ

Proof. By our assumptions, there exists a subset J’ C J with |.J’| > 8-m?/3 such that j' ¢ .J'
and 2,4, =0 for all j € J'. We have:

Pr <Z 1(xpg; = (s,k)) <m? | 5:;%, AYi € n|:x € %)

jeJ

S Pr (Z H(Xb,g,j = (S, k)) < m1/3 ’ g:/,;(]j/ AV € [n] X € %)

jeJ’

<Pr (Z 1(xpg, = (5,k)) <m'/? | S:;%,) (Lemma 4.8)
jeJ’

.m1/3

oof—

<e” (As S = (logn)" and Lemmas 3.1 and 4.8)

4.1.2 Information Theory Lemmas

Lemma 4.13. Letn > 0 and X = (Xq,...,X,) be identically distributed (possibly correlated)
random variables and 7 = log(|supp(X1)]). Let Y be another random variable such that for
all y € supp(Y), there exists a set S, C [n| such that setting Y =y fizes the value of X; for
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alli € S,. We have:
HX|Y) <22 - (n —E[|S,[]).

Proof. We have:

H(X|Y) = Z Pr(y) - H(X | y) (Definition A.2)
yesupp(Y)
= Z Pr (X@ | y)
yesupp(Y
< Z Pr(y) - ZH(Xl | y) (Corollary A.5)
y€supp(Y) i¢Sy
< ) Pr(y)-A-(n—|S,)
y€supp(Y)
(Lemma A.6 and that X; are identically distributed)
= - (n = E[|5,]]).
[l

Lemma 4.14. Letn > 0 and X = (Xy, ..., X,,) be identically distributed (possibly correlated)
random variables and 7€ = log(|supp(X1)|). Let S, T C [n] be (set-valued) random variables
such that S C T almost surely. Let Y,Z be random variables such that Z determines T and
for all y € supp(Y), there exists a set S, C [n] such that setting Y =y implies S = S, and
fizes the value of X; for all i € S,. We have:

H(X |Y,2) < A -E[T| =[S+ Y Pr(y.2) - HXz | y, 2).

Y.z
Proof. We have:
H(X|Y,Z) ZPr y,z) - H(X |y, 2) (Definition A.2)
= ZPI" Y, 2) -H(Xg | y,z)
< ZPr Y, 2 ]HI XT\Sy |y, 2 —|— ZPr Y, 2 Xz |y,2)  (Corollary A.5)
< -E[T|—1|S]] + ZPr Y, 2 Xz |y, 2). (Lemma A.6)

]
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4.1.3 Lemmas about Our Random Variables

Lemma 4.15. Let ¥ C [B] x [G] be a set of groups and (gkb’g)(b e be elements of [G].
Define the event £ to be the event that for all (b,g) € ¥, we have gkey, , = gk, ,. The
(|49| + 1) random variables ((Xb,g)(hg)eg, Xg) are mutually independent conditioned on &.

Proof. Proof by induction on |¢|. The base case |¢| = 0 is trivial. For the inductive case,
consider an arbitrary ¢ with |¢| > 0. Let (b*, ¢*) be the smallest element of ¢ and define
g =G\ {(b*,9%)}. Define the event £ to be the event that for all (b,g) € ¢’, we have
gkey, , = gk, , and the event &* to be the event that gkey,. ;. = gky. ;. so that we have
E =& N E*. First, note that for all (b, g) € ¥, we have:

Pr(Xp, | &) =Pr(Xp, | E,E") =Pr(Xp, | €,

as whether or not £ occurs is determined by Xy« ,« which is independent of X; , conditioned
on & (by our induction hypothesis). Next, note that:

Pr(X |€)=Pr(X | &, EY)

_ Pr(X, &7 1€
- Pr(&| &)
PI‘(X(,* g% g* ’ g/) . PI‘(X? | Xb* g*,g*, 8/) /
= : = : . Pr(Xp, | €
Pi(e7] €) (b})L, o 1€

(Induction hypothesis and whether £* occurs is determined by Xy« 4+)

. PI"(Xb*,g*,g* ’ 5/) : PI(X@ | Xb*,g*,g*,gl)
= Pr(g* | 8/) H Pr(beg ‘ 6)

(b,g)e9’

Now, note that our distribution D has the property that, conditioned on Xj- 4+, E*,E’, the
random variable Xz is just a uniformly random element of set that is independent of Xj- g«.
We get:

Pr(Xp g, E° | £) - Pr(Xy | £°,€")

Pr(X | €) = = - P, | €)
(b,g)e9’
= Pr(Xpy | E) - Pr(Xz | E)- H Pr(X,, | €)
(b,9)e9’
=Pr(Xz| &) [] Pr(Xuyl8)
(b,g)e¥y

[]

Lemma 4.16. Let c € [C] and | € [L]. For any realization Y <1y of T<cy there exists a

noise vector N<(cmin([1/2],7e)) and sets (Z;) ] such that the following equivalence between

i€n
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events holds:
T<(en) = T<en) = Neemin(/217e)) = N(emin(ii/211e)) A Vi € [n] 1% € 25

Moreover, fixing any realization Y<(;) also fizes the transcript received by all the parties in
the first (¢, min(|l/2],Tcn)) rounds.

Proof. Proof by induction on (¢,l). The base case is straightforward. We show the result
for (c,l) assuming it holds for smaller values. First, consider the case that [ € (7/};, L]. In
this case, note from Equation (8) that, conditioned on Y.y, the first coordinate of @
is already fixed. If this fixed value is L, the second coordinate is also fixed to L and we are
done by the induction hypothesis. Otherwise, letting this fixed value be (b, g), we get that for
all T< (., there exists a value X, such that conditioned on Y., the event T ;) = Ty
is the same as X, = X; 4. We get:

Teeny =T<er) = Taen) = Tty AN Tieny = Tien
= T<(c,l) = T<(c,l) A Xb,g = Xb,g-

We are done by the induction hypothesis which also implies the “moreover” part. Now,
consider the case [ € [Tq,} . In this case, we assume that [ is even as the proof when [ is odd

is analogous. Let (b, g) be the last group in T<( . That is, we have:

Yoy = (T<tea—1) (((6,9) Xog), Ne(emin([1/21.1e0) ) ) -

The group (b, ¢g) may be L, in which case we assume it is the pair (B + 1,G + 1). Observe
from Equation (6) that the event T ;1 = (b,g) is the same as saying that none of the
parties in the groups between ®(.;_1)1 and (b, g) spoke in round (c,1/2) and some party in
group (b, g) did speak. As the transcript received by all that parties in (¢,1/2 — 1) rounds is
fixed by the induction hypothesis, we can define a set .2}’ for all parties i in groups between
P (c1—1),1 and (b, g), such that party ¢ does not speak if and only if x; € Z;'. This takes care
of the former condition, while the latter is subsumed by the event X, ;, = X 4. Defining 27
to be the set of all inputs for all other i, we have:

Ty =T<er) = Taen) = Teteny AN Tieyy = Tie
= T<(c,l) = T<(c,l) AN Xb’g = Xb’g AVi € [n] 1X; € %I.

We are done by the induction hypothesis. For the “moreover” part, observe that fixing
T<(c1), fixes the symbols sent by the parties in groups upto (b, g) in the round (c,1/2). As
T< (1) also fixes the noise in this round, the moreover part follows. O

Lemma 4.17. For allc € [C] and € [L], the random variable T<(.;) determines the random

. k
variables q)sgnqu) and <Dg<(c7l).
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Proof. Note by Lemma 4.16 that T ;) fixes the transcript received by all the parties in the
first (¢, min(|1/2],Tcn)) rounds and from Equation (9) that T<( fixes <. Combining,
we get the result. O

Lemma 4.18. Let ¢ € [C] and | € |:’fa1:| For any A?Zl) = (TS(C—LL)ﬂ(I)sgnzc,lyNS(C,”/ﬂ))?
there exist sets (%)ie[n] such that, letting Ay be the random variable associated with A?’C‘jl),
the following equivalence between events holds:

Ay = ATy = Nee 2y = Neeqyan AVi € [n] 1 x; € 2

Moreover, fixing any A?Zl) also fizes the transcript H (e11/2)) recewwed by all the parties
i € [n] in the first (c,|l/2]) rounds. Finally, for all i € [n], the set Z; equals the set
promised by Lemma 4.16 for T<._1,1) unless there exists I € [l| and inputs (s, k) such that

msgz((s, l{;),H<(c ) ) # L and either @7 = L ori < O,

Proof. Proof by induction on [. For the base case [ = 0, note by Lemma 4.17 that T<._1 1)
determines A?Z‘l) and we are done by Lemma 4.16. For the inductive step, we proceed
similarly to the proof of Lemma 4.16. Assume that [ is even as the proof when [ is odd is

m

analogous. Let i = (b, g, j) be the last player in .- That is, we have:

(I)SS”ECJ) - ( SSnEcJ—l)a (7’7 .’IZ))

The player ¢ may be 1, in which case we assume it is the player n + 1. Observe from
Equation (6) that the event CD?ZZ)J = 1 is the same as saying that none of the parties between
O, and i spoke in round (¢,1/2) and party i did speak. As the transcript received by
all the parties in the first (¢, / 2 — 1) rounds is fixed by the induction hypothesis, we can
define a set 2 for all parties i’ between (ID(C 1), . and 4 such that party 7" does not speak if
and only if x; € Z/. Defining, 2/ to be the set of all inputs for all other i’, we have that:

A(cJ) = A?Zz) = A(c,lfl) = A?Zl—l) N d)?Z'l) = (i>$i)
= A1) = ARy Axi =2 A Vi' € [n] i xy € 2.

We are done by the induction hypothesis. For the “moreover” part, observe that fixing A?rc"l)
fixes the symbols sent by the parties upto i in the round (c,1/2). As A?gz) also fixes the noise
in this round, we are done. To finish, note that the “finally” part is because of the definition
of 2. O

Lemma 4.19. Let ¢ € [C] and | € [fC\h} For any A%{il) = <T§(071,L)a(I)ggk(cJ);Ng(c,[l/ﬂ))

fizing which fives the value of <), we have that, conditioned on A% the random
( <( (1)

variables X " and T< .y are mdependent

Proof. Observe that conditioned on A%C ) also fixes ['<(.—1,r) and let I'<(._; 1) be the fixed
value. Let ch,z) = I'<(ep) \ '<(e—1,1) for convenience and let A?El) be as in Lemma 4.18.
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Next, note from Equation (6) that A%{f ) 1s just A?Z‘l) along with some information about the
groupkeys for some groups. Any such group lies in I'<(.;) by definition and if it also lies in
I'<(c-1,1), the information about the groupkey is implied by T<(._1 7). We get that there are

values (gkbyg) such that, letting A%«tl) be the random variable associated with A%;l),

(b7g)€r‘?c’l)
we have:

k k *
A?C,l) = A%c,l) = ?231) = A?ZZ) A V(b, g) € F(CJ) : gke)’b,g = gkb,g (11)

By a similar reasoning, we have that, conditioned on A%f ) the random variable T< (., is

equivalent to the random variable Xp? o The lemma now follows as we have for Xr_ and
XF?C H that: -

Pr <XF§(c,l) \ A%:,n) =Pr| Xr_ AV /\ gkey, , = gk, (Equation (11))

(bzg)er?c’l)

= Pr Xirg(c,z) | Ng(cﬂ/g]), /\ X; € e/g{i, /\ gkeyb,g = gkby

i€[n] (b.9)el't, )

(Letting Z; be as promised by Lemma 4.18)

=Pr Xirg(c,z) | /\ x; € X, /\ gkeybyg = gkb’g

1€[n] UW)EFZCJ)

(As X is independent of N)

= Pr Xirg(c,z) | XF?C,Z)’ /\ X; € %, /\ gkeyb’g = gkb,g

i€[n] (b,g)erz‘cﬁl)

(Lemma 4.15)

i€[n] (b,g)el‘@”

(As X is independent of N)

Xrooy \ Xre s ATy /\ gkey, , = gk, (Lemma 4.18)
(b,g)eF’(*C,l)

= Pr (XW \ XF;CJ>>N§(C,[1/21), /\ x; € Zi, /\ ngYb,g = gkb,g

k .
(e | Xr?c,zy A%c,l))' (Equation (11))

]
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4.2 Proof of Lemma 4.2

We prove Lemma 4.2 by induction on ¢. The base case ¢ = 0 can be easily verified. We
prove the lemma for ¢ > 0 assuming it holds for ¢ — 1. By the induction hypothesis, it is
enough to show that:

B

E[T, (X, Teery) — Up(X, Teern))] < 2+
; [ b( <( L)) b( <( IL))] (logn)8

E[[M<en)] = [T<e1n]]-

We will show this holds even when conditioned on any realization T<(.—1,r) of T<(—1,r). In
fact, we will show by (backwards) induction that, for all 0 < b < B, and any inputs X < for
the players in the first b blocks, we have that:

B
Z E[‘Ifb(X, rg(c,L)) - ‘I’b(xa rg(c—l,L)) ‘ TS(C—LL)nglﬂ
b=b+1 (12)
z 1
<9 —o1+2(b-B) | s ElT<en)| = [T<e1.0)] | T<e-1,0), X3)-
(logn) -

The base case b = B is straightforward. We show it for 0 < b < B assuming it holds for
b+ 1. Fix an arbitrary T<(_1 ) and X <b and observe that this also fixes <17y and
gkeys;(X). Let I'<(.—1,1) and g be the values these are fixed to. First, consider the case when

(?) +1, g) € I'<(c—1,1)- In this case, it follows from Equation (10) that the term corresponding

to b = b+ 1 vanishes and we are done by the induction hypothesis. Henceforth, we assume
that (b + ].,g) ¢ FS(C—LL)‘

Defining the event &. We now define an event & that (under our conditioning) is
determined by X;, ;. For this, recall from Lemma 4.16 that fixing T<(._1,1) fixes the transcript
received by all the parties ¢ € [n] in the first (¢ — 1) chunks and denote this transcript by
H;(c_l).TCh. For all z € [Tcy], g € [G] satisfying (b + 1,g) ¢ I'<(c—1,1), and inputs (s, k) for
one party, define the set:

s (s ) = {77 € m] |30 € 40,1, 11" s msg (5, BT o) £ 1) (13)

For all 2 € [Ty, we define a tuple (g, (s, k)) to be z-heavy if |hits, 4(s, k)| > 10 - m?/3 and
z-light otherwise. Also, for all j € hits. o(s, k), we let II_ ) (j) to be an arbitrary II
satisfying the condition in Equation (13). For our proof, we will look at the first 10 - m?/3

elements of hits, ,(s, k). Define:

hits, 4(s, k), if (g, (s, k)) is z-light

. (14
min({J C hits. 4(s,k) | |J] = 10-m*?}), if (g, (s, k)) is z-heavy 14

hits™ (s, k) = {
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Next, for all z € [Tcy], if there exists a tuple (g, (s, k)) that is z-heavy, define (g(z), (s(z), k:(z)))
to be the z-heavy tuple (g, (s,k)) minimizing (g,max(hitsif‘é"(s,k))) and let j* be the
second coordinate of the minimum value (the first coordinate must be ¢*)) and ¥ =
<B +1,¢%, j(z)>. Otherwise, define these values to be L. Define the event &; as:

Definition 4.20. Define & to be the event that
3z € [Ten) : g # LA i1 0 = 52

For all g € [G] such that (I; + 1,g> ¢ T<(c—1,1), define the set Sy = {s\9) | z € [Tcy], g = g}.
With this definition observe that the event &, is equivalent to the event that there exists such
a g with sy 9 € Sy

Lemma 4.21. We have:

Pr(Sl | TS(C_LL)anIB) <

A

Proof. By a union bound, it suffices to fix an arbitrary z € [Tcy] such that ¢*) # | and

show that: 1

< —.
— 4-Tcy
For this, note that due to Lemma 4.16 and the fact that (X,),z and N are mutually

independent, we have can remove X_j from the conditioning above. Also, note from g¥) £ 1

that (5 + 1,g(z)) & I'<(c—1,). This gives:

Pr(spy1 g0 = 57 | Temrn)y Xop)

Pr(513+1,g(z),o = s | Te(e-11)) < Pr(55+1,g<2>,0 = 5(2)) T H (D] TS(C—LL))BH,g(Z) ~ Dyyrg

TV
1
< Pr(sp, . =5%)+
— ( b+1,9(2),0 ) (log n)Q
(Lemma 4.1 and Fact A.15)
1
< I To (As Ten = =55 - logn and S = (10- logn)™)

]

Upper bounding the left side of Equation (12) when &; occurs. In order to prove
Equation (12), we will use the law of total expectation and upper bound the expectation
on the left side conditioned on & and also upper bound it conditioned on &;. Recall that
whether or not & occurs is determined by Xj,, allowing us to view &; as just a set of values
of Xz, for which it occurs. We have:

B
Z E[W,(X,T<e,n) — %o (X, T<(e-1,1)) | Tg(cq,L),ng,gl}

b=b+1
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- Z Pr(XBH | Tg(c—1,L),X§g,€1)

X5+1€€1

B
X Y B0 (X Teen) = Uo(X,Teer0) | Tete1,00 X

b=b+1
< Y Pr(Xp | Tee1n), X, &)
Xp11€8
o 1
X (3 — ot (mB) oz n)® E[|M<(en)] = [T<(e-1.0)] |Ts<c—1,L>7Xs5+1]>

(Induction hypothesis)

Z 1
<3 21+2-(b+173) + — ]EHFS(QL)’ — ||_§(C_1,L)| ’ TS(C—LL)7 X<E, 51} .
(log 1) :

Upper bounding the left side of Equation (12) when & does not occur. Recall the
definitions in Equations (13) and (14) and Definition 4.20 and let I* = ({Z) + 1} X [G]> \
['<(c—1,) for convenience. As <l~)+1,§> € I'", we have that I'* is non-empty. From
Lemma 4.1, it follows that || > % and for all <l~7 + 1,9) e I'*, we have:

1
(logn)*

D((D | Ts(c—l,L))w,g I DEH:Q) =

Let N<(c—1)1,, and sets (%)ie[n} be as promised by Lemma 4.16 for T<_; 7). From
Lemma A.12, this implies that Pr(Vj € [0,m] : x;,, 0 € X gj) > 3 for all (E -+ 1,g> e I'™.
Plugging this into Lemmas 4.9 and 4.10, we get that for all <b +1, g) € I'*, it holds that:

AN , — _GS
Z‘%H,g,j’ <4.-GS and Vi e[0,m]: ‘%;H%A <5
=1

From the former, we conclude that for all (5 + 1, g) € I'*, it holds that :%’b g = = () at least

m — 4 - GS many values of j € [m]. Now, define:

S ={ieh]| Z#0}u <5+1,g,j>|<b+1 g)EF*,jE U Uhltsfewsk) . (15)

z€[Ten] (s,k)

Let U;,, = (qu +1:g)g€[ q be the random variable determining the unique players in block
b+ 1. Now, define the event & that occurs if and only if we have a realization A of A =
(Ub 1 X, Xogir, Neery s cbsm( TCh>) for which at least one of the following two conditions
hold:
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1. There exists g € [G] such that (5+ 1,9) e I' and <B+ 1,9, uql;+17g) S

2. There exists z € [Tcy] such that ¢*) # 1 and we have:

_ z b+1,9() — ]
Z 1<X5+1,g(2>,j = (S( ) k) ) A N ((c— ?Tc:)( z) H;,g<z)7(8<z)7k<2))<])> <2
jehits™ ) (s(),k())
z,9

Observe that whether or not & occurs is determined by A allowing us to view & as the set
of all A for which it occurs. We claim the following bound on the probability of &.

Lemma 4.22. We have:

1
Pl"(gg | Tg(c—l,L)anlE?gl) < 4B’

We defer the proof of Lemma 4.22 to Section 4.2.1. Assuming it for now, we claim that:

Lemma 4.23. For all A ¢ &, we have that:

Heo (gkey8+1,§ ’ Tg(cfl,L)a XSBag_la A) > IOgG - L

Proof. Fix an arbitrary A ¢ & and let A = (U5+1,Xy,X>b+1,N<CTCh,CI>S( fc?)) Recall

the notation A?’“T\) from Lemma 4.18 and let (%), be the sets promised by Lemma 4.18
C,1Ch
for AS™_—.. We get:
(eTen)’

Hoo (gkeyl}+17§ ’ Tg(c—l,L); ngag_h A)
= Hoo (gkeYB+1,g | X§57X>5+17Xf’ 51, Ub+1’ NSC~TCh = [n] X € 6’/2),

where, for all ¢ € [n], we have % = Z; unless there exists I' € [f&] and inputs (s, k)
such that msgi((s k), - l’/ﬂ)) # L and either &7y, = L or ¢« < @, ,. In par-

ticular, we claim that we have % = 2, for all i € ¥ where we define the set &' =

{<l~)+1,g,uq5+17g> | (5+1,g> GF*}.

Indeed, fix an arbitrary g € [G] such that (E + 1,g> € I'™ and let i = (l; + 1,9, UQE+1,g>
for convenience. Also fix an arbitrary I’ € [fc\h] and inputs (s, k) and let z = [lI'/2].

If msgi<(s k), H (e[l /ﬂ)) = 1, then there is nothing to show. Otherwise, we have from

Equation (13) that uqz,,, € hits,4(s,k). Now, note that uqz,,, ¢ hltsfew(s k) as oth-
erwise, we have i € # contradicting Item 1 in the definition of &. This means that
hits, 4(s, k) # hltsfew(s k) which implies that (g, (s,k)) is z-heavy. It follows that we have

<g(z) max (hltsfew ( () l{:(z))>) < (g, uq,;H,g). Combining this with the fact that Item 2 in
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the definition of &, is false, we have that there are at least two parties smaller than ¢ that
are speaking in round (¢, z). This means that DT 1 # 1 and iy 1 <4, and we are done.

Having proved the claim, we again use the fact that Item 1 in the definition of & to get
that for all i € ., we have %; = (). We will show the min-entropy bound hold even under
a stronger conditioning where we condition on the inputs of all players not in .#’, the value
(5i);c.0» and the noise N<..r,. In other words, the only randomness remaining in the inputs
is the randomness (k;);. ,,. Observe that this conditioning is indeed stronger. Under this
stronger conditioning, we use the fact that %; = () for all i € .#’ to get that the distribution
of gkeyj,, ; is uniform over a set of size at least %. The lemma follows. m

To upper bounding the left side of Equation (12), note that we have from the law of total
expectation that:

B
Z E[Wy(X,T<(er) — Wo(X, T<ie-1,)) | T<(e-1,0), X €1

b=b+1
< B Pr(& | Yeperiy X &) + D Pr(A | Tegeorn) X 81) (16)
A¢Es
B —
X > B0 (X, Ter) = (X T<e1.0)) | Tee-1,0), X &1, A
b=b+1

We focus on the last expectation above for an arbitrary A ¢ &. We have from Corollary 4.7
that:

B

D E[W (X Teen) = WX, Teer,0) | T,y Xapr €1, A

b=b+1

B
<1+ Z E[1((b, gkeysy—1(X)) € T<(e,n) \ F<e-1,)) | Tg(cq,L),Xgi,,g_l, Al

b=b-+2

1 b B
+ —(logn)ld : Z E[|(T<ten) \ T<e-1,)) N ({0} x [GD| | T<(e-1,0), Xoj, €1, A].
b=b+2

Now, we claim that for all b € [5 + 2, B} , our conditioning fixes the value of (FS(C,L) \ rg(cfl,L)) N

({b} x [G]). That is, it fixes the groups in block b that are added to M'<(. ). In fact, we will
show that not only does it fix the groups that are added, it also fixes the order in which these
groups are added. Indeed, for any prefix of this order, Equation (7) says the next element

to be added is determined by X and <T<(c_1,L), @i"‘( ) N<C'TCh>' As this tuple forms a
< <(eTq) VS

“rectangle” (see Lemma 4.18), the next element is determined by Xj, which is fixed by our
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conditioning and we are done. Let this fixed value be ¥,. We get:

B
> E[W(X, Teen) = Uo(X Teem10) | Teemt,n) X &1, A
b=b+1

<1+ Z %] + Z > Pr(gkeysp-1(X) = ¢’ | Y<(e-1.), Xj, &1, ).

lo n
& b=b+2 b=b+2 (b,g")€%

Now, use Equation (4) and Item 2 of our promise on the distribution D and our conditioning
to get that for all (b, ¢') € %, there exists a unique g* € [G] such that gkeys, 1(X) = ¢’ only
if gkeys;, ,(X) = gkey; , ; = g". Using this, we get that:

B

Z E[U,(X,T<er) — ¥o (X, T<e-1.0)) | T<(e—1,0), X3, 1, A
b=b+1

<1+ 1 Z 1% + — Z 1| (Lemma 4.23)

(logn b=b+2 b=b+2
B
<1+ 5 Z EAP (As G = (10 -logn)"?)
(logn) s

Plugging this bound into Equation (16), we get:

B
Z E[\I/b(xa rS(c,L)) - \Ifb(X, rs(c—LL)) | TS(C—LL)’XSE’S_I]
b=b+1

< B- Pr(52 | Tg(c—l,L)7X§B7£_1)

B
—_ 1
+ Pr(A ’ TS(cfl,L)aX<5agl) {1+ 8" Z ’gb‘
2 < logny 2
2 =b+2

__ 1 __ _
<1+ B-Pr(& | Tee 10, Xy &1) + logn Pr(& | T<(e-1.0), X5, &1)

logn)
< E[[M<en)| = Te10)] | Tee-rn), X5, €1, 8]
<14+ B-Pr(& | Tepe-1,0), X, &1)

1
T (log n)S EHFS(C,L)‘ - |r§(c—1,L)’ ’ TS(C—LL)’XSI%Q
1 1
<l+4+-+ g EHFS(CaL)‘ — |r§(6_1,L)] | T<(e-1,0), X<, &) (Lemma 4.22)
4 (logn) <
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Using the bounds above. We now use the two bounds for the left side of Equation (12)
proved above to get:

B

Z E[W,(X,T<en) — ¥o(X, T<(e-1,1)) | Tg(c—l,L),Xgﬂ
b=b+1
B
S Pr(Sl ‘ TS(C_LL),XSI;) . Z E[\Ijb(xa rf(c,L)) - \Ijb(x7 rS(C—LL)) | TS(C—LL)7X§87€1]
b=b+1
B
+Pr(& | Tepeorn), Xg) - Z E[U(X,T<er) = %o (X, T<ie-1.0)) | T<(e-1.0), X5, &1
b=b+1
<1+1+<3_21+2-(5+1B)>,1_’_ 1 _EHF< L|_‘r< _1L‘|T< 1), X
<14 1 logny <en)| = T<e-1)| | Teem1,n), X

(Lemma 4.21)

. 1
<o (-B) 4 —— E[|T<en)| — [T<e-1.0)| | T<e-1.0), Xo3]-
(logn)

This proves Equation (12) and thus, also proves Lemma 4.2.

4.2.1 Proof of Lemma 4.22

We now show Lemma 4.22. By a union bound, it suffices to upper bound the probability of
Items 1 and 2 in the definition of & separately.

Upper bounding the probability of Item 1. By another union bound, it suffices to
consider a fixed g € [G] such that (l; +1, g) € I'*. Let .7, be as in Definition 4.20 and note

from S = (logn)' that |.7,| = 2. By Lemma 4.11, we have that for all ¢’ € [G], it holds
that:
H (Uql}+1,g | Sh41,9,0 € ?2 A gkeyl3+1,g =g AVje0,m]: Xpt1,95 € ‘%)Jrl,g,j) > 0.9 - logm.

J

Using Lemma 4.15 and the equivalent definition of & in Definition 4.20, we get that for all
g € [G:

Hoo(quﬂ’g | 8_1/\gkeyl;+17g =g AVje0,m]:x; € %) > 0.9 - logm.
As this holds for all ¢’ € [G] and as X is independent of N, we have:

IHIoo (uql~7+1,g | Tg(cfl,L)yXS(;)g_l) >0.9- log m. (17)

32



[tem 1 now follows as we get:

Pr<(7) + L9, qu;+1,g> € | Tg(c—l,L>ana75_1)

< S Pr((b+ 19wty ) = Teier: X&)
184

<|InN ({(ZNJ + 1,g>} X [m])‘ -m 0 (Equation (17))
< (5GS+10-Tc, - GS - m2/3) -m (Equation (15))
S m—O.Q‘

Upper bounding the probability of Item 2. By another union bound, it suffices to
consider a fixed z € [T¢p] such that ¢g*) # 1. Let £*) be the event in Item 2 for this z. Also,
define that event £) as:

Z E(XE_H’Q(Z)J — (S(Z), k(z))) < ml/3

jehits™ (s(),k(=))
z,9

To upper bound the probability of £*) occuring, we first upper bound the probability of £'¢)
occuring. For this, for all i € [n], define the set %(z) as follows: If 7 is in the first b blocks,

then define %(Z) = {2;}. Otherwise, if there exists ¢’ # ¢g*) satisfying <l~7+ 1,g’> e I',
define 2;”) = 2; N (Fy x [G]). If both these conditions fail, set 2;'” = 2;. We apply
Lemma 4.12 on the sets %(z) to get that for all 5" € .7 ;) and all j" € [m], we have:

1/3

Pl"(gl(z) | Sit1,9(2),0 = s'A Uggyq g = j/ AV € [TL] 1X; € %(z)) < e—%-m

As s' € ) and j' € [m] were arbitrary, we get:

1/3

Pr(€9) | spep 000 € Ty AVi € [n] ix € 29) < emd

From the definition of %(z) and using Definition 4.20, we get:

1/3

00—

Pr(f,"(z) | X AELAViEn]ix € Z;) <e 5™

As X is independent of N, we have Pr(é"(z) | Tg(cfl,L)angaéTl) < e—zm'/?, Using a union
bound, this gives:

Pr(€@ | Ye(eor,n), X5, &1) < o bml/? +Pr<g(z) | TS(HLL),XSE’E’—&(Z))_

We now analyze the second term above. For this, note that the event we condition on is
determined by X and the noise N<(_1).z, in the first (¢ —1) chunks. Thus, in order to
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upper bound this probability it suffices to fix an arbitrary X and N<(._1).7, such that our
conditioning occurs and upper bound Pr(S(z) | X, Ng(c,l).TCh). For this, note that as £*)
does not occur, we have a set J C hitsi'f‘;v(z) (59, k@) with |.J| > m!'/® such that Thy1g) 5 =
(S(Z), k;(z)) for all j € J. We get:

Pr (5(2) ‘ Tg(cfl,L)a XSE» 5_17 g/(z)>

b+1,g(*) 5 . . Ny .

< Pr Z 1<N((6_§,TC:)’(C7Z)) - HTZ’g(z)’(S(z)’k(z))(j)) <2 ‘ TS(c—l,L)anbaghgl( ))
jeJ

(Item 2)

0.2

< 2™ (Lemma 3.1 and as T, = ﬁ -logn)

Plugging in, we get:

1/3

PT(E(Z) | Tg(c—l,L),ng,E) < emsm? L gmn®? <o
Finishing the proof. To finish, we combine both the parts above and get Pr (52 | T<(e-1,1) XgEv 5_1) <
m~015 < é, as desired.

4.3 Proof of Lemma 4.3

This section is devoted to the proof of Lemma 4.3. For this, define ¢ = H(X, ;) to be the
entropy of the inputs of the first group of players. By symmetry, this is also the entropy of
any group of players. We will prove that for all 0 < ¢ < C, we have the following entropy
upper bound:

1

- BG —E||[l< N - ———
Irsenl)- (# = 5

) —9c- TCh ~logn < H(X ’ Tg(c,L))- (18)

This is enough as we have from Lemma 4.13 that ]I-]I(X \ TS(C,L)) < - (BG — EHFS(C,L)H)'
Lemma 4.3 now follows by a simple rearrangement. To prove Equation (18), note from
Lemma 4.4 that it suffices to show that, for all 0 < ¢ < C', we have:

c L
Z Pr(Tg(c,L)) Z Z D((D | T<(C’J))<1>(L_,J)71 I Dq)(c’»l)vl)

T<(e L) =11=T¢ +1

< 8c-Tcp-logn — # - (BG — EHrg(c,L)H) +HX | T<(en))-

We prove this by induction on c¢. The base case ¢ = 0 is straightforward. We show the
statement for ¢ > 0 assuming that it holds for ¢ — 1. By the induction hypothesis, it suffices
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to show that:

L

Z Pr(TS(QL)) : Z D((D | T<(C’l))‘1>(c,z),1 | D‘I’(C,z),l)

T<(e,L) 1=Tcn+1
S 8- TCh ~logn -+ T - ]EHFS(C,L)‘ — |r§(c_17L)H - I[(X : TS(C,L) | TS(C—I,L))'

(19)

Analyzing the range [ € (f&, L} . We divide the proof of Equation (19) into two parts

and first consider the values [ € (fah L} . For any such /, note that fixing any T<(_;, ) also

fixes the value of '« 1) and I'<(. 7). Let P(kc,z) = I'<(¢,0) \I'<(c,1) for convenience and observe
that conditioned on T<(._1,z), the random variable T<(.;y determines and is determined by

szc ) This means that:

H(X . Tg(c,l) | T<(c,l)) = H(TS cl) | T cl)) H(Tg(c,l) | X, T<(c,l)) (Deﬁnition A7)
H(TS cl) | T< cl))
1
Z PI"(T<(CJ)) . Z Pl"(Xp:c’l) ‘ T<(c,l)> ~10g
Toen erc,z) PT<XF;‘CJ) | T<(e,l)>
(Definition A.2)

= Y Pr(Yepen) - ([T<ien| = [Teien])
T (e

- Z Pr(T<(Cvl)) ) D((D | T<(Cvl))¢'(cyl)yl || Dq)(c,l),l)

T<(c,l)
(Definition A.10)

= E[|rg(c,l)| - ‘r<(cvl)u

- Z Pr(T<(Cvl)> ']D((D | T<(Cal))<1>(c’l),1 | Dq)(c,zm)'

Te(en)

Adding this for all [ € <fC\h; L} gives:

I(X: Tty | Teperm)) = # B[ xen| = [Tepemm)

)

L
— Z Pr(Tg(c,L)) . Z D((D ’ T<(c’l))¢(c,z),1 H Dq’(c,zm)'
T<(e,L) I=Tcn+1

Plugging this into Equation (19), we have that it suffices to show:

(x Ty | Tt 1L>) <8 Tey-logn + A - EHF CTC>‘—|r§(C,LL)|] (20)
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Proving Equation (20). We now focus on showing Equation (20). We have:

H( ( ) | T< (c— 1L)>
=H(X | T<e-1,1)) — (X | T <(e, Tq.)) (Definition A.7)

H(X | Tg(c—l,L)7 NSoTCh) - H<X | TS(QE))

(Lemmas 4.16 and A.4 and as noise is independent across rounds)

k k
- H(X q)g (C TCh) | TS(C—I,L)a NSC-TCh> + H(X | TS(C—LL): q}gg(c,fc\h)’ NSOTCh) (X | T (CTCh)>
(Definition A.7)

k k
< H(q’g <(cTa) VTs«:—u)) +H(X | T<(e-1,1), q’g( Ta)’ N<C'T6h) <X T (cTch)>
(Lemma A.4 and Fact A.8)

< 8- TCh logn—f—H(X | T< (c— 1L),¢g( Ch) N<CTCh> <X | T (CTCh))
(Lemmas 4.17 and A.6)

Analyzing the second term above, note that:

k
H (X | Tg(c—l,L)a q)gg(c,fc\h)’ NSOTCh)

< %‘EHF<(QT\Ch> ]F<(c,17L)u
k
+ Z Pr(TS(C_l L), (CT ) <CTCh> H(X <(CTCh) | T< (c—1,L) g<( T ) <CTCh)
Tgk(c—1 L)
sy
N<eg,
(Lemma 4.14)
S%'E[ M (e7a) !F<(H,L)ﬂ
+ ; Z PT(TS(C,Tc\h)> . H(XIW | T< (c—1,L)» (I) ( ,Tq,)’NSC'TCh)
(o)
(Lemma 4.17)
< %E[ g(cfc\h) - ’I_S(C_lL } + Z PI‘( CTCh)) H<X <(CTCh> |T (CTC"))
Te(era)
(Lemma 4.19)
< %E[ rg(cfc\h) — ’rg(c—lL } + Z Pr( CTCh)> (X [T (cTCh))

T (c TCh
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g%-E[

Plugging in,

I(X

: Tg(cfc\h) | TS(C—LL)) <8 -Tcp-logn + - E[

- ’ré(c—LL)” + H<X | Tg@f&))- (Definition A.2)

rg(cfc\h)

we get

— |F<te-1n)

|

M (e7a)

which is just Equation (20), and the proof is complete.
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A Information Theory Preliminaries

Recall that we use sans-serif letters to denote random variables. We reserve E to denote an
arbitrary event. All random variables will be assumed to be discrete and we shall adopt the
convention Olog% = 0. When it is clear from context, we may abbreviate the event X = x
as just x. All logarithms are taken with base 2.

A.1 Entropy
Definition A.1 (Entropy). The (binary) entropy of X is defined as:
1
H(X)= Y Pr(x) -logm.
z€supp(X)
The entropy of X conditioned on E is defined as:
1

HX| E)= P E)-log —————.
XIE)= 3 Prle| D)l

z€supp(X)

Definition A.2 (Conditional Entropy). We define the conditional entropy of X given Y and
E as:
HX|Y.E)= S Pi(y|E)-H(X|y,E).

y€supp(Y)

Henceforth, we shall omit writing the supp(-) when it is clear from context.

Lemma A.3 (Chain Rule for Entropy). It holds for all X, Y, Z and E that:
H(XY |Z,E)=H(X|Z,E)+H(Y | X,Z, E).
Lemma A.4 (Conditioning reduces Entropy). It holds for all X, Y, Z and E that:
H(X|Y,Z,F) <H(X|Z,E).
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Equality holds if and only if X and Y are independent conditioned on Z, E.

Corollary A.5 (Corollary of Lemmas A.3 and A.4). It holds for all X, Y, Z and E that:
H(XY | Z,E)=H(X | Z,E) + H(Y | Z, E).
Lemma A.6. It holds for all X and E that:
0 <H(X | E) < log(|supp(X)])-

The second inequality is tight if and only if X conditioned on E is the uniform distribution
over supp(X).

A.2 Mutual Information

Definition A.7 (Mutual Information). The mutual information between X and Y is defined

| I(X:Y) = H(X) — H(X | Y) = H(Y) — H(Y | X).

The mutual information between X and Y conditioned on Z is defined as:
IX:Y|2Z2)=H(X|2Z)-H(X|YZ)=H(Y|Z) —H(Y | XZ).

Fact A.8. We have 0 <I(X:Y |Z) <H(X|Z) <H(X).

Fact A.9 (Chain Rule for Mutual Information). If W, X, Y, Z are random variables, then

IWX:Y|Z)=IW:Y|Z)+IX:Y|W2).

A.3 KL Divergence

Definition A.10 (KL Divergence). If u,v are two distributions over the same (finite) set
Q, the Kullback-Leibler (KL) Divergence between p and v is defined as:

CL)
DG || 1) = 3 (w) - log 1)

weN w>

For a finite non-empty set S, we shall use unif(.S) to denote the uniform distribution over
S. We omit S from the notation when it is clear from the context. We use dist(X | E) to
denote the distribution of the random variable X conditioned on the event E.

Lemma A.11. Let p, v be two distributions with the same support 2. We have D(u || v) >0

Lemma A.12. Let X be a random wvariable uniformly distributed over a set ) and S, C
Sy C Q) be given. Let E be an event such that X conditioned on E is supported on Sy, we
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have: s
D(dist(X | E) || dist(X | X € S5)) > log ;S—Q:
1

Lemma A.13. Let X be a random wvariable uniformly distributed over a set ) and Sy C

Sy C Q be given:

D(dist(X | X € ) || dist(X | X € S)) = log%:‘
1

A.4 Total Variation Distance

Definition A.14 (Total variation distance). Let u,v be two distributions over the same
(finite) set Q2. The total variation distance between p and v is defined as:
= vlhry = max 3 ) — i),
welY
Fact A.15 (Pinsker’s inequality). Let p, v be two distributions over the same set . It holds
that:

I =vliry <4/ 5 - D(u [ v).

N | —
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